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Abstract 

 

This thesis addresses the evolving threat of the use of cryptocurrency in ransomware 

attacks. These attacks are a form of cyber extortion in which malicious software 

(malware) is used to infect, encrypt, and render systems unusable unless the victims 

pay a ransom. Such attacks can cripple the capabilities of business-critical systems as 

well as critical infrastructure. Increasingly, ransom payments are being demanded in 

hard-to-trace cryptocurrency formats such as Bitcoin. 

 

This thesis by publication, comprising four published research papers, a published 

conference proceeding paper, and two research papers submitted for journal 

publication, demonstrates the utility of taking a target centric approach to intelligence 

collection and analysis of a ransomware-cryptocurrency network. Utilising graph 

analysis techniques applied to data gathered from the Bitcoin blockchain, this research 

addresses challenges security researchers face in preventing the propagation of 

ransomware payments throughout cryptocurrency networks as well as determining the 

accountability of such payments.  

 

The first paper provides a general perspective on analysis techniques relating to illicit 

Bitcoin transactions and ransomware incidents, and the second paper develops a target-

centric intelligence approach to a specific Bitcoin ransomware incident (WannaCry 

2.0). The third study explores the possibility of using a common sharing standard such 

as STIX to share ransomware payment related cyber intelligence, while the fourth paper 

discerns Bitcoin payment patterns from well-known ransomware attacks (WannaCry, 

CryptoDefense, and NotPetya). The fifth paper examines graph embeddings in more 



 

IV 

detail to reveal risky nodes in a ransomware-Bitcoin network, and the sixth paper 

develops a novel methodology to systematically identify ransomware transactions 

within cryptocurrency payment networks.  

 

By undertaking target network modelling and analysis, this research provides a basis 

for analysing payment patterns generated by ransomware-Bitcoin transactions as a 

graph. Furthermore, to enhance the understanding of the ransomware-Bitcoin 

environment and any points of vulnerability, blockchain data collection is used to 

populate the target network model. This allows for the development of a knowledge 

graph for understanding the relationship between data assets in the ransomware-Bitcoin 

payment network and provides context to the machine learning systems used in this 

research.  
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Chapter 1 : Introduction 

“Genesis.” – The term given to the first ever Bitcoin transaction1. 

1.1 Chapter Overview 

This chapter presents the research background (Section 1.2), the development of a 

lucrative ransomware-cryptocurrency nexus (Section 1.3), and the transparency of 

cryptocurrency systems (Section 1.4). Section 1.5 details the escalating threat of 

ransomware attacks, Section 1.6 describes attempts to combat these attacks, and Section 

1.7 provides an overview of existing strategies and analysis utilised in the investigation 

process. Section 1.8 presents the aims and scope of this body of research and Section 

1.9 provides an overview of the structure of this thesis. Finally, Section 1.10 concludes 

this chapter.  

1.2 Background: Setting the scene 

The origins of ransomware can be traced back to 1989 where Joseph L. Popp, a biologist 

from Harvard, distributed around 20,000 floppy disks labelled AIDS Information – 

Introductory Diskettes to attendees of the World Health Organisation's international 

AIDS conference (Laffan, 2020). The disks contained the AIDS Trojan, also known as 

PS Cyborg (Richardson and North, 2017). The malware encrypted user files, locking 

1
 The first ‘Genesis’ Bitcoin transaction can be viewed via a blockchain explorer, for example, 

blockchain.com: 

https://www.blockchain.com/btc/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7af

deda33b 

https://www.blockchain.com/btc/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
https://www.blockchain.com/btc/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
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their access, and crafted a ransom message that indicated the user was in breach of their 

licensing agreement. The message directed the user to pay via cheque to a post box in 

Panama the amount of $US 189 to renew their license and decrypt their files (Hampton 

and Baig, 2015). Malware enthusiasts continued to pursue their hobby throughout the 

late 1990s. Technical dominance of a computer system was seen as the ultimate status 

hack to their peer group. This was until the realisation, in the early 2000s, that 

significant monetary gains were possible by hijacking computer systems to conduct 

information theft (Bechtel, 2014) and obtain user banking credentials (Condon, 2012). 

Due to the lack of online payment facilities, this trend continued up until 2005. Victims 

were instructed to pay ransoms via SMS text messages or by mailing prepaid gift cards 

and telephone calling cards that enabled the attacker to earn money (Zetter, 2015). 

These payment methods were deemed risky, since they did not afford the attackers any 

anonymity and an investigator could easily trace them back to the attacker via postal, 

retail purchase or telephone records.  

 

In 2008 ransomware hit new heights with the advent of digital currencies such as 

Bitcoin, which gave cyber criminals a means for extorting their victims for financial 

gain rather than simply destroying files and dominating computer systems. A first 

instance of ransomware leveraging digital currency occurred in 2008 using a digital 

currency known as e-gold. The ransomware variant GPcode.AK encrypted files and 

asked for ransom payments between $US 100 and $US 200 in e-gold and another digital 

currency known as Liberty Reserve (Tromer, 2008). Direct end-user extortion could 

now be facilitated by a cryptocurrency payment facility that granted attackers a cloak 

of anonymity or pseudonymity, which made attribution of their crime much more 

convoluted and complex due to the peer-to-peer nature of cryptocurrency and lack of 
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regulation. Needless to say, the United States (U.S) government became suspicious of 

these digital currency payment facilities and in the case of both e-gold and Liberty 

Reserve, the U.S government found legal means to shut the operators of these 

businesses down. In the case of e-gold, plea deals were made with the company and the 

directors, Douglas L. Jackson and Barry K. Downey, where they were found guilty of 

the “operation of an unlicensed money transmitting business” and “conspiracy to 

engage in money laundering” (e-gold Legal Update, 2008). Liberty Reserve, who 

allegedly laundered more than $US 6 billion in criminal proceeds suffered a similar fate 

(Cloherty, 2013). The U.S. Southern District of New York led an international 

investigation that charged seven people with operating an unlicensed money 

transmitting business and money laundering, and consequently shut down the service 

in May 2013 (UNODC, 2021).  

1.3 A Lucrative New Nexus is Formed 

The first real usage of Bitcoin in a ransomware attack was CryptoLocker, which was 

released in September 2013 and infected over 500,000 machines up until May 2014 

(Richardson and North, 2017). The delivery mechanism for CryptoLocker was the 

Gameover Zeus banking Trojan. This bank targeting malware group saw an opportunity 

in encrypting data for ransom. The threat actors behind the botnet2 made the link 

between password stealing malware that targeted financial services institutions (FSIs) 

through Automated Clearing House (ACH) and wire fraud attacks (Crowdstrike, 

2021a). The attackers were now able to augment profits from cybercrime by collecting 

ransom payments by holding computer systems and data hostage through strong 

2
 “A botnet is a network of compromised computers that are supervised by a command and control 

(C&C) channel” (Crowdstrike, 2021b). 
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encryption mechanisms. Ultimately, the FBI in coordination with international law 

enforcement efforts shut down the CryptoLocker Gameover Zeus operation (U.S. 

Department of Justice (DOJ), 2014). This worldwide collaboration saw the 

identification and seizure of command and control computers acting as launch hubs for 

CryptoLocker. Researchers have estimated that more than $US 27 million in ransom 

payments were made during the early stages of the CryptoLocker ransomware 

campaign (U.S. DOJ, 2014). However, while Conti et al (2018) identify over 51,000 

payments in their analysis of CryptoLocker, only 804 are ransom payments, taking 

CryptoLocker’s economic gain from the attack to 1403.7548 BTC or $US 449,274.97 

using the exchange rate of BTC: USD at the time (Conti et al, 2018). This shows a great 

disparity in the analysis techniques of ransomware related payments. Regardless, 

CryptoLocker had created a critical inflection point in the world of profiteering from 

cybercrime. The era of ransomware had kick-started an unstoppable moment.  

Perhaps the most infamous example is the WannaCry ransomware attack. This attack 

is repeatedly used for analysis throughout this research due to its widely reported 

analysis and investigation. WannaCry infected over 300,000 machines and collected 

248 ransom payments from the beginning of the campaign on May 12th to October 2nd 

2017 (Europol, 2017). WannaCry is utilised as a case study to determine the targets, 

vulnerabilities, and cryptocurrency payments evident in a modern-day ransomware 

attack. The WannaCry ransomware can spread itself to any unpatched computer on the 

victim's network or the Internet, behaving like a worm. Analysis of the WannaCry 

ransom payment collection by Bistarelli et al (2018) found 248 ransomware payments 

totalling 50.14 BTC. Although this attack collected significantly fewer ransom 

payments than CryptoLocker, WannaCry gained notoriety due to its attribution to state 
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based hackers from the Democratic People's Republic of Korea (DPRK) (North Korea) 

(U.S. District Court, Central District of California, 2018). A recent U.S federal 

indictment identified three military hackers from the DPRK in a scheme committing 

cyberattacks and financial crimes across the globe (U.S. DOJ, 2021a). This indictment 

expanded from the 2018 case that detailed the Lazarus group (originating from the 

DPRK) attack on Sony Pictures and the creation of WannaCry (Park, 2021).  

 

The combination of a malware attack that leverages the highly unregulated world of 

cryptocurrency poses a new threat to organisations, security researchers, law 

enforcement, and the intelligence community. The challenges that these stakeholders 

face revolve around how to protect computer assets from these new threats, how to 

collect and analyse threat data for situational understanding of the threat, and how to 

investigate these crimes. Taking a traditional cyber security lens to analyse a 

ransomware attack may prepare an organisation against the threat of malware, for 

example by having strong IT security policy, backup and restore facilities, regular 

application security updates, and other internal controls to mitigate risk to business 

interruption. However, once systems are infected and ransom payment requests start 

being made, it is necessary to ask whether it is possible to reclaim these payments, 

understand who is controlling them, where the transactions are taking place, and how 

the proceeds of crime are being utilised. 

 

1.4 Transparent System, Dirty Money 

The analysis and investigation of financial crimes that ransomware actors knowingly 

undertake to extort their victims is possible due to the open nature of the Bitcoin 

network. Each transaction is freely available to analyse as part of the blockchain 
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technology that enables Bitcoin peer-to-peer payments (Nakamoto, 2008). The 

transparency of the Bitcoin system can prove advantageous to law enforcement, 

investigators, and intelligence analysts to understand patterns of payment behaviour by 

analysing the vast amount of transaction data available on the Bitcoin blockchain. There 

are sophisticated tools commercially available on the market for investigators and 

cryptocurrency exchanges to use in order to address the operational risks associated 

with cryptocurrency as well as provide help to law enforcement in tracking down 

ransomware payments. For example, Chainalysis supported U.S authorities in 

disrupting the NetWalker ransomware attack (Chainalysis, 2021b). However, it does 

not seem to stem the tide of ransomware attacks, even with the transparency of 

transactions, access to Bitcoin ledger data, and available commercial tooling. The 

financial gains attackers are making out of this type of cybercrime are compounding 

every year.  

 

1.5 Ransomware an escalating threat 

Across the main cryptocurrencies Bitcoin (BTC), Bitcoin Cash (BCH), Ethereum 

(ETH), and Tether3 (USDT), in 2016 approximately $US 20 million of ransoms were 

paid by victims and in 2020 this reached almost $US 350 million worth of ransoms 

received by ransomware addresses, a 311% increase from 2019 (Chainalysis, 2021a).  

The 2021 Chainalysis Cryptocrime report further identifies the distribution of ransom 

payments collected per year by specific ransomware strain. In 2019 and 2020 the 

dominant ransomware strain was Ryuk, which collected around $US 200 million during 

 
3
 Tether is a stable coin that follows the price of the U.S Dollar. Stablecoins are seen as a 

cryptocurrency without the pricing volatility. This is achieved by pegging their digital currency to an 

underlying asset such as a fiat currency (CoinMarketCap, 2021: see: 

https://coinmarketcap.com/currencies/tether/)).  

https://coinmarketcap.com/currencies/tether/
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that period (Chainalysis, 2021a). This could be owing to the large ransom being 

demanded by the attackers in the range of 15 to 50 BTC ($US 574,690 to $US 1,915,632 

at current exchange rates4) and the high profile targets they were after, such as EMCOR, 

UHS hospitals, and Tribune publishing newspapers (Malwarebytes, 2020). Adding to 

that,Further, cryptocurrencies create a new payment network where traditional 

techniques for illicit financial investigation, such as Anti-Money Laundering (AML) 

and Counter Terrorism Financing (CFT), do not apply. Identifying the money 

laundering infrastructure ransomware attackers use and the strategies they take is key 

intelligence in the fight against ransomware.  

 

The cryptocurrency funds being cashed out of ransomware wallets have a variety of 

destinations. For example, from 2015 to date, ransomware attackers moved most of 

their victims’ ransom payments to mainstream exchanges; in fact, a group of five 

exchanges (unnamed in the Chainalysis Cryptocrime Report) received 82% of all 

ransomware funds (Chainalysis, 2021a). Other destinations include high-risk 

exchanges (these are exchanges with minimal to no financial compliance standards and 

may facilitate exchange into more anonymous cryptocurrencies like Monero), mixers 

(which are used to obfuscate the origin of a transaction and employing typical money 

laundering techniques that place and layer the illicit transactions among other legitimate 

transactions), and other criminally controlled cryptocurrency addresses.  

 

Furthermore, the ransomware threat is constantly evolving. For example, in 2020, 

security researcher RiskSense identified 223 unique Common Vulnerabilities and 

Exposures (CVEs) that were attributed to 125 ransomware families. That is nearly four 

 
4
 https://coinmarketcap.com/currencies/bitcoin/ (Accessed on: 30 April, 2022) 

https://coinmarketcap.com/currencies/bitcoin/
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times as many CVEs as the prior year and approximately a seven-fold increase in the 

number of ransomware families (RiskSense, 2021).  

1.6 Combating the proliferation of ransomware 

New strains of ransomware are continuously emerging. In 2019 and 2020, as previously 

mentioned, the dominant strain with respect to collected ransom payments was Ryuk. 

However, new entrants in 2020, namely Netwalker, Maze, and DoppelPaymer, 

collected an approximately combined amount of $US 100 million (Chainalysis, 2021a). 

DoppelPaymer in particular dominated the scene in 2020, demanding ransom payments 

from $US 25,000 to $US 1.2 million (Nair, 2020) and attacking high profile targets 

such as Pemex (a Mexican state-run oil company), Germany's Düsseldorf University 

Clinic, and Chile’s Ministry of Agriculture (Schwartz, 2020). Investigators and 

researchers are finding that nation state actors are behind these ransomware strains. 

RiskSense (2021) identified China behind Maze, North Korea had links to WannaCry, 

and Russia is said to be behind DoppelPaymer and NotPetya.  

These threat actors are also changing their business model, as they are now looking to 

license their infections, enabling Ransomware as a Service (RaaS). This allows the 

creators of the ransomware to make money off other attackers using their variants of 

ransomware without the creators even conducting the attack. Cybercrime intelligence 

firm Intel 471 (2020) identified the big five players using the RaaS model. These are 

DoppelPaymer, Egregor/Maze, Netwalker, REvil (aka Sodinokibi), and Ryuk (Intel 

471, 2020). All of these strains have emerged since 2019 and have been collectively 

involved and evident in close to 750 ransomware attacks in 2020 (Intel 471, 2020). 

Their targets are indiscriminate, yet they widely appear to be attacking critical 
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infrastructure. For example, a recent attack on the Colonial Pipeline in the United States 

by the cybercriminal group DarkSide in May 2021 resulted in gas shortages across the 

U.S East Coast, with Reuters reporting 30% of gas stations in metro Atlanta being 

without gasoline (Kumar and Sanicola, 2021). Furthermore, the New York Times 

reported closure of more than 5,500 miles of gas pipeline, stretching from the state of 

New Jersey to the state of Texas (Sanger and Perlroth, 2021). The FBI attributes 

DarkSide to a Russia-based cybercrime group (FBI National Press Office, 2021). 

Whilst DarkSide exhibits the traits of a modern ransomware attack (i.e., using RaaS, 

being state-backed, and targeting an adversary’s critical infrastructure), the attack on 

the Colonial Pipeline also revealed a success for law enforcement and conviction in 

their strategies and tactics against ransomware threats. 

 

1.7 Strategies and analysis considerations 

Law enforcement seized a total of $US 2.3 million in cryptocurrency paid to DarkSide 

as a result of the Colonial Pipeline attack (U.S. DOJ, 2021b). This amounted to 63.7 

bitcoins and roughly half the $US 4.4 million Colonial paid to the hacker group. This 

was widely viewed as a significant win for the Ransomware and Digital Extortion Task 

Force created specifically to disrupt the rise of ransomware attacks (Roney, 2021). 

Although details are scant on how the FBI obtained the private key and password 

associated with the Bitcoin wallet that was seized containing the illicit funds, according 

to Deputy Attorney General Lisa O. Monaco, the strategies and analysis that worked in 

this case focused on “following the money [as it] remains one of the most basic, yet 

powerful tools we have” (U.S. DOJ, 2021b). This approach alone will not sustainably 

yield the prevention of ransomware.  
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Therefore, there is a need for an emerging branch of cryptocurrency data collection, 

analysis, and sharing to understand and mitigate the ransomware threat and to combat 

their money laundering strategies on cryptocurrency networks. The ability to find 

connections between ransomware strains and common deposit addresses (to which 

funds are sent by attackers using money laundering services that are frequented by 

different strains of ransomware) yields important information to intelligence analysts, 

law enforcement, and security researchers. It provides an opportunity to disrupt an 

overarching ability of multiple ransomware strains to cash out their illicit proceeds by 

taking one targeted exchange being used for money laundering offline (Chainalysis, 

2021a). Other strategies ransomware attackers employ when it comes to the processing 

of ransom payments collected include a collect and hold strategy (where the attackers 

are happy to wait and sit on the cryptocurrency until such time the cryptocurrency value 

has grown or  sufficient time has passed to enable the attackers to utilise the funds 

without scrutiny) and a pass-through strategy (where ransom payments are collected 

and immediately moved on, possibly to avoid any detection thresholds that may be 

triggered due to the accumulation of illicit funds in a certain cryptocurrency address). 

These strategies are examined in detail in Chapter 4.  

 

Relevant legal and enforcement authorities are harnessing these capabilities to tackle 

the rise in ransomware attacks. The recent collaboration between the FBI and 

Chainalysis facilitated “coordinated international law enforcement action to disrupt a 

sophisticated form of ransomware known as NetWalker” (U.S. DOJ, 2021c). There is 

movement by regulators and jurisdictions on the policy side to enforce stricter 

adherence to legal and ethical usage of cryptocurrency. As detailed in Chapter 1, 

financial governing bodies, regulators, and law enforcement such as the Financial 
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Action Task Force (FATF), the Financial Crimes Enforcement Network (FINCEN), 

Australian Transaction Reports and Analysis Centre (AUSTRAC), the European 

Union’s sixth Anti-Money Laundering Directive, U.S Department of Treasury, U.S 

Security and Exchanges Commission (SEC), Europol, and Interpol are mandating 

additional data points and reporting requirements for investigators to leverage. For 

example, the Department of Homeland Security (2014) identified the need for official 

departments such as the Financial Action Task Force (FATF, 2015) and the Financial 

Crimes Enforcement Network (FinCEN, 2013) to develop analysis tools for law 

enforcement to assist them in financial crime investigations using Bitcoin. This 

provides transparency when it comes to attribution of any illicit activity relating to 

cryptocurrency services such as exchanges and enforces the application of Know Your 

Customer (KYC), Customer Due Diligence (CDD), and Suspicious Transaction 

Reporting (STR) practices.  

 

Policy instruments certainly assist the investigation process from a regulatory or 

industry partnership approach (Lim, 2015), or through AUSTRAC, FinCEN, and the 

FATF for traditional financial crimes such as Money Laundering (ML) or Terrorism 

Financing (TF). However, the effectiveness of these models requires further testing 

against a wider range of Bitcoin-related cybercrime, specifically ransomware, which is 

the focus of this thesis.   

 

1.8 Thesis aims and scope 

This research addresses the evolving threat of the use of cryptocurrency in ransomware 

attacks. From 2019 to 2020 a 311% increase in ransomware cryptocurrency payments 
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occurred, with $US 350 million paid by victims of ransomware attacks in 2020 

(Chainalysis, 2021a).  

 

This thesis by publication, comprising four published research papers, a published 

conference proceeding paper, and two research papers submitted for journal 

publication, demonstrates the utility of taking a target centric approach to intelligence 

collection and analysis of a ransomware-cryptocurrency network. Utilising graph 

analysis techniques applied to data gathered from the Bitcoin blockchain, this research 

addresses challenges security researchers face in preventing the propagation of 

ransomware payments throughout cryptocurrency networks as well as determining the 

accountability of such payments. This cross-disciplinary research explores areas of law 

and policy development, financial regulation and compliance, computer science, 

security and intelligence, and behavioural aspects that reveal patterns to criminal 

payments as they move through the Bitcoin ecosystem.  

 

This thesis primarily focuses on the ransomware campaign WannaCry 2.0 in order to 

determine the targets and vulnerabilities evident in a modern-day ransomware attack. 

WannaCry infected over 200,000 machines and collected 238 ransom payments from 

May 12th to October 2nd, 2014 (Europol, 2017). By breaking down the WannaCry 

system and ransomware kill chain, a timeline can be formed to understand the key 

elements from mobilisation to cashing out the ransom payments collected in Bitcoin 

and the involvement of the actors along the continuum. To complement the WannaCry 

2.0 data, this research also uses data collected from the Bitcoin blockchain relating to 

the respective ransomware seed addresses (Bitcoin addresses that are set up by 

ransomware attackers to collect ransom payments) for ransomware campaigns, namely 
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CryptoDefense, NotPetya, and a control subject, The Water Project (a charity set up to 

collect charity payments via Bitcoin). Ransomware related Bitcoin addresses, payment 

inflows and outflows, along with the respective payment mechanics are examined to 

create a graph model of the adversary. Several analyses are undertaken by tracing 

ransomware-Bitcoin transactions to certain Bitcoin exchanges and anonymising 

services. This research resulted in the creation of an innovative methodology for 

modelling a ransomware-Bitcoin attack as a graph. In addition, software has been 

developed to support the research efforts relating to data collection, analysis, and 

intelligence sharing.  

 

The fraught nature of intelligence sharing underlines the importance of the need for 

collaboration between law enforcement agencies. In addition, understanding a common 

threat perception, building trust in the analysis and use of technology, and context of 

information provided are all contributing factors to enhancing intelligence cooperation 

(Seagle, 2015).  Extracting threat intelligence for Bitcoin-related cybercrime proves a 

unique challenge due to the anonymity surrounding identities and transactions of 

cryptocurrencies (Gross and Acquisiti, 2005; Androulaki et al, 2013; Meiklejohn, 2013; 

Reid and Harrigan, 2013). Sharing Bitcoin threat intelligence becomes even more 

difficult unless transaction or address behaviours are mapped through a common 

understanding of the heuristics being deployed. Furthermore, to analyse these 

behaviours and profiled information there is a need to transform this data into insights 

via a common data interface or ontology, such as the Structured Threat and Information 

eXpression (STIX) and Trusted Automated eXchange of Indicator Information 

(TAXII).  These standards enable “automated cyber threat information exchange across 

organization and product boundaries” (Barnum, 2012, p.2). Other such models for 
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threat intelligence sharing are discussed in detail by Choi et al (2006), who also provide 

features for dimensional analysis as well as sharing. The problems relating to traditional 

intelligence collection techniques will be relevant for those applied to cryptocurrency 

investigations. The need for information sharing will be crucial as attackers can utilise 

the decentralised, transnational, and anonymous nature of Bitcoin. 

 

Both quantitative and qualitative analysis techniques are utilised in this research 

project. For example, time series analysis on payments being made into and out of 

certain ransomware-controlled Bitcoin addresses are analysed to determine payment 

profile patterns. In addition, the study of ransomware-Bitcoin network patterns will 

allow typologies to be developed and tested, which will benefit the law enforcement 

community. Furthermore, process analysis and risk rating criteria are developed to 

enhance existing methods used to investigate ransomware-Bitcoin cybercrime. To 

support these and other methods, there will be a need to make use of internal and 

external data as well as utilise advanced machine learning technologies.  

 

This research is collaborative and will create practical and academic outcomes to 

conceive a new area of study previously unexamined, that of ransomware-Bitcoin 

analysis. The combination of methodologies, theoretical frameworks, and technology 

will help counterbalance the weaknesses inherent in existing individual approaches. A 

meaningful continuum of themes this research elucidates is shown in Table 1.1.  
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Figure 1.1: The position of the chapters and their respective papers within the overarching thematic areas. 

 

More specifically, a journey from tradecraft to practice is made with a cross-cutting 

focus on the adversary and data driven indicators, leading to the following objectives 

of this research: 

O1: Identify the incumbent techniques used for analysis of illicit Bitcoin transactions. 

Use these techniques to explore the technical (blockchain) and non-technical 

(regulatory) mechanisms for identifying and preventing ransomware-Bitcoin payments. 

O2: Based on the characteristics of a ransomware-Bitcoin network, develop a 

framework to classify a ransomware attack as destructive or revenue generating.  

O3: Develop a ransomware-Bitcoin cyber threat intelligence sharing framework using 

the Structured Threat Intelligence eXpression (STIX) standard. 

O4: Examine patterns of ransomware-Bitcoin transactions that determine common 

profiles and attacker behaviour on the Bitcoin payment network for deeper graph 

analysis. 
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O5: Derive a measure of risk in a ransomware-Bitcoin payment network that reveals 

nodes and communities that can be targeted for investigation and disruption. 

 

1.9 Thesis structure 

This thesis by publication is structured as follows.  Chapter 1 sets out the aims and 

scope of the study, and the structure of the thesis relating to the publications that form 

the body of this work. The scene is set by introducing the background to ransomware, 

namely its origins and evolution into a lucrative class of cybercrime. The problem space 

is further explored by looking at the escalation of the threat and the challenges law 

enforcement faces in addition to the strategic and analytical considerations that may be 

deployed to help combat the proliferation of undetected ransomware related Bitcoin 

payments. 

 

Chapter 2 comprises a paper published in Frontiers of Computer Science (Turner et al, 

2020a), providing a comprehensive literature review of existing analytical techniques, 

from both a non-technical and technical perspective. Non-technical areas focus on the 

policy, regulatory and compliance measures being considered or that already exist in 

various jurisdictions across the world. The technical analysis techniques, which 

subsequent chapters of this thesis focus on, look at how to leverage vast amounts of 

data from a Bitcoin network so machine learning systems can be developed based on 

these data flows to gain a deeper understanding of ransomware-Bitcoin payment 

behaviour.  

 

Chapter 3 presents a paper published in the Journal of Money Laundering Control 

(Turner et al, 2019) that develops a target-centric intelligence approach to a specific 
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Bitcoin ransomware incident (WannaCry 2.0). Here the Target Network Model (TNM) 

and the Problem Definition Model (PDM) are developed using the target centric 

approach to intelligence. These two artifacts create an analytical framework that 

provides a schematic for analysts to test their hypotheses, integrate, and share data for 

collaborative ransomware-Bitcoin investigations. This chapter uses data from the 

WannaCry 2.0 ransomware attack to help build this framework. Furthermore, in 

conjunction with the framework and by looking at the payment statistics for WannaCry 

2.0, this chapter classifies ransomware attacks as tools of destruction versus revenue 

generating campaigns.  

 

Chapter 4, a paper published in IEEE Security & Privacy (Turner et al, 2022), explores 

the possibility of using a common sharing standard such as STIX to share ransomware 

payment related cyber intelligence. This chapter designs an intelligence collection 

planning template with reference to the red flag indicators for Money Laundering (ML) 

and Terrorism Financing (TF) using Virtual Assets (VAs) from the Financial Action 

Task Force (FATF). This enables a deeper understanding of the ransomware-Bitcoin 

environment and points of vulnerability on the Bitcoin network.  By focusing on data 

collection efforts, security researchers, law enforcement, and intelligence agencies can 

turn data into insights and populate Structured Threat Information Expression (STIX) 

objects for cyber threat intelligence sharing and analysis. 

 

Chapter 5 comprises a paper published in the Journal of Money Laundering Control 

(Turner et al, 2020b) to discern Bitcoin payment patterns from well-known ransomware 

attacks (WannaCry, CryptoDefense, and NotPetya). Data collected is used to reveal 

patterns in a ransomware-Bitcoin payment network, with the aim to identify distinctive 
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patterns that are unique to ransomware attacks. For this reason, the research aims to 

distinguish ransomware payment patterns from potentially confusing similar charity 

donation patterns.  Ransomware campaigns WannaCry 2.0, CryptoDefense, NotPetya, 

and a control subject, The Water Project, are examined based on the payments they 

receive into their collector or seed address (known as the cash-in network) and any 

payments moving out of these addresses (known as the cash-out network). Time series 

profiles and generic graph visualisations are used to determine what patterns are evident 

in the data both on the cash-in and cash-out networks.  

 

The Ransomware–Bitcoin Intelligence–Forensic Continuum framework is created in 

this chapter to help understand activity taking place on the network prior to a 

ransomware campaign commencing and after the campaign when the attackers start to 

move their ransom funds into other networks. Part of the appeal of using cryptocurrency 

networks is that transactions are well disguised and not easily distinguishable between 

illicit and legitimate transactions on the network. This makes it difficult to identify bad 

actors amongst the masses of legitimate users of Bitcoin. However, because of this 

research, discernible patterns in the network relating to the input and output side of the 

ransomware graphs are evident. Collection profiles over time for ransomware output 

patterns differ from those associated with the charity addresses, as the attackers’ cash-

out tactics are quite different from the way charities mobilise their donations.  

 

Chapter 6, published in the Proceedings of the 54th Hawaii International Conference 

on System Sciences (Turner et al, 2021) examines graph embeddings in more detail to 

reveal risky nodes in a ransomware-Bitcoin network using machine learning 

techniques. A system is developed that compares the relative position of different nodes 
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in a ransomware-Bitcoin network by calculating the similarity between the nodes. A 

riskiness score is then derived for individual nodes by following the money from the 

ransomware cash-out graph. In addition, analysing the derived “riskiness” at a 

community level (groups of nodes in the network) provides an enhanced granularity for 

identifying and targeting influential nodes. The score is attributed to risk as it identifies 

those nodes whose targeted removal or disruption from the network would risk the 

successful completion of the network’s objectives.  This method ultimately helps 

identify key nodes on the blockchain that are involved in the execution of a ransomware 

attack.  

 

Chapter 7, a paper submitted to the Stanford Journal of Online Trust & Safety, develops 

a novel methodology to systematically identify ransomware transactions within 

cryptocurrency payment networks. This chapter extends the analysis from Chapter 6 by 

making modifications to the embedding algorithm used. The ‘GraphSAGE’ algorithm 

is used, rather than the ‘DeepWalk’ algorithm. This formalises a machine learning 

method that can be used for classification and prediction. Additional data is produced 

because of this analysis. The culmination of research conducted to this point and the 

additional data from this analysis provide rich context to define a knowledge graph for 

ransomware-Bitcoin transactions. The findings enhance the methodology originally 

described in Chapter 6 along with a focused implication on law enforcement 

investigations, resulting in a reusable model that adds connected context and knowledge 

discovery into investigation processes.  

 

The appendices summarise the additional effort undertaken in software development 

required to analyse the large amounts of data used in this thesis. 
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1.10  Conclusion 

This chapter outlined the objectives, scope, and structure of this research. Ransomware 

is an extremely prevalent threat in our current digitally interconnected world. The 

extensive research that follows will examine this threat from the perspective of 

collecting intelligence and building a model to analyse and target Bitcoin payments 

relating to the money flows from a ransomware attack. A considerable gap was 

uncovered when examining the literature relating specifically to ransomware-Bitcoin 

money flows. This research sets out to achieve five objectives to close this gap. Firstly, 

by understanding the status quo in the current literature. Then by developing, testing, 

and evaluating frameworks, models and analysis techniques that will support the 

intelligence community, law enforcement, and researchers in their quest for the 

detection, prevention, and deterrence of ransomware attacks using cryptocurrency. The 

next chapter examines some of the existing tools and techniques that are currently used 

to examine illicit Bitcoin transactions. The chapter reviews techniques that include both 

technical machine learning approaches as well as non-technical legal and governance 

considerations, all of which provide a foundation for understanding how to examine 

ransomware payments on a Bitcoin network.  

 

 

 

 

 

 



 

21 

 

Chapter 2 : Analysis Techniques for Illicit 

Bitcoin Transactions 
 

“Analytical strategies are important because they influence the data one attends to. 

They determine where the analyst shines his or her searchlight, and this inevitably 

affects the outcome of the analytical process.” – Richards J. Heuer, Jr.  (Heuer, 1999) 

 

2.1 Abstract 

This comprehensive overview of analysis techniques for illicit Bitcoin transactions 

addresses both technical, machine learning approaches as well as a non-technical, legal 

and governance considerations. We focus on the field of ransomware countermeasures 

to illustrate our points. 

 

2.2 Introduction  

This paper examines the current literature on the analysis of illicit Bitcoin transactions 

and focuses specifically on the analytic techniques that are applied to blockchain data. 

These illicit Bitcoin transactions could take the form of money laundering, terrorism 

financing or the movement of proceeds from other crimes such as ransomware attacks. 

Many of the techniques wrestle with the problem of attribution in the face of the 

anonymity of sources within the Bitcoin ecosystem. Therefore, we first examine the 

body of literature relating to regulatory efforts that aim to balance the freedom of an 

open system with the requirements of crime prevention and law enforcement. 

Following that is a review of the research into the techniques that exploit heuristics and 

behaviours inherent in the Bitcoin system. We then highlight the application of graph 
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analysis techniques to the Bitcoin ecosystem and transaction networks. Furthermore, 

Machine Learning (ML) and Artificial Intelligence (AI) techniques applied to money 

laundering, cybercrime and other illicit activities across the Bitcoin ecosystem are 

reviewed. Moreover, a focus is placed on the application of these techniques to the 

modern day threat of ransomware, a lucrative branch of contemporary global crime 

which in 2020 is estimated to cost companies anywhere between $US 42 billion and 

$US 170 billion worldwide in ransoms paid, lost productivity and other recovery 

expenses (Emsisoft, 2020).  

 

2.3 Regulatory and Compliance Challenges 

The regulatory landscape has continuously evolved since Nakamoto (2008) released 

the inaugural paper on Bitcoin, A peer-to-peer electronic cash system. The 

decentralized nature of the peer to peer network from which Nakamoto (2008) designed 

Bitcoin affords the user anonymity and bypasses the central authority used to regulate 

traditional financial systems. 

 

2.3.1 The regulatory environment   

Tsukerman (2015) surveys the state of the Bitcoin regulatory environment from a 

United States (US) centric position. To help understand this environment they provide 

a breakdown of the laws into two categories: those laws that protect consumers who 

use Bitcoin; and those that address the broader societal impacts of people using Bitcoin 

for illegal purposes such as money laundering and terrorist financing (Tsukerman, 

2015). Tu and Meredith (2015) complement the work by Tsukerman (2015) by 
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considering the impediments to effective regulation of Bitcoin which addresses the 

issues of ownership, attribution and the susceptibility to theft, that virtual currencies are 

subject to. Wagstaff and Karpeles (2014) reported on the largest theft of Bitcoin at the 

Bitcoin exchange Mt Gox in February 2014. This breach saw the exchange lose 850,000 

Bitcoins worth $US 450 million at the time. Reclamation of these stolen funds is 

identified as a major risk to users by Tu and Meredith (2015). Irwin and Turner (2018) 

argue that cryptocurrency systems, in contrast with traditional money transmission 

businesses and financial institutions, are relatively unhindered by anti-money 

laundering and counter-terrorism financing (AML/CTF) regulations. In addition, these 

systems do not collect the necessary Personal Identifiable Information (PII) that will 

allow for the implementation of strict financial transaction reporting procedures for the 

purposes of mitigating illicit financial activity and the misappropriation of funds (Irwin 

and Turner, 2018). The procedures discussed in Irwin and Turner (2018) aim to 

examine the atypical business dealings conducted over Bitcoin, along with the use of 

AML/CTF techniques potentially indicating illicit activity. 

  

In June 2018, The Law Library of Congress (2018) published a paper on ‘Regulation 

of Cryptocurrency in Selected Jurisdictions’. This report provides a comprehensive 

review of the cryptocurrency regulation and policy stance of the following jurisdictions: 

Argentina, Australia, Belarus, Brazil, Canada, China, France, Gibraltar, Iran, Israel, 

Japan, Jersey, Mexico, Switzerland. For each of these jurisdictions, there is a foreign 

law specialist assigned to assess the legal conditions within the respective jurisdiction. 

During the introduction of this report, foreign law specialist Hanibal Goitom identifies 

the major issues jurisdictions are facing. Namely, the legality of cryptocurrency 

operations, issues around taxation and AML/CTF implications.   
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2.3.1.1 Legality of cryptocurrency markets   

By revealing how different countries are legally operating cryptocurrency markets in 

their jurisdictions the report highlights specific laws enacted for cryptocurrency 

markets to operate and the contrasting jurisdictions that restrict their trade. It identifies 

the likes of Belarus, Gibraltar5, Jersey6, and Mexico have enacted laws specifically 

recognising cryptocurrency markets. For example, in Belarus The Presidential Decree 

on the Development of the Digital Economy initiated on March 28, 2018 provides a 

legal framework for “buying, selling, exchanging, creating, and mining 

cryptocurrencies and tokens.” (Decree of the President of the Republic of Belarus No. 

8., 2017). The Decree sets out a specific economic zone for companies to operate 

cryptocurrency related exchanges and services. In contrast, countries such as China and 

Iran are excluding financial institutions within their jurisdiction from engaging in 

cryptocurrency markets. For instance, Pilarowski and Yue (2017) identify eight entities 

in China providing governance and oversight on the prevention of cryptocurrency 

usage. These entities are: “the People’s Bank of China (PBOC), the Cyberspace 

Administration of China (CAC), the Ministry of Industry and Information Technology 

(MIIT), the State Administration for Industry and Commerce (SAIC), the China 

Banking Regulatory Commission (CBRC), the China Securities Regulatory 

Commission (CSRC), and the China Insurance Regulatory Commission (CIRC).” 

(Pilarowski and Yue, 2017). They all announced a ban on Initial Coin Offerings (ICOs) 

 
5 Financial Services (Distributed Ledger Technology Providers) Regulations 2017, Legal Notice No. 

204/2017, Gibraltar Gazette No. 4401 (October 12, 2017), 

https://gibraltarlawyers.com/uploads/PDF/FinancialServicesDistributedLedgerTechnologyProvidersRe

gulations-LegalNotice20420170.pdf  
6 Jersey is a Crown Dependency of the United Kingdom. However, it is self-governing and has its own 

financial and legal systems and own courts of law (gov.je, 2022). Available from: 

https://www.gov.je/Leisure/Jersey/Pages/Profile.aspx [Accessed 9 October 2022].  

https://gibraltarlawyers.com/uploads/PDF/FinancialServicesDistributedLedgerTechnologyProvidersRegulations-LegalNotice20420170.pdf
https://gibraltarlawyers.com/uploads/PDF/FinancialServicesDistributedLedgerTechnologyProvidersRegulations-LegalNotice20420170.pdf
https://www.gov.je/Leisure/Jersey/Pages/Profile.aspx
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on September 4, 2017. The reason sighted was down to investor protection and financial 

risk prevention (Pilarowski and Yue, 2017).  

 

2.3.1.2 Taxation 

Tax evasion is an important but peripheral topic to this paper, however, Goitom, from 

The Law Library of Congress (2018) highlights the issue of how cryptocurrencies are 

taxed across various jurisdictions. This is a wide-ranging debate on the application of 

Tax Law against how cryptocurrencies are treated as a financial instrument. The Tax 

debate falls outside the scope of this review.  

 

2.3.1.3 Anti-Money Laundering (AML) / Counter Terrorism Financing 

(CTF) 

The spring 2020 Cryptocurrency Crime and Anti-Money Laundering report from 

blockchain intelligence and forensics company CipherTrace revealed the global amount 

of Bitcoin crime attributed to fraud and misappropriation as $US 4.5 billion in 2019 

(CipherTrace, 2020). A high proportion of these illicit Bitcoin transactions (74%) 

moved from exchange-to-exchange across jurisdictional borders. The report argues that 

the nature of these ‘cross-border’ transactions emphasises the need for cryptocurrency 

exchanges to adopt and ensure appropriate AML and CTF compliance is achieved. 

Efforts to regulate this in the Bitcoin context are evident in the AML laws, regulation 

and compliance instruments such as, The Anti-money Laundering (AML) and Counter-

terrorism Financing (CTF) Act 2006 (Cth) in Australia. The Australian AML/CTF Act 

calls for reporting entities to verify a customer’s identity before the provision of a 
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designated service (see Section 6 of the AML/CTF Act). In addition, risks need to be 

individually assessed for specific types of services and customers, how these services 

will be delivered to the customers, any foreign jurisdictions being traversed, and the 

state of connection of any financial entity performing a service in a foreign jurisdiction. 

