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Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

A schematic representation of the human MHC genes.

The diagram shows the location of the genes that encode MHC-I
and II proteins. MHC-I gene loci A (orange), B (rose) and C (pink)
along with MHC-II gene loci DP (light green), DQ (turquoise) and
DR (lavender) are shown. The centromere and the MHC-III loci
are coloured yellow and light blue, respectively. The polypeptide
chains coded for by the loci are shown within the boxes depicting

different loci in MHC-I and II gene complexes.

A simple example of the rearrangement that occurs during TR

a (TRA) and B (TRB) chain formation.

The V, D and J gene segments coding for the variable domain of
the TR are shown in green, turquoise and lavender, respectively.
The constant gene segment that codes for the constant region of the

TR is shown in black.

A cartoon depiction of typical MHC proteins. a. MHC-I. b.
MHC-II.

The a and B-2 microglobulin chains of MHC-I are coloured dark
and light green, respectively in a. and the a and B chains of MHC-II
are coloured dark and light blue, respectively in b. The peptide binding
cleft, f2m domain, C-LIKE domains, various regions, plasma

membrane and the cytosol are labelled.

A ribbon representation of a MHC-I X-ray crystal structure
(Protein Data Bank - PDB [62, 63] code: 1oga [53]). a. The four

domains. b. An aerial view of the peptide binding cleft.

In a. the al (G-ALPHA1), a2 (G-ALPHA2), a3 (C-LIKE) and the
Bom domains are coloured red, yellow, green and blue,
respectively, to clearly show the structure of the MHC-I protein.
Highlighted in b. is the anatomy of the peptide binding cleft
formed by the two a-helices on either side of the B-sheet which

forms the floor.
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Figure 1.5

Figure 1.6

Figure 1.7

Xii

A schematic ribbon representation of a MHC-II X-ray crystal
structure (PDB code: 1lymm [78]). a. The four domains. b. An

aerial view of the peptide binding cleft.

In a. the al (G-ALPHA), a2 (C-LIKE), B1 (G-BETA) and B2 (C-
LIKE) domains are coloured red, blue, yellow and green,
respectively, clearly illuminating the structure of the MHC-II
protein. Illustrated in b. is the anatomy of the peptide binding cleft
formed by the two a-helices sitting on either side of the -sheet

which forms the floor.

Different conformations adopted by MHC-I binding peptides.
a. A nonameric Tax peptide bound in a flattened conformation
to HLA-A*0201 from the PDB structure 1duz [94]. b. A 13-
residue peptide bound in a bulged fashion to HLA-B*3508
from the PDB structure 2ak4 [93].

The peptide and the MHC peptide binding clefts are coloured green
and red, respectively. The N and C-terminal peptide ‘anchor’
residues and the ‘pocket’ residues from the MHC peptide binding
cleft are shown in ball and stick representation and are portrayed in
yellow and blue, respectively, in a. to highlight the strong

interactions around the peptide termini.

Diversity in the lengths of peptides binding to MHC-II
proteins. a. A 6-residue peptidomimetic peptide bound to HLA-
DRB1%0401 from the PDB structure 1d5x [95]. b. A 20-residue
peptide from myelin basic protein bound to HLA-DR2a
heterodimer (composed of an a chain - II-ALPHA from HLA-
DRA*0101 and a B chain - II-BETA from HLA-DRB5*0101)
from the PDB structure 1fvl [97].

The peptide and the MHC peptide binding clefts are coloured green
and red, respectively. The peptide residues interacting with the
MHC and the ‘pocket’ residues from the MHC peptide binding
cleft are shown in ball and stick representation and are portrayed in
yellow and blue, respectively, in b. to highlight the strong

interactions along the length of the peptide nonamer within the
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Figure 1.8

Figure 1.9

peptide binding cleft. The flattened conformation of the nonamer is
clearly evident. The flanking residues extending out of the peptide

binding cleft are labelled.

Domains in a TR. a. A cartoon depicting a typical aff TR, its
various regions and domains. b. The variable and constant
domains in a 21.30 TR from the TR/pMHC-II X-ray crystal
structure 3mbe (PDB code; [114]). ¢. The Va and VB domains
in a M67 TR from the TR/pMHC-I X-ray crystal structure
3e2h (PDB code; [115]) rotated 180° along their interacting axis
to show the CDRI1, 2 and 3 loops.

