Macquarie University
01whole.pdf (13.89 MB)

Microspheres in the vicinity of a bifurcation at moderate Reynolds numbers

Download (13.89 MB)
posted on 2022-03-28, 14:01 authored by Tristan Siou
In microfluidic filtration processes a mixture of particles in a suspension are separated by applying external forces on microparticles to displace particles of different characteristics. Microfluidic continuous flow filtration methods are passive filtration methods that separate particles by using a boundary that causes the particles to cross streamlines to be collected at different outputs. These methods can offer some advantages over other filtration methods as they require relatively small sample sizes and they prevent clogging, making the process efficient and cost effective. The devices used in this practice do not require a filter membrane which obstructs the particle path and often needs to be replaced. This means a range of particle sizes can be filtered using this method as long as they are small enough to pass through the channel of a device. One particular approach to microfluidic continuous flow filtration uses channels with bifurcating channels of different flow rates to move particles of different sizes along different streamlines. This paper describes the motion of particles at the flow boundaries of these bifurcations at low to moderate Reynolds numbers to see if the fate of the particles near this boundary are affected by Reynolds numbers. This will be studied by running a stream of different sized polymer beads near a bifurcation and making observations of the particle path at different flow rates.


Table of Contents

1. Introduction -- 2. Background and theory -- 3. Approach and methodology -- 4. Analysis and results and discussion -- 5. Discussion -- 6. Conclusion -- 7. Future work -- 8. Abbreviations -- Appendices.


Empirical thesis. Bibliography: pages 61-63

Awarding Institution

Macquarie University

Degree Type

Thesis bachelor honours


BSc (Hons), Macquarie University, Faculty of Science and Engineering, School of Engineering

Department, Centre or School

School of Engineering

Year of Award


Principal Supervisor

David Inglis


Copyright Tristan Siou 2017 Copyright disclaimer:




1 online resource (xv, 63 pages colour illustrations)

Former Identifiers


Usage metrics

    Macquarie University Theses