In addition, the 5th Anti-Money Laundering Directive of the European Union (EU, 

2018a, 2018b) provides a legislative framework for the prevention and detection of 

money laundering and terrorism financing in virtual currencies and exchanges. The EU 

directive (2018a) places an emphasis on the national Financial Intelligence Units (FIUs) 

to “combat the risks related to the anonymity”, and that the FIUs “should be able to 

obtain information allowing them to associate virtual currency addresses to the identity 

of the owner of virtual currency.” (EU, 2018a, Section 9). Provisions under these 

AML/CTF regimes define standards on Know Your Customer (KYC) and Customer 

Due Diligence (CDD) processes. Financial institutions and FIUs can leverage stringent 

KYC and CDD practices to enable essential customer identification procedures for a 

reporting entity. Irwin and Turner (2018) emphasize KYC and CDD as critical for 

linking the real-world identity of a customer’s behaviour and developing an 

understanding of their expected financial activities. Furthermore, to counter any 

AML/CTF risks, KYC and CDD ultimately satisfy the legal obligations to protect 

consumers and society from any misuse of virtual currencies for criminal purposes.  

 

2.4 Financial Intelligence Units 

Supporting these legislative frameworks are prominent FIUs such as the Financial 

Crimes Enforcement Network (FinCEN), The Financial Action Task Force (FATF) and 

the Australian Transaction Reports and Analysis Centre (AUSTRAC). FinCEN is the 
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FIU of the US Treasury supporting US and international law enforcement 

investigations. In addition, FinCEN issues guidance and advisory notices regarding 

illicit usage of virtual currencies (FinCEN, 2019). For example, FIN-2019-G001 

(2019), Application of FinCEN’s Regulations to Certain Business Models Involving 

Convertible Virtual Currencies, is a comprehensive guidance to persons engaging with 

money services businesses (MSBs) that involve the transmission of convertible virtual 

currencies (CVCs) and how they are subject to the US Bank Secrecy Act. FIN-2019-

G001(2019) provides the necessary definitions and applications of the Bank Secrecy 

Act along with the obligations required when dealing with CVCs.  

 

FATF provides recommendations and standards for over 200 jurisdictions to help 

prevent money laundering and terrorism financing. The FATF secretariat is located at 

the OECD Headquarters in Paris. The FATF International Standards on Combating 

Money Laundering and the Financing of Terrorism & Proliferation - the FATF 

Recommendations provide a comprehensive and consistent framework of measures 

allowing countries to implement to fight against money laundering and terrorist 

financing (FATF, 2012). Within that framework there are provisions explicitly relating 

to Virtual Assets (VAs) and Virtual Asset Service Providers (VASPs). The guidance 

document for a Risk-Based Approach to Virtual Assets and Virtual Asset Service 

Providers (FATF, 2019) identifies ‘risk indicators that should specifically be 

considered in a VA context, with an emphasis on factors that would further obfuscate 

transactions or inhibit VASPs’ ability to identify customers.’ (FATF, 2019). 

Furthermore, it enhances the original FATF recommendations (FATF, 2012) amending 

FATF Recommendation 15 by requiring ‘VASPs be regulated for anti-money 

laundering and combating the financing of terrorism (AML/CFT) purposes, licenced 
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or registered, and subject to effective systems for monitoring or supervision.’ (FATF, 

2019). 

 

AUSTRAC is Australia’s primary financial intelligence agency and has primary 

responsibility for AML/CTF intelligence collection and analysis. In addition, it 

provides guidance to entities against the Anti-Money Laundering and Counter-

Terrorism Financing Act 2006 and the Financial Transaction Reports Act 1988. 

AUSTRAC manages the register for digital currency exchange businesses in Australia, 

along with a guide to preparing and implementing an AML/CTF program for digital 

currency exchange businesses (AUSTRAC, 2019).  

 

Clearly, law enforcement agencies lack globally consistent procedures, laws, 

regulations or standards to police the misuse of cryptocurrencies. The FATF strives to 

set out global standards to combat money laundering and terrorist financing, and other 

significant threats that exist to disrupt the integrity of the global financial system. 

However, in most countries, when it comes to cryptocurrency operators there is no 

enforcement of the “know your customer” procedures or the intention to validate the 

identity of customers undertaking cryptocurrency transactions. According to The Law 

Library of Congress (2018) a number of countries are beginning to look at regulating 

cryptocurrencies and formulating policy frameworks.  Furthermore, CipherTrace 

(2020), highlight the potential effectiveness of AML measures by indicating a 47% 

drop in criminal funds being sent directly to exchanges. Albeit a subjective link, 

CipherTrace suggest that this could be down to the AML controls inhibiting the 

exchange or cash-out of illicit proceeds.   
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This along with the EU directive (2018), underlines the significance of enabling 

authorities to monitor the use of virtual currencies. By authorizing FIUs to monitor the 

use of cryptocurrencies, the EU directive (2018) provides a step towards a more holistic 

approach for entities to combat the AML/CFT threat. The directive further states, “Such 

monitoring would provide a balanced and proportional approach, safeguarding 

technical advances and the high degree of transparency attained in the field of 

alternative finance and social entrepreneurship.” (EU, 2018a, Section 8). 

Challenges remain anchored in the international nature of cryptocurrency transactions 

and any resultant cybercriminal activity. To counter this challenge, it will be essential 

to prevent offenders from hopping from one jurisdiction to another. To impede such 

behaviours the enforcement of AML/CTF KYC provisions will act as a deterrent. The 

application of more stringent provisions could risk stifling the innovative functionality 

of cryptocurrencies, but at the same time balance out any illicit usage by having the 

capability to reveal the true identity of those participating in cryptocurrency. However, 

for the trade-offs to be effective international cooperation, information sharing and 

monitoring between law enforcement agencies, FIUs and cryptocurrency service 

providers will be required.  

This type of monitoring demands analysis techniques based on graph theory and 

network analysis which can produce predictive features and a machine learning 

architecture to manage large datasets. Implementation of machine learning 

architectures is intended to improve monitoring and investigations over time and would 
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be less manpower intensive. In the next section we will review the literature pertaining 

to such techniques.   

 

2.5 Bitcoin analysis 

2.5.1 In the beginning 

After the release of the Nakamoto (2008) whitepaper, A peer-to-peer electronic cash 

system, the early analysis of Bitcoin revolved around understanding the mechanics of 

the system. This is evident in Kaminsky (2011) who presented findings on the 

interaction of the Bitcoin protocol with Internet security protocols. In addition, 

Rosenfeld (2011) examined how the mining process works in order to reward 

participants on the Bitcoin network, Karame et al (2012) looked at the ‘double spending 

attack’ examining how to take advantage of the early stage Bitcoin transaction 

processing times and Drainville (2012) looked at the privacy motivations for using 

Bitcoin along with attack vectors that aim to compromise security and anonymity of 

the Bitcoin system. Then Stokes (2012), broke ground on the utility of virtual currencies 

applied to money laundering. However, Reid and Harrigan (2011), Ron and Shamir 

(2012) and Meiklejohn et al (2013), pioneered the fundamental techniques for analysing 

Bitcoin transaction behaviour.  

 

2.5.2 Bitcoin heuristics 

Investigation into illicit Bitcoin usage creates a mosaic of information that must be 

forensically reconstructed to provide an accurate view of the target. The information 

can be technological, behavioural, criminological and regulatory in nature. The 
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introduction of heuristics into the analysis can help address the difficulties of 

attribution. This is achieved by grouping similar transactional behaviour and linking 

ownership to addresses and services on the Bitcoin network.  

 

Meiklejohn et al (2013) produced a seminal paper on analysing the Bitcoin blockchain 

to reveal identity. The heuristics presented within this paper form the basis of which 

much of today’s Bitcoin analysis is performed. This work makes it possible to cluster 

activity around a certain user and add context to this user for purposes of identification 

or grouping similar services on the network. In addition, it introduces the concept of 

peeling, where smaller amounts of Bitcoin are “peeled” off a larger amount and 

transferred onto another address with the remainder transferred back to the one-off 

change address. In addition, they discover, if a user of an input address also controls a 

one-off change address associated to that transaction, it may be assumed that both 

addresses are owned by the same user. This common pattern can be used to obfuscate 

the movement of funds and result in the detection of money laundering on the Bitcoin 

network. Meiklejohn et al (2013) produce various other time-series analyses along with 

Bitcoin service breakdown analysis to understand and model the effects of the different 

services on the Bitcoin network. Meiklejohn et al (2013), apply this type of analysis on 

aggregated data to help profile and characterize different activity trends on the Bitcoin 

network. Drilling deeper into the payment trends allows for a more targeted 

understanding of illicit user activity, especially its source. They also determined that it 

was only possible to identify ownership after any suspicious activity had occurred. 

Predicting that suspicious activity is going to take place in the future requires the 

collection of targeted Bitcoin addresses or transaction IDs to learn and train models for 

future prediction, investigation and analysis. Therefore, there is a need to look at other 
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information sources to determine possible fraudulent transactions. This is where Reid 

and Harrigan (2011) posited cluster analysis as a technique to reveal patterns, 

associations, structures and relationships emanating from different data sources. 

Clustering can be used to identify common entities on the Bitcoin network controlling 

Bitcoin addresses by building up a picture of transaction flows over time. Nakamoto 

(2008), implies that clustering algorithms can group together multiple input 

transactions controlled by the same address, potentially identifying the owner of the 

address (Nakamoto, 2008). This makes it possible to construct a user network 

identifying mappings between Bitcoin addresses and a cluster of similar users (Reid 

and Harrigan, 2011). There is also the potential to find connection between Bitcoin 

addresses, IP addresses and spending patterns through this type of analysis. 

 

2.5.3 Analysing the network layer 

To de-anonymize users on the Bitcoin network, Turner and Irwin (2018) look at the 

openness of the Bitcoin system and some of the defining features seen within the 

anatomy of a Bitcoin transaction coupled with extensive data collection from packet 

sniffing software. Using network traffic analyser tools, such as Wireshark, can capture 

Bitcoin protocol traffic by listening on the network to port 8333 and building a profile 

of transaction flow between IP addresses and Bitcoin addresses over time. This is 

known as public key profiling. This method has weaknesses, such as the potential of 

Bitcoin addresses to change as frequently as every transaction. If this is the case, it will 

result in weak linkages to any network observations. Due to the peer-to-peer 

propagation of transactions any observation of an IP address where a transaction is 

intercepted may not be the original creator of the transaction. This further removes any 
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ability to reveal identity via Bitcoin address usage analysis on the network (Turner and 

Irwin, 2018). Furthermore, Irwin and Turner, (2018), highlight the lack of reliability in 

this analysis approach and the inhibitors of revealing any illicit transaction. They state: 

“IP addresses that connect to computers in a library, café, open wireless network, 

virtual private network or Tor exit relay, used by many people, do not identify the 

perpetrator and, therefore, is not probable cause that a person was responsible for the 

communication or illicit activity” (Turner and Irwin, 2018). Nakamoto (2008) designed 

the Bitcoin system so that actors are pseudonymous. In addition, the transaction packet 

moving through the Bitcoin network does not contain the IP address. Only transaction 

IDs are ultimately stored on the blockchain. The transaction payload is publicly 

available for anyone to view at any time on the blockchain. Along with the transaction 

amount and timestamps, this payload reveals a concatenation of public keys. This 

comprises of the Bitcoin address and cryptographic signatures to provide an index 

linking the sender to the intended recipient of the Bitcoin (Nakamoto, 2008). Other 

analysis challenges exist as presented by cyber security researcher Dan Kaminsky in a 

2011 Black Hat presentation on Bitcoin security when the Tor application is used. This 

application ensures anonymity via the Internet protocol stack leveraging the “Darknet” 

and utilizing a specific cryptocurrency “Dark Wallet” service. IP address obfuscation 

is achieved using a Tor router (Onion Router). IP address and Bitcoin address mappings 

are lost, and any investigator will only find the IP address associated to a Tor exit node 

preventing any meaningful analysis (Kaminsky, 2011).  

 

Considering the limitations observed at the network layer when analysing illicit Bitcoin 

activity, the next section reviews the literature relating to graph data models and how 
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nodes and relationships formed on the Bitcoin network can provide insight into illicit 

activity.  

2.6 Graph analysis 

This section will look at the techniques used to analyse Bitcoin transactions as a 

graph. Beginning with modelling the transactions and addresses as a Directed Acyclic 

Graph (DAG). Then, looking at the behaviours and patterns that emerge from 

suspicious Bitcoin payments. In addition, understand what automated software tools 

are available to inspect these patterns and behaviours. Furthermore, delve into the 

algorithms available for graph analysis.    

2.6.1 Directed Acyclic Graph (DAG) 

A Directed Acyclic Graph (DAG)7 is formed by the transactions and addresses on the 

Bitcoin network. The ability to break the entire Bitcoin graph into two smaller DAGs 

was researched by Reid and Harrigan (2011) as they investigated the problem of 

anonymity. A first DAG was constructed with Bitcoin addresses from tracing the flow 

of Bitcoins between users. A second DAG represented the analysis of transactions over 

time. The second DAG represented a transaction as a node and the directed edges 

between Bitcoin source and target were modelled as the output of one transaction to the 

input of another, creating a transaction chain. The graph may reveal transactions 

repeatedly performed by identifiable communities (multiple entities) or multiple 

transactions conducted by a single entity. Breaking the Bitcoin system down into two 

DAGs enables the ability to map and cluster behaviours of Bitcoin users and 

transactions over time. Reid and Harrigan (2011) break the Bitcoin system into 

 
7
 DAG – A directed edge (x, y) indicates that activity x must occur before y. They allow for 

topological sorting which is an important property providing order to process each vertex before any of 

its successors (Skiena, 2008). 
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analysable user and transaction graphs and apply their method to reveal identity by 

using multiple sources of data. These data sources include: Off network information 

(building a directory of Bitcoin users) which allows monitoring activity, common 

transaction usage and routing behaviour, using a website called the Bitcoin Faucet8. 

This website uses TCP/IP Network information, matching Bitcoin addresses to IP 

addresses, in order to build up a map of geographical usage. This could ultimately be 

flawed due to the Bitcoin propagation protocol where the last routed Bitcoin node IP 

address is not necessarily where the transaction originated. Examples of where the 

Bitcoin Faucet system has been applied include, looking at address pattern behaviour 

attributed to known entities, such as WikiLeaks. In addition, using flow and temporal 

analyses to build a case study of Bitcoin theft. 

 

2.6.2 Transaction Behaviour 

Taking algorithmic network analysis another step further helps the reader understand 

the evolutionary behaviour of Bitcoin transactions and the way Bitcoin addresses adapt 

over time. Furthermore, advanced analytical techniques involving machine learning, 

can be used to determine the identity underneath the pseudonymous nature of Bitcoin 

addresses. 

 

Ron and Shamir (2012) provide a step in this direction by analysing a graph of the 

largest transactions in Bitcoin through a series of sub-graphs, identifying multiple 

characteristic behaviours for the flow of Bitcoin transactions. These are: “long 

 
8
 http://freebitcoins.appspot.com/ 
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consecutive chains of transactions, fork-merge patterns that may include self loops, 

setting aside [Bitcoins] BTC's and final distribution of large sums via a binary tree-

like structure.” (Ron and Shamir, 2012). These patterns can be used to reflect common 

practice among users that may lead to suspicious behaviours on the Bitcoin network 

and these patterns can be re-used and applied to other illicit transaction scenarios. For 

example, Bartoletti et al (2020) analysed the redistribution of money flows relating to 

identifying Ponzi schemes in the cryptocurrency Ethereum. They identified several 

patterns in the money flows. The chain-shaped schemes and tree-shaped schemes are 

two illicit money-flow patterns that can also be modelled as a graph. To do this at any 

meaningful scale, automated software and algorithmic techniques are necessary. The 

following sections examine the literature relating to these techniques.  

 

2.6.3 Automated Software 

Spagnuolo et al (2014) provide a framework for forensic analysis of such illicit Bitcoin 

transactions and subsequently developed graph analysis and automated software called 

Bitiodine. This software is used to parse the Bitcoin blockchain for transactions and 

addresses, and then augment that with different data scraped from the web to cluster, 

contextualize and visualize Bitcoin transaction graphs. An important piece to this 

literature is the application of their system to various case studies. These include 

investigating the Silk Road Bitcoin activity and associated trades made on the 

suspicious exchange, Mt Gox and transactions made by the owner of Silk Road, Dread 

Pirate Roberts, aka Ross Ulbricht, linking web forum data with blockchain data. 

Perhaps the most relevant application of Bitiodine is that of the Cryptolocker 

ransomware investigation. BitIodine is used “to detect the CryptoLocker cluster(s), 
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belonging to the malware authors, and compute some statistics about ransoms paid by 

the victims.” (Spagnuolo et al, 2014). This data results from Google searches related to 

the ransomware, reddit forums that reveal addresses belonging to the ransomware, then 

a classifier is run over these addresses clustering the list of extorted addresses and 

automatically associating usernames from reddit to Bitcoin addresses. Furneaux (2018) 

also identifies several automated analysis tools that help visualize the Bitcoin graph and 

forensically investigate suspicious addresses. These tools include Numisight, Maltego, 

Learnmeabitcoin.com and the commercial enterprise systems available from 

Chainalysis and Elliptic which provide algorithmic modules to learn, infer and predict 

patterns in the network.  

 

2.6.4 Algorithmic Analyses 

Fleder et al (2015) build on the previous techniques and look to identify suspicious 

behaviour on the Bitcoin network. Providing context to the blockchain data from 

external data sources by web scraping forums and social media websites, graph analysis 

can be applied on the transactions performed to try and match any suspicious use of 

Bitcoin addresses. The methodology is similar to that found in Spagnuolo et al (2014), 

however it introduces the use of the PageRank algorithm: “We use PageRank as a guide 

to determine the most interesting nodes, or users in our user graph to further investigate 

their linkage with known forum users.” (Fleder et al, 2015). The graph analysis 

techniques used (PageRank and clustering) are fundamental to a deeper behavioural 

analysis of the Bitcoin due to its inherent data structure, (the blockchain), and activity 

(transactions between users) forming a graph or network. According to Fleder et al 

(2015), enriching the blockchain data by looking at external data in the form of security 
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reports, Indicators of Compromise, malware sites and other cyber security feeds can 

help reveal identity for intelligence and law enforcement purposes. Particularly 

significant is the paper’s use of the PageRank algorithm which is applied to the 

communities of transactions being performed by ransomware. This is a key indicator 

for understanding unusual behaviour in networks, such as anomaly or fraud detection 

cases (Needham and Hodler, 2019).   

 

As an example, Fleder et al. (2015) provided analysis on funds captured and sent to 

known Bitcoin addresses owned by the FBI. Nodes highly ranked via their technique 

were flagged for further investigation. Large clusters of transactions were detected from 

suspicious sites including WikiLeaks, cryptocurrency gaming service SatoshiDICE and 

the infamous Silk Road. The algorithmic technique from Fleder et al. (2015) borrows 

from other financial fraud risk management techniques. By associating an address or 

transaction coming from, or going to, such nefarious services as the Silk Road, it 

immediately becomes demarcated as a high-risk transactions or address on the Bitcoin 

network. Due to the potential risk of exposure to criminal activity a user has now made 

an illicit reference that can be tagged in the collected data. More advanced graph 

analysis techniques can be applied to sub-graphs of interest and reveal further 

intelligence on the Bitcoin network.  

 

Although primarily concerned with the anonymity of Bitcoin, Gaihre et al (2018) 

provide some important claims for analysis on transaction behaviour, such as reuse 

frequency of addresses, zero balance addresses and how amounts are split up into 

smaller transactions with the usage of the change address, revisiting the concept of 
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peeling introduced by Meikeljohn et al (2013). Additionally, Gaihre et al (2018), apply 

more advanced graph analysis techniques like the in-degree, which is the number of 

incoming edges to a node, as well as, connectedness of nodes on the network. 

Furthermore, they look at the diameter of the graph, which works on discovering the 

longest of all shortest paths in the network using a Bread First Search (BFS) algorithm. 

There are also several transaction walks that depict miner behaviours, where the miner 

accumulates the mined Bitcoin and also where the miner splits the mined Bitcoin. These 

can be useful payment typologies to build on for other illicit transaction activity.  

 

Maesa et al (2018) go deeper into the detail of the clustering algorithm used to generate 

a user graph containing nodes with groups of addresses controlling the transactions of 

interest. The clustering process is outlined step by step. This could be useful when 

applying a similar process to the population of incoming transactions to a ransomware 

seed address for example. This analysis yields a clustering coefficient of the user graph. 

A constant order of magnitude for the coefficient is exhibited over time and it is similar 

when compared to other complex social networks. Centrality measures provide the 

computation and interpretation of the results. These measures include PageRank and 

Eigenvector indexes to see the balance of nodes with respect to incoming and outgoing 

transactions. The Gini coefficient is also computed on the user graph, as a further 

measure to analyse the in-degree distribution over time. The Gini coefficient is an 

economic indicator that gauges economic inequality, measuring income distribution or 

wealth distribution among a population. 
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Another aspect Maesa et al (2018) investigate is the analyses on the entire user graph 

of Bitcoin, as at the end of 2015. These analyses include a time series view of the 

Bitcoin network, along with economic analysis showing distribution of wealth. 

Furthermore, using techniques to detect critical nodes of the network where 

connectivity is strongest. The technique on node criticality is the most pertinent to illicit 

payment discovery. It is part of a centrality analysis on the graph and identifies the most 

active nodes in the graph. Nodes with high centrality (i.e. the most influential in a 

graph), will yield high in degree and/or out degree characteristics and Maesa et al 

(2018) demonstrate a case that reveals the largest exchanges in the Bitcoin network, 

which at the time was Mt. Gox. This is also be applied to ransomware-Bitcoin analysis. 

For example, the centrality measures can reveal the most active nodes in a ransomware 

graph. Depending on the network depth, this could be the ransom seed address, the 

originating victim address (i.e. where the victim is getting their Bitcoin from), or the 

cash out point for where the cash out trail meets an exchange. This can become complex 

when interpreting whether the node actually has any influence over the movement of 

ransom payments during a ransomware campaign or simply over standard transactions 

on the Bitcoin network. That is why more information and context should be collected 

via machine learning to understand the representation of that node in the graph we are 

looking at. 

 

2.7 Machine Learning Techniques 

Machine learning in its simplest form is the act of teaching machines how to carry out 

tasks by themselves (Richert and Coelho, 2015). Richert and Coelho (2015) provide 

this introductory perspective in their book on building machine learning systems with 



 

41 

 

python. The book provides a practical reference on building machine learning models 

in python to train a computer program to learn from data fed into a system. Richert and 

Coelho (2015) dive into the detail of the commonly used python programming language 

and the respective data science and statistical libraries needed to work through problem 

sets that required machine learning algorithm development as a solution to these 

problems. They highlight classification, topic modelling, sentiment analysis, 

regression, recommendation engines, computer vision and dimensionality reductions 

as important problem spaces to work on. The learning algorithms applied to these 

problems can take the form of supervised, unsupervised or reinforcement learning. 

Kamath (2011) delivered a presentation at the annual python conference in 2011 that 

neatly summarized the differences in the available learning algorithms. Supervised 

learning is based on training data that contains correct responses to input data and as 

such the training data is used to learn a model that can be applied to classify future data 

items. 

 

Unsupervised learning algorithms have no prior knowledge of the domain or structure 

of the data they use as inputs to interpret or classify meaningful outputs. It may not be 

possible to label the input data for the problem space being worked on, and 

unsupervised algorithms can be a powerful way to detect anomalies or learn features of 

the dataset being analysed. One unsupervised learning method is clustering. This is the 

process of grouping objects found in the input data exposing similar and distinctly 

different attributes which form clusters (Kamath, 2011). Bitcoin systems provide a 

strong case study for the clustering algorithm. An example of this can be realized with 

multiple input and multiple output Bitcoin transactions. Meikeljohn et al (2013) found 

by grouping these types of transactions together it may be possible to find Bitcoin 
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addresses and the transactions controlled by a common entity. Reinforcement learning 

provides a supervised and unsupervised hybrid learning approach. The learner runs 

through many different scenarios, then as a result of reinforcing an engineered policy 

against these scenarios, a good action is learned if it is a part of the well-engineered 

policy. Alpaydın, (2020) comments on the goodness of policies, which is determined 

by a sequence of good actions which attain a desired goal.   

 

Building on these learning techniques, the following literature looks at the analysis of 

Bitcoin networks using Machine Learning and Artificial Intelligence techniques with 

application to money laundering and fraud detection. 

 

2.7.1 Supervised Machine Learning techniques 

Yin and Vatrapu (2017) analyse the clusters, entities and categories that are used to 

understand the control over funds in the Bitcoin network along with attributing some 

form of contextualization to the clusters with respect to the activity they are performing 

(e.g. Mining, mixing, exchanges). They also categorize based on criminal activity, in 

total the categories provided are Tor markets, scams, ransomware, mixing, and stolen 

bitcoins, exchange, gambling, merchant services, hosted wallets, mining pools, 

personal wallets. A methodology is provided outlining the data required from each 

cluster for analysis. This data includes: Transactions (hash, timestamp, input address, 

output address and value), addresses (address, number of transactions with peer address 

and value), counterparties (counterparty address, value, category and counterparty 

name) and exposure. Exposure acts as a risk calculation based on the knowledge of the 

cluster in terms of how many inputs and outputs out of total transactions emanate or 
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arrive at a particular service category. The pipeline and analysis process diagram 

summarize the methodology having a big emphasis on data collection, cleansing, 

preparation and feature extraction. This reflects the high level of effort required to get 

the data ready to analyse. The second half of the diagram brings forth the machine 

learning capabilities for training data sets, model selection and validation. The 

statistical limitations on the machine learning components are identified in terms of the 

over and under sampling of the various classes, which limits the predictability of the 

under sampled classes. However, this methodology is something that can be refined 

with improved data collection, training and classification. This may be able to improve 

the 0.5 precision achieved on ransomware identification from their experiments. 

 

Harlev et al (2018) follow the same methodology as Yin and Vatrapu (2017) using 

supervised machine learning to attribute Bitcoin clusters to those predetermined 

categories. By looking at the anatomy of a Bitcoin cluster and using supervised machine 

learning to attribute Bitcoin clusters to those predetermined categories they break down 

the cluster structure to help categorize the controlling entities. Clustering will only take 

the analysis so far and emerging techniques based on neural networks that apply deep 

learning of latent representations on a graph or network structure provide an advantage. 

This is where the fraud team from Logical Clocks (2019) looked at the different 

machine learning approaches and how traditional AML anomaly detection problems 

use supervised machine learning against training data which contains an imbalance of 

‘good’ and ‘bad’ transactions. They take this so far as saying it is an unviable approach 

which may only yield one bad transaction in more than a million. Therefore, there is a 

need to explore other machine learning methods to minimize the occurrence of the false 

positive and false negative detections and consequences of such detections.   
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2.7.2 Unsupervised Machine Learning techniques 

Whilst Yin and Vatrapu (2017) used supervised learning techniques, Monamo et al 

(2016) provide a means of looking at the unsupervised learning techniques by giving 

the machine learning algorithms (trimmed k-means), which can both cluster objects and 

detect fraud in a multivariate setup to detect fraudulent Bitcoin activity. The k-means 

algorithm can perform clustering and classification without a training data set leaving 

the algorithm to establish its own labels as it comes across the data that is fed into it. 

This is both a limitation and a performance enhancement when it comes to fraud 

detection. Limitation in that unlabelled data somehow needs to be checked, modified 

and fed back into the system with context (manually). Performance enhancing as it will 

execute its machine components quicker. The authors concede that in the criminal 

detection process comparing known criminal elements would be better served using a 

neighbourhood-based algorithm. These types of algorithms use classifiers to help the 

machine understand the context of the data they are processing and thus making the 

results more easily validated by experts in the field. Turner and Irwin (2018) 

experimented with the LINGO algorithm. They explain the open source nature of this 

algorithm and the previous application of the algorithm to web search results clustering 

by Osinski (2003). Osinski (2003) describes the algorithm as a combination of Latent 

Semantic Indexing (LSI) and the Vector Space Model (VSM) which use unsupervised 

and supervised learning techniques respectively. The unsupervised application of LSI 

discovers abstract context in the data that passes through it. It forms cluster labels to be 

used as a reference for the supervised VSM algorithm. This is then used to determine 

cluster contents (Osinski, 2003). Turner and Irwin (2018) then look at applying LINGO 

to a combination of social media and Bitcoin blockchain data. Their results show a need 
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to tune the algorithm with the input of subject matter expertise if any meaningful 

suspicious activity is to be found. Illicit money flows have traditionally been treated as 

anomaly detection problems. Researchers Graves and Clancy (2019) at DeepMind look 

to solve anomaly detection using unsupervised learning methods. One such advanced 

method seeks to train an algorithm to generate its own models of the underlying 

classification of data it has discovered. These ‘generative’ machine learning models can 

use common techniques such as k-means clustering and principal component analysis 

(PCA) to build a model of ‘good’ and ‘illicit’ transaction classes on the Bitcoin 

network. Such techniques can only be enabled through deep learning which provides a 

deep understanding of the data being observed in its context. 

 

2.7.3 Deep Learning 

Steenfatt et al (2018) introduce an approach that allows deep learning on graph 

networks to learn the role a node plays in the network. This is based on the ‘struc2vec’ 

algorithm, where traditionally similar nodes are in the same close proximity as each 

other, understanding the role a node plays with respect to embedded data yields node 

and network similarities that may not belong to directly connected components. 

Learning node representations or ‘node embeddings’ that have meta-data and structural 

information encoded into them is a powerful way to find new suspicious relationships 

in the target network. An example given by Steenfatt et al (2018) showed data from the 

WeChat payment network of 3,000 fraudulent nodes that have role labels from 

15,000,000 nodes. The labels identified one of three types of fraud and grouped the 

transactions accordingly.  
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As an alternative to graph embedding, Li et al (2019) proposed a Graph Matching 

Network (GMN), which calculates a graph similarity score by using Graph Neural 

Networks (GNN). GNNs are used to learn unlabelled graph structures by using the 

underlying encoded graph structured data (Zhang et al, 2009). Li et al (2019) scale this 

idea up to work on complete graphs in order to understand their similarities by 

comparing the input graphs against different graphs to associate nodes and identify any 

differences in the node and edge features. This technique is related to the field of 

ransomware and through the application of graphs formed by ransomware - Bitcoin 

transactions the literature shows it is possible to understand the similarities and 

differences in a ransomware target network model. In addition, by creating a GNN for 

ransomware – Bitcoin graphs it is possible to machine train and learn what behaviours 

and parameters these networks may form in the future. 

 

The collaboration between cryptocurrency forensic analysis firm Elliptic and 

researchers at IBM and Massachusetts Institute of Technology (MIT) have released a 

public data set of around 200,000 transactions partially labelled with illicit or non-illicit 

flags to identify suspicious transactions on the blockchain within the context of Anti-

money Laundering (AML) (Weber et al, 2019). Using graph analysis techniques such 

as Graph Convolutional Networks (GCN) which use neural networks to allow the 

embedding of relational information between nodes and relationships to be further used 

in machine learning techniques. The GCN is a similar approach to the one taken by 

DeepWalk (Perozzi et al, 2014), however the difference is in the feature 

representations. A GCN aggregates the in and out degrees of a nodes neighbour and 

propagating these representations as features onto the nodes of the network. The 

DeepWalk embeds structural information on the graph to learn the typology of the 
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graph by building up a node’s context in the graph through a number of random walks 

from that node, much the same way a Natural Language Processing (NLP) algorithm 

learns words in a sentence from a corpus, or vocabulary, of words (Perozzi et al, 2014).      

 

Furthermore, researchers at the CSIRO Data61 unit, produced a report on Bitcoin 

Ransomware Detection with scalable Graph Machine Learning (Jung, 2019). In this 

research, GCNs are also used to predict super nodes, those nodes in a Bitcoin network 

having a large amount of incoming and outgoing edges, which could be indicators of 

ransomware addresses and activity on the Bitcoin network. 

 

2.7.4 Human and Machine 

The techniques for examining the Bitcoin blockchain as a graph require a combination 

of machine powered analytics combined with human subject matter expertise in order 

to contextualize the data for intelligence collection and forensic interpretation. The 

ability to apply high performance computing to large amounts of data in the Bitcoin 

ecosystem provides efficiencies in analysis. Clustering data around influential nodes in 

the Bitcoin graph is a common approach undertaken by most of the authors of the 

literature. It allows for the application of graph algorithms relating to community 

detection, pageRank and centrality. Adding labels to the data collected and also 

combining the Bitcoin data with external data sources builds intelligence into the graph 

model by encoding structural knowledge into the graph such as in, out, or change 

addresses, timestamps, amount sent and received, service labels, network depth and 

address reuse frequency. A recent example of this is the open data project by Michalski 

et al (2020) at the Harvard dataverse. They collected Bitcoin addresses and labelled 
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them as mining pools, miners, coinjoin services, gambling services, exchanges, other 

services for training machine learning algorithms to learn and predict future addresses. 

A targeted application of these techniques is to the case of identifying ransomware 

payments in Bitcoin. At present there is limited application in this realm, however the 

intention is to look for similar graph patterns across different ransomware campaigns. 

Future research will be able to build upon these techniques and apply deep learning and 

Artificial Intelligence (AI) to further enhance the ransomware-Bitcoin target network 

model with labelled data and augment the cognitive process for identifying ransomware 

networks in the Bitcoin ecosystem. 

 

2.8 Ransomware – Bitcoin transaction analysis 

Ransomware is a prevailing threat to the mainstream usage of cryptocurrencies and for 

malware developers and users, cryptocurrencies have enabled cyber criminals to collect 

their proceeds of crime undetected. Since 2018 the estimated global damage of 

ransomware has increased 2.5 times. From $US 8bn in 2018 to a projected $US 20bn 

in 2020 (Purplesec, 2020).   

 

There is an essential need for identification and analysis frameworks. Ahn et al (2016), 

describe a Ransomware Identification Framework (RIF) for identifying ransom 

payments from the set of all transactions sent to the ransomware cluster. Using cluster 

analysis on the total network of the Cryptolocker ransomware campaign, they were able 

to understand the underlying financial infrastructures and money laundering strategies 

of the ransomware. Furthermore, the analysis yielded connections to popular services 

like BitcoinFog and BTC-e. It also speculated connections to criminal activity like the 
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sheep marketplace, which was used for transacting narcotics, and was the successor to 

the infamous Silk Road site.  

 

The methodology used by Ahn et al (2016) for the RIF looks at the total number of 

transactions for each seed address, the total amount of bitcoins sent and received, and 

the number of ransom payments received. At an individual transaction level, the 

framework followed the input and output addresses, bitcoins transferred, and 

timestamps of these transfers. These parameters were used to build the target network 

model for their research, along with additional labels to indicate the network depth (i.e. 

how far away from the seed address the activity is taking place) and any service 

identifiers able to be picked up from a blockchain Application Programming Interface 

(API) that indicate Bitcoin exchanges.  

 

Bistarelli et al (2018) describe a tool that was created for this purpose. Through their 

analysis of the WannaCry attack, they were able to visualize the Bitcoin flows of 

WannaCry. Flows toward the three different ransom seed addresses were analysed in 

an “in-flow” analysis to show a cluster of payments made to the ransom seed addresses 

and where they had come from. This revealed certain payments coming from leading 

crypto exchanges such as poloniex.com and other services like cubits.com. The “in-

flow” analysis is one section of the intelligence-forensic continuum introduced as an 

analysis framework by Turner et al, (2019). It is important to take a full view of the 

continuum to build out the complete target network model, from mobilization through 

to actions on the objectives of the collected ransom.  
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Furthermore, Paquet-Clouston et al, (2018) analyse the collector addresses of the top 

15 ransomware families by ransom payments received and by ransomware families. 

The authors investigate the graph formed by the incoming ransom payments and 

applied graph analysis techniques, such as centrality, to classify addresses to a 

particular ransomware. The two ransomware campaigns examined in detail from a 

graph analysis perspective were Locky and CryptoHitman. Transaction walks were 

produced showing which nodes in the graph acted as collectors and what services the 

addresses corresponded to, i.e. Bitcoin exchanges, mixing services, gambling services, 

etc. A longitudinal (time series) analysis was also conducted which showed the profile 

of a ransomware address and how it collected ransoms over time. Many of these profiles 

were similar, i.e. collecting their ransom over a burst of initial payments and then 

tapering off over the first week or two. Performing the time series analysis looks back 

at the history of a particular collector address and this is also important to understand 

the behaviour of the victims and attacker. Paquet-Clouston et al, (2018), find that by 

moving back and forward through time over the lifespan of a Bitcoin address helps 

profile the incoming and outgoing relationships, providing a more targeted mechanism 

for identifying patterns in ransomware – bitcoin transaction graphs.  

Patterns are one structure of interest providing a footprint to ransomware-Bitcoin 

activity. Another is measuring the impact or significance the ransomware attack had by 

plotting their collection and payment profiles. Conti et al (2018) provide a ‘lightweight 

framework’ to analyse 24 different types of ransomware from the perspective of their 

economic significance through the amount of Bitcoin they collected over time. The 

paper focuses solely on the number of Bitcoins received by the ransomware Bitcoin 

addresses over the time window for the ransomware campaign. They also look at the 
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cumulative distribution function (CDF) of the ransomware to show the total amount of 

ransom collected over the campaign. This is a relatively simplified analysis that 

provides an approach to deal with some blockchain specifics on multiple input 

transactions and change addresses.  

 

Huang et al (2018) provide a more detailed insight into 10 ransomware clusters. The 

paper outlines a robust framework for identifying ransom addresses by scraping reports 

from real victims, creating synthetic victims under lab control conditions by making 

micropayments and tracing the flow of bitcoins and via clustering by co-spending 

which looks at addresses that create a transaction controlled by the ransom seed wallet. 

In addition, external data sources are looked at for information regarding the 

ransomware campaign. These include Google search history trends and YARA9 

malware indicators of compromise from a tool called VirusTotal. Once this framework 

has been set up and the initial detection and collection has been done, payment analysis 

can be conducted to look at things like estimating revenue of the ransomware, payment 

mechanics (timing and profile) and potential cash-out behaviour. Cash-out behaviour 

is one of the more interesting parts of the ransomware – bitcoin analysis as it gives 

targeted evidence on criminal behaviour relating to ransomware attackers looking to 

use their proceeds of crime.   

The techniques used for ransomware – Bitcoin analysis vary across the intelligence-

forensics continuum using the elements discussed and by adding data attributes to nodes 

and vertices in a graph by labelling, it is possible to aid graph classification using graph 

machine learning algorithms to find similarity or trends in the graphs (Tiao et al, 2019). 

 
9
 YARA is a tool used in malware detection that creates rules based on hex, binary or string patterns 

that may be present as malware signatures in malicious files (Li, 2020).   
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From the aforementioned literature, the importance of populating the target network 

model with context relevant data and comparing against different graphs from a variety 

of ransomware campaigns becomes evident. 

 

2.9 Discussion 

The enforcement of AML/CTF KYC provisions for cryptocurrency will impede those 

who would misdirect its innovative functionality towards illicit ends and expose those 

who choose to do so. However, for law enforcement agencies to benefit, it is imperative 

that law enforcement agencies, financial intelligence units and cryptocurrency service 

providers should cooperate and share information. There is precedent for this.   

 

For example, in 2017, a combined research and law enforcement partnership was made 

in the European Union between agencies and academic institutions from The 

Netherlands, Germany, Spain, Finland, Austria, and the UK, setting up the “Titanium” 

project, (Tools for Investigation of Transactions in Underground Markets). This project 

supported forensic analyses relating to criminal transactions, anomaly detection and 

machine learning techniques which were developed as a solution for investigations 

relating to criminal and terrorist acts using cryptocurrencies on the internet. According 

to Darknetmarkets (2017) Titanium was a platform using data from multiple sources, 

including “online forums, P2P networks on dark marketplaces, virtual currencies and 

data found on electronic equipment that has been seized from suspects.” 

(Darknetmarkets, 2017). Demonstrating a strong partnership between technology and 

subject matter experts, Titanium is a model project from which law enforcement can 



 

53 

 

build upon to strengthen their role alongside technology in the discovery and fight 

against illicit cryptocurrency usage.  

 

This paper reviewed various techniques that are quite limited on their own.  However, 

in combination these techniques are a formidable arsenal, much greater than the sum of 

the individual techniques. These techniques range from the simple heuristic approaches 

that help assume ownership of addresses and transactions, to the graph algorithms that 

provide essential foundations for community detection, PageRank and connectedness 

patterns in illicit networks. Moreover, advanced computing power is enabling a 

resurgent field of Artificial Intelligence (AI). Machine Learning, when applied to 

graphs and networks, produces rich contextual understanding of graph behaviour and 

opens new horizons for anomaly detection.  It facilitates very detailed and complex 

benchmarking and pattern detection. Sophisticated algorithms such as, Microcluster-

Based Detector of Anomalies in Edge Streams (MIDAS), can detect dynamic 

behaviours in graphs (Mishra, 2018). This automated simultaneous analysis lends itself 

well to the Bitcoin - blockchain environment as the graphs formed here are constantly 

being updated with new addresses and transactions. This capability is particularly 

useful for ransomware attacks whose first indications are often sudden bursts of activity 

on the blockchain (Bhatia et al, 2019). 

 

2.10 Conclusion 

The literature reviewed in this paper forms a coherent approach to the analysis of the 

Bitcoin blockchain for illicit money flows. This approach revolves around techniques 

that seek to reduce the levels of anonymity provided by the Bitcoin system to identify 
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real world participants. The literature reveals challenges with the regulatory 

environment. The different applications of laws and compliance controls across 

jurisdictions can hinder deanonymization and attribution to the real world of virtual 

identities on the cryptocurrency network. The emergence of machine learning and its 

application to graphs is providing a powerful analysis capability for disrupting Bitcoin 

related criminal activity. Particularly important are the practices of graph analysis, 

clustering, connectedness and GNNs as a form of deep learning applied to graphs. 

When compared to standard machine learning that employ supervised learning 

techniques and rules-based anomaly detection, these graph-based techniques 

dramatically enhance the future-orientated intelligence and real-time analysis of 

Bitcoin transactions.  

 

Ultimately, the literature shows that there is no lack of available data on the Bitcoin 

blockchain. By providing open data this allows the community to flag certain behaviour 

or orientation of Bitcoin addresses and transactions. However, the challenge is to 

correctly identify and classify the data and link it to off-chain data to provide a richer 

context. A way to potentially improve the performance of the machine learning 

algorithms is to take the graph labelling another step further. This would require adding 

more meta-data to the graph that attributes the addresses and transactions to various 

classifications, such as ransomware or other illicit purposes. These challenges have 

precipitated open data efforts such as those conducted by joint research collaborations 

at Harvard dataverse (Michalski et al, 2020) and between Elliptic, IBM and MIT 

(Weber et al, 2019) that will support future investigations and enhance intelligence 

sharing on illicit Bitcoin transactions.   
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2.11 From theory to practice 

Having reviewed the analytical framework that underlies investigations of 

cryptocurrencies, it is time to pivot towards developing a novel approach to analysing 

Bitcoin transactions associated with ransomware. In the absence of powerful 

commercial blockchain analytics platforms, such as Chainalysis Reactor or Palantir 

Foundry for Crypto, it is important to build up a common open source analysis model 

to help investigators frame the problem of ransomware-Bitcoin payment analysis. 

Therefore, by expanding on the application of the aforementioned techniques to analyse 

ransomware-Bitcoin transactions, Chapter 3 decomposes the WannaCry 2.0 case study 

to build a model that will enable analysts to develop a common picture of the key 

interactions taking place during a ransomware campaign with respect to a network of 

Bitcoin payment activity.  
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Chapter 3 : A Target-Centric Intelligence 

Approach to WannaCry 2.0 
 

“One picture is worth ten thousand words” – Chinese proverb 

3.1 Abstract  

Purpose: This paper aims to demonstrate the utility of a target centric approach to 

intelligence collection and analysis in the prevention and investigation of ransomware 

attacks that involve cryptocurrencies. The paper uses the May 2017 WannaCry 

ransomware usage of the Bitcoin ecosystem as a case study. The approach proves 

particularly beneficial in facilitating information sharing and an integrated analysis 

across intelligence domains.  

Design/methodology/approach: We conducted data collection and analysis of the 

component Bitcoin elements of the WannaCry ransomware attack. We took note both 

of the technicalities of Bitcoin operations, and current models for sharing cyber 

intelligence. Our analysis builds on and further develops current definitions and 

strategies for sharing cyber threat intelligence. It uses Problem Definition Model 

(PDM) and generic Target Network Model (TNM) to create an analytic framework for 

the WannaCry ransomware attack scenario allowing analysts the ability to test their 

hypotheses, integrate and share data for collaborative investigation.  

Findings: Using a Target-Centric Intelligence approach to WannaCry 2.0 shows us that 

it is possible to model the intelligence problem of collecting and analysing data related 

to inflows and outflows of Bitcoin related ransomware transactions. Bitcoin 

transactions form graph networks and allow us to build a target network model for 

collecting, analysing and sharing intelligence with multiple stakeholders. Although 

attribution and anonymity prevail under cryptocurrency usage, there is a means for 
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developing transaction walks using this method to target nefarious cryptocurrency 

exchanges where criminals are inclined to cash out their proceeds of crime.     

Originality/value: The application of a target centric intelligence approach to the 

cryptocurrency components of a ransomware attack, provides a framework for 

intelligence units to breakdown the problem in the financial domain and model the 

network behaviour of illicit Bitcoin transactions relating to ransomware. 

 

3.2 Introduction 

In May 2017, a ransomware outbreak known as WannaCry, infected more than 300,000 

computers across 150 countries worldwide, making it the most prominent ransomware 

attack involving nation states and cryptocurrencies to date (Irwin and Turner, 2018). 

The use of cryptocurrencies in ransomware attacks like WannaCry poses challenges for 

Law Enforcement Agencies (LEAs), the Intelligence Community (IC), regulators and 

policy makers. These challenges relate to the effective collection and analysis of 

cryptocurrency intelligence, and ascertaining the identification of criminal behaviour. 

It is possible to overcome these challenges through a clearly identified target centric 

intelligence model and move towards a more advanced warning of ransomware 

mobilisation.  

 

3.2.1 The Crypto-criminal evolution 

The largest cryptocurrency by market capitalisation10 is Bitcoin. At the time of writing, 

Bitcoin had a market capitalisation of more than five times that of the next largest 

 
10

 Bitcoin market capitalisation is defined as the total number of Bitcoins in circulation multiplied by the Bitcoin 

price (Statista, 2018).  
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cryptocurrency, Etherum, US$113.2B versus US$21.3B respectively (CoinMarketCap, 

2018). Further to that, on 18th October 2018, the volume of Bitcoin traded in a 24-hour 

period was approximately three times that of Etherum, US$4B versus US$1.4B 

respectively (CoinMarketCap, 2018). Bitcoin’s leading market position among its peers 

is a function of its mainstream circulation, strong liquidity and sharp rise in price, 

peaking at US$19,783.21, per Bitcoin, in December 2017 (Higgins, 2017). However, it 

is hard to ignore the criminal roots that tarnish Bitcoin and even with its rise in 

popularity there is still much trepidation surrounding the cryptocurrency due to its 

association with Darknet marketplaces like “The Silk Road”, “Valhalla” and “Alpha 

Bay” (Irwin and Turner, 2018). According to Europol, approximately US$1B was 

transacted on AlphaBay (Europol, 2017). The pseudo-anonymous properties of Bitcoin 

make it particularly attractive to criminal activities. Coupled with the obfuscating 

network infrastructure of the Darknet using The Onion Router (TOR) protocol11 Bitcoin 

transactions make it possible to evade regulators and law enforcers. The use of Bitcoin 

and other cryptocurrencies for the movement of criminally acquired funds is often 

attributed to the circumvention of economic and trade sanctions imposed on a country, 

such as those faced by the DPRK. The DPRK is known to avoid such sanctions by 

mining Bitcoin and Monero (Guerrero-Saade & Moriuchi, 2018). Not surprisingly, 

cryptocurrencies have emerged as the currency of choice in ransomware attacks.  

 

Ransomware combines two elements. One is a malware cyber attack that targets and 

exploits a vulnerability on a computer and encrypts the victim’s critical data. The other 

is the capability to extort a ransom payment from the victim in return for decryption or 

 
11  The Onion Router (TOR) – User IP addresses and subsequent browsing activity are hidden behind an Onion 

Proxy (OP) which connects to the Onion Routers (ORs) on the Tor network concealing the data stream behind at 

least three layers of Tor Relays (ORs) through a persistent Transport Layer Security (TLS) connection between the 

ORs (Dingledine et al, 2004). 
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restoration of the hijacked data (Carbon Black, 2018).  According to the 2018 

Chainalysis report into the changing nature of cryptocurrency crime, a shift is evident 

in the illicit usage of Bitcoin from Darknet markets to thefts from scams, ransomware 

and hacks (Chainalysis, 2018). In addition, in 2017, Deputy U.S Attorney General Rod 

J. Rosenstein, quoted FBI estimates that ransomware payments would reach around 

US$1B annually (U.S. DOJ, 2017). Influences on that estimate could be seen through 

the two major ransomware attacks of 2017, NotPetya and WannaCry. With WannaCry 

driving a 40 percent uptick in infections between 2016 and 2017, according to 

Symantec’s Internet Security Threat Report (ISTR) (2018).  

 

WannaCry executed its ransomware campaign with three hardcoded Bitcoin 

addresses/wallets. As of 20th June 2017, 335 payments, totalling 51.91182371 Bitcoin 

(BTC) or US$144,010.54, had been collected from victims into the three Bitcoin 

wallets (Irwin and Turner, 2018). At the time WannaCry was one of the biggest 

outbreaks of ransomware (F-Secure, 2017), proving a strong indication of the evolving 

cryptocurrency threat from ransomware and the need for intelligence services to 

counter that threat. 

 

3.2.2 Target Centric Intelligence  

Back in 2012, the FBI identified the difficulties law enforcement could face when it 

comes to gaining intelligence from cryptocurrency systems in order to disrupt, 

prosecute and target illegal cryptocurrency activity (FBI, 2012). The advent of 

cryptocurrencies has enabled cyber criminals to avoid attribution and to move their 

proceeds of crime relatively anonymously throughout cryptocurrency ecosystems such 

as Bitcoin. Traditional institutional structures of intelligence collection, analysis and 
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dissemination, need to be readjusted to better meet the challenges of ransomware 

transaction in the Bitcoin ecosystem.  

 

The target centric approach (Clark, 2017) seems to be particularly effective when 

applied to the cyber domain. This approach differs from the formal, clearly demarcated 

processes of the traditional intelligence cycle in that it allows all the stakeholders in the 

intelligence process – collectors, analysts, processers, technicians, and customers – to 

jointly and simultaneously elaborate a shared understanding of the target. 

 

This paper takes a target centric approach to intelligence collection and analysis of 

WannaCry’s usage of the Bitcoin ecosystem. This case study aims to present a generic 

model for intelligence collection and analysis against ransomware, a model that 

facilitates effective data sharing along with integrated, actionable assessment (Clark, 

2017). Future research will look to build on the model with a combination of data from 

different intelligence sources in order to understand how ransomware might evolve in 

the future. This will, incorporate data from the target model into a Cyber Threat 

Intelligence (CTI) ontology using the Structured Threat Information Expression (STIX) 

format. 

 

The paper structure is as follows: Section 3.3 looks at WannaCry and the details that 

define the attack, including important system components of WannaCry and Bitcoin 

along the typical malware kill chain. Section 3.4 addresses the problem definition by 

looking at the implications for intelligence and creates a generic problem definition 

model. Section 3.5 sketches the implications of the study and charts directions for future 

research, and Section 3.6 describes the findings in the context of the subsequent chapter.  
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3.3 Ransomware and Cryptocurrency – The Criminomics  

Symantec’s Internet Security Threat Report (ISTR) from July 2017, identifies 

ransomware attacks as the leading cybercrime threat to organisations and individuals 

worldwide (O’Brien, 2017). This increased concern was driven by the apparent success 

of the WannaCry and NotPetya attacks in May and June of 2017 respectively. Prior to 

these two attacks, ransomware comprised mainly of unsophisticated spam email 

campaigns. WannaCry dramatically changed the ransomware landscape with its ability 

to self-propagate across computer networks. In fact, there was a 46% rise in variants of 

ransomware in 2017 compared to 2016, (241,000 in 2016 vs. 350,000 in 2017 – 

Symantec, 2018). Further, a 2017 Carbon Black report into the ransomware economy 

shows a 2,502% increase in the sale of ransomware on dark web marketplaces 

(US$249,287.05 in 2016 to US$6,237,248.90 in 2017 – Carbon Black, 2017). This 

shows the continuous development and propagation by major ransomware groups to 

use ransomware diversely as a revenue generating attack, a decoy for further attacks or 

as a tool of destruction (O’Brien, 2017) that can be executed by skilled cyber criminals 

or even script kiddies12. Identifying where WannaCry fits into this classification helps 

to understand the mechanics and economics of the ransomware, in turn, helping build 

up a target picture of threat intelligence and the impact the WannaCry campaign had 

on its victims.  

 

 
12

 A “Script Kiddie” is someone who uses existing programming code to hack somebody's computer, because they 

do not have the skill to write their own code (Oxford Dictionary, 2018). 
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3.3.1 WannaCry: Targets and Damages 

WannaCry affected over 300,000 systems in 150 countries during its campaign 

beginning on the 12th May 2017 (Europol, 2017). Before breaking down the WannaCry 

– Bitcoin ecosystem as the target of intelligence collection and analysis, it is important 

to understand the WannaCry ransomware system in its full cyber domain context. 

WannaCry targeted vulnerabilities in older versions of the Windows Operating Systems 

(OS) (CVE-2017-0144) taking advantage of a flaw enabling the Server Message Block 

(SMB) protocol which enabled the proliferation of the malware using the EternalBlue 

exploit kit (U.S. District Court, 2018). The ransomware is capable of spreading itself 

to any unpatched computers on the victim’s network or the Internet, behaving like a 

worm. In fact, a reversed engineered version of the CVE-2017-0144 exploit was made 

available for download by security researchers, RiskSense, on GitHub for non-

malicious purposes days before the campaign struck its victims (U.S. District Court, 

2018). According to Kaspersky Labs (2017), the victims ranged in geography and type. 

Corporations with networked IT systems were particularly vulnerable. Geographically, 

Russia seemed to be hit hardest and after day one of the attack WannaCry was evident 

in 74 countries. 

 

Whilst a geographical analysis of Wannacry infections does not pinpoint patient zero13 

an industry or organisational view may help reveal important intelligence on the 

attackers’ motivations and objectives. Mattei (2017, p.1) highlights that: 

“…WannaCry also significantly disrupted the routine operation of several large 

commercial and governmental institutions including Fedex, the National Health 

 
13

 Patient zero is the term given to the first infected machine of a malware attack and can help with containment, 

eradication, recovery and attribution when managing and investigating of an attack (Holley, 2018). 
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Service (NHS), Deutsche Bahn, Megafon, Telefónica, the Russian Central Bank, 

Russian Railways and Russia’s Interior Ministry.”  

Out of those institutions, the NHS was hit hardest with 80 of the 236 its component 

Trusts, plus a further 603 operations affected (U.S. District Court, 2018). WannaCry 

did not seem to target any particular type of victim.  

 

3.3.2 Bitcoin: Collection and Analysis 

Before analysing the Bitcoin components of the WannaCry ransomware attack, it is 

important to briefly provide some details on the Bitcoin infrastructure.  The Bitcoin 

infrastructure is made up of six elements: The Bitcoin wallet, the Bitcoin miner, the 

blockchain, network discovery, transaction structure, Bitcoin exchanges and services 

(Turner and Irwin, 2018). 

 

Bitcoin is a peer-to-peer network where wallets, addresses, miners, exchanges and 

services act as nodes and transactions are the links between these nodes.  

Transactions are the primary vehicle for exchanging value in the Bitcoin ecosystem. 

Bitcoin wallets are nodes on the network that contain multiple Bitcoin addresses which 

perform transactions that are propagated throughout the network and mined into new 

or existing blocks. A transaction maintains a list of inputs, which contains an index to 

unspent transactions and the associated signature, and outputs, which contains the 

receiving address and value to transfer.  

 

The system generates some specific forensic information that could be used to help 

identify participants (Turner and Irwin, 2018). For example, criminally controlled 

wallets could leverage the fact that users must spend the entire list of inputs in the one 
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transaction. If this is not done a change address is setup to pay the user back any unspent 

inputs. The change address process makes it difficult to trace how many and where 

Bitcoins are being spent (Farghaly, 2014). Exploitation of the change address can be 

achieved through a technique called “peeling”. Analysis can be performed by following 

a large transaction amount and tracking the change address as it “peels” off into smaller 

amounts and then tracing and aggregating the peels to a meaningful recipient 

(Meiklejohn et al., 2013). This process can be witnessed in the WannaCry case when 

the wallets begin to cash-out their criminal proceeds, known as outflows (see Figure 

3.6). Bitcoin outflows are movements from the attacker in an attempt to cash out their 

proceeds, by integrating their illicit funds at an exchange, into fiat currency, or into 

another more anonymous cryptocurrency (e.g. Monero), such was the case with 

WannaCry. Bitcoin exchanges and services are also points of vulnerability. 

Furthermore, network discovery through transaction and address propagation reveals a 

list of IP addresses built up by the node so it can find peers to connect to and advertise 

its existence on the network for other nodes to find it (Antonopoulos, 2010). This is 

also a point of vulnerability, as nodes maintain a list of IP addresses of other peers in 

the network, and a timestamp, which can reveal the currency of the activity of the node 

(Biryukov et al., 2014). Attribution may be possible at these points, depending on the 

personally identifiable information (PII) stored on the user accounts of these exchanges 

and services. 

 

Collection of key intelligence from the Bitcoin ecosystem is crucial to LEAs and the 

IC, though being able to break the Bitcoin system into two network graphs (addresses 

and transactions) for analysis is also important, as it makes it possible to cluster and 

map behaviours of users and transactions over time. For example, being able to 
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aggregate the balances belonging to public keys that are controlled by a particular user 

(Fleder et al., 2015) and visualising the resulting clusters on a map to determine any 

illicit activities being performed on the Bitcoin network. Having outlined what can be 

collected and analysed from the Bitcoin ecosystem, we now turn to the WannaCry – 

Bitcoin dynamic. 

 

3.3.3 WannaCry – Bitcoin: Payment analysis 

As per analysis from Bistarelli et al (2018), Conti et al (2017), Secureworks (2017), 

Kaspersky (2017), Neutrino (2017), the ransom seed Bitcoin (BTC) addresses 

identified in the WannaCry attack and the respective wallets owning these addresses 

are as follows:  

Seed #1  

- BTC Wallet ID: d394a6a98a 

- BTC address: 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 

Seed #2  

- BTC Wallet ID: 0f382fa542 

- BTC address: 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 

Seed #3 

- BTC Wallet ID: 7fe1df02cb 

- BTC Address: 115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn 
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WannaCry was meant to create a unique address for every victim infected, but failed to 

do so due to a software bug in the ransomware’s execution (O’Brien, 2017). It therefore 

defaulted to the three hardcoded addresses identified above14.  

 

In a time series analysis, Conti et al (2018) examined the economic significance of the 

WannaCry ransomware over the course of four months (12th May 2017 to 2nd October 

2017). Their data show a concentrated period of two weeks where WannaCry collected 

the majority of its ransoms (12th May 2017 to 26th May 2017). In fact, Bistarelli et al 

(2018), show that during this two-week period, 89% of the ransoms for WannaCry were 

collected in the first week of the campaign. Table 3.1 shows 238 ransom payments were 

identified using the ransom identification framework presented in Conti et al. (2018).  

 

Ransom Time Period Payments BTC USD value 

$300 May 12, 2017 

– Oct. 2, 2017 

192 32.3430 58,416.62 

$600 46 14.8313 27,660.14 

Total 238 47.1743 86,076.76 

Table 3.1: WannaCry ransom payments (Source: Conti et al, 2018). 

 

This is somewhat different to what Bistarelli et al (2018) reported in their analysis. Over 

the two-week period they found 248 ransomware payments totalling 50.14 BTC 

(Bistarelli et al, 2018) and cryptocurrency monitoring company, Neutrino (2017), 

reported a total of 333 incoming transactions collecting 51.93 BTC. Ransom payment 

identification methods can vary between analysts, researchers and software systems. 

This is due to differences in the observation of respective ransom identification 

frameworks, such as, ransom demand structure, BTC price and exchange rate at the 

 
14

 It is programmatically possible to generate payment wallets and addresses automatically and communicate 

between victim and command and control (C2) server to manage the payment infrastructure at the time of 

exploitation. 
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time of the campaign, coverage of ransom seed addresses, transaction fees, timing of 

payments and transaction timestamps used for filtering (Ahn et al, 2016; Conti et al, 

2018; Huang et al, 2018; Bistarelli et al, 2018).  

 

Conti et al (2018) provide a general framework for identifying ransomware payments. 

Firstly, identify the Bitcoin seed addresses belonging to the ransomware. This could be 

many or it could be one depending on the execution of the ransomware. Next, collect 

the data associated with these seed addresses and understand what constitutes a ransom 

payment from the blockchain. This refers to the payment inflows from victims and the 

cash outflows by the attacker-controlled ransom addresses. In order to develop 

attribution of the attacker, it is also possible to augment the data collected on the 

blockchain with data from external sources. Examples could be data from Bitcoin 

exchanges and services relating to user accounts and open source data from social 

media or Internet forums.  

 

The first reported infections of the WannaCry campaign began on the 12th May 2017. 

Initially, a victim’s data would be encrypted and the WannaCry ransom would demand 

US$300 worth of Bitcoin. Subsequently, after three days, if payment is delayed the 

ransom would be raised to US$600. Then after 7 days the ransomware would report to 

the victim that their files would be impossible to decrypt (Bistarelli et al, 2018).  

 

A twitter bot known as @actual_ransom on 3rd August 2017 identified the first outflows 

from the WannaCry attackers wallets. This bot was set up by journalist Keith Collins 

to monitor activity of the WannaCry ransom addresses (Woodward, 2017). Section 3.4 
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will highlight one path these outflows took and from an intelligence perspective why it 

is important to track the outflows to their ultimate destination.  

 

3.3.4 WannaCry – Bitcoin: Sabotage or big business? 

Return on Infections (ROI) and Ransom Payments per Infection (RPPI) are new 

concepts that we propose to use to evaluate the distinct financial effects and destructive 

impacts of particular ransomware campaigns. 

1) ROI = 
𝛴 𝑅𝑎𝑛𝑠𝑜𝑚 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝐵𝑇𝐶

𝛴
 𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

2) RPPI = 
𝛴 𝑅𝑎𝑛𝑠𝑜𝑚 𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑠

𝛴
 𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

Firstly, by taking the number of reported WannaCry infections, 300,000, and the 

number of identified ransomware payments from 12th May to 2nd October 2017 as seen 

in table 2 and 3, it is possible to deduce the following for WannaCry: 

- 238 ransom payments collected 47.1743 BTC; US$86,076.76; using the BTC 

to US$ exchange rate at the time of the WannaCry campaign. 

- Ransom Payments per infection (RPPI) = 238/300,000 = 0.00079  

By comparison, CryptoLocker, which had a more complex ransom payment structure 

and produced 250,000 infections (Kelion, 2013), collected 804 ransom payments over 

the time frame September 5th 2013 to January 30th 2014 (Conti et al, 2018). Therefore:  

- 804 ransom payments collected 1403.7548 BTC; US$449,227.97; using the 

BTC:USD exchange rate at the time of the CryptoLocker campaign. 

- RPPI = 804/250,000 = 0.003216 

 

Address Payments BTC 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SM

w 

77 15.1129 
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13AM4VW2dhxYgXeQepoHkHSQuy6NgaE

b94 

92 18.5431 

115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn 69 13.5183 

Table 3.2: WannaCry ransom payments by ransom seed address (Source: Conti et al, 2018). 

 

Ransomware 
Overall Ransom 

Payments BTC US$ value Payments BTC US$ value 

CryptoLocker 51,766 133,045.9961 42,292,191.17 804 1403.7548 449,274.97 

WannaCry 341 53.2906 99,549.05 238 47.1743 86,076.76 

Table 3.3: Ransomware payments by ransomware attack (Source: Conti et al, 2018). 

 

The effectiveness of WannaCry as a revenue generating ransomware campaign can be 

questioned with as little as 1 in 1,260 infected machines paying ransom. This compared 

with CryptoLocker, which yielded a ransom payment for every 310 infected machines. 

WannaCry’s ROI stands at less than half Cryptolocker’s. 

(WannaCry = 47.1743 / 300,000 = 0.0023587 BTC per infected machine; and for 

CryptoLocker = 1403.7548 / 250,000 = 0.005615 BTC per infected machine. ) 

The relatively modest ROI was due to some design flaws in the software. For example, 

security researcher Marcus Hutchins discovered WannaCry was using an unregistered 

domain name (iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com) as a “kill switch” 

(Hutchins, 2017). If a request to the domain returned a response it would arrest the 

spread of WannaCry. If there were no response from the domain the malware would 

continue to propagate. By registering this domain name, Mr Hutchins was able to 

effectively sinkhole15 the malware and stop any further infection (Bistarelli et al, 2018).  

 

This comes in addition to the above-mentioned bug in the payment-management 

execution that limited the scope of ransom collection to 3 hard coded Bitcoin addresses 

 
15

 A sinkhole acts as a tool for eradicating the spreading of malware infection vectors and also can be used to 

break the connection to the command and control server (Mazerick, 2018). 
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(O’Brien, 2017). This bug left the attackers unable to identify which victims have paid, 

making it impossible to restore a paying victim’s files and prevent subsequent damages.  

 

Either way, the effects of a ransomware attack are far reaching. Recalling that 

WannaCry rendered many important public service networks inoperable including the 

NHS at hospitals in the United Kingdom (Mayor, 2018).  

 

The specific vulnerability it exploited allowed WannaCry to effectively propagate and 

achieve a high spread in a small time frame. The monetary return on these infections 

was quite low. With respect to the ROI and RPPI calculated above, this would indicate 

that WannaCry’s malicious capacity outweighed the financial rewards ransomware can 

produce. This could suggest that the malware designers were more focused on infection 

and disruption than on revenue raising.   

 

The matrix in Figure 3.1 will serve to classify ransomware with respect to its impact on 

victims and the complexity of its execution. It yields four classification quadrants. 

Starting from the bottom left, low complexity and low impact, typically trial runs for 

more sophisticated subsequent attacks. The bottom right, high complexity and low 

impact quadrant, refers to attacks that are advanced in their exploit and invasive in 

nature but are serve primarily to distract their targets and open the door for more 

devastating attacks to be executed.  The top left quadrant refers to ransomware that 

disrupts a victim’s computer or network, causing widespread confusion amongst 

victims and delaying effective response (Symantec, 2018). The top right quadrant refers 

to mature ransomware that is effectively designed to maximise profit. These attacks are 

typically highly complex due to their sophisticated payment management, infection 
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vectors and encryption strength. Furthermore, not only do these types of attacks render 

computer equipment and data un-useable, they also cripple the victim financially. 

WannaCry can be placed in the ‘Tool of destruction’ quadrant, halfway up the impact 

axis and towards a medium level of sophistication due to the nature of the exploit. 

 

Figure 3.1: Ransomware classification matrix. 

 

Reflecting on Figure 3.1, and to move forward on any criminal investigation, there is a 

need to understand what data can be collected to help reveal anonymity and attribution 

to a domain that seeks to conceal both. 

 

3.3.5 WannaCry – Bitcoin: Tracing an Attack 

Much has recently been made public regarding the attribution of the WannaCry 

ransomware attack. The U.S (U.S. District Court, 2018) has pointed the finger at North 

Korea (DPRK). Attributing ransomware attacks of this nature requires a high degree of 

computer forensic work. The US claims are based on the examination of cyber 

WC 
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infrastructure such as IP addresses, proxy servers, computers, mobile devices, Bitcoin 

addresses, email and social media accounts accessed by the cyber criminals using IP 

address ranges located in the DPRK that are used to control reusable Trojans and worms 

with signatures related to the Lazarus group to control victim’s machines (U.S. District 

Court, 2018). 

 

One of the intelligence gaps that stand out in this case is the lack of collection and 

analysis against the Bitcoin money flows. Questions could be asked as to whether these 

same email addresses or social media accounts have been used to also set up the Bitcoin 

address and exchange accounts and whether they have been accessed from the same 

computers or devices on the IP addresses linked to the DPRK. In a case where the 

primary charge is conspiracy to commit wire fraud a stronger focus could be put on the 

money laundering aspects of cryptocurrency. In order to provide that focus, it is 

important to break down the component parts of WannaCry against the cyber attack kill 

chain. 

3.3.5.1 WannaCry Kill Chain 

Ransomware typically follows the Advanced Persistent Threat (APT)16 kill chain that 

is an archetypal system for describing the different phases a cyber attack moves 

through. Lockheed Martin defines seven steps in the “kill chain” that form the adversary 

functions, which contain the structures and processes of the ransomware system to be 

analysed (Hutchins et al, 2011). To this we have added an eighth step, “Mobilisation”, 

 
16

 An APT is aimed at nation states and large targets and is defined by Kaspersky Lab (2018) as: “[using] 

continuous, clandestine, and sophisticated hacking techniques to gain access to a system and remain inside for a 

prolonged period of time, with potentially destructive consequences.” 
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to account for the infrastructure and resourcing activity that happens prior to executing 

a ransomware attack. This forms a “ransomware kill chain” and unfolds as follows: 

1. Reconnaissance 

2. Mobilisation 

3. Weaponisation 

4. Delivery  

5. Exploitation 

6. Installation 

7. Command and Control (C2) 

8. Actions on objectives 

 

Figure 3.2 shows the system linking these processes for the WannaCry Ransomware. 

 

 

Figure 3.2: WannaCry “Ransomware Kill Chain.” 
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Focussing in on the Bitcoin component of WannaCry, evidence can be collected from 

victims who have paid the ransom to specified Bitcoin ransom addresses.  The feedback 

from the Bitcoin payment actions to the Command & Control servers provide the means 

for the attackers to manage their payments and for LEAs and the IC to focus the target 

model around illicit payment flows. The data collected here should focus on BTC 

payment inflow from victims of the ransomware attack. In addition, when the attacker 

cashes-out the collected ransom, the BTC payment outflow from the ransom addresses 

should be monitored. Furthermore, there may be indicators of mobilisation, such as 

phishing campaigns, botnet set up and Bitcoin address creation at suspect exchanges. 

This could inform LEAs and the IC, allowing them to monitor known Bitcoin 

exchanges and services that facilitate money laundering activities. In order to build the 

required intelligence on ransomware it is important to understand these indicators and 

the observable data that these elements create.  

 

3.3.5.2 WannaCry inflows 

Analysis conducted by Huang et al (2018) reveals details about the exchanges used by 

victims to make payments to the WannaCry ransom seed addresses. This profile of 

victim payments shows that the Bitthumb.com and BTC-e.com exchanges make up 

approximately 10% of victim payments. The largest known inflows came from 

LocalBitcoins.com contributing about 15% of victim payments, whilst more than half 

were categorised as miscellaneous or unknown. The Bitthumb.com exchange is known 

to only accept Korean Won to purchase Bitcoins (Huang et al, 2018). Personal 

Identifiable Information (PII), such as Korean phone numbers is also collected on these 

accounts (Huang et al, 2018). A Russian national operated the BTC-e.com exchange 
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and this was taken down on allegations of running an international money-laundering 

scheme (U.S. DOJ, 2017). Localbitcoins.com is operated out of Finland and is a market 

place for peer-to-peer Bitcoin trades or to exchange BTC to cash or other payment types 

(Pineda, 2014). Whilst this exchange is still in operation, it has suffered a number of 

blocks from regulators in Germany, New York and Russia due to breaches of licensing 

requirements, and it was known to facilitate money-laundering operations in the past 

(Rizzo, 2014; Elliot, 2016; Young, 2015; Redman, 2016; Das, 2016).  

 

3.3.5.3 WannaCry Cashing Out 

The first known WannaCry cash-out occurred on August 3rd 2017. A high-level report 

conducted by the Neutrino Research Team in September 2017 identified an outgoing 

transaction moved 8.73 BTC on August 3rd 2017. It took just a few minutes and five 

more transactions to empty the wallet, where these cash-out transactions ultimately 

arrived at two known suspicious exchanges, Shapeshift and Changelly (Neutrino, 

2017). As was noted in the U.S v. Park Jin Hyok criminal complaint (2018), WannaCry 

1.0 and WannaCry 2.0 used a similar cash-out exchange and this appears to be 

Shapeshift where 13.53BTC were further exchanged into another more anonymous 

cryptocurrency, Monero.  

 

The Changelly exchange received 33.83 BTC from the cash out of the WannaCry 

ransom wallets. Interestingly, the cash out behaviour of the WannaCry attackers 

changed as Shapeshift started blacklisting WannaCry addresses (Neutrino, 2017). The 

cash-out patterns of the WannaCry ransom addresses reveal exchange points where 

conversion of the BTC will occur and provide valuable Cyber Threat Intelligence 

(CTI), all registered and auditable on the blockchain. 
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3.3.5.4 WannaCry Target Model 

Figure 3.3 forms the generic system model for a ransomware-cryptocurrency 

interaction between attacker and victim.  

 

Figure 3.3: Ransomware – Bitcoin Generic System Model 

 

The flow of Figure 3.3 is as follows: 

1. Victim infected 

2. Details sent to Command and Control server (C2) 

3. Public encryption key sent to victim, ransom instructions on the lock screen sent 

to victim (i.e. ransom seed bitcoin wallet address) 

4. Victim files encrypted 

5. Machine keeps polling the C2 looking for updates (E.g. a decryption command) 
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6. Victim makes payment to the attackers wallet, via a hidden BTC service or 

exchange, using the ransom seed BTC address 

7. C2 acknowledges payment, maps to a particular victim, and releases the private 

key needed for decryption and files are restored. 

 

Figure 3.3 shows how an attacker infects a victim with malware (in this case the 

WannaCry ransomware), and triggers the interaction with the Bitcoin ecosystem setting 

in motion activity which requires the victim to generate Bitcoin by registering an 

account and crediting it through the exchange of fiat currency to Bitcoin by interacting 

with a Bitcoin exchange. The victim then proceeds to execute a Bitcoin transaction to 

pay the ransom to the attackers ransom address. The attacker also generates footprints 

on the Bitcoin ecosystem when the malware generates the ransom seed addresses. 

Furthermore, when an attacker cashes out at a virtual currency exchange, this generates 

pertinent intelligence on the blockchain and may interface with the fiat monetary 

system or other wallets and exchanges17. 

 

3.4 WannaCry – Bitcoin: Implications for Intelligence 

This section will showcase target centric approach that we believe is the most effective 

way to leverage the cryptocurrency data and create an integrated, comprehensive and 

actionable intelligence picture in a timely manner. 

 

 
17

 Custodial exchanges are those in possession and control of the user’s wallet private keys. They require identity 

verification for accounts via user PII. Non-custodial exchanges are those exchanges that require no account 

registration and provide real time exchange from one cryptocurrency to another cryptocurrency (Woods, 2018). 
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3.4.1 Problem Definition Model (PDM): WannaCry Ransomware  

Generating a problem definition model (PDM) could facilitate the creation of a 

common understanding of the WannaCry Ransomware operating environment using 

the Political, Military, Economic, Society, Infrastructure and Information (PMESII) 

approach to systems thinking (Clark and Mitchell, 2016). For example, in the 

WannaCry ransomware case, it could be of vital interest to understand how WannaCry 

managed its ransom proceeds and how these currency flows could be frozen or seized. 

The answer to questions like where does the WannaCry ransomware seed BTC 

addresses cash out their proceeds on the BTC network, become the specific focus. 

Figure 3.4 provides a top level PDM for a Ransomware cyber threat. 

 

Figure 3.4: Ransomware Problem Definition Model (Adapted from Clark and Mitchell, 2016). 

 

At a generic level, the PDM in Figure 3.4 will provide the basis to understand the 

structure, function and process of a ransomware cyber threat. This PDM shows that a 

ransomware cyber threat constitutes elements relating to the source of the cyber attack, 

the likely targets, the means of attack, other information warfare effects and the 

proceeds generated from the ransom attack. Populating the PDM allows analysts to 

“zoom-in” and target specific components, such as the Bitcoin flows from the 

WannaCry ransomware. Figure 3.5 shows the next level of detail relating to the specific 

ransomware attack, WannaCry.  
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Figure 3.5: WannaCry Ransomware Problem Definition Model. 

 

Describing Figure 3.5, it can be said that the source of the WannaCry attack has been 

attributed to the DPRK and shows similar signatures to other malware used by the 

Lazarus group. Hirsch (2018) mentions that the EternalBlue exploit was leaked from 

the U.S National Security Agency (NSA). Other working assumptions of interest to the 

IC could be the view that WannaCry is a false flag18 operation and furthermore the 

attackers could be leveraging the Ransomware as a Service (RaaS) model across 

Darknet markets. The targets of the attack have a broad infection footprint covering 

public and private sector companies. With respect to targeted nations, it might be 

plausible to single out those that are adversarial to the DPRK. This includes South 

 
18

 False flag operations in cyber warfare refer to: “tactics used in covert cyber attacks by a perpetrator to deceive 

or misguide attribution attempts including the attacker's origin, identity, movement, and/or code/exploitation.” 

(Wikipedia, 2018). 
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Korea, the U.S and possibly disgruntled allies of the DPRK in the form of Russia and 

China (DoD, 2015). The means of attack are the malware kit targeting vulnerabilities 

in Windows Personal Computers using a worm to self-propagate to other machines. 

Command and Control was done behind TOR nodes on the Darknet that helped protect 

identity and location of the attackers and facilitate the ransom payment management. 

Other effects either intended or consequential of the ransomware attack include 

rendering victim’s computers, networks and information unusable due to disruption to 

their operations, degradation of their services, subversion of their systems and 

corruption of critical data. The proceeds of crime breakdown allow the collection of 

intelligence and focussing of intervention efforts on the money laundering steps of 

placement, layering and integration with respect to Bitcoin. For example, in the case of 

WannaCry, placement can be seen when a victim’s funds enter the BTC network and 

are collected using the three main Bitcoin ransom seed addresses. Layering is achieved 

by moving cryptocurrency in and out of the ransom seed addresses and referred to as 

Bitcoin inflows and outflows. Intelligence yielded here can provide victim profile 

details, i.e. where the BTC transfers are coming from (e.g. exchanges, locations, 

addresses).  

 

3.4.2 WannaCry – Bitcoin: Extracting Cyber Threat Intelligence (CTI) 

Clark and Mitchell (2016) note that well-defined PDMs are imperative to breaking the 

intelligence problem down into its component parts to ensure the transition to the 

desired target model is timely, feeds the intended purpose, can be shared and updated 

collaboratively and in a controlled manner. Here we outline the Cyber Threat 

Intelligence (CTI) that can be derived from the WannaCry – Bitcoin interaction. 
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Using the blockchain to monitor the transactions that involve a ransomware attacker’s 

BTC wallet provides valuable intelligence. Recent policy and regulation on virtual 

currency exchanges, such as EU Directive 2018/843 (aka. the 5th AML Directive), 

requires virtual currency exchanges and custodian wallets (i.e. virtual currency wallet 

services where the service holds the user’s private keys) to make data available to 

Financial Intelligence Units (FIUs). 

 

Vital intelligence, in the form of Personal Identifiable Information (PII) can be 

collected on both the victim and perpetrator side of the WannaCry – Bitcoin target 

model. As a result, forensic investigation may be able to look at the details of the 

computing and network infrastructure (e.g. IP-address, geo-location, Bitcoin 

blockchain protocol details, BTC node activity, TOR connections, network traffic 

analysis, coding style and language and program compilers to provide intelligence to 

counter anonymity and reveal the identities of the bad actors controlling proceeds of 

crime from ransomware attacks).  

 

Intelligence agencies can target the following: 

At an operational level: 

● Ransom Seed Address(es): The BTC addresses used by WannaCry to collect 

ransom payments. 

● Transaction Inputs: The incoming transactions from a victim BTC address to 

the Ransom Seed Address(es) containing the ransom amount. 

● Transaction Outputs: The outgoing transactions from the Ransom Seed 

Address(es) to another BTC address. This can go many levels deep in the 

network. 
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● Inflow: Those inputs aggregating into a particular transaction made up from

previous transactions.

● Outflow: Those outputs from a particular transaction feeding the next

transaction and providing the target out flow destination for ransom funds.

● Computer and network infrastructure components (E.g. IP addresses, proxy

servers, email accounts, TOR connections, malware signatures).

At a tactical level: 

● Popular victim exchanges:  Bithumb, Localbitcoins.com and BTC-e

● Preferred attacker cash out exchanges: Shapeshift and Changelly (converting to

the more anonymous cryptocurrency Monero).

● Virtual currency exchanges KYC and CDD processes.

● PII available from virtual currency exchanges.

At a strategic level: 

● Policy and Regulation of Virtual Currency Exchanges, services and custodian

wallets (E.g. EU Directive 2018/849, FATF AML/TF Recommendations and

the Australian AML/CFT Act).

● Adversarial cyber capability and vulnerability of prospective attackers.

● High risk geographies (E.g. North Korea, Russia, Iran and China).

● Economic sanctions imposed by the United Nations (U.N), the U.S., the

European Union (EU), South Korea and Japan (Albert, 2018).
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3.4.3 WannaCry – Bitcoin: Populating the target model 

Populating the CTI objects at an operational and tactical level with data collected from 

the blockchain with respect to the WannaCry ransomware attack yields a network graph 

as shown in Figure 3.6. The red circle identifies the ransom seed address, the blue 

circles represent the number of inputs into the green transaction circles. The pink circles 

represent the number of outputs from the green transaction circles and the grey circles 

identify the wallets owning the BTC addresses related to the inputs and outputs of a 

transaction.  

 

 

Figure 3.6: WannaCry ransom seed address cash out profile (transaction walk). 

 

This graph shows a transaction walk of the cash out behaviour from one of the 

WannaCry ransom seed wallet addresses (d394a6a98aabeeae). The data was pulled 

from a blockchain API available from walletexplorer.com and read into the graph 

database neo4j where nodes and relationships were created to represent the operational 
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and tactical level CTI objects. The graph database can be queried to identify transaction 

walks N levels deep in the Bitcoin network to where it reaches a known cryptocurrency 

exchange and can activate intelligence collection or counter intelligence intervention. 

There is strong use of the “peeling” concept, mentioned in Section 3.2, using the change 

address to obfuscate the cash-out flow. In addition, the aggregation and disaggregation 

of transaction inputs and outputs is evident along this cash out path. Ultimately the 

graph reveals the wallets in control of the cash-out transactions, the amounts that are 

being moved, timestamps, transaction IDs and the destination of the funds. Tracing one 

of the cash-out branches from Figure 3.6 shows the final destination of 0.7995 BTC 

arriving at an exchange known as HitBTC.com under a wallet address 

000029d0149cb5ce. This exchange requires user registration of email and password to 

perform trades (Hitbtc Review, 2018), however there are stringent Know Your 

Customer (KYC) processes in place if the user wishes to deposit or withdraw into fiat 

currency (Hitbtc Review, 2018).  The exchange operates out of Hong Kong (Dale, 

2018) and interfaces with the non-custodial exchange Changelly, which allows instant 

crypto-to-crypto exchanges with no account necessary (Munkachy, 2018). This 

provides the attacker further capability of obfuscating their illicit funds. Investigation 

into whether the wallet being used on HitBTC.com has PII associated to it or at least 

an email address would allow forensic examination and would help LEAs reveal the 

attribution of the attackers. 

3.5 Future Research and Conclusion 

Above we proposed an intelligence coordination method to target the Bitcoin 

blockchain for actionable intelligence on the WannaCry ransomware attack. This 

approach can support intelligence, cyber security and cyber crime investigation efforts. 

In addition, by using a common standard, such as STIX, a customised cyber observable 
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object could be created and shared containing threat information relating to the 

cryptocurrency components of ransomware.  

 

Whether by intention or through the incompetence of its authors, WannaCry functioned 

more as a ‘Tool of Destruction’ than a ‘Revenue Generating’ attack. The proposed 

spectrum of ransomware classification extends the boundaries of the model. Tracing 

WannaCry along the “Kill Chain” focussing on the Bitcoin victim inflow and the 

attacker outflow allows analysts to formulate a target model to help drive CTI collection 

and collaboration efforts.  

 

Our particular analysis only draws on the information available from the Bitcoin 

blockchain. Though these data are rich from a transaction audit trail and money flow 

perspective, the intelligence needed to defeat anonymity and facilitate attribution 

requires an augmentation of all-source intelligence to gain an in-depth understanding 

of what is really going on in terms of the structures and processes of a ransomware 

attack and be able to set up early warning detection in order to predict and defeat the 

next attack.     

 

3.6 A problem half solved 

The famous American inventor Charles Franklin Kettering is quoted as saying “a 

problem well stated is a problem half solved.” This rings true for the work presented in 

Chapter 3. Here we present a working model, the Target Network Model (TNM) and 

the Problem Definition Model (PDM), for the interaction ransomware has with a 

cryptocurrency network. The case of WannaCry 2.0 is used to develop the model and 

what components need to be considered. Furthermore, the analysis undertaken in this 
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chapter breaks down the impact of the WannCry 2.0 ransomware attack in terms of 

ransom payments in Bitcoin (BTC). Metrics relating to Return on Infections (ROI), 

Ransom Payments per Infection (RPPI), and classifying an attack as sabotage versus 

revenue generating are created. Through the creation of a TNM and PDM for 

ransomware-Bitcoin interaction, a schematic is developed which provides a window 

into the cryptocurrency behaviour of ransomware-Bitcoin payments.  

 

The other half of the ransomware-Bitcoin problem is using what has been defined in 

order to achieve the threat intelligence goals. These goals refer to requirements of 

scoping, collection, analysis, and dissemination where threat intelligence yields, as 

defined by Gartner (2013), “evidence-based knowledge, including context, 

mechanisms, indicators, implications and actionable advice, about an existing or 

emerging menace or hazard to assets that can be used to inform decisions regarding 

the subject’s response to that menace or hazard.” (McMillan, 2013). In order to satisfy 

this definition for the ransomware-Bitcoin problem space, this chapter recommends the 

further development of a common intelligence sharing standard, using the models 

outlined, for the collection and interpretation of threat intelligence. The next chapter 

demonstrates, using an industry accepted standard such as the Structured Threat 

Information eXpression (STIX), that it is possible to augment the available data on the 

blockchain to better understand the structures, processes, patterns, and payments 

relating to a ransomware attack and thus turning the data collected using the TNM and 

PDM to actionable insights.  
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Chapter 4 : Ransomware-Bitcoin Threat 

Intelligence Sharing Using Structured 

Threat Information Expression (STIX) 
 

 

“The goal is to turn data into information and information into insight.” – Carly Fiorina, 

former chief executive officer, Hewlett Packard. 

 

4.1 Abstract 

To address the challenge of representing ransomware-cryptocurrency payments, this 

article outlines a novel approach to the extraction and sharing of threat intelligence data 

from the Bitcoin blockchain. This work results in the creation of two new cyber-

observable objects, x-cryptocurrency-address, and x-cryptocurrency-transaction. 

 

This article outlines a novel approach to the extraction and sharing of data from the 

Bitcoin blockchain to form the cash-in and cash-out networks of ransomware-Bitcoin 

money flows. These data can help fill a general gap in our understanding of ransomware 

attacks. Researchers and practitioners have tended to focus on the malware used and 

vectors of penetration while overlooking the no less significant information about the 

movement of ransom payments over cryptocurrency networks. This is evident in the 

WannaCry ransomware analysis performed by security researchers. For example, in 

research performed by Mackenzie (2019), the focus remains on the computer system 

vulnerabilities exploited: that is, Windows (CVE-2019-0708) using the EternalBlue 

exploit kit and installing the DoublePulsar backdoor. However, a comprehensive threat 
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intelligence approach and incident response must consider and exploit the 

cryptocurrency elements of ransomware attacks. 

 

 

4.2 Background  and Motivation 

To address the challenge of representing ransomware-cryptocurrency payments, we use 

the Structured Threat Information Expression (STIX) format. STIX provides a means 

to consistently share threat intelligence relating to ransomware-Bitcoin payments 

among organizations, security researchers, investigators, and the intelligence 

community (Oasis, 2020). The STIX format provides the capabilities required to design 

custom objects and reuse existing objects to represent and understand and to share this 

intelligence among the stakeholders (Oasis, 2020). To adapt the usage of the STIX 

format to the utility of ransomware-Bitcoin payments, we establish a picture of what 

ransomware-Bitcoin threat intelligence could look like by modelling the target network, 

drawing on existing money laundering (ML) red flag indicators relating to 

cryptocurrency, and planning the required intelligence collection efforts. 

The data collected from the WannaCry ransomware attack are then used to demonstrate 

our proposed use of the STIX format. We then develop the STIX-Ransomware-Bitcoin 

Framework (SRBF). By extending the STIX model to generate cyber threat intelligence 

(CTI) relating to a ransomware-Bitcoin attack, we define a common data model for 

sharing the cryptocurrency-related threat intelligence. This work results in the creation 

of two new cyber-observable objects, x-cryptocurrency-address and x-cryptocurrency-

transaction. In addition, we leverage the “external references” parameter on the 

existing STIX Observed Data object to preserve the cash-in and cash-out Bitcoin 

network data generated by the WannaCry ransomware attack. Our proposed procedure 
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yields a standardized way threat data can be effectively constructed, shared, and 

exploited by both humans and machines. The gap this research aims to cover relates to 

an emerging threat prevalent in the use of Bitcoin during ransomware attacks and how 

STIX can capture this threat relating to the corresponding ransomware-Bitcoin 

payments. 

 

4.3 CTI 

This section describes the use of Cyber Threat Intelligence (CTI) applied to the 

ransomware-Bitcoin payments of the WannaCry ransomware attack. Understanding 

the target network structure and the information contained within the structure is the 

first step toward actionable CTI. 

4.3.1 Target Network 

CTI aims to synthesize intelligence to gain insight into a cyber adversary’s strengths 

and weaknesses and foresight about the threat posed by the adversary and its 

implications. Successful threat intelligence within the cyber domain demands a 

knowledge base of threat information and an expressive way to represent this 

knowledge, typically by using shared taxonomies, standards, and ontologies 

(Mavroeidis and Bromander, 2017). All the data collected and presented as part of the 

intelligence collection process form patterns that are informed by a host of assumptions, 

both empirical and logical. The process must leverage the evolving information needs 

that create the complex patterns of illicit cryptocurrency money flows that are derived 

and developed from a ransomware campaign. The blockchain environment is readily 

accessible yet quite complex to analyse, making it easy for malicious agents to transact 

with victims and launder money behind a wall of anonymity. 
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In the case of a ransomware-Bitcoin network, the target could be the ransomware-

Bitcoin seed address or the cash-out point of the attacker’s ransom bounty. The data 

that are extracted from the blockchain are cognitively processed through various mental 

schemas by both humans and machines. A significant task in interpreting the data is to 

create schemas that are as specific as possible about the nature and processes that are 

involved in the execution of ransomware attacks, including the different motivations 

and modes of action adopted by attackers (Gottschalk, 2015). Having specific schemas 

of different modes of criminal behaviour allows analysts—be it human or virtual—to 

effectively characterize the intelligence target. 

 

To reconstruct the Bitcoin-related events of the WannaCry ransomware attack, we need 

to look at the two sides of a ransomware-Bitcoin seed address. These two sides 

represent the cash-in and cash-out networks. The cash-in network models the victim’s 

ransom payments. The cash-out network moves the collected ransom payments from 

the attacker-controlled ransomware-Bitcoin seed address into different financial 

destinations to launder the money. A subset of Bitcoin addresses and transactions 

resulting from the WannaCry ransomware attack is analysed throughout this article. 

The addresses and transactions are catalogued in Table 4.1 and will be referred to using 

the ID number in the subsequent diagrams and text. 

Figure 4.1 represents a target network model for the ransomware-Bitcoin cash-in 

payment network for the WannaCry ransomware attack as analysed in the “Data 

Analysis” section and catalogued in Table 4.1. The cash-in network is formed by the 

victims at the start of a ransomware campaign when the victim pays ransomware into 

the attacker-controlled Bitcoin address, known as the ransomware-Bitcoin seed address 
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or ransom seed address. A similar network exists for the cash-out behaviour of the 

WannaCry ransomware-Bitcoin campaign. This is illustrated in Figure 4.2, analysed in 

the “Data Analysis” section, and catalogued in Table 4.1. It reveals the tactics that an 

attacker uses to move these ransomware proceeds into other areas of the cryptocurrency 

ecosystem to evade detection. This creates a cash-out trail and could lead investigators 

to key cryptocurrency exchanges and services or even into the traditional financial 

system. 

 

Figures 4.1 and 4.2 form to create a target network model. This can be used to develop 

a common situational understanding (SU) and identify intelligence gaps.  

 

Figure 4.1: The Ransomware-Bitcoin Target Cash-in Payment Network Model. 
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Figure 4.2: The ransomware-Bitcoin Target Cash-out Payment Network Model. 

 

The figures are generated using the data collection framework in the “Data Collection” 

section. 

 

ID Address / Transaction (TX) Purpose 

#1 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw Ransomware seed address 

#2 2bccc8d2b72da8c8733aef73a7bad85ae3bf834f86607540a

68b4a8ef252e32c 

TX of victim ransom 

payment 

#3 38ws7HY9k2D8veJRfxgWCt5wxsAcFSUCDs Victim address (multisig) 

#4 1a4b96d4c4bf668f2fa98fc65617efbb93cf98b9089e229911f

2ca9d5af5177a 

Linked TX of victim 

ransom payment 

#5 3AtQECjhyq7vv9o6AyTV5oytGnDvDGVnpq Change address from 

ransom payment 

#6 409803bb5e124fd028c0482027c7722e84ce55b78204b279

d3a44aba5e7c1698 

TX of attacker cash-out 

#7 1FQQ86tMuvhQ4Ruyggbb8j7iaNfUZ69gpY Attacker owned address 

where bulk of ransom 

payments were moved to 

Table 4.1: The addresses and transactions analysed as part of the cash-in and cash-out WannaCry 

ransomware payments. 
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This article proposes an SRBF that can help multiple stakeholders at different stages of 

the intelligence cycle collaborate on developing a common understanding of the 

situation and the gaps involved. 

 

4.4 Intelligence Collection Planning 

The Financial Action Task Force (FATF) recently released guidance on red flag 

indicators for ML and terrorism financing using virtual assets (VAs) (FATF, 2020). By 

referencing standards professionally developed from an international governing body, 

such as the FATF, we can build out intelligence collection plans (ICPs) for suspicious 

financial behaviour and use a prescribed collection of red flag indicators as common 

scenarios or patterns allowing investigators or analysts to periodically “review a list of 

observable events or trends to track events, monitor targets, spot emerging trends, and 

warn of unanticipated change.” (CIA, 2009).  

 

The ICP sets up targeted information collection with the aim of populating the SRBF 

with the required threat intelligence informed by analysts, intelligence officers, and 

investigators. In the case of the WannaCry ransomware-Bitcoin money flows, we 

developed an example ICP in Table 4.2.  

 

Satisfying the requirements of the ICP will enable the provisioning of the SRBF. The 

ICP guides collection efforts. Once the indicators to analyse intelligence requirements 

are fulfilled, the extracted data can then form the basis of sharing threat intelligence in 

a standardized manner with the security community for the intention of countering the 

cryptocurrency movements of the ransomware attacker. This is where the SRBF will 

bring the targeted data together, populate a set of custom-defined cyber-observable 
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objects using the global standard STIX schema to understand the attacker behaviour, 

and possibly prevent the mobilization of funds and stop attackers receiving ransom 

payments. 

Intelligence Requirement 

1. Determine where victim inflows originate from with respect to ransomware. 

Information Requirement 

a. Where are the victims purchasing their Bitcoin from (exchanges)? 

b. Where do the victims make purchases (geographically)? 

c. Is there CDD/KYC information available? 

d. How much Bitcoin is being purchased? 

e. How many transactions take place from acquisition of Bitcoin to ransom payment? 

Intelligence Requirement 

2. Identify supply chains of Bitcoin for victim payments. 

Information Requirement 

a. How many levels deep do the payments take? 

b. Who has influence over these supply chains? 

c. Are there known fraud or other criminal linkages? 

Intelligence Requirement 

3. Identify key nodes (transactions/addresses) in the network that may be clustered under the same 

controlling entity. 

Information Requirement 

a. Where do these key nodes exist in the network? 

b. Are there any patterns with respect to the day of the week or month these key nodes activate? 

c. Do clusters or communities of nodes exhibit similar behaviour across ransomware campaigns? 

Intelligence Requirement 

4.  Identify the cash-out behaviour of the attack 

Information Requirement 

a. What exchanges do the attackers cash-out at? 
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b. Is there Customer Due Diligence (CDD) / Know Your Customer (KYC) information available? 

c. What is the frequency and amount being cashed out? 

d. What are the cash-out transaction patterns? 

Table 4.2: An ICP for Ransomware - Bitcoin campaign. 

 

4.5 Data Collection 

The data collection framework used to extract the data from the Bitcoin blockchain 

relating to specific ransomware campaigns, and according to the ICP defined in the 

“Intelligence Collection Planning” section, is identified in Figure 4.3. The data 

collected relate to a particular WannaCry ransomware-Bitcoin seed address, #1. In step 

1 of Figure 4.3, the data for the SRBF are extracted from the walletexplorer.com 

application programming interface (API). In step 2, the extraction script effectively 

splits our intelligence collection into two networks. [The extraction script is available 

upon request from GitHub (https://github.com/AdamT23/bitcoin-seed-extract).] One 

represents the payments being received by the ransomware-Bitcoin seed address or 

cash-in network (the upper portion of Figure 4.3), and the other represents the 

movement of the collected ransom out of the ransomware-Bitcoin seed address, known 

as the cash-out network (the lower portion of Figure 4.3) (Turner et al, 2021). These 

extracted data are stored in files using the open standard file format JavaScript Object 

Notation (JSON). The files created from this research represent the Bitcoin payments 

made relating to the cash-in and cash-out network for the WannaCry ransomware 

attack. These files are available as part of the Supplementary Material (see 

supplementary materials that accompany this article on IEEE Xplore)19.8 These JSON 

 
19

 A. Turner, “Bitcoin blockchain data of address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw,” IEEE Dataport, Dec. 

22, 2021, doi: 10.21227/1amp-n662. 
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files are loaded into a graph database, in this case Neo4j, to perform further network 

analysis and to produce visualizations as seen in Figures 4.1 and 4.2. 

 

Using the SRBF, developed as part of this research, will enable human and machine 

and government and industry experts to automate and securely share previously 

uncollected intelligence relating to the cryptocurrency components of a ransomware 

attack. In the case of WannaCry, we focus on the known ransomware-Bitcoin seed 

address, #1 (see Table 4.1), to demonstrate the practicality of following blockchain data 

and metadata that can be collected from the target network. The JSON files created in 

step 2 of Figure 4.3, 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw_txs_ins.json and 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw_txs_outs.json, have been added to the 

Supplementary Material as Supplementary File 1 and Supplementary File 2, 

respectively20. These files are analysed in the following sections and are catalogued in 

Table 4.1. 

 

 
20

 Turner, “Bitcoin blockchain data”. 
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Figure 4.3: The ransomware-Bitcoin Data Collection Framework (Turner et al, 2021). 
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4.6 SRBF 

The STIX-Ransomware-Bitcoin Framework (SRBF) utilises the Structured Threat 

Information eXpression (STIX) format for collecting and sharing CTI related to 

ransomware-Bitcoin payments. This section sets up an understanding of the STIX 

data model. In addition, analyses the data to collect and populate STIX Domain 

Objects (SDOs), Relationship Objects (SROs) and Cyber Observables (SCOs). As a 

result, a model of the WannaCry ransomware attack is proposed using STIX. 

Furthermore, this is evaluated with the data collected and extensions of the STIX 

format using customised SCOs.  

4.6.1 An Introduction to STIX 

The STIX format is a standardized schema used to exchange CTI. It is maintained and 

developed by the Mitre Corporation in the United States (Oasis, 2020). 

Notwithstanding the existence of similar standardized schemas, such as Open Threat 

Exchange (OTX) or Open Indicators of Compromise (OpenIOC), STIX remains the 

most universally accepted standard (Ussath et al, 2016). STIX provides a mechanism 

for entities to exchange CTI between them in a consistent manner that can be 

automatically processed and interpreted by humans and machines (Oasis, 2020). The 

latest version of the STIX specification is 2.1, and it defines 18 STIX Domain Objects 

(SDOs) and two STIX Relationship Objects (SROs).2 The SDOs and SROs categorize 

each piece of threat information and contain specific attributes within each SDO and 

SRO to be populated depending on the threat campaign and intelligence being shared. 

Thought of as a network, the SDOs represent entities, and SROs represent the links 

among them (Oasis, 2020). 
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STIX has been standardized over many different cyberattack types and contexts. 

However, the existing CTI standards do not support the complex patterns evident in 

cryptocurrency systems, and there is a need to close this gap by extending the 

capabilities of a common standard such as STIX. 

 

Having a common format for capturing and disseminating CTI between entities 

provides a consistent way for threat intelligence platforms and security analysts to 

interpret, collaborate, process, automate, and report on CTI. This allows for the 

detection and prevention of cyberthreats, fostering the collaboration between security 

communities to better understand cyberattacks. This leads to enhanced readiness and 

response capabilities that allow entities to anticipate attacks more efficiently and 

effectively. 

 

 

 

4.6.2 Data Analysis 

Supplementary File 1 shows the cash-in network created from the collection method 

(Figure 4.3) for the WannaCry ransomware-Bitcoin seed address #1. The data are 

output in the JSON format to preserve the graph data structure generated as addresses 

and transactions that link together over the course of the ransomware campaign. 

Supplementary File 1 represents the cash-in payment network from the WannaCry 

ransomware attack. In total, this sample cash-in network contains 2,037 nodes (1,897 

addresses and 140 transactions) and 2,099 edges connecting these addresses and 

transactions (4,136 total entities). The data collection framework can vary the number 
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of hops away from the seed address (#1) to expand and contract the scope of the 

analysis. In this analysis, a depth of four hops was used. The value of this parameter is 

based on knowledge of the ransomware campaign along with some trial and error using 

blockchain explorers to find the depth where payments start to hit Bitcoin exchanges. 

 

Observing the transaction payload at “block_height”: 466181, in Supplementary File 

1, (lines 1,774–1,810), it is evident that the transaction number, #2, contains an amount 

of 0.372 BTC being paid from address #3, which participated in the previous 

transaction #4. This amount was chosen to be analysed as an example of a ransom 

payment being made by a victim to the ransomware-Bitcoin seed address #1. This 

transaction is visualized in Figure 4.1. Bitcoin addresses that begin with a “3” are 

referred to as “multisig” addresses. This means that multiple private keys are required 

to spend the amount on the address (Furneaux, 2018). The use of “multisig” addresses 

ensures a heightened level of security. 

 

Typically, services like Bitcoin exchanges, susceptible to cyberattack on customer 

wallets, employ the use of “multisig” addresses (Bitfreeze, 2019). The working 

assumption here is that a victim has deposited funds using an exchange and created a 

“multisig” address for additional security, and the amount of 0.372 BTC is then split 

out into two output addresses, #1 receiving 0.16894486 BTC and #5 receiving 

0.20214138 BTC. An additional observation can be made using a heuristic from 

Furneaux (2018). “Where a “multisig” address starting with a “3” is the input and the 

outputs are a “1” and a “3” address, the change address will likely be the “multisig” “3” 

address.” (Furneaux, 2018). 
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We know from computers infected with the WannaCry ransomware that victims were 

required to pay US$300 after initially being infected (see Figure 4.4). The amount of 

0.16894486 BTC being paid to the ransomware-Bitcoin seed address, #1, converts to 

US$300.47 at the time of that transaction, 2017-05-13 10:15 UTC. The WannaCry 

ransomware campaign was active from May 2017 to October 2017. Obviously, this 

transaction collected from the data extract represents a WannaCry ransomware victim 

payment. 

 

Let’s switch focus to Supplementary File 2. This file shows the cash-out network 

created from the collection efforts for the WannaCry ransomware attack that used the 

ransomware-Bitcoin seed address #1. In total, this sample cash-out network contains 

299 nodes (280 addresses and 19 transactions) connected by 438 edges (737 total 

entities).  

 

Observing the transaction payload at “block_height”: 478795, lines 145–389 of 

Supplementary File 2 represent the transaction #6. This transaction is one of the two 

bulk money movements made by the ransom seed address #1 to cash out the ransom 

payments. To obfuscate the movement of funds out of the ransomware-Bitcoin seed 

address, the owners split the collected amount into 36 separate input payments. This 

begins at the key field “ins”: within the “block_height”: 478795 payload (lines 150–

365) of Supplementary File 2. This culminates into two output payments of interest as 

visualized in Figure 2. One of these payments moves the bulk of the ransom collected, 

8.71529348 BTC ($US23,737.80) on 2017-08-03 04:28 UTC, to address #7. 
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In this case, peeling is the technique used to obfuscate illicit cryptocurrency payments 

(Meiklejohn et al, 2013). It is where a large number of small transactions are used to 

move funds in a convoluted manner from a particular address. Other obfuscation 

techniques may include observing a significant amount of “in-degree” and “out-degree” 

transaction activity at a particular Bitcoin address. Furthermore, the attacker may 

choose to keep the ransomware seed address “zeroed” after every day, avoiding any 

threshold detection for large sums of Bitcoin being transferred to other addresses or 

cryptocurrency services (Turner et al, 2020b). 

 

Significantly, the data collected form a graph data structure. Nodes are represented by 

Bitcoin addresses linked by transactions that form the edges between the nodes. 

Representing the ransomware-Bitcoin network as two different graph structures enables 

the possibility of using graph algorithms for analysis of the networks formed by the 

victims paying their ransom to the attacker (cash-in) and the attacker moving their 

collected ransom payments for future use (cash-out). By sharing this information 

through a standard format like STIX, it is possible to share the full network of 

ransomware transactions with the security community, provide indicators of illicit 

cryptocurrency activity, and encourage deeper analysis and understanding of the 

payment patterns that ransomware victims and attackers undertake. 
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Figure 4.4: The STIX Model of information collected from the WannaCry ransomware attack. 

 

Both Supplementary File 1 and Supplementary File 2 collectively contain 4,136 and 

260 network nodes and edges, respectively. While these files contain all address and 

transaction nodes, along with their associated edges, of the cash-in and cash-out graphs 

formed over the course of the WannaCry ransomware campaign, it is important that a 

summary of the ransomware-Bitcoin address activity can also be provided. As a critical 

first step into the analysis, the summary provides an aggregate view of the entire history 

of the address or transaction. This summary can be retrieved from any blockchain 

explorer, such as walletexplorer.com or blockchair.com. When specified as well-

formed STIX objects, both the collected summary and the detailed graph data provide 

a framework to guide the analyst into a contextual understanding and SU about the 

ransomware payment threat and what actions or decisions can be taken to circumvent 

such a threat via incident response protocols. 

The following section will outline the proposed framework for capturing standardized 

CTI for ransomware-Bitcoin attacks in STIX format. The section introduces another 

structure available in STIX—the STIX Cyber Observable (SCO)—in addition to the 
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SDOs and SROs that have been discussed earlier. SCOs are used by SDOs to provide 

additional context to the data that are collected and characterized. 

 

 

4.6.3 SCOs  

To address the current gap in collecting cryptocurrency-related threat information from 

a ransomware attack, it will be necessary to define two new SCOs as there are currently 

no SCOs defined for cryptocurrency addresses or transactions. (We note that our 

proposed SCOs would need to be considered and approved by the STIX governing body 

if they are to be integrated into future releases of the STIX specification.) The two 

objects we propose are x-cryptocurrency-address and x-cryptocurrency-transaction. 

The specification of the custom cyber-observable types can be viewed in the 

Supplementary Material: see Supplementary Table A-1 x-cryptocurrency-address and 

Supplementary Table A-2 x-cryptocurrency-transaction (Appendix 4A). 

 

The x-cryptocurrency-address cyber-observable object specifies the fundamental 

components of the blockchain data associated with, in the instance of WannaCry, a 

ransomware-Bitcoin seed address. Essentially, they will be the data returned from the 

blockchain explorer’s API identified in the x-explorer_url parameter. The data returned 

from the blockchain explorer are arranged into the specifications outlined in 

Supplementary Tables A-1 and A-2 (Appendix 4A). Supplementary Table A-2 provides 

a specification for collecting the necessary CTI for cryptocurrency transactions. It uses 

the same principles as Supplementary Table A-1, utilizing the data returned from the x-
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explorer_url parameter; however, the respective data will relate to the suspicious 

transaction involved in a ransomware money flow. 

 

The custom cyber-observable objects (SCOs) can now be used to represent cyberthreats 

involving cryptocurrency in STIX. It is important to note that as a ransomware 

campaign progresses over time, the ransomware-Bitcoin seed address will see increased 

activity. Depending on when the x-cryptocurrency-address object samples the data, the 

parameters x-last_seen_rx and x-last_seen_tx can be used as timestamps to denote how 

active the ransomware-Bitcoin seed address is in receiving payments and cashing out 

collected ransom. Both the x-cryptocurrency-address and the x-cryptocurrency-

transaction object are required to have the created and modified parameter to provide 

the timestamps of when the STIX object was created and subsequently modified.  

 

Both the x-cryptocurrency-address and the x-cryptocurrency-transaction objects 

collect the respective metadata relating to a single address or transaction. Looking at 

addresses and transactions in isolation does not provide the full picture of money flows 

relating to a ransomware campaign. Therefore, we must capture the significance of the 

cash-in and cash-out networks generated. Considering that we are looking at networks 

of addresses and transactions involved in ransomware payments, we must reflect this 

data structure as a graph to link the money flows to and from any ransomware-Bitcoin 

seed address. As per Supplementary File 1 and Supplementary File 221, this means that 

the essential data components from the data source schema need to be represented as a 

list of dictionaries to capture the graph structure of the data (Rodriguez, 2020). 

 
21

 Turner, “Bitcoin blockchain data”. 
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We can then group the data elements from the list of dictionaries collected from the 

extracted data (see the “Intelligence Collection Planning” section), providing 

intelligence about the cash-in and cash-out network of payments. This can then be 

modelled using the existing “Observed Data” STIX objects. Using two of the STIX 

“Observed Data” objects, we leverage the STIX predefined parameters to create 

external_references that fit the required data structure, such as a list of dictionaries, for 

the cash-in and cash-out networks generated. For example, for the cash-in network, we 

would take Supplementary File 1 and add it to the STIX Observed Data 

external_references parameter, resulting in the object definition seen in Supplementary 

File 3 at key fields “type”: “observed-data,” “id”: “observed-data-a0d34360-66ad-

4977-b255-d9e1080421c5,” “name”: “Cash-in Network Data,” and 

“external_references” (lines 141–182). 

 

In the next section, we will evaluate the usage of the different objects and how they can 

represent threat intelligence from the cryptocurrency ecosystem relating to a 

ransomware attack. We will use the WannaCry ransomware attack to demonstrate the 

scenario. 

 

4.6.4 Evaluation 

There are seven steps in the Cyber Kill Chain (CKC) model: Reconnaissance, 

Weaponization, Delivery, Exploitation, Installation, Command and Control (C2), and 

Actions on Objectives (Hutchins et al, 2011). It is not uncommon to adapt this 

framework to model intelligence requirements. For example, when examining the 
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WannaCry ransomware attack along the kill chain, we focus on the “Command and 

Control (C2)” and the “Actions on Objectives” phases of the kill chain, which reveal 

the cryptocurrency components of the attack. 

 

Homing in on these steps allows us to narrow down the attacker’s intent on setting 

remote command of a victim’s machine, exfiltration of data from the target, and also 

control access and management of the cryptocurrency network. In fact, Dargahi et al 

(2019), proposed a CKC taxonomy based on the features of ransomware, and the key 

activities identified in this taxonomy for C2 include “Hard-coded IP Addresses,” 

“Domain Generation,” and “Existing Botnet.” In addition, the “Actions on Objectives” 

step focused on “Ransom Payment.” Following a similar taxonomy, Figure 4.5 shows 

the details of these phases, “C2” and “Actions on Objectives,” for the WannaCry 

ransomware attack that this research focuses on. The “Actions on Objectives” step is 

an aggregate representation of what the WannaCry ransomware attack collected in 

Bitcoin (BTC Cash-in) and what it moved out and where (BTC Cash-out).  

 

Using Figure 4.5 as a reference for modelling the relevant cryptocurrency transactions 

in STIX, we would establish an indicator domain object that represents the presence of 

WannaCry ransomware, based on the ransomware-Bitcoin seed address (#1) used to 

collect ransom payments, modelled as an SCO. To understand what activity is triggered 

by the instantiation of this ransomware-Bitcoin seed address (#1), we set up two STIX 

Observed Data objects. One is created to observe the cash-in data on the cryptocurrency 

network (with a ransom equalling US$300 at the time of infection and an escalated 

amount of US$600 after three days of non-payment). Across the three ransomware-

Bitcoin seed addresses deployed for WannaCry, Conti et al (2018),  identified 238 
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ransom payments made, collecting 47.1743 BTC over a period from 12 May 2017 to 2 

October 2017.  

 

Figure 4.5: Kill chain components, C2 and Actions on Objectives for WannaCry Ransomware-Bitcoin 

attack. 

Another observed data object is established to observe the cash-out data on the 

cryptocurrency network. This object will show the detailed cryptocurrency network 

data relating to the behaviour exhibited by the attackers as they begin to move the 

collected payments into other addresses, exchanges, or services attached to the Bitcoin 

network. In the case of the WannaCry attack, the cash-out STIX Observed Data object 

will collect the addresses and transactions used by the attacker to empty their 

ransomware-Bitcoin seed addresses. In September 2017, the Neutrino Research Team 

reported that the ultimate cash-out endpoints for WannaCry were two suspicious 

cryptocurrency exchanges. The Shapeshift/Poloniex exchange, which is known for 

converting between different cryptocurrencies, received 13.5183 BTC that was further 

converted into the more anonymous Monero cryptocurrency (Neutrino, 2017). The rest 

of the ransom proceeds, 33.656 BTC, was delivered to the Changelly/HitBTC.com 
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exchange (Neutrino, 2017). The STIX model representation of this scenario is shown 

in Figure 4.4. 

 

Figure 4.4 shows a scenario for sharing threat intelligence between security researchers 

and an organization that has triggered an indicator of the ransomware-Bitcoin seed 

address #1. The figure depicts a STIX representation of the WannaCry ransomware-

Bitcoin seed address, #1. At the start of a ransomware campaign, address #1 generates 

threat intelligence on the Bitcoin cryptocurrency network. That threat intelligence is a 

collection of Bitcoin addresses and transactions observed in a cash-out and cash-in 

network (represented by separate STIX observable objects).  

 

The left side of Figure 4 represents the malware portion of the ransomware. WannaCry 

2.0 uses the WannaCry malware, which has been attributed to the Lazarus group (U.S. 

District Court, Central District of California, 2018). In the middle of Figure 4.4, an 

indicator object has been created as a flag that WannaCry ransomware is present, and 

the ransomware-Bitcoin address has picked up the pattern data relating to the Bitcoin 

address #1. The indicator node is represented by the information in the Supplementary 

Material (Appendix 4B), Supplementary Table B-1 and specifically the field Pattern: 

[x-cryptocurrency-address:x-address = 

“12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw”]. This indicator object is based on the 

x-cryptocurrency-address object represented in Supplementary Table B-2. This 

contains the CTI on the address from a blockchain explorer, specifically triggered by 

the field X-explorer url: 

https://blockchair.com/bitcoin/address/12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw. 

 

https://blockchair.com/bitcoin/address/12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw
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From here, an observer can witness the WannaCry ransomware-Bitcoin money flows 

unfold. The two STIX Observed Data objects can be used to collect the cash-in and 

cash-out network data, which pay in and pay out of the x-cryptocurrency-address 

object, respectively. Supplementary Table B-3 (Appendix 4B) represents the data 

collected for the cash-in network observed data object. These STIX cyber-observable 

objects are associated with the ransomware-Bitcoin seed address, #1, and contain the 

respective evolving transaction networks captured by the STIX predefined 

external_references field. The observed data represent the raw cash-in network 

information generated from victims paying their ransom payments into the 

ransomware-Bitcoin seed address #1. The JSON structure of the data provided to the 

external_references parameter provides a standardized way to integrate into security 

analysis and visualization systems. 

 

4.7 Limitations and Challenges 

To be truly effective, the proposed SRBF must be able to meet the demands of evolving 

ransomware attacks. It must also deal with various challenges in the representation of 

data that stem from the nature of the data and the analytic requirements. Such 

challenges include data quality, the breadth of collection, the timeliness of updated and 

modified intelligence, the context to the threat environment, the structure and relevance 

of the metadata proposed, durability and validity over time, and the cost in time and 

resources that it takes to curate such a list of intelligence requirements for effective CTI 

consumption. 

 

Limitations are evident during the data wrangling, transfer, and mapping from the raw 

blockchain format into the STIX format that can be utilized for interpretation and 
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investigation downstream in the intelligence cycle. Significant modification of the 

extraction method would be required to provide the same functionality on different 

cryptocurrency platforms, such as Ethereum, or for different blockchain explorers. For 

this research, the scope of collection is limited to available Bitcoin blockchain data; 

however, there could be a need to combine this with other SCOs from WannaCry 

relating to the malware components of the ransomware attack (for example, file hashes, 

windows registry key, or other IOCs). For example, IOCs associated with WannaCry 

ransomware were identified by the U.S. Department of Homeland Security, National 

Cybersecurity and Communications Integration Center, and Federal Bureau of 

Investigation and released by the Cybersecurity and Infrastructure Security Agency22 

on 12 May 2017, listing IOCs in an initial STIX file23 identifying malicious file hashes. 

 

In addition, network analysis needs to be performed from the STIX observable object 

to effectively represent the material to humans to understand the cash-in and cash-out 

network behaviour. This means that the analysis will need to include integrations to 

relevant network analysis software. 

 

Furthermore, it is not clear how the SRBF might operate under ransomware that 

generates cryptocurrency seed addresses in the scale of thousands and uses different 

types of cryptocurrency. WannaCry produced three ransomware-Bitcoin seed 

addresses, one of which (#1) was analysed and reported on as part of this research. 

Assessing all three ransomware-Bitcoin seed addresses would compound the amount 

of data by three times, resulting in six STIX cyber-observable objects, two objects for 

 
22

 “Alert (TA17-132A): Indicators associated with WannaCry ransomware,” Cybersecurity & Infrastructure 

Security Agency. https://us-cert.cisa.gov/ncas/alerts/ TA17-132A (Accessed: Oct. 31, 2020). 
23

 “WannaCry STIX file,” Cybersecurity & Infrastructure Security Agency. https://us-

cert.cisa.gov/sites/default/files/publications/TA17-132A_WannaCry_stix.xml (Accessed: Oct. 31, 2020). 

https://us-cert.cisa.gov/ncas/alerts/
https://us-cert.cisa.gov/sites/default/files/publications/TA17-132A_WannaCry_stix.xml
https://us-cert.cisa.gov/sites/default/files/publications/TA17-132A_WannaCry_stix.xml
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each ransomware-Bitcoin seed address containing the respective cash-in and cash-out 

networks. This will become substantially more complex with campaigns like 

CryptoWall, which generated 42 distinct addresses for its campaign (Conti et al, 2018). 

 

Modern ransomware tactics can even produce a new ransomware-Bitcoin seed address 

for every infected machine. This would make sharing any sighting of the ransomware-

cryptocurrency money flows hard to scale. In the case where there is a ransom seed 

address created for every victim, the threat map can become overcrowded, and filters 

or pattern matching may need to be applied to limit the amount of data being displayed. 

Future research will need to examine these scenarios for the effectiveness, scalability, 

and fit-for-purpose STIX provides for sharing cryptocurrency-related CTI. 

 

 

 

4.8 Future Research and Conclusion 

This article proposes new STIX specifications to facilitate the collection, analysis, and 

sharing of intelligence about cryptocurrency attacks, specifically Bitcoin addresses and 

transactions relating to ransomware. The focus was on extending the existing STIX 

framework to accommodate two new cyber-observable objects, x-cryptocurrency-

address and x-cryptocurrency-transaction. The ransomware cash-in and cash-out 

network data were able to be captured using the STIX Observed Data object as victims 

pay into a specific ransomware-Bitcoin address and the attackers cash out their ransom 

proceeds. Collectively, this was identified as the SRBF. The model was evaluated using 

the WannaCry ransomware attack and its use of Bitcoin. 
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To correctly populate the SRBF with the necessary data, a target-centric approach to 

intelligence collection and analysis was described. This allowed us to identify the data 

feeds forming out of a ransomware-Bitcoin network and align them with context-

enriching red flag indicators for VAs prescribed by subject matter experts from the 

FATF. Furthermore, the culmination of these efforts resulted in the design of an ICP 

that focuses intelligence requirements for targeted data collection and analysis of the 

STIX objects in the typology depicted in Figure 4.4. 

 

The study draws on a collection approach based on a limited data set relating to the 

WannaCry ransomware attack. Though these data are rich in terms of reflecting the 

complexity of the ransomware money flows evident in a cryptocurrency network, the 

unilateral approach must be successfully applied to other ransomware attacks to ensure 

that the model is reliable, flexible and scalable and that it can be applied to other 

cryptocurrency types. The themes identified from the results will need to be further 

explored in future research. The SRBF will need to be tested against other ransomware 

campaigns to determine whether it is effective for practical CTI application. 

 

A key observation from the data by undertaking this methodology is that intelligence 

collectors, analysts, and investigators can consume valuable threat information 

regarding a ransomware-Bitcoin attack using a well-trusted structured threat 

information standard such as STIX. The framework presented in this research closes 

the gap on bringing transparency and the ability to share valuable threat information 

across the security research community, bringing an in-depth understanding of what is 

going during the course of a ransomware-Bitcoin campaign as well as the payment 

patterns and processes ransomware attackers are using in cryptocurrency networks. 
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As a final thought, this research would provide the ability to open source multiple 

ransomware-Bitcoin CTI data sets for validation and analysis techniques to advance the 

development of future prevention mechanisms to be devised in the attempt to strangle 

the financial channels that ransomware attackers use to profit from their cybercrimes. 

 

4.9 Data to insight 

Limitations of the SRBF were evident whilst performing the validation process. The 

STIX format is traditionally used for capturing threat intelligence relating to computer 

and network security. This means it is designed for collecting information about 

malware viruses, Internet Protocol (IP) addresses, and other Indicators of Compromise 

(IOCs), such as changes in file hashes. When it comes to cryptocurrency threat 

intelligence there is no standard component in STIX available to share the contextual 

knowledge of ransomware-Bitcoin payments. Purpose built modules can circumvent 

these limitations; however, the networked nature of cryptocurrency payments means 

that threat intelligence representation becomes complex very quickly after identifying 

a ransomware seed address. Analysts need to trace the origin and destination of these 

payments to a sufficient depth in the network that will provide meaningful insight. As 

a result, a more dedicated intelligence information expression is needed for illicit 

cryptocurrency payment tracking. For example, Fröwis et al (2020) detail the 

importance of key legal requirements that ensures the evidence collected from 

cryptocurrency investigations will hold up in court and how this, along with a technical 

data sharing framework, can integrate into current analytical tools for successful 

investigation and prosecution in a court of law.  
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Furthermore, this chapter emphasised the importance of a data collection and sharing 

framework through the development of the SRBF. As a result, a data collection 

approach to capture the networked nature of cryptocurrency transactions was formed. 

