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ABSTRACT

This thesis presents three topics related to frequency selective surfaces (FSSs),
namely absorb/transmit FSSs, active FSSs and passive bandpass FSSs for
energy-saving glass used in modern buildings. These three FSSs are unique
in their design and functionalities. The absorb/transmit FSS is a novel dual-
layer frequency selective surface for 5 GHz WLAN applications. This FSS can
stop propagation of specific bands by absorbing as opposed to reflecting, while
passing other useful signals. This is in contrast to the conventional Salisbury
and Jaumann absorbers, which provide good absorption in the desired band
while the out-of-band frequencies are attenuated. The second topic is a single-
layer bandpass active F'SS that can be switched between ON and OFF states
to control the transmission in 2.45 GHz WLAN applications. Previously, re-
searchers have focused on the bandstop and dual-layer versions of the active
F'SS. This is in contrast to the design presented in this thesis which is single-
layer and provides extra advantage in a practical WLAN environment. Also
the dc biasing techniques that were used for the active F'SS design are easier
to implement and provide good frequency stability for different angles of inci-
dence and polarisations in both ON and OFF states. The last topic is on the
use of a bandpass FSS in energy-saving glass panels used in building design.
The manufacturers of these glass panels apply a very thin metal-oxide coating
on one side of the glass panels to provide extra infrared (heat) attenuation.

However, due to the presence of the coating, these energy-saving glass pan-



els also attenuate communication signals such as GSM 900, GSM 1800,/1900,
UMTS and 3G mobile signals etc. This creates a major communication prob-
lem when buildings are constructed with windows of this glass. In this thesis,
a solution to this problem is presented by designing and etching a cross-dipole
bandpass FSS on the coated side of the glass to pass the useful signals while
keeping infrared attenuation at an acceptable level. One of the advantages of
this F'SS design is that measured material values of the metal-oxide coating

are used for simulations, which have not been done previously.
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