Macquarie University
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Macquarie University and we can't guarantee its availability, quality, security or accept any liability.

Stabilized morphological evolution of spiders despite mosaic changes in foraging ecology

dataset
posted on 2022-06-10, 02:36 authored by Jonas WolffJonas Wolff, Kaja Wierucka, Jonathan Coddington, Gustavo Hormiga, Michael Kelly, Marie Herberstein, Martín Ramírez, Gustavo Paterno
A prominent question in animal research is how the evolution of morphology and ecology interact in the generation of phenotypic diversity. Spiders are some of the most abundant arthropod predators in terrestrial ecosystems and exhibit a diversity of foraging styles. It remains unclear how spider body size and proportions relate to foraging style, and if the use of webs as prey capture devices correlates with changes in body characteristics. Here we present the most extensive dataset to date of morphometric and ecological traits in spiders. We used this dataset to estimate the change in spider body sizes and shapes over deep time and to test if and how spider phenotypes are correlated with their behavioural ecology. We found that phylogenetic variation of most traits best fitted an Ornstein-Uhlenbeck model, which is a model of stabilizing selection. A prominent exception was body length, whose evolutionary dynamics were best explained with a Brownian Motion (free trait diffusion) model. This was most expressed in the araneoid clade (ecribellate orb-weaving spiders and allies) that showed bimodal trends towards either miniaturization or gigantism. Only few traits differed significantly between ecological guilds, most prominently leg length and thickness, and although a multivariate framework found general differences in traits among ecological guilds, it was not possible to unequivocally associate a set of morphometric traits with the relative ecological mode. Long, thin legs have often evolved with aerial webs and a hanging (suspended) locomotion style, but this trend is not general. Eye size and fang length did not differ between ecological guilds, rejecting the hypothesis that webs reduce the need for visual cue recognition and prey immobilization. For the inference of the ecology of species with unknown behaviours, we propose not to use morphometric traits, but rather consult (micro-)morphological characters, such as the presence of certain podal structures. These results suggest that, in contrast to insects, the evolution of body proportions in spiders is unusually stabilized, and ecological adaptations are dominantly realized by behavioural traits and extended phenotypes in this group of predators. This work demonstrates the power of combining recent advances in phylogenomics with trait-based approaches to better understand global functional diversity patterns through space and time.

Funding

Fondo para la Investigación Científica y Tecnológica : PICT-2017-0289

Australian Research Council : DE190101338

National Science Foundation : EAR-0228699

Australian Research Council : DP170101617

Macquarie University : Macquarie University Research Fellowship

History

FAIR Self Assessment Rating

  • Unassessed

Data Sensitivity

  • General

Source

Dryad

Usage metrics

    Macquarie University Research Data Repository

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC