posted on 2022-03-28, 12:27authored byMd Eshrat E. Alahi
Nitrate-N is a naturally occurring ionic compound that is part of nature's nitrogen cycle. Nitrates-N are readily lost to ground and surface water as a result of intensive agriculture, industrial wastes, disposal of human and animal sewage. The impact of elevated nitrate-N concentrations on water quality has been identified as a critical issue of a healthy environment for the future. Presently, water quality managers follow the traditional measurement systems that involve physically collecting the sampling water from remote sites and testing it in the laboratory. These methods are expensive, require trained people to analyse the data and produce much chemical waste. Therefore, low-cost Ion Imprinted Polymer (IIP) coated impedimetric nitrate-N sensor was developed, and the detection range of nitrate-N was 1-10 (mg/L). The selective IIP material was sensitive to nitrate-N ions in an aqueous medium, and the results are validated through standard UV-spectrometric methods. MEMS (microelectro-mechanical-system) based interdigital sensor and sensing system was also developed to measure nitrate-N, and the range was 0.01 - 0.5 (mg/L). The graphene-based low-cost sensor was also fabricated, and the sensor was characterized to measure nitrate-N in the range of 1-70 (mg/L). Temperature compensation was added for both the sensors (MEMS and Graphene) and WiFi connectivity was provisioned in the system to transfer the measured data in real time. An improved LoRa based sensing system (solar panel and rechargeable battery powered) was developed and trialled in the field successfully which can measure the nitrate-N concentration in real-time and transfer the data to IoT cloud server to overcome the limitations of lab based sensing system.
History
Table of Contents
1. Introduction -- 2. Literature review -- 3. Interdigitated sensing and electrochemical impedance spectroscopy -- 4. Temperature sompensation for low concentration nitrate measurement -- 5. Graphene-PDMS sensor for nitrate measurement -- 6. Selectivity of nitrate sensor -- 7. IoT enabled smart sensing system -- 8. Conclusions and future work -- Bibliography.
Notes
Thesis by publication.
Bibliography: pages 125-146
Awarding Institution
Macquarie University
Degree Type
Thesis PhD
Degree
PhD, Macquarie University, Faculty of Science and Engineering, School of Engineering
Department, Centre or School
School of Engineering
Year of Award
2018
Principal Supervisor
Subhas Chandra Mukhopadhyay
Additional Supervisor 1
Lucy Burkitt
Rights
Copyright Md Eshrat E Alahi 2018.
Copyright disclaimer: http://mq.edu.au/library/copyright