Chapter 1

Introduction

Let f be a smooth, real-valued function that is compactly supported on R™ and consider the

following inequalities:

IV fllLe@ny < Cp||A1/2f||LP(R”) (1.1)

||v2f||LP(R") S CollAfllor@ny- (1.2)

The second is commonly known as the Calderén—-Zygmund inequality. Here the constant C), may
depend on p and the dimension n, but not on f. Both inequalities are valid for all 1 < p < oc.
Note here that A = j 8? is the Laplacian on R™, while V? is shorthand for 9;0.

Inequalities such as these, often referred to as ‘LP-estimates’, along with their analogues
(when the space LP(R™) is replaced by other function spaces) have been thoroughly studied in
the harmonic analysis literature, motivated in part by their connections with partial differential
equations. We shall restrict our attention to three particular classes of function spaces.

When one considers p below 1, inequalities (1.1) and (1.2) are valid for p < 1 once we
replace the LP(R™) spaces and their norms by the Hardy spaces HP(R™) and their respective
norms. Another natural extension is to replace LP(R™) by weighted spaces LP(w), and it is well
understood that the corresponding inequalities in this situation hold for the full range 1 < p < 0o
precisely when the function w belongs to a family of so-called ‘Muckenhoupt weights’, denoted
by A,. Another class of function spaces that bears some connection to the A, classes is the

class of Morrey spaces £P*(R™), and the corresponding inequalities hold for these spaces for



the full range of 1 < p < 0o and 0 < A < n. A standard reference for the results on Hardy and
weighted spaces is the monograph [101]. For the results on Morrey spaces see [34, 86].
Our goal in this thesis is to replace the Laplacian —A in (1.1) and (1.2) by operators of

the form
L=-A+V on R", n>1,

where V' is a non-negative and locally integrable function, and determine to what extent are
the inequalities still valid. Historically, an operator of the form —A + V has been referred to
as a Schrodinger operator, and V' its potential. This operator plays a fundamental role in non-
relativistic quantum mechanics. It is also studied in the field of partial differential equations,
and has applications to spectral and scattering theory. See [20, 23, 56, 89, 90, 92, 96, 97].

By replacing f by (—=A)~*/2g in (1.1) and f by (—=A)~'g in (1.2), the inequalities (1.1)
and (1.2) can be interpreted as the LP(R"™) boundedness of the operators V(—A)~'/2 and
V2(—A)~1! respectively. These operators are also commonly referred to as the first- and second-
order Riesz transforms respectively. These objects belong to a class of operators called Calderdn—
Zygmund operators.

A Calderén—Zygmund operator is an operator that is bounded on L?(R"™) and whose
kernel satisfies certain smoothness and decay properties. The Calderén-Zygmund theory of
singular integrals was initiated in the 50s to systematically study such objects. Since then it
has undergone a rich development and we refer the reader to [101] and [60] for complete details
and historical references.

Broadly speaking, one shows that such operators are of weak type (1,1) — that is, they
map L!(R") into the larger space L1*°(R") — through the Calderén—Zygmund decomposition,
and then invoke interpolation to obtain the boundedness on LP(R™) for all 1 < p < 2. For the
range 2 < p < oo, a family of techniques referred to as ‘good-\’ inequalities are often used.

One drawback of this approach is that the regularity of the kernel is required. Another

limitation is that the boundedness given is the full range of 1 < p < oco. It is known however



that there are operators that do not satisfy either of these restrictions. Some examples include
elliptic operators in divergent form, operators on irregular domains, and operators on manifolds.
Of relevance to us are the Riesz transforms associated to the Schrédinger operator L = —A+ V.
Depending on the smoothness and size of V, the first-order Riesz transforms VL~1/2, V1/2[~1/2
and the second-order Riesz transforms V2L~!, VL~! may not be Calderén-Zygmund opera-
tors. Therefore new techniques are needed. For the convenience of the reader we list the main

operators studied in this thesis below. See also Chapter 2 for further details.

Underlying operator: L=-A+YV, V>0

dt
Vit

1 e dt
V1/2L71/2 —_ 7/ VI/QeftLi
VT Jo vt

1 o0
First-order Riesz transforms: VL V2= —/ Ve tb
VT Jo

oo
Second-order Riesz transforms: | V2L™! = / V2e tl dt
0

VLl = / Vet dt
Q

Table 1: Main operators considered

Having dispensed with this brief overview we turn now to a more focussed description of
the results in this thesis. The rest of this chapter will be devoted to explaining our results in

their historical and mathematical context. We shall proceed as follows.

In Section 1.1 we describe the known results in the literature and formulate our objectives

as several key questions.

e The main results of this thesis are presented in Section 1.2 in the context of these

objectives.

We explain the key techniques and ideas behind the proofs in Section 1.3.

We describe the organisation of the thesis in Section 1.4.

In this thesis we restrict our attention to non-negative potentials, and so we limit our survey

accordingly. A body of literature also exists for other Schrédinger-type operators, including say,



those with negative potentials and those that have magnetic components but we do not describe
them here. We refer the reader to the survey [96], and also [10, 21, 22] for examples of more

recent work and the references therein.

1.1 Known results

The study of LP(R™) estimates for the Schrodinger operator L = —A + V' has attracted many
authors. Under the assumption that V' is a non-negative polynomial, J. Nourrigat [82] stud-
ied L?(R™) boundedness of VZL~1. This was extended to LP(R™), for 1 < p < oo, both by
J. Zhong [110] and by D. Guibourg [62] independently. In particular Zhong showed that when V/
is a non-negative polynomial, the operators VL~1/2 and V2L~! are Calderén-Zygmund opera-
tors. For the case p = 1, the operators AL~ and VL~! are known to be bounded on L!(R")
whenever V' > 0 (see either [73] or [58]), and as a consequence it follows that the operator V2L ™!
is weak (1,1).

It is natural to ask the following.

Question 1. For which V > 0 and which p > 1 do the following inequalities hold?

IV Fllze + V2 fllze < Coll(=A + V)2 £ Lo vfe s, (1.3)

IV2fllze + 1V Fllze < Cpll(=A+ V)l vfely. (1.4)
Here C§° denotes the space of all functions on R™ that are smooth and compactly supported.

A consequence of (1.3) is the boundedness of VL™'/2 and V'/2L=1/2 on LP(R™), and simil-
iarly (1.4) imply the boundedness of V2L~! and VL~!. Note also that if (1.4) holds for some p
then (1.3) holds for 2p (see [12]).

For the range 1 < p < 2, a complete answer for (1.3) is given in the following.

Theorem 1.1 ({46, 94]). Assume that n > 1 and 0 <V € Ll (R™). Then (1.3) holds for

each p € (1,2].



The expression 0 < V € L{ _(R") denotes that V is a non-negative and locally integrable
function on R™. The validity of (1.3) at the endpoint p = 2 follows from the definition of L. For
the other endpoint, A. Sikora [94] showed VL~'/2 is weak (1,1). Independently, the authors
in [46] showed that the operators VL™'/2 and V1/2L=1/2 map the Hardy space H}(R") into
LY (R™) (see Section 1.1.3 for the definition of these Hardy spaces). In both cases, interpolation
gives (1.3) for the range 1 < p < 2. In light of this, it is therefore of interest to find conditions
on V ensuring that (1.3) and (1.4) hold for p > 2.

A pivotal work in this area was done by Z. Shen [93] in 1995. In that article the author

gives a systematic study of LP(R"™) estimates for the operator —A 4V in the situation where V

satisfies a so-called reverse Hélder inequality:

(|;|/Bvq)l/q SC(I;I/BV) (1.5)

for every ball B. If V satisfies (1.5) for some ¢ > 1, then we say that V belongs to the class
of reverse Holder weights of exponent ¢, and write V' € B, (when ¢ = oo we take the left-hand
side of (1.5) to be the essential supremum of V on B). We remark that these classes form a
decreasing scale in the sense that B, C B, whenever ¢ > p. One motivation for the introduction
of these classes is that they give a generalisation for the polynomial potentials which have already
been studied in the literature. In fact if V' is a non-negative polynomial then V satisfies (1.5)
with exponent ¢ = co. Other examples include the functions V(z) = |z|™“, for which V € B,
whenever a € (—o0,n/q).

The class of reverse Holder potentials will be of central focus in this thesis. We summarise
the results of relevance to (1.3) and (1.4) from [93] in the following statement. We adopt the

notation

g = N4 (1.6)

Theorem 1.2 ([93] Theorems 0.3, 5.10, 0.5, 0.8). Let L = —A+V on R™ with n > 3. Assume

that V € B, for some q > 1.



(a) If ¢ > n/2 then (1.4) holds for allp € (1,q].
(b) If ¢ > n/2 then (1.3) holds for all p € (1,2q].
(c) If ¢ € [n/2,n) then VL™'/2 is bounded on LP(R™) for p € (1,q*].

(d) If ¢ € [n,00] then VL™/? is a Calderén—Zygmund operator, and hence bounded on LP(R™)
for all p € (1,00).

The author of [93] also shows that the ranges in (a) and (c) are sharp. Note the connection

between higher regularity (in the sense that, say the operator VL~1/2

approaches a Calderén—
Zygmund operator) with the increasing reverse Holder exponent. We emphasise also the depen-
dence of the intervals of boundedness on the reverse Holder exponent q.

Shen’s article was a source of influence for many subsequent authors in this area of

research. A key idea was the introduction of the “critical radius” function (see also Definition 2.2)

2
~y(x) = sup{r >0: B /B(I’r) V(y)dy < 1}, (1.7)

modelled on a similar tool used in [110] in the study of polynomial potentials. This tool has been
a cornerstone in later investigations on Schrodinger operators with reverse Holder potentials.
Examples include [28, 29, 30, 49, 51, 53, 63, 76], some of which we touch upon in later sections.
We direct also the reader to Section 1.3 for a discussion of (1.7) and its role in this thesis. Before
closing this section we mention another important contribution in this direction of research.
Throughout [93] there was a dimensional restriction of n > 3. This restriction was removed

more recently by P. Auscher and B. Ben-Ali [12] using different methods.
Theorem 1.3 ([12]). Let L=—-A+V onR"” withn >1 and V € B, for some ¢ > 1.

(a) There exists € > 0 such that (1.4) holds for every p € (1,q+¢€). That is,

IV2flle + 1V flle < GolILf Lo, VS € G5

(b) There exists € > 0 such that (1.3) holds for every p € (1,2q + ¢). That is,

IV fllze + 1VY2fllLe < GollILY 2 flle,  Vf € CF°.



(¢) If ¢ > n/2 then there exists € > 0 such that for every p € (1,q* + ¢),
IVfllze < CollLV2fllzw,  Vf € GG
Here g* has been defined in (1.6).

Note that ¢* > 2¢ if and only if ¢ > n/2 so item (c) improves over item (b) for the gradient
part in this situation. In a sense the results of [12] gives a complete answer to Question 1 in the
context of reverse Holder weights. Hence the question of the validity of (1.3) and (1.4), in the
range p > 2 for classes of potentials beyond the reverse Holder classes, is open.

As in the classical situation of (1.1) and (1.2), once the LP estimates have been resolved,

it is natural to inquire about corresponding estimates in other function spaces.

1.1.1 Weighted spaces

Historically one motivation for the A, classes is the characterisation of all the non-negative

measures p on R™ for which the Hardy—Littlewood maximal function M satisfies

/ M f(2) du(x) < C / (@) du(a), vf € CF(R™), (18)
R R

for some p € (1,00). The operator M is defined by

M(o) = sup é /B F@ldy, = eR™, (1.9)

where the supremum is taken over all balls containing . A complete characterisation was given
by Muckenhoupt [80]: estimate (1.8) holds if and only if du(x) = w(x) dz where w satisfies the

so-called ‘Ap-condition’

G )" G fy )" < 010

for all balls B (here p’ is the conjugate exponent of p, defined by the relationship 1/p+1/p’ = 1).
In this case we say that w belongs to the class of Muckenhoupt weights A, and write w € A,,.
We note that the class A; can be defined using (1.10) with p = 1, but we set A, to be the

union of all A, with 1 <p < co.



These weights have been extensively studied and many of their properties are now well
known and considered an established part of the harmonic analysis canon. An important prop-
erty that is of relevance to us is the connection with reverse Holder weights: if w is an A
weight then it satisfies a reverse Holder inequality (1.5) for some ¢ > 1. A converse statement
is also true, so that in this sense the class of all Muckenhoupt weights in fact coincides with the
class of all reverse Holder weights. We refer to [59] for a treatise on the subject.

It has been known since [35] that Calderén-Zygmund operators are bounded on weighted
LP spaces with A, weights. The study of operators with A, weights continues to be active area
of research, motivated both by its traditional place within harmonic analysis, and also by its
connection with boundary value problems.

We are interested in estimates related to the Schrodinger operator. For which V' > 0,

p>1, and w € Li (R™) do the following hold?

loc

IV F 1oy + 1V Fllzo ) < Cpll (=2 +V)V2 fl| 1o ) vfe s, (1.11)

IV2 llze ) + IV Fllzr ) < Coll(=A+ V) fll Lo w) vfe g (1.12)

Prior results in this direction can be found in [6, 30, 75, 98], which we now describe. We shall

employ the following notation, first introduced in [16]. For w € A and 1 < pg < go < 0o we set

W (Po, q0) := {p € (Po,0) : w € Ap/po N Bgo/py } -

(i) When V is a non-negative and locally integrable function, B.T. Anh [6] showed that (1.11)
holds for each w € A, and p € W,,(1,2). This is the weighted counterpart to Theorem 1.1.
The result for VL~/2 was also obtained independently by L. Song and L. Yan [98]. It was
also shown in [6] that the first-order Riesz transforms VL~'/2 and V/2L~1/2 are weak

(1,1) with respect to the measure w dz with w € A; N Ba.

(ii) Specializing to reverse Holder potentials, when V' € B, with ¢ > n, recall from Theorem 1.2
above that VL~1/2 is a Calderén-Zygmund operator, and hence is bounded on L? (w) for

each p € (1,00) and w € A,.



(iii)

In [75] the authors show that if V' € B,, with ¢ > max {n/2,p} and p € (1, 00), then VL™!
is bounded on LP(w) for w'~*" € Ay /qr- We observe that this is equivalent to w € A, and
p € Wy (1,q). Tt is a straightforward consequence that the estimate for V2L~ follows from
that of VL™!. Indeed, from the boundedness of V*(—A)~! on LP(w) for each p € (1, 0)

and w € A,, we have

1922 Ly © 1AL iy = 1=V iy € Wl (113

In summary when V € B, for some ¢ > n/2 with n > 3 then (1.12) holds for all w € A

and p € W, (1, q).

Note that the results here are subsumed by the results in the next item.

B. Bongioanni, E. Harboure, and O. Salinas [30] introduced a new class of weights AL |
modelled on the classical A, weights, but adapted to the Schrédinger operator in a certain

sense. These weights are defined as those w € L{ (R™) for which

loc

(|;|/Bw>1/p<|;|/3w1p,>l/p SC(lJr’y(Tx))e (1.14)

for some 6 > 0 and every ball B = B(xz,r). Note that 7 is the function defined in (1.7).

In this case we say that w € .A]I;.

Observe that when 6 = 0 they coincide with the A, classes, but in general they form a
larger class of weights. To see this let V = 1 and take w(z) = (1 + |2|)~("*¢) where £ > 0.

Then w ¢ A but satisfies (1.14) for any 6 > «.

It was shown in [30] that, as in the classical situation, if w is a member of AL then it
satisfies a certain reverse Holder inequality. This inequality is similar to (1.5) but with the
extra growth term involving « as in (1.14). Inspired by this result we introduce the reverse
Hoélder classes B(f for ¢ > 1, adapted to L in Definition 5.3, which as far as we are aware
has not appeared elsewhere in the literature. This allows us to introduce the following

notation. Given w € Ago and 1 <pg<qo < oo we set

W (po, q0) = {p € (po,q0) = w € Az, N B(qu/p)’} :
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In their article [30] the authors proved that the Riesz transform VL2 is bounded
on LP(w) for each p € (1,¢*), and weight w with w'~?" € Aﬁ,/(q*)/ (equivalently w € AL
and p € WE(1,¢*) in our notation), and satisfies a weighted weak (1,1) estimate for
weights w with w(@)" e AL,

A further study of these weights was undertaken by L. Tang in [104, 105, 106]. The author
obtains, amongst other results, the boundedness of the operators V/2L=1/2 and VL1,

as well as another proof of the result for VL~1/2.

Theorem 1.4 ([106]). Let L = —A+V on R™ with n > 3. Assume that V € By for

some q >n/2. Then

(a) VY/2L=1/2 s bounded on LP(w) for eachp € (1,2q) and weight w with w'~*" € A]f,/(zq)/
(equivalently w € AL and p € WE(1,2q)),
(b) VL™ is bounded on LP(w) for each p € (1,q) and weight w with w'~? & A;;’,/q,

(equivalently w € AL and p € WE(1,q)).

Let us summarise the situation for weighted estimates for the Schrédinger operator with
a reverse Holder potential (that is, items (ii) and (iii)). When V € B, for some ¢ > n/2
with n > 3, results for the operators VL2 V/2L=1/2 and VL~! are known for AL (and

therefore also A, ) weights. We display this information in the table below.

Operator: | V1/2L=1/2 | y[-1/2 VIt V21
wE A | Wau(1,29) | Wu(1,q%) | Wau(l,q) | Wu(1,9)
we AL | WE(1,29) | WE(1,q%) | WE(1,q) ?

Table 2: Known results for weighted spaces

We will show in this thesis that it is valid to place Wk(1,q) in the entry marked “ ? 7.

Unfortunately in contrast with the A situation, the calculation in (1.13) is of limited

use in passing from estimates for VL' to estimates for VZL™! for AL weights because the
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mapping properties of V2(—A)~! for these weights are not clear. In spite of this, since the A
weights are a special case of the AL weights, one might conjecture that a corresponding result

holds for VL1 as in item (ii) above. This leads us to the main objective of this section.

Question 2. Let L =—A+V on R™ with n > 3. Assume that V € By for some ¢ > n/2. For

which w € AL and which p > 1 does the following inequality hold?
19227 £ oy < Co 1oy Vf € G,

We shall give an answer to this question in Theorem 1.7 (see also Theorem 5.1). Our techniques
are different to those of [30] and [106]. The purpose of Chapter 5 is to develop these techniques

and apply them to give the proof of this result.

Next we turn to a class of spaces that bears some connection with A, weights.

1.1.2 Morrey spaces

Let p € [1,00) and A € (0,n). A function f is said to belong to the Morrey space LP**(R") if

- 1/p
Hﬂmwﬁu(B/f—h@ < oo.
B \|B| /g

These spaces were introduced by C.B. Morrey [79] to study the regularity of partial differential
equations. Some of their properties were investigated in the 1960s by G. Stampacchia [99] and
S. Campanato [33]. See [87] for a survey of some of these properties. Recently these spaces
have garnered much attention in the study of non-linear equations. See for example [78] and
the references therein. They are related to the Lebesgue spaces and the Sobolev spaces in their
two parameters p and A measuring size and smoothness respectively. For the limiting cases it
is clear that when A = n the resulting Morrey space coincides with the space LP(R™), and for
A = 0 the resulting space is BMO, the space of bounded mean oscillation introduced in [71].

It is well known that classical singular integral operators such as the Hardy—Littlewood

maximal function and Calderén—Zygmund operators are bounded on the Morrey spaces £P* (R")
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for all p € (1,00) and A € (0,n). See [86] and [34]. However operators that fall outside the
Calderon—Zygmund class have received less attention in the literature on Morrey spaces.
We are interested in estimates for the Schrodinger operator on these spaces. More pre-

cisely we seek to answer: for which V' >0, p > 1 and X € (0,n), do the following hold?

IVFllzon + V2 fll o < Cpll(=A + V)2 F|| 2or Vf e Cge, (1.15)

V2 fllzon + IV Fllerr < Cpll(=A + V) fll2on vfe g (1.16)

We observe again that when V' € B, the Riesz transform VL~'/? is a Calderén-Zygmund
operator and therefore falls within the scope of the classical results obtained in [34]. That is,
the gradient part of (1.15) holds for all p € (1,00) and A € (0,n). When V € By then the
operators VL™! and V2L~! may not be of Calderén-Zygmund type, but the authors in [75]
show nonetheless that (1.16) holds for all p € (1,00) and A € (0,n).

Within this context we seek to establish the range of p and A for which (1.15) and (1.16)
holds when V' is a reverse Holder potential with ¢ < n. We are motivated by the fact that
taking A =n returns us to the situation of (1.3) and (1.4), where results are already known.
Recall that in those LP estimates there was an upper restriction on p that depended on the
reverse Holder exponent ¢, and so one expects a corresponding restriction to be transferred
to the Morrey space scale in the p parameter. It would be of interest to uncover any lower

restriction on the parameter A\. We ask the following question.

Question 3. Let n > 1 with V € B, for some ¢ > 1. For which p > 1 and A € (0,n) do the

inequalities (1.15) and (1.16) hold?

We give a rather complete picture of this setting in Theorem 6.2.

1.1.3 Hardy spaces

For 0 < p < oo the tempered distribution f is said to belong to the Hardy space HP(R™) if the

so-called “square function”

dt )1/2’

Sf(z) = (/O /_ I<t‘t2Aet2Af(y)|2dytn+l z€R" (1.17)
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satisfies Sf € LP(R™). The study of these spaces began in [102] in the early 1960s. Real variable
methods were introduced in [57], and since then, the theory of Hardy spaces has undergone a
rich development. We refer the reader to the monograph [101] for an exposition on this subject.
For p below 1 these spaces are the natural continuation of the L?(R™) spaces because
firstly it can be shown that L? coincides with H? for p > 1, and secondly, on replacing L? by H?
then (1.1) and (1.2) holds for all 0 < p < co.
In the context of Schrédinger operators, we are interested in answers to the following.

For which V>0 and p <1 do the following hold?

IV Fllae + V2 fllae < Cpll(=A+ V)2 f |l Vfeog (1.18)

IV2 fllzze + IV Fllzze < Cpll(=A+ V) fll v Vel (1.19)

Part of the interest in the H? spaces stems from their role in partial differential equations and in
harmonic analysis. However it is known that there are many situations in which these classical
spaces are not directly applicable. For instance the classical Riesz transforms V(—A)_l/ 2 are
bounded from H?(R"™) to LP(R™) (and even HP(R™) to HP(R™)). In fact, V(—-A)"/2f € LP is
one criterion for membership of f in HP. See [101] and [60]. Unfortunately given an arbitrary
differential operator L, its associated Riesz transform VL~'/2 may not necessarily be bounded
from H' to L'. This may happen, for example, when L is an elliptic operator in divergence
form with complex coefficients (see the discussion in [67] and also [11, 27, 66] for results on the
intervals of boundedness of VL™'/2 on LP(R")).

The notion of a Hardy space adapted to an operator was introduced to address some of
these deficiencies. Given an operator L and in analogy with (1.17) we say that f € HY(R")
provided the associated square function

e 2 dt \1/2
SLf(l') = (/O / | t|t2L€7t Lf(y)|2dytnT) s
r—y|<

satisfies Sp.f € LP(R™). Depending on L, these spaces may or may not coincide with the

r e R

classical Hardy spaces. Nevertheless under suitable conditions on L, the spaces H? (R™) may still

interpolate with LP(R™). This is useful in applications. For instance the proof of Theorem 1.1
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given in [46] takes advantage of this fact. These spaces were initially introduced (for operators
whose heat kernels satisfy suitable pointwise bounds) in [14, 47, 48], and were further developed
(for more general classes of operators) in [19, 65, 67]. We refer the reader to these articles for the
details and relevant references as well as some historical notes on the evolution of these ideas.
For some recent applications of these H] spaces to partial differential equations we refer the
reader to [43].

Our focus is on the case L = —A + V, the Schrédinger operator with a non-negative
potential V. The development of the Hardy spaces adapted to this operator has been taken up
independently, on the one hand as a consequence of the theory mentioned above (see in particular
[65] and [70]), and on the other hand by J. Dziubariski and J. Zienkiewicz [51, 52, 53]. In the
latter articles, the authors focus on situations with stronger conditions on the potential, namely
where V is a reverse Holder potential. We note that they give certain atomic decompositions
for the spaces, and one advantage of these decompositions is they allow direct comparisons with
the classical H?. We note also that both spaces coincide for the range n/(n +1) < p < 1.
In fact combining these results gives us the following: when V' € B, for some ¢ > n/2, then
HP(R™) C HY(R™) for every p € (n/(n+pr),1] where p;, = min {1,2 — n/q}. See Section 7.1.1
for the details.

In [65] and [70] the authors show that under the condition that V' is non-negative and
locally integrable, the Riesz transform VL~1/2 is bounded from H%(R") to LP(R™) for all
p € (0,1], and bounded from H?(R™) into H?(R") for p € (n/(n + 1),1]. On restricting the
class of potentials to the reverse Holder potentials then the relationship between H?(R™) and
HT (R™) mentioned in the previous paragraph gives us stronger conclusions. Indeed if V' € B,
for some ¢ > n/2, then the gradient part of (1.18) holds for every p € (n/(n + pr),1].

Our aim is to give parallel results for the second-order Riesz transforms V2L~! and VL~!
(when V is a reverse Holder potential) on these spaces, which as far as we are aware, has not

appeared in the literature. We wish to answer the following question.
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Question 4. Let L = —A+V on R™ withn > 1. Assume that V € By for some ¢ > 1. For

which p < 1 is the following inequality valid?
V2L £l g < Coll £l vf e Cge.

Our main result in this direction is Theorem 1.9, which is proved in Chapter 7.

1.2 Main results

In this section we give the main results of this thesis, namely Theorems 1.5-1.9, framed as
answers to the questions raised in the previous section. Before we address these questions we
present a result in the general setting of non-negative potentials that demonstrates the estimates
(1.3), (1.11), and (1.15) are intimately related. This is captured in the following result for the

first-order Riesz transforms.

Theorem 1.5. Fiz s > 2. Letn>1and L =—-A+V on R" with 0 <V € L _(R"). Then

the following are equivalent.
(a) FEstimate (1.3) holds for each p € (1,s). That is,

IV fllze + VY2 flle < Cpll V2 fllee,  ¥F € G5

(b) FEstimate (1.11) holds for each w € A and each p € Wy, (1, s). That is,

IV Fllzo) + V2 o) < CollL 2 fllioqwy, — VF € G5

(¢) FEstimate (1.15) holds for each p € (1,5) and A € (%p, n) That is,

IVFlleon + VY2 flleon < ColILY2 fllon,  Vf € CF°.

The proof of this is split over two theorems. The equivalence (a) <= (b) is contained in
Theorem 4.1, while the equivalence (a) <= (c) is contained in Theorem 6.1. It is easy to see
that on taking w = 1 and A = n, that we have (b) = (a) and (¢) = (a) respectively. The

hard work is in demonstrating (a) = (b) and (b) = (c), which are given in Chapters 4 and 6.
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An extra statement may be added to this collection of equivalences. It involves a weighted weak
type (1,1) estimate. The reader is directed to Theorems 4.1 and 4.2.

Once the work of obtaining the LP estimate is done (item (a)) then the Theorem grants
us the estimates on weighted spaces and Morrey spaces immediately. Items (a) and (b) also
generalise item (i) in Section 1.1.1.

The result also gives us a new counterpart to both Theorem 1.1 and Section 1.1.1 item (i),
but for Morrey spaces. Indeed, if we let s — 2, and taking into account Theorem 1.1, then we

obtain a result as follows.

Theorem 1.6. Letn > 1 and 0 <V € LL (R™). Then (1.15) holds for each p € (1,2) and
Ae (gp, n)

Note the upper restriction on p and the lower restriction on A, both governed by the auxiliary
parameter s. On taking s — oo we obtain boundedness for the full range of p € (1, 00), w € A,,
and A € (0,n). This happens, as we have seen for example when V is a non-negative polynomial,
or when V is a reverse Holder potential of order at least n. In fact in the latter case, VL™1/2 is
a Calderon—Zygmund operator, which returns us to the classical situation.

We mention one other application to reverse Holder potentials. If we take V' € B, for
some ¢ > 1, and n > 1, then combining this with the result of [12] (specifically Theorem 1.3)
we can recover the weighted results of Section 1.1.1 items (ii) and (iii) for the first-order Riesz
transforms. In fact there is an improvement because the dimensional restriction of n > 3 is

removed.

We now devote our attention to reverse Holder potentials, and in particular address Ques-
tions 2, 3, and 4. With respect to the weighted Lebesgue spaces we give an answer to Question 2

in the following result.

Theorem 1.7. Let L = —A+V on R" with n > 3. Assume that V € By for some ¢ > n/2.

Then the operator V2L~1 is bounded on LP(w) for each w € AL and p € WE(1,q).
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This result extends the one for V2L~! and A, weights and completes the picture for the first-
and second-order Riesz transforms on weighted spaces with both A, and AL weights, at least
for the range g > n/2. The proof of Theorem 1.7 is given in Theorem 5.1.

For Morrey spaces we answer Question 3 in the following result.

Theorem 1.8. Let L =—-A+V on R" withn > 1 and assume V € B, for some ¢ > 1. Then

we have the following.

(a) Estimate (1.15) holds for each p € (1,2q) and X € (z%p, n)

(b) If ¢ > n/2 then VL=/? is bounded on LP*(R™) for each p € (1,q*) and \ € (ﬁ*p7 n)
q
(¢) If n > 2 and q¢ > n/2 then (1.16) holds for each p € (1,q) and X € (ﬂp, n)
q

The proof of this is in Theorem 6.2. Items (a) and (b) are obtained using Theorem 1.5 and the
results of [12] in Theorem 1.3. Note the lower restriction on A and upper restriction on p, which
as far as can tell appears to be the first result of its kind. If ¢ — oo then item (c) recovers
the result from [75]. If ¢ > n then ¢* = oo and so item (b) gives the result for 1 < p < oo
and 0 < A < n, which recovers the classical situation (that is, VL~'/? is a Calderén-Zygmund
operator) of [34]. We remark that our results improve over those in [75] in giving a restricted
range on the parameters p and A\, which is as expected. Indeed boundedness cannot happen
for A\ going all the way to 0 because this implies boundedness on BMO.

For the Hardy spaces we give an answer to Question 4 in the following theorem.

Theorem 1.9. Let L = —A+V onR™ withn > 3. Assume that V € B, with ¢ > max{2,n/2}.

Then the following holds.
(a) The operators VAL~ and VL™ are bounded from HY (R™) into L (R™) for each p € (0, 1].

(b) The operator V2L~ is bounded from HY (R™) into HP(R™) for each p € (#_1, 1].

(c) The operator V2L™! is bounded from HP(R™) into HP(R™) for each p € ( where

wtp 1]

pr =min{l,2 —n/q}.
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Parts (a) and (b) are proved in Theorem 7.1. Item (c) is a corollary of item (b) and is proved in
Corollary 7.2. Theorem 1.9 extends the result mentioned in Section 1.1.3 for the first-order Riesz
transforms VL~1/2 to the second-order Riesz transforms V2L~ for reverse Holder potentials.
Item (c) gives an answer to Question 4.

We give some remarks about the condition ¢ > max {2,7/2} in our results. The require-
ment ¢ > 2 is a technical constraint used in two instances. The first is in the construction of
the H? (R™) spaces, which in our work uses L?-convergence of atomic sums (see Section 7.1.1).
The other instance is the L?(R™) boundedness of the operators VZL~1 and VL1, which we
recall is valid when ¢ > 2. The careful reader will observe that our techniques and our heat
kernel estimates will still follow through for the range ¢ < 2, with suitable modifications, once
an alternative construction of H? (R™) is available. For the time being however, the range n = 3
and 3/2 < ¢ < 2 remains open.

This result also admits extensions to weighted Hardy spaces for items (a) and (b), with
HY(w) and H?(w) where w € A; N B(z/p). See Theorem 7.12. However item (c) remains open

in this setting.

To conclude this section we also offer a result for VL™/2 for a class of potentials V'
slightly larger than the reverse Holder classes. This larger class, denoted (DK, ¢, ), is defined
in Definition 8.1. We prove that the Riesz transform VL~1/2 in this setting is bounded on
LP(R™) for some interval of p that is larger than (1,2]. The result is Theorem 8.3 and its proof
is given in Chapter 8. Theorem 1.5 then gives corresponding results on the weighted spaces and

the Morrey spaces.

1.3 Key ideas and techniques behind the proofs

1.3.1 Overview

The basis of our techniques lies in two principles.
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(i) The operator L = —A + V may be viewed as a ‘local perturbation’ of —A.

(ii) Representation formulae for L through its heat semigroup:

1 [ dt >
L% = —/ et — and L' :/ e ttat. 1.20
\/’7(' 0 \/E 0 ( )

These are rooted in two major areas of influence for us: the work of [93] and a new framework
for studying operators beyond the Calderén—Zygmund class, begun in [45].

As mentioned earlier Shen’s work was the starting point of many subsequent lines of
research by other authors. Two key ideas in Shen’s work were perturbation and estimates on
the fundamental solution for L. Recall that the auxiliary function v was introduced (see (1.7))
and used to determine the ‘local’ and the ‘global’ regions. In the global regions (for scales larger
than ) estimates on the kernels related to L typically have stronger decay properties. Shen

proved that whenever V' € B,/ with n > 3, then the fundamental solution I'z, (z, y) of L satisfies

Cn 1

Tr(2,y)| < - (1.21)
|z—y| N o m—2
(1+555)" ==yl

for any N > 0, and Cy is a constant depending on the dimension n, on the potential V', and

on N. Comparing this with the fundamental solution of —A, given by

Cn
Ca(z,y) = o — g2’

one sees that I';, has stronger decay whenever |x — y| > v(z).
On the other hand, in the local regions (for scales less than 7) the operator L behaves

like —A in the following sense. When |z —y| < y(x) and V' € B,, /5, then

T 2—n/q
IUp(z,y) — Ta(z,y)| < c(' Wf') x_;n_Q (1.22)

These two ideas were utilised in later works including those mentioned in [63] and [30]. For
instance the following estimates, proved in [93], on the kernel K7} (x,y) of the adjoint of the
Riesz transform (VL~1/2)*

Kitwl < — P Co )
(1+\z—y|) |z — y| B(y. tlz—yl) |z — y |z — vy

v()
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for any = # y, and

z T — 2=n/q
= |33—i|n1{/3(y7}1x_y|) B Yilildz " |2 i Yl (lv(x§j|> } (1.23)

1/2

whenever |x — y| < y(x) were crucial in [30] in obtaining the results for VL% on weighted
spaces. Typical strategies taken in the study of such operators involve decomposing them into
their local and global parts. For the local parts one further splits them into two operators,
a local version of the classical operators whose boundedness are typically guaranteed, and a
difference operator which is where estimates such as (1.22) and (1.23) play an important role.
For the global parts one uses the stronger decay in the kernels. An explicit discussion of the
idea of perturbation can be found in the recent articles [1, 25].

In our work we retain Shen’s notion of perturbation, but replace estimates on the funda-
mental solutions by estimates on the heat kernel pi(x,y) of L. The kernel p;(z,y) is the integral
kernel of the operator e *£ (which forms a semigroup family of operators in the time variable t),

and appears for us through the representation formulae in (1.20). For non-negative potentials

it is well known [96] that the heat kernel satisfies

1

—la—y|?/4t
G , (1.24)

0 < pelz,y) < hi(z,y) =

for each x,y € R™ and ¢t > 0. Here h;(z,y) is the heat kernel of the Laplacian —A (see also (2.1)).

There are two advantages to working with heat kernels rather than fundamental solu-
tions. Firstly they are stronger estimates in the sense that one can recover estimates on the
fundamental solutions once estimates on the heat kernels are known. This may be done through
the representation formula in (1.20) because I' is the integral kernel of L=!. The second ad-
vantage is they allow us to utilise the machinery begun in [45] in treating operators outside the
Calderéon—Zygmund class. We briefly survey these developments before explaining how they are
used in our proofs.

A new paradigm was started in [45] and subsequently there were two strands of de-

velopment. The first was in extending the Calderén—Zygmund theory of singular integrals to
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systematically handle operators with no kernel regularity (or even not possessing any kernels at
all). These ideas were developed further in articles such as [11, 13, 16, 26, 27, 38] and also [12].
The other strand concerned function spaces built from the underlying operator. Already men-
tioned and of relevance to us are the Hardy spaces (see for example [19, 47, 65, 67] amongst
others), but also other function spaces including the BMO and Besov spaces [48, 32]. Some
cornerstones of this new framework include generating a theory that is intrinsically linked to
the properties of the underlying operator and building averaging processes from this operator.
This paradigm offers an elegant and unifying perspective on operator theory in harmonic analy-
sis. Within this viewpoint, the classical Calderén—Zygmund theory is intimately connected with
properties of the Laplacian and harmonic functions.

