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Abstract

Magnetic fields play an important role in star formation by regulating the removal
of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to
be important to the magnetic field behaviour at many of the intermediate densities and
field strengths encountered during the gravitational collapse of molecular cloud cores
into protostars, and yet its role in the star formation process is not well-studied. This
thesis describes a semianalytic self-similar model of the collapse of rotating isothermal
molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity so-
lutions that demonstrate that the Hall effect has a profound influence on the dynamics
of collapse.

Two asymptotic power law similarity solutions to the collapse equations on the
inner boundary are derived. The first of these represents a Keplerian disc in which
accretion is regulated by the magnetic diffusion; with an appropriate value of the
Hall diffusion parameter a stable rotationally-supported disc forms, but when the Hall
parameter has the opposite sign disc formation is suppressed by the strong diffusion.
The second solution describes the infall when the magnetic braking is so efficient at
removing angular momentum from the core that no disc forms and the matter free
falls onto the protostar.

The full similarity solutions show that the size and sign of the Hall parameter
can change the size of the protostellar disc by up to an order of magnitude and the
accretion rate onto the protostar by 1.5 x 1076 Mg yr=! when the ratio of the Hall to
ambipolar diffusion parameters moves between the extremes of —0.5 < 7y /4 < 0.2.
These variations (and their dependence upon the orientation of the magnetic field with
respect to the axis of rotation) create a preferred handedness to the solutions that could
be observed in protostellar cores using next-generation instruments such as ALMA.

Hall diffusion also determines the strength of the magnetic diffusion and centrifugal
shocks that bound the pseudo and rotationally-supported discs, and can introduce
subshocks that further slow accretion onto the protostar. In cores that are not initially
rotating Hall diffusion can even induce rotation, which could give rise to disc formation
and resolve the magnetic braking catastrophe. The Hall effect clearly influences the
dynamics of gravitational collapse and its role in controlling the magnetic braking and
radial diffusion of the field would be worth exploring in future numerical simulations
of star formation.
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“It seems to me, that if the matter of our sun and planets, and all the
matter of the universe, were evenly scattered throughout all the heavens,
and every particle had an innate gravity towards all the rest, and the whole
space throughout which this matter was scattered, was finite, the matter
on the outside of this space would by its gravity tend towards the matter
on the inside, and by consequence fall down into the middle of the whole
space, and there compose one great spherical mass. But if the matter
were evenly disposed throughout an infinite space, it could never convene
into one mass; but some of it would convene into one mass and some into
another, so as to make an infinite number of great masses, scattered great
distances from one to another throughout all that infinite space. And thus
might the sun and fixed stars be formed, supposing the matter were of a
lucid nature.”

- Newton to Bentley (December 10, 1692), quoted by Jeans (1928)