In a. the wvariable and constant domains along with the
transmembrane and cytoplasmic regions within the TR a chain
(orange) and TR B chain (red), the plasma membrane and the
cytosol are labelled. In b. the Va, VB, Ca and CB domains are
labelled and coloured red, yellow, blue and green, respectively. In
¢. pMHC interacting CDR1, 2 and 3 loops from Va domain are
labelled and coloured pink, turquoise and yellow, respectively.
Similarly, the pMHC interacting CDRI1, 2 and 3 loops from Vf3
domain are labelled and coloured orange, red and green,

respectively. The Va and V3 domains are also labelled in ¢.

The TR docking angles for TR/pMHC structures. a. The
interacting region of the pMHC from the TR/pMHC-I
structure 2e71 (PDB code; [132]) showing the “diagonal” TR
docking angle (44° in this case) seen in most TR/pMHC-I
complexes [130, 131]. b. The interacting region of the pMHC
from the TR/pMHC-II structure 1d9k (PDB code; [130])
showing the “orthogonal” TR docking angle (71° in this case)
seen in most TR/pMHC-II complexes [130, 131].

The MHC-I G-ALPHA1 and G-ALPHAZ2 helices and MHC-II G-
ALPHA and G-BETA helices are shown in red ribbon
representation in a. and b. The cognate peptides are depicted in
blue ribbon representation. Similarly, the green ellipses portray the
orientation of the CDRI, 2 and 3 loops of the TR Va and VP

domains on the pMHC. The diagonal line (also in green) cutting
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Figure 1.10

Figure 1.11

Figure 1.12

X1v

across the ellipse (and hence through the centre of the mass of TR
Va and VB domains) shows the TR docking angle, with respect to
the linear axis of the bound peptide, formed on the pMHC

interface.

A pictorial representation of the central CDR3-peptide region
surrounded by the CDR1 and 2 loops that interact with the
MHC helices in the TR/pMHC-I structure 3h9s (PDB code;
[149]).

The Va and VB domains are labelled. The Va CDR1, 2 and 3 loops
are labelled and coloured pink, turquoise and yellow, respectively.
Similarly, the VB CDRI1, 2 and 3 loops are labelled and coloured
orange, red and green, respectively. The dotted blue ellipse

represents the central CDR3-peptide region.

A pictorial representation of a subset of the decision tree

network utilized by Segal ez al. [391].

Represented as each node is the grouping of preferential or non-
preferential amino acid residues at various positions for the
peptides binding to the murine MHC-I allele H2-Kb. The ellipses
denote internal nodes and the rectangles depict terminal nodes. The
numbers 0 or 1 signify the predictions non-binding (bright red) or

binding (bright green), respectively, at each node.

An example of the three-layer ANN derived by Brusic ez al.
[175] for predicting MHC-I restricted T cell epitopes.

The first layer (small red circles) represents input nodes with the
number of nodes corresponding to the length of the input peptide
(in this case 9-mer; AA stands for amino acid). The number of
nodes in the second (hidden; blue circles) layer equals the ideal
length of the binding peptides (usually set to 9 residues) and a

single output node (green circle) predicts binders and non-binders.
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Figure 1.13

Figure 4.1

Figure 4.2

An illustration of the first HMM topologies implemented for T
cell epitope prediction [400]. a. A pHMM and b. A fully
connected HMM.

The partial order of states and the lack of any given starting or

terminating state in a. and b, respectively, are evident.

A graphical depiction of the correlation between different
computed structural interaction parameters for all pMHC-I
complexes in MPID-T2. a. pMHC-I interface area vs. pMHC-I
gap volume. b. pMHC-I interface area vs. pMHC-I gap index.
¢. pMHC-I interface area vs. pMHC-I BE. d. pMHC-I interface
area vs. pMHC-I H-bonds. e. pMHC-I gap index vs. pMHC-I
gap volume. f. pMHC-I gap index vs. pMHC-I H-bonds. g.
pMHC-I gap index vs. pMHC-I BE. h. pMHC-I gap volume vs.
pMHC-I H-bonds. i. pMHC-I gap volume vs. pMHC-I BE. j.
pMHC-I H-bonds vs. pMHC-I BE. k. pMHC-I interface area
vs. pMHC-I contact area. 1. pMHC-I gap index vs. pMHC-I
contact area. m. pMHC-I gap volume vs. pMHC-I contact area.
n. pMHC-I H-bonds vs. pMHC-I contact area. o. pMHC-I BE
vs. pMHC-I contact area.