In this framework, the heat semigroup and the heat kernel plays an important role. For
instance to study Riesz transforms associated to an operator L on LP(R™) (and also on the
weighted LP spaces) for p < 2, working through the ideas of [45] one is led, in practice, to
studying estimates on the derivatives V,p:(z,y), where p;(z,y) is the heat kernel of L. While
pointwise bounds may be much too strong a demand, it often suffices to work with weighted

norm versions such as the following:

Cc|lx— 2 C
/|Vzpt($ay)|2€ el dy < Tz (1.25)

We refer the reader to [38] where this inequality is applied (using the method of [45]) to obtain
weak (1, 1) estimates for the Riesz transform on a manifold. For the case p > 2, one applies (1.25)
in the good-A machinery developed in [11, 13, 16]. See Lemma 3.1 of [13], as well as Lemma 4.8
of this thesis and its proof. The derivation of (1.25) in [38] was modelled on a technique that
originated in [61]. See also [39, 40, 46].

Estimate (1.25) is known to hold for Schrédinger operators with non-negative potentials
(see Lemma 3.1) and therefore a similar approach can be applied to these operators. However for

the second-order Riesz transform one needs a corresponding estimate for the second derivatives
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of the heat kernel. We adapt a technique from [43] to obtain, whenever V' € B, with ¢ > 2,

C 5
/ [V2pe(a )| el < s (W) (1.26)

for some constants C, ¢,d > 0. See Proposition 3.7 for the full statement of the result. The main
idea is to use a weighted version of the Calderén—Zygmund inequality (Lemma 3.11) to transfer
estimates involving mixed derivatives V? to estimates involving the Laplacian A and the
potential V', and from there utilise the (reverse Hélder) properties of V.

Comparing (1.25) and (1.26), one observes the extra exponential decay in the latter in
the time variable ¢, for the scale ¢ > v(y). This extra decay in the kernel estimates is a feature
of Schrodinger operators with reverse Holder potentials, and has been manifested not only in
estimates for the fundamental solutions as we saw earlier in (1.21), but also in estimates on the
heat kernel. For instance in contrast with the case of non-negative potentials in (1.24), it was

shown by K. Kurata [74] that when V' € B, with ¢ > n/2,

C s
pe(z,y) < Wefc\zfyf/t e—e(1+t/4()%)" (1.27)

A similar estimate was obtained independently in [49]. See Propositions 3.3 and 3.2 of this
thesis. In Chapter 3 we show that it is possible to carry over this extra decay to estimates
on the time derivatives (Proposition 3.4), an analogous version of (1.25) (Proposition 3.6), and
finally the second derivative estimates (1.26). While this extra decay is not needed in the results
of Chapters 4, 6, and 7, it is crucial for the results in Chapter 5.

As a sidenote, we mention that although pointwise bounds on spatial derivatives of the
heat kernel V,p:(z,y) may be a highly non-trivial matter in general, we do show that for
Schrédinger operators with reverse Holder potentials it is possible to obtain such bounds pro-

vided the reverse Holder exponent is sufficiently large (Proposition 3.5).

1.3.2 Techniques used in each main result

We move on to specifics of each main result. Let us first describe the case p < 1. The proof of

Theorem 1.9, and of the other results in Chapter 7, uses the same strategies as in the study of the
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first-order Riesz transform VL ~'/2 in [65, 70], and the second-order results in [43]. These works
show that elements of the spaces HY (R™) may be expressed as sums of localised representative
functions called atoms or molecules. See Section 7.1.1, and in particular Definition 7.4. These
atomic and molecular characterisations allow us to reduce the study of operators on HY (R™) to
studying their behaviour on single atoms or molecules. The main technical tool is Lemma 7.5
and the estimate (1.26) (and suitable adaptations in Section 7.1.2) through the representation
formulae (1.20) allow us to apply this Lemma to the operators V2L~™! and VL=!. The last item
of Theorem 1.9 follows as a consequence of the first two items, via the atomic characterisation
of HY (R™) given in [52] (see Definition 7.6).

In Section 7.2 we give weighted extensions to items (a) and (b) of Theorem 1.9. That
is, we show that similar estimates hold for the weighted Hardy spaces H7 (w), where w is a
Muckenhoupt weight. The techniques are similar to the unweighted case, and rely firstly on the
structural properties of the spaces (already developed in [98, 108, 109]), and secondly on the

heat kernel estimate (1.26). The results are summarised in Theorem 7.12.

The proofs of Theorems 1.5, 1.7, and 1.8 involve good-\ inequalities. A typical good-A
inequality for suitable non-negative functions F' and G is the following: for each 0 < € < 1 there

exists C' > 0 and § depending on € such that for every A > 0,
[{z € R™: F(z) > 2\ and G(z) <A} < CE‘{J? eER™: F(x) > /\}‘ (1.28)

This estimate gives us a comparison of the (Lebesgue) measure of the level sets of F and G.
They allow us to control various norms of F' by that of G. This has direct applications for
operators, where one tries in practice to control the operator under study by another (maximal)
operator whose mapping properties are known. For instance if fp is the average of f over the

ball B and setting

M* f(z) = sup ﬁg /B i~ fal, (1.20)

B>x
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then taking F' = M f (where M is the Hardy-Littlewood operator defined in (1.9)) and G = M# f

in (1.28) gives us the following well known Fefferman—Stein sharp inequality [57]:
IMfll,, < Cpl|M#F|,,, (1.30)

which is valid for all 0 < p < co. Now if T is a Calderéon-Zygmund operator then it can be

shown that for almost every = € R"™,

1/2

M#(Tf) (@) < C(M(|fI)()) (1.31)

Since the operator M(|~|2)1/2 is bounded on L?(R™) for all p > 2, then the conjunction of (1.30)
and (1.31) leads to the conclusion that T is bounded on LP(R™) for all p > 2.

One can also obtain weighted versions of (1.28) and (1.30) by replacing the Lebesgue
measure dx by wdx, where w € Ay,. This allows us to obtain the boundedness of operators on
LP(w). In particular combining these weighted versions of (1.28) and (1.30) with (1.31) gives
the boundedness of Calderén-Zygmund operators on LP(w) for all 1 < p < oo and w € A,,.

However, recall that singular integrals associated to Schrodinger operators fall outside
the Calderén—Zygmund class, with one consequence being that boundedness on LP for such
operators may hold only for a strict subset of (1,00). Therefore we need appropriate extensions
of the good-\ techniques that can account for this. This was done in [13] and [11], inspired by
the techniques in [77]. In these works the authors gave some good-\ inequalities for M and some
ad hoc sharp functions,

1/po
)

MY f(z) = sup (ﬁ/B If - ABfI”°) (1.32)

where the Ap is some suitably chosen averaging operator over the ball B that is related to
the operator T under investigation. The first advantage is this allows one to obtain analogues
of (1.31) with the exponent of 2 replaced by pg, which can be any fixed number between 1 and co.
The second advantage is that the good-\ inequalities involve two parameters, and therefore allow
for an upper restriction on p in (1.30) that is strictly less than co. As a consequence the methods

produce intervals of boundedness that can be a strict subset of (1, 00).
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In [16] these inequalities were extended in several directions: from unweighted measures
to weighted measures with 4., weights, and from operators to functions. They appear as follows:
under suitable conditions on non-negative functions F and G, there exists Kqg > 1 and C' > 0

such that for each K > Ko, 6 € (0,1), w € By, and all A > 0

w({z € R" : MF(z) > KX and G(z) < A})

< C(% + %)Usw({x ER": MF(z) > A}). (1.33)

The two parameters are K and d. See Theorem 4.4 for the full statement of this result, which
is reproduced from [16]. This was used in [18] to study Riesz transforms on manifolds and
the method was adapted in [6] to study the first-order Riesz transforms associated to magnetic
Schrédinger operators.

Our observation in Chapter 4 is that the a priori LP(R™)-boundedness of VL 2 and
the pointwise bounds on the heat kernel of L are enough to allow the same approach to work,
and allows us also to prove the implication (a) = (b) in Theorem 1.5. We also use the same
machinery combined with (1.26) to obtain results for the second-order Riesz transforms with

reverse Holder potentials (Theorem 4.3).

We now discuss the techniques of Chapter 5 and the proof of Theorem 1.7. As mentioned
earlier, in [30] the authors introduced and studied some new weight classes AL adapted to
L = —A+ V. These weights are locally (within the region defined by ) like the Muckenhoupt
weights A, but have larger growth outside . The techniques employed were in a similar spirit
to that of [93] and depended heavily on kernel estimates, particularly the regularity as seen
in (1.23), and on the comparison between operators associated to L with operators associated
to —A.

The article [106] brought methods that were closer in essence with classical harmonic

analysis and Calder6n—Zygmund theory in the sense of [100]. The author introduced two maxi-
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mal operators adapted to L (with a parameter 7 > 0),

1 1
Mfo zsupi—/ f(y)| dy 1.34
nf (@) P (4 o) 1B B\ ] (1.34)
and
MELf) = s o [ pele sw o 17 (1.35)
" pse [BlJp" PN msi (14 ozm)7IBl s '
rp<y(zp) rp>vy(zRB) B

generalising the Hardy-Littlewood maximal operator and the Fefferman—Stein sharp maximal
operator (1.29) respectively. The author obtained the following key facts for these operators.

The first is an analogue of (1.30), valid for all 0 < p < co, w € AL, and all n > 0 :

||M£]‘fHLP(w) < Cp ||M7]#7LfHLP(w) ' (1'36)

This was proved using good-A inequalities similar to that in (1.28). The second is the following

analogue of (1.31),

1/s

MEHTf)(x) < C(My(IfI°) (@) (1.37)

Here T is an operator associated to L, and examples are (adjoints of) VL2 V1/2[~-1/2
and VL™!. The exponent s depends on T'. As before, (1.36) and (1.37) leads to the boundedness
of T for s < p < .

Since these estimates rely on classical techniques, and in particular some kind of kernel
regularity, there is a restriction on the type of operators that can be handled. It is natural
to wonder whether we can bring the flexibility of the machinery from [16] to the study of
these weights. Three observations serve as motivation. The first is that with respect to AL
weights, the operator V2L ™! has remained untreated in the literature (Question 2). Secondly
the techniques of Chapter 4 are able to handle the operator V2L~ for A,, weights (notably
Theorem 4.3). The third observation is that the AL weights behave ‘locally’ like the Ax
weights.

The task of adapting the machinery from [16] to AL weights is carried out in Chapter 5.

The first step is an adaptation of the good-A result of [16] in Theorem 4.4, and this is done in
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Theorem 5.10. There we extend (1.33) to AL weights under suitable conditions on F and G. The
reader may observe that besides replacing the maximal operator M by M#, the assumptions
remain unchanged in the local scale. The key difference is that in the global scale (for balls

B(z,r) with radii that exceed a fixed multiple of v) we impose the condition

1 1

(1 + ,Y(Tx))n \B(x,r)| B(x,r)

Fy)dy < G(z), YV z € B(z,r).

The second step is to use this to extend the maximal criterion in Theorem 4.6 to Theorem 5.16.
Finally we prove Theorem 1.7 by applying this criterion with the kernel estimate (1.26). In
contrast to the proof of Theorem 4.3, here the extra decay for the heat kernel estimates in the
scale t > «(z) plays a decisive role.

We remark that our techniques allow us to take the study of operators with AL weights
in the direction of [13, 16, 45] discussed earlier, and as a consequence we can recover some
of the results in [30] and [106]. For example estimate (1.36) can be obtained by choosing F
and G appropriately in Theorem 5.10 (see Section 5.2.1). While our main application is to
the operator V2L™!, we believe the same method can also be applied to the first-order Riesz

transforms VL2 and V¥/2L=1/2 but we do not give these details in this thesis.

We now explain the techniques behind our Morrey space results. Recall that depending
on V, the Riesz transforms in Theorem 1.8 may not be of Calderén—Zygmund type. One
approach to studying singular integrals on Morrey spaces may be to follow the route of the L?

case. For instance one may attempt to obtain an analogue of (1.30):
IMfllzor < Cp||M*f]| ppn s l<p<oo, 0<A<n. (1.38)

Then combining this with the pointwise bound of (1.31) already established allows us to obtain
results for Calderén—Zygmund operators. One method of proving (1.38) is to first obtain a local
version of (1.28) with F' = M f and G = M# f and then pass from this to the Morrey norm.

This is what is done in [107] for some generalisations of the Morrey spaces.
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However, since we are working with operators beyond the Calderéon-Zygmund theory, the
classical sharp operator M# and (1.31) may not be sufficient. Motivated by the success of the
new paradigm for LP(R™) and LP(w) spaces discussed earlier in this section, the question arises
naturally of whether we can bring these techniques to the study of operators on Morrey spaces.
The answer is yes, and follows directly from a principle that has been implicit in the literature

on Morrey spaces since at least [34]. We formulate it here as follows.

Principle 1.10. Results for weighted Lesbesque spaces with As, weights lead naturally to cor-

responding results for Morrey spaces.

This idea was introduced first in [34] through the key observation that if 15 is the indicator
function of a ball B, and M is the Hardy-Littlewood maximal operator, then the function
(M15)° is an A; weight for any & € (0,1). This, combined with the decomposition
MlB =~ 1B + Z 2_jn12j+13\2j37
§=0

allowed them to obtain firstly a simple proof of the boundedness of the maximal function:
IMfllgon < Cpllfllzon l<p<oo, 0<A<n,

and secondly, new proofs for the boundedness of Riesz potentials (originally given in [2]) and
of Calderén—Zygmund operators on Morrey spaces. In [42] these ideas were continued and used
to give a simple proof of (1.38) which was then applied to give estimates for fractional maximal
operators and for commutators. We give an explicit formulation of the calculation used in these
results in Lemma 6.3.

We observe that in the proofs of the above results, no other properties of the operators
are used besides their boundedness on weighted spaces. In other words, if an inequality holds
on the weighted spaces for a certain range of p and collection of weights then it should imply
a corresponding inequality for the Morrey spaces for a certain range of p and A. This is a
quantitative version of Principle 1.10. An explicit statement of this was first given in [9] in the

context of Morrey spaces on spaces of homogeneous type. We give a special case of their result
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for R™ in the following.

Theorem 1.11 ([9]). Let F' and G be non-negative Borel measurable functions on R™. Set
A§"‘> ={weA ||u| <1 and Ay, <a}

where |w|, = inf{t >0: [{z € R" : w(z) > t}| =0} and Ay is the infimum of all the con-
stants C' > 0 for which Mw < Cw almost everywhere. Suppose that for every a > 1, there

exists c(a) > 0 such that the following inequality holds.

/ F(r)w(x)dr < ca) . G(z) w(z) dz, Vwe A (1.39)

Then there exists C, g > 0 both depending only on n such that
1Pl < Crefao) [Glzos 0<A<n. (1.40)

We can apply this to the study of operators in the following fashion: if T" is an operator and
(1.39) holds with F' = |T'f|P, G = | f|P, for some fixed p € (0, 00) and any f from a suitable class
of test functions, then through (1.40) T can be extended to a bounded operator on LP*(R™)
for all 0 < A < n. This gives us a way to obtain results for operators on Morrey spaces that
have no kernel regularity. In particular the machinery developed in the aforementioned works
[13, 16, 17, 38, 45] can be made available through this principle. This forms our approach in
this thesis.

Before proceeding we remark here that for completeness’ sake, Section 6.1 provides proofs
of some of these ideas. It contains the calculation mentioned earlier (Lemma 6.3) as well as a
proof of a version of Theorem 1.11 with simpler hypotheses (Proposition 6.5). However we
do give a new application of these ideas to the study of ‘fractional type’ operators, which are
modelled on the classical Riesz potentials (—A)~%/2. The work here is inspired by [17], where
as an application of the ideas in [16], the authors give some criterion for the study of fractional
type operators on the weighted Lebesgue spaces. These are applied to the fractional powers

of divergence form elliptic operators with complex coefficients. Our result is an adaptation of
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theirs and is given in Theorem 6.11. In Section 6.3 we apply this to Schrodinger operators and
divergence form operators.

It is natural to wonder if the class A; can be relaxed in the hypotheses for (1.39). We
do this in Theorem 6.15. Motivated by the results in Section 1.1.1, we show that if (1.39) holds
(with |F|? and |G|? in place of F and G respectively) for some fixed numbers 1 < py < p <
qo < oo and all weights w € Ap/p, N Bg,/py > then the Morrey inequality (1.40) holds for all
pn/qo < A < m. This is a refinement of Theorem 1.11 (and Proposition 6.5) in the sense that
weakening the hypothesis to admit a larger collection of weights leads to a tightening of the range
of Morrey spaces in the conclusion. The proof of this result utilises a new characterisation of
the Morrey spaces given in the recent work of D.R. Adams and J. Xiao [4, 5]. There the authors
characterise the Morrey spaces and their preduals in terms of Hausdorff capacity and A; weights
(see expression (6.6)).

With this result in hand, we can prove our main results for the Schrodinger operators.
We combine Theorem 6.15 with the results from Chapter 4 to give the proof of Theorem 1.8
and the implication (b) = (c) in Theorem 1.5. The details can be found in Section 6.3.

We also give another quantitative version of Principle 1.10 in Theorem 6.16, an extrapo-
lation result for Morrey spaces, which as far as we are aware is a first of its kind. The concept of
extrapolation for A, weights is well known (see [91]): if a weighted inequality holds on Lo (w)
for some py € [1,00) and all w € A,,, then it holds for all p € (1,00) and w € A,. In [16] it was
shown that the range of exponents need not be all of (1, 00) (this is reproduced in Proposition 4.9
of this thesis). We use these ideas for extrapolation on LP(w) spaces with A, weights to obtain
a similar principle for Morrey spaces: we show that an inequality on the Morrey spaces for a
fixed pair of parameters (pg, A\g) propagates to a certain range of (p, A).

Finally, it is interesting to ask to what extent a converse to Principle 1.10 holds. That
is, whether results on Morrey spaces lead to corresponding results for weighted Lebesgque spaces

with A, weights. However we have not obtained any results in this direction here.
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We end this section with some comments on the proof of the main result in Chapter 8,
which is Theorem 8.3. In this result we give LP(R") estimates for the Riesz transform VL~1/2
associated to the Schrédinger operator L = —A + V with V belonging to a class that is slightly
more general than the reverse Holder class studied throughout the rest of the thesis. This
class was introduced in [54] and [50] and is defined, roughly speaking, by three aspects: there
is a collection of slowly varying cubes covering R™ that determines the ‘local’ regions; within
these cubes the potential V satisfies a certain estimate involving the classical heat semigroup e*®;

outside these cubes the heat kernel of L satisfies extra decay. We refer the reader to Definition 8.1

and the remarks following for more precise details. We mention also that we impose the condition

H\/%V@ < Gy,

7tL||LP—>LIJ -

but since this is necessary for VL~1/2

to be LP-bounded, this is relatively harmless.

Although the good-\ methods of [11, 13, 16] have been successfully applied to L estimates
such as divergence form elliptic operators and to the Laplace-Beltrami operator on a manifold,
it is not clear if the same approach can work for the Schrédinger operator. This is in spite of the
fact that weighted (and even Morrey) estimates can follow through, as some of the earlier parts
of this thesis shows. It appears the main obstacle here is that while these operators satisfy the
so-called conservation property e~*£(1) = 1, this property is completely lacking for Schrédinger
operators in general. However in [13] section 4, these methods are adapted to give LP estimates
for local Riesz transfoms V(—A + a)fl/Q7 with @ > 0. Since the operator —A + a is a special
case of the Schrodinger operators studied thoughout this thesis, results in this direction may be
indeed possible.

Instead we return in a sense to [93] and employ techniques in the spirit of that work.
In [50] the authors give a Riesz transform characterisation of the Hardy space H} associated
to these operators. Our approach is to adapt their argument which proceeds as follows. The
|-I°

main point is to control the adjoint of VL~!/2 by the maximal operator M ( )1/S for some

suitable s > 1. We split our analysis into the local and global regions, where locality is defined
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by the cubes in the definition of V. In the global regions we use the extra decay in the heat
kernel (again from the definition of V'), while in the local regions we base our analysis on a
comparison between the heat kernel p;(z,y) of L with the classical heat kernel hi(z,y) of —A,

through the well known perturbation formula
t
etA - eftL _ / e(tfs)AVest ds.
0

We direct the reader to Chapter 8 for the details.

1.4 Organisation of the thesis

We describe the structure of the rest of this thesis. In Chapter 2 we give some basic defini-
tions and preliminary facts concerning the Schrodinger operator, reverse Holder classes, and
Muckenhoupt weights. We also fix some notation that will be used throughout the thesis.

In Chapter 3 we collect together the various estimates on the heat kernel of the Schrédinger
operator with a non-negative potential. The main result is Proposition 3.7 but we attempt to
be exhaustive for the class of reverse Holder potentials. Accordingly, we also give estimates
for the first derivatives in Proposition 3.6, as well as pointwise bounds on the time derivatives
(Proposition 3.4), and pointwise bounds on the gradient of the heat kernel when the potential
is smooth enough (Proposition 3.5).

The results for weighted Lebesgue spaces, Morrey spaces, and Hardy spaces are given in
Chapters 4, 5, 6 and 7 respectively.

Our study of weighted spaces is divided over two chapters. Chapter 4 is concerned with
Muckenhoupt weights. We prove the equivalence of the first two items in Theorem 1.5 which
is contained in Theorem 4.1 and 4.2. We also give a proof for weighted estimates for the
second-order Riesz transforms in Theorem 4.3. The second objective of this chapter is to lay a
foundation for the next chapter.

Chapter 5 continues the study of weights but with a class larger than that of the Mucken-

houpt weights. We develop the machinery needed by adapting the techniques from the previous
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chapter, before applying this to prove Theorem 1.7 which is contained in Theorem 5.1.

In Chapter 6 we study Morrey spaces. The first goal of this chapter is to develop the theme
of applying weighted estimates to obtain estimates for Morrey spaces (Sections 6.1 and 6.2)
culminating in Theorem 6.15, which is the main result of these sections. The second goal is to
apply this to Schrédinger operators: the proof of the equivalence between the first and last items
in Theorem 1.5 (Theorem 6.1), and also results for the second-order Riesz transforms when we
specialise to the reverse Holder class (Theorem 6.2). Lastly we give some further applications
of Theorem 6.15.

Chapter 7 is devoted to Hardy spaces. We give the proof of Theorem 1.9 in the first part
of the chapter. In the second part we extend some of these results to weighted Hardy spaces.

We conclude this thesis with Chapter 8 where we give the result for the Riesz transform

associated to a more general class of potentials.



34



Chapter 2

Some preliminaries

2.1 Schrodinger operators

In this section we give the definition of the Schrédinger operator via forms and introduce the
semigroup associated to this operator. For more on forms, operators and semigroups we refer
the reader to [41, 64, 84, 96].

Let n > 1 and V be a non-negative locally integrable function on R™. We define the

form Qv by

Qv (u,v) := Vu- Vv + Vuv
R Rn

with domain

D(Qv) = {u € WH2(R") : / Vil < oo}

n

It is well known that this symmetric form is closed. It was also shown by Simon [95] that this
form coincides with the minimal closure of the form given by the same expression but defined
on C§°(R™). In other words, C5°(R™) is a core of the form Qy .

Let us denote by L the self-adjoint operator associated with Qy . Its domain is
D(L) := {u €D(Qv):3ve L*(R") with Qy(u,¢)= /w, Vo € D(QV)}.

We write formally L := —A + V.
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We now introduce the heat kernel associated to L. Consider the following parabolic

equation

(% +L)ula 1) =0, (z,) € R" x (0, 00).

We are interested in the fundamental solution I'(x, y,t) of this equation. That is, I satisfies, for

each y € R”

(%JrL)F(x,y,t):O, Ve eR" xz#y, t >0,

lim 'z, y,t) = §(z — y).
t—0

This fundamental solution is called the heat kernel of L. We use the notation p:(z,y) in place

of T'(x,y,t). The heat kernel generates a semigroup family of integral operators associated to L,

which we shall denote by {e*tL} >0 and refer to as the heat semigroup associated to L. That

is, p¢(,y) is the integral kernel associated to e~** in the following sense.

@)= [ piean) 1) .

We denote by hi(z,y) the heat kernel of —A in R®. When n > 3 for each z,y € R” and ¢t > 0

it is well known that

1 Cla—yl?
ht(l'vy) = W@ |lz—yl /4t.

This is the integral kernel of the semigroup generated by —A. That is,

¢ 1w) = [ hila)f ) dy

We also record the following fact, which will be used in Section 3.2.2 :

(% 4 >_1f(x,t) — /Ot e~ =L f(3, 5)ds = /n /Otpt_s(;p?y)f(y, s)ds dy.

9 —1
That is, the integral kernel of (a + L) is pr—s(7,9)L(0,4)(8)-

A useful formulation of the semigroup property is:

pa(w,y) = /npt(x,U)pt(u,y) du = e "py(-,y) ().

(2.2)
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for any 2.y € " and ¢ > 0. Indeed,
[ pate) @ dy = e @) = e e ()
_ / pe(, wet f () du
~ [t ( [ mw)sw) dy)
— [([ miew) it du) f0) dy
— [ e i@

The following perturbation formula holds as a consequence of perturbation for semigroups of

operators (see for example [85]). It is used in the proof of Theorem 8.3.

¢ ¢
et — et = / et=)8y sk s = / e AVe =9k s, (2.4)
0 0

This gives

) - = [ [ e VEmnazis = [ [ Ve

We remark that we can interchange the role of —A and L in (2.4).

2.2 Notation

We collect here some standard notation we shall employ throughout this thesis.

0
If k € Z we write 0, to mean the derivative in the k-th variable o and 07 to mean
Lk
2

the second derivative in the k-th variable 97 At times we will abuse notation and write V
T
and V2 for 9; and 0;0j, respectively. For a € R we use the notation [a] to mean the greatest

integer not exceeding «.

On R" the classical Riesz transforms 9;(—A)~/2 for j € {1,...,n} are given (for-

mally) by
1 [ dt
D;(—A)2 = 7/ fietd 4.
) il O
The second-order Riesz transforms for j, k € {1,...,n} are given by

8j8k(fA)’1 == / 6jak6tA dt.
0
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We will often write V(—A)~'/2 and V?(~A)~! in place of 9;(—A)~/2 and 9,0, (—A)~1/2.

The first-order Riesz transforms associated to L are 5'jL*1/2 for j € {1,...,n} and
V1/2[=1/2 The second-order Riesz transforms are 9;05 L~" for j,k € {1,...,n} and VL', We
will often write VL~/2 and V2L~! as shorthand for 8jL_1/2 and 9;0, L ™! respectively.

The following well known representation formulae will be used regularly:

1 > dt
L—oc/2 _ / —tL
la/2) ¢ e a >0,
o—tL dt

VL= f/ NG

V2Lt :/ V2e tE dt.
0

Similar formulae hold for V/2L=1/2 and VL~'. One can arrive at these via functional calculus
or spectral theory (see [64]).

Our underlying measure space, unless otherwise noted, will be R™ with the Lebesgue
measure. Given a measurable set E C R™ we write |E| to mean the Lebesgue measure of E.
The notation [, f 5 f(2) dz will mean the Lebesgue integral of f over E. At times we often drop

the dz to simplify notation. We also use the notation

L=l

to mean the average of f over the measurable set E. Given a measure space (X,u) and
1 < p < o0, we denote by LP(X,u) the Banach space of complex valued functions on X

that are p-integrable. That is we say that f € LP(X, u) if the LP(X, p)-norm of f,

1l = / i)

is finite. When X = R™ and dp = dz and we will often write L? in place of LP(R"™). If du = wdz
for some locally integrable function w, then we write LP (w) instead. When we use the expressions
almost everywhere or almost every x (abbreviated “a.e.” or “a.e.x”) we mean that the properties
to which they refer hold except on a set of measure zero. Given normed spaces (X, ||| x) and

(Y, ||Hy), the expression T : X — Y will mean that T is a bounded mapping or operator
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(or admits a bounded extension) from X into Y. In this case we write ||T'||y_,y to mean the
operator norm of T', defined as ||T'|| y_,y :=inf{C > 0: ||Tz||,, < C|z| x}. WhenY = X we
will simply say that T is ‘bounded on X’.

When we refer to a ball centred at x € R™ with radius » > 0, we mean the open set
B(z,r) := {y e R": |xr —y| <r}. When we mention ‘a ball B’ we mean that a ball with a
designated centre zp and radius rp has been chosen and fixed. By a cube Q = Q(zg,lg) in
R™ we mean a cube centred at xg with sidelength g, and with sides parallel to the coordinate
axes. If A > 0 then we write AB = B(zp, A\rg) (respectively AQ = Q(z¢, Mlg)) to mean the ball
with the same centre as B but with radius dilated by a factor of A (respectively a cube with the
same centre as @ but with sidelength dilated by a factor of \). We define the distance between
two subsets E,F C R" as dist(E, F) :=inf{|z —y|: x € E,y € F}. The notation 15 will be
used to denote the indicator or characteristic function of the set E: 1g(z) =1if x € E and 0
ife ¢ E.

Given a function v : R™ — (0, 00), we define balls associated to v by B(x,v(z)). We shall
use the notation B7(x) := B(z,y(x)). When we mention a ball B” we mean that a ball with a
designated centre xp and radius y(zp) has been fixed. That is, B7 := B(zp,v(xg5)).

We will often discretise the space R” into concentric annuli centred at a fixed ball B as

follows:

B, J=0;
U;(B) == (2.5)
27B\2/'B, j>1
We can replace B by the balls 87 or a cube @, with the obvious modifications.

Given a number p € (0, co] we shall use the notation p’ to denote the conjugate exponent

of p. That is, p and p’ satisfy the relationship

PR (2.6)

More explicitly, p’ = p/(p — 1) if p # 1. When p = 1 we set p’ = oo, and when p = oo we
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set p’ = 1. We also write p* to denote the Sobolev exponent of p. This is defined as

p<mn;
00, D>n.
Finally we follow the convention that the symbol C' in a string of inequalities will mean a
constant that may change over the course of the inequalities, but does not depend on the essential

variables under focus. The symbol < will mean the same thing but with the C' suppressed.

2.3 The reverse Holder class

In this section we define the class of potentials that is the focus of this thesis, and give a list of

their known properties. These properties originated in [93].

Definition 2.1 (Reverse Holder class). Let 1 < g < co. We say that a non-negative and locally

integrable function V' belongs to the reverse Hélder class of order q if there exists C' > 0 such

(]ivq)l/qgc]{gv

for all balls B. In this case we write V € B,. We say that V € By if there exists C > 0 such

that

that for all balls B
V(x)SC][V a.e. x € B.
B

For all 1 < s < g, it is easily seen that B; D B,. Furthermore, V(z)dz is a doubling measure.

That is, there is a constant Cy > 1 such that

/QB V(z)de < co/ V() da.

B

It follows that for each X\ > 1 there exists ng > 0 and C > 0 such that

/}\B V(z)dx < C’)\”O/ V(z)dx. (2.7)

B

In fact we can take ng = log, Cp.
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Definition 2.2 (Critical radius). For V > 0 we define the critical radius associated to V' at x

by the following expression.

Y(z) =7(z,V) = sup{r >0: r2][ V< 1}. (2.8)
B(z,r)
As an example if V(z) = |z|? then v(z) ~ 1 .
1+ |z

Lemma 2.3 ([93] Lemmas 1.2 and 1.8). Ifn > 1 and V € B, for some g > 1 then there exists

C > 0 such that the following holds:

(a) for each A > 1 and all balls B,

23][ V < C)\"’/‘I_Q(/\TB)Q][ v,
B AB

(b) for all balls B satisfying rg > v(xp),

where o = ng —n + 2.
Lemma 2.4 ([93] estimates 1.6 and 1.7). Let V € B,. Then the following holds.

(a) If ¢ > n/2 then there exists C = C(n,q,V) such that for any ball B,

A = AT
MB—ﬂ

(b) If ¢ > n then there exists C > 0 such that for any ball B,

fy e < g v
WB—ﬂ

The next property states that the function v is slowly varying.

Lemma 2.5 ([93] Lemma 1.4). Let V € B, with ¢ > n/2. Then there exists Co > 0 and ko > 1

with

7o) (14 )™ <o) < ot (14 22 (29)
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In particular if z,y € B(xg, \y(xg)) for some A > 0, then

v(x) < Cay(y) (2.10)

2rg+1

where Cy = CZ(1 + \) 7o+T .

A consequence of (2.10) is that R™ admits a covering with ‘critical balls’ that has bounded

overlap.

Lemma 2.6 ([51]). Let V € B, with ¢ > n/2. Let v : R — (0,00) be as defined in (2.8).
Then there exists a countable collection of critical balls {%}}j = {B(xBj,'y(a?Bj))}j satisfying

the following properties.

(i) U, 8] =R".

(ii) For every o > 1 there exists constants C and N such that Zj 1,80 < Co.
J

Remark 2.7. We only require the following dilation. Set o = C2%/(*+1) where C' and & are
from (2.9). Then there exists C and N such that > Logy < CoV and it follows from (2.9)
that for each j,

| ®(x) B

Y
z€B ]

where %;Y = 0%;.

2.4 Muckenhoupt weights

The class of Muckenhoupt weights will play an important role throughout this thesis. We
introduce them here and give some of their well known properties. Some standard references for

these weights include [59, 60, 101].

Definition 2.8 (Muckenhoupt weights). Let p € (1,00) and p’ be its conjugate exponent as
defined in (2.6). For a non-negative and locally integrable function w, we say that w € A, if

there exists C' > 0 such that for all balls B

(o (fy " <
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We say that w € Ay if there exists C > 0 such that for all balls B
][ w < Cw(x) a.e. x € B.
B

We also define Ao := | Ap.

1<p<oo
Some well known properties concerning the class of Muckenhoupt weights and the class of reverse
Holder weights are summarised in the following. For their proofs see [16] Proposition 2.1 (or the

standard references mentioned at the start of this section).

Proposition 2.9. One has

(a) 1<p<p<oo = A CA, CA,.

(b) 1<p1<pa<oo = B, DBy, D Bu.

(c) Letpe (1,00). Then we A, <= w' P eAy.

(d) we A, for somel <p<oo = we A, for somepy such that 1 < py < p.
(e) we B, forsomel <g<oo = w € By, for some qy such that ¢ < gy < 0.
(f) Let p,qe[l,00). Then we A,NB, <= we Ayp_1)11-

(8) A= U By

1<g<oco

We also define the following sets of exponents associated to a fixed weight, first introduced

in [16]. For w € Ay, and 1 < py < gop < 00 we set

W (D05 40) := {p € (D0, q0) : w € Ap/py N Bigo /oy } -

If we define r, :=inf{r >1:w € A,} and s, :=sup{s > 1:w € B,}. then we have

W (Do, qo) = (porw, Sqfo)

w
The case w = 1 corresponds to the Lebesgue measure on R” so that in this situation we have

Wi (po, q0) = (po, o). If o = 0o then Wy (po, 00) = {p € (po, q0) : w € A, p, }. Note also that
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these sets can be empty. See for instance [16] Remark 4.3. For more information on these sets
of exponents we refer the reader to [16] Section 4.

The following describes the doubling property for Muckenhoupt weights.

Lemma 2.10 ([59]). Let w € A, for some p > 1. Then for any ball B, there exists C' > 0 such
that

w(2B) < Cw(B).

More generally for each A > 1,

w(AB) < CA"Pw(B).
where C' is independent of \ and B.

Lemma 2.11 ([59]). Let w € A, N B, for some p > 1 and g > 1. Then there exist C1,Cy > 0

such that

Gy ('E)p < w(k) <0 (:ng—l/q

for any ball B and measurable subset E C B.



Chapter 3

Heat kernel estimates

The heat kernel and the heat semigroup associated to L = —A + V play a crucial role in our
techniques. In this chapter we present various estimates involving the heat kernels of Schrodinger
operators and their derivatives. In the first section (Section 3.1) we summarise the known
estimates for the heat kernel associated to L when V is non-negative and locally integrable.
Then in Section 3.2 we specialise to reverse Holder potentials and give our improvements on
these estimates.

The main result of this chapter is Proposition 3.7 which is new. It plays an important
role in the results of the subsequent chapters.

The following observation will be useful throughout the rest of the chapter: for any ¢ > 0

there exists C' > 0, depending only on ¢ and n, such that for every y € R™ and t > 0,

7c‘17y‘2 n/2
e todx < CthE.

