posted on 2022-03-28, 16:12authored byFrancesco Schiliro
The Internet of Things (IoT) has the potential to transform many industries. This includes harnessing real-time intelligence to improve risk-based decision making and supporting adaptive processes from core to edge. For example, modern police investigation processes are often extremely complex, data-driven and knowledge-intensive. In such processes, it is not sufficient to focus on data storage and data analysis; as the knowledge workers (e.g., police investigators) will need to collect, understand and relate the big data (scattered across various systems) to process analysis. In this thesis, we analyze the state of the art in knowledge-intensive and data-driven processes. We present a scalable and extensible IoT-enabled process data analytics pipeline to enable analysts ingest data from IoT devices, extract knowledge from this data and link them to process execution data. We focus on a motivating scenario in policing, where a criminal investigator will be augmented by smart devices to collect data and to identify devices around the investigation location, to communicate with them to understand and analyze evidence. We design and implement a system (namely iCOP, IoT-enabled COP) to assist investigators collect large amounts of evidence and dig for the facts in an easy way.
History
Table of Contents
1 Introduction -- 2 Background and state-of-the-art -- 3 Enabling IoT platforms in data-driven knowledge-intensive processes -- 4 Experiment and evaluation -- 5 Conclusion and future directions.
Notes
Theoretical thesis.
Bibliography: pages 46-52
Awarding Institution
Macquarie University
Degree Type
Thesis MRes
Degree
MRes, Macquarie University, Faculty of Science and Engineering, Department of Computing
Department, Centre or School
Department of Computing
Year of Award
2019
Principal Supervisor
Amin Beheshti
Rights
Copyright Francesco Schiliro 2019.
Copyright disclaimer: http://mq.edu.au/library/copyright