The respective units are mentioned in the parentheses next to the
names of the interaction parameters on the x and y-axes. The
corresponding regression coefficients (r*) are shown within each of

the graphs.

A graphical illustration of the correlation between different
computed structural interaction parameters for all pMHC-II
complexes in MPID-T2. a. pMHC-II interface area vs. pMHC-
IT gap volume. b. pMHC-II interface area vs. pMHC-II gap
index. c. pMHC-II interface area vs. pMHC-II BE. d. pMHC-1I
interface area vs. pMHC-II H-bonds. e. pMHC-II gap index vs.
pMHC-II gap volume. f. pMHC-II gap index vs. pMHC-1I H-
bonds. g. pMHC-II gap index vs. pMHC-II BE. h. pMHC-II
gap volume vs. pMHC-II H-bonds. i. pMHC-II gap volume vs.
pMHC-1I BE. j. pMHC-II H-bonds vs. pMHC-II BE. k.
pMHC-II interface area vs. pMHC-II contact area. . pMHC-II
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Figure 4.3

Xvi

gap index vs. pMHC-II contact area. m. pMHC-II gap volume
vs. pMHC-II contact area. n. pMHC-II H-bonds vs. pMHC-II
contact area. o. pMHC-II BE vs. pMHC-II contact area.

The respective units are mentioned in the parentheses next to the
names of the interaction parameters on the x and y-axes. The
corresponding regression coefficients (r°) are shown within each of

the graphs.

A graphical portrayal of the correlation between different
computed structural interaction parameters for all TR/pMHC-
I complexes in MPID-T2. a. TR/pMHC-I interface area vs.
TR/pMHC-I gap volume. b. TR/pMHC-I interface area vs.
TR/pMHC-I gap index. ¢. TR/pMHC-I interface area vs.
TR/pMHC-I BE. d. TR/pMHC-I interface area vs. TR/pMHC-
I H-bonds. e. TR/pMHC-I gap index vs. TR/pMHC-I gap
volume. f. TR/pMHC-I gap index vs. TR/pMHC-I H-bonds. g.
TR/pMHC-I gap index vs. TR/pMHC-I BE. h. TR/pMHC-I
gap volume vs. TR/pMHC-I H-bonds. i. TR/pMHC-I gap
volume vs. TR/pMHC-I BE. j. TR/pMHC-I H-bonds vs.
TR/pMHC-I BE. k. TR/pMHC-I interface area vs. TR docking
angle. . TR/pMHC-I gap index vs. TR docking angle. m.
TR/pMHC-I gap volume vs. TR docking angle. n. TR/pMHC-I
H-bonds vs. TR docking angle. o. TR/pMHC-I interface area
vs. TR/pMHC-I contact area. p. TR/pMHC-I gap index vs.
TR/pMHC-I contact area. q. TR/pMHC-I gap volume vs.
TR/pMHC-I contact area. r. TR/pMHC-I H-bonds vs.
TR/pMHC-I contact area. s. TR/pMHC-I BE vs. TR/pMHC-I
contact area. t. TR/pMHC-I contact area vs. TR docking angle.

The corresponding regression coefficients (r*) are shown within
each of the graphs. The respective units are mentioned in the
parentheses next to the names of the interaction parameters along

the x and y-axes.
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Figure 4.4

