Macquarie University
2 files

Oxidation of ascorbate by protein radicals in simple systems and in cells

posted on 2022-03-28, 09:33 authored by Chia-chi Liu
Generation of peroxide groups in proteins exposed to a wide variety of reactive oxygen species (ROS) requires an initial formation of protein carbon-centred or peroxyl free radicals, which can be reduced to hydroperoxides. Both protein radicals and protein hydroperoxides are capable of oxidizing important biomolecules and thus initiate biological damage. In this study, we investigated the inhibition of protein hydroperoxide formation by ascorbate and GSH in gamma-irradiated HL-60 cells.--We used HL-60 cells as a model for general protection of living organisms by ascorbate (Asc) and glutathione (GSH) from the deleterious effects of protein hydroperoxides generated by radicals produced by gamma radiation. Measurement by HPLC indicated that incubation of HL-60 cells with Asc in the presence of ascorbate oxidase resulted in the accumulation of intracellular Asc. The intracellular Asc levels were lowered by irradiation, demonstrating intracellular consumption of Asc by the radiation-generated radicals. Exposure of HL-60 cells to increasing gamma irradiation doses resulted in increasing accumulation of protein peroxides in the cells. This was measured by the FOX assay. A significant decrease in intracellular protein hydroperoxides was noted when the cells were treated with ascorbic acid before irradiation. A dose-dependent protective effect of Asc was observed. Asc loading also provided strong protection from radiation-generated protein hydroperoxides independently of the composition of the external medium, showing that only the radicals formed within the cells were effective in oxidizing the cell proteins. Similarly, protein peroxidation was inhibited in cells with enhanced levels of GSH and increased when the intracellular GSH concentration was reduced. These findings indicate that ascorbate and GSH are important antioxidants in protecting cells from oxidative stress associated with the generation of protein hydroperoxide.



Bibliography: leaves 295-322

Awarding Institution

Macquarie University

Degree Type

Thesis PhD


Thesis (PhD) , Macquarie University, Division of Environmental and Life Sciences, Dept. of Chemistry and Biomolecular Sciences

Department, Centre or School

Dept. of Chemistry and Biomolecular Sciences

Year of Award


Principal Supervisor

Janusz Gebicki


Copyright disclaimer: Copyright Liu Chia-chi 2007.




xxix, 322 leaves ill

Former Identifiers

mq:2023 1281907