Macquarie University
Browse
- No file added yet -

Data from: Phylogenetic variation in hind-limb bone scaling of flightless theropods

dataset
posted on 2022-06-10, 03:03 authored by Nicholas R. Chan
The robusticity of the weight-bearing limbs of large terrestrial animals is expected to increase at a more rapid rate than in their smaller relatives. This scaling has been hypothesized to allow large species to maintain stresses in the limb bones that are similar to those seen in smaller ones. Curvilinear scaling has previously been found in mammals and nonavian theropods but has not been demonstrated in birds. In this study, polynomial regressions of leg-bone length and circumference in terrestrial flightless birds were carried out to test for a relationship similar to that seen in nonavian theropods. Flightless birds exhibit curvilinear scaling, with the femora of large taxa becoming thicker relative to length at a greater rate than in smaller taxa. Evidence was found for nonlinear scaling in the leg bones of nonavian theropods. However, unlike in avians, there is also phylogenetic variation between taxonomic groups, with tyrannosaur leg bones in particular scaling differently than other groups. Phylogenetically corrected quadratic regressions and separate analyses of taxonomic groupings found little phylogenetic variation in flightless birds. It is suggested here that the nonlinear scaling seen in avian femora is due to the need to maintain the position of the knee under a more anterior center of mass, thereby restricting femoral length. The femur of nonavian theropods is not so constrained, with greater variability of the linear scaling relationships between clades. Phylogenetic variation in limb-bone scaling may broaden the errors for mass-predictive scaling equations based on limb-bone measurements of nonavian theropods.

Usage Notes

Appendix S1Femur and tibia lengths and circumferences from flightless birds and non-avian theropods, including references for non-avian theropod data.Supplementary FiguresPhotographs of avian leg bones with key features labelled (Fig. S1A and S1B), and time scaled strict consenus trees of flightless birds (Fig. S2) and non-avian theropods (Fig. S3) included in regression analyses.Appendix S2Matrix representation parsimony codings for flightless avians and non-avian theropods with list of source phylogenies and first and last appearance dates of taxa with data sources listed.

History

FAIR Self Assessment Rating

  • Unassessed

Data Sensitivity

  • General

Source

Dryad

Usage metrics

    Macquarie University Research Data Repository

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC