01whole.pdf (12.15 MB)
Download fileThermal performance of metallic nanofluids in microchannel heat sink
thesis
posted on 2022-03-28, 02:42 authored by Duncan ClarkA numerical investigation of the heat transfer enhancement of a two-dimensional microchannel heat sink (MCHS) using Al2O3-water, CuO-water and TiO2-water was conducted. The numerical methodology uses mathematical models for continuity, momentum, energy and solid temperature to model the fluid flow through the MCHS. The effect of the metallic nanoparticles on the thermal performance of the heat transfer fluid (HTF) in the heat sink was examined for the volume concentrations of 1%, 3% and 5%. Techniques for increasing the thermal performance of HTF are to raise the thermal conductivity of the fluid and/or to reduce the viscosity. Analysis of the effect the individual thermo-physical properties have on the thermal boundary layer and the total thermal performance is conducted. The results depict that for Al2O3-water and Cuo-waternanofluids the overall thermal performance is increased compared to the pure base fluid of water, with the most effective volume concentrations at 5% and 3%. TiO2-water nanofluid decreased in thermal perfomance at all volume concentrations. Overall, Al2O3-water nanofluid at the volume concentration of 5% shows the most effective heat transfer capabilities in the MCHS.