3.1 Non-negative potentials

It is known that since V' is non-negative and locally integrable, by the Feynman—Kac formula
the heat kernel of L admits the following so-called Gaussian upper bound (see [96]):

R s
0 < pi(z,y) < (4mt) ™2™ 4t . (3.1)

However while pointwise bounds on the derivatives of the heat kernel are generally not available,

we do have the following weighted integral estimates. These often suffice in the analysis of
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singular integrals associated to L.
Lemma 3.1. Let L= —-A+V onR", n > 1 with 0 <V € L _(R"). Then the heat kernel

pe(x,y) of L satisfies the following.

For each p € [1,2] there exists positive constants oy, Cp and ¢ such that for all y € R™,

and t >0,
([Iweme e w) " < G (32
( / V172 () paar, )P 7 dx)l/ ’ < Wf% (3.3)
For each k € N there exists Cy, > 0,¢ > 0 satisfying
o Cp  _Jz=vl?
‘Wpt(xvy)’ < ok © e (3.4)

for every x,y € R, and t > 0.

Proof. We show (3.2). The estimate for p = 2 is known. See Lemma 2.5 of [6] (and also [46]).
We shall obtain the estimate below 2. Fix p € [1,2) and a constant «, € (0, @2/2). Applying
Holder’s inequality with exponents 2/p and (2/p)’ = 2/(2 — p) gives

lz—y|? lz—y|?

2
P ,0p o=yl — P  pap —(p—Loyp
[Vepe(z,y)|" e t dr = |Vaepi(z,y)|" e t e t dx
n R'ﬂ,

‘2 ‘2 2—p

lz—y i _ p—1|z—y 2-p
) N I

Now since 2y, < ag the first factor is bounded by a constant multiple of (¢~"/271)P/2. Also

since p € (1,2) then (p —1)/(2 —p) > 0 so that the second integral is bounded by a multiple of

(t"/2)1=P/2 Therefore we obtain

lz—y|? 1 p/2 1
P _ap—— n/2\1—-p/2 __
/Rn Vena )l e T dr S (o) @ = s

as required.
The estimate (3.3) can be obtained in a similar fashion and we omit the details. For
the estimate on the time derivatives (3.4) we refer the reader to estimate (3.1) of [46] and the

references therein. O
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One can improve the ranges for p above 2 in these estimates if V' satisfies further conditions.

We turn to this in Section 3.2.

3.2 Potentials from the reverse Holder class

Under the extra condition that V belongs to a reverse Holder class the pointwise bounds in (3.1)
can be improved. These improvements were obtained independently by separate authors and
we recall both of these results here. Throughout the rest of this chapter the function v is the

“critical radius” function defined in Definition 2.2.

Proposition 3.2 ([49] Proposition 2). Assume that V € B, for some ¢ > n/2 and n > 3. Then

for each N > 0, there exists Cny > 0 and ¢ > 0 such that

0 < pily) < = —%(1 v ﬁ)’N. (3.5)

< e +
tn/2 v(x) ()
Proposition 3.3 ([74] Theorem 1). Assume that V € B, with ¢ > n/2 forn >3, or ¢ > 1 for

n = 2. Then there exists Cy,cg,c > 0,0 < § < 1 such that for all x,y € R™ and t > 0,

Co

lz—yl®> _ t_\°
pe(z,y) < W@ C(1+ ) .

—co 7 e

(3.6)

We remark that § depends on the constant g in Lemma 2.5.

Our aim in this section is to show that this improvement (specifically the extra decay
in (3.6)) can be carried over to estimates on various derivatives of the heat kernel. These
estimates will be indispensable throughout the rest of this thesis. We first give a list of these
estimates, before giving the proofs.

The first is an improvement over the time derivative estimates of (3.4).

Proposition 3.4 (Time derivatives). Assume that V € B, with ¢ > n/2 forn >3, or ¢ > 1
forn =2. Let § be the constant from (3.6). Then there exists ¢ = ¢(§) > 0 and ¢, > 0 such that

for each k € N there exists Cy, > 0 satisfying

ok C lz—yl®> _. t_\°
‘%pt(x,y)‘ < tn/ﬁe_cl t e ('(1+’Y($)2)

for every x,y € R", and t > 0.
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This will be proved in Section 3.2.1. Similar estimates can be found in [49] where the improve-
ment factor is similar to (3.5).
Next we show that for potentials with enough regularity, one can obtain pointwise bounds

on the first derivatives of the heat kernel.

Proposition 3.5 (Gradient bounds). Let L = —A+V on R" with n > 3. Assume that V € B,

with ¢ > n. Then the heat kernel p.(x,y) of L satisfies

C le—y® (10 VE)°
|Vmpt(l‘,y)’ S me_c t e ('(1+V($)) i (38)

This is proved in Section 3.2.2.
For g < n, pointwise bounds are not available. However we do have the following weighted
estimate. It is an improvement over estimates (3.2) and (3.3). We remind the reader that the

Sobolev exponent ¢} has been defined in Section 2.2.

Proposition 3.6 (First derivatives). Assume that V € By with ¢ > n/2 forn >3, or g > 1
forn=2. Let § be the constant from (3.6). Set ¢4 :=sup{q>n/2:V € B,}. Then for each

p € [1,q7}) there exists positive constants o, Cp, ¢ such that for all y € R™, and t > 0,

t

o lz—y|? 1/p C —c(1+ ’
(/\Vmpt(m7y)|pe LA dac) < me ( “/(Z/)z) ) (3.9)

Also for each p € [1,2qy) there exists positive constants oy, Cp,c such that for all y € R™,

andt >0,

o lz—yl? 1/p C —e(14=t2)°
(/|V1/2($)pt(x,y)|pe Pt dx) < me (1+'y(y)2) . (3.10)

Note that «;, also depends on g. The proof of this result can be found in Section 3.2.3.
The following is the main result of this chapter. It gives the technical estimates behind

the results for the second-order Riesz transforms V2L~! and VL™! in Chapters 4, 7, and 6. It

will be proved in Section 3.2.4.

Proposition 3.7 (Second derivatives). Assume that V € B, with ¢ > n/2 forn >3, orq¢ > 1

forn=2. Let § be the constant from (3.6). Set ¢4 :=sup{qg>n/2:V € B,}. Then for each
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p € [1,q4) there exists 5, Cp,c > 0 such that for ally € R™, and t > 0,

lz—y|? 1/p C Ce(14—t5)°
(/\Vipt(x,y)\peﬁ" Pode) < e “(+5)” (3.11)
|z —y|? 1/p C (1 —t2)°
(J vemtar e i) < e Cesim). (3.12)

3.2.1 Time derivative bounds

In this section we obtain the proof of Proposition 3.4. Our approach is to work with a holomor-
phic extension of the heat semigroup to an appropriate sector in the complex plane, and then

invoke Cauchy’s integral formula. This holomorphic extension is contained in

Lemma 3.8 ([53] Corollary 6.2). The semigroup {e*tL} has a unique holomorphic extension
on L*(e"*=¥ldz) for every n > 0 and y € R™ in the sector X, /4 = {{ € C: |arg&| < m/4}.

Moreover there exists constants C,c > 0 such that

2
||67ZL||L2(e"|1_y‘dw)—)LQ(emI_y‘dw) < Ce™ e

Jor every y € R", z € X7y, and n > 0.

Proof of Proposition 3.4. In the following we shall write p,(z,y) to mean the integral kernel of
the operator e~*L. Our aim is to obtain the following pointwise bounds on this integral kernel,

which is an extension of (3.6) to complex times.

Lemma 3.9. Assume that the conditions in Proposition 3.4 hold. Then there exists C,c > 0

such that for all x,y € R™ and z € X5, one has

Ce(14-22)°  Je—yl?
|Pz(x,y)| < 4(% C)Yn/2 e (1+’y(x)2) e ¢ TRz . (313)
z

Let us demonstrate how (3.13) readily leads to (3.7). Fix z,y € R™ and ¢t > 0. We shall

apply Cauchy’s integral formula to p.(z,y) in the disk

I(t):={eC: |-t <t/2}.
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Observe that I'(t) C ¥, /5. Hence p.(z,y) is holomorphic over I'(t), and so for each k € N,

Cauchy’s integral formula gives

" k! p=(7,y)
_ = — L S d .
oY) = 5 /F(t) G+t @
Using (3.13) and noting that when z € I'(¢) one has t/2 < Rz < 3t/2 and |z — t| = t/2, we get

ok lemul (B2 ) |dz|
_ , <C TRz y(@)2) 7L
‘(’)t’fpt(x y)‘ =k /m)"’ ¢ (Rz)n/2(t/2)k+1

Cr ol (ipp )’
< ket ey / d2|
tn/2+k+1 ()

r— 2 _s t 8
Cr 6_Cll yl 2 (1+7(x)2)
— n/2+k

which is (3.7). O
We turn to the

Proof of Lemma 3.9. We claim that (3.13) follows from the following weighted estimate: there

exists C, ¢,e > 0 such that for every y € R", >0, and 2 € ¥ /5,

67729?‘2 Rz \9
/ p. (z,y)|> e da < Ce™ —c(1+555)
R’n

CBRE e (3.14)

Assume this estimate for the moment. Then the semigroup property, the Cauchy-Schwarz

inequality, and estimate (3.14) give

[p= (2, y)| "7V = ‘/ Pzj2(2,u) p2ya(u, ) du‘ eyl
Rn
< [ pepate )] el
]Rn

< sz/2(‘r7 ) en|a:—»| HL2 ||pz/2('vy) 677|'—y\ HLQ
< @676(1+»Y§(RTZ)2)5.

= (Rz)n/2

Now fix g € (0,1/4€) and choose 7 = €y |z — y| /Rz. Then our estimate becomes

oyl? Rz \6
C 6(4663760)‘ vl —C(1+,Y(IZ)2) )

p=(z,y)] < )2 Rz e

Since 4ee2 — ¢p < 0, this establishes (3.13).
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Hence our proof of Lemma 3.9 will be complete provided we show (3.14). Accordingly

fix z,y € R", n >0, 2 € X /5 and set ¢ := RNz. Then the semigroup property implies that

po(z,y) = (e

Since z € ¥ /5 then z — % € Y/4, and hence by Lemma 3.8

¢ 1/2
- = ([ e (gp(of e da)

< Ce[pe () e |

The bounds for the heat kernel from (3.6) give

— C —c10-9(14—24)° B lz—y|? B 1/2
Ip Cow) e | e < me (+5572) (/ne 200 Ll y\dx) :

We shall prove that for any 8 > 0 there exists Cy > 0 and ¢y > 0 such that for all n > 0
and t > 0,

lz—y|?

/e_e T el dy < Cy /2 econ’t, (3.15)

Combining (3.15) with the previous two estimates will give (3.14).
We shall obtain (3.15) by considering two cases: (i) nv/t > 1, and (ii) nv/t < 1. Fix a

constant ¢ > 8/6. In the first case we write

glz=ul’
e~ 7 e eyl gg <2 elz=yl g +
" B(y,2ent)

oo
o2 j .
< ¢t |B(y, 2ent)| + Z e 0T 2 en’t |B(y,27ent)| .
j=2

o

2
U;(B(y,cnt))

=2

Now using that 6c > 8 we have that e7°t(¢2’=04¢*/8) < 1 and hence

/ 6_9\1 tyl el gy < Ctn/ze3cn2t+Cze—9%4jn2t(zjcnt)”

Jj=0
n/2 X
n/2_3cn’t t —nj
< Ct?e’n +c(n2t)n22 7
Jj=2

< Ctn/2669n2t

where in the next to last line we have used the fact that n?t > 1.
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For the second case, with the same c¢ > 86, we write

|z—yl? > |lz—y|*
/ e 0T e MrYlgy < Zezcnﬂ‘B(y,ZC\/m + Z/ eVt eyl gy
n j=2 Uj(B(y,C\/E))
> 2 4i oi ;
<ot? 4 26_9T4 e? C"‘/Z|B(y7 2evt)|
j=2
ad 2 4i 1
SO 2y e IS (2 V)
j=2
< Ctn/2 < Ctn/2€C9n2t.
In the second line we have used that 77\/1? < 1.
This completes the proof of (3.15), and hence also of Lemma 3.9. O

3.2.2 Pointwise gradient bounds

In this section we obtain the proof of Proposition 3.5. Before turning to the details, we address
some notational matters. In this section we will be working with “parabolic cylinders”. We

define the open parabolic cylinder Q(z,t,r) by
Qz,t,r) ={(y,s) ER" x (0,00) : |z —y|<r and t—1r*<s<t}

which in simple terms, describes the open cylinder in the half space R™ x (0, 00), with centre (z,t)
at the top, radius r, and height r2. It may be helpful to note that Q(z,t,r) = B(z, ) x (t—12, ).
When we speak of the ‘cylinder @’ we shall mean a cylinder Q(zq,tg,7q) with fixed centre
(2@, tq) and radius rq. Given A > 0 and a cylinder Q(z,t,r) we define the dilated cylinder by

AQ = Q(z,t, \r). We also write Q to mean the closure of Q.

Proof of Proposition 3.5. The main idea is to exploit the local gradient estimates of solutions

0
to the operator — — A, which are themselves well known. To do so we study the construction

ot

U:=u+ (% - )_1(u1QV)

where u is a solution to (% + L)u = 0 in the parabolic cylinder Q. It follows then, that @ is a

solution to (% — A)ﬂ =0 in ). Hence we may pass from bounds on Vu to bounds on u. We
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-1
also need bounds on the gradients of the kernel of (% — A) but since this involves the usual
heat kernel of —A it is readily calculated. Lastly we need the reverse Holder properties of V' to
finish the estimates.

We first obtain local estimates for the parabolic Schrodinger operator. These local esti-

mates will be used to obtain full gradient bounds. More precisely we shall first prove:

Lemma 3.10. Let L = —A +V with n > 3. Assume that V € B,,. Let Q = Q(zq,tq,TQ)
be the open parabolic cylinder centred (xzq,tq), with radius ro, height T2Q, and Q is its closure.

Suppose that u satisfies

(% + L)u(:v,t) =0, V(z,t) € Q.

Then there exists C' > 0 and k > 0 independent of Q such that

C k
sup |Vgu(z,t)] < — (1 + 2 )> sup |u(z,t)]. (3.16)
(21)€5Q e (@1)€Q

Proof. Construct the following

a(z, t) = u(z, ) + (9 . Aw)il(ulQV)(x,t)

ot
= u(z,t) + / hi—s(z, y)u(y, s)V(y)1o(y, s) ds dy.
n Jo

The second line follows from (2.2) applied to the case L = —A. Let us see that (% — A)ﬂ =0

in Q. Given (z,t) € Q we have

(2 —aatwn = (2 -a)uwn+ (2 -a) (2 -a)  wrgn)en

= gu(% t) — Ayu(z,t) + u(z, )V (x)lg(z, t)

ot

0
= Eu(m,t) — Awu(x,t) + u(mj)V(l‘)
= (% + L)u(:&t) =0

because by assumption u satisfies the parabolic Schrédinger equation in Q. Hence according

to [55] Chapter 2.3, Theorem 9 on page 61, @ satisfies the following local gradient estimate in Q:

C
max _ |Vyiu(z,t)| < —= ||u|l;1m 3.17
s Vaaeo] £ ol (3.17)
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0 _A)" h
5 ) (ulgV) , we have

After rearranging u = 4 — (

sup |Vu| < sup|Va| + bup‘V(——A) (ulQV)‘ = IT+1I.
2Q 2Q

Now since

Il gy < 1QIsuplal < 13 |Blzq,ro)l sup [al,
Q Q

then by (3.17) we have
1
IS — suplil
TQ Q
1 0 -1
< Lo+ |5 -9) wovl)
S Sgp{IU+‘(at (ulQV)
1 1 ¢
S —suplu[+ — sup hi—s(z,y) lu(y, $)| V(y)1o(y, s) dsdy
Qe @ "Q (a,)eQ /R"
= .[1 —+ IQ.
Now for each (z,t) € Q

//0 hi—s(z,y) |uly, $)| V(y)1g(y, s) ds dy

t
:/ t/ ha(@,y) [u(y, $)| V(y) ds dy
B(zq,rq) tQ_TQ

lo—y|*
I o 9 V() dsa
= e —= |u(y, 5)| V(y) ds dy
(4m)/2 B(zq,rq) Jto—r3 (t—s)m/2
z—y?
< supluf »«)/t ¢ M e
< sup|u Y 5 dsdy.
6 B(zq,rq) tQ—T‘é (t_s) /2
Since
lz—y|? lz—y|?
t e 4(t—s) ™ 41? 1
/ vy ds < / 7 ds 5 ————
gt (E— )" 0 o=y
we obtain

1
I, < —sup\u| sup / &dy
"R Q  (neQ/Bagro) v —y["

We can estimate this using the fact that V' € B,, /5. Indeed by Lemma 2.4 part (a),

Viy 1
sup / ¢dy S = / V(y) dy.
(2.6)eQ Y/ Blzg.ra) |z —yl" rg " JB(zq.rq)
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This then gives

1 1
I < h+1, < —Sup|u|< ﬁ/ V).
TQ Q 7AQ B(zq,rq)

Let us turn to the second term I1.

— ]/ / Vehi (2, y)uly,5)V(y) ds dy|
(xq,rQ) Jto— T

(ztG Q
< sw [ / [ Vahi—s(a.9)] fuly. )| V(y) ds dy
(z,1)€3Q J B(zq,rq) Jto—r}
lz—y|?
e 8lt=s) “8(t—s)
Sswplul s / —V(y)dsdy.
(x,t)e2Q / B(zq.rq) Jtq—1} (t—s)=

In the third line we have used that since 22/8 < e#*/8 for all z € R, then

) _le—yl?
|z -yl 4 lz—yl 4 e~ st

5 ht( ) < We 8t ht(x7y) = (471_)71/2 (t_s)";l ’

|vxht(xa y)| =

Next, a change of variable r =t — s gives

lz—yl?

t ¢ 8(—s) t=totry  la—yl® g
nEl ds = € 8s nil
tq—r3 (t —s5)2 0 sz
o0 _|$—?J|2 ds
< e 8 —ay
0 52

le—yl* o ey ds
= —+ e 8s —T
0 |z—y|? s 2

=Ji + Js.

We have firstly that

|z —y|? 2 lz—y|?
1 S / ( : 2>n/ di = ! / % S %
0 lz — y s lz—yl" Jo st/ |z —y|"

and secondly that

oo
ds 1
J2 S / 5 ntl S’ n—1 "
lz—y[> 52 lz -yl

Now, using Lemma 2.4 part (b), we have

Viy 1
sSup / #dy N ﬁ/ V(y) dy.
(@)€rQ/Blgra) [t —y[" TQ  JB(zq.rq)
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Inserting these into 11 gives

1
ITI < (n_l/ V)sup|u|.
rQ B(zq,rq) Q

Collecting these estimates we have

A

1 1 1
e @ TQ B(zq.rq) Q TQ B(zq,rq)

1 2
— sup |u] <1+W/ V),
rQ G Q B(zq,rq)

and hence

1

1
sup|Vu| < — (1 + - / V) sup |ul .
1Q rQ TQ B(zq,rq) Q

Finally using items (a) and (b) of Lemma 2.3 we can show that

(4 ) = i)

where k = max {0, 1} and o is the constant from Lemma 2.3 (b). From this one can obtain the

desired result. This completes the proof of Lemma 3.10. O

We now turn to the full gradient bounds. Fix z,y € R™ and t > 0 with = # y. We
shall show (3.8) for pi(z,y). Set u(z,s) := ps(z,y) for each s > 0 and z # y. We also define
the cylinder @ by setting zg = =z, tg = t, and r¢g is a number satisfying 0 < ré < t. Then
clearly (z,t) € %Q and u is a weak solution of % + L in Q. Therefore by the local estimates

of Lemma 3.10 and the bounds of the heat kernel in (3.6), we have

[Vape(z,y)| < sup  |[V.ou(z, )]
(z,8)€3Q

IN

1 k
— (1 y e ) sup |u(z, s)|
rQ (2,8)€Q

(z,8)€Q

k ‘ — |2 B s s
L e (5

co

_ <1+ TQ) sup [ps(z,y)|
)

AN
—_
—
—
+
<
Q

sup_ —5e (3.18)

1)) (. 9eq
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We shall estimate (3.18) over two cases, depending on the size of ¢ in comparison to the size

of y(x)?. Suppose firstly that ¢t < v(z)2. Then we set rg := t/2 and observe that

ro \* 1 \k
— < — <
(1+7(x)) <(1+ ﬂ) <C
so that (3.18) becomes

1 1 =l
|Vzpt($ay)| S 2 SuPisnﬁe o (3.19)
(z,9)€Q

For the time variable, we mention that when (z,s) € Q then s ~ t. Indeed,

t > s > t—ry = t—t/2 = t/2.

Now if |z —y|* > 2t then for each z € B(z,rq),

so that
—ul? o2
1 e*C°%< 1 efclfr ty\
S”/2 ~ tn/Q

On the other hand if |z — y|2 < 92t then e 2 < ele=ul*/t In either, case we further reduce
estimate (3.19) to

_ 2
1 _ eyl

|Vzpt($ay)| < /i (3.20)

Finally, we may introduce the extra decay term by observing the inequality ¢t < v(z)? implies

2 <e <1+ﬁ)57

so that (3.20) can be further improved to

1 oyl® (14—t
}prt(zvy” 5 me_c t e (1+’y($)2) .

This gives (3.8) for the case t < v(z)?.
We turn to the case t > y(z)?. Set 13 := v(x)?/2. Then (z,s) € Q implies that s ~ ¢

and v(z) < C1y(x), with C; > 1. Indeed, the inequality

t > s > t—ry = t—y(@)?/2 > t—t/2 = t/2,
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and the definition of rg implies that B(z,rg) C B7(z), so that by (2.10), one has v(z) < Ciy(x)

for every z € B(x,rq), where C; = 4Cy. Combining these facts, one has for each (z,s) € @,

—lrsip)” o o ()’

Then we further estimate (3.18) by

1 1 (et N EE s
|prt(x,y)‘ < 7@ (1+ ﬁ) Y () (ZSSEQE 05
’ s z— 2
_ Ly L () —a R
w73 ¢ sup e
\/E 7(33) t (2,5)€Q
L o(estp) ekl
< - x ¢ s
~ itz ") (zssle)@e ’ - (3.21)

Finally we may estimate the Gaussian term in a similar fashion to the previous case. Namely,

if |2 —y[®> > 2t then whenever z € B(x,rg), we have

2=al > la =yl —rq = |o—y| - L
> lz—yl—y/t > |x—y|—% — lﬂﬂgy\7
so that

On the other hand if |z — y|2 < 2t then e 2 < e~l#=yl*/t In either case we further reduce

estimate (3.21) to

1 _C|fr—y‘2 — 14+ t s
Venila )| S e © e (1+507) (3.22)
which gives (3.8) for the case t > ~(x)%.
This completes the proof of Proposition 3.5. O

3.2.3 Weighted Sobolev bounds: first derivatives

In this section we give the proof of Proposition 3.6. We will consider three separate cases: p = 2,

p <2, and p > 2.
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We first obtain the case p = 2. Let ¢y be the constant in (3.6), and choose as € (0, %co).
We shall proceed as in [46] with some slight modifications. Let ¢ € C§°(R™) with 0 < ¢ <1,

support in B(0,2), |[Ve| <1, and ¢ =1 on B(0, 1). Define for each R > 1,

Pr() =@ (E) :
Then it follows that |Vogr| < 1/R.
FixyeR" t>0, R>1, and set

lz—y|?

Ir(t,y) ::Z/, |Oupe(x,y)” €™ 7 pr(a) de.
k=1"R"

Then one has
Ir(t,y) = Ix(t.y) — I%(t.y)

where

Iﬂc—y\2

Ix(t.y) Z Oupe(2,y) O [pt(rc y)et @R(I)} dx

n lz—yl?

Ié(ty) = Z Okpt(z,y) pe(z,y) Ok {eo‘z ¢ @R(x)} dx.

k=1“R"

Let us study the first term. Since @ has compact support then

Pl e T gr() € D(Qy).

Therefore since both V' and ¢ g are non-negative,

|z—yl|?
Th(t,y) < Thit,y) +Z [ V@)l T on(r) do
k=1“R"

=Qy (pt(wy) , pe (5 y) 6“2#%('))

lz—y|®

:/ Lpi(x,y) pe(x,y) e** ¢ pr(z)ds

b o, Lzl
= apt(x,y)pt(fﬂ,y)ez t @p(r)ds.
Rn

Now using the bounds on the heat kernel (3.6) and on its time derivative (3.7) we have

C  _ef1e0—t2)° , |z —y|?
Ihty) < ooe (1+505) / e~ (e0=02) T L0 d
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Since ay < ¢ and wr < 1 we can control the integral by a multiple of */2 and obtain

C —c 1-1-L °
Ip(t,y) < YT ( V(y)2)~ (3.23)

For the second term we have
n

o Jz—y|? 2c
I3 (t,y) = Z [ ol mley) e T Do) + =
k 1 n

/ Bk, )l pe ) | €22
1

(xr — yk) @R(x)]dﬂﬂ

lz—y/?
7

IN

vr(z)dx
k
lz—yl® \2

+Z/ el ) llpn(, )| 2 T |0kpr ()] da
= Ig'(ty) + 152 (6 y). (3.24)

To estimate the first term we use the Cauchy-Schwarz inequality, the heat kernel bounds (3.6),

and that 2cq > 3as to obtain

n

C 3ay |-—yl? as [-—yl?
I (t,y) Szﬁﬂm(w)e 2t on 100 Chy) e 2T gl
k=1
Ce —(507) L e (260—3a) |-— ag |—yl?
< Tz ZHG [10kp: ()l €2 g s
C _ t N\
< VIt ) (3.25)

1
Combining (3.23), (3.24), and (3.25), with the inequality vAB < %A + Q—B7 valid for all
5

e, A, B > 0, we obtain

1 1

n/2+1 + Vi

t s
—c(1+72) 1+ 2e 1 2.9
< Ce 7W) (tn/2+1 + o5 IRt y) ) + 157 (4 y).

—c(1+¥)(‘
Ir(t,y) < Ce 7()? ( IR(t,y)> +I%(t,y)

Choosing ¢ large enough therefore gives

C —c 1+% ’
Ir(t,y) < We ( v(y)) +CIJ2?:2(t7y)-

Now using that |Vpgr| < 1/R we see that

RISV R
Ig? {Z/ |Okpe (@, y)| [pe (2, )] €™ 1 dx} — 0
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as R — oco. Hence by Fatou’s Lemma,

le—yl|?
L ena e < [t int {9 )5 pnla) o

lz—y|?

gliminf/ \Vepe(z,y) > €2 1T pp(z)de

R—o0

= liminf Ig(t,y)
R—o0

< imint {7y

t s

This proves (3.9) for p = 2.
To obtain (3.10) for p = 2, we observe that

o o, 27yl P )
V(@) p(wg)?e™ 1 pr@)de = Qu(pl,u), my) et pn) = Th(t,y).

R
Since both terms have been estimated we can apply the same computations as in (3.9) and
yield (3.10). This completes the proof of Proposition 3.6 for the case p = 2.

Next we turn to the case p < 2. Let p € [1,2) and fix «;, € (0, a2/4). Applying Hélder’s

inequality with exponents 2/p and (2/p)’ = 2/(2 — p) gives

lz—y|?
/|Vzpt(1’ay)|peap t dx
Rn

lz—y|?

yl?
e_(2p_1)ap t dx

|z—

lz—y|* z _20p-1)  |z—y|? 1-2
< ([ 1vamt e ) ([ T )
Rn n

Since 4a,;, < ap we can control the first term by a constant multiple of

[ 1 c(lwtw)“]”?

$n/2+1 ¢ ’

and since (2p —1)/(2 — p) > 0 we can bound the second integral by a multiple of (¢"/2)1~7/2,

Therefore

o Jz=yl? C _ep gyt )
/n ‘prt(%y”pe Pt de < m@ 2 ( v(y)2) .

which gives (3.9) for p € [1,2). Similar calculations gives (3.10) for the same range of p.
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We now consider the case 2 < p < ¢}. We shall make use of the following estimate, valid

for each ¢ € (2,q%),

C —cl 14+ L ° n
Ve (- y)ll, < me (v+75) VyeR", t>0. (3.26)

Assume this estimate for the moment. We shall show how an interpolation between (3.26) and
the estimate (3.9) for p = 2 yields (3.9) for all p € (2,¢%). Indeed for each p € (2,q7) set

(recall that ¢} = oo if and only if ¢, > n)

Jr *
% if ¢} < oo,
q:=
2p if ¢} =00
and «;, := a2(q¢ — p)/(¢ — 2). Note that p and g satisfy
- —2 - —2
p:2(u)+q<L), O<u<17 1<q—<oo.
q—2 q—2 q—2 q

Applying Holder’s inequality with exponents

N _9
122 (122) -t
we obtain

lz—yl?

/|Vzpt(x,y)|pe% t dzx
Rn

2

=g o, 12200 p=2
:/ Vape(w,y)|* 2 ¢ [Vapi(w,y)| "2 da

aq

< (/ V(2 y)|? e“?@ dx)“%g (/R Vope(a g dx)%.

Estimate (3.9) for the case p = 2 allows us to control the first term by a multiple of

[£3+1] =P (”ﬁ)s,

while estimate (3.26) allows us to control the second by a multiple of
2] 7 ents ()

Combining these estimates we obtain

|z —y|*

vl C —pe(1+ 2t )’
P oy -z 7P 2
/n ‘ V rcpt(z7 y)' € ¢ dr < tp/2+(p—1)n/2 € "W
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which is (3.9).

It remains to obtain (3.26). Firstly observe that the semigroup property (2.3) implies

vmpZt(m7y) = vxe_tLpt('uy)(‘r)' (327)

Now recall from Theorem 1.3 that under our assumptions on L = —A 4+ V the Riesz transform
VL~'/2 is bounded on L4(R") for every ¢ € (1, ¢’). This implies that for each ¢ € (1,¢7%)

Vet <%

q—q — \/i
Indeed by the analyticity of the semigroup {e’tL}DO (see [85] p74, Theorem 6.13)
[VEett g, = VETL LR | S VL et 5 01
Hence from (3.27)
19p21C ), = 9“0 0|, < 7 I w)] (3.25)
2l Y q Y qn~ \/Z t\HY q- .

Now using the bounds (3.6), we have

5 r—yl? s
¢ ech(lJW(tT)Z) / e_qc% dx L 7qc(1+ﬁ)

q
Hpt(7y)||q < tan/2

S t(q—l)n/26 :
Combining this with (3.28) gives® (3.26).

Finally to obtain (3.10) for p € (2,2¢+) we may argue in a similar fashion as above,

except in place of (3.26) we use

C _ _t_)°
HV(-)l/th(-,y)Hq < me C(1+7(y)2) VyeR™ ¢t>0

which follows similarly from the heat kernel bounds (3.6), and the boundedness of V1/2L~1/2

on LI(R™) for all g € (1,2¢4) (see Theorem 1.3).

This concludes the proof of Proposition 3.6.

3.2.4 Weighted Sobolev bounds: second derivatives

In this section we give the proof of Proposition 3.7. We shall first obtain the Proposition for

p € (1,¢q4). The case p = 1 can then be obtained by Hoélder’s inequality (we omit the details

1We remark that for n > 3 we can also use Proposition 3.5 to obtain (3.26) when ¢4 > n.
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for this case). Fix p € (1,¢4+). Let o, be the constant in Proposition 3.6, ¢; be the constant in
Proposition 3.4, and ¢o the constant in (3.6). Pick 8 € (0, min {a,, pc1,peo}) and set 5, = 5/2.

We shall require the following by-parts inequality that is in some sense based on the
Calderén—Zygmund inequality. It is inspired by a similar inequality in [43] but valid only on
certain domains of R™. The following applies to R™ and we defer its proof to the end of this

section.

Lemma 3.11. Let p € (1,00) and f € W2P(R™). Then there exists C = C(p,n) such that for

each 1 < 4,k <n one has
160,011 < CIF1920l . + 11V £1981 | + 621]] )
for every ¢ € C§°(R™).

We will prove (3.11) by using a family of weight functions {wy r(-,y)} 5 C Cg°(R™) that
forms a smooth cutoff of e#lz=vl*/ ¢ and then applying an approximation argument. Accordingly

fix t > 0 and let p € C§°(R"™) be a function satisfying the following (for some fixed constant C):
supp » C B(0,2vt), @=1 on B(0,v1), |p| <1, |Vy|<C/Vi, |V2p| < C/t.

Now for each R > 1 set pr := ¢(5). Then g satisfies:

C C
=1on B(0, RV1), <1, Vor| < —, V3| < —.

YR ( ) lor| < |Vor| < NG ’ 90| =i

Now define
g, le=yl®
wy g(z,y) = er(|lz—y|)e™ #t
Then supp wy r(z,y) C B(y,2R\/t) and one can show easily that
O glz=yl® C glz=ul
|Vywe r(z,y)| < \ﬁeﬁ pt and V2w, vz, y)| < ?eﬁ Pt (3.29)

Next define for each ¢t > 0, y € R" and R > 1,

JR(tay) = ||wt,R('7y)|v2pt('ay)|||p'
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We apply Lemma 3.11 with f := p;(-,y) and ¢ := wy r(-,y). Note that p;(-,y) € W2P(R™). To
see this recall firstly that V2L~! is bounded on LP(R"™) for p € (1,¢.) (from Theorem 1.3), and
secondly that %pt(', y) € LP(R™) (due to the pointwise bounds (3.7) on the time derivative of

the heat kernel of L). Therefore one has

IVl = -7 G| < gt < o

so that V2p;(-,y) € LP(R™). Hence by Lemma 3.11, for each t > 0, y € R?, and R > 1, we

obtain

Tr(t,y) S [IV2werC 9ol + [Vwnm Gl Vool + [[wnr(9) Ap9)]|,

= Jg(t,y) + Ja(t,y) + JE(t,y).

To estimate the first term we use the bounds of our constructed weight functions (3.29), the

bounds on the heat kernel in (3.6), and that 5 — pcy < 0:

Thity) = / IV2wr r(2,9)| pela, )P do

) t § |I— 2
> tPJrgn/Qe_pC(l—i_’Y(y)z) / e(ﬂipco)Ty‘ dx

C 7pc(1+%)6
tp+(p*1)n/2e "W

For the second term J% we observe that since ¢t > q4+ then Proposition 3.6 applies. Therefore

because 3 < ¢y, we may combine (3.9) with (3.29) to obtain

T(t,y)" = / Vo (5, 9) [ [Vape(o, y)]? da

C |z —yl?
<o | Vanal e e

C 7pc(1+%)6
< We ~(y) .

Now for the third term

J}?’%(tvy) = Hwt,R('ay)(L - V)pt('>y)||p

< lwe, () Lpe (5 Y)ll, + llwe m (G 9) Ve ),
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= T (ty) + T (8 y)-

Using the pointwise bounds on the time derivative of the heat kernel (3.7) and that |wy g(x,y)| <

2
ePrle=ul"/t we have

ng(uy)”:/

Rn
5 xr— 2

¢ eipc(Hﬁ) / e(ﬁp—pcl)| ty‘ dx

0 P
51715(‘%73/)’ wy,r(z,y)? d

<
— ¢ptpn/2

n

C —pc(l+%)(s
<@t 0

where in the last line we have used that 3, — pc; < 0. For the final term J32(¢,y) we employ
the reverse Holder properties of V', and the improved decay inherent in the heat kernel of L,

namely (3.6). Indeed one has

T2t y)P =/ V(@)Ppi(z,y)Pwy,r(2,y)P do

IA

t 5 r— 2
tpfﬂe*pc(l*w(y)?) / V(x)pe(ﬂp*p%)l tyl dx
5 o0

C 7pc(1+ﬁ)

e J
ten/2 ; Uy (B(y.v9)

lz—y|?

V(z)Pe P da

where 3y := pcy — B, > 0. Now for each j > 1,

lz—yl?

Viz)Pe 1 dx < e*BOQQj/ V(z)? dx
B(y,27V?)

/Uj(B(y,\/?))

< Ce=P¥ | B(y, 2jx/%)|(][

P
V(x) dax)
B(y,291V1)

< Ce ot gingn/2 (2J’<no*”> ][ V(x) d:v)p
B(y.V1)

Ce—PBot 9j(n+nop—np) p
= pra—E (t][ V() dl‘) .
B(y,V1)

In the second inequality we have used that V' € B, because p < g+ and hence B, D B,. In the

next to last line we have used that V dz is a doubling measure (see (2.7)). Next we remark that

if v/t < 7(y), then by Lemma 2.3 (a) and the definition of v in (2.8), one has

V2l
S < Gg) 2 €
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since ¢ > n/2. On the other hand if v/t > (y), then Lemma 2.3 (b) implies that

VENe Ve
t]{g(yw)\/(x)dx < C(Wp < C(Wj)) .