The original code developed to extract the data from the blockchain is detailed in 

Appendix A. This code provides two views of the ransomware-Bitcoin network, cash-

in and cash-out. As a result of running the code, in Appendix A, raw data extracts based 

on the walletexplorer.com Application Programming Interface (API) are created and 

are referenced in Appendix B. The code links together addresses and transactions for 

payments being made into and out of the ransomware seed address. A user-defined 

depth parameter instructs the code to collect transactions ‘N’ hops away from the 

ransomware seed address. The code outputs two raw extract files in JSON format which 

contain the cash-in and cash-out network data.  Once the raw network data, relating to 

the ransomware seed address, has been collected from the blockchain in a consumable 

format, it is ready to be analysed for any discernible patterns. However, the insights 

analysts or investigators require could be concealed in the sparse or dense graph 

patterns formed by payments in a ransomware-Bitcoin network. From a data modelling 

perspective, this is what Liu et al (2021) examine, revealing emerging structural 

properties of Bitcoin transactions and the patterns they make. Analytical techniques are 

also discussed and how to interpret these patterns for deeper knowledge discovery.  

 

These are significant limitations associated with the proposed approach in this chapter. 

The SRBF grapples with the manual batch collection of the blockchain data and does 

not provide the degree of automation, contextualisation or streaming data collection 

that would make cryptocurrency payment analysis more interpretable and real-time or 

near-real-time in nature. Such methods and systems are examined by Modi et al (2016), 
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through their Automated Threat Intelligence fuSion framework (ATIS) which fuses 

together isolated cyber threats including Bitcoin payments and their relation to the 

malware being used. In addition, another noticeable gap in the analysis presented here 

and henceforth, is the realm of markets Dark-Net and illicit cryptocurrency usage. 

Arnold et al (2019) develop a Cyber Threat Intelligence (CTI) Tool which collects 

Dark-Net market intelligence and provides the versatility of integrating multiple 

datasets, including cryptocurrency transactions, and represents the identified threats as 

a network or graph structure. Advancing on this, Su et al (2021) look at how to detect 

the criminal footprint of Ethereum24 attacks in order to automatically detect the attack 

patterns and provide a tool for large scale investigation. The next chapter aims to 

advance upon the threat intelligence goals by examining the patterns relating to 

ransomware-Bitcoin transactions in the data collected by the SRBF, identifying what 

they reveal and what they disguise when it comes to ransomware-Bitcoin activity. 

4.10 Appendix 4A – STIX custom specifications 

Table A-1 - STIX custom specification for x-cryptocurrency-address 

Type name: x-cryptocurrency-address 

 

Description: The cryptocurrency address object represents the Bitcoin address(es) 

used by the ransomware attackers to collect ransom payments from its victims.  

Required Common Properties 

type, id, x-cryptocurrency, x-address, created, modified 

Property Name Type Description 

 
24

 Ethereum is an open source technology for sending its own cryptocurrency, ETH, as well as a programmable 

blockchain technology that enables the development of applications, running ‘smart contracts’ that execute some 

computer code (see ethereum.org, 2021). 
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type (required) string The value of this property must be of type 

x-cryptocurrency-address. 

x-cryptocurrency (required) string Specifies which cryptocurrency the 

observable is dealing with. (E.g. Bitcoin, 

Monero, Etherum, etc). 

x-address (required) string Cryptocurrency address. 

name (optional) string Name label for the object. 

x-explorer_url (optional) string  Http URL of the cryptocurrency explorer 

used to derive further details of the 

address. (E.g. Walletexplorer, btc.com, 

blockchain.com, blockchair.com, 

bitcoinwhoswho.com, etc). 

x-balance (optional) float The balance of the cryptocurrency address 

at the time of observation. 

x-first_seen_rx (optional) timestamp  Date and time of when the first amounts of 

cryptocurrency were received at this 

address. 

x-last_seen_rx (optional) timestamp Date and time of the last known receipt of 

any cryptocurrency to this address. 

x-first_seen_tx (optional) timestamp Date and time of when this address 

performed its first transaction. 

x-last_seen_tx (optional) timestamp Date and time of when this address was 

last seen spending its cryptocurrency. 

x-total_rx (optional) float Total amount of cryptocurrency received 

on this address at the time of observation.  

x-total_tx (optional) float Total amount of cryptocurrency spent on 

this address at the time of observation. 
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x-transaction_count 

(optional) 

integer  Specifies the number of transactions 

performed by the address. 

  

Table A-2 - STIX custom specification for x-cryptocurrency-transaction 

Type name: x-cryptocurrency-transaction 

 

Description: The cryptocurrency transaction object represents the cryptocurrency 

transaction(s) conducted by the victims and/or ransomware attackers to send ransom 

payments to a seed address or move funds from the seed address.  

Required Common Properties 

type, id, x-cryptocurrency, x-transaction, created, modified 

Property Name Type Description 

type (required) string The value of this property must be of type x-

cryptocurrency-transaction. 

x-cryptocurrency (required) string Specifies which cryptocurrency the observable 

is dealing with. (E.g. Bitcoin, Monero, 

Etherum, etc) 

x-transaction (required) string Cryptocurrency transaction. Transaction id 

(Hash). 

name (optional) string Name label for the object. 

x-explorer_url (optional) string  Http URL of the cryptocurrency explorer used 

to derive further details of the address. (E.g. 

Walletexplorer, btc.com, blockchain.com, 

blockchair.com, bitcoinwhoswho.com, etc) 

x-tx_timestamp (optional) timestam

p  

Time in UTC of the transaction. 

x-block_id (optional) integer    Block number of where the transaction 

occurred. (Blockchain based cryptocurrencies).  

x-input_count (optional) integer  Number of input addresses (senders) 

contributing to the transaction.  
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x-input_amount (optional) float Total input amount sent from the senders in the 

transaction in cryptocurrency.  

x-output_count (optional) integer Number of output addresses (recipients) the 

total transaction amount is delivered to.  

x-output_amount (optional) float Total output amount received from the senders 

in the transaction in cryptocurrency. 

x-transaction_fee (optional) float  Fee charged for the transaction. Seen as a 

difference between the total input amount and 

the total output amount.  

  



 

120 

 

4.11 Appendix 4B – STIX objects for the WannaCry Ransomware-Bitcoin 

seed address 

Table B-1 – STIX Indicator object for WannaCry Ransomware-Bitcoin seed address 

(12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw) 

 

Type: indicator 

Spec version: 2.1 

Id: indicator--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f 

Created by: identity--f431f809-377b-45e0-aa1c-6a4751cae5ff 

Created: 2017-05-12T20:03:48.000Z 

Modified: 2017-04-13T20:03:48.000Z 

Indicator types: malicious-activity 

Name: WannaCry 2.0 Ransomware-Bitcoin Seed Address 

(12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw) 

Description: BTC Addresses: 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 

Pattern: [ x-cryptocurrency-address:x-address = 

'12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw' ] 

Pattern type: stix 

Valid from: 2017-05-012T00:00:00Z 

Kill chain phase: Actions on Objectives 

 

Table B-2 – Populated x-cryptocurrency-address object 

 

Type:x-cryptocurrency-address 

Id: x-cryptocurrency-address--4527e5de-8572-446a-a57a-706f15467461 

Created: 2016-08-01T00:00:00.000Z 

Modified: 2016-08-01T00:00:00.000Z 

Name: Seed Address - 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 

X-cryptocurrency: BTC 

X-address: 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 

X-explorer url: 

https://blockchair.com/bitcoin/address/12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 

X-balance: 1.88389022 BTC / 20,211.50 USD 
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X-first seen rx: 2017-05-12 12:43:33 

X-last seen rx: 2020-09-27 04:49:48 

X-first seen tx: 2017-08-03 04:28:20 

X-last seen tx: 2017-08-03 04:41:34 

X-total rx: 19.65502059 BTC / 41,518.14 USD 

X-total tx: 17.77113037 BTC / 48,403.23 USD 

X-transaction count: 213 

 

Table B-3 – STIX Observed Data object for the WannaCry ransomware-Bitcoin seed 

address cash-in network (12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw) 

 

Type: observed-data 

Id: observed-data--a0d34360-66ad-4977-b255-d9e1080421c5 

Created by: identity--987eeee1-413a-44ac-96cc-0a8acdcc2f2c 

Created: 2017-02-28T19:37:11.213Z 

Modified: 2017-02-28T19:37:11.213Z 

First observed: 2017-02-27T21:37:11.213Z 

Last observed: 2017-02-27T21:37:11.213Z 

Number observed: 1 

Name: Cash-in Network Data 

External references: 

{"block_height":466038,"block_pos":496,"depth_":"4","found":true,"ins":[{"address"

:"1NTwLm63qF1rXG9JgC8xSzDSkBu3wyfEfM","amount":5.58103425,"is_standard

":true,"next_tx":"e3eadb95ec082675f260c32fee2690833ae8bf7da312ad240169d278c

dfa7be5"}],"is_coinbase":false,"label":"","out":[{"address":"1DwdNuntQmTDoYkC7

Jv4HiwS2BLEJUhKJB","amount":0.21679223,"is_standard":true,"next_tx":"89e134e

8354c127cb541c987ba1c03a517210f0c28495615eca8e508643b93d4","wallet_id":"4

46bc0544f1a9022"},{"address":"177cbF6GZHXiG6Pvbxkkm92iBEg2TzATwo","am

ount":5.36379002,"is_standard":true,"next_tx":"e91f99bdab7dd73543281522728bdae

bc63dc94c6f234d2588d3153b1d2dfec3","wallet_id":"34bd99f652e18a34"}],"size":2

25,"time":1494589369,"txid":"bde10ffee36d3335912ad95f99b3b54216f111f8a2f03d

d61009d1336da6c8e8","updated_to_block":589991,"wallet_id":"d8c2d9502250c9f4"

} 
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Chapter 5 : Discerning Payment Patterns in 

Bitcoin from Ransomware Attacks 
 

 

“I was not caught 

Though many tried 

I live among you 

Well disguised”  

- Leonard Cohen (Nevermind25)  

 

5.1 Chapter Overview 

In this chapter the large volume of data available from the Ransomware–Bitcoin 

Intelligence–Forensic Continuum is further leveraged to help frame relevant 

intelligence and forensic analysis. The continuum spans across the lifecycle of a 

ransomware campaign. The data is made available for analysis from the Bitcoin 

blockchain via an extract script written in the Python computer programming language. 

This script was developed as part of this body of research (see Appendix A).  The data 

extracted populates a target network analysis model. From this data collection baseline, 

we introduce advanced machine learning and data science techniques such as 

community detection and graph reduction. These techniques examine the materiality 

and impact of ransomware via an attacker’s usage of a cryptocurrency payment system. 

Analysis patterns discovered during this chapter include the day-of-the-week profile. 

The findings show discernible patterns in the network relating to the input and output 

side of the ransomware graphs. The day-of-the-week analysis shows two distinctly 

different behaviours: one where a ransomware seed address accumulates ransom 

 
25

 Source: https://genius.com/Leonard-cohen-nevermind-lyrics  

https://genius.com/Leonard-cohen-nevermind-lyrics
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payments over time and holds on until it is the right time to cash out, and another where 

the ransom seed address is “zeroed” after every day. These two different strategies from 

ransomware attackers could be targeted, especially in the case where cash-out 

frequency is high. Adding machine learning to the data collected and producing models 

for deeper classification of ransomware payments is also explained in this and 

subsequent chapters. Distinctive patterns that are found in this chapter may also support 

attribution efforts. Using the day-of-the-week analysis and machine learning models 

can help enhance these efforts. 

 

 

5.2 Abstract 

Purpose: This paper seeks to investigate available forensic data on the Bitcoin 

blockchain to identify typical transaction patterns of ransomware attacks. Specifically, 

we explore how distinct these patterns are and their potential value for intelligence 

exploitation in support of countering ransomware attacks.  

Design Methodology/Approach: We created an analytic framework – The 

Ransomware-Bitcoin Intelligence-Forensic Continuum, to search for transaction 

patterns in the blockchain records from actual ransomware attacks. Data of a number 

of different ransomware Bitcoin addresses was extracted to populate the framework, 

via the WalletExplorer.com programming interface. This data was then assembled in a 

representation of the target network for pattern analysis on the input (cash-in) and 

output (cash-out) side of the ransomware seed addresses. Different graph algorithms 

were applied to these networks. The results were compared to a “control” network 

derived from a Bitcoin charity.  

Findings: The findings show discernible patterns in the network relating to the input 

and output side of the ransomware graphs. However, these patterns are not easily 
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distinguishable from those associated with the charity Bitcoin address on the input side. 

Nonetheless, the collection profile over time is more volatile than with the charity 

Bitcoin address. On the other hand, ransomware output patterns differ from those 

associated charity addresses, as the attacker cash-out tactics are quite different from the 

way charities mobilise their donations. We further argue that an application of graph 

machine learning provides a basis for future analysis and data refinement possibilities. 

Research Limitations/Implications: Limitations are evident in the sample size of data 

taken on ransomware campaigns and the “control” subject. Further analysis of 

additional ransomware campaigns and “control” subjects over time would help refine 

and validate the preliminary observations in this paper. Future research will also benefit 

from the application of more powerful computing resources and analytics platforms 

that scale with the amount of data being collected. 

Originality/Value: This research contributes to the maturity of the field by analysing 

ransomware-Bitcoin behaviour using the Ransomware-Bitcoin Intelligence-Forensic 

Continuum. By combining several different techniques to discerning patterns of 

ransomware activity on the Bitcoin network, it provides insight into whether a 

ransomware attack is occurring and could be used to trigger alerts to seek additional 

evidence of attack, or could corroborate other information in the system.    

 

 

5.3 Introduction 

Ransomware attacks continue to evolve as a significant threat to global cyber security. 

Although consumer ransomware detection rates declined in 2018, there has been an 

alarming 365% increase in enterprise detections from quarter two (Q2) 2018 to Q2 

2019, and on average since Q4 2017 enterprise detections increased by 112%, 

according to an August 2019 Malwarebytes ransomware report (Kujawa et al, 2019). 
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Furthermore, ransomware security expert group Coveware (2019), shows the average 

ransom payment inflicted on enterprises in Q2 2019 increased by 184% to US$36,295, 

in comparison to Q1 2019 when the average payment was US$12,762 (Osborne, 2019). 

This suggests cybercriminals are increasingly targeting industry, rather than 

individuals, and enjoying greater Return on Infections (ROI – Turner et al, 2019), with 

the top three industries targeted in the first half of 2019 being Governments (27%), 

Manufacturing (20%) and Healthcare (14%) (TrendMicro, 2019; Clay, 2019). 

 

With the threat of ransomware rapidly evolving and new families of malware emerging, 

it is ever more pertinent to understand the patterns and the footprint these attacks leave 

in the cryptocurrency ecosystem to understand and possibly circumvent ransomware 

attacks. 

 

In what follows we rely on various analytic techniques to identify these patterns.  We 

compare the emergent patterns to a “control” case of a charitable organisation receiving 

Bitcoin.  Specifically, we will examine the time series and network patterns formed 

during the course of a ransomware campaign. These techniques are performed within 

the bounds of the Ransomware-Bitcoin Intelligence-Forensic Continuum framework 

and build on the findings of each other. 

 

The day-of-the-week analysis shows how, over time, ransom is collected into and 

moved out of a ransom seed address. Specifically, the number of transactions that are 

used to move funds emerge as important in differentiating ransomware campaigns from 

the charity control subject. This is due to the unique ways the attackers control the 
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movement of ransomware yields and to the uniformity of demanded ransom amounts 

compared with the highly variable donation amounts that are collected by the charity. 

 

We then turn to a visual graph representation that reveals both similarities between the 

collection or cash-in graphs, and the differences in the cash-out graphs between the 

ransomware campaigns and the charitable organisation. 

 

Building on the graphs created from the data on the Bitcoin blockchain, community 

detection patterns reveal the dominance of the collection address in the network with a 

high in-degree common across the different ransomware and “control” subject. 

However, in the cash-out communities the patterns show no signs of commonality 

between them. 

 

By performing graph embedding analysis and visualisation through reduced 

dimensionality we are able to cluster common nodes and separate out anomalies for 

further investigation of suspicious activity. We suggest ways to enhance the 

methodology in future research through an increase in sample size and data labelling.  

We further suggest that curating blockchain data and meta-data sets and making them 

openly available for researchers could enhance future practical research.  
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5.4 Ransomware – Bitcoin Intelligence – Forensic Continuum 

 

 

Figure 5.1: Ransomware – Bitcoin Intelligence – Forensic Continuum 

 

Figure 5.1 shows the intelligence – forensic continuum with respect to a ransomware 

campaign. If we denote the ransomware campaign commencing at time t=t0, we can 

then divide our analysis scope into three parts. Firstly, at time t≤t0, Intelligence, 

Surveillance and Reconnaissance (ISR) is the mode that is in operation referring to the 

‘reconnaissance and mobilization’ phase, where behaviours leading to a ransomware 

campaign could be evident across different campaigns and provide an indicator for 

future campaigns using intelligence gathered from the Bitcoin blockchain. The time 

window between t0 and t1, (C2 phase), is seen as the period where ransom collection 

has hit a maximum and after a short period of time new payments to the ransomware 

seed address(es) taper off. Furthermore, at some time t≥ t1, (‘actions on objects’ phase), 

the perpetrators of the ransomware attack will start to transfer funds collected from the 

ransom by placing, layering or integrating the collected bitcoin into other wallets in the 

Bitcoin ecosystem, other cryptocurrency systems or services and possibly even into the 
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traditional economy. Each of these three phases yields a typology of funds movement 

worth investigating for the purposes of discovering discernible patterns of ransomware 

activity.  

 

5.5 Pattern Analysis & Findings 

Finding patterns in large graph networks and looking at sub-graphs can reveal 

interesting patterns in the context of Ransomware – Bitcoin behaviour. Comparing the 

occurrence of such patterns across different ransomware graphs is a powerful way of 

identifying illicit activity on the Bitcoin network (Fokker and Beek, 2019). The 

campaigns analysed in this paper are: WannaCry, CryptoDefense and NotPetya. These 

campaigns were chosen due to the limited number of ransom seed addresses used, 

keeping a manageable limit on the amount of data to analyse. Nonetheless, these attacks 

still yielded a significant number of transactions collected from victims and also 

provided evidence of cash-out activity.  

 

The dedicated Bitcoin charity collection address for “The Water Project”26 was chosen 

as a control subject to test the analysis methodology against a Bitcoin address that is 

not used for ransomware purposes. This charity was chosen over others that accept 

Bitcoin because they are formally registered as a charity with the Internal Revenue 

Service (IRS) in the United States and provide fully auditable financials as a result. The 

charity has been ongoing for more than ten years and therefore provides a rich source 

of transactional data.  Furthermore, this is in line with an established practice of using 

charities and similar fund raising activities as a comparative backdrop in research into 

 
26

 The Water Project (https://thewaterproject.org/): “[a] 501(c)(3) non-profit organization unlocking human 

potential by providing reliable water projects to communities in sub-Saharan Africa”  

https://thewaterproject.org/
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money laundering (Evans and Schneider, 2019). The Bitcoin addresses and respective 

ransomware campaigns analysed are presented in Table 5.1 and Table 5.2 below. 

 

Ransomware 
Overall Ransom 

Payments BTC US$ value Payments BTC US$ value Time 

WannaCry 341 53.2906 99,549.05 238 47.1743 86,076.76 12 May 

2017 - 2 

Oct 2017 

CryptoDefense 128   138.3223 70,113.41 108 126.6960 63,859.49 28 Feb 

2014-11 

Apr 2014 

NotPetya 70  4.1787 10,284.42 33 4.0576 9,835.86 27 Jun 

2017-3 

Aug 2017 

 

Table 5.1: Ransomware payments by ransomware attack. Adapted from Conti et al (2018). 

 

Significantly, the time period for the data collected against each of the addresses began 

prior to and stretched well beyond the identified time period for the ransomware 

campaign. This way it might be possible to discover what activity on the address may 

precede or follow the campaign. 

   

Bitcoin research has profitably leveraged sub-graphs on the Bitcoin network.  These 

sub-graphs include peeling activity where a single Bitcoin address starts with a large 

amount of Bitcoin and then bit by bit small amounts are transferred to another address 

and this pattern continues for multiple similar transactions through the constant use of 

change addresses and subsequently obfuscating the origin of the funds by layering them 

many levels deep throughout the Bitcoin network (Meiklejohn et al, 2013). In addition, 

the use of a common exchange or service, creation of many addresses or transactions 

from the same service or node, known as splitting, can occur for heightened anonymity 
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(Gaihre et al, 2018).  Our challenge is to identify unique features of these sub-graphs 

that could speedily and conclusively identify ransomware activity.  

 

Ransomware Ransom Address Data Collected 

WannaCry 

238 payments collected 

May 12, 2017 - Oct. 02, 2017 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 31 Dec 2016 –   

8 Jul 2019 

13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 31 Dec 2016 – 

9 Jul 2019 

115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn 31 Dec 2016 – 

9 Jul 2019 

    

CryptoDefense 

108 payments collected 

Feb. 28, 2014 - Apr. 11, 2014 

19DyWHtgLgDKgEeoKjfpCJJ9WU8SQ3gr27  31 Dec 2016 – 

9 Jul 2019 

1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 31 Dec 2016 – 

10 Jul 2019 

   

    

NotPetya 

33 payments collected 

Jun. 27, 2017 - Aug. 03, 2017 

1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX 31 Dec 2016 – 

10 Jul 2019 

   

   

    

Control Subject Control Address   

The Water Project 1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R 

 

31 Dec 2013 – 

17 Aug 2019 

 

Table 5.2: Ransomware – Bitcoin Addresses. Adapted from Conti et al (2018). 

 

5.6 Analysis Patterns 

As a preliminary step we wish to establish a generic target network model (TNM) of 

ransomware transactions. Target network modelling helps coordinate and target 
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collection and analysis to reveal vulnerabilities, links, key nodes, weaknesses and 

relationships in the target network (cf. Clark, 2017).  

 

 

Figure 5.2: Ransomware – Bitcoin Target Network Model (‘Cash-in’). 

 

While distinctive patterns of malware can be identified using the model above, a critical 

problem is finding diagnostic indicators, ones that can reliably identify ransomware 

activity and distinguish that activity from other activities (e.g. charity collection or 

crowd funding campaigns).  The following sections will extract patterns that might have 

diagnostic value.  

5.7 Which Day of the Week?  

A temporal analysis of the ransomware seed addresses will provide a full picture of the 

transaction activity over the lifetime of the respective ransomware seed address being 
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analysed. There are numerous websites that facilitate the investigation of the transaction 

history of particular addresses. We chose btc.com because it provides statistics over a 

specific custom date range, allowing the analyst to look for activity across the 

intelligence-forensic continuum. In addition, the export feature provides all the 

transactions easily imported into a spreadsheet for the “year-month” vs “day of the 

week” analysis. It could be possible to provide a finer grain time window for analysis 

to reveal activity hour by hour, however this would restrict any bigger picture patterns 

going on in the network across the entire intelligence-forensic continuum. This type of 

analysis is relevant for seeking patterns in money laundering behaviour similar to that 

undertaken by Reardon et al (2012) which visualised ATM usage patterns to detect 

counterfeit card usage. Similar payment trend analysis specific to ransomware has also 

been conducted by Paquet-Clousten et al (2018), Conti et al (2018) and Huang et al 

(2018).  

 

5.7.1 WannaCry 

WannaCry collected ransom payments across three known ransomware seed addresses 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw; 

13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94; 

115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn. The day-of-the-week profile of the 

WannaCry ransomware seed addresses exhibited very similar patterns of behaviour. 

With the campaign commencing on Friday, 12 May 2017, the largest amount of 

ransoms paid (Cash-in) into the seed addresses occurred on the following day, Saturday, 

13 May 2017. Within the month of May, 2017, this addresses collected 104, 123 and 

106 cash-in transactions respectively, meaning the reaction to this ransomware was 

immediate. According to Bistarelli et al (2018), the initial ransom amount WannaCry 
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demanded was US$300, between 0.15 and 0.18 BTC at the time of the attack. This then 

doubled after three days to US$600 (0.3 to 0.36 BTC). With such a reaction over a short 

period of time the attackers could have asked for a higher ransom. Interestingly, the 

attackers withdrew all the funds on 3rd August 2017, a Thursday, after an initial 

collection period of approximately 3 months. 

 

There is no real discernible pattern from the cash-in activity to say victims acted on a 

certain day-of-the-week, except that the victims start paying the ransom soon after 

being infected by the ransomware. This data can be seen in Tables 5A-1 to 5A-3 in 

Appendix 5A. Furthermore, a graphical overlay of the three ransomware seed addresses 

is shown in Figure 5.3. This figure highlights the transaction count as the bar chart and 

the cumulative Bitcoin collected over the course of the campaign as the line chart. The 

account zeroing activity is represented in this chart with a large dip in the line where 

cash-out takes place. In addition, the cash-in profile shows how many small transactions 

fill the seed address in a short time frame after the campaign commenced. The large 

columns at the start highlight this.  

 

There is no activity on the seed address prior to the campaign, which would mean the 

address is set-up in real time as the campaign or as an infection unfolds on a victim’s 

computer. However, there is still activity on these addresses to date. Small transactions 

continue to cash into the ransomware seed address long after the campaign has 

concluded. This could be a sign the attackers are keeping it alive for future use and 

ideally law enforcement can continue Intelligence, Surveillance and Reconnaissance 

(ISR) on a known attacker addresses to monitor criminal behaviour.  
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Figure 5.3: Account balance of the WannaCry ransomware seed addresses with respect to the number 

of transactions taking place over time. 

 

5.7.2 CryptoDefense 

The addresses used for CryptoDefense were 

19DyWHtgLgDKgEeoKjfpCJJ9WU8SQ3gr27 and 

1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1. The ransom for the CryptoDefense 

attack was higher than WannaCry, starting at US$ 500 within the first four days of 

infection, then doubling to US$ 1000 (Conti et al, 2018). CryptoDefense exhibited a 

different profile to WannaCry, with ongoing withdrawals of funds throughout the 

campaign. The wallet was “zeroed” out each month.  This can be seen in Figure 5.4, 

with the line graph in red for the 1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 

address. The data related to this can be seen in Tables 5A-4 and 5A-5. 
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Figure 5.4: Account balance of the CryptoDefense ransomware seed addresses with respect to the 

number of transactions taking place over time. 

 

This might be the result of the ransomware attackers seeking to prevent the wallet from 

rapidly accumulating large funds to avoid detection by authorities.  They may also just 

want to access their profits immediately, without consideration of detection. However, 

moving the funds out as quickly as they come in help the attackers fly under the radar 

of any threshold detection alerts placed on Bitcoin addresses. In subsequent 

ransomware configurations, attackers have also addressed detection by dynamically 

setting up a new Bitcoin address for each victim once they are infected.    

 

5.7.3 NotPetya 

A single address was used for the NotPetya ransomware campaign, 

1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX, with a fixed ransom of US$300 (Conti 

et al, 2018). This address exhibited a similar pattern to the WannaCry campaign.  

NotPetya accumulated victim payments over the first month and then moved them next 
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month, which was longer than CryptoDefense held onto the ransom payments in the 

one address, but a shorter period of time than WannaCry did. NotPetya also collected 

the least amount of ransom from the other two campaigns, possibly reflecting 

NotPetya’s intended use as a tool of destruction rather than a revenue generating attack 

(Conti et al, 2018). In fact, the department of homeland security and US Intelligence 

confirmed the malicious nature of the attack, rather than profit motivated, having 

emanating from the Russia military against the Ukraine (Greenberg, 2018). Table 5A-

6 and the Figure 5.5 show that the address is still being used up until recently. Very 

small amounts are being transferred into the address to keep it alive on the network.       

 

Figure 5.5: Account balance of the NotPetya ransomware seed addresses with respect to the number of 

transactions taking place over time. 

The balance of the address is practically zero. This address could be reused for future 

criminal activity, though with it already being used in such a high-profile ransomware 

campaign, it is likely that this address is under surveillance by law enforcement. 

Therefore, the owners of this address would be able to leverage any future activity as a 

decoy and possibly feed misleading information to law enforcement.  
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5.7.4 Control Case: The Water Project Bitcoin Charity 

The main address used for The Water Project charity is 

1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R. The patterns between transaction count, 

the amount of Bitcoin in the address over time and spread over the days of the week, 

for the control case bear little resemblance to that of the three ransomware campaigns 

analysed so far. Even though the balance is very small, Table 5A-7 and Figure 5.6 

shows a more distributed profile over time.      

 

 

Figure 5.6: Account balance of the Charity seed addresses with respect to the number of transactions 

taking place over time. 

For a charity, it is likely that people are donating in very small amounts when they 

donate. For example with the Water Project, the suggested amount ranges from US$20 

to US$500 which ranges from 0.0025 BTC to 0.063 BTC (Coinmarketcap, 2020). In 

addition, the owner of the charity address would most likely keep this address balance 

as low as possible to use the funds or invest them, or does not want to lose their funds 

through a cyberattack on their charity address.  
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The day-of-the-week analysis reveals systematic differences between the Bitcoin 

transaction patterns of charity and ransomware campaigns. Ransomware has two 

distinct patterns after victims start making payments. First, where an accumulation of 

ransom payments happens over a longer period of time, a large balance of funds is 

allowed to accumulate in the ransomware address. This could make it a target for 

investigation if one address raises large amounts of Bitcoin, sits on this balance and 

waits to cash out, attracting surveillance from law enforcement to monitor the cash out-

activity and where the illegal funds are being used. Another way ransomware attackers 

are controlling their ransom seed addresses is by keeping their balance close to zero. 

This overcomes any unnecessary attention from law enforcement and helps move the 

illegally acquired Bitcoin on quickly.  

 

The analysis revealed that both WannaCry and CryptoDefense started collecting 

ransom on a Friday, 12 May 2015 for WannaCry and 28 February 2014 for 

CryptoDefense. This could indicate that the attackers are targeting a weekend to initiate 

their campaigns. Further indicating they may prefer to infect machines when computer 

activity is low in a corporate environment. Reinforcing this is the spike in collections 

on a Monday. Table 5A-1, 5A-2 and 5A-3 show 24, 40 and 27 collections in the first 

month. This is the highest number of ransom collection transactions for WannaCry for 

ransom seed addresses in Tables 5A-2 and 5A-3. However, to identify a statistically 

significant favoured day of the week for ransomware attacks a larger sample size of 

ransomware would need to be examined. One thing for certain is that most ransomware 

transactions take place immediately after the campaign starts, peaking in that first one 
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to two months, suggesting that these ransomware attacks are not sustained over a long 

period of time and responses to mitigate the attacks are mobilised quickly.       

 

5.8 Graph Observations and Pattern Analysis  

The following section evaluates the data collected from different ransomware attacks 

from the perspective of their ransomware seed address. It also includes an evaluation 

against a Bitcoin charity collection address which is the control subject. The 

observations start from the macro level – the overall transaction graph structure. The 

analysis then focuses in on communities forming within the graph structure. 

Furthermore, a finer level of granularity is provided through graph embeddings. 

5.8.1 Bitcoin Transaction Graphs 

Meiklejohn et al (2013), Reid and Harrigan (2013) and Ron and Shamir (2013) 

provided some of the pioneering analysis on Bitcoin transactions by visualising them 

as networks. This is the most intuitive way of observing the Bitcoin ecosystem. When 

looking for patterns of ransomware payments across the Intelligence - Forensic 

Continuum we can break the problem down by splitting the analysis into two. One side 

examines the victim ransom payments, the ‘cash-in’ patterns, and the other side 

examines the transfer of the attacker’s proceeds of crime, or the ‘cash-out’ patterns. It 

is important to note that these patterns revolve around the ransom seed address for 

ransomware payment collection and the accurate identification of this address is a 

critical precursor for this analysis.  

 

The ransomware cash-in patterns observed are very similar to those of the Bitcoin 

charity used as a control subject. Figure 5.7 compares three different cash-in graphs, 
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WannaCry address 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94, CryptoDefense 

address 1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 and The Water Project address 

1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R. 

 

 

Figure 5.7: a) WannaCry, b) CryptoDefense and c) The Water Project ‘cash-in’ graphs. 

 

The recurring pattern of the ransom seed address or collector address being at the centre 

of this graph and sprawling out towards the funds’ origin is observable in Figure 5.7. 

The green dots represent Bitcoin addresses and the grey dots are the transactions 

connecting the addresses together. Although this pattern is quite distinctive, it does not 

distinguish between ransomware attacks and legitimate charity campaigns. That is there 

are similar clusters of green dots (Bitcoin addresses) formed in all three of the graphs 

in Figure 5.7. However, if the specific ransomware transactions were coloured and 

sized then compared to those of the charity graph a difference would be evident in the 

amount transacted. 

 

The same three addresses on the cash-out side provide a different set of patterns 

completely. In Figure 5.8, we see that WannaCry takes the step of splitting one 
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transaction into many smaller amounts to the next address on its first move away from 

the ransomware seed address. 

 

 

Figure 5.8: a) WannaCry, b) CryptoDefense and c) The Water Project ‘cash-out’ graphs. 

 

CryptoDefense displays a different pattern by undertaking many transactions away 

from the ransomware seed address. This can be seen in Figure 5.8 b) by how the grey 

dots (transactions) outnumber the green dots (Bitcoin addresses). The Bitcoin charity 

address betrays yet another pattern where one transaction pays many different 

addresses. The cash-out graph analysis performed yields three distinct types of patterns. 

It appears that by visually examining the cash-out patterns of ransomware profiles 

nefarious behavior can be identified as a catalyst for further investigation. Providing 

more context to this behaviour is required to identify patterns for more deterministic 

ransomware detection.   

 

5.8.2 Community Detection Patterns 

Spagnuolo et al (2014), Fleder et al (2015) and Maesa et al (2018) provide the 

groundwork for developing an approach to Bitcoin community detection using a 
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machine learning technique based on the Louvain algorithm27. This involves focusing 

on the density of connections within particular clusters. The technique has been used to 

examine criminal networks based on hierarchy and structure (Needham and Hodler, 

2019). In Figure 5.9, a Louvain community detection has been performed on each of 

the cash-in graphs from Figure 5.7 using the in and out degrees and PageRank score on 

each node.  

 

 

Figure 5.9: a) WannaCry, b) CryptoDefense and c) The Water Project ‘cash-in’ community detection 

patterns. 

 

This provides a view of how influential the communities are based on the average 

PageRank for that community, in addition to how active the communities and particular 

nodes are in the network based on the number of connections (edges) coming in to (in-

degree) and going out of (out-degree) the node. Judging by the high degrees of input 

connections on a ransomware seed address, it would be expected to see this node in a 

community with a high PageRank score. Running a PageRank algorithm over this graph 

will rank the nodes in the network with the most in-centrality.  

 

 
27

 The Louvain Modularity algorithm finds clusters by examining the density of nodes connections within a 

cluster. This is used for determining how well a node belongs to a group. An example use of this is in fraud 

analysis to evaluate whether a single node or a collective (cluster) is misbehaving (Needham and Hodler, 2019). 
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PageRank belongs to the family of centrality algorithms, which measure the importance 

of a node with respect to other nodes in the network. It measures the number and quality 

of incoming relationships to a node to determine an estimation of how important that 

node is and can be used in the application of fighting financial fraud (Needham and 

Hodler, 2019). Nodes with more incoming relationships from other nodes are presumed 

to have more sway over a network (Needham and Hodler, 2019).  

 

This is certainly the case for all three of the addresses tested. Observing the Tables 5B-

1 through 5B-6 for the top 10 top PageRanked nodes on the cash-in and cash-out 

networks, the WannaCry 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 ransomware 

seed address, as seen in Table 5B-1, displays an in-degree of 137; out-degree of 0; 

PageRank of 16.66. Likewise, the ransomware seed address for CryptoDefense, 

1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1, as seen in Table 5B-2, has an in-degree 

of 83; out-degree 0; PageRank 12.39, the highest therefore the most central to the cash-

in network. The Bitcoin charity address, 1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R, 

also displays a similar dominant pattern compared to other nodes in the network. This 

can be seen in Table 5B-3, which shows an in-degree of 154; out-degree 0; PageRank 

27.98. 

              

Whilst community detection does not reveal the required uniqueness to determine a 

ransomware pattern for the cash-in networks, the cash-out network provides some 

distinguishing features between CryptoDefense and WannaCry. Figure 5.10 a) reveals 

a very low PageRank across the nodes of the cash-out network for WannaCry, meaning 

there is little influence of any node in the network.  
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Figure 5.10: a) WannaCry and b) CryptoDefense ‘cash-out’ community detection patterns. 

 

Perhaps this is a cash-out tactic of the attacks as instead of using multiple transactions 

or paying to multiple addresses they split the one transaction into micro amounts to 

avoid detection of dominant behaviour on the network. This is in contrast to 

CryptoDefense, which used many transactions to cash-out funds. The ransom seed 

address exhibited 146 transactions in the out-degree, yielding a PageRank of 6.52, 

creating a stand out marker in the community of nodes in this network.  

 

Analysis so far shows community detection provides deeper insight into the Bitcoin 

behaviour patterns of ransomware compared to the day of the week analysis and 

standard graph visualisation. It applies statistical analysis to the graph networks formed 

by the cash-in, victim transactions, and the cash-out, attacker controlled transactions, 

providing a profile to help identify anomalies or unusual behaviour in financial systems 

with the use of a PageRank score as an indication of riskiness of a transaction or account 

in the payment network. However, there is limited knowledge revealed on these profiles 

when it comes to ransomware.  

 

Advancing the analysis to consider the structure of such graphs and the metadata 

embedded on the graph structure may provide additional information for intelligence 

agencies to leverage when it comes to detecting ransomware payment networks.     
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5.8.3 Graph Embedding  

After exhausting previous methods, we now explore a deeper analysis of the 

Ransomware-Bitcoin graph is to discover whether different campaigns exhibit similar 

clusters of connected Bitcoin addresses and transactions. Ahn et al (2016), Bistarelli et 

al (2018), Huang et al (2018) and Paquet-Clouston et al (2018) took applied graph 

analysis techniques to ransomware. Thus looking to reveal similar patterns of Bitcoin 

activity across the different campaigns on the input and output side of a targeted 

ransomware seed address. Tiao et al (2019), Li et al (2019), Perozzi et al (2014), 

Steenfatt et al (2018) and Yin and Vatrapu (2017) pushed the boundaries of graph 

analysis by applying machine learning to graphs. By analysing a graph’s topology via 

the grouping of embedded features existing on a node, it is possible to learn the context 

of that node with respect to other nodes and features in the network.    

 

The benefits of searching for patterns using graph embeddings is to help reduce the 

complexity of the network we are analysing and also provide input into machine 

learning techniques for the objective of node classification, predicting missing node 

attributes and predicting links between nodes in the network. 

 

By inputting a graph, such as those revealed in Figure 5.7 and Figure 5.8, into a process 

that maps this complicated graph structure whilst capturing key features (embeddings), 

we are able to learn what is important and translate it into a simple representation for 

expert interpretation. Figure 5.11 shows the decomposition of the WannaCry 

13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94, CryptoDefense 

1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 and The Water Project 
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1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R cash-in graphs clustered with respect to 

common typological embeddings. The patterns revealed show how the clustered 

embeddings maintain the structure of the graph, for example, Figure 5.11 a) is the 

representation of the graph in Figure 5.7 a). Many transaction nodes surround the input 

graph with a large number of out degrees. The embedding analysis reveals patterns that 

differ from the majority of behaviour in the graph. The most extreme of these are sitting 

within cluster 3 and 5. These clusters represent anomalies in the graph. For example, 

the intense clustering of nodes at the centre of the figure is a representation of the low 

in-degree low out-degree nodes and those clusters external to that emphasise nodes that 

have relatively large in-degree (like the ransom seed address) or large out-degree, such 

as those transactions paying into many other addresses. As we move out from the centre 

we can see these secondary clusters of activity forming, this could be classified as 

exchange activity for the transfer of funds from an exchange where the victim creates 

a wallet to the ransomware address at the centre of all the clusters. The outlying clusters 

from the embedding analysis serve as a form of anomaly detection and can flag nodes 

for further investigation and risk classification.   

  

 

Figure 5.11: a) WannaCry, b) CryptoDefense and c) The Water Project ‘cash-in’ graph reduction 

patterns. 
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Figure 5.12: a) WannaCry, b) CryptoDefense and c) The Water Project ‘cash-out’ graph reduction 

patterns. 

 

As we can see from both Figure 5.11 and Figure 5.12 the challenge is still with uniquely 

identifying a pattern of ransomware activity on the Bitcoin network when compared to 

other activities such as the control charity subject The Water Project. Observing the 

data from Figure 5.11 and Figure 5.12 cluster maps in Tables 5C-1 to 5C-6 reinforces 

the utility of anomaly detection. On the cash-in side we see clusters containing the 

maximum out-degree being of a very small population, which helps target potential 

service nodes that are helping facilitate victim payments, for example, Bitcoin 

exchanges. On the other hand, those clusters containing the maximum in-degree house 

a larger community of nodes with the highest in-centrality in the case of WannaCry and 

The Water Project, Table 5C-1 and 5C-3 respectively. This indicates the ransomware 

seed address exists in this cluster. On the cash-out side Tables 5C-4 to 5C-6 do not 

provide a definitive pattern for anomaly detection as the cash-in cluster data provides.    

The similarities in patterns between ransomware and the Bitcoin charity addresses 

requires an additional means to identify ransomware behaviour across the Intelligence 

- Forensic continuum. The subsequent sections will talk about some of these challenges 

and how they may be addressed in future research.   
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5.9 Future Research 

One of the powerful results from the graph analysis is being able to embed features or 

meta-data into the graph for a deeper contextual understanding of what role nodes 

(addresses and transactions) play in their respective graphs. By providing open data this 

allows the community to flag certain behaviour or orientation of these nodes. A prime 

example of this is from the Wallet Explorer data where labels are provided with respect 

to which Bitcoin service (e.g. exchange, mixer or gambling site) these nodes emanate 

from or flow to. For example, intelligence gathered from the WannaCry ransomware 

seed address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw cash-in graph shows 156 out 

2000 addresses are labelled in the data with poloniex.com as the most prominent 

exchange used when crediting the ransom seed address. The cryptocurrency risk 

management company Elliptic has performed a similar labelling exercise that enriches 

our understanding of the blockchain graph information, categorising nodes as “licit”, 

“illicit” or “unknown” depending if a transaction has been created by an entity that 

belongs to a legitimate exchange, wallet, miner or service provider. On the contrary, a 

node can be flagged as illicit if it is deemed part of a ransomware scam, terrorist 

organization, or under nefarious control (Bellei, 2019). Labels such as those extracted 

from the Wallet Explorer API reveal dominate cryptocurrency exchanges and services 

in our target networks that produce payments into the ransom collector addresses. By 

disrupting these cryptocurrency services you could potentially disrupt the payment 

flows into ransom seed addresses. Though without sufficient categorisation of the 

content flowing in a Bitcoin network, similar to the way Internet traffic is managed via 

Content Delivery Networks (CDNs), runs a risk that disruption to legitimate services 

will occur. The subject matter expertise and analytics techniques required to identify 

and tag such datasets is intensive. Though if done correctly, can greatly enhance any 
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further machine learning analysis by intelligently clustering communities in a 

supervised way providing meaning and context to the data for law enforcement. By 

looking at these labelled properties on the incoming and outgoing sides of the 

ransomware graphs would allow authorities to target potential nefarious services to 

stifle their ability to play any part in illicit fund movement. This is an area that could 

be the subject of further research. 

 

5.10 Conclusion 

Comparing graphs created for ransomware versus charity collection using Bitcoin 

shows that ransom payment patterns into a ransom seed address are remarkably similar 

to those of the charity collection “control” case. This makes it difficult to distinguish 

between a charity Bitcoin address receiving legitimate payments from that of ransom 

payments from ransomware. However, the uniformity witnessed with the amounts 

being paid as ransom versus the volatility in the amounts being paid in charity is a 

distinct marker of a ransomware attack.  

 

In addition, the day-of-the-week analysis shows up two distinctly different behaviours, 

one where a ransomware seed address accumulates ransom payments over time and 

holds on until it is the right time to cash out and another that likes to keep the ransom 

seed address ‘zeroed’ after everyday. These two different strategies from ransomware 

attackers could be targeted, especially in the case where cash-out frequency is high.  

 

Furthermore, community detection techniques provide little distinction between the 

likes of Wannacry and the “control” case, although it does yield enough interest to 

warrant further investigation when such an influential node in a target network has high 



 

150 

 

levels of in-degree activity and large PageRank values. Moreover, using unsupervised 

machine learning techniques, in this case with the DeepWalk algorithm to preserve 

graph structure, produced graph embeddings and anomalous clusters that warrant 

further investigation.  

 

A way to potentially improve the performance of the machine learning algorithms is to 

take the graph labelling another step further. This would require adding more meta-data 

to the graph that attributes the nodes and transactions to the categories of ransomware 

or other. As a result of this research datasets have been collected for which the 

aforementioned analysis tools and techniques have been applied to gain a deeper 

understanding of the Bitcoin payment structures related to ransomware in order to 

enhance the efforts of future research and law enforcement to combat illegal uses of 

cryptocurrency.     

 

 

 

5.11 Well Disguised Patterns  

Using these advanced machine learning techniques for graph analysis of ransomware-

Bitcoin payments are very experimental and dependent on the quality and formation of 

data used as input into the algorithms. Significantly more focus should be placed on the 

data engineering side in order to test a broader range of features in ransomware-Bitcoin 

networks. Labelling data with richer detail regarding whether the address is illicit, 

whether it is coming from or going to a suspicious service, and whether it is controlled 

or reused by ransomware actors would provide more targeted analysis. This chapter 

uses the raw network data from Appendix B to load into the Neo4j graph database 

software. All source code and data resulting from this analysis is available from the 
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Harvard DataVerse repository created for this research project (see Appendices A, B, 

and C; https://dataverse.harvard.edu/dataverse/bitcoin-network-data). Appendix C 

references the analysis output from this chapter. By using a graph database and 

visualisation tool such as Neo4j, it is possible to interpret the graph structures created 

from the payment networks formed in Bitcoin. This then allows us to discern certain 

patterns of behaviour on the Bitcoin network that will support analysts profiling 

ransomware payments by targeting suspicious addresses, exchanges, and transactions 

that are complicit in a ransomware payment network. The distinction can only be 

emphasised through the unique identification of such features that reveal patterns of 

ransomware payments.  

 

By examining a control subject that receives Bitcoin payments (The Water Project 

charity in this chapter) it is possible to reveal how illegitimate payment patterns can 

resemble legitimate ones. Encouragingly, it may be possible to unmask these patterns 

on the cash-out network with legitimate actors displaying different cash-out strategies 

to illegitimate actors. It would be prudent to dive deeper into the underlying data of 

these patterns. This chapter goes some way towards exploring the utility of the 

underlying data by applying graph algorithms such as PageRank, Louvain Community 

Detection, in-degree, and out-degree analysis. Further exploration of the underlying 

data will enable the possibility for data tagging, risk rating, and feature engineering that 

will expose the disguised patterns of ransomware-related Bitcoin payments.  

 

Developments in the area of illicit Bitcoin transaction analysis techniques apply a range 

of sophisticated data science techniques. For example, Oliveira et al (2021) develop a 

method using random walks along a transaction graph called ‘GuiltyWalker’. This 

https://dataverse.harvard.edu/dataverse/bitcoin-network-data
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method introduces new graph features not considered in this research. Using the 

structure of the graph and data labels they add the distance to an illicit transaction from 

the starting node, which enhances their illicit transaction classification model (Oliveira 

et al, 2021). This is similar to the ‘depth’ metric collected in this research; however, it 

is not implemented in our feature set. In addition, Alarab et al (2020) use an ensemble 

learning approach that utilises multiple machine learning algorithms to enhance the 

predictive nature of the classification system being used. It is noted that they are 

experimenting on the curated dataset from Elliptical, which is pre-labelled to help train 

their classifier more accurately. It is a step forward from this research as it takes one of 

the core recommendations of exploiting the underlying blockchain data to tag and 

curate a dataset that identifies illicit and legitimate transactions for machine learning 

algorithm development and training. This step forward takes the effort and complexity 

out of engineering the data and shifts the emphasis onto the analysis and investigation 

activities. Furthermore, Poursafaei et al (2021), Elbaghdadi et al (2020), and Nerurkar 

et al (2020) employ signature vectors, K-Nearest Neighbour, and Ensemble Decision 

Tree machine learning components for illicit bitcoin transaction analysis. Whilst these 

techniques do not explicitly focus on ransomware-Bitcoin activity, they provide a path 

for the application of their techniques to the ransomware-Bitcoin use case. 

 

The next chapter explores the application of risk rating addresses and transactions 

evident on the cash-out network for a particular WannaCry ransomware seed address. 

By utilising the machine learning technique and graph embeddings, it is possible to 

follow the money and ascertain contextual information about the role a node plays in 

the cash-out network. 
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5.12 Appendix 5A – Day of the Week Analysis Tables 

 

Table 5A-1: WannaCry Transaction Analysis by year-month and day of the week 

(Transaction History (2016-12-31 to 2019-07-08) Source from: 

https://btc.com/12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw#stats) 

 

 

Table 5A-2: WannaCry Transaction Analysis by year-month and day of the week 

(Transaction History (2016-12-31 to 2019-07-08) Source from: 

https://btc.com/13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94) 

  

 

Table 5A-3: WannaCry Transaction Analysis by year-month and day of the week 

(Transaction History (2016-12-31 to 2019-07-08) Source from: 

https://btc.com/115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn) 

 

 

 

https://btc.com/12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw#stats
https://btc.com/13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94
https://btc.com/115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn
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Table 5A-4: CryptoDefense Transaction Analysis by year-month and day of the week 

(Transaction History (2012-12-31 to 2019-07-09) Source from: 

https://btc.com/19DyWHtgLgDKgEeoKjfpCJJ9WU8SQ3gr27) 

 

 

Table 5A-5: CryptoDefense Transaction Analysis by year-month and day of the week 

(Transaction History (2012-12-31 to 2019-07-10) Source from: 

https://btc.com/1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1) 

 

 

Table 5A-6: NotPetya Transaction Analysis by year-month and day of the week 

(Transaction History (2015-12-31 to 2019-07-10) Source from: 

https://btc.com/1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX) 

 

Table 5A-7: Control: WaterProject Transaction Analysis by year-month and day of the 

week (Transaction History (2016-12-31 to 2019-10-18) Source from:  

https://btc.com/19DyWHtgLgDKgEeoKjfpCJJ9WU8SQ3gr27
https://btc.com/1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1
https://btc.com/1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX
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https://btc.com/1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R 

 

5.13 Appendix 5B – Community Detection and Clustering Tables 

 

Table 5B-1: WannaCry - 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 - Top 10 

top PageRanked nodes for cash-in  

 

 

Table 5B-2: CryptoDefense - 1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 - Top 

10 top PageRanked nodes for cash-in 

 

 

Table 5B-3: Control: The Water Project - 

1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R - Top 10 top PageRanked nodes for cash-

in 

 

https://btc.com/1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R
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Table 5B-4: WannaCry - 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 - Top 10 

top PageRanked nodes for cash-out 

 

 

Table 5B-5: CryptoDefense - 1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 - Top 

10 top PageRanked nodes for cash-out 

 

 

Table 5B-6: Control: The Water Project - 

1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R - Top 10 top PageRanked nodes for cash-

out 

5.14 Appendix 5C – Cluster Profile Tables 

 

Table 5C-1: WannaCry - 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 - Cluster 

profile for cash-in nodes 
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Table 5C-2: CryptoDefense - 1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 - 

Cluster profile for cash-in nodes 

 

 

Table 5C-3: Control: The Water Project - 

1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R - Cluster profile for cash-in nodes 

 

 

Table 5C-4: WannaCry - 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 - Cluster 

profile for cash-out nodes 

 

 

Table 5C-5: CryptoDefense - 1EmLLj8peW292zR2VvumYPPa9wLcK4CPK1 - 

Cluster profile for cash-out nodes 

 

 

Table 5C-6: Control: The Water Project - 

1HesYJSP1QqcyPEjnQ9vzBL1wujruNGe7R - Cluster profile for cash-out nodes 
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Chapter 6 : Follow the Money: Revealing 

Risky Nodes in a Ransomware-Bitcoin 

Network 
 

 

“Go where the money is…and go there often.” – attributed to Willie Sutton. 

 

6.1 Chapter Overview 

This chapter continues the theme of discovering networked payment patterns that reveal 

a certain type of typology that is consistent across different ransomware-Bitcoin 

payments. However, it goes a step further by applying a risk-based approach to the 

nodes contained within these typologies. It does so by leveraging the techniques within 

this research using unsupervised machine learning to understand the context and 

influence certain nodes have. In particular, this chapter examines the cash-out network 

of the WannaCry ransomware attack, as attackers place a high level of importance on 

being able to move their collected ransom payments to other areas of a financial 

network to then effectively utilise these proceeds of crime for their benefit.  

 

When applied to the ransomware “cash out” graph, the method derived “riskiness” 

scores for specific nodes. Analysing the derived “riskiness” at a community level 

(groups of nodes in the network) provides an enhanced aggregation for identifying and 

targeting influential nodes. In order to ascertain the community structure of the payment 

networks formed, along with a value of risk that a node assumes in a ransomware-

Bitcoin network, the technical approach uses the notion of mathematical similarity 

applied to nodes embedded with values calculated in Chapter 5 to represent latent 

features in the ransomware-Bitcoin network. By deriving and associating a risk metric 
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at an individual node and at a community level of a cash-out network we are able to 

flag key nodes (Bitcoin addresses or transactions) that may be targets for disrupting or 

corrupting the utility of an attacker’s proceeds of crime. Such insight could potentially 

support both intelligence and forensics investigations. The findings of this approach 

show that in isolation targeting identified “risky” nodes can be hit-or-miss. The attacker 

can easily adapt or even learn to deceive the analysis system by creating convoluted 

paths in their cash-out network, rendering the tagging of individual nodes as “risky” a 

futile effort. However, when a “risk community” was identified, a group of 

interconnected nodes can be targeted at once, proving more difficult for the attacker to 

avoid. Despite this, the complexity of the calculation and its implementation at any 

meaningful scale (for example millions of addresses and transactions) would prove 

difficult without a high performance computing capability, an adaptable analysis 

system to automatically recognise the community threat based on risk indicators, and a 

speedy response to validate and act in order to disrupt such risks.  

 

6.2 Abstract 

This paper demonstrates the use of network analysis to identify core nodes associated 

with ransomware attacks in cryptocurrency transaction networks. The method helps 

trace the cyber entities involved in cryptocurrency attacks and supports intelligence 

efforts to identify and disrupt cryptocurrency networks. 

 

A data corpus is built by the unsupervised machine learning graph algorithm 

‘DeepWalk’ (Perozzi et al, 2014). DeepWalk evaluates the position of nodes within 

networks.  It compares the relative position of different nodes (similarity) and identifies 

those whose removal would most affect the network (riskiness).  This method helps 
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identify on the blockchain the key nodes that are involved in the execution of a 

ransomware attack.  

 

When applied to the ransomware “cash out” graph, the method derived “riskiness” 

scores for specific nodes.  Analysing the derived “riskiness” at a community level 

(groups of nodes in the network) provides an enhanced granularity for identifying and 

targeting influential nodes.  Such insight could potentially support both intelligence and 

forensics investigations.   

 

6.3 Introduction  

In 2019 over US$6.6 million was paid globally to cryptocurrency addresses related to 

ransomware, according to the 2020 Crypto Crime Report from blockchain analysis 

company Chainalysis (Chainalysis, 2020). This is emphasised by the fact that the 

United States Securities and Exchange Commission (US SEC) has seen over 1,000 

documents submitted by companies between April 2019 and May 2020 that list 

ransomware as a critical risk factor to their businesses (Cimpanu, 2020). Companies 

face multi-million dollar outages such as those faced by the city of New Orleans in 

2019. The city’s Chief Administrative Officer, Gilbert Montaño, indicated that the 

ransomware attack will cost the city at least US$7 million (Sussman, 2020). There are 

plenty of opportunities for cyber criminals to cash out their booty. One of the most 

popular ways for ransomware attackers to do so between 2013 and 2016 was through 

the Russian based BTC-e exchange (Chainalysis, 2020).   
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Identifying the magnitude and location of illicit funds throughout the blockchain is no 

easy endeavour, the cryptocurrency investigation companies Elliptic and Chainalysis 

provide their own powerful proprietary software platforms to do this. However, there 

are some open-source tools and techniques that allow us to analyse this evolving threat 

to confront ransomware attacks. 

 

Throughout this paper, network and graph will be used interchangeably as we explore 

the utility of graph analysis for cyber financial crime prevention. Out of the hundreds 

of thousands of Bitcoin transactions on a blockchain, the first challenge is to isolate the 

relevant Bitcoin nodes used in a ransomware attack. We will further show how graph 

analysis reveals patterns and provides the capability to expose nefarious relationships 

between the Bitcoin transactions and addresses in the ransomware-Bitcoin network. In 

addition, DeepWalk (Perozzi et al, 2014) embeddings provide a machine-learning 

technique for graphs that sets up feature extraction from the ransomware-Bitcoin cash-

out network. These features can be used in a similarity analysis that is based on Cosine 

Similarity to identify the risk posed by the removal of a node from the Bitcoin-

ransomware cash-out network. We will apply the Cosine Similarity calculation 

comparing nodes with the ransomware seed address to isolate individuals and 

communities of risky nodes. Furthermore, our target network dataset can be enriched 

with contextual labels derived from other open source blockchain analysis tools setting 

up future research with more advanced machine learning prediction techniques. 
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6.4 Fighting financial crime with graph analysis  

Tracing illicit flows of money through a network requires techniques that reveal 

patterns and provide the capability to expose nefarious relationships across vast 

amounts of data. The trails left behind by these financial flows provide a web of 

transactions interconnected by accounts and services to obfuscate identity on purpose 

by blending seamlessly into the economic system. In traditional banking, the 

transactions, accounts and services form a network and can be modelled as a graph. For 

example, De Marzi (2019) uses credit card fraud as a case study, modelling where credit 

card holders make legitimate transactions at different services and in another graph 

showing where fraud actors with stolen credit card data test the stolen credit card 

numbers. By modelling this fraud scenario as a graph, it helps identify patterns where 

the credit card data may have been stolen or where stolen credit card data is being tested 

at certain services.  

 

Voutila (2020) uses the PaySim mobile money network financial dataset originally 

posited by Lopez-Rojas et al (2016). The graph model created contains transactions, 

merchants, clients and client identifiers in order to filter a large set of activity and 

perform graph analysis, such as weakly connected components, to identify fraud rings 

within the larger graph. Components, nodes, in a graph are said to be weakly connected 

if they are all connected or reachable from any other node in the same graph. Galler 

and Fischer (1964), first revealed this algorithm and it has been used to understand how 

well connected networks are, how clusters of activity form and how well the network 

remains connected when nodes of certain authority are eliminated.  
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Furthermore, the case for revealing money laundering has an even stronger emphasis 

today. Anti-Money Laundering laws, regulation and compliance such as, The Anti-

money Laundering and Counter-terrorism Financing Act 2006 (Cth) in Australia 

(Reeves and Wilcock, 2019) and the 5th Anti-Money Laundering Directive of the 

European Union (European Union, 2018b) provide a legislative framework for the 

prevention and detection of money laundering and terrorism financing. However, 

detecting money laundering networks still proves extremely difficult as seen in the 2017 

royal commission into the Australian banking, superannuation, and financial services 

industry, where over 200 money laundering compliance failures were revealed with one 

bank alone (Hayne, 2019; Frost, 2018). Data and Analytics firm Dun and Bradstreet 

put this difficulty down to the scale and complexity of the data that needs to be analysed 

to find the nefarious relationships within the financial transactions. As a firm they are 

using graph technology to meet the Anti-Money Laundering standards previously 

mentioned (Flood, 2020).  

 

Whilst graph analysis has become an established tool for identifying and fighting 

financial fraud in the traditional economy, a question remains as to the utility of the 

method in the emerging space of cryptocurrencies, especially Bitcoin, which is the 

cryptocurrency of choice for most ransomware attacks today. Bitcoin uses Bitcoin 

addresses as a banking client would use their bank account number. Bitcoin value is 

sent and received between addresses via transactions. There are many Bitcoin addresses 

that make up a Bitcoin wallet. It is not uncommon for wallet users to create a new 

Bitcoin address for every new transaction to help preserve their anonymity (Miles, 

2020). The full balance of a Bitcoin address needs to be spent during a transaction and 

as such change addresses are often found, where the balance of the transaction is paid 
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back to the originating Bitcoin address. Spotting irregular Bitcoin activity and unusual 

connections occurring in the blockchain at scale proves extremely difficult without the 

aid of graph visualization tools (Miles, 2020). These reveal patterns and anomalies in 

intuitive and interactive ways. Therefore, the graphs derived for ransomware-Bitcoin 

behaviour provide a powerful analysis capability which leverages the Bitcoin 

ecosystem to build the scope of the ransomware-Bitcoin target network. 

 

6.5 The Ransomware-Bitcoin target network 

In line with Clark and Mitchell’s target centric approach, we begin the intelligence 

process by defining a generic target model to guide intelligence collection and analysis 

(Clark and Mitchell, 2016). The generic Target Network Model (TNM) for our 

ransomware-Bitcoin target network is represented by Figure 6.1. 

 

Figure 6.1: Ransomware - Bitcoin Target Network Model (‘Cash-out’). 
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Figure 6.1 shows the representation of Bitcoin addresses and transactions at different 

levels of a target network in a model of a ransomware campaign. Due to the size and 

complexity of the overall ransomware campaign network the TNM is split between 

cash-in and cash-out models. Figure 6.1 only shows the cash-out side of the network. 

The cash-out network models the proceeds of crime as they flow from the ransomware 

seed address that victims of the ransomware attack have paid into to other addresses in 

the Bitcoin universe. These ransom payments ultimately exit the network where they 

are exchanged for other cryptocurrencies or even fiat currency. 

 

In order to demonstrate the method, we will collect data related to the cash-out network 

of the ransomware campaign, WannaCry 2.0 and populate the generic target model. 

This campaign was chosen because the findings from our network investigation can be 

validated against other sources. The next section will identify the data collection 

requirements and methods used and introduce the analysis system being applied to the 

populated TNM.  
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Figure 6.2: Ransomware-Bitcoin Graph Analysis System. 

 

6.6 Data Collection 

The Bitcoin blockchain contains the record of addresses and transactions involved in 

Bitcoin transactions. This ‘on-chain’ data along with the respective meta-data can be 

exploited. 

Figure 6.2 shows a data pipeline with associated analysis techniques that are used to 

exploit Bitcoin blockchain data. 

Step one – Extract data from the Bitcoin blockchain 

- Extract transaction history relating to the ransom seed address from the 

walletexplorer.com Application Programming Interface (API). 

- For each incoming and outgoing transaction from the seed address, build the 

input and output graphs respectively at ‘D’ levels deep away from the seed 

address (see Figure 6.1). 
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Step two – Load data into graph database (Neo4j) 

- Load extracted input and output graph files setting input/output addresses as 

nodes; transactions as nodes; and Payments as a relationship between them. 

- Post process address nodes to include corresponding depth ‘D’ of transaction 

nodes. 

 

Step three – Transform data 

- Run the PageRank algorithm and add this as a property on the nodes in the 

network. 

- Run the DeepWalk algorithm on nodes and embed the results onto the nodes in 

the network 

 

Step four – Data analysis preparation 

- Run Louvain community detection algorithm using average in/out degree and 

PageRank. Aggregate results of communities. 

- Run community detection and return non-aggregated results, returning all nodes 

in the network with the respective in/out degree, PageRank, DeepWalk 

embeddings, labels, depth, timestamp. Export to Comma Separated Values 

(CSV). 

- These network analysis algorithms were run from within the Neo4j graph 

database 
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Step five – Data visualisation 

- Import the CSV into python script to:  

- Visualise community detection profile 

- Python was used to perform Principal Components Analysis (PCA) + K-means 

clustering on DeepWalk embeddings 

- Output results to CSV for deep dive analysis into comparing communities and 

clusters across different ransomware by using Cosine Similarity. 

 

The key transformation of the data we will focus on in this publication relates to the 

graph embeddings derived in steps three and four. The graph embeddings will become 

features for future graph machine learning applications. The PCA undertaken in step 

five is essential for managing the dimensionality of the embedding computations. It is 

key to the analysis to examine specific nodes and determine how influential they are 

within the Bitcoin-ransomware network. This would serve as an indicator of their 

relative importance in the transfer and circulation of ransom payments.  For this reason, 

the PageRank algorithm was chosen as an appropriate centrality measure for this 

purpose. The subsequent sections elaborate on the proposed methodology. 

 

6.7 Risky node analysis  

The blockchain data should yield a network of wallets and transactions involved in the 

WannaCry ransomware attack, but the network data on its own does not provide 

sufficient context to identify the key nodes that are involved in the process.  We propose 

to approximate the significance of each node in the network by measuring the effect the 
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node’s removal would have on the viability and function of the network. We 

conceptualise this effect as risk to the network, and the measurement involved as a 

measure of riskiness. Using the DeepWalk graph embeddings that encode the structure 

of a graph at each node relative to its position in the target network (see Figure 6.1), we 

can leverage these embeddings as features into a Cosine Similarity calculation which 

provides an index of how ‘risky’ the nodes are relative to the ransomware Bitcoin seed 

address. Furthermore, analysing the risky nodes collectively forms target communities 

which could prove more effective as opposed to targeting these nodes individually. 

 

6.7.1 Graph embeddings and features 

Once the TNM has been created and populated with the extracted data, the graph itself 

becomes very large and dense making it difficult to detect any unusual behaviour at 

face value. There needs to be a simplified way of preserving the graph properties like 

the structure and the features on the nodes and edges (Tong, 2019). This is achieved by 

the graph embedding algorithm that transforms all the information learned from a graph 

into a lower dimensional vector space representation. The graph embedding algorithm 

chosen for this analysis is DeepWalk by Perozzi et al (2014).  

 

DeepWalk learns structural representations of a graph’s nodes by capturing its 

similarity in a neighbourhood of other nodes and allocating individual nodes to cliques 

we call communities (Perozzi et al, 2014). By taking a graph as an input to the 

algorithm, latent representations are produced as an output. These representations 

become the input to a neural network. Operating a neural network on a graph structure 

allows for deep feature learning of nodes and edges for a graph (Rossi et al, 2017). 
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DeepWalk uses deep learning for unsupervised feature learning, which means, the 

system learns the node’s embeddings without any prior knowledge of the graph 

topology. Depending on what nodes are encountered and how often they are traversed 

during a random walk, the neural network makes a prediction about a node feature or 

classification and embeds that into the node as metadata. By sampling the graph via 

random walks, we build the data corpus for that graph. The data corpus is then used as 

the reference library for a node’s purpose within the graph. For example, in the 

ransomware-Bitcoin TNM the ransomware seed address can be taken and its “context” 

predicted within the scope of the entire graph. This means embedding an understanding 

of a node’s features, such as, transaction amount, connectivity to other nodes (how 

many input and output transactions there are from a node) and structural role (e.g. the 

root node of the network or a leaf of a weakly connected branch). Having these 

embeddings encoded into a node provides a basis for subsequent generalisation through 

various possible means.  In this case, we chose the PCA and K-means clustering 

analysis (see Figure 6.2) to reduce the dimensionality of the embeddings. PCA as a 

method of reducing large datasets whilst preserving as much information, or statistical 

variability, from the original data (Jolliffe and Cadima, 2016).  In this case we were 

able to reduce the relevant dimensionality from 128 down to a two-dimensional vector 

space. This two-dimensional representation of the graph embeddings will now be used 

in the next section as input into a similarity analysis to ascertain which nodes in the 

TNM are riskier than others.  
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6.7.2 Concept of Similarity 

Cosine Similarity is a measure used to identify how similar entities, or in this case nodes 

in a network, are irrespective of their magnitude (Han et al, 2012). In this case, the 

graph analysed by the DeepWalk algorithm is reduced to a series of variables which 

incorporate latent features of a node’s community structure as an output for use in 

calculating the similarity between the vector representations of these features.  

 

Seeing as the theory of this process has its roots in natural language processing, we use 

the analogy of finding meaning and context (similarity) in a text.  The process allows 

us to analyse the similarity in words’ meanings, while ignoring the words’ location in 

the text.  

 

The procedure we are proposing would be equivalent to having a graph (the document), 

containing many random walks (sentences) from each of the nodes (words) in the graph. 

Ultimately arriving at a meaningful similarity of a node’s context with respect to the 

other nodes in the graph. An illustration of this can be seen in Figure 6.3. 
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 Figure 6.3: Conceptual view of arriving at a measure of riskiness in the ransomware-Bitcoin graph. 

 

6.7.3 Application 

Instead of measuring the distance between two nodes, Cosine Similarity measures the 

cosine of the angle between them. Cosine similarity is superior to a simple measure of 

distance in identifying the common features of disparate nodes.  Plotting the 

distribution of the cosine similarity, box labelled 5 in Figure 6.3, assert that there are 

close similarities between nodes not purely related to the latent features derived from 

the DeepWalk embeddings. By taking the cosine similarity of these features we are not 

only considering the proximity of a node to the ransomware seed address, rather the 

context of the node in the whole graph being analysed. This can be seen Figure 6.3, box 

labelled 3, where node C is in close proximity to the ransomware seed address X, 

however in Figure 6.3, box labelled 5, the angle between C and X is larger than the 

angle between A and X, where A is more distant from the ransomware seed address in 

box labelled 3.  
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There could be several reasons for this. The number of nodes directly connected to 

nodes C and A, or closely connected in the neighbourhood (two or three hops away). 

Additionally, how many times the particular node occurs in context to other nodes in 

the generated corpus of the entire graph relative to the ransomware bitcoin seed address 

in the network. For example, in the cash-out graph for WannaCry ransomware Bitcoin 

seed address, 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw, in Figure 6.4 a node, 

1BvTQTP5PJVCEz7dCU2YxgMskMxxikSruM, with a high similarity relative to the 

ransom seed address resides at a Bitcoin exchange Poloniex.com. This was identified 

as one of the cash-out exchanges used by the attackers in WannaCry (Bistarelli et al 

2018).  

 

Therefore, it follows that similarity scores relative to the ransom seed address might 

usefully serve as a proxy measure for riskiness. The higher the similarity calculated for 

a node with respect to the ransom seed address, the higher the risk score for that node. 

For example, if a high-risk scoring node was removed from the network the attackers 

would be unable to cash out their proceeds of crime. Therefore, risk used in this context 

refers to the risk imposed on the attacker fulfilling the objectives of the network.  

 

6.7.4 Similarity as a measure of risk 

Similarity can therefore be used as a proxy for riskiness. Using the mathematical 

calculation of Cosine Similarity, a proxy measure for riskiness is established relative to 

the ransomware seed address. Taking the ransomware seed address as the most 

significant node on a ransomware-Bitcoin cash-out network (because if there was no 

seed address created, there would be no ransom collected), then using the graph 
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embeddings to computationally calculate the similarity of every other node relative to 

this node we are able to derive a risk score. 

 

 

Figure 6.4: Distribution of node similarity for WannaCry Ransomware seed address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw cash-out network. Top 20% of nodes by risk score. 

 

 

As a result of this analysis a similarity matrix is produced that can be used as a heatmap 

to target the risky nodes in the network. If another node in the ransomware cash-out 

network scores a high ‘similarity’ relative to the ransomware seed address, and if that 

highly scored node is removed from the network this node is the next critical to the 

network fulfilling its objective of cashing out the ransom collected. This would allow 

for the targeting of nodes with the high similarity scores and hence if we target or 

neutralise this node, it puts the network’s objectives “at risk”. For example, using a 
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classification range the heatmap could be represented as follows: ‘Very High’ for risk 

scores ranging from 0.95 to 1, shaded in red; ‘High’ from 0.75 to 0.95, shaded in 

Orange-Red; ‘Medium’ from 0.5 to 0.75, Yellow-Orange; ‘Low’ from 0 to 0.5, Green-

Yellow. Applying this concept to the Wannacry cash-out network produces the 

following results in Table 6.1. 

 

Table 6.1: Top 20 by risk score for nodes in the WannaCry Ransomware seed address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw cash-out network. 

  

Figure 6.4 shows the distribution of the risk scores and the respective node index 

(address or transaction) for the WannaCry cash-out graph. In this figure we concentrate 

on those nodes with riskiness ranging from 0.95 to 1, representing the top 20% of nodes 

by risk score. On the x-axis, node riskiness is represented by a score from 0 to 1 across 

the entire network dataset. Where a score closer to ‘0’ shows little similarity relative to 

the ransomware seed address and can be interpreted as a node in the network that 
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exhibits little risk when it comes to facilitating the cash-out of ransom collected. On the 

other hand, those scores closer to ‘1’, show a similarity or closeness to the ransomware 

seed address. The actual riskiness should be viewed from both the X & Y measures as 

it is the cosine of the coordinate point of one node relative to the ransomware seed 

address which is always at position (1,0). Because the analysis is normalised the radius 

(or arc in this case) will not exceed a radius of 1 as it moves from (1,0) to (0,1). This 

calculation removes the emphasis on magnitude of the vectors and measures the angle 

between two nodes showing a relative importance to the network no matter how many 

levels deep in the network we move away from the ransomware seed address.   

 

The ransomware seed address, 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw, sits at 

position Y=0 and X=1 on the chart and the next closest node 

1LZ9WozeiHEQWE3JQbikGHLXa6qiKLXJjN represents an address that has a node 

riskiness of 0.9999 (see table 1) and is therefore deemed critical to the movement of 

funds out of the ransomware seed address. The second most risky node with risk score 

= 0.9999987018 is another Bitcoin address 

1BvTQTP5PJVCEz7dCU2YxgMskMxxikSruM. This is an address directly linked to 

the Poloniex.com exchange where the WannaCry attackers cashed out their proceeds 

of crime (Bistarelli et al, 2018). 

 

Looking into why these nodes are deemed risky in the context of this research, we could 

determine the Bitcoin address, 1LZ9WozeiHEQWE3JQbikGHLXa6qiKLXJjN, to be 

a false positive in our detection system as it seems to be part of a bigger cluster of 

nodes, centred around the transaction (ID: 
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29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d27) 

contributing a small amount of Bitcoin (0.0034398 BTC) taking place on 31st August 

2017 at 16:32:00 UTC. Considering the WannaCry campaign cashed out on the 3rd 

August 2017 from the ransomware seed address (Neutrino, 2017), this has greatly 

exceeded the campaign time window and targeting this particular node might provide 

little impact on the risk of the network fulfilling the objectives. However, some forensic 

analysis might be warranted. This address is one out of 236 other addresses taking part 

in peeling activity which ultimately outputs to an address 

(1ETWkyQUY9nRpVMyGwha4vRhwKgMbomMQe) linked to another exchange, 

HitBTC.com which could be targeted for investigation for playing a part in soliciting 

illegal ransomware money flows (Neutrino, 2017). As previously mentioned for the 

next risky node, 1BvTQTP5PJVCEz7dCU2YxgMskMxxikSruM, it has a direct link to 

the exchange Poloniex.com. This can be interpreted as a true positive result from the 

analysis system shown in Figure 6.2. Looking at the detail behind this address, it 

directly receives 17 BTC, the full amount of ransom collected from the WannaCry 

campaign on the 3rd August 2017 at 10:04:51 UTC. The same time a twitter bot known 

as @actual_ransom identified the first outflows from the WannaCry attackers’ wallets. 

This bot was set up by journalist Keith Collins to monitor activity of the WannaCry 

ransom addresses (Turner et al, 2019). 

 

6.7.5 Risk in communities 

To complement the derivation of the risk score is the identification of additional data 

that has been extracted from the walletexplorer API and collected as part of the analysis 

system depicted in Figure 6.2. This takes the form of ‘labels’, ‘PageRank’ and 
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‘community’. The labels nominate what service the node belongs to and provide a 

strong indicator for the attribution of real world identification into the Bitcoin 

ecosystem. In Figure 6.4 we can see HitBTC and Polinex on two of the highly ranked 

nodes (1BvTQTP5PJVCEz7dCU2YxgMskMxxikSruM and 

1Dha5e1jbTtu4YGALQ3DnfTAk5yxzm4XSR) indicating these could be cash-out 

exchanges used by the attackers. In addition, PageRank is represented by the size of the 

bubble in Figure 6.4 and defines node influence in a network based on the frequency of 

its connections to other nodes (Needham and Hodler, 2019). That is the larger the 

bubble in Figure 6.4, the larger the PageRank and the larger the influence of the node 

in the network.  

 

It is interesting to observe the node position relative to PageRank and the risk score. 

The second largest page ranked nodes, 

1ArG3JwEbF4WrCiEnXQXUAgQumAVzqnQHD [PageRank=20.493] is used as a 

change address during the WannaCry campaign on 4th August 2017 and subsequently 

linked to the largest page ranked node which is a transaction, 

29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d27 

[PageRank=40.4775] occurring on 31st August 2017 having over 230 inputs with an 

output connected to an address (1ETWkyQUY9nRpVMyGwha4vRhwKgMbomMQe) 

controlled by exchange HitBTC.com. Despite these intricate connections these nodes 

only yield a risk score of 0.987784659211026 and 0.964703062973474 respectively 

and are positioned well outside the top 20 risky nodes identified in Table 6.1. Therefore, 

in this instance, little correlation can be derived between the risk score and page rank. 

However, using the combination of risk score on individual nodes and community 
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detection it is possible to augment decision intelligence on what areas of the graph to 

monitor and investigate. This is illustrated in Figure 6.5. 

 

Figure 6.5: Graph representation of the WannaCry Ransomware seed address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw cash-out network 

 

Community detection is another common fraud detection technique used on networks 

to identify communities of nodes exhibiting anomalous behaviour that can be targeted 

for investigation (Hodler, 2020). Attributing a risk score to these communities on the 

aggregate we can determine which communities pose the greatest risk to the successful 

fulfilment of the network objectives. Table 6.2 demonstrates this.  
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Table 6.2: Median risk score grouped by community for nodes in the WannaCry Ransomware seed 

address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw cash-out network. 

 

By using the median riskiness for the communities, it is possible to see how high the 

middle score is in the ordered set of risk scores for that community. The higher that 

middle score the higher the concentration of risky nodes to go after. This can be further 

validated via the graph visualisation in Figure 6.5. The nodes highlighted by the red 

circles indicate the top 20 risky nodes from Table 6.1 and the groups of nodes encircled 

by the shapes highlight the communities of nodes from Table 6.2. 

 

It can be seen from Table 6.2 and Figure 6.5 that communities two and three share the 

highest community risk scores. Community three contains four of the top 20 risky nodes 

and visually plays a very central role in the facilitation of cashing out the proceeds of 

the WannaCry ransom. Node number 7 is a transaction within community three, 

340b44c7a7857e36f81b2e8ba713911ea93e82afde6ea5590df1a35688845d16, that 

handles 8.715 BTC of the collected ransom and routes 6.877 BTC through community 

three on 3rd August 2017 and a further 1.8376 BTC splits off into community two. 

Community three acts as a mixing community to obfuscate this portion of the ransom 

with the transaction at node 18 
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(131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3) 

combining the ransom cash-out with four other inputs to produce an output of 32 BTC 

on the 4th August 2018 to HitBTC.com owned address 

1ETWkyQUY9nRpVMyGwha4vRhwKgMbomMQe. A considerable sized transaction 

heading to an exchange that would certainly raise suspicion. An interesting observation 

on community two is that even though it has a high community risk score it only 

contains one of the top 20 risky nodes, a transaction 

1b2a3333f583ae54dba78ccc71f4fe24a22acd0991d364e75bcf099ce3a84759, ranked 

17th in Table 6.1, occurring on 3rd August 2017 which facilitates 1.8376 BTC of the 

cash-out for the WannaCry ransom via one input address and two output addresses. 

This is where the combination of the risk score and community detection provides 

further targeted analysis. If we were only to go on the list of risky nodes in Table 6.1 

the investigator could spend their time looking at community four where 11 of the nodes 

reside. However, examining the collective reveals the median riskiness of that 

community is only 0.66 (see Table 6.2). Community four is also the largest community 

by membership and the relevance of the risk score dispels the myth that a more 

populated community would produce a higher concentration of risky nodes. 

 

6.7.6 Targeted disruption 

Now that there is a way of identifying risky nodes in the ransomware-Bitcoin network, 

intervention can be considered to target these nodes and disrupt or eliminate them. 

Looking at Figure 6.6 which is a replication of Figure 6.5. with one of the risky nodes, 

transaction 
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131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3, node 18, 

removed. 

 

Figure 6.6: Graph representation of the WannaCry Ransomware seed address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw cash-out network, disrupting node 18. 

 

At first glance this looks like a good tactic, severing the transaction at node 18 will 

inhibit the ability of the attackers to continue cashing out their proceeds of crime. 

However, the practical implications of doing this are not so simple. Node 18 represents 

a transaction with ID 

131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3, the 
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details of this transaction can be seen in Figure 6.7. If it were possible to disrupt this 

transaction, there would be significant impact to the attackers fulfilling their objectives. 

Tracing the amount from the ransomware seed address, this transaction receives 5.1309 

BTC of the ransom from address 1HQiNjBRrHZpuyaWYXnCMhwcvJPqF5e97M. 

This amount is combined with inputs from four other addresses to send a total of 

32.02476446 BTC to address 1ETWkyQUY9nRpVMyGwha4vRhwKgMbomMQe 

which belongs to exchange HitBtc.com. 

 

  
Figure 6.7: Transaction details for transaction ID: 

131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3 (screenshot courtesy of 

walletexplorer.com) 

 

 

It would take significant effort, knowledge and real time action to be able to disrupt this 

transaction. This would have to be done in near real time by corrupting the transaction 

script by hacking at the Bitcoin software as was the case when Mt Gox destroyed 2,609 

BTC (Sedgewick, 2019). Alternatively, fictitious addresses can be simultaneously 

generated with their public and private keys, at the time of the transaction, to receive 

payments and sign the Bitcoin over to the next owner in the chain and divert the ransom 

funds away from being exchanged at HitBtc.com (Ducklin, 2018). 
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6.8 Limitations  

The concept of the similarity analysis and the application to a ransomware-Bitcoin cash 

out network was only applied to one of the WannaCry 2.0 ransomware seed addresses 

(12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw). The analysis system is highly 

dependent on the quality of graph embeddings produced by the DeepWalk algorithm. 

Whilst preserving the structure of the nodes of the graph in relation to each other, the 

embedding algorithm used in this analysis was still only in development and not 

released in the Neo4j (graph database) production library for graph data science. 

Therefore, at this stage, validating the quality of the embeddings is difficult. In addition, 

using the output of the DeepWalk algorithm as input features to the cosine similarity 

score, the risk rating or recommendation on which nodes to attack in the network for 

intervention in illicit money flows has a dependency on knowing the ransomware seed 

address. Nevertheless, the system can still be used to initiate responses based on the 

‘riskiness’ score obtained from the cosine similarity calculation and auto classify 

existing and new nodes coming into the network. To be effective in this manner the 

operation would need to be done in near or real-time. For example, we see the cash-out 

activity for the 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw ransomware seed 

address during the WannaCry campaign all happen within the space of six hours. The 

initial transactions out from the ransomware seed address, 

(409803bb5e124fd028c0482027c7722e84ce55b78204b279d3a44aba5e7c1698 and 

35e5d5fe8c8128cfa6884f56be5817e4138c58c91b79d78d3e78a8d365b9d8a7), began 

at 03/08/2017 04:28:20 UTC. The transaction 

(36ef488e59d719fb906254aed61bfe46e8f64778bc6cac97e56a68c241004c28) that 

facilitated a cash out at the exchange Poloniex.com occurred at 03/08/2017 10:04:51 

UTC.    
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6.9 Future Research  

Considering the most targeted pieces of information revealed from the similarity 

analysis are the identity of the address node and its risk score. There remain gaps in the 

available identity information from the raw data. Nonetheless, several features could 

be used in further machine learning techniques to predict the nature of nodes. A 

prediction algorithm could be built that would identify, for example, probable exchange 

services or other types of categories such as whether a node is involved in ransomware 

or not. This would allow analysts and investigators to estimate the location and ultimate 

owner of the address in the Bitcoin network removing significant barriers to the 

anonymity afforded to nefarious actors using cryptocurrencies. This would be an 

enormous improvement given the magnitude of the gap in the raw data. For example, 

in the data on the cash-out graph for WannaCry ransom seed address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw only 3 out of the 280 addresses are 

labelled with exchange services (approx. 1%). Table 6.3 highlights Poloniex.com and 

HitBtc.com as the most prominent exchanges used when cashing out the ransomware 

proceeds. 

 

Table 6.3: Available labels on the 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw WannaCry ransom 

seed address. 
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Building a prediction engine at scale to assist attribution of anomalous nodes in the 

network is outside the scope of this research paper. However, the data collected from 

the analysis system paves the way for future research in this area. As an example, 

cryptocurrency forensic analysis firm Elliptic and researchers at IBM and 

Massachusetts Institute of Technology (MIT) have released a public data set of around 

200,000 transactions partially labelled with illicit or non-illicit flags to identify 

suspicious transactions on the blockchain within the context of Anti-money Laundering 

(AML) (Weber et al, 2019). 

 

Understanding a graph in the past helps create a baseline for what to look for in the 

future. In order to understand how a current scenario relates to that baseline it is 

important to know what has changed and what hasn’t. This helps detect any anomalies, 

or unusual patterns, within the dynamic nature of a Bitcoin blockchain graph. More 

sophisticated algorithms such as, Microcluster-Based Detector of Anomalies in Edge 

Streams (MIDAS), are able to detect dynamic behaviours in graphs (Mishra, 2018). 

This lends itself well to the Bitcoin - blockchain environment as the graphs formed here 

are constantly being updated with new addresses and transactions. In addition, when it 

comes to discovering ransomware graphs in such an environment micro cluster 

detection helps detect sudden bursts of activity on nodes or edges, which are common 

to the behaviours of both the cash in and cash out graphs in ransomware / Bitcoin 

activity (Bhatia et al, 2019). 
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6.10 Conclusion 

This research paper concludes that to target nodes of a ransomware-Bitcoin payment 

network for disruption it is imperative to understand their risk in the sampled network. 

This paper derives a mechanism to measure this risk. It draws insights into using 

machine learning techniques combined with human interpretation to identify nefarious 

nodes in the WannaCry ransomware-Bitcoin cash-out network. The focus of this paper 

has been on using the Cosine Similarity calculation on DeepWalk embeddings to define 

a risk index that identifies what nodes, if eliminated from the network, carry the greatest 

risk to the attacker achieving their objectives, i.e. cashing out collected ransom 

payments. Using the Cosine Similarity as a risk index on an individual basis may not 

yield a targeted disruption of the network objectives. However, when the risk index was 

taken in combination with community detection a more powerful analysis emerged to 

isolate risky sections of the network. In particular, the practices of graph embedding 

and principal component analysis provide a truly reusable set of features for future 

machine learning applications. Furthermore, finding mechanisms to estimate the 

identities of nodes on the network will help attribute nodes with a particular Bitcoin 

service. However, limitations are evident with these techniques having only used a data 

set relating to the WannaCry ransomware-Bitcoin cash-out network. One broader 

benefit to the research community would be to open source multiple ransomware-

Bitcoin network data sets for validation of analysis techniques.  

 

Significantly, the entire approach remains predicated on identifying the ransomware 

seed address to build the target network.  
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6.11 Signal and Noise 

This chapter detailed the utility of the graph embedding technique applied to a 

ransomware-Bitcoin cash-out graph. Graph embeddings using the DeepWalk algorithm 

provide a set of downstream features to be utilised by other machine learning 

techniques; in the case of this research, a Cosine similarity measure was calculated for 

each node on the WannaCry cash-out network. This measure was then used as a proxy 

for a node’s risk score relative to the ransomware seed address and the node’s influence 

in the cash-out network.  

 

Whilst the method aimed to target individual influential nodes in a network for 

investigation, analysis, and possible disruption, it was the collective communities of 

nodes and their aggregate risk scores that proved to be the most compelling for analysis. 

By targeting high risk communities, it could be possible to immobilise complete 

sections of the network.  

 

As statistician Nate Silver notes, “distinguishing the signal from the noise requires both 

scientific knowledge and self-knowledge” (Silver, 2012, p. 453). Ultimately, it is 

possible to ascertain some analytical signal out of the existing data from the 

ransomware-Bitcoin network; however, it is important to reflect on the need to augment 

expert knowledge in order to interpret the significance of what the data is telling us. As 

such, this research has developed an analysis system for future research and 

development. Significant data analysis has been an output due to this process. Silver 

(2012) provides conviction for establishing such a process and stipulates that 

“sometimes the only solution when the data is very noisy [as is the case with 

cryptocurrency data]—is to focus more on process than on results” (Silver, p. 327, 
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2012). Appendix C represents the yield of the data analysis conducted as part of 

Chapters 5 and 6. Furthermore, this has been made available on the bitcoin-network-

data Harvard Dataverse repository28 for researchers to openly access and reference for 

any future research and analysis into the domain of ransomware-Bitcoin payments.  

 

This chapter has revealed a technical system for ransomware-Bitcoin payment analysis. 

Multiple data analyses are an output of this system with a particular focus on revealing 

risk inherent in the WannaCry ransomware-Bitcoin cash-out network. The next chapter 

builds on graph embedding techniques, taking the concepts derived from this chapter 

another step further by deriving a reusable data engineering pipeline to feed a prediction 

model with features that characterise ransomware-Bitcoin transactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
28

 https://dataverse.harvard.edu/dataverse/bitcoin-network-data  

https://dataverse.harvard.edu/dataverse/bitcoin-network-data
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Chapter 7 : Classifying Ransomware-Bitcoin 

Nodes Using Graph Embeddings 
 

 

“It’s just enough glitter amongst the chicken-feed.” - George Smiley (Le Carré, 2002). 

 

 

7.1 Abstract 

With the recent proliferation of ransomware attacks law enforcement agencies have 

been trying to find methods to systematically identify ransomware transactions within 

cryptocurrency payment networks (Paquet-Clouston, et al, 2019). This research seeks 

to develop a methodology to identify such transactions through data-driven tracking 

and analysis of Bitcoin payment networks. We demonstrate the methodology by 

applying the GraphSAGE embedding algorithm to the WannaCry ransomware-Bitcoin 

cash-out network for the ransomware-Bitcoin seed address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw. The paper takes a data-driven approach 

to building a machine learning system that allows analysts to define features relevant 

to ransomware-Bitcoin payment networks. In addition, we  define an auxiliary feature, 

exposure, to describe the amount of exposure nodes on this network have to the 

facilitation of ransomware payments. We use the exposure feature in combination with 

other Bitcoin payment network features, including graph algorithms such as pageRank, 

to determine a set of graph embeddings that can be used to predict the classification of 

ransomware network nodes. We perform tests on a dataset of 299 Bitcoin nodes and 

derive three distinct clusters. We also evaluate the performance of the clustering 

method on a dataset of 59 nodes. Our proposed method achieves 80% of true-positive 

predictions. Further, examining the False Positives (FPs) and False Negatives (FNs) 
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created greater analytical insight for investigators due to their anomalous nature. We 

also explore how our proposed method can be leveraged by law enforcement authorities 

to investigate and curb suspicious activities such as money-laundering and ransomware 

payments via Bitcoin. 

7.2  Introduction 

The union of a computer intrusion via malware and cryptocurrency has enabled 

ransomware as we know it today. With this harmonious partnership, a cybercrime is 

undertaken that can be considered a tool of destruction through computer exploitation 

and also a financial crime through the illicit monetization by means of cryptocurrency 

(Turner et al, 2019). Across the main cryptocurrencies -- Bitcoin (BTC), Bitcoin Cash 

(BCH), Ethereum (ETH) and Tether (USDT) -- approximately US$20 million of 

ransom was paid by victims in 2016, and in 2020 this almost reached US$350 million, 

a 311% increase from 2019 (Chainalysis, 2021a). In 2019 and 2020 the dominant 

ransomware strain was Ryuk, which yielded around US$200 million in ransom 

payments (Chainalysisa, 2021).  

 

Cryptocurrency network data has often been overlooked by law enforcement agencies 

who address the threat of ransomware, yet as we show below, analysis of 

cryptocurrency logs can support law enforcement and security agencies by revealing 

critical information about the relevant criminal behaviour. 

 

Turner et al (2020b), proposed an experimental graph machine learning system using 

the DeepWalk algorithm (Perozzi et al, 2018). It used a sample of the WannaCry 

ransomware-Bitcoin cash-out network. Data related to the ransomware-Bitcoin seed 
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address29 was curated from the Bitcoin blockchain and then engineered into a Neo4j 

graph database. The DeepWalk algorithm belongs to a family of graph algorithms that 

yield embeddings based on latent features inherent in a particular graph. Further 

developing the concepts from Turner et al (2020b), we look at another graph embedding 

algorithm known as GraphSAGE (Hamilton et al, 2017). GraphSAGE takes a different 

approach to learning the structure of a network. Whereas the DeepWalk algorithm uses 

a transductive approach, GraphSAGE uses an inductive approach to better understand 

unseen data being revealed in the network. Hamilton et al, (2017), posit this in their 

paper which defines the GraphSAGE algorithm.  “By using an inductive framework 

that leverages node feature information (e.g., text attributes) to efficiently generate 

node embeddings for previously unseen data. Instead of training individual embeddings 

for each node, we learn a function that generates embeddings by sampling and 

aggregating features from a node’s local neighborhood.” (Hamilton et al, 2017). 

 

This research uses a number of software tools. The walletexplorer.com Application 

Programming Interface (API) serves to extract the Bitcoin network data in JavaScript 

Object Notation (JSON) format to build the target network. The Neo4j graph database 

community edition with the Graph Data Science (GDS) application library  runs the 

respective graph algorithms. Cypher code, the Neo4j standard programming language, 

is developed to build the ransomware-Bitcoin graph and enrich it with the graph 

algorithms set forth in this paper. Finally, the Python programming language runs 

further machine learning procedures on the graph embeddings coming from the Neo4j 

 
29

 Ransomware-Bitcoin address: 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 
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GraphSage implementation. The code and data files are available on GitHub for further 

development.30  

 

The analysis that follows seeks to demonstrate what can be inferred from 

cryptocurrency payment networks created by a ransomware attack. Specifically, we 

examine the ransomware WannaCry by using big data and machine learning techniques 

to define different clusters, and predict what cluster a Bitcoin node belongs to. As an 

example, this cluster could be representative of certain Bitcoin addresses or transactions 

belonging to certain exchanges or services that are frequented by illicit users of Bitcoin. 

This paper outlines the fundamental Bitcoin data model and how the ransomware-

Bitcoin problem can be broken down into a target network. In addition, it details 

changes to the system first defined in Turner et al, (Turner et al, 2021) by enriching the 

network with features used by the GraphSage embedding algorithm. Furthermore, by 

leveraging the vast amounts of data present on the Bitcoin blockchain, this paper 

demonstrates the utility of the graph embeddings in a downstream machine learning 

prediction algorithm along with the introduction of an exposure metric for each node’s 

exposure to the activity on the network. Following this, a brief recourse is made as to 

why graph machine learning is becoming a pivotal capability when analysing 

cryptocurrency networks and why embeddings provide the analyst with the greatest 

insight. In Sections 7.5, 7.6 and 7.7, the paper critically evaluates and validates the 

results produced with this method from the perspective of law enforcement and 

suggests directions for future research. We conclude this paper in Section 7.8. 

 

 
30

 https://github.com/AdamT23/bitcoin-seed-extract 
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7.3  Background 

7.3.1 Ransomware-Bitcoin data modelling 

Cryptocurrency is built on blockchain technology. This technology, as the name 

suggests, works by providing blocks of transactions (packets of data), linked to other 

transactions that are propagated through a peer-to-peer network in order to move a store 

of value from a source to destination address (Reyna et al, 2018). In doing so a 

network31 of transactions is formed which represents a Directed Acyclic Graph 

(DAG)32. The ransomware-Bitcoin payment activity can be represented as a graph. 

Splitting the network into a cash-in (ransom payments received) network, and a cash-

out (payments moved by the attacker) network, creates two distinct graphs. These 

graphs connect at a collector address identified as the ransomware-Bitcoin seed address 

shown in Figure 7.1.  The figure represents a generic scheme that forms an intelligence 

Target Network Model (TNM).  This scheme can be used to structure the analysis of 

concrete instances of blockchain to identify and characterise ransomware transactions. 

 

This research focuses on collecting data for the cash-out network in WannaCry for 

ransomware-Bitcoin seed address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw33.  

 

 

 
31

 Throughout this paper, graph and network will be used interchangeably. 
32

 Directed Acyclic Graph (DAG) - For a DAG there exists at least one node with zero in-degree and at least one 

node with zero out-degree (Thulasiraman and Swamy, 2011).  
33

 https://www.blockchain.com/cs/btc/address/12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 
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Figure 7.1: Ransomware-Bitcoin Target Network Model (TNM). 

 

 

 

Figure 7.1 shows the representation of Bitcoin addresses and transactions at different 

levels of a specific target network in the WannaCry ransomware campaign. The cash-

out network, in red, models the attacker’s movement of their ransomware revenue  from 

the ransomware seed address out to other areas of the Bitcoin ecosystem. It is possible 

that these ransom payments ultimately exit the network where they are exchanged for 

other cryptocurrencies or fiat currency. Using techniques that allow the graph to be 

enriched with the analytical properties of the network provides further context to the 

patterns of behaviour that are represented in the graph. Furthermore, these properties 

can formulate feature sets for machine learning models to enable future prediction 

based on the topological structure and their distribution in the network neighbourhood.  
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7.3.2 A brief look at the Bitcoin blockchain structure 

The block is the main structure for transactions in Bitcoin as seen in Figure 7.2.   

 

 

Figure 7.2: The Bitcoin blockchain structure (Source: Turner and Irwin (2018)). 

 

The blockchain structure includes a public record of all transactions. A Bitcoin 

transaction maintains a list of inputs, with an index to unspent transactions and the 

associated signature (Transaction in script sig, in Figure 7.2), and outputs, which 

contains the receiving address and value to transfer along with other key data in the 

block header such as transaction timestamp. We will use data extracted from the 

blockchain structure to construct the graph data model.  The next section will show how 

these data are collected and used to classify and predict nodes on a ransomware-Bitcoin 

cash-out network. 
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7.4  Proposed System 

The following subsections outline a proposed system for collecting, engineering, 

modelling, and training data collected from a ransomware-Bitcoin cash-out payment 

network. This model can then be used for evaluating unseen data to predict the 

classification of a transaction to belong to certain nefarious clusters in the network. 

Ultimately, the system is designed to maintain a feature catalogue with the goal of 

testing different ransomware payment networks with different feature sets from the 

catalogue.  

7.4.1 Data collection and machine learning pipeline 

Working with the TNM in Figure 7.1, it is now possible to set up the data extraction 

and pipeline to derive the data model, features and embeddings needed to predict the 

classification of nodes on a ransomware-Bitcoin cash-out network. Figure 7.3 outlines 

the steps taken in this research to arrive at a predicted cluster label. 

 

 

Figure 7.3: System representation of the graph machine learning pipeline for cluster label prediction. 

 

Step one in Figure 7.3, forms the lifeblood of the system by defining the data extract 

and load procedure.  By loading the raw blockchain data into the Neo4j graph database 

we preserve the graph structure. Bitcoin addresses and transactions are represented as 
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nodes while the relationship between addresses and transactions are represented as 

edges in the graph. This model is visualised in Figure 7.4, identifying the basic 

properties required to form the standard ransomware-Bitcoin graph data model.  

 

We used the Application Programming Interface (API) offered by walletexplorer.com 

to extract the data. This research is focused on the cash-out network, formed by the 

ransomware-Bitcoin seed addresses -- 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw. 

This address is used as the data collection focal point. The extraction script produces a 

JavaScript Object Notation (JSON) file so as the network structure and hierarchy are 

preserved. Below we describe the components of the system in Figure 7.3, starting with 

the standard ransomware-Bitcoin graph data model, which further details the data 

preparation step and flows into step three – feature engineering. 

 

7.4.2 The standard ransomware-Bitcoin data model 

The extracted data are modelled to reflect the blockchain structure depicted in Figure 

7.4. The graph data model is created using Neo4j and consists of a green node labelled 

‘output’ which represents a Bitcoin address, a grey node labelled ‘tx’ which represents 

a Bitcoin transaction and the ‘PAYS’ relationship which refers to payments being sent 

and received between addresses. This model links the list of transaction inputs to the 

list of transaction outputs which move the amounts paid to certain addresses throughout 

the Bitcoin network. The semantics between the ‘output’ and ‘tx’ nodes is many to 

many. That is, there can be many ‘PAYS’ relationships forming inputs to a transaction 

and many ‘PAYS’ relationships forming outputs from a transaction.  
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Figure 7.4: Standard graph data model of a Bitcoin transaction in Neo4j. 

The model in Figure 7.5 demonstrates that these transactions can be linked to the same 

or a different Bitcoin address in the network.  

Figure 7.5: Data model in practice for WannaCry ransomware-Bitcoin cash-out network properties of 

the standard graph data model. 5a) Transaction with 1 input and 2 outputs; 5b) Transaction with 7 

inputs and 1 output; 5c) Transaction chain showing the linking of multiple transaction inputs and 

outputs. 
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As part of the standard graph data model the following properties in Table 7.1 are 

inherited from the blockchain data extraction.  

Node / Relationship Graph Metric Definition  

PAYS next_tx This property refers to a transaction id that is part of the list 

of input and output transactions that constitute a transaction. 

There is one PAYS relationship for each input and output 

transaction. 

PAYS amount The amount spent by the individual input or output 

transaction (next_tx). 

PAYS time_stamp The timestamp of the transaction. 

TX index Transaction ID linking the inputs and outputs to the address 

of the recipient of any money paid. 

OUTPUT index Bitcoin address that receives payments from transactions. 

Table 7.1: Properties evident on the standard graph data model. 

 

These are the raw properties from the Bitcoin blockchain loaded into the standard graph 

data model. Already at this preliminary stage we can identify structures that conform 

to one of three suspicious structures that have been identified by Jobse (2017). 

Specifically, these structures are: Long Chains, similar to Figure 7.5 c); Fork-Merger 

Patterns, also evident in Figure 7.5 c); and Self Loops and Binary Tree-Like 

distributions, similar to Figure 7.5 a) (Jobse, 2017).  

 

These properties alone are sufficient to generate preliminary insight into how 

ransomware money flows through the Bitcoin ecosystem. However, in what follows we 

seek to reveal additional features of a ransomware-Bitcoin network and leverage these 

features for graph machine learning classification and prediction tasks. 
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7.4.3 Graph Machine Learning 

Data science applied to graphs is a combination of graph statistics, graph analytical 

methods and graph-enhanced Machine Learning (ML) (Needham and Hodler, 2021). 

Having enhanced the standard ransomware-Bitcoin graph data model and derived the 

standard properties of this particular graph from steps one and two (see Figure 7.3), we 

now turn to triggering the graph machine learning components of the system. This will 

guide the data pipeline into the analysis system and produce graph embeddings as an 

output in order to be used as the basis of the cluster classification. Feature engineering 

is a process in the machine learning system which creates features representative of the 

input data that will feed the embedding algorithm (Lakshmanan et al, 2020). Selecting 

features that will provide the most salient information and more accurately inform the 

prediction model is a balance between selecting via experience, through subject matter 

expertise, and scientific process. The feedback loop from step 7c, ‘Feature Correlation’ 

to step three, ‘Feature Engineering’, aims to integrate that experience and allows for 

the adjustment of the feature set in order to refine what is deemed to impact the 

understanding of the graph being analysed. The next sections will walk through steps 

three to seven from Figure 7.3 (Feature Engineering, Graph Catalogue, Model Training, 

Embeddings and Model Evaluation), and explain why these steps are important for 

analysing the ransomware-Bitcoin cash-out graph. 

 

7.4.4 Feature engineering - Enriching the network 

Enriching the standard graph data model, from Figure 7.4, requires significant post-

processing of the graph. The techniques use the Graph Data Science (GDS) library34 

 
34

 https://neo4j.com/docs/graph-data-science 
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for Neo4j and rely on the centrality algorithms PageRank and Degree Centrality, along 

with GraphSage embeddings and a node exposure metric defined as part of this 

research. The centrality measures and node exposure metric provide an enhanced set of 

feature properties for the GraphSage algorithm to calculate meaningful embeddings 

from the ransomware-Bitcoin graph. This is in line with the approach presented by 

Gaihre, et al (2019) at the 2019 IEEE Conference on Communications and Network 

Security (CNS), whose paper outlines traditional graph features and how they are 

exploited for machine learning purposes such as classification.  

 

For this research, PageRank is chosen to evaluate the  importance of nodes within a 

network (Page and Brin, 1999). PageRank is particularly appropriate because of  the 

variety of graph structures formed through the transfer and circulation of ransom 

payments in a ransomware-Bitcoin network. By measuring the number of incoming and 

outgoing relationships a node has it is possible to estimate how important that node is 

relative to other nodes in the network. That is, nodes exhibiting higher connectivity, 

those having more incoming and outgoing connections, are deemed a higher quality 

(higher PageRanked) node to target for investigation. (Page and Brin, 1999; cf 

Needhamd and Hodler, 2019 on the use of this measure in financial fraud 

investigations).  

 

In addition, in-degree and out-degree, at each node are used to calculate exposure. The 

exposure calculation borrows the concept of risk exposure from insurance pricing 

techniques (Bertsimas and Orfanoudaki, 2021). It is a function of the frequency and 

magnitude of payments being made through a node. We use the term exposure as this 

measure reveals a given node’s behaviour on the network. That is the proportion of the 
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sum of the in-degree and out-degree at that node, with respect to the total degrees across 

the entire sampled network multiplied by the severity of these payments, or total 

amount of Bitcoin moving through that node. In essence, those nodes with a greater 

exposure on the network are the most active and could be targeted for deeper 

investigation by law enforcement.  This can be represented by using the degree sum 

formula in graph theory. In equation (A), we find the total sum of the degrees at each 

node (also known as a vertex) in the ransomware-Bitcoin graph vertex set V. This is 

also equivalent to twice the number of edges, E, or ‘PAYS’ relationships, in the 

ransomware-Bitcoin graph. 

A) ∑νϵV  deg ν =2|E| 

In addition, the sum of the number of in-degrees and out-degrees at each node is 

represented by: 

B) deg ν = deg- υ + deg+ υ 

Then the total amount of Bitcoin moving through each node can be represented by: 

C) total_amount ν 

Thus, forming the exposure equation for each node in the ransomware-Bitcoin network 

as: 

Exposure at a node = (B ÷ A) × C 

 

The ransomware-Bitcoin cash-out graph has now been enriched with selected features 

based on graph analytics algorithms and derived properties that reveal relevant context 

of the network. This then leads to the enhanced list of properties in the next section, 

detailed in Table 7.2.  
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Thus, data for WannaCry cash-out graph using ransomware-Bitcoin seed address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw, yields a total sum of the degrees of 876, 

which means there are 438 ‘PAYS’ relationships, across the sampled network. 

7.4.5 Enhanced data model 

Enrichment of the graph is established with the properties in Table 2. From this it is 

possible to identify the top 10 nodes of interest in descending order, for the WannaCry 

ransomware-Bitcoin cash-out graph, depicted in Appendix 7A by the Tables 7A-1 to 

7A-4. These tables describe what nodes are significant in the WannaCry ransomware-

Bitcoin cash-out graph, given the features of the newly enriched ransomware-Bitcoin 

graph. 

 

Node Graph Metric Definition 

TX/OUTPUT index Transaction ID linking the inputs and outputs to the address of the 

recipient of any money paid. Bitcoin address (output) that receives 

payments from transactions. 

TX/OUTPUT total_amount The total amount of Bitcoin (BTC) passing through a node. 

TX/OUTPUT exposure (programmed 

as risk_rating) 

The proportion of the sum of in and out ‘PAYS’ relationships (degrees) 

at a node to the total number of ‘PAYS’ relationships in the network. 

Multiplied by the total amount passing through the node. 

TX/OUTPUT out_degree The number of outgoing ‘PAYS’ relationships from a node. 

TX/OUTPUT in_degree The number of incoming ‘PAYS’ relationships from a node. 

TX/OUTPUT depth The number of hops away from the ransomware-Bitcoin seed address. 

TX/OUTPUT pageRank A Centrality algorithm used to measure the importance of a node in the 

graph. It considers the incoming relationships and the pageRank 

measures of directly connected nodes. 

TX time_stamp Transaction ID linking the inputs and outputs to the address of the 

recipient of any money paid. 

OUTPUT label Text identifier from the walletexplorer.com API indicating if a node has 

any affiliation with a Bitcoin service such as an exchange. 

Table 7.2: Additional properties on the enriched graph data model. 

 

The results recorded on the properties shown in Tables 7A-1 to 7A-4 provide insight 

when analysed independently of each graph metric. For example, observing transaction 
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id, 29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d27, 

across the different metrics, we confirm that this node is important to the ransomware-

Bitcoin cash-out network for WannaCry ransomware seed address 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw. The analysis shows it has the top 

pageRank in the network, 41.9379236, the most number of combined in-degrees and 

out-degrees on the network, 238, and the sixth highest exposure rating, 0.434599737. 

However, the total amount of BTC passing through this node only ranks 42nd highest 

in the network at 1.5996192 BTC. The exposure calculation is effective in reweighting 

the importance of the node in the network with respect to the total amount of BTC 

moving through it. The rebalancing of the node’s position in the top 10 highlights the 

interconnectedness of the enriched properties on the ransomware-Bitcoin graph. 

Whereas one node in isolation may provide a rich set of properties for law enforcement 

and the intelligence community to use for investigation and disruption, it is often the 

collective communities of nodes and what salient information can be extracted from the 

community and conveyed in the most concise way. As shown in Figure 7.6, once the 

29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d27 

transaction node, the grey node at the centre of Figure 7.6, is expanded a cluster of 

addresses appear and the analysis quickly becomes complex. 
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Figure 7.6: WannaCry ransomware-Bitcoin cash-out network, transaction id, 

29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d2735 and the 238 connected 

addresses. 

 

Collectively using the input data associated with the enriched properties listed in Table 

7.2 creates a feature extraction process for preserving the relevant information required 

for a model to learn essential patterns in the data (Lakshmanan et al, 2020). For 

example, predicting communities or clusters to which transactions and addresses 

belong is a machine learning problem. Using a graph embedding algorithm will capture 

the properties of the ransomware-Bitcoin graph. Through this process we provide the 

learnable data representation needed to handle the disparate property data chosen as 

input features in order to predict the output cluster of a new node in the graph.  

 

 
35

https://www.blockchain.com/btc/tx/29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d27 
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The next section will look at turning the graph properties into a feature set and how the 

GraphSage machine learning algorithm takes this feature set to create embeddings that 

compress the dense properties of the graph and express them as features that can be 

used for downstream machine learning operations, such as predicting the corresponding 

cluster of an unseen Bitcoin transaction or address. 

7.4.6 Graph catalogue 

The graph catalogue is a specific component of the Neo4j Graph Data Science (GDS) 

library. This component allows graph algorithms in the GDS package to run on a graph 

data model. Here we use the data model defined in Figure 7.4 along with the enhanced 

graph properties outlined in Table 7.2. This formulates a projection of the Neo4j 

property graph data model. A graph projection can be seen as a materialised view over 

the actual graph. It only contains the analytically relevant, topological and property 

information. Graph projections can be aggregated. This provides optimisation for 

topology and property lookup operations. In practice, the data scientists and analysts 

can better handle multiple graph projections (Neo4j Docs - Graph Catalogue, 2021). 

When there is a need to engineer different models with different features, it becomes 

possible to use one created graph many times in the analytical workflow. This means 

steps one to three in Figure 7.3 do not need to be re-run every time the model changes. 

In step four of Figure 7.3, it is possible to end up with a catalogue of multiple models 

to apply to different ransomware payment networks. Appendix 7B shows the graph 

catalogue used during this research. The graph catalogue is a prerequisite for training 

the GraphSage embedding algorithm in the Neo4j environment. The next section 

explores the use of the graph catalogue for training (step five, Figure 7.3) the 

GraphSage embedding model (step six, Figure 7.3).     
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7.4.7 Graph embeddings 

The graph catalogue established in step four of Figure 7.3 can now be used to train a 

GraphSAGE model in Neo4j. By applying the properties defined in the graph catalogue 

as ‘featureProperties’ into the training routine, we use the existing graph and the feature 

set, featureProperties:['pageRank', 'risk_rating', 'in_degree', 'out_degree', 

'total_amount'], to produce contextualized embeddings. These can then be used to 

classify new nodes introduced to the graph without having to retrain the model created 

with the graph catalogue and ‘featureProperties’. GraphSAGE is an inductive 

algorithm for computing node embeddings (Hamilton et al, 2017). GraphSAGE uses 

node feature information and the neighbourhood proximity of a node to generate node 

embeddings. Based on this information, the embeddings are then induced on unseen 

nodes or graphs. This algorithm removes the need of training individual embeddings 

for each node. This provides greater efficiency compared with  DeepWalk algorithm 

(Perrozzi et al, 2018) which needs to sample new random walks and run new 

classifications to embed unseen nodes (Hamilton et al, 2017; Neo4j Docs - GraphSage, 

2021). The output of the GraphSage routine are the embeddings that get fed into step 

seven, Model Evaluation. This will help determine the utility of the embeddings derived 

from the GraphSAGE algorithm and how accurate the classification is on any unseen 

data. 

 

7.5 Model evaluation 

Step seven, Model Evaluation, takes the derived graph embeddings and analyses the 

output in a two-dimensional space (Step 7a). This provides a human readable 

interpretation highlighting the significance of the ransomware-Bitcoin cash-out graph 
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embeddings for the analyst. The GraphSAGE model that is trained, in step five, has an 

embeddingDimension:256. By using a high embedding dimensionality relative to the 

number of nodes in the graph, 299, it is possible to preserve more information about 

the graph (Goyal and Ferrara, 2018). Running Principal Components Analysis (PCA) 

over the 256 embedding dimensions allows the analyst to work in a reduced 

dimensionality (2-Dimensions) to visualise trends in the distribution of the embedding 

output associated to the nodes in the graph (step 7a).  

 

Clustering of nodes in the network (step 7b) is one of the observable patterns that results 

from this analysis. It helps the analyst compare behaviour in a ransomware-Bitcoin 

payment network. The PCA / K-means cluster plot in Figure 7.7, reveals three distinct 

clusters from the embeddings derived from the WannaCry cash-out graph with 

ransomware-Bitcoin seed address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw.  
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Figure 7.7: PCA / K-means cluster plot of the GraphSAGE embeddings from WannaCry cash-out 

graph with ransomware-Bitcoin seed address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw. 

 

Table 7.3 shows the results from querying the feature properties, aggregated against the 

clusters formed.  

Cluster Label # Nodes AVG PageRank AVG Exposure 

SUM of 

outdeg 

SUM of 

indeg 

SUM total_amount 

(BTC) 

0 235 0.2384683224 0.0000215551 247 6 1.77125989 

1 22 3.463109622 0.2956276672 131 404 254.0277611 

2 42 0.4149004362 0.03180070117 60 28 322.795742 

Grand Total 299 0.5005160059 0.02623579788 438 438 578.594763 

Table 7.3: Cluster label and associated feature properties of the WannaCry cash-out graph with 

ransomware-Bitcoin seed address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 

 

This is an important evaluation point in the system as the ‘Cluster label’ serves as the 

target prediction parameter of the overall system. Therefore, if it is possible to derive a 

classification that is meaningful to law enforcement investigators or intelligence 
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analysts. For example, we might like to replace the numeric ‘Cluster Label’ index (0, 

1, 2), with something like ‘Cluster Label’ at index 0 = ‘Small Transaction Cluster’,  

due to the large amount of small transactions taking place within this cluster. There 

could be evidence of peeling within this type of cluster and further investigation might 

be required. Peeling is a technique used to obfuscate illicit cryptocurrency payments 

(Meiklejohn, et al, 2013). However, out of the three clusters, this one would most 

probably be deprioritised for investigation due to the low average exposure over the 

cluster (0.00002). The next ‘Cluster Label’ at index 1 could represent ‘Seed Target 

Cluster’. This is a high profile target cluster based on our feature set. The ransomware-

Bitcoin seed address is located in this cluster. There is also a significant amount of ‘In 

degree’ and ‘Out degree’ activity, 404 and 131 respectively. Furthermore, a large 

average PageRank (‘AVG PageRank’) (3.463) and average exposure (‘AVG Exposure’) 

(0.2956) exist across the cluster within a small number of nodes (22). This indicates 

most of the influential nodes in this network sit within this cluster and can be targeted 

by investigators for maximum disruption to the ransomware attacker’s cash-out 

behaviour. The nodes in this cluster would be a high priority for investigators. The last 

cluster in this set of data is ‘Cluster Label’ at index 2. An appropriate label for this 

cluster would be ‘Large Transaction Cluster’. The intuition behind this label refers to 

a small number of nodes (42) yielding the highest total amount of BTC (‘SUM 

total_amount (BTC)’) (322.795742) moving in and out of these nodes under a low ‘In 

degree’ (28) and ‘Out degree’ (60) conditions. Therefore, there appears to be a number 

of large transactions taking place within this cluster worth investigating. The most 

significant is, transaction  

131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3, moving 

approximately 65 BTC through it. In addition, transactions 
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2b22df65026d8384e01e0deb9b115ba9725bbe9d95c4f61d18dee6e40fa47b74, 

3332d270983f3183af866714b8eb4ad226f4f4bea2ce42efcfd2de2dfdaf0f12, 

340b44c7a7857e36f81b2e8ba713911ea93e82afde6ea5590df1a35688845d16, 

557b6869ba2c6293d76e11f495afc7f30e6c7a53fb6355cefa8354eaab53b020, and, 

95d36a6926639ba50d02f190d3ca2f9322ce721502d47b32a1e8d8be1b13cb40  move 

an approximate total of 85 BTC through them and are all worth investigation due to the 

large size of the transactions. This cluster would be ranked as a medium priority for 

investigation. 

 

The next section will examine the correlation between the selected features and the 

target label to determine what confidence the embeddings bring to the prediction of any 

cluster classification.     

 

7.5.1 Feature correlation 

Feature engineering requires input from a mixture of subject matter experts, for 

example, financial crime experts and data scientists, in order to arrive at the right feature 

selection. Examining the correlation matrix between the features earmarked for use in 

the system, helps visualise the importance each feature has relative to the other. 

Features with high correlation, for example those displaying correlation scores between 

0.75 to 1 in Figure 7.8, are more linearly dependent and hence have almost the same 

effect on the dependent variable. When two features have high correlation, it is possible 

to drop one of the two features. For example, ‘outdeg’ (out degree) and ‘exp’ (exposure) 

metrics produce a correlation score of 0.8. The results produced from this research did 

not exclude features on this basis.  Step 7c seeks to evaluate the features being used as 
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part of the graph machine learning pipeline used in this research. Figure 7.8 illustrates 

the dependency between features used in this system via the correlation matrix.  

 

Figure 7.8: Feature correlation of the properties deployed to the enhanced data model. (exp=Exposure; 

pr=PageRank; outdeg=Out Degree; indeg=In Degree; ta=Total Amount; ts=Timestamp; 

X_red_X=PCA dimensionality reduced embeddings, X-axis; X_red_Y=PCA dimensionality reduced 

embeddings, Z-axis; cluster_label=Prediction target, Cluster Label) 

 

Here our target (dependent variable) is ‘Cluster Label’ and from Figure 7.8 we find a 

strong and weak correlation with the independent variables that form the basis for the 

GraphSAGE embeddings. An indication of a strong correlation is a value close to 1 

(perfect positive correlation) or -1 (perfect negative correlation). The observation of 

‘X_red_X’ having 0.9 relative to the ‘cluster_label’ shows a strong correlation. This is 

significant, as ‘X_red_X’ is the PCA reduced parameter of the GraphSAGE 

embeddings. This means that the combination of features used in the GraphSAGE 

algorithm provides strong conviction to the prediction of the ‘Cluster Label’.  
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The next section runs through steps eight through eleven in order to show how the 

classification and prediction mechanisms work with the derived graph embeddings. 

7.5.2 Classification and Prediction 

Performing the classification and prediction tasks, steps 10 and 11, requires the features 

from the graph embeddings derived in step six and the cluster labels applied from step 

9b. Assuming we are satisfied with the evaluation of the model features for predicting 

the ‘cluster_label’ parameter, we now split the data into a testing and training dataset. 

This will validate the predictive power of the classification algorithm chosen. The 

algorithm used in this instance is the MultiOutputClassifier because the ‘Cluster Label’ 

may take the form of 0, 1 or 2. The Stochastic Gradient Descent (SGD) optimization 

algorithm is also used. This boosts the convergence of the model parameters that 

correspond to the best fit between the actual and predicted outputs. In this case, SGD 

was chosen as it is a widely applied and stable algorithm for prediction (Bottou, 2004). 

Therefore, users of the system are assured some trust and confidence in the results 

obtained. This is important because the users may not always be data scientists or 

machine learning engineers and an explainable Artificial Intelligence (AI) system 

allows for transparency, trust and traceability of the algorithms being deployed 

(Gunning, et al, 2019).  

 

7.5.3 Testing and Validation 

Based on training and test data derived from the WannaCry cash-out network 

(ransomware Bitcoin seed address: 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw) we 

derive a cluster prediction confidence of 80% using the GraphSAGE embeddings. This 

result converged quickly after four training runs of the prediction algorithm. In step 



 

215 

 

eight of Figure 7.3 the data preparation randomly samples an 80/20 split. This ensures 

each training and test run utilises different data. 

  

A primitive validation was done for the prediction methodology used in this paper. 

Appendix 7C shows four tables that represent the correct and incorrect predictions. 

Table 7C-4 in Appendix 7C, shows the results of the fourth training run. In this table, 

the Actual Cluster Label is in the first column and shows that within the data the Cluster 

Label takes the form of a 0, 1 or 2. However, the predicted_cluster_label only reveals 

a value of 0. This is due to the speed of convergence of the SGD algorithm. It quickly 

learns that 0 is the dominant cluster grouping in the dataset and ultimately overfits the 

test data by labelling all the Predicted Cluster Labels as 0. Nonetheless, this procedure 

actually increases the accuracy of the prediction to 80.33% (Table 7C-4). Table 7C-1 

demonstrates that the first training run only yields an accuracy of 53% in total. 

Predicting 30 out of 49 Cluster Label ‘0’ correctly and 5 out of 5 Cluster Label ‘1’ 

correctly. 

 

Determining the accuracy of fraud detection systems is complex. Accuracy when 

determining if a transaction is ‘fraudulent’ or ‘not fraudulent’ is not binary. It is 

necessary to balance what the model predicts as suspect against the quality of those 

predictions. As seen in Appendix 7C, True Positives (TP) and False Positives (FP), 

along with True Negatives (TN) and False Negatives (FN) will emerge from the model 

and we must maximise the True Positives (TP) across a broad set of test data. This may 

also require a rebalancing of the model. Putting this into context and recalling the labels 

we posited for our clusters of Bitcoin addresses and transactions in the ransomware-

Bitcoin cash-out network. These are: small_tx_cluster, seed_target_cluster and 
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large_tx_cluster. Our criteria for a suspected address or transaction facilitating a 

ransomware payment is not simply a ‘fraud’ flag. Rather, it takes a multi classification 

approach. This along with the aggregated community statistics to target investigation 

gives analysts a more informed decision making basis. Having three clusters within the 

data, the 3x3 confusion matrix in Table 7.4 reveals the True Positive Rate (TPR) and 

True Negative Rate (TNR) for the actual and predicted clusters.  

 

 

 

 

Actual 

Cluster 

Label 

Small 

Transaction 

Cluster (0) 

49 

83.05% 

0 

0.00% 

0 

0.00% 

Seed Target 

Cluster (1) 

4 

6.78% 

0 

0.00% 

0 

0.00% 

Large 

Transaction 

Cluster (2) 

6 

10.17% 

0 

0.00% 

0 

0.00% 

 Small 

Transaction 

Cluster (0) 

Seed Target 

Cluster (1) 

Large 

Transaction 

Cluster (2) 

Predicted Cluster Label 

 

Table 7.4: Confusion matrix for multi classification of ransomware-Bitcoin payment clusters. 

 

The TPs can be seen in the diagonal from the top left to bottom right. Examining one 

particular execution of the model, the analysis shows that of the 59 samples in our test 

data, all 59 are predicted to fall into a Small Transaction Cluster (0). Of the 59 samples, 

49 (83.05%) are correctly classified as a Small Transaction Cluster (0). There are 10 

(16.95%) FPs in total where the model incorrectly predicts a classification that it should 

be. In addition, the model flags 4 (6.78%) and 6 (10.17%) Bitcoin addresses or 
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transactions respectively as FNs. By contrast, 55 and 53 Bitcoin addresses or 

transactions are identified as TNs.  

 

The classification and prediction model proposed in this research can serve as a tool for 

anomaly detection. FPs and FNs hold greater investigative insight especially when they 

are falsely flagged as Small Transaction Cluster when in fact the actual clusters contain 

high-value addresses and transactions relating to the ransomware-Bitcoin seed address 

and large transactions. For example, transaction  

35e5d5fe8c8128cfa6884f56be5817e4138c58c91b79d78d3e78a8d365b9d8a7 that was 

predicted to be in the Small Transaction Cluster but actually belongs to the Seed Target 

Cluster. This transaction appears in Appendix 7A, Top Ten Nodes of Interest Tables 

7A-2 with In + Out degree of 77 (third highest in the network), 7A-3 with Exposure of 

1.59 (second highest in the network) and 7A-4 with Total Amount of 18.1 BTC (sixth 

highest in the network).  

 

It must be said that the test data set used is very limited and only included 57 cases in 

total. Regardless, it still demonstrates the utility of the research. In order to train the 

classification and prediction model more diversely to handle different sets of data and 

consequently different types of ransomware payments, it is important to pass more 

sampled cash-out graphs through the system. For the system presented in this research, 

this is not a trivial undertaking. It would require repeating the process from  step one 

of Figure 7.3 and running a new extract through the feature engineering process, 

arriving at a new set of embeddings that a representative of the new ransomware-

Bitcoin cash-out graph of the new ransomware variant being tested for. This is a clear 

limitation of the system. An improvement to this is to store the different models that 
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produce the embeddings, and using  an embeddings catalogue to train the classification 

and prediction algorithm. This facilitates a selection of the respective set of embeddings 

for the graph that classification and prediction is being performed on.  

 

Alternatively, a test could be made using a derived set of embeddings from one 

ransomware-Bitcoin cash-out graph that is universally representative of all 

ransomware-Bitcoin cash-out graphs, to use as the basis for all cluster predictions and 

anomalies. Both cases would require further extensive testing to provide any validity 

to enhancing the current method. Furthermore, data not specifically relating to a 

ransomware-Bitcoin cash-out network would also need to be tested for behaviour of the 

model under control and edge cases. 

 

Looking beyond the data science technicalities, the next section explorers the 

implications this method could have on the law enforcement and investigation 

communities. 

 

7.6 Implications for law enforcement 

Artificial Intelligence (AI) and Machine Learning (ML) are increasingly playing a role 

in policing. Macnish, Wright and Jiya (2020), Asaro (2019), Oswald and Babuta (2021) 

and Joh (2017) identify the use of big data and machine learning techniques in 

predictive policing. In addition, they raise concerns around bias and fairness in the data 

(e.g., unfairly targeting race or demographics), and the impacts on justice, legislation, 

ethics and culture.     
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The analysis system designed in this research makes it possible to target ransomware-

Bitcoin payments by predicting the cluster group of an unseen node in the network. 

This provides a utility for policing and law enforcement to further understand the 

payment dynamics of a ransomware attack. However, for such a system to take effect, 

and beyond the strategic considerations previously identified, the analysis must be 

integrated into cyber operations and investigation processes. Hunton (2011; 2012) 

provides a method to trigger cybercrime execution and augment intelligence gathering 

and investigation processes to provide a continuous and evolving input of cyber threat 

intelligence into the investigation process (Figure 7.9). 

 

 

Figure 7.9: Cybercrime investigation stages (adapted from Hunton (2012)). 

 

Based on the Investigation Doctrine of the Association of Police Officers (ACPO) in 

the United Kingdom, Hunton (2012) outlines how each investigation phase underpins 

the execution of a cybercrime and how it then guides the distinct policing activities in 

response to a cybercrime taking place (Hunton, 2012). The challenges Hunton (2012) 

raises regarding this model are the trade-offs between the spheres of influence and 

control law enforcement have over cybercrime investigations. Most notably, 

establishing ‘Criminal or Illicit Intent’, detection and operations across borders in a 
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‘Globalised Environment’ and the tactics, techniques and procedures the cybercriminal 

uses for ‘Evasion and Concealment’. This is particularly relevant to the cryptocurrency 

environment ransomware attackers operate in. Using cryptocurrencies such as Bitcoin 

as a means of moving proceeds of cybercrime provides the perfect evasion from 

authorities by using an unregulated global financial network that conceals the identity 

of the source and destination of illicit funds.  

 

Furthermore, Chang (2010), raises the implication of knowledge management in 

cybercrime investigations. Sharing investigative knowledge across intelligence and law 

enforcement agencies relating to cybercrime is critically important in the conviction of 

cybercriminals and the prevention of future crime. Applied at a conceptual level, 

knowledge management enables organisations to collect, detect, arrange, disseminate 

and communicate essential information and case history to enhance problem solving 

and decision making, root cause analysis, education and learning along with strategic 

planning, standards and policy development (Gupta et al, 2000). In the absence of any 

knowledge management system for ransomware-Bitcoin investigations, a system such 

as the one proposed in this research could be a catalyst for future research combining 

the knowledge management components identified by Gupta et al, (2000). The next 

section goes into more detail about how a knowledge graph for ransomware-Bitcoin 

investigations could shape future research.  

 

7.7 Discussion and future work 

Cryptocurrency systems are inherently anonymous or pseudonymous by design. 

Generally speaking, they operate on a peer-to-peer networking basis without the 
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controls or regulations of a central authority that provides governance and compliance 

to the law and financial standards. 

 

Participants on cryptocurrency networks are not always required to provide Personal 

Identifiable Information (PII) or customer identification which would allow for 

attribution of transactions between cryptocurrency addresses (accounts). Even though 

cryptocurrency networks typically contain a publicly available ledger, the blockchain, 

of all transactions between sender and receiver, it remains a challenge, without the right 

data, to know who is actually behind any transaction. The graph machine learning 

system presented in this paper is based on the GraphSage algorithm.  

 

Applied to the WannaCry cash-out payment network generated from the ransomware 

Bitcoin seed address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw, the system 

leverages graph embeddings to produce a methodology for classification and prediction 

in ransomware-Bitcoin networks. This can be used for targeted intelligence collection, 

investigation and analysis into the behaviour of ransomware-Bitcoin networks. In fact, 

if law enforcement had a similar system in place during the course of the WannaCry 

attack, the investigation into the payment networks created from the associated seed 

addresses may have started sooner and investigators might have begun monitoring, 

clustering and predicting the path of payments being made by victims and attackers. 

One hypothetical course of action that would have been made possible with our 

proposed method might have been the early shut down of Bitcoin exchanges with a 

visible influx of addresses making payments to the seed address. Such action might 

have further limited the yield of ransom payments collected by the WannaCry attackers.  
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Furthermore, the data collected from the attack, once analysed and catalogued using 

our proposed system, may serve as a basis for future models of ransomware payment 

networks. Thus, by defining an enhanced data model for ransomware-Bitcoin 

payments, policing and law enforcement actors can work from a common basis when 

investigating the Bitcoin components of a ransomware attack. Using a system similar 

to that described in this paper we could ultimately produce a Bitcoin knowledge graph 

that would reveal the real origin and destination of any Bitcoin transaction.     

 

A critical challenge facing law enforcers is determining whether a criminal transaction 

has taken place. Our model does this from a ransomware payment perspective, though 

more diverse data would be needed to mitigate bias as much as possible.  In addition, 

one must identify the ultimate beneficiaries and the source of these criminal proceeds 

(transactions). Addressing these two things is highly dependent on the available data 

that the cryptocurrency system can reveal. Suspecting a certain address on the network 

of having criminal intention is simply not enough. Having targeted intelligence to 

inform our analysis will provide steps in the right direction as addresses under 

surveillance may be traced to their ultimate points of presence (e.g., exchanges, 

services, different currency networks) which could help in their attribution.  

 

In this paper, only one source of data has been examined, namely the available 

blockchain data, known as ‘on-blockchain’ data. By examining the inherent features 

existing in the structures of the networks formed by ransomware attackers cashing out 

their ransomware payments, this research showed the utility of the graph embedding 

techniques combined with existing graph features to predict cluster membership. 

However, future research could broaden the scope to include historical criminal data 
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collected on aggregate by examining generalised patterns of suspicious behaviour that 

correlate with criminal activity.  

 

Another potential line of investigation may seek to develop an indexation of a 

cryptocurrency network to allow law enforcement to develop a knowledge graph 

schema defined by meta-data points relating to addresses and their activity, interlinking 

objects, context, events, situations or abstract concepts. This would be an interoperable 

knowledge graph that will make threat intelligence available to law enforcement 

agencies and financial intelligence units. For example, by being able to look up 

addresses and have information revealed about which exchanges the addresses belong 

to, what purchases might have been made, what exchanges or services have they sent 

to, do they have illicit transactions flagged, what IP addresses are being used and what 

their geolocation is. The reverse is also possible, by searching IP address ranges, 

geolocations, exchanges and services to reveal addresses and transactions that are 

flagged as illicit. 

  

Nonetheless, this would involve a costly effort of data integration, modelling and 

additional data engineering. This raises many subsequent questions for future research 

to address.  As an example, how and who populates the meta-data so investigations can 

become more targeted? Can data be integrated from other law enforcement systems? 

What data governance, privacy and quality controls are in place? The exploration of 

these questions are needed to make sure the knowledge graph is trustworthy ensuring 

downstream machine learning systems can use even more reliable features for 

prediction and detection.   
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7.8 Conclusion 

This research develops a machine learning system that applies advanced techniques to 

the challenge of identifying, classifying, and predicting active nodes in a ransomware-

Bitcoin payment network. Indeed, if a system like the one we discuss in this paper were 

to be implement on a large scale across different cryptocurrencies, the capacity of law 

enforcement and security agencies to identify unfolding ransomware attacks in real 

time may be dramatically enhanced, as would their capacity to launch immediate 

countermeasures to disrupt such campaigns. 

From a technical perspective, the GraphSAGE algorithm was used to induce 

embeddings representative of the network structure. These provide crucial information 

that facilitates the classification and prediction steps of the method. An analysis of 

sample data yielded three clusters as follows: a Small Transaction Cluster, a cluster of 

addresses and transactions centred around the ransomware seed address (Seed Target 

Cluster), and a cluster that represents large transaction amounts  (Large Transaction 

Cluster). Ultimately, training enabled our system to predict the cluster of hitherto 

unseen data with above 80% accuracy. Furthermore, mis-classified nodes emerge as 

significant objects of further investigation. These anomalies revealed high-valued 

addresses and transactions that appeared in the Top Ten Nodes of Interest in Appendix 

7A.  

 

Importantly, this research draws on one set of data only. This could result in the model 

overfitting the test and validation data sets. However, these data are rich in terms of 

representing a particular ransomware campaign, WannaCry. The system and features 

should be validated more broadly across other ransomware and non-ransomware 
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payment networks. This would also include an extensive data labelling exercise to 

enhance node clustering.   

 

7.9 Appendix 7A – Top Ten Nodes of Interest 

Transaction id / Bitcoin Address PageRank 

29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d27 41.9379236 

1ArG3JwEbF4WrCiEnXQXUAgQumAVzqnQHD 20.49719017 

1ETWkyQUY9nRpVMyGwha4vRhwKgMbomMQe 20.49719017 

d66b4c334c21e7d250b05477c013af1430f3c2680a06a173dc9bfff25e374be9 4.632821567 

1589f5d03ee14227c84a4e02abd9c0956ff3636f2e53491d5a2004e59ba65e5c 1.679999858 

1P2SbiV5zKAwMTZH1VdExXM2sXRjkCeTsx 1.309936988 

131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3 1.30523067 

6fc639ba056de897d32c26cc2f5a917dfb38256eef5e92244edf06284cd82ab0 1.187964619 

19UyfTi6hv8CGTVP62DcLu4EmyBuihQiNy 1.159769952 

3332d270983f3183af866714b8eb4ad226f4f4bea2ce42efcfd2de2dfdaf0f12 1.095922448 

Table 7A-1: Top 10 highest PageRanked nodes in the WannaCry-Bitcoin cash out 

network 

 

Transaction id / Bitcoin Address In + Out degree 

29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d27 238 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 112 

35e5d5fe8c8128cfa6884f56be5817e4138c58c91b79d78d3e78a8d365b9d8a7 77 

409803bb5e124fd028c0482027c7722e84ce55b78204b279d3a44aba5e7c1698 38 

1589f5d03ee14227c84a4e02abd9c0956ff3636f2e53491d5a2004e59ba65e5c 21 

1P2SbiV5zKAwMTZH1VdExXM2sXRjkCeTsx 8 

6fc639ba056de897d32c26cc2f5a917dfb38256eef5e92244edf06284cd82ab0 8 

131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3 7 

1ArG3JwEbF4WrCiEnXQXUAgQumAVzqnQHD 7 

1ETWkyQUY9nRpVMyGwha4vRhwKgMbomMQe 7 

Table 7A-2: Top 10 nodes with the highest ‘in-degree’ + ‘out-degree’ 
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Transaction id / Bitcoin Address Exposure 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 2.272107993 

35e5d5fe8c8128cfa6884f56be5817e4138c58c91b79d78d3e78a8d365b9d8a7 1.588035099 

409803bb5e124fd028c0482027c7722e84ce55b78204b279d3a44aba5e7c1698 0.7574051366 

1589f5d03ee14227c84a4e02abd9c0956ff3636f2e53491d5a2004e59ba65e5c 0.5441211254 

131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3 0.5183707623 

29779df2e2a5a1f823b22e7e974a0082bdfd389edc1c11d1d4f6b290d8118d27 0.434599737 

1P2SbiV5zKAwMTZH1VdExXM2sXRjkCeTsx 0.3361561715 

36ef488e59d719fb906254aed61bfe46e8f64778bc6cac97e56a68c241004c28 0.271876212 

1ETWkyQUY9nRpVMyGwha4vRhwKgMbomMQe 0.1259019088 

3332d270983f3183af866714b8eb4ad226f4f4bea2ce42efcfd2de2dfdaf0f12 0.1085622182 

Table 7A-3: Top 10 nodes with the highest exposure metric 

 

Transaction id / Bitcoin Address Total Amount (BTC) 

131551e35e7a644b76ea5366f744313bff3f959207c416f7b7b7f9b1cc90b0a3 64.87039825 

1P2SbiV5zKAwMTZH1VdExXM2sXRjkCeTsx 36.80910078 

1ETWkyQUY9nRpVMyGwha4vRhwKgMbomMQe 36.76335736 

36ef488e59d719fb906254aed61bfe46e8f64778bc6cac97e56a68c241004c28 34.02336596 

1589f5d03ee14227c84a4e02abd9c0956ff3636f2e53491d5a2004e59ba65e5c 22.69762409 

35e5d5fe8c8128cfa6884f56be5817e4138c58c91b79d78d3e78a8d365b9d8a7 18.06647723 

16dfTuSx4f78eQ81PzTgBtBDyZ7QhNZ8Vy 18.05592644 

2b22df65026d8384e01e0deb9b115ba9725bbe9d95c4f61d18dee6e40fa47b74 18.05571527 

95d36a6926639ba50d02f190d3ca2f9322ce721502d47b32a1e8d8be1b13cb40 18.04870541 

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 17.77113037 

Table 7A-4: Top 10 nodes with the largest transaction amount 
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7.10 Appendix 7B – Graph Catalogue 

//--3.c. Graph Embeddings 

//--GRAPH SAGE - http://snap.stanford.edu/graphsage/ 

//--Ref: Inductive Representation Learning on Large Graphs - https://arxiv.org/pdf/1706.02216.pdf 

//--Representation Learning on Graphs: Methods and Applications - https://arxiv.org/pdf/1709.05584.pdf 

//--Git - https://github.com/williamleif/GraphSAGE 

//--Default parameters taken from: https://neo4j.com/docs/graph-data-science/1.3-preview/algorithms/alpha/graph-sage/ 

//--BETA release : https://neo4j.com/docs/graph-data-science/current/algorithms/graph-sage/ 

//--https://neo4j.com/developer/graph-data-science/graph-embeddings/ 

 

//--3.c.i CREATE ANOTHER GRAPH CATALOG - TO TRAIN THE GRAPH SAGE MODEL 

//--Addresses with transactions 

//--make sure the data types are the same be mindful of the fact that not all properties exist on each node label and maybe projected as 0 

values 

//--the same properties are required on each node label for the model to train 

//--Node properties MUST BE present for each label in the graph: Example: [exposure, time_stamp, total_in_amount 

//--total_out_amount]. Properties that exist for each label are [in_degree, pageRank, out_degree] 

CALL gds.graph.create( 

   'addresses_with_transactions_1', { 

       output: { 

               label: 'output', 

               properties: { 

                   risk_rating: { 

                       property: 'risk_rating', 

                       defaultValue: 0.0 

                   }, 

                   pageRank: { 

                       property: 'pageRank', 

                       defaultValue: 0 

                   }, 

                   in_degree: { 

                       property: 'in_degree', 

                       defaultValue: 0 

                   }, 

                   out_degree: { 

                       property: 'out_degree', 

                       defaultValue: 0 
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                   }, 

                   time_stamp: { 

                       property: 'time_stamp', 

                       defaultValue: 0 

                   }, 

                   total_amount: { 

                       property: 'total_amount', 

                       defaultValue: 0.0 

                   } 

               } 

           }, 

       tx: { 

               label: 'tx', 

               properties: { 

                   risk_rating: { 

                       property: 'risk_rating', 

                       defaultValue: 0.0 

                   }, 

                   pageRank: { 

                       property: 'pageRank', 

                       defaultValue: 0 

                   }, 

                   in_degree: { 

                       property: 'in_degree', 

                       defaultValue: 0 

                   }, 

                   out_degree: { 

                       property: 'out_degree', 

                       defaultValue: 0 

                   }, 

                   time_stamp: { 

                       property: 'time_stamp', 

                       defaultValue: 0 

                   }, 

                   total_amount: { 

                       property: 'total_amount', 

                       defaultValue: 0.0 

                   } 

               } 

           } 
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   }, { 

   PAYS: { 

       type: 'PAYS', 

       orientation: 'NATURAL', 

       properties: { 

           amount: { 

               property: 'amount', 

               defaultValue: 0.0 

           }, 

           time_stamp: { 

               property: 'time_stamp', 

               defaultValue: 0 

       } 

     } 

   } 

 } 

) 

YIELD graphName, nodeCount, relationshipCount; 

 

 

7.11 Appendix 7C – Predicted Cluster Label 

       

 0  1  Total  

Cluster Label # Predicted Cluster Label % # Predicted Cluster Label % # Predicted Cluster Label % 

0 30 (45.45%) 45.45% 19 (28.79%) 28.79% 49 (74.24%) 74.24% 

1 -  5 (7.58%) 7.58% 5 (7.58%) 7.58% 

2 5 (7.58%) 7.58% 7 (10.61%) 10.61% 12 (18.18%) 18.18% 

Grand Total 35 (53.03%) 53.03% 31 (46.97%) 46.97% 66 (100.00%) 100.00% 

Table 7C-1: Training run 1 for test data on WannaCry ransomware-Bitcoin cash-out 

graph 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 
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 0 Total 

Cluster Label # Predicted Cluster Label  Predicted Cluster Label 

0 46 (71.88%) 71.88% 

1 6 (9.38%) 9.38% 

2 12 (18.75%) 18.75% 

Grand Total 64 (100.00%) 100.00% 

Table 7C-2: Training run 2 for test data on WannaCry ransomware-Bitcoin cash-out 

graph 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 

 

   

 0 Total 

Cluster Label # Predicted Cluster Label  % Predicted Cluster Label 

0 56 (80.00%) 80.00% 

1 6 (8.57%) 8.57% 

2 8 (11.43%) 11.43% 

Grand Total 70 (100.00%) 100.00% 

Table 7C-3: Training run 3 for test data on WannaCry ransomware-Bitcoin cash-out 

graph 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 

 

   

 0 Total 

Cluster Label # Predicted Cluster Label  % Predicted Cluster Label 

0 49 (80.33%) 80.33% 

1 3 (4.92%) 4.92% 

2 9 (14.75%) 14.75% 

Grand Total 61 (100.00%) 100.00% 

Table 7C-4: Training run 4 for test data on WannaCry ransomware-Bitcoin cash-out 

graph 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw 
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Chapter 8 : Conclusion 
 

 

8.1 Chapter Overview 

Due to the inherent complexities of monitoring cryptocurrency transactions associated 

with ransomware activity, failure to associate context and reveal clear patterns of 

behaviour that can lead to attribution or seizure of funds is a common occurrence. 

Typically, these issues are related to the scale and convolutedness of cryptocurrency 

data residing on the blockchain. In order to obtain sustainable ransomware-Bitcoin 

analysis approaches it is imperative that we exploit the data rich cryptocurrency 

platforms using reusable and open source techniques. Enhancing this data by harvesting 

meta-data for knowledge graph analysis enables us to learn the complexities of 

attributing context to cryptocurrency data and move from raw data collection to 

knowledge (graph) based contextualisation. As such, this thesis is a culmination of 

work addressing the intelligence applications of Bitcoin payments related to 

ransomware. This research has contributed to the development of models and 

frameworks for researchers, investigators, and law enforcement to use for the 

collection, analysis, and dissemination of insights into the nature of ransomware-

Bitcoin payments. This chapter provides a summary of results, detailing the key 

findings and contributions (Section 8.2) and discussing directions for future research 

(Section 8.3).   

 

8.2 Summary of Results 

Chapters 1 to 3 provide the initial grounding for this research, outlining the importance 

of this work and its place within the general field of illicit Bitcoin transaction analysis. 
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These chapters also provide the focus needed to develop the collection and analysis 

models for target centric intelligence and forensic analysis purposes. The collection and 

analysis models are designed to be agnostic in nature. This provides a certain 

standardisation to the approach of analysing this problem space. For example, in 

Chapter 3, ROI and RPPI are generic metrics developed as part of this research, and 

applicable to multiple ransomware campaigns. In addition, figure 3.1 shows a newly 

developed classification matrix, which gives analysts a tool to assess the strategic 

intention of any ransomware campaign. Furthermore, figure 3.3 is, by definition, a 

generic system model for ransomware payment movement, and can be used to map the 

attack/victim workflow. Chapters 4 and 5 apply this modelling through the 

development of a system that enables collection and analysis using a commonly used 

Cyber Threat Intelligence (CTI) standard, STIX. Although we focus on WannaCry, 

Chapter 4 yields a reusable ICP for ransomware-Bitcoin campaigns. Table 4.2 uses 

generic information requirements to form a picture of ransomware payment networks. 

In addition, the SRBF is utilising an open standard framework for CTI. The newly 

developed objects relate specifically to ransomware-Bitcoin payments. Therefore, the 

objects can be reused for those campaigns using the Bitcoin cryptocurrency. Other 

objects would need to be developed for other types of cryptocurrencies. Chapter 5 

conceives the Ransomware – Bitcoin Intelligence – Forensic Continuum in figure 5.1. 

This can be applied to all types of ransomware campaigns as different campaigns share 

similar phases along the kill chain at different points in time. Furthermore, pattern 

analysis and a machine learning system were developed to reveal deeper insights into 

the data collected from various ransomware-Bitcoin cash-in and cash-out campaigns in 

Chapters 6 and 7. The Ransomware-Bitcoin Graph Analysis System is proposed in 

Chapter 6, figure 6.2 as a reusable machine learning pipeline. It can be applied to any 
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ransomware campaign that is using a Bitcoin address as the seed address or ransom 

collector. Chapter 6 goes on to provide a novel approach to determining a risk rating of 

nodes in a ransom payment network. Similar approaches have been applied to 

fraudulent credit card payments. Chapter 7 enhances figure 6.2 by providing a 

classification and prediction step to the pipeline of figure 7.3. This is important as we 

look to build up feature sets of different ransomware payment networks which give 

experts a knowledge bank to help predict and simulate with higher precision how 

ransomware payment networks unfold. A standard graph data model (table 7.1) and an 

enriched graph data model (table 7.2) are defined. Exposure is a unique feature in the 

enriched data model derived in this research. This is a risk rating feature that could be 

used in any type of fraudulent payment network scenario. The prediction model used 

in figure 7.3 is not trained on diverse datasets. This is where further testing and 

validation is required. This can result in more time spent on feature engineering than 

desired.  

Each chapter of this thesis addresses an objective (O1 – O5). How these objectives are 

addressed is summarised in the following subsections.  

 

8.2.1 Analysis Techniques for Illicit Bitcoin Transactions 

Chapter 2 addresses O1, namely to identify the incumbent techniques used for analysis 

of illicit Bitcoin transactions and use these techniques to explore the technical 

(blockchain) and non-technical (regulatory) mechanisms for identifying and preventing 

ransomware-Bitcoin payments. The literature review in Chapter 2 examines the current 

literature relating to analysis techniques for illicit Bitcoin transactions. The chapter 

reveals a need to address the absence of techniques available to security researchers, 

the intelligence community, and investigators when it comes to specifically discovering 
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illicit ransomware payments using cryptocurrencies such as Bitcoin. A regulatory 

environment scan is undertaken to elucidate the numerous policy and compliance 

efforts being conducted around the world when it comes to regulating cryptocurrency 

payment networks. The chapter highlights the various instruments in play; however, 

there is a lack of implementation and jurisdictional consequences if cryptocurrency 

services do not follow the policy guidance. The chapter also takes a more technical 

approach to analysis by leveraging the vast swathes of data cryptocurrency networks 

contain. It examines the original analysis heuristics on clustering and how this can be 

used to provide greater attribution to the illicit users of Bitcoin. In addition, graph 

analysis dives into the structures of payment networks and what they reveal by 

modelling cryptocurrency addresses and transactions as a graph problem. Furthermore, 

advanced machine learning techniques are discussed and how deep learning can be 

applied to the graph problems for greater understanding of transaction behaviour 

patterns. Finally, a subset of these techniques is examined through the lens of a 

ransomware attack.  

 

8.2.2 A Ransomware-Bitcoin Target Network Model 

Chapter 3 addresses O2, namely to develop a framework based on the characteristics 

of a ransomware-Bitcoin network to classify a ransomware attack as destructive or 

revenue generating. In this chapter, a Target Network Model (TNM) of the underlying 

financial infrastructure of the WannaCry ransomware is established. This includes 

understanding the payment networks formed to conduct ransomware attacks. By 

breaking down the WannaCry system and cyber kill chain, a timeline is formed to 

understand the key elements from attack mobilisation to cash-out of the ransom 

payment collected in Bitcoin. Identification of the potential involvement of nation states 
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also forms part of this system breakdown. Ransomware-Bitcoin addresses (seed 

addresses), inflows (cash-in network), outflows (cash-out network), and the payment 

mechanics were examined to create a generic target model of the adversary. 

 

A number of observations on ransomware-Bitcoin transactions reveal certain payment 

patterns and what happens to the transactions at certain nodes, Bitcoin exchanges, and 

anonymising services. A Problem Definition Model (PDM) is created for WannaCry 

2.0 and is used as a template for understanding the driving components of a ransomware 

attack. By examining the component parts of a ransomware attack the proceeds of crime 

are revealed. The ransomware seed address patterns uncover the what, when, and where 

of ransom payments. The subsequent analysis of inflows, outflows, and formation of 

key communities as clusters of nodes can be indexed and categorised over the course 

of a ransomware campaign. Furthermore, the analysis of outflows is undertaken to 

discover who is attributed to an attack and to recommend intervention strategies. The 

ransomware kill chain is examined for command and control of the ransomware 

accounting and Bitcoin address creation. The chapter develops a blueprint that provides 

a visual guideline for analysis of the ransomware-Bitcoin problem space. 

 

8.2.3 A Threat Intelligence Collection and Dissemination Framework 

Chapter 4 addresses O3, namely to develop a ransomware-Bitcoin cyber threat 

intelligence sharing framework using the Structured Threat Intelligence eXpression 

(STIX) standard. This chapter develops an innovative methodology for modelling, 

analysing, collecting, and sharing intelligence on a ransomware adversary using Bitcoin 

blockchain data. Vast amounts of data were collected relating to the WannaCry 

ransomware attack so that the cash-in and cash-out ransom payment networks could be 
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modelled and analysed for threat intelligence relating to the Bitcoin payments made in 

a ransomware attack. By developing the STIX-Ransomware-Bitcoin Framework 

(SRBF) we are able to represent the threat intelligence of ransom payments moving 

through the Bitcoin ecosystem as a result of a ransomware attack. By using an 

internationally accepted standard for threat intelligence sharing such as STIX, the 

information can be shared, consumed, and analysed across the security community for 

an effective understanding of the threat these nefarious payments pose. The aim is to 

drive consumption of such intelligence sharing models in order to counter any future 

attacks and follow the money that leads investigators to the attackers and their bounty 

of Bitcoin that can be seized and returned to victims of ransomware. 

 

8.2.4 Ransomware-Bitcoin Transaction Pattern Identification and 

Characterisation 

Chapter 5 addresses O4, namely to examine patterns of ransomware-Bitcoin 

transactions that determine common profiles and attacker behaviour on the Bitcoin 

payment network for deeper graph analysis. Data were collected over the duration of 

the campaigns analysed (WannaCry, CryptoDefense, NotPetya and The Water Project 

charity, a non-ransomware control case), revealing the cash-in and cash-out strategies 

of these attacks. Systematic differences between the Bitcoin transaction patterns of 

charity and ransomware campaigns do exist. The ransomware attacks analysed reveal 

two distinct patterns after victims start making payments: either attackers accumulate 

ransom payments over a longer duration and then decide to move the funds on, or 

attackers keep their balance close to zero. The limitations are evident in the small 

sample of ransomware attacks analysed. However, by taking this approach a catalogue 

of strategies could be developed for law enforcement officials to leverage in their 
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investigations. Other analysis techniques were also applied to discern specific patterns 

of ransomware payment behaviour. Graph observations were built to visualise patterns 

of the standard transaction graph to look for any similarities between the structure of 

the cash-in and cash-out graphs. Community detection analysis and graph embeddings 

were utilises to produce definitive insights for risk analysis using the PageRank 

algorithm and unsupervised machine learning techniques that embedded latent features 

into the graphs for a deeper contextual understanding of what role specific Bitcoin 

addresses and transactions perform in the ransomware payment network.  

8.2.5 A Machine Learning System using Graph Embeddings with Derived 

Risk and Exposure 

Chapters 6 and 7 address O5, namely the development of a measure of risk in a 

ransomware-Bitcoin payment network that reveals nodes and communities that can be 

targeted for investigation and disruption. It was evident from the investigation into 

various ransomware campaigns and the results of the applied methods developed 

throughout this thesis that pattern analysis techniques can reveal unique payment 

strategies of ransomware attackers during their cash-out networks. Moreover, graph 

machine learning techniques, such as graph embeddings, are able to reveal context 

within a cash-out network. The lesser impact of these techniques was experienced on 

the cash-in networks as these networks are indistinguishable to other services receiving 

payments on the Bitcoin network. Further research should be focused on the cash-in 

network, as this will provide an earlier point of intervention into the payments of 

ransom during a ransomware campaign.  
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In particular, the practice of graph embedding was experimented with using the 

DeepWalk algorithm developed by Perozzi et al (2014). The application of graph 

embedding techniques is an important emerging practice in the area of graph machine 

learning. When embeddings are derived from a given graph, latent features are used to 

reduce a collection of properties from the graph that can be further utilised in 

downstream machine learning operations. For example, in this research the embeddings 

were used as input into the Cosine Similarity function in order to determine a node’s 

proxy for risk relative to a ransomware-Bitcoin seed address. This is a powerful concept 

in the case of ransomware-Bitcoin payment analysis. The study draws on one set of 

data only. These data are rich in blockchain properties relevant to a ransomware-Bitcoin 

payment network. This research mainly focuses on the cash-out graph for WannaCry 

2.0 using graph embeddings. However, future research may consider a general 

collection of properties on the network, such as payment amount, pageRank, node 

riskiness, and the in and out degree of a node, which can be deemed influential for 

identifying ransomware-Bitcoin payments. This creates the potential to develop a 

reusable feature store which implants domain knowledge into the raw network data for 

other analysts, data scientists or researchers to use and reference for future machine 

learning model development (Lakshmanan et al, 2020). Multiple feature sets can be 

created and documented with essential meta-data that can serve a searchable knowledge 

base to discover what feature sets of a ransomware-Bitcoin network may provide the 

best predictive powers for a classification or anomaly detection algorithm.  

 

8.3 Directions for Future Research 

The concepts developed and application of these developed concepts throughout the 

course of this research have demonstrated enhanced ransomware-Bitcoin intelligence 
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collection and analysis methods. However, the rapidly evolving discourse on the 

subject of ransomware calls for similarly evolving action against this threat and the 

associated ransomware payments. Recent developments in the field of ransomware-

cryptocurrency analysis reveal three key areas of potential focus, detailed in the 

following subsections. Along the with the research presented in this thesis, these three 

future research areas are inextricably linked and as the threat of ransomware 

perpetuates, research must push into these areas to influence the use of data, technology, 

policy, and governance to enable intelligence agencies and law enforcement to protect 

individuals, organisations, and critical infrastructure. Further research in these areas is 

likely to help increase the effectiveness of intelligence collection and analysis 

capabilities to detect, disrupt, prevent or to subrogate money flows relating to 

ransomware.  

8.3.1 Focus on Data 

Firstly, a future focus needs to be placed on data. As we continue to collect data on 

ransomware attacks, it is imperative that the volume, variety, and velocity of this data 

render our capabilities for advanced threat detection more intelligent. Underreporting 

and continued ransomware identification challenges were highlighted in the 2022 

Crypto-crime report from Chainalysis (Chainalysis, 2022). It is understandable that 

private enterprises look to monetise cryptocurrency data assets. However, research 

needs to direct efforts towards open standards and data models that allow for open threat 

intelligence sharing on illicit cryptocurrency activity. This will lead to actionable 

intelligence and allow law enforcement in addition to public and private enterprises to 

enact more collaboratively on the emergence of legislation like the Ransomware 

Payments Bill 2021 (No. 2) (Parliament of Australia, 2021). For example, Part 2 of the 
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Ransomware Payments Bill 2021 (No. 2) outlines the need for entities to conduct timely 

mandatory reporting on ransomware payments made:  

“(2) The notice must set out: 

(a) the name and contact details of the entity; and

(b) the identity of the attacker, or what information the entity knows about the

identity of the attacker (including information about the purported identity of 

the attacker); and 

(c) a description of the ransomware attack, including:

(i) the cryptocurrency wallet etc. to which the attacker demanded the

ransomware payment be made; and 

(ii) the amount of the ransomware payment; and

(iii) any indicators of compromise known to the entity.

(3) An indicator of compromise is technical evidence left by the attacker that

indicates the attacker’s identity or methods.” (Parliament of Australia, 2021). 

When it comes to the topic of data, there are further steps that can be taken. With the 

mass collection of illicit cryptocurrency activity there would be low barriers to 

developing a large scale distributed database with today’s computing power and 

capability. The formation of an entire knowledge graph that is searchable on metadata 

criteria retrieving illicit patterns and money flows could be learned from illicit activity 

and indexed like current web and map search capabilities. Pushing the collection 

boundaries further, real time contextual knowledge could also be provided along with 

integrated messaging for intelligence and investigation knowledge sharing along with 

cross-border collaboration. This would vastly improve the metrics and features used to 

prevent and track illicit money flows.  
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8.3.2 Evolution of Ransomware Business Models 

Ransomware business models, such as Ransomware-as-a-Service (RaaS), are rapidly 

evolving, with a large uptick in ransomware strain development and deployment. 

Identified as the top risk in the 2021 Gartner Emerging Risks Monitor Report, “new 

ransomware models” are enabling organised cyber crime gangs to use ready made 

ransomware infrastructure making the business of ransomware more specialised, highly 

efficient, and more rewarding (Gartner, 2021). Developers are able to put their 

ransomware code on darknet marketplaces and collect a fee for every usage of their 

released strain (Chainalysis, 2022). This is also reflected in the increase of active 

ransomware strains. The number of these strains increased from 79 (2019) to 119 

(2020) to 140 (2021) (Chainalysis, 2022). This shows a Compound Annual Growth 

Rate (CAGR) of 20%. A perpetual self-funding model could be emerging. This creates 

a dichotomy between the dark markets that facilitate proceeds of crime and funding for 

malicious Software-as-a-Service (SaaS) that must be investigated further to arrest the 

further propagation of ransomware variants.   

8.3.3 Geopolitical Implications and Impacts of Critical Infrastructure 

As outlined in this research, the ransomware classification matrix demonstrates that a 

ransomware attack can be seen primarily as a tool of destruction and/or a revenue 

generating campaign (Turner et al, 2019). However, recently observed ransomware 

attacks reveal a shift in motivation towards a tool of destruction. As such, it is vital to 

investigate the increasing geopolitical implications and impacts on critical 

infrastructure. For example, the current Ukrainian-Russian tensions have led to several 
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targeted ransomware attacks: a malicious program known as BootPatch held 

government systems ransom demanding “$10k via bitcoin wallet” (CERT-UA, 2022) 

and WhisperGate (a NotPetya look-alike) targeted Ukrainian organisations (Trend 

Micro, 2022). In addition, a NotPetya attack on Ukrainian organisations in 2017 that 

disrupted critical financial, energy, and government systems was attributed to the 

Russian Military (National Cyber Security Centre, 2018). The largest revenue 

generating ransomware strain of 2021, Conti, is purportedly operated by a government 

controlled cybercrime gang based in Russia (Chainalysis, 2022).  In 2021 the Colonial 

Pipeline attack associated with an Eastern European cybercrime group (Trend Micro, 

2021) disabled systems responsible for “45 percent of the fuel used on the East Coast 

of the United States” (U.S Department of State, 2021). The recovery of 63.7 bitcoins 

paid in ransom from this attack has also highlighted the importance of cryptocurrency 

traceability capability (U.S. DOJ, 2021b; Wolf, 2021).  
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Appendices 

The following appendices provide links to the Harvard Dataverse: Bitcoin Network 

Data Dataverse. Published on 9 October 2022. Available from: 

https://dataverse.harvard.edu/dataverse/bitcoin-network-data/. 

Appendix A – Source Code 

Turner, A. (2021). Source Code. Available from: 

https://doi.org/10.7910/DVN/BYV3FW, Harvard Dataverse, Published (Oct, 2022). 

Turner, A. (2021). Bitcoin-seed-extract. Available from: 

https://github.com/AdamT23/bitcoin-seed-extract (GitHub public repository). 

Appendix B – Raw Network Data 

Turner, A. (2021). Transaction History. Available from:  

https://doi.org/10.7910/DVN/3SH9O6, Harvard Dataverse, Published (Oct, 2022). 

Turner, A. (2021). Raw Network Data. Available from: 

https://doi.org/10.7910/DVN/WGXC9G, Harvard Dataverse, Published (Oct, 2022). 

Appendix C – Data Analysis 

Turner, A. (2021). Analysis. Available from: https://doi.org/10.7910/DVN/PRJ8Y2, 

Harvard Dataverse, Published (Oct, 2022). 

https://dataverse.harvard.edu/dataverse/bitcoin-network-data/
https://doi.org/10.7910/DVN/BYV3FW
https://github.com/AdamT23/bitcoin-seed-extract
https://doi.org/10.7910/DVN/3SH9O6
https://doi.org/10.7910/DVN/WGXC9G
https://doi.org/10.7910/DVN/PRJ8Y2
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