Macquarie University
Browse

Not-so simple stellar populations in nearby, resolved intermediate-age massive clusters

Download (10.34 MB)
thesis
posted on 2024-03-07, 01:31 authored by Aashique Unnikrishnan

It is assumed that during stellar cluster formation, the stellar members form at the same time and inherit the chemistry of the progenitor cloud. Hence, this simplistic model of cluster formation assumes all cluster members to be a ‘simple stellar population’, which can be defined by a single-age isochrone. However, the simple stellar population model was challenged when it was observed that old globular clusters host chemically distinct populations of stars.

The presence of chemically distinct subpopulations in globular clusters came to be known as ‘multiple populations’, often interpreted from colour-magnitude diagram features like split/spread main sequences, red giant branches, sub-giant branches and horizontal branches. Several aspects regarding the formation, triggering and evolution of multiple populations within a globular cluster remain a mystery. However, cluster age and mass have been identified to play a role in the presence of multiple populations within them. Clusters older than 2 Gyr and more massive than 104𝑀 have been found to host multiple populations.

We aimed to study intermediate-age massive clusters around the critical age limit of 2 Gyr to constrain the presence of multiple populations as a function of cluster age. Do they exhibit deviations from the simple stellar population model? If so, are there chemical abundance spreads within these clusters? Or is the deviation from the simple stellar population model due to a difference in rotation rates or some other factor? We focused on the red giant branch stars of our intermediate-age cluster sample. Our study found the presence of multiple populations in the intermediate-age massive clusters, NGC 2121 and in the LMC field surrounding the cluster NGC 1953. Is this due to an actual abundance spread? The answer to this question lies in a proposed spectroscopic study of our targets.

History

Table of Contents

1 Introduction -- 2 A photometric study of three intermediate-age massive clusters in the Large Magellanic Cloud -- 3 A spectroscopic study of seven intermediate-age massive clusters in the Large Magellanic Cloud -- 4 Conclusions -- References

Awarding Institution

Macquarie University

Degree Type

Thesis MRes

Degree

Master of Research

Department, Centre or School

School of Mathematical and Physical Sciences

Year of Award

2023

Principal Supervisor

Richard de Grijs

Additional Supervisor 1

Devika Kotachery

Rights

Copyright: The Author Copyright disclaimer: https://www.mq.edu.au/copyright-disclaimer

Language

English

Extent

113 pages

Former Identifiers

AMIS ID: 281564

Usage metrics

    Macquarie University Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC