Macquarie University
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Macquarie University and we can't guarantee its availability, quality, security or accept any liability.

Data from: Sapwood capacitance is greater in evergreen sclerophyll species growing in high compared to low rainfall environments

dataset
posted on 2022-06-10, 03:01 authored by Anna E. Richards, Ian J. Wright, Tanja I. Lenz, Amy E. Zanne
1. The capacitative release of water from sapwood allows photosynthesis to continue for longer into dry periods, both diurnally and seasonally. However, costs of high capacitance include increased vulnerability to xylem cavitation. The degree of reliance on stored water is predicted to differ among environments as a result of this trade off 2. Xylem water potential and sapwood capacitance were measured on 32 evergreen sclerophyll shrub and tree species in eastern Australia, sampled from four sites contrasting in soil nutrients and rainfall. 3. Capacitance calculated over species’ typical shoot water potential operating range was 3-fold higher for species from high compared to low rainfall sites, and 1.5-fold higher for species from high compared to low nutrient sites. 4. To determine whether these site differences were related to extrinsic (e.g. water availability) or intrinsic (e.g. species anatomical construction) factors, we calculated capacitance at two common operating ranges; i.e. the mean range in water potential observed for low rainfall species (ΔΨlow rain) and the mean range for high rainfall species (ΔΨhigh rain). While no difference was seen between low and high rainfall species in release of stored water across ΔΨhigh rain, across ΔΨlow rain the high rainfall species released 38% more stored water than low rainfall species. Presumably these differences reflect underlying differences in anatomy, such as wood density, which was lower in high rainfall species. 5. These results accord with predictions that (i) species from wetter sites exhibit less negative stem water potentials and high sapwood capacitance, enabling them to maintain function under variable conditions characterized by many short, dry periods; while (ii) species from low rainfall sites have wood anatomies conferring tolerance to very low water potentials, with low sapwood capacitance, enabling them to survive longer through unpredictable and extended periods of low rainfall. The finding that the degree to which species rely on stem-stored water varies with site rainfall suggests that changes in drought regimes (e.g. incidence, duration and severity) under future climates could differentially affect species according to the capacitance properties of their woody tissues.

Usage Notes

Sapwood water potential, relative water content and cumulative water released from sapwood samples of 32 plant species measured in a thermocouple psychrometer and their wood densities.Richards_FuncEcol_DRYAD.xlsx

History

FAIR Self Assessment Rating

  • Unassessed

Data Sensitivity

  • General

Source

Dryad

Usage metrics

    Macquarie University Research Data Repository

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC