Macquarie University
01whole.pdf (6.06 MB)

Design and performance improvement of radial line slot array antennas

Download (6.06 MB)
posted on 2022-03-28, 17:20 authored by Mst Nishat Yasmin Koli
Rapid increase in satellite-based wireless services has created a demand for directive beam-steering antennas with wide radiation bandwidths. Commercially available parabolic reflectors provide satisfactory performance but their bulky physical appearance and nonplanar configuration make them less attractive in several applications. Microstrip array antennas exhibit poor radiation efficience at higher gain. Radial line slot array (RLSA) antennas are known for their directive radiation charateristics and planar profile but suffer from limited radiation bandwidth and lack the beam-steering feature. This thesis presents RLSA antennas with improved radiation performance, wide radiation bandwidth and beam-steering feature. Several RLSA antennas have been designed. One of these RLSA antennas has a gain of 36.9 dBic with radiation efficiency greater than 90%. By optimising near-field amplitude distortion, sidelobe level of an RLSA antenna has been reduced to -26.1 dB, which comes close to Class-2 and Class-3 ETSI antenna standards. RLSA radiation bandwidth has been enhanced by introducing permittivity variation of the dielectric materials in the cavity. Such an antenna has demonstrated a 3-dB directivity bandwidth of 19.4% and an axial ratio bandwith of 27.3%. Furthermore, this thesis also presents a methodology to steer the beam of RLSA antennas by using a pair of near-field phase-transforming metasurfaces.


Table of Contents

1. Introduction -- 2. Background -- 3. Radial line slot array antenna design methodology -- 4. RLSA antennas with uniform and tapered amplitude distributions -- 5. Radiation bandwidth improvement of RLSA antennas -- 6. Beam steering of RLSA antenna using metasurface -- 7. Conclusion -- Appendices -- References.


Bibliography: pages 67-71 Theoretical thesis.

Awarding Institution

Macquarie University

Degree Type

Thesis MRes


MRes, Macquarie University, Faculty of Science and Engineering, Department of Engineering

Department, Centre or School

Department of Engineering

Year of Award


Principal Supervisor

Karu Esselle

Additional Supervisor 1

Raheel Maqsood Hashmi


Copyright Mst. Nishat Yasmin Koli 2017. Copyright disclaimer:




1 online resource (xx, 71 pages) graphs, tables

Former Identifiers