In either case we can bound

5
ef%(Hﬁ) (t][ V(x) d:c)p
B(y,V't)

by a fixed constant independent of ¢ and y. Therefore it follows that

(t ][B(y7\/f) Vi) dx)p{l + i et Qj(”"'”OP—np)}

Jj=1

t 5
3.2 7pc(1+72)
TRt y)" < +p—1m/2¢ "

C o n(ty)
S gt Y

Collecting the estimates for J}, J% and J3 we obtain

C —c(l—i— L 2)6
JR(tay) < We ()

with C, ¢ independent of R. Therefore

M l/p C _ (1 #)6
2 » B B o(14—t
(/R” \Vapi(a,y)| e 1 dx) = zszlgi Jr(t,y) < @) © w32/

This establishes (3.11).

To prove (3.12) we simply note that

C —c|1+ L °
= sup J%2(t7y) < W@ ( ’Y(y)Z)

lz—yl? 1/p
dx)
R>1

(/‘V(x)Pt(CE,yﬂp P

which follows from our previous estimates.
This concludes the proof of Proposition 3.7, save for the proof of Lemma 3.11 which was

deferred. We turn to this now.
Proof of Lemma 5.11. Fix p € (1,00), f € W2P(R") and j, k € {1,2,...,n}. Let ¢ € C§°(R™).

Then the product rule gives the following

¢ 0;0cf = 0j(pOkf) — 0jd On f

= 0;(Ok(of) — fOr®) — 0jp Or f
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= 0;0k(0f) — 0;(fOk¢) — 0 O f
= 0;0k(0f) — fO;01) — 0j fOrd — ;P Op f-

Taking LP norms gives

160,011, < 19,066, + 1 £ 0,091l + 10,500l + 0,600 fl,.  (3:30)

Note that the left hand side is finite because f € W2P(R™) and ¢ € C§°(R™). Let us consider
each term on the right hand side in turn.

Firstly by noting that [9;¢] < (3, |3k¢\2)1/2 < |Vf| forevery je€ {l1,...,n}, we have

10 forell,, + 10;00kfIl, < 2[[IVfIIVl]],- (3.31)
Similarly |9;0,0] < (32, ) |8j8k¢|2)1/2 = |V2¢| for every j,k € {1,...,n}, so that
1fo;00ll, < IF1V2l],- (3.32)

Next since ¢f € W2P(R™) then by the Calderén-Zygmund inequality (1.2) (see also [100]

Chapter 3, Proposition 3) on R"™,

10,066 ), < [IV*@ Al < CollAG P,

Now direct computations give

n

03 f) = > 0;(00;f + 10;9)

=1 =1

[
NE

Ao f)

<
Il

I
NE

(0;00,f + 002 f +0;£0;0 + fO;9)

1

<.
Il

n

=6 Bf+Y Po+2> 0,00;f
j=1 j=1 j=1
=¢oAf+ fAP+2Vep-Vf.

By Cauchy-Schwarz,

A@H < [oAfI+[fAS] +2|VOI[V I < [oAf|+[fIIVZ] +2|Vo|[V].
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Hence

10;00(6 Fll, < CollOALN, + Coll FIV2|],, + 2G|Vl IV /1], (3.33)

Inserting (3.31), (3.32), and (3.33) into (3.30) we obtain

¢ 006 fll, < CplloAfll, + Coll FIV2@l|l, + Coll VIV £,

and in fact

n

loIv2slll, < > lodsousl, < C(leasl, + [Vl + 19l ).

J,k=1

where C' depends on p and the dimension n. This ends the proof of Lemma 3.11. O
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Chapter 4

Weighted Lebesgue spaces I: Muckenhoupt weights

This chapter studies the first- and second-order Riesz transforms associated to the Schrodinger
operator L = —A+V on weighted Lebesgue spaces with weights belonging to the Muckenhoupt

class A,.. We are interested in the conditions on p and w € A, for which the following

ITf 1l oy < C IS Lo » vV feLZ(RY)

holds. Here T is one of the operators VL2, V1/2[=1/2 v2[~1 or VL',

In this chapter we combine the techniques in [13] and [18] to show that for non-negative
potentials, boundedness of the first-order Riesz transforms on LP(R™) for p above 2 is equivalent
to their boundedness on the weighted spaces, for a certain range of p and w. This is encapsulated
in the following two theorems, which are the main results of this chapter. Recall that the notation

for the sets W, (po, qo) was defined in Section 2.4.

Theorem 4.1. Letn>1and L = —-A+V on R* with 0 <V & Llloc(R"). Fix s > 2. Then

the following are equivalent.

(a) VL2 is bounded on LP(R™) for each p € (1, s)

(b) VL™Y2 is bounded on LP(w) for each w € Ay and each p € Wy (1, s).
(¢) VL2 is bounded from L'(w) to LY (w) for each w € A; N By,

Theorem 4.2. Letn > 1 and L = ~A+V on R® with 0 <V € LL (R"™). Fiz s > 2. Then

loc

the following are equivalent.
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(a) VY2L=12 is bounded on LP(R") for each p € (1, s)

(b) VY2L=1/2 is bounded on LP(w) for each w € As and each p € Wy (1, 5).
(¢) VY2L=Y2 is bounded from L*(w) to L (w) for each w € Ay N B

On specialising to reverse Holder potentials, these same techniques in conjunction with the heat
kernel estimates we obtained in Chapter 3 (particularly Proposition 3.7) allow us to also obtain

boundedness for the second-order Riesz transforms V2L~! and VL 1.

Theorem 4.3. Let L = —A+V on R” with n > 2, and suppose that V € B, for some ¢ > n/2.

Set g4 :=sup {q >5:Ve Bq}. Then the following holds.

(a) For each w € Ay, the operators VL™' and V2L~ are both bounded on LP(w) for all

P € Wu(l,q4).
(b) For each w € Ay N By, the operators VL™ and V2L™! map L' (w) into L1 (w).

We note here that the first conclusion recovers the results in [75] (see also Section 1.1.1 item (ii)).
The second conclusion is new.

This chapter is organised as follows. Section 4.1 gives the main technical tools required
to prove our results, with the key result here being Theorem 4.6. We apply this to give the

proofs of Theorems 4.1 and 4.2 in Section 4.2, and the proof of Theorem 4.3 in Section 4.3.

4.1 Main tools

We give here the main tools we use to prove boundedness on weighted spaces, which are taken
from [16]. The first is a maximal type theorem, which will also play a role in Section 6.1.1. In

the following M is the Hardy-Littlewood maximal function defined in (1.9).

Theorem 4.4 ([16] Theorem 3.1). Fiz ¢ € (1,00), £ > 1,s € (1,q9),v € By. Assume that
F.G, Hi, Hy are non-negative measurable functions on R™ such that for each ball B there exist

non-negative functions Gg and Hp such that

F(z) < Gp(x) + Hp(x), a.e. x € B, (4.1)
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(f 1) < c01r) + M) + o)), Va,y € B, (12)

][ Gp < G(z), Vz e B. (4.3)
B

Then there exists Ko = Ko(n,&) > 1 and C = C(q,n,&,v,s) such that the following holds: for

each A >0, K > Ky, and § € (0,1),

q 1/s
v({z € R": MF(z) > KX and G(z) <6A}) < C(% + %) v({z € R": MF(z) > \}).
As a consequence, if r € (1,q/s] and F € L*(R"), then
[MF|| ) < C(HGHLr(v) + |MHyl| () + ||H2||LT(U))- (4.4)

The next tool is a weak type criterion.

Theorem 4.5 ([18] Theorem 3.3). Fiz 1 < py < qo < o0 and w € As. Let T be a sublinear
operator defined on D, a subspace of L%°(R™), and {Ap}y be a family of operators indexed by
balls acting from L°(R™) into D. Assume that T and {Ap}y satisfy the following (recall that

the sets U;(B) have been defined in (2.5)).
(i) There exists ¢ € Wy (po, o) such that T maps L1 (w) continuously into LY (w).

(ii) For each j > 0 there exists a constant a; such that for any ball B and f € L¥(R™)

supported in B,

( ]{, o Apf®) " <o, ( ]g f|”°)1/p°. (4.5)

(iii) There exists p such that w € By with the following property: for each j > 2, there is a

constant o such that for any ball B and f € L (R™) supported in B,

(]{J,(B) |T(I — AB)f‘p)l/p < aj<]{3 \f|p°>1/p0. (46)

J

(iv) The constants {a;}; from (i) and (iii) satisfy >_; a;21Pv < oo, where Dy, is the doubling

constant of wdx.
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Under these hypotheses, if w € Ay 0 By pyy then T is weak (po,po) with respect to wdz.

That is, for each f € LS°(R™),

1T Fll oo (wy < C NN oo ) -

We next give a particular case of Theorem 4.4 and Theorem 4.5. Our aim is to apply this to

the operators VL2 V1/2-1/2 y-1

Theorem 4.6. Let 1 < pg < g9 < oo and T be a linear operator. Suppose that for each
q € (po, qo) there exists a family of operators {Ap} p indexed by balls, and a collection of scalars

{O‘j};io such that the following holds.
(i) T is bounded on LI(R™).

(ii) For every ball B and f € LS°(R™) supported in B,

( ]{]_(B) 45 f17)"" <oy 1 ) Vi>0 wn

(]ZU_(B) (T = f‘lB)f|q>1/q~ < Oéj(]{g |f\p°>1/p07 Vi > 2. (4.8)

Here the sets U;(B) have been defined in (2.5).
(iii) The constants {oy}; satisfy >, ;29 < oco.
Then we have the following.
(a) If w € Ay then T extends to a bounded operator on LP(w) for all p € Wi, (po, qo)-

(b) If w € A1 N Bgypoy and in addition 3 a;21Pw < oo (where D, is the doubling order

of w), then T maps LP°(w) into LP>>(w).

Proof. The ideas in the proof originate from [24] and were applied in [18] to study weighted
norm inequalities of Riesz transforms associated to the Laplace Beltrami operator on doubling
manifolds. The proof we describe here follows closely that of [18] Theorem 1.2 (i). We remark

also that the spirit of the proof is akin to that of [13] section 3.1.
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We first prove (a). Fix w € A and p € Wy (po, go). Denote by T* the dual operator to T
We first observe that the LP(w) boundedness of T is equivalent to the LP' (w!~?") boundedness
of T* (see Remark 4.7 (a)). We shall apply Theorem 4.4 to obtain the latter.

Firstly there exists numbers p; and ¢; such that
po<p<p<q<go and  we A, NBy/p
holds. See Remark 4.7 (b). It follows from Remark 4.7 (c) that
W' € Ay g 0 Byt -

Now we apply Theorem 4.4 to the following data. For each f € L°(R™) set

F =T f|%, Hy =H, := 0, p——
/ / /
P p Y4
S=0 == q:i=—.
p q1 0

Let ¢ = q1 and {Ap}p and {qa;}; be as in the hypotheses. We will check that Theorem 4.4

conditions (4.1), (4.2) and (4.3) hold with
Gp =20V |(I — Ap)*T* f|" and Hp =20V |AT* |

and G is a fixed constant multiple of M (| f |qi ), with M the Hardy-Littlewood maximal function.
We first check condition (4.1). By noting that (I — Aj) = (I — Ap)* one has
F(z) =|T"f(2)|" = (I — Ap)"T" f(x) + ApT" f(z)|"
< 2N (1 = AR)T* f(@)| " + 295 |ART" f()|
= Gp(z) + Hp(z).

We have used that |a + b|" < 2771 |a|" + 2771 |b|", which is valid for all » > 1 and a,b € R. We

now check condition (4.2). We first write

(]iH%)l/q _ (][B oP1—P1 /41 |A*BT*f|p/1)q’1/p’1 < (][BAET*ﬂpll)qi/p;-
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To estimate the integral we apply duality to R :=T*, S := A}, with some g € LP* (B, dz/|B|)

with norm 1 (Remark 4.7 (d)) to obtain for each x € B,

(]{BH%)l/qqi < (]{3|A*BT*f|p,1>l/pll

< ][ e
<> £, iz
7=0 J

e RPAR YL N Va
S (f, ) (o)
< m(r gy S (f

=0

1/Q1
|ABg|q1) .
U;(B)

Now from condition (ii) estimate (4.7) with exponent § = g1, we have for each j > 0

/a1 /Po 1/p1
(F tasa) ™ <ay(f 1) <os(f 10) ™" =0
U,;(B) B

Where we have used Holder’s inequality (since p1 > po) and the normalisation of g. It follows

then that for each z € B,

(f H8) S M ) @) S g2 M 1) (@)
B

Jj=0

so that (4.2) holds with H; = Hy = 0. We check condition (4.3). We first write

(]{BGB)l/qi _ (]{32%71 I(I—AB)*T*fPi dx)l/qi < (]{B \(I—AB)*T*f|q3 da;)l/qi.

We apply duality again now with R := I, S := (I — Ap)*T* and g € L% (B,dz/|B]|) with

norm 1. Then for each = € B,

(fes)"" < ][If\ITI Ap)g
<ZW ][U FIITU - Ap)gl

i (B)

) e N\ Vo
z_:o <]£JB |f|q1) (]{}j(B) |T(I — Ap)g|? )
M7y 0% 32 f

U;(B)

I /\

1/q1
T(1 - Ap)g™) .
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To estimate the summands we observe that since g1 € (po, o), we may apply (4.8) with expo-

nent ¢ = ¢; to obtain for j > 2,

/a1 /Po /a1
(f ma-ane®)™ <a;(f 107)" <as(f )" =a
U;(B) B

We have used Hoélder’s inequality (because g1 > pg) and the normalisation of g. For j = 0,1 we

use hypothesis (i) with exponent § = ¢; to give

1
T(I — A Q1< IT—A q1< {/ g!;(lJr / A gfh}.
1, 0= Aol 5 g [ 10 Amol” 5 gl [ Z [, Ass

For the summands we use the approach as before, namely applying (4.7) for k& > 0 and Holder’s

inequality to get

1/q1 1/po /a1
(F  tamg®) ™ <an(f10m) " <o f 1om) " = an
Uk (B) B B
Collecting these estimates we have for j = 0,1,
fomu-ang® s f o 22“][ Agl™ 5 f lol 43 ap2
U,(B) B o
which is finite because Zk a2k is. Finally we can estimate Gpg:
1/‘1/ ’ ’ i . ’ ’ ’
(fe0)™ 5wy i{Sapnvof < M) s = 6w,
B ;
j=2

This finishes the proof of (4.3).

Theorem 4.4 allows us to conclude that

|| M |T* |

L) < CIMISM

. (49)

where we recall that r = p//¢, and v = w!™?. The L* (v) boundedness of T* then follows

because

<c|mif|%]

17" £ oy < 1M 177 1% <ClfI,

L™ (v) L7 (v)
The first inequality holds by domination of the maximal function. Indeed for almost every x € R"”

and any § > 1,

1/6
o)l < sup o ol < sun(f 1) = Ml )

B>z
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Therefore

I/ / ,
HT*f|Lp “ (/lT*f|p fh /M T* f |q1)p A ) v HM‘T*frh‘

Lr(v)’

The second inequality is the conclusion of the maximal theorem (4.9). The final inequality

1/6

follows from the boundedness of the maximal function (M |~|§) on weighted spaces LP(w) for

any p > 4:

'/ ql/p ai/ '
M1 = ([ 20 0) ™ < o [1ar )™ =i,

because p’ > ¢}. By duality we obtain therefore that T is bounded on LP(w).

We now prove (b). Fix a weight w € A; N By /p,)7- We shall apply Theorem 4.5 to T'
and Ap as given in Theorem 4.6.

Let us check Theorem 4.5 (i). We first explain why, for our weight w, the set Wy, (po, qo)
is non-empty. Since w € Bg,/p,) by Proposition 2.9 (e) there exists ¢ such that (go/po)’ <
(q0/q)" < oo with w € B(g,/q)- This means that 1 < go/q < qo/po and hence po < ¢ < go. In

particular ¢/pg > 1 and so by Proposition 2.9 (a) we have the containment A; C A We

q/po-
have shown that py < ¢ < qo and w € Ay, N Bg,/q) 50 that ¢ € Wy (po, qo). It now follows
from conclusion (a) that 7' is bounded on L7(w) and hence maps L?(w) into L?°°(w). Next
we observe that Theorem 4.5 (ii) is contained in hypothesis (ii) of Theorem 4.6. Let us turn to
Theorem 4.5 (iii). By Proposition 2.9 (e) there exists p’ € (g{,pp) such that w € B,. Hence
p € (po,qo) and Theorem 4.5 (iii) holds by hypothesis (iii) of Theorem 4.6. Since we chose «;

such that ), a;j29Pv < 0o we see that condition (iv) of Theorem 4.5 is also satisfied.

The Theorem now lets us conclude that

1T Al ooy < C Lo

which was to be proved. O

Remark 4.7. The following facts are well known but we give the details here for the reader’s

convenience.
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Fix p € (1,00) and let w be a weight and that w!~?" € L. (R™). Let T be a linear operator

loc

and T™* be its adjoint with respect to dz. We explain why the boundedness of T on L?(w)

is equivalent to the boundedness of T* on L¥ (w'~?") (see also [16] remark 4.5).

First assume that 7" is bounded on L?(w). One has
17 ey = (10251 0 o = [0 7w
By duality there exists g € LP(w) with norm 1 such that
/|w_1T*f|p/wdx < ’/w‘lT*fgwdm’ = ’/T*fgdx‘ < /|f| |Tg| dz .

Holder’s inequality with respect to wdz gives
[1s1irel do = [ |rut|izg] w s

< (/ ‘fw_l‘p/ wdx) v (/ \Tg|pwdx)1/p

= £l o’ wr=2') 1Tl Lo ) -
Using that 7" is bounded on LP(w) and that ||g[[, ) =1 we obtain
||T*f||Lp’(w1—p’) <C ||fHLp/(w1—p’) :

To prove the other direction, we remark that if 7% is bounded on L' (wl_p/), then the

previous proof implies 7' is bounded on LP(w(1=?)(1=P)) = [P (w).

Fix w € A and p € Wy (po, qo). The latter condition implies that w € Ay, N Bgy/py- By
Proposition 2.9 (d) there exists p; such that 1 < p/p1 < p/po and w € A,/p,,. This implies
po < p1 < p. By Proposition 2.9 (e) there exists ¢; such that (¢o/p)’ < (¢1/p)’ < oo and

w € B(g, /py- This implies that p < g1 < qo. Hence w € A, /,, N Bg, /p)-

Given p; < p < ¢ the equivalence
1—p/
W€ Ap/py N Bigppy == w P € Ayygr N By sy

follows from [16] Lemma 4.4.



80

d) We recall we may estimate the LP norms by using duality with v
y g y
I, = sw [(fa)l= sw | [ fd].
lgll, =1 ligll,
Hence if T' is a sublinear operator, by the same token
ITfll, = sup [Tf.g)l= sup [(f,T"g)|.
lgll, =1 gl =1

If S and R are sublinear operators and B is a ball, then writing LP(X) := LP (B, dz/ |B|)

we have

(F1srsl) " =15y = s (SREg)]

g ‘LP (x) =1

= sw |(RES'9)yl < ]{3 IRf1S7g| de,

gl 1t () =1

where the inner product (,) y is the L?(X) inner product. That is, (u,v) y = f uvda.

4.2 First Order Riesz Transforms

In this section we give the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Proof of (a) = (b). We invoke Theorem 4.6 with T = VL~'/2, py = 1,
qo = s and

Ap=1—(I—e"slym

where m > n/2 is an integer. Then condition (i) of Theorem 4.6 holds from our hypothesis (a).
We shall show that condition (ii) holds for any ¢,pp > 1 (and any m > 1), with a;; = C479™ for

j > 0. Here C is a constant independent of j and B. To see this we expand for each j > 0,

m

Ap =Y () (~1)Fe ksl

k=1
Therefore for each x € R™ one has
m

[Apf(@)] <3 ()] 58 f(x)].

k=1
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Now for each j > 2, x € U;(B), y € B, we observe that |z — y| > 2/r /4. Hence for each k > 1,

the Gaussian bounds (3.1) on the heat kernel of L imply that

—kr2
sup [e ¥ BLf(@)| < sup / [Pros (2 )| 1£ ()] dy
z€U;(B) z€U;(B)J B

< sup (krd) eV / 5l
z€U;(B) B

< et f £l
B

These bounds give for each j > 2, ¢ > 1, and py > 1,

( ][U ” Anfiran) " 5 (f e £ i) as)"

<o i< e (f ) (4.10)

by Holder’s inequality. The same approach gives for j = 0,1

(F, o)< ()

Next we show that hypothesis (a) leads to condition (iii) of Theorem 4.6. Condition (iii) is
contained in the conclusion of the following lemma, whose proof we postpone to the end of the

section.

Lemma 4.8. Let L =—-A+V on R" withn >1 and 0 <V € L. _(R™). Assume that for some

loc

q > 2 there exists Cy > 0 such that
—tL
[Vive ™ ., < Co. (4.11)
Then for each p € [1,q) there exists Cp, > 0 such that for each m > 1, j > 2 and any po > 1,

(][ ’VL_1/2(I _ e—rzBL)mf‘P> 1/p < Op4—jm(][ |f|po)1/p0' (4.12)
U;(B) B

J

for all balls B and f € L*(B).

Hence our proof of (iii) will be complete provided we show how (a) leads to estimate (4.11).

Indeed for each t > 0 and ¢ € (1, s), by the L¢(R") boundedness of VL~1/2,

[VEve ||, = [VEVL 2L et f | < (VALY 2e ]
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Now by the analyticity of {e*tL} ([85] p74, Theorem 6.13), one therefore obtains

t>0

IVeL et gl S A,

as required. To complete the proof of (a) = (b), we remark that since m > n/2 our constants
oy satisfy 3 ;29" < oo.

Proof of (a) = (c). To prove this implication we invoke Theorem 4.6 again, and appeal
this time to the second conclusion with almost the same datum as the previous case. The
exception is that we take m > D,,/2, where D,, is the doubling order of w instead.

Proof of (b) = (a). Simply take w = 1 and observe that Wy (1,s) = (1,s).

Proof of (c) = (a). For this implication we apply the following extrapolation result due

to Auscher and Martell.

Proposition 4.9 ([16] Corollary 4.10). Let 0 < pg < qo < oo. Suppose that there exists

q € [po, qo] (with g < oo if go = o) such that

T: LY (w) = LT (w), Yw e Ag/po N Bigy/q) - (4.13)
Then for all p € (po, qo) we have

T : LP(w) — LP>°(w), Vw € Appy N Bigo/py - (4.14)

We apply this Proposition to 7= VL2 with py =1 and ¢y = s. Hence from hypothesis (c),

condition (4.13) holds for ¢ = 1. We conclude therefore that
VL Y2 LP(w) — LP*°(w), Vw e A, N Bs/py (4.15)

for every p € (1,5s). This implies, by setting w = 1, that VL™1/2 is weak(p, p) for each p € (1, s)

and hence by interpolation is bounded on LP(R™) for every p € (1, s), which is (a). O

Proof of Theorem 4.2. The proof of Theorem 4.2 follows that of Theorem 4.1 with V1/2L~1/2

in place of VL2, The main modification is that in place of Lemma 4.8 we use the following.
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Lemma 4.10. Let L = —A+V on R® withn > 1 and 0 <V € L (R™). Assume that for

loc

some q > 2 there exists Cy > 0 such that

VeV et < Cy. (4.16)

Then for each p € [1,q) there exists Cp, > 0 such that for each m > 1, j > 2

2 1/ .
(f  Wwenvea - eriipg) " < o f i (417)
U, (B) B

J
for all balls B and f € L*(B).
The proof of this lemma is almost the same as the proof for Lemma 4.8 and we omit the

details. O

Proof of Lemma 4.8. It is known that (4.12) holds for p = 2 ([6] Proposition 2.4). Hence (4.12)
holds for all p € [1,2). To see this we simply apply Holder’s inequality (with exponents 2/p and
its conjugate 2/(2 — p)) to the left hand side of (4.12), and then invoke the estimate for p = 2.
It remains to prove (4.12) for p € (2, ¢). The argument given here follows that of [13] p944.

The first step is to show that (4.11) leads to the following: there exists C' > 0 such that
for all y € R™ and ¢t > 0,

C

Ve 9)lly < Simmma=myag - (4.18)

Firstly, the semigroup property (2.3) implies that V.poi(z,y) = Ve tpi(x,y) . Therefore

by (4.11),
1
_ —tL
IVap2eCo)ll, = [[Vae ™ 0o, < 7 e )l -
Now using the Gaussian upper bounds (3.1) for p:(z,y), we obtain
C 2 C
. q —qlz—y|*/ct -
Gl < s [ <

and combining this with the previous estimate gives (4.18).
The second step is to obtain the following weighted estimate for p € (2,q): there exists

v¥p > 0 and Cp > 0 such that for all y € R™ and ¢ > 0,

Vot =, < e

p — t1/2+n/2-n/2p ° (419)
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This is known to hold for p = 2 (see Lemma 3.1). We shall obtain (4.19) by interpolating
between the case p = 2 and estimate (4.18). Fix p € (2,¢) and let 2 be the constant from the

case p = 2. Define +, := v2(¢ — p)/(¢ — 2). Note that

to obtain

/|Vzpt(w,y)lp el gy
q-p a2 p—2
= /\Vmpt(z,y)l2q—2 ewle =Y (2, y)| T2 da

a-p p=2

< ([ WanteP e an) = ([ 1Vt an)
< C(t—l—n/Q) s (t—Q/Q—WZ/Q-HL/Q) =
— Ct—p/Q—np/2+n/2

and the required estimate follows.

In the third and final step we prove that the weighted estimate (4.19) for some p € (2, q)
leads to (4.12) for the same p. Fix a ball B, f € L*(B), m > 1, and p € (2,q). Then for each
j>2,y€ Band x € Uj(B) one has |z — y| > 2/rg/4. This combined with (4.19) gives

/ Vapt(z, y)|” do = / IVopi(a,y)|? el =vl/tewla=vl/t gy
U;(B) U;(B)
—caIr [t pl— 2 /8P
< VBT et
< c —cdir? [t
— ¢p/2+np/2-n/2 .

Next we write
VL YVA([ —ershym g :/ 9rs () Ve L f dt
0
where g, : Rt — R is a function such that (see [13] p931)

e j.2,, dt .
\gr(t)\ 6_C4 re/t < Cm4—j'ln.
/o Vit
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By Minkowski’s inequality and the previous estimate,

|VL~Y2(1 - e‘TZBL)mf]pdx v
U;(B)
:LH/OOQ (t)Ve’“;fdt’
20 g7 1Ly "
1 e’} 1/p
< s |, a1 [ II([ | 1Vamtapl ) ayar
- C p 7647TB/t 5
_W |g'f‘B ‘ ‘f | ytl/g_;,_n/g n/2p
o o ‘ 1 c4jr2/t dt
(| |gm<>\|2]B|1/ptn/2(l e (£ 1)

<cr o (([Tg ol ()" e (f 1n).

n(1-1/p)

Lr(U;(B))

By absorbing (Qj rg/ \/f) into another exponential with some constant ¢’ < ¢, and ap-

plying Holder’s inequality with any py > 1, we obtain

(][ |VL_1/2(I 6—73 mf’pdl‘ <C/ |grB ‘ —c'4ir2 /it A dt ][ |f|
U;(B)

. ) 1/po
<orim fifl < c4ﬂm( f |f|”°) .
B B

This gives (4.12) and our proof of Lemma 4.8 is complete. O

4.3 Second order Riesz Transforms

In this section we study the second-order Riesz transforms V2L~! and VL~! associated to
L = —A + V under the additional condition that V' belongs to some reverse Holder class. Our
main task is to give the proof of Theorem 4.3.

Firstly the weighted estimates in Proposition 3.7 allow us to obtain an analogue of

Lemma 4.8.

Lemma 4.11. Let L =—-A+V on R™ with n > 2. Set qy := Sup{q >5:Ve Bq}, Then for

each j >2, m>1,p€ (1,qy), ball B, and f € L*(B) we have

(]{Jj(B)WQLl(I e~TBLym f|p /p —c4f][ 7], (4.20)
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(]lU VLI - e THL )™ f|p < Ce —c4ﬂ][ 7. (4.21)

i (B)

Proof. We first prove (4.21). The first step is to write, using the binomial theorem,
VL_l(I _ e—TQBL)m _ Z (72)(_1)kA Ve—(kr%-ﬁ-t)L dt
= / Ve™! 1(k7" oo)( )d
k=
= / hop () Vet at
0
where

D DR () Lz o0 (B):

Now observing that Y, ((—1)%("}) =0 we can write

m

hr(t) = Z(_l)k(?)l(mr27oo) (t) + Z(_l)k(rg)l(krg,mTQ](t)
k=0 k=0

= > (DR L ke mr2) (1)

k=0

Therefore

m

e <Y (P Lo.mr2) () < 27102 (£) -

k=0

Now by Minkowski’s inequality,

||VL,1(I . eirgBL)meLP(Uj(B)) = H/ h’”’B (t)Ve*th dt’
0
S/ OV Fll oo, 5 U
0

< [ it /B OV Ol o,y -

Lr(U;(B))

Next for each y € B and ¢ > 0, by estimate (3.12),

lz—y2 _ 5 lz—y|? 1/p
”V(')pt('ay)”LP(Uj(B))S(/U (B)‘V(x)pt(x,y”peﬂp T o B dx)

J
lz—y|® \
< sup e T [V y)e
z€U;(B)

1
~ t1+n/2—n/2p

\*y\
HLP(]R")

—cairZ /t ]



87

Therefore one has

: 1/p 1 2
VL= b)Y LT - B
(]{Jj(B)| | B Lo(U;(B))

00 |B| 6fc4jr2]’3/t
<
S([ et 5 e ) (11

ST Bl e
N(/O |2jB|1/Pt1+”/2*”/2P )(]{Bm)

Since
n n(1-1/p)
|B| ~ "B "B

~ — 9=in(9i,. \n(l-1/p)
|2jB|1/P - (anr%)l/p o gin/p T 27" (2'rp) ’

then it follows that for some € > 0

‘B‘ 1 < 2—jn

(zjﬂ)n(lfl/p) < (23.7“3)”(171/;0) < eséﬂr%/t
124 B|H/P tn/20=1/p) - |

Vit Vit

~

Collecting these estimates we obtain

(f ooy s ([ vty 1
o ([ )

0
S
B

provided m > 0.

The proof of (4.20) is similar but uses (3.11) in place of (3.12) and we omit the details. [
We are now ready to give the

Proof of Theorem 4.3. The proofs of (a) and (b) are contained in the conclusions of Theorem 4.6
provided we can show conditions Theorem 4.6 (i)-(iii) hold for the following: po = 1, o = ¢+,
T one of V2ZL7Y or VL™! and Ag =1 (I — e*TQBL)m for m large enough. We need to take
m > n/2 for conclusion (a), and m > D,,/2 for conclusion (b), where D,, is the doubling order
of the chosen weight w.

From the work of [93] and also [12] (see Theorems 1.2 and 1.3) we know that the operators

V2L=1 and VL™ are bounded on LP(R™) for all p € (1,¢4), and hence Theorem 4.6 (i) holds.
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The proof of condition (ii) can be found in the proof of Theorem 4.1, and condition (iii) is

contained in Lemma 4.11. O



Chapter 5

Weighted Lebesgue spaces II: weights adapted to the Schrodinger

operator

In this chapter we extend the results from Chapter 4 to weighted spaces with weights adapted
to the Schrodinger operator. These weights were introduced in [30] and further investigated in
[104, 105, 106]. These weights form a larger class of weights than the A class. See Definition 5.2
below.

The main result of this chapter is

Theorem 5.1. Let L = —A+V onR™ withn > 3. Assume thatV € By for some s > n/2. Then
the operators V2L™ and VL' are bounded on LP(w) for each p € (1,s) and w*~*" € Azf,/s,.

We give some brief remarks on this result. Firstly, the condition w!=? & Ag/ /s Can be equiv-

alently expressed as w € AL N B(LS Jpy- Another formulation (see Section 1.1.1 (iii) and also
Theorem 1.7) of the hypothesis p € (1,s) and wl? e Aﬁ,/s, is the statement: w € AL and
p € WE(1,5). Note also that the result for VL ™! is known [106] but the result for V2L™! is
new. Unlike the situation for A, weights, we are not able to pass from the result for VL ™! to
V2L~! easily. See the calculation in (1.13) and item (iii) in Section 1.1.1 of this thesis. Finally
the techniques developed in this chapter also allow us to give new proofs of boundedness of the
first-order Riesz transforms VL~1/2 and V1/2L=1/2 (which are known to hold in [30, 106]), but
we do not give the details here.

This chapter is organised as follows. In Section 5.1 we give the appropriate definitions

and collect some useful estimates related to these weights. In Section 5.2 we develop the good-A
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techniques needed to prove the main result, and also give some applications of these techniques.
The proof of Theorem 5.1 is given in Section 5.3. In the final section we give an alternate proof

of Theorem 5.1 for the operator V L1, using the approach in [30].

5.1 Weights adapted to Schrodinger operators

In this section we define weights adapted to Schrodinger operators and give some of their prop-
erties. Throughout this chapter we use the following notation. For a given ball B and a number

0 > 0, we set

bo(B) = (1 + W(TB))G.

Here v : R™ — (0,00) is the auxiliary weight function defined in Definition 2.2. Observe that
for any A\ > 1, we have 1y(B) < 9p(AB) < M4y(B). We will also often interchange balls with
cubes. In this case if @) is a cube, the expression for 1y(Q) is the same as above but with rg
replaced by lg (the sidelength of @), and zp replaced by x¢g (the centre of Q).

The following maximal operator was first defined in [31, 106] and will be an essential tool

throughout this chapter. For each 8 > 0, we set
ME (@) = sup s f 1£)] dy
B3z Yo(B) Jp

We mention here that f is pointwise controlled by M f. Indeed, for any f € L .(R™) and § > 0,

we have for almost every z,
[f(@)] < 2°MG f(x). (5.1)
To see this, we let r < (x) and observe that
foo 1S B Mis@) < 2 MEs)
Now let r — 0 and apply Lebesgue’s differentiation theorem (see [100]) to obtain (5.1).

Definition 5.2 (Weights adapted to the Schrodinger operator). Let w be a non-negative locally

integrable function. For p € (1,00) and 8 > 0, we say that w € Aﬁ’e if there exists C =
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C(w,0,p) > 0 such that for all balls B,

(]{Bw)l/p(]{gwl_p/)l/p/ < Cp(B).

We say that w € Af’e if there exists C = C(w,0) > 0 such that for all balls B

][ w < Cahg(B) w(x) a.e.x € B.
B
Forp e [1,00) we set
.AIE = U Aﬁ’g.
0>0

We also define AL = |J AL

1<p<oo

By taking § = 0 we see that these weights contain the A., weights. That is, A, C Aﬁ’e for
every p € [1,00) and every € > 0. However the inclusion is proper. For example let V' = 1 and
take w(z) = 1+ |x|° with € > n(p—1). Then w is a member of AL but w does not belong to A,.

We also introduce a class of reverse Holder weights adapted to the Schrodinger operator.

As far as we are aware, these classes have not been explicitly defined elsewhere in the literature.

Definition 5.3 (Reverse Holder weights adapted to the Schrodinger operator). Let w be a non-
negative locally integrable function. For q € (1,00) and 8 > 0, we say that w € BqL’G if there

exists C = C(w, q,0) > 0 such that for all balls B,

(fu)" <cnie (£,

We say that w € BL? if there exists C = C(w,6) > 0 such that for all balls B,

w(z) < Cun(B)( f

w), a.e.x € B.
B

For g € (1,00] we set

BL .= U B(f’(’.

q
0>0

We remark that in the definitions one can interchange balls by cubes and obtain the same classes
of weights.

The next property of the B(f classes is an analogue of Lemma 2.11.
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Lemma 5.4. Let w € BSL,’G for some 8 >0 and 1 < s < oo. Then there exists Cy, > 0 such that

for any cube QQ and measurable E C Q,

w(B) |E[\'*
w(Q) SC”@(Q)(W '

Proof. If s’ < oo then by Holder’s inequality with exponents s’ and s,
wE) Q1 [e] AV < 1B] >”S
w0~ woiah < ww (b))
Q| ( |E| )“8

_ Conl@) (g:)/

If s’ = oo then the same conclusion holds. O

As in the classical situation these two weight classes are intimately connected. It was
shown in [30] that if w € AL for some p € [1,00), then w € Bl for some ¢ > 1 and 6 > 0
(see [30] Lemma 5). We give a more explicit statement of this connection in the next result,

itself modelled on [12] Proposition 11.1.

