01whole.pdf (13.21 MB)
Download fileImproved PCA-based techniques for face and finger-vein recognition systems
thesis
posted on 2022-03-28, 12:29 authored by Sepehr DamavandinejadmonfaredBiometrics refers to metrics related to human characteristics and biometric technologies use physical or behavioural characteristics of people to identify and recognize an individual. With the ever increasing growth in cybercrimes, biometric technologies have become increasingly important in this digital information age. The focus of this thesisis on the design ans application of new techniques for image based biometrics recognition systems using faces and finger veins. Principal Component Analysis (PCA) is a way of identifying patterns in data, and expressing the data in such a way as to highlight their similarities and differences. The PCA technique plays an important role in feature extraction and dimensionality reduction. In this thesis, we propose a variety of extensions of PCA technique using kernel and entropy based extensions. We have proposed new algorithms to face and finger vein recognition systems and show that these extensions can yield better results in terms of accuracy and performance.