A graphical display of the correlation between different
computed structural interaction parameters for all TR/pMHC-
IT complexes in MPID-T2. a. TR/pMHC-II interface area vs.
TR/pMHC-II gap volume. b. TR/pMHC-II interface area vs.
TR/pMHC-II gap index. c. TR/pMHC-II interface area vs.
TR/pMHC-II BE. d. TR/pMHC-II interface area vs.
TR/pMHC-I1 H-bonds. e. TR/pMHC-II gap index vs.
TR/pMHC-II gap volume. f. TR/pMHC-II gap index vs.
TR/pMHC-1II H-bonds. g. TR/pMHC-II gap index vs.
TR/pMHC-II BE. h. TR/pMHC-II gap volume vs. TR/pMHC-
IT H-bonds. i. TR/pMHC-II gap volume vs. TR/pMHC-II BE. j.
TR/pMHC-II H-bonds vs. TR/pMHC-II BE. k. TR/pMHC-II
interface area vs. TR docking angle. . TR/pMHC-II gap index
vs. TR docking angle. m. TR/pMHC-II gap volume vs. TR
docking angle. n. TR/pMHC-II H-bonds vs. TR docking angle.
o. TR/pMHC-II interface area vs. TR/pMHC-II contact area.
p. TR/pMHC-II gap index vs. TR/pMHC-II contact area. q.
TR/pMHC-II gap volume vs. TR/pMHC-II contact area. r.
TR/pMHC-1I H-bonds vs. TR/pMHC-II contact area. s.
TR/pMHC-II BE vs. TR/pMHC-II contact area. t. TR/pMHC-

II contact area vs. TR docking angle.

The corresponding regression coefficients (r*) are shown within
each of the graphs. The respective units are mentioned in the
parentheses next to the names of the interaction parameters along

the x and y-axes.
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ABSTRACT

The adaptive immune system in higher jawed vertebrates carries out antigen presentation
and recognition in two steps. Major histocompatibility complexes (MHC) first bind
immunogenic peptide epitopes (p) derived from antigens and present them as peptide-
MHC (pMHC) complexes, for subsequent recognition by T cell receptors (TR) leading to
T cell activation . A decade after the first TR/pMHC structure was reported, the molecular
basis of TR/pMHC interaction is still unknown. Peptide epitopes that bind strongly to
MHC proteins are known to elicit T cell response, albeit with ~50% efficiency, forming the
basis of T cell-based peptide vaccines. Experimental identification of these epitopes is a
tedious, time consuming and expensive process. Computational methods are comparatively
inexpensive and efficient in screening numerous peptides against their cognate MHC
alleles. Sequence-based prediction methods are well established but are limited by the
requirement of large datasets of known MHC-binding peptides. Structure-based prediction
approaches, especially docking techniques, are universally applicable and specially suited

for alleles with limited data.

For efficient vaccine design and to minimize experimental T cell binding assays, precise
computational strategies for rapid prediction of high-binding epitopes for all alleles with a
high propensity to activate T cells, are required. Our group has previously developed an
accurate structure-based docking protocol, from which prediction models for identifying
high-binders have been developed. However, this method is not fast enough to scan an
entire proteome for large-scale pathogen screening studies. We also need to understand the
physicochemical basis of TR binding to pMHC, to screen high-binders for greater TR
binding potential and eliminate those that do not lead to T cell activation. These two
specific aims are addressed in this thesis, and applied to predict true T cell epitopes

amongst high-binders for a disease-implicated MHC allele.

pDOCK is a new fast, accurate and robust method for high-throughput screening of
pathogenic sequences, based on flexible docking of peptides to MHC-I and MHC-II
proteins. Compared to our earlier docking methodology, pDOCK shows upto 2.5 fold
improvement in accuracy (7-fold compared to earlier published studies) and is ~60%
faster. To dissect TR/pMHC interactions, I have collated and analysed 61 TR/pMHC
crystallographic structures, available in the new database, MHC Peptide Interaction

Database — version T2 (MPID-T2; http://www.biolinfo.org/mpid-t2). MPID-T2 is an

XX



updated and extended version of the earlier MPID-T database, augmented with advanced
features and new parameters for analysis of pMHC and TR/pMHC structures. Based on
this analysis, I have defined criteria for selecting peptides with high probability to activate
T cells. These criteria have been validated with published peptide mutation studies, where

TR binding has been changed or abolished.

I have applied pDOCK and the TR binding criteria to predict “true” immunogenic epitopes
from high MHC-binding peptides for celiac disease and insulin-dependent diabetes
mellitus (IDDM) associated HLA-DQS8 allele. Our approach identified potential T cell
epitopes, based on MHC and TR specificities, lacking conserved binding motifs, for
experimental testing and validation. High prediction accuracy of HLA-DQS8-binding
peptides was validated by existing experimental, biochemical and functional data. The
bioinformatic approaches developed in this thesis are novel, generic and applicable for the
development of effective immunotherapeutic and highly specific peptide vaccines with
wide population coverage, capable of eliciting T cell response, thereby cutting down the

lead time involved in experimental vaccine development protocols.
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Chapter 1: Introduction and literature survey