Lemma 5.5. Let w > 0 be a measurable function. Then the following are equivalent.
(a) we AL.

(b) For all o € (0,1), w” € B{“/U.

(c) There exists o € (0,1) such that w’ € B1L/a-

Proof. If w? € BlL/J for some o € (0,1), then the self improvement property of these classes (see
Lemma 5.6 (v) below) implies that w? € BlL/O_JrE for some € > 0. Therefore w € BY, ., which
implies that w € AL . Hence we have (c) = (b) = (a).

We now show (a) = (b). Let w € A% and o € (0,1). Then w € BE? for some r > 1

and 0 > 0 (by [30] Lemma 5). Therefore for any oo > 1 and cube @, the set

Esz{er: w”(x)>oz]2w"}
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satisfies, by Lemma 5.4,

1) < cua(2)"

Then it follows that

\E|:—/ ozdx<—/ —dr < —.
@ a /g, aEQf-Qw" a

Hence we obtain that

C o V" 1he(Q) w(Q).

IN

w(Eg)
We choose a such that Ca~/""4»(Q) = 1/2 (note that a > 1). Next, observe that for each

z € Q\Eg we have w( ( afow ) . Therefore

/wd:p / wda:Jr/ w dx

Q Q\Eq

1 1/o

7/ wdﬂc—i— ][w“) / dx
2 Q\Eq

1 1/o w® 1o
5/ wdxr + a7 Q)| <][Q ) .

Rearranging this statement gives us

fote < aoe( fur)"" = e i@ )"

That is, w° € BlL/’Zr c Bl/a O

IN

IN

We now describe some further properties of these weights. The reader may find it useful

to compare these with those in Proposition 2.9 (and also Remark 4.7 (b) and (c)).
Lemma 5.6. One has

(i) For each 0 >0, if 1<p; <ps <oo then .Af’e C .Agl’o - .,452:9.

(ii) For each 6 >0, if 1 <p; <ps <oo then Bﬁl’e D 352’9 D B@;".

(iii) For each 1<p<oo and >0, we AIE’H if and only if w'™P € Aﬁ,’e.

(iv) Ifw e AL for some p € (1,00) then there exists po € (1,p) with w € AL .
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(v) Ifw € BqL for some q € (1,00) then there exists qo € (q,00) with w € B,ﬁ).
(vi) For eachr € (1,00), w" € AL = w € BL.

(vii) Suppose w’ € Ag(s_l)_ﬂ for some o € (0,00) and s € [1,00). Then w € AL if and only

if we AL .
(viii) For each 1 <p < oo and 1 < ¢ < oo, we have

L L L
wi e Aq(p—1)+1 e w e .Ap N Bq .

(ix) Suppose po < p < qo and w € Ag/po N B(qu/p),. Then there exists p1 and q1 such that

po<p1<p<q <qo and wGAiﬁBéﬂ)/.
P1 P

(x) Given py < p < qo, we have

weAi%me@)/ = wl-p’eAgmsiﬁ),.
P 9 P’

Proof. The proofs of (i), (i) and (iii) follow easily from the definition of the A} and B} classes.
For the proof of (iv) see [30] and also [104] Proposition 2.1 (iii). Property (v) is the self-
improvement property of the BL classes mentioned in [30]. Property (vi) is a restatement of
Lemma 5.5. Indeed by replacing 1/0 by r and w? by w in Lemma 5.5 we obtain (vi).

The proofs of the next two properties are adapted from [59] and [72].

Proof of (vii). We note that ALY C AL for every s > 1, and so necessity is clear. It
suffices to consider the converse. Let w € AL . Suppose firstly that 0 < o < 1. Since w € AL
then by Lemma 5.5 (or property (vi) above) we have w” € BlL/’z for some > 0. This means

that for any ball B,

Let r := o(s — 1) + 1. Then since w® € AL,

(]{gw) (]{Bwﬂﬂsfl))s—l < C%/U(B)(]{ng)l/a(]{gw1/(81)>s—1
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= Cwe/a(B)(]gw”)l/o(]{B(wv)1/(r1))”_1)/"

<C ¢(r+1)9/a(3) :

That is, w € Af’(rﬂ)o/(w) c AL, Suppose now that 1 < o < oo. Let B be a ball and
r:=o0(s—1) + 1. Note w’ € AL implies that w® € AL for some 6 > 0. Since o > 1 we may

apply Holder’s inequality with exponents o and ¢’ to get

(£ o) (fyore) ™ < (fur) " (f wrvieny™
- (]{3“’)1/( ]{B(wf’)-l/w—l))“—l)/a

< C'Z/Jre/a(B) .

We have shown that w € AZ?7/(7%) ¢ AL This concludes the proof of (vii).

Proof of (viii). We first show the = direction . Assume that w? € Ag(p_l) +1- Then
w? € AL | and by property (vi) above w € 55. If in addition w € AL | then applying property
(vii) with 0 = ¢ and s =p we obtain w € Ag. We now prove the converse <= direction.
Assume that w € .AZE N BqL. Then w € BqL and this implies, by property (vi), that w? € A% .
Hence (w?)'/4 = w € AL, and property (vii) with o = 1/¢ and p = o(s—1)+1 gives
wi e AL = AqL(p—1)+1-

Proof of (ix). Firstly, property (iv) implies there exists p; such that

1< =< = and we AL, .
P11 Po p1

This implies py < p1 < p. Secondly, property (v) implies there exists ¢; such that

(%0)/< (%>/<oo and wGBE%)/.

This implies p < g1 < qo-
Proof of (x). The proof is almost the same as that of Lemma 4.4 from [16]. We give the

details here for convenience. Set ¢ = (%0)/ (Z —1) +1. Using properties (iii) and (viii), we have

Po
20’ 20’ ’
we Al 1Bl = w(z?)equo),(pl)H:AqL e WP g
Po P P Po
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and

~(Po’
w " e AL, NBE, — w(l_p)(F) eAL, )
£ ") () ()

Direct computations show
/ / !
@Yo-o-a-n @) m 0o @)
O

The following weak type property of the operator M’ is implicit throughout [106], but we

supply a proof here.
Lemma 5.7. For each n > 0, the operator .Mﬁ is weak type (p,p) for every p € [1,00).

Proof. We observe that M# is controlled pointwise by M, the Hardy—Littlewood maximal func-

tion. Indeed, for each x and ball B containing x, we have
o s fin <)

— < < x).

Un(B) JB B
Hence the weak type properties of M carry over to M,L,, since

{zeR" : MLf(z) > A} C{z e R": Mf(z) > A}.
Therefore
n L n CP p
|{x€R :Mnf(x)>/\}| < |{m€R :Mf(ac)>)\}| < nyHLP .

In fact the weak (p,p) bound of M% is controlled by that of M. O

The main mapping property of the operator M% we will require is the following.

Lemma 5.8 ([106] Theorem 2.2). Let p € (1,00) and § > 0. Then for each w € AL there

exists C' > 0 such that

||M£/9f||Lp( < OHf”Lp(w) .

w) —

Proof. A proof of this can be found in [106] Theorem 2.2. See also [104] Lemma 2.2. O
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Remark 5.9. As a consequence of Lemma 5.8, if p > s, w € Aﬁ/’i and n = (p/s)’8 then the
operator M#(Hs)l/s is bounded on LP(w). In fact, since M} is bounded on LP/3(w) for each

we A /59 then we have
ML) Py = [ MELTY 0 5 [1fP

5.2 A new good-)\ inequality

The main result of this section is the following extension of Theorem 4.4 to AL weights. It is

the key technical tool of this chapter and is also of independent interest.

Theorem 5.10. Fizn > 0, ¢ € (1,00], £ > 1, s € [1,00), and v € BL. Assume that F,G,
and H are non-negative functions on R™ such that for each ball B with rg < 12v/n~y(xp), there

exist non-negative functions Hg and G with

F .Z‘ < HB( )+GB( ) a.e. x € B, (5.2)
][ Gp < G(2), Vx € B, (5.3)
(]{qu) ' S(ML (z) + H(y)), Vz,y € B (5.4)

and for each ball B with rg > 12v/n~y(zp),

1
T/M(B)]iF < G(z), Vz € B. (5.5)

Then there exists C = C(n,q,v,&,8,1m,7) > 0 and Ko = Ko(m,n,&,v) > 1 with the following

property: for each A >0, K > Ky, and 6 € (0,1),

v({z €R" : MIF(2) > KX, G(z) < A})

<o(S 2 (e e rr MEF(@) > 2)). (6

As a consequence, for all v € (07 q/s), we have

IM5F|

Lr(v) = (”GHU(V + 1 H| ,,)) (5.7)

provided Lr(wy < 00 If r > 1 then (5.7) holds provided F € L'(R").
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Remark 5.11. We mention that the term H is an error term, which is useful in applications.
For instance it allows us to consider commutators (see Theorem 3.16 in [16] for the case of A

weights). However we do not give any results in this direction in this thesis.

Proof of Theorem 5.10. The proof is an adaptation of the proof of Theorem 4.4 (found in [16]
Theorem 3.1). We begin by mentioning that it will suffice to consider the case G = H. Indeed
if we set G := G + H, then (5.3) holds with G in place of G and (5.4) holds with G in place
of H. Henceforth we shall assume that H = G.

We shall first demonstrate (5.6). Fix A > 0 and set

Q= {z eR": MTLIF(Q:) > A}

Ex:={z €eR": MIF(z) > KX\, 2G(z) < 6A}.

Note that Q) is an open set, and hence the Whitney decomposition lemma (see [60]) allows us
to decompose it into a family of pairwise disjoint cubes Q = {Q; }j, with ) = U;Q;, and such
that 4Q; meets QS for every j. Our aim is to show the following estimate: there exists C' > 0

such that for every j for which E\ N Q; is not empty,

& i)”%(@). (5.8)

V(BN Q) < C(ﬁ =

Then since E) C Uj E)\ N Qj;, we may sum over all the disjoint cubes in @ to obtain

v(Ey) < > v(EANQ;) < C(%+%)1/SZV(Qj) _ C(%jtg)l/sy(m),

J J

which is (5.6).

We proceed with the proof of (5.8). We shall consider two regimes.

Jo=1{j:Q;€Q and lg, <2v(xq,)}
T =1{j:Q; €Q and lg, > 2y(zq,)}-

We first study the case j € Jy. For each such j we define B; to be the ball with the same

centre as ; but with radius rp;, = @l@r (That is, B; is the ‘smallest’ ball concentric with
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and containing @);). Our task will be to show that for each j € Jy with E\ N@Q; non-empty, the

following estimate holds:

q )
B0 Qi <O (5 + 1) I (.9

with C depending only on ¢, n , 7, 7, and the weak type bounds of M,L] (We remark here that
if ¢ = oo then the first term £9/K 1 is taken to be zero in inequality (5.9)). Once (5.9) is proven
we may obtain (5.8) as follows. Recall that since v € BL, then there exists § > 0 for which

Ve BSL/e. We then apply Lemma 5.4 to v, and to the sets £y N Qs C @, to obtain

&y i)l/sy(Qj). (5.10)

N\ Vs
V(EANQ;) < Cywe(Qj)(M> vQ) < O3+ %

Q5]
Note we have used that 19(Q;) < 3% since j € Jo. This gives estimate (5.8).
We proceed with obtaining (5.9). We shall need a localisation lemma whose proof we

postpone to the end of the section.

Lemma 5.12. Fiz np > 0. Then there exists I?o > 1 depending only on n, n, and the growth

function ~y, with the following property: for each f € L _(R™), each X > 0, each K > If(vo, and

loc

each ball B for which there exists & € B with MEF(@E) <A,
{zeB:Mlf(z) > KX} C {z e R": ME(f1,5) > (K/Ko)A}.
Now recall that 4Q); meets €25. This means that there exists z; € 4Q; C 4B; with
MEF(z) < A (5.11)

Hence applying Lemma 5.12 to the ball 4B; and F' implies that there exists IA(B > 1 so that, for

all K > K,
{z €4B; : MEF(z) > KA} € {o € R" : ME(Fli2,)(2) > (K/Ko)A} (5.12)

Now we observe that the hypotheses (5.2), (5.3), and (5.4) may be applied to the ball 125;

(since j € Jp) and hence 12B; satisfies

riop, = 12rg, = 6vnlg, < 12v/nv(zq,) = 12vny(z12s,). (5.13)
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Combining (5.2) with (5.12), and the fact that ./\/l% is sublinear,
|ExN Bj| < |{z € R" : ML F(z) > KA} N By

< |{z €4B; : MLF(z) > K}

< ’{x eR": ME(Fliog,) > (K/EO)A}]

< ’{x cR": M%(GlglelgBj)(l’) > (K/QI?O))\}’

+ ‘{x €R™ : ML (Hizp, 1105, (2) > (K/QI?O))\}‘ . (5.14)

Now recall that Ex N Q); is assumed to be not empty. Hence there exists £; € Q; C B; with

A (5.15)

Let ¢, be the weak (p,p) bound of ./\/lfl (from Lemma 5.7). Applying assumption (5.3), valid

because of (5.13), we obtain

~ 12K,
’{l’ S R™: Mﬁ(GlglelgBj)(m) > (K/QK()))\}) S ! 0 / GlZBj
KX 12B;
012;5)
K\
12"¢c1 Ky

< == |B,| 5. (5.16)

< 12B,| G(&))

Next suppose that ¢ < co. We apply (5.4) — again since (5.13) holds — to get

~ 2K,
[{z € R" : ME(Hyap, 1108,) (2) > (K/2Ko)\}| < ( KO;q)q/ Hiyp,
12B,

< (2Kocq

o) e (MEF() + (&))" 128

— &
< (4Kocq)? 12 a 1B, (5.17)
where the points z; and z; satisfy (5.12) and (5.15) respectively. We insert now estimates (5.16)

and (5.17) into (5.14) to arrive at

S
BxNQ;| < |BanBy| < O35 + 72) Q)

where C' depends on ¢, n, f(\;) and the weak type bounds of M7L7 This gives (5.9) for the case

¢ < 00, and hence from (5.10) we get (5.8) for those cubes Q; with j € Jp.
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If ¢ = oo, then firstly notice that
MY (Hizp,1128,) ||, < |Hi2B, 1128, || e < € (MEF(x)) + G(z;)) < 26N
Therefore it follows that whenever K > 4{[?0, then
{z € R" : ME(Hizp,110,) (x) > (K/2Ko)A} = 0.
So we set Ky = 45[?6 > 1, and for each K > K we may proceed as before with estimates (5.16)

and (5.17) to obtain the following variant of (5.9):

]

20l < () .

Before concluding the proof of the case j € Jy, we remark that taking the choice Ky = 45[?0
will allow us to cover both of the situations ¢ < oo, and ¢ = oc.
We turn to the proof of (5.8) for the case j € J. We shall require the following

decomposition lemma.

Lemma 5.13 ([106] Lemma 3.1). For any cube Q with lg > 2v(xq) there exists a finite collec-
tion of disjoint subcubes {Qk}szl such that Q = Uszle with the following property: for every

ke {l,..., N}, there exists xy, € Qi with

%le S V(xk) S 2\/’7100[@,9,
where Cy is the constant from Lemma 2.5.

Recall that when j € J. the cube Q; satisfies Ig, > 2v(zg;). Hence we may apply Lemma
5.13 to Q; and obtain a finite collection of disjoint subcubes {Qj,k};cvip with Q; = Uffile,k,

such that for each k € {1,..., N;} there exists x; € Q;, with

%le,k < y(zjg) < 2v/n Cy lg; .- (5.18)

We observe that this implies vy(x; ) =~ v(zq,,) with constants depending only on n and Cp,

where zq,, is the centre of the cube Q;x. Indeed, since z;,vq,, € Qjk then xq,, €
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B(z k., @ZQM) C /nB7(x;x) and hence by (2.10) we have y(zq,,) < C3(1 + v/n)*y(z)k).
The other inequality can be obtained similarly.

Now for each j and k we set Bj to be the ball concentric with @, but with radius
4162_,»,;« That is, Bj is the smallest ball concentric with, and containing Q; . We claim the

following property holds, whose proof we defer to the end of this section.

Lemma 5.14. There exists a > 1, depending only on n, n and Cy, with the following property:

for every cube Qj i for which Ex N Qj 1 is non-empty, one has
EyxnN QjJC C {x S QjJC : M# (FlaBj,k)(-r) > K/\} (5.19)
raB,, > 12vn7y(zas,,). (5.20)

Let us fix k£ and assume that £y N Q; 1 is not empty, since otherwise there is nothing to prove

for the cube Q. This implies that there exists a point =, € Q;r C aBj with
G(Tjk) < 5N, (5.21)

Let ¢ be the weak (1,1) bound of ./\/l# Then (5.19) gives

C1

|E)\ﬂQj}k|§ |{$€Qj,k:M7[;(F1aBj‘k)(x) >K)\}| < — F
K\ aB; .
C1 ~ (5
S Tx laBj k| ¥n(aBjk) G(@jk) < Cz Qjokl - (5.22)

In the third inequality we have applied hypothesis (5.5) — since the ball aB; ; satisfies (5.20) —
and in the final inequality we used (5.21), the doubling property for the Lebesgue measure, and

that
Yy(aBjy) < Ty (Bjx) < C,

which follows from (5.18). We remark that the constant C' in (5.22) depends only on n, 7, Cj
and is independent of j and k.

In a similar fashion to estimate (5.10), we apply Lemma 5.4 to v € BSL,’G and the sets
ExNQjr C Qjr and evoke (5.22) to obtain

. /s /s
B30 Q) < Coun(@in) (B7EH) Tui@u < o (7))
Js
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where C' depends on n, Cy, n and v. Summing this over k gives

N d\1/s N & d\1/s
EAQQJ < ZV EAQQJ;C < C(?) V(ka) < C(ﬁ —i-?) Z/(Qj)
k=1 k=1

which gives (5.8) for j € J. Note that when ¢ = co we end the estimate at the second
inequality. This concludes the proof of (5.8), and hence of (5.6).

Since (5.6) holds we may prove (5.7) using the same approach as the final part of the
proof of Theorem 3.1 from [16], pp. 20-21. In fact the proof is identical but with M% in place of

the Hardy—Littlewood maximal operator M, and BSL,"9 in place of By,. We omit the details. [

We end this section with the proofs of the lemmata that were deferred during the proof

of Theorem 5.10.

Proof of Lemma 5.12. This proof is an adaptation of the localisation lemma from [11]. Let

z € B with ML f(xz) > KX. Then there exists a ball B containing 2 with

1
wn<B)]{9'f' > KA

Note that B C B(x,2rg) C 3B so that |B| > 37" |B(z,2rp)|.
From Lemma 2.5, since * € B then v(zp) < Civy(z), where C; = 4CZ. This gives

(because Cy > 1)

w(B) 2 (14 gtes)’ = (O (Le 25)" = (80 (B 2rs).

Therefore

KX|B(x,2rg)| ¥y (B(z,2rp))
/B(m,zr5>|f > /Blfl > KA|Blyy(B) = 3n (8C2)n

This implies

1 K
— —A 5.23
¢n(B($,2rB)) ][B(I,2TB) |f‘ ~ Ky ( )

where IA(B = 3"8"6’377. Now since K > I?o, then in fact

1
Y e — A
¢7}(B('T;ZTB)) ][B(a:,QTB) |f‘ ~
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and this combined with the point Z from the hypothesis implies that ¢ B(x,2rg), for

otherwise this contradicts M} f(Z) < X. This final fact implies that B(x,2rp) C 3B, and

IN

combining this with (5.23) gives

1 1 K
Uy (B(,2rp)) L5 = 3 Be LY
wﬂ(B(l‘,QTB)) ‘fB(x,QTB)Lf 3B 1/)17(B<x727"3)> f]g(w,QTB)lf| > KO

This last step ensures M} (f1,5)(x) > (K/Ko)A. O
Proof of Lemma 5.14. Let x € Ex N Q. Then it follows that

G(x) < 2N, (5.24)

N[>

MLF(z) > K. (5.25)

The latter property ensures that there exists a ball B containing x such that

1

i) ]{3 F> K (5.26)

Then we necessarily have
rg < 12y/nvy(xp). (5.27)

Suppose otherwise. Then hypothesis (5.5) applies to B. Combining this with (5.24) and (5.26),

we arrive at the statement

1 )
KX < %(B)]{?F < Gl < I

which is impossible, since K > 1 and ¢ € (0, 1). Therefore the ball B necessarily satisfies (5.27).
Next we claim that there exists a > 1, depending only on Cy, n and 7, such that (5.20)

holds and
B C aBjy. (5.28)

Let us demonstrate this claim. This will involve repeated application of (2.10). Firstly (5.27)

implies B C 124/n 987, so that

Y(zp) < Ciy(x), (5.29)
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where C; = CZ(1 + 12y/n)?. Secondly since both z,z;; € Q,x, then the distance between

and x; is at most the diameter of Q); . That is,
=z < dlam(Qjk) = Vilg, -
It follows that = € B(zjk,vnlg,,) C 2y/nB7 (), and hence

v(z) < Cay(wjr) (5.30)

where Cy = C2(1 4 2y/n)%. We now combine (5.29) and (5.30) with (5.18) and (5.27) to obtain

rp < 12vny(zp) < 12¢nCiy(z) < 12/nCiCyy(zjk) < aongm = QOTB,,»

where ag = 48C,C1Ca+/n. Therefore it follows that B C (1 + 2ag)Bj k. Next we set & to be a

number such that
TaB,, > 12\/ﬁ’y(ij‘k).

Note that this number exists because we recall that y(zq,,) ~ v(z;x) = lg,, = rp,, with
constants depending on Cy and n. In fact, y(zq,,) > Csy(z; ) where C5 = C3(1 4 /n)?, so
that &4@“ > 124/nC5 (2, 1), which holds provided a > 43,/nCyC3 by (5.18). On choosing
a = max {1 + 2ag, &}, the estimate (5.20) and the claim (5.28) both hold.

Finally to obtain the inclusion (5.19), we see that (5.28) with (5.26) implies

1 1
—— 1+ Fl,p,, = —— 1 F KA.
wn<B>Ji Los, wB)]{g g

It necessarily follows that

M (Flap,,)(x) > KA,

and as a consequence (5.19) holds. O

5.2.1 Applications

In this section we give some applications of Theorem 5.10.
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We give here a proof of a Fefferman—Stein type inequality (1.36), which was first given

and proved in [106], Theorem 2.1. For f € L} (R") and = € R", set

B>z B>z
re<y(zgp) rg>y(zp

1
#.L — . _ i
MEEF@)= s If = fol 4 s ko f 111

Then the following holds for each n > 0, p € (0,00), and w € AL.
HMsfHLp(w) S CP HMTI#,LfHLp(w) :

To see this we apply Theorem 5.10 to any s € [1,00), and

F=|fl, H =0, G =2(1+12y/m)" MIL S,

q = oo, v =w, r=np.
Now let B be a ball with rg < 12y/ny(zg). We have
F=|fl<|f-fsl+|fsl=Gp+ Hp.
Then (5.4) holds because
q 1/q 7 w AL
( HB) — |fs] < v,(BYMEF < (1+12ym)" MES.
B
Next we check (5.3). If rp < ~v(xp) then
][GB = ][|f—fB| < M#’Lf < G.
B B
If v(zp) <rp <12y/n~y(xp), then
][ Gp < 2|flp < 2B)YMPEF < 200+ 12V0)" M = G.
B

Finally we check (5.5). If rp > 12¢/n~vy(xpg), we have

1 1
F = L G
WB)]{; wn<B>]{g'f' s Mif s

and we are done.

The following application is an adaptation of [16] Theorem 3.1 for AL weights.
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Theorem 5.15. Let 1 < pg < qo < 00 and &, D be vector spaces such that D C €. Let T, S
be operators such that S acts from D into the set of measurable functions, and T is sublinear
acting from & into L**(R™). Let {Ap}y be a family of operators indexed by balls on R™, acting
from D into £. Assume the following: for any n > 0 there exists C1,Co > 0 such that for each

ball B with rg <12y/n~y(zp), f €D, and = € B,

(f, ma=amsp)"™ < coamb(sar) e, (5.31)
(f ranse)™ < comt ()@, (532

and for all balls B with rp > 12y/ny(zp), f €D, and x € B,

1
Un(B)

]{B TFP < CoME (IS F7) (). (5.33)

Let po < p < qo (with p = qo if go < 00) and w € Aﬁ/po OB(LqO/p),. Then there exists C > 0 such

that
17wy < C IS F Lo vfeD. (5.34)
We can take & = LP° and D to be a class of ‘nice’ functions such as L, LP° N L% C§° etc.

Proof of Theorem 5.15. We first consider the case g9 < oco. Let pg < p < qo, f € D and

we AL, NBE Then there exists # > 0 such that w € Aﬁ/’zo. We shall apply Theorem 5.10

p/Po (q0/p)""
with
S:@a q:@, T:£>17
p Do Do
e=cpont - n=(2)0- 2.
F:|Tf|p0’ H:O, G:C3M$(|Sf‘po)a

where C3 = max {Cf°2p0_1, Cg}.
Let B be a ball with rp < 12y/nvy(xp). We will check that conditions (5.2), (5.3), and

(5.4) hold for this ball. Firstly (5.2) follows easily because by sublinearity of T,

ITfF° < 200N T(I — Ag)f|"° + 201 TApf|™ =: Gp+ Hp.
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Next we check (5.3). For each x € B, by hypothesis (5.31),

f Go=rt i - ang

< 2100710%70 M£(|Sf‘p0)($)
< Cs ME(ISfI™) (2) = G(x).

Thirdly we check (5.4). For each x € B, by hypothesis (5.32),

(fm8)"" = 2 (f rans)™"™ < icp ME(TIP) @) = eME(TIP) ).

Finally we check (5.5). For any ball B with rg > 12\/n~y(zp), by (5.33), then

# — # Po L DPo T L Po ) — -
w,,(B)]{BF = z/,n(B)]{B,'Tf' < Co ME(ISF)(x) < CaME(ISSIP°) () = G(a).

Since w € B(q Iy = BL  then the conclusion of Theorem 5.10 gives

1Ty < 27 (IMEF ) < ClGH ooy = C [MEASFP) < CUSFIE )

HLP/PO (w)

which is (5.34). The first inequality holds from the pointwise control of the maximal operator
M,L] (see (5.1)). The last inequality follows from the boundedness of the operator M% on

LP/Po(w). Indeed Lemma 5.8 applies in this situation since p > pg, w € Ap/f? ,and n = (p/po)’0

If gg = oo then we can apply Theorem 5.10 as before with py < p < oo and w € Ap/p to

conclude the proof of the theorem. ]

The next application is an extension of Theorem 4.6 to AL weights, and is the main tool

used in the proof of Theorem 5.1.

Theorem 5.16. Let 1 < pg < qo < oo and T be a linear operator. Assume that for each
4 € (po,q0) and 1 > 0 there exists a family of operators {Ap}y indexed by balls and a collection

of scalars {a; };’O:O such that the following holds.
(i) T is bounded on LI(R™).
(ii) For every ball B with rp < 12y/n~y(zp), and every f € LL(R™) supported in B,

(]{],_( Azf17) "<q ][Ifl”“ o ¥j >0 (5.35)
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(- apy i) < s (£ 15)"" viz2 o (5.36)
U;(B) B

(iii) There exists C > 0 such that for every ball B with rp > 12y/n~y(zp) and f € L2 (R™),

~/

N1/ ~ o "
(ﬁ ]{3 i) < EME(ST) @ VT, vee B, (5.37)
n

(iv) 32, ;200 < oo

Letp € (po,qo) andw € Aﬁ/m ﬂB(LqO/p),. Then T extends to a bounded operator on LP(w).

Proof of Theorem 5.16. The proof is an adaptation of the proof of Theorem 4.6 (a). We fix
p € (po,qo) and w € .Ag/po N B(Ijm/p),. Denote by T™* the adjoint of 7. Then it will suffice to
prove that 7™ is bounded on Lp/(wl_p/)7 because this is equivalent to the L?(w) boundedness
of T (see Remark 4.7 (a)). We shall apply Theorem 5.10 to T™*.

Firstly, by Lemma 5.6 property (ix), there exists numbers p; and ¢; such that

p0<p1<p<Q1<qO and wEAiﬂBfﬂ)/
D1 D

Then it follows from property (x) of Lemma 5.6 that

—p’ L L
a1 p’

Next there exists 6 > 0 such that

—p’ L0
wlpeA, .
p_

4

We now apply Theorem 5.10 to the following datum. For each f € L3°(R"™) we set

/ /
gi= D1 q:= p—,l, ri= p—,, n:=r'0,
1

P’ ¢

Q

F = |T*f|q1 , H :=0, vi=w P,

Let ¢ = qi. Take {Ap}p and {a;};, to be as in the hypotheses. We shall show that

conditions (5.2)—(5.5) hold with

Gp = 297 |(I - Ap) T* f|" and Hp =251 AT |
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and G is a fixed constant multiple of Mk (|f |q1) (with the constant to be specified later).

We first check condition (5.2). By noting that (I — A%) = (I — Ap)*, one has
F(x) = |T"f(x)|" = [(I = Ap)"T" f(z) + ART" f(=)|"
< 207 |(1 — AT f()[" + 2% |ART f ()]
= Gp(z) + Hp(x)

where we have used that |a + b|" < 277! |a| + 2771 [b|" valid for all 7 > 1 and a,b € R.

We now check condition (5.4). Let B be a ball with rg < 12¢/nvy(zp). We first write

(J[ H]%)l/q _ <][ 0P —¥,/d, |A*BT*f|p;)ql/pl < <][ ‘AET*ﬂp;)ql/pl.
B B B

To estimate the integral we apply duality to R :=T*, S := A} with some g € LP* (B, dz/ |B|)

with norm 1 (Remark 4.7(d)), to obtain for each = € B,

<][ H}(é)l/qq'l
B

/

(F 14575)™" < f 11 111Ap0 < Zzﬂ" ALY

< nguj 2]B)<w 5 ][ |T*f\q1) ﬂh(wn(;jB) ]{[j(B) |ABg\q1)1/q1

’ 7 . / 1
M£(|T*f‘q1)(x)1/q1 Z 2](n+n)(][ - |ABQ|Q1> a (5.38)
j=0 i

N

A

In the last line we have used that since rp < 12y/ny(xg), then
n(27B) < 27 (B) < 277 (1+12/n)" (5.39)

valid for every j > 0. Now from (5.35) with exponent ¢ = ¢;, we have for each j > 0,
1/q1 1/po 1/p1
(][ \ABQ|Q1) < Oéj(][ |9\p0> < aj(][ |g|p1> = ay,
U,(B) B B
where we have used Holder’s inequality (with exponents p;/pg and (p1/po)’) and the the nor-
malisation of g. Inserting this estimate into (5.38) gives, for each x € B,
1/qq/ ’ ’ e . / ’
(£ a8)™ s MU 79 @Y S a2 ™) < CuME(T 1) (@) Vo
B N
7=0

by hypothesis (iv). Hence (5.4) holds with H =0 and &= C}.
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Next we check condition (5.3). Let B be a ball with rp < 12y/n~y(xg). We first write

(]{?GB)l/qi _ (][B 9¢;—1 = AB)*T*ﬂqi d;p)l/qi < (]{3 \(I—AB)*T*f|q3 d:c)l/qi.

We apply duality again now with R := I, with S := (I—Ap)*T* , and with g € L% (B, dz/|B|)

of norm 1. Then for each z € B,

(]{SGB)I/qis ][If\IT(I Ap)g 223"][ |f]IT(I — Ag)g|

U;(B)

: i?”WB)(M L) (o 1 100 A000) ™

=0
|f|q1 1/q1 Z Qj(nJrn)(][

U;(B)

Z/\

1/’11
IT(I - AB)gl'“) 7 (5.40)

where in the last line we have used (5.39) again. Now for each j > 2, estimate (5.36) with

exponent ¢ = q; gives

(]{]j(B) IT(I—AB)QI‘“)W < aj(]{?lglpo)l/po < aj(]{?|g|‘”)l/ql =, (541

where we have used Holder’s inequality (with exponents g1 /po and (¢1/po)’) and the normalisa-

tion of g. For j = 0,1 we use hypothesis (i) with §=¢1 to give

1
T - Apgl™ < [ |- Ap)g® < / 9" + / Apgl" ).
]{Jj(B) |B| Jgn |B] { Z

For the summands we use the approach as before, namely applying (5.35) for & > 0, and Hélder’s

inequality to get

/a1 /Po /a1
(F 1ang) ™ < an(f1ar) ™ < an(f10m)" = o
Uk (B) B

Collecting these estimates we have for j =0, 1,

f T~ Ap)g” < ]‘ |g|q1+22’m ][ Apg® < ][ g + 3 a2t
U. B k=0

i(B)
(5.42)
which is finite because the expression >, a;2F("*™) is finite. Inserting (5.41) and (5.42)

into (5.40) gives

( ]{3 GB)”q1 S ME(AD) @Y {3 a2 e < GME(ST) @) (5.48)

Jj=2
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for each =z € B.

Now let G(z) := Cj M£(|f|qll)(ac)1/q/1, where C3 = max{C,Cy}. Here C is the con-
stant from hypothesis (iii), and Cs is the constant from (5.43). With this choice of G, firstly
estimate (5.43) implies that (5.3) holds, and secondly estimate (5.37) implies that (5.5) holds.

We have shown that (5.2)—(5.5) holds. Therefore, since v € B(Lp/l/p,), = BL, then Theo-

rem 5.10 allows us to conclude that

< My (1™

Iy <

| ME (T 1)

) (5.44)

for some C' > 0, depending only on v, ¢q, n, &, s, n, 7, C3, and hence only on w, p, p1,
¢, C1, Cy, C. Recalling that 7 = p'/¢, and v = w'™?, we observe that the LP (w!~?")

boundedness of T* now follows, because

< C|f% (5.45)

' (v) "

The first, inequality in (5.45) holds by the pointwise control of the operator M} (see (5.1)).
The second inequality in (5.45) follows from the conclusion (5.44) above. The final inequality

in (5.45) follows from the boundedness of the maximal operator Mk (|~|q1 ) Y on (v). Indeed,

L6

Remark 5.9 applies in this situation because firstly p’ > ¢}, secondly v = w!=? € Ap,/q,, and
1
lastly n=1'0 = (p’/q})'0.
By duality, (5.45) implies the boundedness of T' on LP(w). O

5.3 Proof of the main result

In this section we give the proof of the main result of this chapter, namely Theorem 5.1.

Proof of Theorem 5.1. The proof is similar to the proofs of Theorems 4.1 and 4.3, but we apply
Theorem 5.16 in place of Theorem 4.6.

We first consider the operator V2L~!'. We apply Theorem 5.16 to T = V2L™!, pg = 1,
go = s, and Ap = e"5L. Fix § € (1,5) and n > 0. We shall show that conditions (i)-(iv) of

Theorem 5.16 hold. For simplicity we shall write ¢ to denote ¢ throughout the rest of this proof.
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Firstly the LY(R™) boundedness of T holds from Theorem 1.3 (a), and so Theorem 5.16 (i)
holds easily. Next we check conditions Theorem 5.16 (ii) and (iv). Fix a ball B and a function
f € L¥(R™) supported in B. Recall from the proof of Theorem 4.1, estimate (4.10), that we

have (via the Gaussian upper bounds (3.1) on the heat kernel of L)

(]{,_(B 4pfl7) " < Bj][ £, (5.46)

with 3; = 0167@41 if j > 0. Note that the constants C,c; depend on ¢ and n only. Next we

recall from Lemma 4.11, and in particular estimate (4.20), that

2 1/ j
(f weriu-ering) M caeet fin vizz o ean
U;(B) B

Let us take o = Ce=¥ for j > 0, where C = max{C,C2} and ¢ = min{ca,c3}. Then
Theorem 5.16 (iv) is satisfied, and by (5.46) and (5.47), conditions (5.35) and (5.36) are also
satisfied. This proves (ii) and (iv).

