posted on 2022-03-28, 13:21authored byColin Anthony Navin
The Milky Way Galaxy is surrounded by many satellite dwarf galaxies and globular clusters, as well as individual field stars, in a vast stellar halo extending further than 100 kpc. There is no doubt that many of the field stars in the Galactic bulge and halo formed in these satellites,which are all in the process of being disrupted and losing stars. The processes that produce this loss are thought to be well-understood and are used in simulations that predict the present-day destruction rates. Generally, however, these models are poorly constrained by observations. This thesis looks at the identification of individual extratidal stars that have escaped from a number of globular clusters,uses these stars to estimate the actual destruction rates of the clusters,and compares them with the predicted destruction rates from the models. Paper I identified four extratidal stars of the globular cluster NGC 1851 in an analysis of AAO mega spectra. The destruction rate that corresponds to these stars was calculated in Paper III and was found to be several orders of magnitude greater than predicted by one of the models. Paper II identified eight extratidal stars around the globular cluster M3 and twelve around M13 in the LAMOST stellar spectroscopic survey catalog. The destruction rates corresponding to these stars were calculated and found to be several orders of magnitude greater than predicted by the models for both clusters. The AEGIS stellar spectroscopic survey catalog was searched for globular cluster extratidal stars in Paper VII. This identified 20, 6, 1, and 6 extratidal stars around the four globular clusters ω Cen, NGC 6541, M70 and M55, respectively. The destruction rates for these clusters was calculated and, inline with previous results, found to be several orders of magnitude greater than predicted by the models. This work has identified intriguing discrepancies between predictions of globular cluster destruction rates based on existing models of cluster destruction and observations. If future studies confirm that the discrepancies apply to a significant fraction of the globular cluster population of the Milky Way, it points to higher initial masses of globular clusters and a significant contribution to the stellar halo field star population from globular clusters.
History
Table of Contents
1. Introduction -- 2. New cluster members and halo stars of the Galactic globular cluster NGC 1851 -- 3. New halo stars of the Galactic globular clusters M3 and M13 in the LAMOST DR1 catalog -- 4. Stellar halos of four southern Galactic globular clusters in the AEGIS survey catalogue -- 5. Summary and conclusions -- Appendices.
Notes
Theoretical thesis.
Thesis by publication.
Includes bibliographical references
Awarding Institution
Macquarie University
Degree Type
Thesis PhD
Degree
PhD, Macquarie University, Faculty of Science and Engineering, Department of Physics and Astronomy
Department, Centre or School
Department of Physics and Astronomy
Year of Award
2018
Principal Supervisor
Daniel Zucker
Rights
Copyright Colin Anthony Navin 2018.
Copyright disclaimer: http://mq.edu.au/library/copyright