Finally we turn to condition (iii) of Theorem 5.16. Let f € L°(R™) and fix a ball B

with rg > 12y/nvy(zp). We write

f= Zfluj(B) =: Zf;w
7=0 7=0

Then

(wnzm ]{9 ) s g(wﬁm ]{g )" (5.48)

To estimate the terms for j = 0,1, we use that T™* is bounded on LY (R™) by Theorem 1.3, and

that ¢, (2B) <274, (B) to obtain, for any x € B,

w1 1/q
%13)][3” Hr) T =cf <Bl>|B|/'fﬂ
" 1/q J 1/q'
-o(" %) I;}l) (wéB) f,ur)

< CME(|f7) () (5.49)

Note that C depends on n,q and 7. To estimate the terms for j > 2, we first write

T fi(y)| = ‘/ / V2pi(z,y) f(2) dzdt’
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g(/U

J

N 1/
1) q/ (/ V2nu(z)|" dz) “at (5.50)
(B) o Muys)

by Hélder’s inequality. Next, using that v,(2/B) < 2774, (B) we have for any = € B,

(f )" =iy (g )™

J

1/q" n ’ ’ ’
< (g (B) [B) " 270 M 1) ()1 (5.51)
Therefore using (5.50) and (5.51) we obtain, for each j > 2,
1 ][ N 1/4
I T f; q
(G 7,751")

< s (L ) 190y ) )™

< 2 BT ME(117) @) 20, B) (5.52)

’

where

Z(j,q,B) := (]{B(/OOO ||V2pt('7y)HL‘1(Uj(B)) dt)QIdy)l/ql'

Now we estimate the final term in (5.51) by using the heat kernel bounds in Proposition 3.7.

For each j > 2 and y € B, we have |z — y| > 297?rp. Hence for all ¢ > 0 estimate (3.11) gives

HVQPt(', y)HLq(Uj(B)) _ HVQPt('y y) eﬂql'—y\z/t e_ﬂq‘._ylz/tHLq(Uj(B))

IN

e_C4jTZB/tHV2pt('7 Y) efal e ||L‘1(Uj(B))

C j 26
n/2q" e— B/t g=e(14+t/7(v)%)

IN

W% =t rh/t gme(1/7h)” (5.53)

IN

In the last step we used that since rp > 12y/ny(zp), then for each y € B, by Lemma 2.5,

B

(y) < CO’Y(T/B)(l + ~(@n)

) < Oo(ﬁ*f*l) rg = C/'I'B.

Estimate (5.53) gives us

dt

o C{zZ; +11;} (5.54)

0 .
I(]?QaB) < C/ 6_0417'23/156_0(1-&%/7‘?3)6
0
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where
292 .
T — 5 67C4]T2B/t675(1+t/’l“25)6 dt
J o t1+"/24/ )

dt
t1+n/2q/ '

oo .
TTL. _/ 6704]7“23/te—c(1+t/r23)(S
J )
217‘23

To estimate the first term we observe that since t < 2jr123 then e~ 475/t < e*CQJ‘, so that

I, < Ce? QjTQB( t )1+"/2Q’ dt
7= 0 4JT2B t1+n/2q/

C —c2J /Zj r% d
< . t
T /20,250 )

—c2 — 279
_ _ Ce L G (5.55)
2i(1+n/q') 7/ P/

since 0 < § < 1. To estimate the second term we observe now that ¢t > 2/r% implies that

_ 29 38
e—e(1+t/r5) < e7?" and hence

oo oS} — 298 —c278
_ —e(14t/r2)° dt —¢2i? dt Ce Ce
II] < € ( B) 1+n/2q’ < Ce ) 1+n/2q’ = ; 1 n/q = n/q (556)
2'77')23 t 2]7‘2B t 2]”/2‘1 Ty rg

By collecting (5.55) and (5.56) into (5.54), and then inserting the result into (5.52), gives for

each j > 2,

1 . N 1/d . . / /
(1/1 (B)]{a|T fj‘q) < ¢ 2intm/q" o—e2 5M$(|f|q )(x)l/q (5.57)
n

for any x € B. Finally on combining (5.57) with (5.49) into (5.48) we have, for every = € B,

~1/q , , > / 35 ! !
(wn%B) ]{B 117 ) " < OME(F) @) {1 3D PO Y < oM (1117 )

Jj=2

which gives us (5.37) with C = C.

Therefore Theorem 5.16 applies and we obtain the required result for 7= V2L™!. We
can obtain the result for the operator VL™! in a similar manner but with estimate (3.12) in
place of (3.12), and (4.21) in place of (4.20). We omit these details, but we refer the reader to

the next section for a different proof. O

5.3.1 An alternate proof of the estimate for VL !

In this section we give an alternate proof of Theorem 5.1 for the operator VL~! that utilises

the techniques of [30]. This proof does not seem to work for the operator V2L~
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We first require a definition of the localised AL;'°¢ weights, first defined in [30]. It is clear

that these include the AL weights.

Definition 5.17. Let w be a non-negative locally integrable function. For p € (1,00) we say

that w € Ag’loc if there exists C = C(w,p) such that for all balls B with rg < v(zp),

(f) " (fur)" <o

We say that w € AF'° if there exists C = C(w) such that for all balls B with r5 < ~y(zp),
][ w < Cw(z), a.e.x € B.
B

L,loc .__ L,loc
We also set A= U Ay
1<p<oo

We next define certain maximal operators related to these weights. Special cases of these
operators were previously introduced in [30]. For each s > 1 we define a localised maximal

operator associated to 7y as follows.

/s
M f(w) = sup (- F)l dy)

Bz Bl Jnmy(2)

Given a sequence o := {a(k)}r—, € I*(R™) we set

62 (a) = Yl fo U )

k=0 2887 (z)

Then the following result holds.
Lemma 5.18. Fiz s > 1 and 0 > 0. Let N be the constant in Remark 2.7. Then for each p > s,

(a) the operator M'¢ is bounded on LP(w) if and only if w € Aﬁ/’ioc,

(b) if o satisfies Y, a(k)Zk(e/s“‘ﬁ/p) < oo for every € >0, then the operator G is bounded

on LP(w) for each w € Ai/’z.

Proof. For the proof of part (a) we note that the authors in [30] show that for each p € (1, 00)

the operator M{°® is bounded on L?(w) if and only if w € AJ'*¢ (see Theorem 1 and Remark 1
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n [30]). It follows easily then that M!¢ is bounded on LP/*(w) if and only if w € AL loe for

each p > s. Therefore

My = IME W sy S I Wy = 1y -

We turn to the proof of (b). The argument given here essentially follows that given in esti-
mate (20) of [30].
Let {%}}j be the covering of R™ given in Lemma 2.6, and let {@}] be the dilation of

this covering specified in Remark 2.7. Then one may use this covering to write
oo

LEaw(f,, , 1rwr ) yis) "

g (/ ( ]ékm ) ) w@ydr)

B Z/w ]ék%m) 7w dy) w@ e}
{ZI irk }1/p.

1/s

Hg?fHLp(w) =

N

p'%g

x>
I

p'%g

b
Il
<]

uMg

Now for each j and z € B] we have 2FB7 (z) C 2’“;3?7 for all k£ > 0. Also by (2.10), =z €
B] implies that v(z) ~ Y(zp7y), and hence |B7(z)| ~ |B7|. Since “gﬂ = o™ |B]|, then
|2k%j’| ~ |2"B7(z)|. This combined with Hélder’s inequality with exponents p/s and p/(p—s)

gives for each j, k, and = € B,

(]é’“B"r(w) 7@ dy)p/s < (]2@7 el dy)p/s

(]2 — |f(y)‘sw(y)s/pw<y)_s/pdy)p/s

ks
%j

< (]ék%7 lf()|” w(y) dy) (]ik%7 w(y)—S/(p—s))(p*S)/S.

. L0
Since w € Ap/s then

1G.K) < ‘2(2)} (f ) T 5 O w0 )

< (F 2 080) (£, w0 an) ™ [P wia




118

2% o 1oy
()

)m [ 1567wt dy

— (14 280)7/° / @) dy.

kg
2kB ]

Collecting these estimates for j and k£ and using the bounded overlap of the family 2’“%?7 we

obtain
%) 1/p
192 Flwy S 3 {Z w20 [ i)l u) dy}
k=0 j 2887
o9 1/p
a(k)(1+ 2F0) 9/5{ / )dy}
S 1oy Z )(1+240) 22N P
< gy S 22030
k=0
and using the hypothesis that 3", 2k(O/s+N/p) < 55 we are done. O

We now give the main result of this section. It coincides with Theorem 5.1 for the VL1

operator.

Theorem 5.19. Letn >3 and L = —A+V onR", and assume that V € B, for some ¢ > n/2.

Then the operator VL™ is bounded on LP(w) for each p € (1,q), 0 > 0 and w'~ P e A;‘ /eq

Proof of Theorem 5.19. Set T := VL~!. We shall obtain the theorem by studying the dual
operator T* = L™'V. Our strategy is to split T* into its ‘local’ and ‘global’ parts, and show
that they can be controlled by the two maximal operators M!°¢ and G* for a suitable o = {a(k)}.

More precisely we split 7% f(x) = T5 f(z) + T f(z) where

/w(@A y)pe(y, @) dt f(y) dy,

@=L v

We shall prove that there exists C' > 0 such that for almost every x the following hold

|5 f ()] < C M f(), (5.58)

T5f(x)] < CGg f(x). (5.59)
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Here a(k) = 6’62“, for some ¢ > 0 fixed, and ¢ is the constant in Proposition 3.7. By
Lemma 5.18 this shows that 7* is bounded on LP(w) for all p > ¢’ and all w € .A;/’Z, for
any 6 > 0. By duality (combining Remark 4.7 (a) and Lemma 5.6 (iii)) this gives the L?(w)-
boundedness of T for each p € (1,q), § > 0, and wlir € Aﬁ,’/'gq,.

We first show (5.59). We write
i@ =3 [ [ Vo) dy
j=17U;i(B(2)) JO

g;lw‘%”(x)!l/q (]{J].<

’

/ /
Sl dy) "

B (z))

q 1/q
(/Uj(%w)) dy) '

Now for each j > 1, and y € U;(B7(x)) we have that |z — y| > 277 1v(z). Let 3, be the constant

/O SV () piy ) dt

from Proposition 3.7. Then by (3.12),

1/q 2 2
(/ V() pely, x)? dy) _ (/ V(y)pt(y,x)qeﬁqlf”’m /te—Balz—yl"/t dy)
U; (B (z)) U; (B (x))

. 1/q
< et @)/t (/ V(y) pely, z)"elel v/ dy)

1/q

< %e—c4jv(x>2/te*C(Ht/WI)Q)&.
— ¢l+n/2¢

Therefore

(/Uj(%’y(f))

> q 1/q > 1/q
| veswaala) < [C([  venea) o
0 0 U; (B7(x))

> —eain(@)? )t —c(14t/(@)?)" __dt
§C/O e el )t“'"/Qq'

= C{IJ +IIj},
where

2y (=)’ j s dt
I —cdin(x)? )t —c 1+t/ (x)2
I -*/O eme et/ tl+n/2¢"’

e j s dt
II; = / e— @)/t g=c(1+t/7()?) ey
27y (x)?

To estimate the first term we observe that since ¢ < 2j7(:13)2 then e—c¥7(@)*/t < e—°?  Hence

2 y(e)? t 14+n/2¢ gt
I; < Ce /0 (43'7(30)2) 1+n/2q’
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Ce=<? 27y(x)?
4j(1+"/2q/)fy(x)2+n/q/ A dt
Ce=? Ce<?”

= PO ()T ()i

since 0 < § < 1. To estimate the second term we observe now that t > 27v(z)? implies

that efc(Ht/ﬂ’(m)z)(S < 2" Hence

njé/ T et@?)
2.

iry(z)? thtn /2
o0
_ 28 dt
< Ce / /g
27 y(z)?
Ce—c?’ Ce—c?’

< — < .
- 2]"/2(1/7(@')"/(1/ - ’)/(Jj)n/q/

Collecting these estimates for j > 1 gives

e} , _ 238 1/ ’
, 1/ € , a
T f(z)| < C 21987 (x 7,][ f|? dy
@) < O PN T (1, i PO )
> . ’ j8 ’ 1/‘1/
<C)y Pl (][ )" dy)
j=1 2787 (x)
> 70/615 / /q'
<oy (il )
j=1 29B7(x)
G )

with a(j) = e, This gives (5.59).

We now consider estimate (5.58). Write

Tif@ =3 | o | w) Ve it )

7<0

. ’ 1/‘1/
< 37298 (a) f Fal dy)
jzg%' |( U, (37 (x)) )

/OO V(y) pe(y, ) dt‘qdy)l/q~
0

(]{mwac))

Now for each j < 0 we have 27987 (z) C 87 (x) and hence

(]im o )" < M),

Also if y € 2987 (x)\2? 7187 (z) then by the heat kernel bounds (3.6),

(]{Jx%v(z))

1/q

| vnts af'a)
0
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o0 1/q
< / ( ]Z V(y)'pe(y, x)qdy) dt
0 U; (B (a))

/g > (o s dt
< C(][ V(y)qdy) / e—cd y(g)z/te—c(l—&-t/“/(zy) P
2087 (z) 0 t

Since V' € B, then Lemma 2.3 (a) applied to the ball B7(z) with A =277 > 1 gives

1/q
( ][ _ V(y)qdy) <C V(y)dy
2787 (x) 2787 (x)

=) @) v

< C(2(x) (2%3}3) )27”/%(35)2 ][% . V(y)dy

< C27IM ()72,

Next we write for each j <0,

. 4y (x)? .
/OOe—C‘“WW/te*c(lﬂ/v(ﬂcf)‘;Lt </ T emerntar & +/Oo SN
o /2 — 0 tn/2 Ly ()2 $n/2 J J

Then

IN

4 y(z)? ¢ n/2 dt
- _ j(2—n) 2—n
C/O (477@)2) tn/? ¢2 (@)

and since n > 3,

II; < ¢ . C 277 ()2,

(49(2)2)" >
Collecting these estimates we obtain
|75 f(2)] < CMGEf (@) Y27 Ean(2) " |28 ()]
Jj<0

< CMfI?Cf(a?) ZQj(2—"/Q)

J<0

< C MY f(x)

with the sum being convergent because ¢ > n/2.

This concludes the proof of estimate (5.58) and the theorem. O
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Chapter 6

Morrey spaces and Muckenhoupt weights

Let p € [1,00) and A € (0,n). A function f is said to belong to the Morrey space £P*(R") if

1/p
9o i=sup (£ 17 = 7al?) " < .
B B

It is possible to take A € (—oo,n] in the definition, but outside the range of (0,n) the spaces
coincide with other well known spaces. When A € (—n,0) the Morrey spaces coincide with the
Lipschitz spaces of order A\. For A < 0 the spaces are also commonly known as the Morrey-
Campanato spaces. We also have £P9 = BMO and £P" = LP. Some standard references for
these spaces include [33, 86, 87, 99].

In this chapter we study the Riesz transforms associated to Schrodinger operators on the

Morrey spaces. The main results of this chapter are the following two theorems.

Theorem 6.1. Fiz s > 2. Letn>1and L =—-A+V on R" with 0 <V € L _(R™). Then

loc

the following are equivalent.

(a) The operator VL™'/2 is bounded on LP(R™) for each p € (1,5).

(b) The operator VL™Y/? is bounded on LP*(R™) or each p € (1,5) and each \ € (ﬁp, n)
s

We mention that a corresponding result also holds for the operator V/2L=1/2 but we do not
give it here.
Next we specialise to the case that V is a reverse Holder potential. Note that ¢* has been

defined in Section 2.2 (see also (1.6)).
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Theorem 6.2. Let n > 1 and suppose V € B, for some ¢ > n/2. Then the following holds.
(a) The operator VL=/? is bounded on LPR™) for allp € (1,¢*) and X € (qﬁ*p, n)
(b) The operator VY/2L=1/2 is bounded on LP*(R™) for all p € (1,2q) and X € (%p, n)

(c) If n > 2 then the operators V2L~ and VL™ are bounded on LP*(R™) for each p € (1,q)

and \ € <ﬁp, n)
q

We direct the reader to the discussion in Sections 1.1.2 and 1.2 for a comparison of the above
two results with the known results from the literature.

The first objective of this chapter is to develop the techniques needed to prove these re-
sults. This involves a principle that allows us to obtain Morrey space estimates from weighted LP
estimates, with weights from the Muckenhoupt class (Theorem 6.15). The second objective is
to apply this to prove Theorem 6.2 and Theorem 6.1.

This chapter is organised as follows. The first section gives an exposition of the main
technique in [9, 34, 42]. This is encapsulated in Lemma 6.3. We then show how this can be used
to obtain Morrey estimates from weighted estimates. We also apply these to give a new maximal
theorem (Theorem 6.11) for fractional type operators on Morrey spaces in the spirit of [17]. The
next two sections form the main parts of this chapter, and may be read independently of the
first. Section 6.2 applies the ideas in [4, 5] to improve upon some of the results from the first
section, while Section 6.3 applies the results from Sections 6.1 and 6.2 to prove Theorems 6.2

and 6.1.

6.1 From Muckenhoupt weights to Morrey spaces 1

The following appears in [34, 42] in the proof of their main results but is not explicitly stated.

Lemma 6.3. Let 0 € (0,1), A € (n(1 —6),n), and B be a ball in R". Assume that h is a

non-negative function for which h(M1g)? € LY(R™). Then there evists C = C(n,\,8) > 0
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such that
5 _
/ h(z)(M1p(2)) dz < C|Blrg* Al s -

Proof. We shall need the following estimate: there exists C = C(n) > 0 such that for every

ball B,
,r’n.
M1g(z) < C K . 6.1
28 = Ol apl o) (o4
Indeed,
BNB
M1p(x) = sup ][ng(y)dy = sup| — |
Bax /B Bse B

Now the quantity |B N B| is maximised when B covers B, so that |[B N B| = |B| ~ 1. The
quantity |B| is minimised when B just touches B (recall that B must also contain ). In this

case we have |B| & (J# — x| — rg)". Hence for each ball B containing x, we have

BOB _ g .
Bl ~  (z—ap[—rp)"

which gives (6.1).
With estimate (6.1) in hand, then for each j > 2 and « € U;(B), one has |z — x| —rp >
27=2rp. so that

no
5 r .
M1 < B < 2799
( B(x)) S C(|.T—$B| —TB)"‘S S O

This combined with the fact that (M 1 3)5 <1, gives

oo

/n h(x)(MlB(a;))5dx:/ h(z)(MlB(x))5dm+Z/U.(B) h(z)(M1p(z))° dx

2B =

< h(x) dx + 2_j"5/ h(x) dx
| na 2 [

(B)

<|B 7,];/\ ||h||£1,x {1 + Z 2—j(n5+)\—n)}

Jj=2

—A
SIBlr™ [hllgis -

Note that the sum is convergent in the last line because the hypotheses on A and & ensure

nd+A—n>0. O
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We illustrate the usefulness of this Lemma by giving some applications. These applications are
based on the well known fact (due to Coifman and Rochberg [36]) that (M15)? is an A; weight

whenever § € (0,1). We record this here.

Lemma 6.4 ([59], Theorem 3.4 p158). Let u be any Borel measure such that My < oo almost

everywhere. Let § € (0,1). Then (Mp)? € Ay, with constant depending on n and §.

In particular (M15)° is an A; weight for each ball B and § € (0,1). Note also that we
have < (Mp)® < |-
Our first application is to show that estimates in weighted spaces with Muckenhoupt

weights imply estimates in Morrey spaces. A more general version of this appears in Theorem 3.1

of [9] (see Theorem 1.11 in Chapter 1).

Proposition 6.5. Let p € (0,00) and F and G be a pair of functions satisfying the following

property: for each w € Ay there exists Co = Co(w,p) > 0 such that
1N Lo () < CollGll Lo ) - (6.2)
Then it follows that for each A € (0,n) there exists C1 = C1(p, A,n) > 0 such that
| Fllzox < CLIG oo -

A straightforward consequence of this result is that if 7' is an operator bounded on LP(w) for
every p € (1,00) and w € A,, then it is bounded on L£P* for each p € (1,00) and A € (0,n). In
particular this applies to the Hardy—Littlewood maximal function and to Calderén—Zygmund

operators, which recovers the results in [34, 86].

Proof of Proposition 6.5. Fix a ball B and § € (1 — A/n, 1). Then by Lemma 6.4 we have

that (M1p)° € A;. The hypothesis (6.2) gives

[irr < [1prone < o [ier sy,
B B
Now we apply Lemma 6.3 with h := |G|” to obtain

= CIBI5 |GG -

LWWSOW@WWWHA
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Since the constant C' depends on n, A, §, Cy, and is independent of B we obtain

b fIFY < ClGI.
B
Taking supremum over all balls gives the required result. O
A corresponding weak type result is also possible. For p > 1 and A € (0,n) we define the weak
Morrey space L2 (R™) as

LEANR™) := {f € LigeR™) : [[fll por < 003,
where

-\
1Nl por i= inf{C’ >0: oz’%up(ﬁ’{x €B:|f(x)] > a}’) < C}.
o B
Proposition 6.6. Suppose F' and G are a pair of measurable functions such that for some
p € (0,00) and any w € Ay, there exists Cy = Co(w,p) > 0 such that
HFHLP-,oo(w) < Co HG”LP(w) :
Then it follows that for each A € (0,n) there exists C1 = C1(p, \,n) > 0 such that
[Ell gz < CrlIGllgon -

Proof. Fix aball B and ¢ € (1 —A/n, 1). Then (M13)° € A; and we can apply the inequality

in the hypothesis to obtain

|{CE€BZ|F(J})|>CY}‘=/ 1p(z) dx
{z:|F(2)[>a}

< / (M1p)° dx
{a:| F(x)|>a}

cr p o
<o L1610 do.

Now since § > 1 — \/n, applying Lemma 6.3 to h = |G|”, we have
161 (M18)° s < €rp BIGI

Therefore
A
B

B {z € B:|F(@)]>a}| < ClGIZn,

oP

and taking supremum over all balls gives the result as required. O
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6.1.1 An application to fractional powers

Our next application of Lemma 6.3 concerns fractional type operators on Morrey spaces, which
are modelled on the classical Riesz potentials. These potentials are the collection of opera-

tors (—A)~%/2 for a € (0,n), defined as

Y e, dt
(A7) = g | @ 55

which, up to a constant multiple, is equivalent to the operator

O R =1

n—o
z—y

A related operator is the fractional maximal operator

Mo f(z) = sup ]{3 1l

B3z
The two operators I, and M, are intimately related. On the one hand we have pointwise control
Mo f < Ia(]f]), and on the other hand, while the converse does not hold pointwise, one has norm
equivalence. This is contained in the following result, first obtained by B. Muckenhoupt and

R. Wheeden.

Theorem 6.7 ([81] Theorem 1). Let o € (0,n), p € (0,00) and w € As. Then

Vo) = 1 Maf o -

Hence the boundedness of I, on weighted spaces follows immediately from that of M,. This is

given in
Theorem 6.8 ([81] Theorem 3). Let o € (0,n), pe (1,2), 1/p—1/q= a/n. Then
M, : LP(wP) — Li(w?) — U/GAHL N B,.

Estimates for these operators on Morrey spaces have been obtained by several authors.

Soon after the result by Muckenhoupt and Wheeden, D.R. Adams obtained the following esti-

mates for the operators (—A)~/2,
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Theorem 6.9 ([2] Theorem 3.1). Let o € (0,n) and A € (0,n). Suppose that p and q satisfy

p € (1,M\/a) and 1/p— 1/q = a/X\. Then (—A)~%/2 is bounded from LP*(R™) into LI (R™).

We remark that if we take A = n, then we recover the Sobolev embedding theorem on LP(R™).

Independently the following was attributed to S. Spanne, first stated by J. Peetre in [87].

Theorem 6.10 (S. Spanne, unpublished). Let o € (0,n), p € (Ln/a) and X € (ap,n). Suppose
that q and p satisfy 1/p—1/q=a/n and (n—N\)/p= (n—p)/q. Then (—A)~*/2 is bounded

from LPAR™) into LIH(R™).

In the late 1980s Chiarenza and Frasca gave simpler proofs of both results. See [34] Theorem 2

and its Corollary. They state Adams’ result with an equivalent formulation:

a € (0,n), re (L), A€ (ap.n), <.

D=
Q| =

They also show Spanne’s result actually follows from Adams’ result. See also Remark 6.12 (vi)
below.

The main goal of this section is to generalise Adams’ result, Theorem 6.9, to ‘non-integral’
operators that are of ‘fractional type’. This is motivated by the study in [17]. Typical examples
of such operators are L=%/? with a € (0,n), where L is a Schrodinger operator or an elliptic
operator in divergence form. This is contained in the following, which is a variant of Theorem 2.2

from [17]. We will give applications of this in Section 6.3.

Theorem 6.11. Let o € (0,n) and 1 < py < s¢9 < go < 00 be numbers such that 1/pg —1/sg =
a/n. Suppose that T is a bounded sublinear operator from LP°(R™) to L*°(R™), and that {Ap}g
is a family of operators indexed by balls acting from L°(R™) into LP°(R™). Assume that there

exists Cy > 0 such that
s 1/s0
(f 11 =a5)1")"™ < Co Mg (7). (63)
][ q0 1/ao S0 1/s0 Po 1/po
(7 1A f™) ™ < Co {M(TA™) @)/ 4 Mgy (177°) )7}, (6.4)

for each f € LS (R™), ball B C R™, and every z,y € B.
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Letpo < p<q<qoand X € (p(q% +a),n) be such that 1/p —1/q = a/X. Then T is

bounded from LPA(R™) to LI (R™).

Remark 6.12. (i) In the case go = oo, the left hand side of (6.4) is the essential supremum

(i)

(iii)

of |[TAg| over B.

If L is an operator with Gaussian upper bounds on its heat kernel then Theorem 6.11 is
satisfied with T = L=%/2, Agp = T — (I — e_TQBL)m, po = 1, gg = oo, and m > 0 large
enough. We shall give the details for this fact in the context of the Schrédinger operator

with non-negative potentials within the proof of Theorem 6.17.

Theorem 6.11 generalises Adams’ result because by Remarks (i) and (ii), with py = 1,
qo = 00, and T = (—A)~*/2, we can obtain that 7" is bounded from £P* to £%*, where

pe (Ln/a), A€ (ap,n), and 1/p—1/q = a/A.

The fact that the set (1 —A/n,1— q/qo) is not empty and contained in (0, 1) is crucial to
the proof, because for each ball B and § € (1 —A/n,1— q/qg) we obtain the following two

desirable properties:

(1) 6>1-An=3, 277(0n A=) < o0 and

(2) 6 < 1—q/g = (M1p)*@/9" ¢ A, because d(qo/q) < 1. This is equivalent

to (]\[].B)(s e AN B(qo/q)"

We mention that the conditions of Theorem 6.11 are the same as that in [17] Theorem 2.2,
but the conclusion is different in sense that direct extension of the result from [17] leads
to a conclusion that generalises Spanne’s result. Instead we modify the proof to obtain a

generalisation of Adams’ result. In fact Spanne’s result is a consequence of Adams’:

Corollary 6.13. Under the same conditions as Theorem 6.11 and assuming that pg < p <

q<qo, A€ (p(n/q+a),n), 1/p—1/q=a/n and p satisfying (n — X)/p = (n — u)/q,

then T is bounded from LP*(R™) to L9H(R™).
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To see this, it is sufficient to show that if pg < p < q¢ < qo, A € (p(n/qo + a),n), and
1/p—1/q1 = a/A, then whenever g2 and p satisfies (n—\)/p = (n—p)/gz and 1/p—1/g2 =
a/n, then one has £9-* C £92#, This holds by Holder’s inequality and the following two
facts: (a) ¢1 > g2, and (b) u = Ag2/q1. Property (a) follows from 1/p — 1/¢1 = a/X and
1/p—1/g2 = a/n in tandem with n > A. To see (b) we observe that the conditions on ¢a
gives u = n(A — ap)/(n — ap). Note also that ¢1 = pA/(A — ap) and g2 = pn/(n — ap).

Combining these three equalities gives (b).

Proof of Theorem 6.11. Our aim is to show that, under the conditions of Theorem 6.11, one has

the following norm control on the operator T'.

ITF 1l o S [ Mapo (1F17°) /70| s (6.5)

This suffices to give the conclusion of the theorem by a classical result for fractional maximal

operators on Morrey spaces due to G. Di Fazio and M.A. Ragusa.

Lemma 6.14 ([42] Lemma 4). Let o € (0,n) and p € (1,11/04). Suppose that X\ and q satisfy

A€ (ap,n) and 1/p —1/q = a/\. Then M, is bounded from LPM(R™) into LIN(R™).

Let us explain how (6.5) leads to our result. Our conditions on the parameters implies the

following

n 1 1 apo
ap0€(07n ) p pOe (177)’ )\E ap,n), _— =
) / apo ( ) p/po q/po A

Hence Lemma 6.14 implies that M,,, maps LP/PoA to L£3/PoA and we obtain

1/q

Mg (1F17°) 7| 0 = Stép(r?g]i(Mapo |f|P0)‘Z/PD>

1
||M0¢270 (|f|p0) ||£/<11;(;07>\
1
SN 0n = 1Fllzon -
The rest of the proof is devoted to obtaining estimate (6.5). We shall follow the strategy of

Theorem 2.2 in [17] and apply the good-A result of Theorem 4.4 with modifications to suit our

purposes.
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We first consider the case gy < co. Fix f € L®(R") and set F := |Tf|*® € LY(R").

Sublinearity of T" then gives for each ball B,
F < 227 T(I = Ap)fI™ + 27T AR f|* =: Gp+ Hp.

We apply Theorem 4.4 with

G 1= 2207105 (Myy,, | F170) /7", Hy =0, Hy = 271G,
£ = 22(50_1)050, ri= Q-
50

We check condition (4.2). By (6.4) we obtain, for each x and y in B,

()" <2 (f prasse) ™
< 20 L COM(ITS%) (@) + CoMuyy (1F17) ()7}
< 226000 M(IT 1) (@) + Magy (1117) ()7}

= §{MF(z) + Ha(y)}-
Next we check condition (4.3). By (6.3) we obtain, for each x € B,

fGn =2t f TU- A < 2 M, (1) @)/ = Gl
B B

Now from our hypotheses on n, A, g, qo the set (1—X/n,1—¢q/qo) is non-empty and is contained
in (0,1). Fix 6 € (1—X\/n,1—g¢/qo). Then for any ball B, we have (M1p)%@/9" € A; (because

§ < 1—q/qo is equivalent to 6(go/q)’ < 1). Now recall that by [16] Proposition 2.1 (vii),
(M1g)°@/9" ¢ A — (M15)° € A ﬂB(@),
q

and hence by [16] Proposition 2.1 (iv), there exists s € (1,q0/q) such that (M1g)° € By
(because (qo/q) < s'). Now let us take ¢/sg in place of p in Theorem 4.4. From our hypotheses
on ¢, S, o, s we see that 1 < ¢/sg < r/s. Indeed, s < qo/q implies r/s > (q0/50)/(90/9) = /S0,
and the three conditions 1/p—1/q = a/\, 1/po—1/s9 = a/n, and A < n implies 1/pg—1/s¢ <
1/p — 1/q. Rearranging this gives

1 1 —
> b — Do
So q Ppo



133

so that ¢ > so. Therefore, with ¢/so in place of p, and with w := (M13)?, Theorem 4.4 gives

, /s so/q
1771y < ( /R () ) = Mg

< CHGHLQ/SO(w) = CHMCVPO (|f|p0)80/p0”Lq/so(w)

= CHMaPo (|f|p0)1/p0|‘zoq(w).

For each ball B, one therefore has

()" < ([ mmonm) ™ < ([ o 07 1) "

Since § > 1—A/n, then Lemma 6.3 applied to h = M, (|f|p”)wp0 and then taking supremum
over all balls gives
17l o S 1Moy (117) 7 | o
which is estimate (6.5).
Let us turn to the case go = co. We fix § € (1 — A/n,1). Then (M1p)° € A; for any
ball B. Hence (M1p)° € B, for some 1 < s < co. We apply Theorem 4.4 again and see that

the proof follows the same argument with » = co. Condition (4.1) can be checked as follows:

1/r
(f #5)"" = essupy 20t [Tf
B

IN

220G M (T FI™) () + Moo (117°) ()70}

E{MPF(z) + Ha(y)}

for each x,y € B. We also take, as before, g/s¢ in place of p. It is trivial that 1 < g/so < r/s.

The rest of the proof is the same as before and we obtain estimate (6.5) as required. O

6.2 From Muckenhoupt weights to Morrey spaces II

D.R. Adams and J. Xiao [4, 5] give a new characterisation of Morrey spaces and their preduals in
terms of Hausdorff capacity and A; weights. For a € (0,n] the a-Hausdorff capacity of Q C R™

is defined to be

AL(Q) = inf{Zr%j : QC UBj}.

J J
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From this capacity one can define, for p € [1,00), the Choquet-p integral of f € C§°(R"™) as
o0
[ 17 aal = [T A (e e R (@) > 1) .
R™ 0
We refer the reader to [3] for more on the Choquet integral. Next we set
.A(ln_A) = {w e A :/ wdAELof)A < 1}.

We can now give the characterisation of the Morrey spaces from [4, 5]: for each p € (1,00) and

A € (0,n) we have

LPAR™) = {f eLl . : sup (/Rn IfI? w) v < oo}. (6.6)

wEA(lnfk)
These new characterisations allow us to transfer information from A, weights to Morrey
spaces. The next result is a more refined version of Proposition 6.5, in the sense that the

hypotheses are weakened to allow a larger class of weights.

Theorem 6.15 (A, boundedness gives Morrey space boundedness). Let 1 < pg < ¢op < 00
and assume that F' and G are measurable functions for which the following holds: for some

P € (po,qo) and all w € Ay py N Bgy/py» there exists C = C(p,w) > 0 such that,
1F 2oy < Cp Gl 1o (a0 -
Then there exists C = C(p,n, \) such that
1l g < C UGl oo VAE (Zpn).

In the next result we use ideas from the extrapolation of LP(w) spaces with A, weights to
obtain an extrapolation theorem for Morrey spaces. We show that an inequality for a fixed pair

of parameters (pg, Ag) automatically propagates to a range of (p, A).

Theorem 6.16 (Extrapolation for Morrey spaces). Assume that for some py € [1,00) and some

Ao € (0,n) the following holds.

£l zroro < Collgll ooro -
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Then for each p € (po, npg//\o) and X\ =plg/po there exists C = C(p,po, Ao) > 0 such that

£l zor < Cllgllzon -

Before presenting the proofs of the above two results, we collect together some useful
facts. The first is the main result of [83]. Let a € (0,n). Then there exists C' = C(«a, p,n), such

that for each p > a/n,

/ (M) dA < C / TENS) (6.7)

The next so-called ‘quasi-Hélder’ inequality can be found in [5] in the proof of Theorem 18.

Jututares <o ([woari=,) ™" ([wan,)’ (63)

where a = (n — ap)(1 — 6) + (n — aq)#.

Proof of Theorem 6.15. For each w € AE”‘*) and 6 € (1 —M/n, (qo fp)/po) (this set is not
empty due to our hypotheses on po, qo, p, A), we construct the weight wy := (Mwl/e)e. Then
combining the fact that w € L{ _(R") and that 0 < § < 1 with Lebesgue’s Differentiation

Theorem gives
w(z) < wy(x), a.e. v € R™ (6.9)
One also has the following;:

wep € Ap QB(LO)/. (6.10)
P

Po
This holds because our hypothesis on # imply that 6(qo/p)’ < 1, and so wg‘”/ P ¢ A,. Hence
wéq‘)/p)/ € A(qo/p) (p/po—1)+1 Which is equivalent to (6.10), by Proposition 2.9 (f). Next, there

also exists a constant cg > 0 such that

e Alr, (6.11)
Co

Indeed since wy € A;, and since (6.7) applies (because 1 — \/n < 6), then there exists Cy =

C1(0,n, A) such that

Juanis = Jarey as < o fwans < o
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The last inequality holds because w € Aﬁ"‘*). Taking ¢y = C; gives us (6.11).
Now combining the facts (6.9), (6.10), and (6.11) one has for such w and ¢, and each

[ € Co(R™),

l/mpw < l/\F\PwQ < C/|G|p (%) < ¢ sup /|G|py = G| -
Co Co Co

VEAY”*A)

The first inequality follows from (6.9), and the second from the hypothesis on F' and G. Taking

supremum over all w € AYHA) gives

IFZra < coC Gz
as required. 0

Proof of Theorem 6.16. Fix p € (po,npo/Ao) and let A = pAg/po. We aim to show that there

exists some C' > 0 such that for any w € AE”‘*),

Hf”Lp(w) < Cligllzon -

Taking supremum over all such w will give the desired result.
Now since w € Aﬁ”‘”, then in particular w € A,,,, and so by duality there exists
h € L®/Po) (w) with norm 1 such that || f||% Tr(w) = ||f||Lp0(hw . Next for each 0 < s < 1 one

has hw < (M(hw)'/*)* € A;. Now provided we show
(M (hw)'/*)* e A" (6.12)
then the result follows. Indeed (6.12) and our hypothesis on f and g imply that
157 () )" < gl
and since Ag = App/p and p > pg, then by Hélder’s inequality,

HgHﬁpo Ao = HQHLP A

Putting these estimates together yields

||fH]Z(L(w) = ||f||LPO(gw) = CH!Jngo o = C”Q”gpw
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It remains to check (6.12). Let s > 1 — Ag/n. By (6.7) we have
/ (M(hw)Y/*)* dAl>) < / hw dA'>) .
We apply (6.8) with
ag =0, a1 = Ao, 0=—, wo = hP/(P=Po)y. w, = w.
Then it follows that
[ ruwan, = [y i ),
< (/ hp/<pfpo)wdAgloo>>1‘p°/p(/wdA§LOj>A)”°/”
_ (/ h(p/pO)/wdAgfo))l/(p/pO)l (/wdAiof)A)pO/p.
This can be controlled by the constant 1 because, firstly w € Aﬁ"”l and secondly

(/ h(P/PO)'wdAgloo))l/(p/po) _ </ h(p/po),wdx>1/(p/po) L,

by our choice of h. This concludes the proof of (6.12). O

6.3 Applications

In this section we give applications of the results from the previous two sections to some differ-

ential operators.

6.3.1 Schroédinger operators

Here we present the proofs of the results in mentioned in the introduction to this chapter.

Proof of Theorem 6.1. We show that (a) implies (b). From Theorem 4.1 we see that (a) implies
that VL='/2 is bounded on LP(w) for all p € (1,5) and w € Ap N Bs/py- We then apply
Theorem 6.15 with F = |VL_1/2f’, G=f, pop=1,and ¢y = s to obtain (b).

For the converse if (b) holds, then (a) follows simply by taking A = n and recalling that

£rm(R™) = LP(R™). O
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Proof of Theorem 6.2. We prove (a) and (b). We recall that in [93, 12] (see also Theorems
1.2 and 1.3 in Chapter 1 of this thesis) the operators VL2 and V1/2L=1/2 are bounded on
LP(R™) for p € (1,¢*) and p € (1,2q) respectively. Applying Theorem 4.1 and Theorem 4.2 to
these operators, with s = ¢* and s = 2q respectively gives firstly the boundedness of VL~1/2 on
LP(w) for p € (1,q%), w € Ay N B(g=/pyr, and secondly the boundedness of VY2112 on LP(w)
for p € (1,2q), w € Ap N B(ag/py. Next we may apply Theorem 6.15, firstly to F' = ‘VL‘1=2|
and G = f with po = 1 and ¢o = ¢*, and secondly to F = V/2L=1/2 and G = f with py = 1
and qo = 2q.

We prove (¢). To do this we combine Theorem 6.15 with Theorem 4.3. Indeed from
Theorem 4.3 we know that VL= and V2L~! are both bounded on LP(w) for each p € (1,q)

and w € A, N Bg/p)- Hence for each such p and w one has, for each f € Cg°(R"),
||V2L71f||Lp(w) SOl o) -
Theorem 6.15 applied to F := |V2L_1f’, G:=f, pp=1,and qy = q gives
||V2L_lf||£p,)\ SO fllzor
for each A € (np/q,n). O

Recall earlier in Remark 6.12 (iii) that conditions (6.3) and (6.4) are satisfied with py = 1,
go=o00, T=L"%2 and Ap = e~ "5L whenever L admits Gaussian upper bounds on its heat
kernel. We shall now give the details of this fact, which will be contained in the proof of the

following result.

Theorem 6.17. Let L = —A+V on R™ withn > 1 and 0 <V € L} (R"). Let a € (0,n),

p € (1,n/a), and X € (ap,n) with 1/p —1/q = a/X. Then L=/ is bounded from LP*(R") to

LINR™).

Proof. Recall that under our assumptions on V' the heat kernel of L satisfies the Gaussian upper
bound (3.1). This implies the pointwise control |L=%/2f| < I,,|f| by the Riesz potential I,, and

hence Theorem 6.17 can be obtained as a consequence of Adams’ result for the Riesz potential [,
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(Theorem 6.9). However we shall prove this result by utilising the machinery we have developed
in this chapter, namely Theorem 6.11.
We first state a boundedness result for L~%/2 on the LP(R") spaces, which follows from

the boundedness of the classical Riesz potentials.
Lemma 6.18. Let L=—-A+V on R" withn >1 and 0 <V € LL _(R"). Let o € (0,n) and

€ (1,n/a), with 1/p— 1/q = a/n. Then L=/ is bounded from LP(R™) to LI(R™).

Proof. From the Gaussian upper bounds for the heat kernel of L, it is easy to show the following

pointwise bounds.
|L=2f(x)| < C I (If]) (), a.e. x € R™. (6.13)

The conclusion of the lemma for L~=%/2 then follows from the corresponding result for I, which
can be found in Chapter 5 of [100].

Let us show (6.13). Firstly,

dt
/2 o
L= f(a)] = ’ a/z/ /nptﬂfy ) Y=y

< (a/2/ \/ [pe(2, )| 3= a/zd

1
- a7y [ K )] dy

where
k(a,y) = / Ipr( )| €972 dit
0

Our task is to show that k(z,y) < C |z —y|*". Write k(z,y) = ko(z,y) + koo(z,y) where

\UC*M2 dt \35*?:/|2 dt
_ —lo—y?/t___ 4
e = [ el s < [ @ ey

If we assume that x # y and let s =t/|r — y|?, we have
1 _ |2,—1/s 1 —1/s
ol y) < / |z — y|%e ds _ 1 / e ds
0 |l‘ _ y|2+n7a51+(nfa)/2 |$ _ y|n—oz o glt(n—a)/2

Cra ! Cha
=< | _ |n—oz / ds = | _ ‘n—a !
r—y 0 r—y
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We also have

By [ e lz=ul*/t gy [T dt
oo (7,y) < oy OFOm2 S| i) /2

| T

= G ) e

o |z —ynmer

Finally we note that if x =y the estimate holds trivially. O

Now set T = L~%/2 Ap = e*’"%L, po=1and go =00 and sy =s=n/(n—a). Then
Lemma 6.18 implies that L~%/2 is bounded from L'(R") into L*(R"). Fix f € L*(R") and a

ball B. We first show (6.4). From the bounds (3.1) we have, for any x € B,

e TBLL /2 f(z)| < Z/U (B) P2, (2, 9) L2 f(y)| dy
J=0"%J

’

© . , 1/s —a s 1/s
Z‘2JB|<]{Jj(B)|PTZB($7y)| a) " (f, 1L pwlay)

J

IN
Il
)

Jeoin —a <o \ Vs
etom(f o)
2/B

A

<
|
o

< M(|Lfa/2f|s)(m)1/s.

Next we show (6.3). For each j >0 set f;:= fly,(p). Then we write

(f 12 - erbmgr) " < i( flera-ering) o e

For the terms j = 0,1 we use the L'(R™) — L*(R™) boundedness of L~%/2 (from Lemma 6.18)
and the Gaussian bounds (3.1) to obtain

1
|B|1/S

1 1
< |B|// (@) dz = Bll/s/wf(w)l dr

< il ]23 @) de = g ]iB 1 (@)] da.

(fieru-edhpwra)” s —o [ 0-erbhpla

For j > 2 we use the following identity (from integration by parts),

—a/2 —rZ L\ 1 > —tL —r2 L dt
L /(I—e B )—W/O e (I—e B )tl—a/Q

1 [e%s} t+7‘?3
_ / / _ 9 engg 4t
L(a/2) )y /i ds tl—a/2
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1 [e'e] t+7‘?3 dt
= Le L gs———
r(a/2>/o / © P

and apply Minkowski’s inequality and the bounds on the time derivative of the heat kernel (3.4)

to obtain
—a/2 —r4L s /s
(]{3|L (I = " 55) (@) " de)
00 t+7‘?3 1/s dt
< —sL p. s
N/O /t (]{B|Le fi(x)] dm) dsitka/z
(') t+r2]3 (9
< ‘7]73 T,y
/o /t /Uj(B)<]{3 s (@9)

T ds  dt
< 74'77"125/5787/ .
- /0 /t ¢ sn/2+1 ¢l-a/2 Uy(B) Lf(W)| dy

To complete the estimates we split the integral

e t+7‘?3 ,4]7”23/5 dS dt -7 II
o Ji € n/2+1 gl—aj2 it 145,

s 1/s dt
dﬂU) |f(y)] dy dstl_T/Q

where
I 477“23 t-‘r’r’zB €_4JT2B/S dS dt
J 0 . gn/2+1 l—a/2
e o rtTh g \n/2H1 (s dt
~ o ; (4j7”?3) gn/2+1 ¢l—a/2
S (2rp)a T4,
and

oo ritry ds  dt o0 dt
I, = —rg/s 45 4 2 < (9FpR)rTYyI
! /43'7“123/15 ‘ sn/2t1 l—ajz = B sipy t0/2H2=0/2 (2r5)

We remark that both estimates follow because o € (0,n). Collecting these estimates into (6.14)

we obtain for any x € B,

oo

(firmera =)™ < S 1 5 mine)

=0

which is (6.3). O

6.3.2 Elliptic operators in divergence form

The following section is mostly taken from [15]. We refer the reader to that article for a more

complete treatment.
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Let A = (a; )k be an n x n matrix of complex and L™ valued coefficients defined on
R™. We assume that this matrix satisfies the following ellipticity (or ‘accretivity’) condition:

there exists 0 < m < II < oo such that
Tl <RA@)E-E and  |A(@)¢- (] <T[E ¢,

for all £, € C™ and almost every x € R™. Note that - =& {1+ +&,.(, is the usual inner
product on C", and hence A(x)¢-( = Zj’k aj7k(x)§kzj.

Associated with this matrix we define the second-order divergence form operator
Lf =—div(AVY),

which is understood in the standard weak sense as a maximal accretive operator on L?(R")
with domain D(L) by means of a sesquilinear form. The operator —L generates a CY-semigroup

{e’tL}DO of contractions on L?(R™). We set

p_=p_(L)=inf{p>1: e is bounded uniformly on LP(R") for all ¢ > 0},

py =pi (L) =sup{p < 0o : e 'L is bounded uniformly on LP(R™) for all t > 0},
and also

g- =q-(L) =inf{g>1: VitVe ' is bounded uniformly on LP(R™) for all ¢ > 0},

qr =q+ (L) = sup{q < o0 : VtVe ' is bounded uniformly on LP(R™) for all t > O}.

The following are known results concerning the Riesz transform and fractional powers associated

to L = —div (AV).

Theorem 6.19 ([15]). The operator VL™'/? is bounded on LP(w) for eachp € (q_,qy) and w €

Ww(qfv Q+)

Theorem 6.20 ([17]). Let p,q,« satisfy p— < p < q < py and a/n = 1/p —1/q. Then the

operator L=%/? is bounded from LP(wP) to L9 (w?) for each w € A1+i 1N Bq(pl)/.
q

Sections 6.1 and 6.2 allow us to extend these results to Morrey spaces readily.
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Theorem 6.21. The operator VL' is bounded on LP*(R™) for each p € (q_,q:) and
A€ (np/q+,n).
Proof. We combine Theorem 6.19 with Theorem 6.15 with pg = ¢— and g9 = q+. O

Theorem 6.22. Let p, q, a, and X\ satisfy p_ <p < q < py, AE (p(ﬁ + oz),n) and

a/\=1/p—1/q. Then the operator L=/? is bounded from LP(R™) to LI(R™).

Proof. We remark that L~%/2 satisfies conditions (6.3) and (6.4) by Lemma 3.2 in [17], with
a € (0,n), po = p—, g0 = p+, and sg satisfying 1/pg — 1/s9 = a/n. Then we may apply

Theorem 6.11 to obtain the desired conclusion. O
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Chapter 7

Hardy spaces and Schrodinger operators

In this chapter we are interested in studying the second-order Riesz transforms V2L ™! and V L~!
(and their commutators with BMO functions) associated to the Schrédinger operator in the
range p < 1. This will involve both the classical Hardy spaces HP(R™) and the Hardy spaces
HT? (R™) associated to L = —A + V (see Section 7.1.1 for a definition). We mention that the
results for the first order Riesz transform VL~'/2 under the condition that V is non-negative
and locally integrable are known [65, 70]. See the discussion in Section 1.1.3.

The main results of this chapter are the following theorem and its corollary.

Theorem 7.1. Let L = —A+V onR™ withn > 3. Assume that V' € By with ¢ > max{2,n/2}.

Then the following holds.
(a) The operators V>L™' and VL™ are bounded from HY (R™) into LP(R") for each p € (0,1].
(b) The operator V2L™! is bounded from HY (R™) into HP(R™) for each p € (n/(n+1),1].

Under reverse Hélder conditions on V', our result admits a straightforward consequence. The
atomic characterisation given in [52] (see Definition 7.6 below) allow us to state the range of

boundedness on the classical Hardy spaces.

Corollary 7.2. Let L = —A+V onR™ withn > 3. Assume thatV € B, withq > max{2,n/2}.
Then the operator V2L~ is bounded from HP(R™) to HP(R") for each p € (n/(n+ pr),1],

where p;, = min {1,2 —n/q}.
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The proof of this Corollary is given at the end of Section 7.1.1.
We also study the commutator between the operator V2L™! and a BMO function b,
which is defined as

(b0, VZL7Yf = VALY (bf) — bVZL71 .

The commutator [b, VL™ of VL™! and b is defined similarly. Commutators of a singular
integral operator with BMO functions are also objects that arise naturally in harmonic analysis
and partial differential equations. They were introduced in [37] and were further studied in [69]
and [88].

In [63] the authors show that when V' € B, with ¢ > n/2 and n > 3, the commutators
[b,VZL71] and [b, VL™!] as defined above are bounded on LP(R") for all p € (1,q]. Here we

give an estimate for the endpoint p = 1.

Theorem 7.3. Let L = —A+V onR™ withn > 3. Assume that V' € B, with ¢ > max{2,n/2}.

Let b € BMO. Then the commutators [b, V2L and [b, VL™ map H}(R™) into L1 (R™).

We give some remarks on results for the commutators of the first-order Riesz transforms
VL2 and V1/2L~1/2 with a BMO function b. When V is a non-negative and locally integrable
function the boundedness of [b, VL™'/2] and [b,V¥/2L~1/?] on LP(R") for p € (1,2] can be
obtained as a consequence of the results in [6]. When V' € B, with ¢ > n/2, it is shown in [63]
that the range of boundedness of [b, V1/2L~1/2] can be improved to (1,2¢], while the range for
[b, VL='/2] can be improved to (1,¢*]. Note that ¢* is defined in Section 2.2. Similar endpoint
estimates to Theorem 7.3 for the first-order Riesz transforms are proved in [7].

In [98] the authors introduce the notion of a weighted Hardy space HY (w) associated
to an operator L. The standard reference for the classical counterparts of these spaces, the
weighted Hardy spaces HP(w), is the monograph [103]. We give an extension of Theorem 7.1 to
these weighted spaces H} (w) in section 7.2.

This chapter is organised as follows. Section 7.1 presents the proofs of the unweighted

results. Section 7.1.1 collects together the required definitions and properties of the Hardy
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spaces H7 (R™) and gives the proof of Corollary 7.2. We give some kernel estimates that will be
needed throughout the rest of the chapter in Section 7.1.2, before moving on to the proofs of

Theorems 7.1 and 7.3. Section 7.2 gives the extensions to weighted Hardy spaces.

7.1 Unweighted Hardy spaces

In this section we give the proofs of Theorem 7.1, Theorem 7.3 and Corollary 7.2. We begin
with describing the constructions of the Hardy spaces under consideration before turning to the

proofs of the main results.

7.1.1 Hardy spaces associated to Schodinger operators

We give a brief survey on the Hardy spaces adapted to the Schrédinger operator L = —A + V.
Unless otherwise noted, we will assume the potential V' is a non-negative and locally integrable
function. The material in this section can be found in more complete form in [65, 44, 70], where
more general classes of operators are treated. See also [43]. For a description of the classical
Hardy spaces and their properties see [101] (we can also take L = —A throughout this section).

Firstly we set

H*(R™) := {Lu € L2(R") : u € L2(R")}. (7.1)

For each f € L?(R"), we define the area integral function of f associated to L as

dt 1/2
) , z € R™. (7.2)

o B 5 2
s = ([ [ |erets) oy
0 lz—y|<t
For each p € (0,1] we define the Hardy space HY (R™) associated to L as the completion of
{F e B ®R™) : ISL(f)ll zo(ny < 0}

in the metric |[f]zp = [S2(f) .-

Next we introduce the notion of (p, 2, M)-atoms for L.

Definition 7.4 (Atoms for HY). Let 0 <p <1 and M € N. A function a € L*(R™) is called

a (p,2, M)-atom for L associated to the ball B if for some b € D(LM) we have
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(i) a = LMb,
(ii) supp L*b C B for each k=0,1,..., M,
(iii) [|(rZL)%0||, < rZ[BI"*7P for each k =0,1,..., M.

Let M > g(% —1). Then it follows that for each f € HY (R™) there exists a sequence {ap}p

of (p,2, M)-atoms for L, and a sequence of scalars {A\g} 5z C C, such that

= Z)\BGB and Z A < £ 1 -
B B

The convergence is in both H? (R™) and L?(R™).
These atoms allow us to reduce the study of operators on H?(R™) to studying their

behaviour on single atoms. This is recorded in the following fact, and will be crucial in the proof

of Theorem 7.1 (a).

Lemma 7.5. Let 0 < p < 1 and fix an integer M > %(% — %) Assume that T is a linear

operator (resp. non-negative sublinear) operator that maps L?(R™) continuously into L*°°(R")

satisfying the following property: there exists C > 0 such that for each (p,2, M)-atom a,
||TaHLP(R") <C

Then T extends to a bounded linear (resp. sublinear) operator from HY(R™) to LP(R™). Fur-

thermore, there exists C' > 0 such that

!
I gy < € 1ty e
for every f € HY(R™).

For a proof of this Lemma we refer the reader to [65] Lemma 4.3 or [44] Lemma 3.15.

Next we describe the Hardy spaces adapted to the Schrodinger operator defined and
studied by Dziubaniski and Zienkiewicz in the series of papers [51, 52, 53]. These will turn out
to be equivalent to the spaces HY defined earlier for a certain range of p. We will use this fact

to give the proof of Corollary 7.2 at the end of this section.
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For each p € (0,1] we define (note the calligraphic H) the space HY (R™) as the comple-

tion of
{f e LLR™) : [MLf]l» < oo}

in the metric ||fHH,2 = ||MLfl|;,. Here LL(R™) is the space of compactly supported functions

on R™, and the operator M, is defined as
My f(a) = sup e f(a)].
>0

When V € B, with ¢ > n/2 and n > 3, the authors in [52] give a special atomic characterisation

of HY (R™). In the following ~ is the function defined in Definition 2.2.

Definition 7.6 (Special L atoms). A function a is called a special L-atom associated to the

ball B= B(zpg,rg) if rg <~v(rp) and
(i) supp a C B,
(id) llall o < 1B,
(iti) [a(x)dz =0 whenever rp < y(zp).

Let pr := min{1,2 —n/q}. Then the authors show that when p € (n/(n + pr),1], each
f € HY(R™) has a special atomic decomposition f = )" pApap where the ap are special
L-atoms.

Recall that in the atomic characterisation for the classical H? (R™) spaces, the cancellation
condition is required for all balls [101]. Comparing this with Definition 7.6 (iii) above, we

therefore have the following strict inclusion,

HP(R™) ¢ HI(R"), pE (ﬁ,l]. (7.3)
It is also known (see [70], Section 6) that

HE(R") = HE(R"), pe (71 (7.4)

We end this section with the proof of Corollary 7.2.
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Proof of Corollary 7.2. We simply observe that p, < 1 and hence n/(n + pr) > n/(n + 1).

Therefore (7.3) and (7.4) gives

HP(R") C HL(R") = HE(R™), pe (2.1,

= n+pr’

Combining this with Theorem 7.1 (b) we obtain the corollary. O

7.1.2 Some kernel estimates

We collect here the heat kernel estimates that we will use throughout the rest of this chapter.

The following is an extension of Proposition 3.7 to time derivatives on the heat kernel.

Proposition 7.7. Assume V € B, with ¢ > n/2 forn >3 or g > 1 forn = 2. Let § be the
constant from (3.6). Set ¢+ =sup{q>n/2:V € B,}. Then for each p € [1,q4) and k € Zy

there exists £ = &(k,p) > 0 and Cip > 0 such that

|lz—y|* 1/p C (1 #)6
5 k,p + 302
/ ’vT 8tkpt x y e t dz) < W () , (7.5)
RN =V P
(/ V(x )8tkpt( dx) < m y(@)2/) (7.6)

for every y € R™ and t > 0.

Proof. We shall make use of the commutativity property of the semigroup e ** to see that for

each k > 1,

ak 2tL k 2tL k tL ak tL
— e~ = (=2L)Fe™ = 2%e™ -
otk © (=2L)%e otk €

In particular this implies

o* o o
/]Rn 3tkp2t( Y fy)dy = @eimLf(iﬁ) = 2’“6"5La et f(x)

8k
= ok /R” pi(x, w)atk et f(w) dw
K o
=2 A pe(z, w) A wpt(w,y)f(y)dydw
ak
=2 [ ([ nlow) Gty dw) £0) dy,
Rn \JRn
giving the identity
oF o
sepu(en) = [ pow) Spdoy) du (7.7
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for each z,y € R™.

Now fix k¥ > 1 and p € [1,¢q4+). We first estimate (7.5). Let £ be a constant such
that 0 < ¢ < min{ﬁp/27 pcl/4} where ¢; is the constant in the time derivative bounds of
Proposition 3.4 and 8, is the constant in Proposition 3.7. Then using (7.7) we have for each

y€R"and t >0,

9F p . lz—yl?
/ ‘Viwmt(x»y) 1 dr = Qk/
RTL n

Now for each w € R™ the triangle inequality gives

ok glx—y|2 P
Vapi(z, w) 8tkpt(w y)e® Pt dw| dx.

R

lz—w|?

glr—y\z 2 25\w—yl2 3
e ot < e pt e pt = e pt e pt e pt

Therefore for each z,y € R™, by Holder’s inequality with exponent p and p’,

) ok lz—y|? P
Vipe(z,w) ﬁpt(w, y)eo Pt dw
]Rn
|z— w\ pelw fy| Poayele=yl® o
< (/ |Vzpt z,w) |p % e” / ’atkpt ‘ T dw) .

Using that & < peq/4 the time derivative bounds of Proposition 3.4 give

ok P e lw—y|? Ch , lw—yl|? C,.
: < P —p'(cr—4&/p)—F — < &P
—pi(w, y)‘ e rt duw < T TR /]R e t dw < T

since p’ —1 =p’/p. Note that the constant Cj , is independent of y. We therefore obtain

o P Iw_”‘Q Ch | w|2 e lw—yl?
/ ‘viﬁp%(m’y)‘ et dz < tn/?jrpkp/ (/ V2p(z,w)[" e dx)e 2 dw
Rn
8
e—cp(1+4v(w)2) 725@
SC’“@m/ﬂ@ o dw

ol

P gptkptnp/2p’

< Cy

where we have applied (3.11) in the second inequality because 2§ < f,. This concludes the proof
of estimate (7.5).

We can obtain (7.6) in the same way, but we use (3.12) in place of (3.11). O

These estimates allow us to obtain the following decay estimates, which will be crucial

in the subsequent sections.
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Lemma 7.8. Assume V € B, with ¢ > max{2,n/2} and n > 3. Then for each k € N U {0},

there exists Ci,c > 0 such that

o 2 \1/2 Ch
2 —cs/t

(/T—y|>\/; Vggﬁpt(x,y)) d:n) < e /t (7.8)
8’“ 2 1/2 C s

(/zy|>\/§ V(@@Pt(m,y)‘ dz) < me /t, (7.9)

for each y € R™ and s,t > 0.

Proof. Since q > 2 we may apply Proposition 7.7 with p = 2. Let £ be the constant in Proposi-
tion 7.7. Then by (7.5),

(/x—yIZ\/E

k /
vigenifan) = ([

lz—y|? oF 2, |lz—y|? 1/2
< sup e & ¥ (/ ’Vfc b, y)’ et dﬂf)
o—y|>/5 Rel Ot

oF 2 Jz—yl? lz—yl? 1/2
Viwpt(%y)) et et dx)

s/t
S Al

Estimate (7.9) can be obtained similarly but with (7.6) in place of (7.5). O

We also record corresponding estimates for the first spatial derivative. These are needed in the

proofs of Theorem 7.1 (b) and Theorem 7.12 (b).

Lemma 7.9. Assumen > 1 and 0 < V € LL_(R™). Then for each k € N U {0}, there

loc

exists Cy,c > 0 such that

/II—yIZ\/E

for each y € R™ and s,t > 0.

8k Cr —cs/t
Vmwpt(x,y) de < 72k © , (7.10)

Proof. We first observe that a similar argument to the proof of Proposition 7.7, but with (3.2)
in place of (3.11), and with the time derivative bounds in (3.4) in place of Proposition 3.4, give
the following estimates: for each p € [1,2] and k € NU {0}, there exists & = &(k,p) > 0

and C}, > 0 such that

(L.

ak

Ve P (z,y)

la—y|? 1/
X Yot dz ) Po_ Chp (7.11)

— t1/2+4n/(2p")+k
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Note that the case k = 0 is simply the estimate in (3.2).
Now we combine (7.11) for p = 2 with the Cauchy-Schwarz inequality to obtain

/f':y|>\/5

6k
Ve @pt(a:, Y) ’ dx

k 2 Jaz—y|® 1/2 lz—y? 1/2
< (/ Vm%pt(x,y)‘ et ¢ dx) (/ e 81 dm)
rel Ot lo—yl> V5

Ck e—cs/t
— t1/2+k

as desired. O

7.1.3 Proof of the main result

In this section we prove Theorem 7.1.

Proof of Theorem 7.1 (a). We show that Lemma 7.5 holds for each of the operators V2L~!
and VL™, for all 0 < p < 1. More precisely let M > (L — 1) be an integer and ap be a
(p, 2, M)-atom for L associated to the ball B = B(zpg,rpg).

We first consider the operator V2L~!. By Lemma 7.5 it suffices to show that
V2L ag||,, <C (7.12)

with C' independent of ag.
Since 0 < p < 1 we may apply Holder’s inequality with exponents 2/p and 2/(2 — p)

to obtain

|v2L s}, = 3 [[[V°L as]”
j=0

LY (U;(B))

L 1-p/2 _
= |27 B| ! V2L laBHiz(Uj(B))
=0

< B2y 9O 2L a1, (713

=0

(B) "

Since ¢ > 2 the operator V2L~! is bounded on L?(R"), and hence for j = 0,1, 2,

_ 1/2—-1
IV2L™ ap | oy, 5y < Cllasllze < C|B|M*HP, (7.14)
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Now for each 7 > 3 we note that
dist(U;(B),B) > 2 Yrp —rp > 2 %y

Then using the identity

o0
L—lz/ e tldt,
0

we obtain
271 b 2 —tL ~ o2 —tL
] s i |, v tan
V2L an | o ) < H/O vieapd] L /TZB vie gt
= Ij + IIJ .
We first estimate term I;. Using estimate (7.8) with £ = 0 we have
2 \1/2
2 _—tL _ 2
V2™ an| L2, 5y = (/Uj(B)‘/E;VIpt(x’y) a5(y) dy’ dm)
) 5 \1/2
< [ lanwl ( [V2pi(o,y)[*dz) dy
B lz—y|>21—2rp
e—cﬂr%/t
< c HG’B”Ll t1+n/4 (715)

In the following let a be a number satisfying & (% — %) < a < M. Then (7.15) gives

5
I; S/O IV2e™ an|| 1oy, ()

2
"B 2 dt
<C ”a‘B”L1 /0 et Bt tn/4+1

2
1-1/p "B ( t )0‘ dt
< C|B| /O rg) i

< C2 % BT (7.16)

n

. . . . . . 1 1

In the last line we used that a > n/4, which is valid because p < 1 implies that 3 (5 — 5) > %.
We turn to the term I1;. For this estimate we apply L-cancellation to transfer powers

of L to powers of t~! increasing the decay as t — co. More precisely we write ap = LMbp for

some bp € D(LM), and obtain

O

We_tLbB.

e tap = e IMpy = LM by = (—1)
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Now we apply (7.8) with k = M to obtain the extra powers of t~!. This gives

2

2 8M —tL 2 8M b d d 1/2
HV atMe B)LQ(UJ'(B)) - (/(\]](B) /vaat]\/[pt(x7y) B(y) Y .'L')
oM 2 1/2
</mw ( vz, ’ d ) d
< [sn( L |Pigm] )
e—cdrh/t
Then, with « as before, we use 7.17 to get
o2 2™ _ir
;< | V2 e |
I /TZB ot PPl
e edd 2 dt
scmmDLe B =y
B
om pi-1/p [Tt \*_ dt
SCTB |B| /r2 (4j7“%) tM+n/4+1
B
< C2 ¥ B, (7.18)

In the last line we used that o < M + n/4.

Collecting estimates (7.14), (7.16) and (7.18) into (7.13) we obtain

V2L ap|;, < C+|B' 2N 24 11} < 40 27iRerno/2) <

Jj=3 j=3
with the sum converging because o > %(% — %) Therefore (7.12) holds.

Turning to the operator VL~! we observe that we can repeat the proof to obtain
Vitas|,, <C
using (7.9) in place of (7.8). O

Proof of Theorem 7.1 (b). The proof we give here follows the same strategy as in [68] Propo-
sition 5.6. We utilise a certain characterisation of HP(R™) for p < 1 given there on p38: for
each p € (0,1], ¢ > 0, and N € NU {0} with N > [n(% —1)], we call m € L*(R") a

(p,2, N, e)-molecule for HP(R™) associated to a ball B if

(a) Jgn x®*m(z)dz =0 for all multi-indices 0 < || < N,
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(0) lmll o,y < 2795 [27B[*7H7 forall j=0,1,....

Then one may characterise the classical HP(R™) as follows

HP(R") = {Z Aimj o {A\;} €1P, m; are (p,2,N,¢e)— molecules}

J

with
10 ~ e (), (7.19)

where the infimum being taken over all decompositions f=>" ;Ajm; and the sum converging
the space of tempered distributions S’.

We shall show that for each p € (n/(n+ 1),1] and M > g(% — 1), the operator V2L~!
maps (p, 2, M)-atoms for H} to multiples of (p, 2,0, )-molecules for H? with some £ > 0. Fix
a (p,2,M)-atom ap for L associated to a ball B = B(xp,r5). Set mp := V2L~!. Since

p>n/(n+1) then we may take N =0 in the above cancellation condition (a). Then we aim

to show that there exists C' > 0 and ¢ > 0 such that

e aio11/2—1)
Imsll e, sy < C27 [27B] T, (7.20)

mp(z)dx =0, (7.21)
Rn

for all j > 0.

Before we prove (7.20) and (7.21) we explain how these imply the estimate
IV L7 f || o < Cll e -

Since f € HY (R™) there is a sequence of (p, 2, M)-atoms {ap} 5 for L and constants {\g} 5 such

that f=> pApap in L*(R") and

/p
1y ~ (S i)™ (722

B

Now since the sum converges in L?(R") we have

VLU = > A (VPL7lap) = > Apms.
B B
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By (7.20) and (7.21) each mp is a (p,2,0,¢)-molecule and hence this last sum converges

in L?(R"), and hence also in &’. Therefore >z Apmp € HP(R™) and furthermore

19267 1L = [ s, < ()" = 151
B B

from (7.19) and (7.22).
Having these facts in hand we now proceed to estimate (7.20). We recall from the proof
2 \p 2

of Theorem 7.1 (a) that for any o with 2 (l - l) < a < M we have from estimates (7.14),

(7.16), and (7.18) that there exists C' > 0 with

— —2ic 1/2—1
HmBHL?(Uj(B)) = HVQL 1aBHL2(Uj(B)) <C27% Bl /2o

= C97iQatn/2=n/p) |91 p|t271P (7.23)

Since « > g(% —1) then 2a+n/2—n/p >0 and we obtain (7.20) with ¢ = 2+ n/2 —n/p.
We now prove the moment condition (7.21). To do so we shall need the following result.

It is implicit in [70] but we give a proof here for completeness.

Lemma 7.10. Assume that f € L*(R™) and Oy f € L*(R™) for some 1 <k < n. Then

Ok f(x)dx = 0. (7.24)
Rn

Proof of Lemma 7.10. 1t is clear that (7.24) holds for any function in C§°(R™). It turns out
that integrability of f and of its derivative are also enough for (7.24) to hold. The idea of the
proof is to apply a smooth partition of unity to split f into smooth and compactly supported
pieces.

Let {(bj}(;io C C5°(R™) be a partition of unity subordinate to the cover {B;}; such that

each B; = B(xz;,r;) is a ball and
B =Rr", > 1sp, <N, > gi(z) =1, 0<¢; <1,
J J J

supp ¢; C 2Bj, ¢$; =1 on B, | (x)] + |Vo,(x)| < C.
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We also use {n;}, C CG°(R") with supp7; C4B; and n; =1 on 2B;. By the dominated

convergence theorem this lets us write

[or=% [ o,

For each j > 0 we have
/ (0 f) = / 150k (05f)-
R’V‘L R”L

We then apply the divergence theorem on a ball containing 458, to the vector field

(0,...,0, 77](¢jf)7070)7

with the non-zero entry occurring in the kth component. This gives

[ miontoin) = = [ @ipaw; = 0
Rn Rn

because supp ¢;f C 2B; and Oyn; =0 on 2B;. O
By Lemma 7.10, to show that
O L ap(x)dr =0
R‘n

for each 1 < k,I < n, it suffices to show that the functions O,L 'ap and 0,0, L 'ap are

integrable. We note that 9,0, L 'ap € L'(R") follows from (7.23). Indeed,
loxdn L™ an| 0 < V2L an 10 = DO IVPL™ a8l 0y
=0

<> B ||V2L  ag
j=0

o
<C ‘3‘1/2 ZQ,J-E |2jB|1/271/p
j=0

=C|B|*YP Z 9—i(e4n/p—n/2)
§=0

L2(U;(B))

<C|B"7,

with the sum being convergent since & +n/p —n/2 = 2a > 0. To check OyL~'ap € L'(R")

we write

0L a0 < VL as 0 = YOIVLE sl g, s, -
j=0
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For 5 > 3,

IVL™ ag||

IA

2
B L
ooy < | /0 Vet di

=: Ij +IIJ

o
/ Ve trap dt’
T

+|
LA (U (B)) LA, (B))

Let 8 be a number satisfying 0 < 8 < M — % Then using (7.10) with k = 0, we have

T
I; S/O HveitLaB”Ll(Uj(B)) dt

TZ
B
- /0 /Uj(B)

h
S/ /|GB(?/)| _ |Vapi(x,y)| dx dy dt
0 B |z—y|>29=2rp

/ Vopi(z,y)as(y) dy| de dt
B

B e, dt
<Cllaglly: [ " erbi
“y Vi

2
_ "B t B dt
<o [H(L)
<ClB o g/ Vi

< 4738 | gt/ n (7.25)

For the second term we use L-cancellation and estimate (7.10) with & = M to obtain

e aM tL
I, < ’V— ~tLy, ‘ dt
T /7% ot Pl )
o0 M
S/ /IbB(y)I _ Voo grpi(2,y)| du dy dt
ry JB |lz—y|>2i—2rp

> —cdird Jt dt
<C ”bB“L1 2 e tM+1/2
B

oM 1-1/p > t B dt
SCTB ‘B‘ /2 (4JT2B) tM+1/2

-]

< C4~90 | gt/ (7.26)

The last line holds because 0 < 8 < M — % For j = 0,1,2 we use that the Riesz trans-
form VL~'/? is bounded on L?(R"), and that the fractional power L~1/2 maps L?*/ ("+2)(R")
into L?(R™). The latter holds because the heat kernel of L has Gaussian upper bounds, and

hence fractional powers of L satisfies the same mapping properties of the classical Riesz poten-

tials (—A)~*/2. We refer the reader to Lemma 6.18 for a precise statement of this fact. More
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precisely we have

vz = VL gy € O a5l S el

@B H L2(8B)

Now we apply Holder’s inequality with exponents s := (n + 2)/n and s’ := (n + 2)/2 to obtain
2/s 2/s 1/s 1-2/ps
lasl7a. < llasllze" 1B < |BI'7*/",
and therefore
-1 1/2 1 1-1/p+1/n
VL™ ap| s < CIBIT[VE  ap g < CIBI :
Collecting these estimates for j > 0 we obtain for some 0 < 8 < M — %,

VL apl|, < €+ BTN a8 < B
j=3

We have shown that 9y L~ tap € L'(R™) for each 1 < k < n, and hence by Lemma 7.10, estimate

(7.21) holds.

The proof of Theorem 7.1 (b) is therefore complete. O

7.1.4 Commutators

In this section we give the proof of Theorem 7.3. We shall employ the following result which is

a slight variation of Theorem 1.2 from [7] taking into account Remark 3.2 of the same paper.

Proposition 7.11 ([7]). Let L be a non-negative self adjoint operator satisfying the Davies—
Gaffney condition. That is, L generates an analytic semigroup {e '}~ and there exists

C1,Cs > 0 such that for all bounded open subsets Uy, Us C R™,

diSt(Ul, U2)2

(e f1, f2)| < Clexp<f02 ;

) Il £l (7.27)

for all f; € L*(U;), i = 1,2 and all t > 0.
Let p € (0,1] and M > [%(%} —1)]. Assume that T is a bounded operator on L*(R™)

such that for some My > ﬂ(% -

5 )(de>O,

ITasll L, 5y < CA~Mo|BIV2HP (7.28)
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for each (p,2, M)-atom ag for L associated to a ball B and all j > 0. Then T is bounded from

HY(R™) to LP(R™). Furthermore if T satisfies (7.28) for p =1 and is of weak type (1,1) then

for all b € BMO, the commutator [b,T) is bounded from H}(R™) into L1:>°(R™).

We shall apply this Proposition to T' being either V2L~! or VL~!, by obtaining estimate (7.28)

for p=1and My = M — 1, where M is any integer satisfying M > % + 1. It is clear that (7.27)

is satisfied by L = —A +V with 0 <V € L] (R") (see Section 5 of [7]).

Proof of Theorem 7.3. To begin, fix an integer M > % 41 and let ap be a (1,2, M)-atom for L

associated to a ball B. We first show that (7.28) holds for the operator V2L~ for every j > 0.

We begin with j > 3. Perform the following decomposition

VL tap = VALV —e BN Map 4 VAL (T — (1 — e "5 Map.

Hence to show (7.28) for j > 3 it suffices to show the following two estimates

[ V2L = B M as ] gy, iy < CATMO BT,

V2L (1 = (T = e )ap oy, ) < C4770|BIT2,

Let us first check (7.29). The binomial theorem gives

M
V267tL(I . efrfgL)M _ Z(*l)’“(f) v2ef(t+kr2B)L'
k=0
Now for each £k =0,1,..., M, on making a change of variable we obtain

> 2 —(t+kr3)L > 2 —tL
/0 VZe (tHkre)lgy — /0 L2 o0y (1) Ve Hdt .
Therefore
VQL_l(I—e_T%L)MaB = / gry (1) Ve Lap dt,
0

where

M

k=0

(7.29)

(7.30)
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Now noting that Zﬁio(—l)k (]‘]f) =0 we have

M M M
g = > (=D (N 1am200®) + D (D (D 1w arn (#) = > (=D () Lz arr2 (1) -

It follows that

lgv(t) \ M oana®)] £ 24 10.002)(0).

g omi

We proceed with estimating (7.29). For j > 3 by Minkowski’s inequality,

V2L71 I_ef"‘ZBL Ma 5 = H/ . t v2€7tLa dt’
I ( a5l 2w, my ; 9r (1) B L2, my)

S/O ‘gTB(t>|HVQe_tLaBHL2(Uj(B))dt'

For each t > 0 by Minkowski’s inequality again, and estimate (7.8) with k =0 ,

_ 2 1/2 C e
||v2e tLaBHLQ(Uv(B)) S / |G’B(‘T)| (/ |vipt('r7y)} dl') dy S 1+n/46 . B/t
’ B lz—y|>21—2rp 3
since |lag||;: < 1. Therefore

[ee)
- 2 Ceaip2 sy At
Hv L (I_ e "B ) C’/BHL2(U7(B)) S C/ |gTB(t)‘ € ¢ T.B/ tn/4+1

MT 764‘7 2 5/t dt
< c tn/4+1

< C4—jMT,§2M/ M-n/a=14,
0

Recalling that M > % +1 we see that the integral is convergent and dominated by C’T?Ban/ 2,

Finally

[V = ) g, g < CHMr"? < CAIOID Y

and the proof of (7.29) is complete.

To study (7.30) we observe that

M

I—(I- e—r’;;L)M _ Zﬁke—kr%L

k=1

where B, = (—1)¥*+1 (/). Next by using the L-cancellation of ap = L™ b for some by € D(LM),
we obtain

VLI = (I — e TBM ZﬂkVQL (LMekrslypy .
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Therefore estimate (7.30) will follow once we show

27, M, —kriL —iM, —1/2
V2L~ (L 508 L2y < €477 | B (7.31)

for each k = 1,2,..., M with C independent of k. Fix 1 <k < M and write via a change of

variable
5 o0 5 oo aM
VQLil(LMeikTBL)bB — / V2LM67(t+krB)LbB dt = (_1)M v2 o eftLbB dt .
0 k'r‘
Applying this identity and Minkowski’s inequality gives
oM
2 M ,—kr} < 2 o—tL ‘ .
||v L~ L st bBHL2(Uj(B)) — /k 2 v at]\/[ B LQ(Uj(B))dt
By estimate (7.8) with k= M one has
oM oM 2 \1/2
vzl _tL / / V2l (e, ’ d ) d
H 6t]V[ L2(U (B)) | lo—y|>2i—2rp atMpf(z y) v 4
—cdir Jt
= Ct]V[+n/4+1 o/

because [|bp||;: < rFY. Therefore for each j > 3, noting that r% < kr% because k > 1, and

applying the previous calculation we have

dt

27 —1,7 M —kr2
HVL (LMekrat (MAn/arl

2M > —car% /t
05| 201,y < 75 /2 e t7el

]
Finally by noting that ¢ > r%, we have

dt
1+M

—kr -n * —c4Ir?
V2L (LM e st bBHL%Uj(B))SCréM /2/7«2 eme Tkt

B

2M —n/2 t )M’l dt
<C /702 <4j7” tM+1

:crf;"/%—j(M‘”/ dt

2
r%t

< 4 I g1/

and the proof of estimate (7.31) for each k > 1 is complete, which as mentioned earlier implies
estimate (7.30). This together with (7.29) shows that V2L ~! satisfies (7.28) for each j > 3 with

Mo =M — 1.
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We are left to check (7.28) for j = 0,1,2. However this follows from the L*(R™) bound-
edness of V2L~1L.

V2L agl|,. < Cllagll. < C|BIY*VP

(U;(B))
and (7.28) follows readily.
Finally we mention that one can show (7.28) for the operator VL~! in a similar fashion

but applying (7.9) in place of (7.8). O

7.2 Weighted Hardy spaces

In this section we give the extensions of Theorems 7.1 (a) and 7.1 (b) to weighted Hardy
spaces adapted to L. The study of such spaces originated in [98], and was further developed
in the work of [8, 109, 108]. In these papers the authors study the Schrodinger operator with
an arbitrary non-negative potential and obtained results for the first-order Riesz transform
associated to such operators. Here we obtain results for the second-order Riesz transforms
under the extra condition that the potential belongs to a reverse Holder class. In this section

we give a proof of the following result.

Theorem 7.12. Let L = —A+V on R™ withn > 3. Assume that V € B, with ¢ > max {2,n/2}.

Then the following holds.

(a) The operators V2L™' and VL' are bounded from HY(w) into LP(w) for each p € (0,1]

and each w € Ay N Ba)p)-

(b) The operator V2L~ is bounded from HY (w) into HP(w) for each p € (n/(n+1),1] and
each w € A1 N 6(2/1,)/.

7.2.1 Weighted Hardy spaces associated to Schrodinger operators

We first define the weighted Hardy spaces HY (w) associated to the Schrédinger operator where
w is an A, weight. The constructions given here are similar their unweighted counterparts.

Further details can be found in [98, 8, 109].
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Recall the definitions of H?(R™) from (7.1), and of the area function S, associated to L
n (7.2). Given w € Ay and p € (0,1] we define the weighted Hardy space HY (R™) associated

to L as the completion of

{f e B ®R™) : [SL() Lo < o}

in the metric || ;7 () = 152 ()]s (w)-

As in Definition 7.4 we define the notion of atoms for HY (w).

Definition 7.13 (Atoms for H? (w)). Let 0 < p <1 and M € N. A function a € L*(R") s

called a (w,p,2, M)-atom for L associated to the ball B if for some b € D(L™) we have
(i) a = LMb,

(ii) supp L*b C B for each k=0,1,...,M

) ?

M.

)

(iii) [|(rBL)*b|, < rEM |B|"?w(B)~Y? for each k=0,1,...

Then the following decomposition of the weighted Hardy spaces hold (see [109]). Let M >

1 1

5 (5 —3) and w € A;. Then it follows that for each f € HF (R™) there exists a sequence {ap}p

of (w,p,2, M)-atoms for L, and a sequence of scalars {\g} 5 C C, such that

f:ZABaB and Z‘/\|p§ ||fH;;{€(w)
B B

The convergence is in both HY (w) and L?(R™).

We also have an analogous version of Lemma 7.5.

Lemma 7.14. Let 0 < p < 1, w € Ay, and fix an integer M > %(% — %) Assume that T
is a linear operator (resp. non-negative sublinear) operator that maps L*(R™) continuously into
L?°°(R™) satisfying the following property: there exists C > 0 such that for each (w,p,2, M)-

atom a

ITall Loy < C-
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Then T extends to a bounded linear (resp. sublinear) operator from HY (w) to LP(w). Further-

more, there exists C' > 0 such that

!
|TfHLP(u;) <C ||f||H§(w)
for ever f € HY (R™).

We refer the reader to [8] and [109] for further details.

7.2.2 Proof of the weighted result

In this section we give the proof of Theorem 7.12

Proof of Theorem 7.12 (a). We remark that the argument for this result is similar to the argu-

ment given in the proof of the unweighted version of Theorem 7.1 (a) with some modifications.

We shall show that Lemma 7.14 holds for each of the operators V2L~! and VL' for

€ (0,1]. More precisely let M > 2 (l — %) be an integer and ap be a (w,p,2, M)-atom for
HY (w) associated to a ball B.

We first consider the operator V2L ~!. It will suffice to show that
27-1
V2L~ ap| 00, < C (7.32)

with C independent of ap.

Since p < 1 we may apply Holder’s inequality with exponents 2/p and 2/(2 —p) to obtain
TR o M
U;(B)
o 1—p/2
2/(2— 27—1_ _||P
<[ we) L )

7=0
> 1-p/2 P2 -
S i (]iijz/@ p)) V2L~ as s 0, )
7=0
> P
< ZOWB‘I,/Q IV*L™ asl[a 0, )

271

<C Z gin(1—p/2) L2/ (7.33)

7=0

|B|p/2 HV B||L2(Uj(B))'
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The second inequality follows because w € Ba/,). The last inequality follows from the doubling
property of w (Lemma 2.10), since w € A;. Since ¢ > 2 the operator V2L™! is bounded

on L?(R™), and hence for j = 0,1, 2,

V2L as g )y < Cllaslle < C1BI2w(B)~/7. (7.34)

B))

We have used the doubling property of w in the last inequality. Now for each j > 3 we note
that

dist(U;(B),B) > 207 Yrg —rp > 207 %rp.

Then using the identity

(o]
Lt :/ e thdt
0

we obtain

IV*L ™ as]

IN

2
H/ Vie tag dt’
0

= IJ+IIJ

|

/ Vie g dt‘
%

(U;(B)) L2(U;(B)) L2(U;(B))

n

Now let a be a number satisfying 5 (5 — 3) < a < M. Using (7.15) we obtain

B
5 [T s g iy

dt
tn/4+1

5
1/2 t a dt
<C|B| ||a’BHL2/O (@) ryzEsy

< C27% |BIM*w(B)~VP. (7.35)

ho
< Cllaglly, [ et
0

In the last line we used that « > n/4, which is valid because p <1 implies that % (;1] - >

I3

We turn to the term I7;. For this estimate we apply L-cancellation to transfer powers
of L to powers of t~! increasing the decay as t — oo. More precisely we write ag = L™bg for

some b € D(LM) and obtain

M
e ag = e IMbp = LMe b = (—1)M e b
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Then, with « as before, we use (7.17) to get

> 2 aM tL
I < Hv G-ty ‘ dt
7 /ﬁg ot Pl )
O i dt
< Cllbgll L1 / S vy ey

B
Xt \o dt
1/2
<ClB sl [, (gmr) i
B

e M 20 o dt
< commge gl [T
B

< C27 % |B|M? w(B)" /P (7.36)

In the last line we used that o < M + n/4.

Collecting estimates (7.34), (7.35) and (7.36) into (7.33) we obtain

aBHip(w) < C+C| ‘p/2

HV2L—1 ng(l p/2){[ + 11, }p

IN

C+ CZQ—J’(%p—n(l—p/?)) < C,

j=3 -
with the sum converging because a > % (% — 1). Therefore (7.32) holds.
The corresponding estimate for the operator V L~! may be proved similarly with (7.9) in

place of (7.8). This concludes the proof of Theorem 7.12 (a). O

Proof of Theorem 7.12 (b). The strategy for the proof follows that of Theorem 7.1 (b). The
key step is to obtain a suitable molecular characterisation of H?(w) and then show that V2L !
maps appropriate (w,p,2, M)-atoms for HY (w) to such molecules. One such characterisation is
given in [109], which is an extension of the case p = 1 given in [98].

For each p € (n/(n+1),1], w € Ay, and € > 0, we say that m € L*(R") is a (w,p,2,0,¢)-

molecule for HP(w) associated to the ball B if

a) [pnm(z)de =0,

1/2

(b) [[ml 2, (myy <2777 [27B] T w(2B)P for all j=0,1,2,....

Then the following holds.
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Theorem 7.15 ([109] Theorem 4.4). Let p € (n/(n+1),1), w € A1 N Bypy and & > n/2.
Then
HP(w) = {Z Ajmj: {\;} €1P, m; are (w,p,2,0,e) — molecules}
J

and
£l ~ e (7)),
J

with the infimum being taken over all decompositions f = Ej Ajmy.

With this characterisation of H? (w) in hand, it will suffice to show that for each p € (n/(n+1),1]
and M > n(% — %) the operator V2L~ maps (w,p, 2, M)-atoms for H? (w) to (w,p,2,0,¢e)-
molecules for H?(w) for some € > n/2. Accordingly, fix a (w,p, 2, M)-atom ap associated to a

ball B and set mp = V2L~!. We aim to show

1/2

Imsll 2w,y < C27°|2B] " w@B)~P, >0, (7.37)

mp(z)dx =0, (7.38)
Rn

for some € > n/2.
We first obtain (7.37). Recall from the proof of Theorem 7.12 (a), that for any n/4 <

a < M +n/4 the estimates (7.34), (7.35), and 7.36 give
_ _2j 1/2 _
Imellew,my = VL7 a8 g, ) < €277 1Bl w(B)77, (7.39)

for each j > 0. In particular we can pick « satisfying n(% — %) <a< M since p<1 implies

n(% — %) > n/4. Next we note that since w € A; then Lemma 2.11 applied to B C 27 B gives
Bl _ o w®B)
|27B| —  w(2/B)

Therefore

1/2

|B|1/2w( B)~ 1/p< 0’213‘ )1/2—1/1)w(2jB)—1/2

1/2

= C|2JB| w(2) B)"YP w(B)Y 2P (27 B)Y/P1/2

1/2

< ¢ 2in(1/2=1/p) |2JB| w(2'B)~ p
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where in the last step we have used the doubling property of w (Lemma 2.10). Therefore (7.39)

becomes

1/2

< Ozfj(2a+n/2*”/P)|2jB| w(2B)~HP,

Imsll L2, By

and hence (7.37) holds with ¢ = 2o+ n/2 — n/p. We observe that ¢ > n/2, because p <1
implies 2a+mn/2—n/p>n (% - %) >n/2.

We now turn to the moment condition (7.38). By Lemma 7.10 to show that

O L ap(x)dr =0
]R'n.

for each 1 < k,I < n, it suffices to show that the functions 0,L 'ap and 0,0,L 'ap are

integrable. We note that 9,9, L~ tap € L'(R") follows from (7.39). Indeed,

oL an] . < [92L a1 = S IV2L 0] )
=0

< |B|1/2||V2L,
j=0

1aBHL2(Uj(B))

< OBy 27 B P w(B)
§=0

= C[Blw(B)~"/P> 272
§=0
< C|Blw(B)~",
the sum being convergent since 2a > 0. To check 9L tap € L*(R"™) we write
—1 -1 -1
1oL s, < VL as, = ZO IVL™ as|| 2w, 5 -
j=
A similar calculation to that in (7.25) and (7.26) gives, for each j > 3,

|vLt < CA7IF | BTy (B) VP,

“B|‘L1(Uj(3>>

for any 3 satisfying 0 < f < M —1/2. For j = 0,1,2, as in Theorem 7.1 (b), we use that L~/2

maps L>*/("+2)(R™) into L?(R"™) (see Lemma 6.18). Then

||VL71aB||L2(SB) - HVL?l/QL*l/QaBHL‘Z(sB) = CHLil/%BHH < C||aB||L2"/<"+2>'
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Now we apply Holder’s inequality with exponents s := (n +2)/n and s’ := (n + 2)/2 to obtain

2/s 2/s 1/s’ — <
lasl2s. < llasl?s 1BV < |Blw(B)2/%,

and therefore

[VLa5l10) < CBIM2 VL an]],uqep) < CLBI" w(B)

8B) — (8B) —

Collecting our terms for each j > 0 we obtain

||VL_10,B||L1 < |B‘1+1/nw(B)—1/p{C+C’Z4_]5} < C|B|1+1/n’w(B)_l/p,
j=3

This concludes the proof of (7.38), and hence Theorem 7.12 (b). O
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Chapter 8

A class of potentials beyond the reverse Holder class

We end this thesis with an application of Theorem 1.5. We obtain boundedness of the Riesz
transform VL~1/2 on LP(R") for suitable p for a class of potentials slightly more general than
the reverse Holder class studied throughout the rest of the thesis. We direct the reader to
Theorem 8.3 below for a precise statement of the result. Theorem 1.5 then allows us to obtain
boundedness on the weighted Lebesgue spaces and Morrey spaces with no extra effort.

These potentials, defined in Definition 8.1 below, were introduced in [50] and [54]. There
the authors give atomic and Riesz transform characterisations of the Hardy space H}(R™)
associated to L = —A 4+ V, with V' a potential from this new class.

We are interested in studying these Riesz transforms on the LP(R™) spaces. Let us
remind the reader that the LP(R™)-boundedness of the Riesz transform VL~/2 is known to
hold for all 1 < p < 2, assuming only that V is non-negative and locally integrable. We mention
also that the following condition is a necessary condition for LP”(R™)-boundedness of the Riesz

transform VL ~1/2;

Gy

HVG%LHLP—»LP < N (Gp)

It is of interest to find sufficient conditions on the potential V' ensuring boundedness for p > 2.
The reverse Holder class studied throughout the rest of this thesis is one such class for which
this boundedness is known to be valid. Our aim is to show that for suitable potentials in the

new class, the LP(R™) boundedness for p above 2 also holds.
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Before stating our main result we first describe some notation we will use throughout the
rest of this chapter. For a given cube @ we write d(Q) := sup{|z — y| : =,y € Q} to mean the
diameter of @, and {(Q) to mean the sidelength of Q. For 8 > 1 we use 5@ to mean the cube
concentric with @ but with 8 times the sidelength. Given such a 8 we also use the notation
U; 5(Q) := pIQ\B1Q for j > 1 and Uy (Q) := Q. When 3 = 2 we drop the subscript for 3
and write U;(Q) in place of U, 2(Q).

The following potentials were introduced in [50, 54]. The letters (D) and (K) were also

used in those papers.

Definition 8.1. Let L = —A +V on R™ with V non-negative and locally integrable. We say
that V' belongs to the class (DK) of order (o, 0,0) for some a>1, 6 >0, and o > 0, if there
ezists constants Cy, C1,Co > 0 and a countable collection of cubes Q = {Q; }j with parallel sides

and disjoint interiors satisfying ‘R"\ Uj Qj’ =0, and the following properties:

aQina*Q; #0 = d(Q;) <Cod(Q;), VQi,Qj € Q, (0n)

and for each cube @Q € Q and x € R™,

sup e—zm(Q)?L(l)(az) < k?ja’ VEkeN, (Dp)
yeaQ
/Qtesﬁu 2oV)(2)ds < 02( ! )” V0 <t < d(Q)2 (K.,)
0o & = e/ - ’

In this case we shall write V € (DKy 0.0)-

Remark 8.2. (i) Condition (O,) implies that the collection of cubes Q has slowly varying

diameters. In particular, the collection of dilates a*Q = {a4Qj }j has bounded overlap.

(ii) Condition (Dy) is a decay condition on the heat kernel of the Schrédinger operator. This

extra decay allows us to handle the global singularities of singular integrals associated to L.

(iii) Condition (K, ) captures the extent to which L is a local perturbation of —A. This allows

us to handle the local singularities of singular integrals associated to L.



175

(iv) This class of potentials generalise the reverse Holder class in the following sense. Suppose
that V' € By for some ¢ = n/2 and n > 3. If we define {Q;}, to be the maximal cubes on
R™ for which d(Q)? f—Q V <1, then (Dyp), (K,), and (O,) holds for some 0,0, a. We refer

the reader to Section 8 of [54] for the details.
(v) It is not known whether conditions (O, ), (Dp), and (K,) imply (G,).
We can now state the main result of this chapter.

Theorem 8.3. Let L = —A 4+ V on R", n > 1 with V non-negative and locally integrable.
Assume further that V € (DKqay,5) for some o € (%42, 25L) 0 > 1, and o > 1. Assume

also that (G) holds for each p € (1 Then VL~/? is bounded on LP(R™) for each

s

pe (1)

Before we begin the proof we mention that by combining this with our results from

Chapters 4 and 6 (specifically Theorems 4.1 and 6.1) we can obtain the following consequence.
Corollary 8.4. Under the assumptions of Theorem 8.3 the following holds.

(a) VL™Y/2 is bounded on LP(w) for each w € As and each p € W, (1, n—&-%%)

(b) VL™Y2 is bounded on LP*(R™) for each p € (1 and each A € ((n+1—20)p, n).

i)

Proof of Theorem 8.3. The spirit of the following argument is adapted from [50]. Our strategy is
to show that the adjoint of VL~!/2 is controlled pointwise by the maximal operator M(|'|p/)1/p/
for the appropriate range of p. To do so we exploit the principle that L is a local perturbation
of —A, with the region of locality determined by the cubes in Q. We shall split our analysis into
‘local” and ‘global’ regions. In the global region we use the extra decay given by condition (D),
while in the local region we base our analysis on a comparison between the heat kernel p;(x,y)
of e~*F with the classical heat kernel h;(z,y) of e (as defined in (2.1)), via the perturbation

formula (2.4). The theorem then follows by duality.

We turn to the details. Set Ry, := VL™'/2 and Ra := V(—A)~/2. We aim to show that
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for almost every = € R™ and each p € (1, n—i—l%%) we have
[RLf(@)] S M) ()Y (8.1)

Now for almost every x there exists a unique cube @ € Q with = € Q. Hence the following

decomposition of R} is well defined:
sz = Rz,glob.f + (Rz,loc - R*A,loc)f =+ R*A,loc.fv

where

with @ the unique cube from Q containing x. Note that we have ommitted the constant 1//7
which should appear on the right hand side of the above formulae — see Section 2.2.
We first study the global operator R}, ;.. Write

. o dt
RL,globf(x) = /n kgion(y, x) f (y) dy, where kgiob(y, x) 12/ Vype(y, z) W

a(Q)?

Then by Hoélder’s inequality

1/p’ 1/p
|RL,globf Z ‘QJQ‘ (][ |P dy) (][ |kglob<yax)|p dy)
U; (Q)
|f‘17 1/p 22]71/? d n/P Hkglob('7$)||LP(Uj(Q)) .

We shall prove that the series is uniformly bounded with respect to x and @. That is, for some

Cp > 0 independent of z and @,
(z,Q,p) = 227"/” d(Q ”/p ||k:glob(-,x)||Lp(Uj(Q)) < Cp. (8.2)

We first consider j = 0,1,2. Let us point out that condition (G,) for p € (1, ﬁ)
implies that

1
Ve 2)llze S Simrmrem
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for the same range of p. This can be seen from the argument in Lemma 4.8. See in particular
inequality (4.18). Estimate (8.3) combined with Minkowski’s inequality implies

o0 dt
oo < Mot riay < [ 190Dy 7
H g ( )”L U;(Q)) H g ( LP(4Q) Q) t Lr(4Q) \/E

oo dt ,
< 7 < -n/p
~ /d(Q)Z ti+n/2p') ~ Q) '

Next for j > 3 we decompose

o0 dt
Foton ()| o g/ 1902 o - o)
Westor - 2l <, o VPO D@0 7
o p2Hta(Q)? dt
- V0 ) o () e
kZ:O () PN ws @)

Using the semigroup property (2.3), we have for each k > 0 and 2%d(Q)? <t < 2F+14(Q)?,

V,pi(y,z) = / Y Pr_zera0y2 (U 2) Paeesaoys (2, 7) d.
R’VL

Applying (G,) with p € (1 we obtain (see (8.3) and also the proof of Lemma 4.8)

i)

1/p
VP 2) Lo ;) S/ (/ (Vypi—oi-140y2 (4, 2)[” dy) Par-14(Q)2 (2, %) dz
R MU;(Q)
47d(Q)*
eXP(—CW)
(2@ e

Since 2Fd(Q)? <t < 2F14(Q)? implies that 2F71d(Q)? <t — 2F71d(Q)? < 2F11d(Q)? we

/ Par-14(0)2 (2, T) dz.
R‘n

obtain

_192j—k
e c'2

(28d(Q)2) /)

VD )l ooy @)) S /R Por-14(0)2 (2, 1) dz.

Noting that for each k£ > 0,
2k+ld(Q)2 dt
— =2"24(Q)*(2v2 - 2),
/2’%1(62)2 \/i ( )
we have that

_192j—k
e c'2

||kglob('7x)HLp(U.(Q)) S Z Tl (20 - ,/ pgk—1d(Q)z(2,x)dz.
b k=02 /(p)d(Q) /P Jon

For k = 0,1,2 we use the Gaussian bounds on the heat kernel of L. For k > 3 we use

that k/2 < k—1 < k and combine this with (Dy). Together these allow us to obtain (for j > 3)

_0122J—k

—n/p’ —c'47 - € 1
||kglob('7x)||Lp(Uj(Q)) < d@Q) /v {e +k§_;2kn/(2p’)k1+9}'
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Therefore returning to (8.2) we have

S gin/v =¥ N gn /' —k/2ee T L
Xz, Q,p) < 1+jz_:3{2 e +I;2 1

Thus estimate (8.2) follows once we show that

- TR |
s _ 92—
_ ZZQn/p (1=k/2) g—c"2 e < O, (8.4)
j=3 k=3
We split the sum into
(S I |
- /P (i—k/2) p—c' 2% .
_Z[Z+ Z ]an] e’ R dio1+ Y22
=3 “k=3 k=j+1
For the first term, for each k& < j we have that e—c'2 7" < =<2, Then
co J o
Y —c'"2
8 LYy 5 D <
j=3 k=3
For the second term, since 6 > 1,
oo
SIS s < ZJ 02 3 go0e02 < o
j=3 k=j+1 k=j+1

Combining these two estimates gives (8.4)

Next turn to the localised operator R} ;,. — R} ;,.. We write

(R 100 — R soo) () = / Fioe( 2) £ () dy

n

where

dt
i

We split the domain of integration over a-dilates of @) and apply Holder’s inequality to obtain

o . ’ 1/17/ 1/P
(R} 100 — Rt f@)] < 3 |0iQ f F)F dy f Rroe(y,2)[? dy
(. o | ;' |( Uj.a(Q) ) ( U@ )

5 |f|P Z n/p aj"/p ||klOC(.7m)HLp(Uj,a(Q)) ’
j=0

(@7
kloc(yv :L') = /0 (vypt<ya x) - vyht(ya (E))

We aim to show that the series is uniformly bounded in x and @. That is, for some C, > 0

independent of x and @,

Zd(Q)n/p/aj’n/p/ Hkloc("z)”Lp(Uj,a(Q)) S Cp. (85)
j=0
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We first consider the terms j > 3. Now

d(Q)?
||kloc(7 )||LP(U]a(Q)) H/ |th( )| \[

d(Q)?
R AR | I

d(Q)* 4(Q)*? dt
< V()| o, 74_/ Vhe( )| o —
/O Vel Dl w,aen 7+ [ VG w, @)

=N+
To handle these terms we use (G)) and the following fact: there exists C = C(a,n) > 0
such that for every z € Q, y € U;(Q) and j > 3, one has |z —y| > Ca?d(Q). To see

note that the distance between the cubes @ and o/~1(Q is at least o/ ~11(Q)/2 — 1(Q)/2. Since

Q) =d(Q)/v/n, with a > 1, and j > 3, then for all such z and y,

o=yl > $L (@ =1) > (k) ol dQ) = Cald(Q),

with C' = (a? — 1)/(2a3y/n). Fix € > n/(2p’). Then for each j > 3, it follows that

d(Q)* ,—ca®d(Q)?/t
T S / ————dt
0

HTn/(2p)

< d(Q)2 ( t )E dt
~ 0 Ol2Jd(Q)2 t1+n/(2p’)

1 wQF g
- a%ied(Q)% /0 t1+n/(2p)—¢

Sd(@ a2,

For J2 we use the well known bounds on |Vh| to obtain, in a similar fashion
Jp S d(Q7" a7
with the same . Then the estimates for [J; and J5 allow us to conclude that
Wtoels D oer, o) S A@)™7 a=%, vj>s. (3.6)
We turn to the terms corresponding to j = 0,1,2 in (8.5). We shall show that

||klOC(.7m)||LP(UJ,W(Q)) S d(Q)_n/p ] = 07 172 (87)

From the perturbation formula (2.4) we have for each z € Q, y € R™ and ¢t > 0

d(Q)? dt
Kioc(y, © / / Vyhi—s(y,2) V(2 )ps(z,x)dzds%.
R”L
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Then
d(Q)2 t dt
|kioc(y, )| < / / / IVyhi—s(y,2)| V(2) ps(2,2)dzds —
0 0o Jrr Vit
= kllﬂc (y’ x) + klzoc(y? :L.) + ki30C (y7 x)’

where
) Q)7 /2 gt
Kho(yz) = / / / IV he—s (4, 2)| V (2)pa(z ) dz ds OL
; NG

/Od v //2/3Q [Vyha—s(y:2)| V(2)ps 2, x)dzdS\d[

dt
etve)= [ / Lo ¥ AV (a2 s 7

Then it follows that

kloc y,r

el N i ozy < el ) gy + el ) gy + e ) oy« (85)

To study the first term in (8.8) we observe that s € (0,t/2) implies that t — s € (t/2,t),
and hence the well known bounds on [Vh;_s| give

_ .2
1 _ly==l

IVyhe-s(y,2)l & mrime

for any vy, z € R™. Hence for any z € R™,
VA5, ) Lo (arq) S 4—1/2-n/(2p")

This estimate gives, for each z € @,

dt
1
HklOC("x)HLP(oﬁQ) S/O /0 /QSQ [Vhi—s(- HLP(a2Q)V( 2)ps(z, ) dZdSﬁ
d(Q)* [t/2 dt
< -
N/o /0 /asQV )ps(z, x) dz ds /@)
d t/2 dt

Applying (K,) and that o > n/(2p’) we obtain

d(Q)? t o dt T
Hklloc('7x)’|[/p(a2Q) /S /(; <d(Q)2) t1+n/(2p/) S d(Q) /p :
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We turn to the second term in (8.8). From the well known bounds on |Vh:| we obtain,

HVht75< 7 )HLP(QQQ) (t _ S) 1/2—n/(2p’)7 Ve Rn, t>s

so that for each x € Q,

) d(Q)? dt
[Eioe (5 )| Lo (2 S/O /t/2 ASQVht_S(.,Z)||Lp(a2Q) V(z)ps(z,x)dzdsﬁ

d(Q)® pt ds dt
S V(2)ps dz _&
~ /C; /t/2 /043Q p o CC) ( — 5)1/2"‘”/(21’ ) \/i
ds dt
> /QsQ V@h(20) dz Gt
d(Q)* rt d J
sA S t
= 1,50V _a
/0 /t/2 ¢ (LasQV)(7) =i o7

Ad(Q)? dr dt
B (t—m)Aq —_—
_/0 /O e (1a3QV)(33) rl/24n/20) /3

where in the last line we made a change of variable r := ¢ — s. Since r < ¢/2 and by the

IA
h
A
S)
i\“

semigroup property (2.3),

eI (1,3V)(2) = e 2% (1430 V) (2)
=/ hi—or(2,9)e"™ (Lasq V) (y) dy
< essSup,cpn e (1a30V) (y).

To continue we require the following technical estimate.

Lemma 8.5. Suppose f > 0 and for some § > 0, the following holds
t ENG
/f(s)dsg(—), 0<t<R
0 R

Then for each 0 < € < ¢, there exists C = C(e,6) > 0 such that

[t =cts

Proof. We compute

271 X g(k+1)e 27t
[ Z/ FEEID DLy I OPS
t k=0 0
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2\ € o= g (27RO P kes) e
< (5) X)) = e e = o
k=0 k=0
where C = 25/(25_5 —1). -
Since o > 1/2+n/(2p’), we can apply Lemma 8.5 with
rA 2 1 n
f(’]") =€ (1a3QV)(y)7 R = d(Q) s €:=— + 55
2 2p
to obtain
d(Q)® rt/2 d dt
2 o rA T
e @) o aagy < esssupyear /0 /0 ¢V )W) 7wy a7
d(Q)2 dt
< —20 e
<d(Q) /0 L

<d(Q).

We turn to the last term in (8.8). Firstly note that for 0 < s <t < d(Q)?, z ¢ o3Q,
and y € a?Q we have

2

t—s<dQ)?—s <dQ)> and ly -2 > (452)dQ) = Cd(Q),

so that for all such z, vy, t, s,

—z|? —z|? —z|?
exp(—el=L)  exp(-c=E)  ew(—cli)
(t—s)n/241/2 >~y _n Tt Y d(Q)r

Vyhe—s(y:2)] S

Therefore
3 1 @ —e|-—2[?/d(Q)” dt
||k10c(-,x)’|Lp(a2Q) N W/o /0 /n\,ﬁ@“e HLP(QQQ)V(z)pS(Z,x) dz ds 7i

) d(Q)? pt "
W/o /0 /n\am V(2)ps(z, ) dz ds%

1 d(Q)2 S dt
——— V(z)ps(z,x)dzds — .
d(Q)1+7l/p \/0 \/0 /n ( )p ( ) \/E

To proceed we recall the following fact, which appears to be well known. We refer the

A

IA

reader to [54] and the references there for a proof.

Lemma 8.6 ([54] Lemma 3.10). Assume that 0 <V € L{ (R"). Then for each f € L'(R™),

loc

one has

/n /Ooo V(z)e (| f])(x) dtda < || f][ 1 -



Now by the semigroup property (2.3) and Lemma 8.6,
[ [ veweaaa= [ [ vee o)) dds
0 Jre 0o Jre
S ||ps/2(.7x)||Ll(Rn) S ]-

This immediately gives

HkISOC('7 J?) HLP(Q2Q) 5 d(Q)_n/p/ .

Inserting these estimates in (8.8) yields (8.7).
Gathering (8.7) and (8.6) we then obtain
Zd(Q)n/P adn/p ||kloc('ax)”LP(ija(Q)) < 1+ Zaj(n/P —2¢)
§=0 j=3

Recalling that € > n/(2p’), we see the series is convergent and hence (8.5) follows.

Finally, it is well known that the classical Riesz transform satisfies for every p > 1,

IRA joef ()] S M(|fP) ()17, ae. 1.

Combining this with our previous estimates we obtain, for each p € (1, W%QU)

every x € R,

IRES (@) < IRL gionf (@) + [(RE 10 = RA toc))@)| + [RA tocf ()] S M(IF1P) ()7,

which is (8.1). This completes the proof of Theorem 8.3.
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