1.1 Overview

The adaptive immune system plays a vital role in defending higher jawed vertebrates
against infectious, allergic and graft vs. host diseases, while malfunctioning of this system
leads to autoimmune diseases. The title “adaptive” suggests its ability to adapt and respond
to an ever changing variety of new pathogens thereby conferring long-lasting or protective
immunity to the host. For maximal immunological protection against this multitude of
pathogens, the adaptive immune system carries out antigen presentation and recognition in
two steps, where cell surface glycoproteins called major histocompatibility complexes
(MHC) or human leukocyte antigens (HLA) in human, first bind antigenic peptide epitopes
(p) and present them as peptide-MHC (pMHC) complexes on the surface of antigen-
presenting cells (APC), for subsequent recognition by T cell receptors (TR), leading to

TR/pMHC complex formation and eventually causing T cell activation [1-4].

The TR/pMHC interaction is relatively feeble compared to other important interactions
between the molecules of the immune system [5, 6], yet strong enough to trigger TR
mediated activation of T cells, thereby eliciting an immediate immune response to either
destroy infected cells directly (via CD8" cytotoxic T cells) or activate other immune
system cells like B cells and macrophages (via CD4" helper T cells) to carry out the
immune response. Almost a decade and a half after the first TR/pMHC structure was
reported [7], the molecular basis of TR/pMHC interaction is still unknown [8], due in part
to the complexities of the proteins involved in this association. Therefore, uncovering the
reasons for the specificity of TR/pMHC interactions and their mechanism remain an

unsolved problem in understanding the physicochemical basis of TR binding to pMHC.

T cell epitopes are essential subunit peptide sequences that are required to stimulate
cellular immune responses, especially the adaptive immune responses [9]. Peptide epitopes
can be of endogenous (processed within the cell) or exogenous (processed outside the cell)
origins, and these peptide epitopes are presented for surveillance and recognition by the TR
in an MHC allele and supertype-dependent manner. Antigenic peptides that bind strongly
to MHC alleles are known to elicit T cell responses [9-15]. Hence, their identification is a
vital first step in the process of immune epitope prediction. Experimental identification of

T cell epitopes is a tedious, time consuming and expensive process owing to the large



number and diversity of both MHC alleles and the antigenic peptides, especially in the
light of the extremely low chance of immunogenicity (1 in 2000 peptides) even amongst

the peptides that bind strongly to the MHC (50%) [16].

Recently developed computational methods have proven to be vastly efficient in time and
cost, in screening the vast numbers of peptides and MHC repertoires [17, 18], as a first step
towards T cell epitope prediction. Sequence-based prediction methods are well established
but are limited by the requirement of large datasets of known MHC-binding peptides [10,
17, 18]. Structure-based prediction approaches, especially docking techniques, are
universally applicable and specially suited for alleles with limited data [10, 11, 17, 18].
Our group has previously developed an efficient structure-based docking protocol [10, 11],
from which prediction models for identifying high-binders were developed [11-14].
However, this method is not fast enough to scan an entire proteome for large-scale

pathogen screening studies.

Also, a 50% chance of immunogenicity [16] means that only half of any given predicted
set of high-binding peptides will eventually function as T cell activators. Hence,
identifying the subset of peptides capable of T cell activation via TR recognition of pMHC
complexes becomes the second step in T cell epitope prediction. Similar to the first step,
this step also comes with its own impediments such as the complex structure of TR
proteins and the incomplete characterisation of the molecular and physicochemical basis of
TR/pMHC interaction. Therefore, for efficient vaccine design and to minimize
experimental T cell binding assays, precise computational strategies for the rapid detection

of high-binding epitopes, with a high propensity to activate T cells, are required.

In order to address these two steps efficiently using computational methods, a brief history
on the discovery of MHC and TR, their genetic makeup, structure and function, pMHC
binding, TR/pMHC interaction along with various issues, tools and resources currently
available for T cell epitope prediction is first presented. Following this, the significance of
studying TR/pMHC interactions in clinical medicine, and research objectives (issues
addressed) are presented. The specific aims of this thesis and how they have been

addressed forms the rest of the thesis, followed by conclusions and future directions.



1.2 Brief history of MHC and TR proteins

The MHC protein was first discovered in 1936 by the British immunologist, Peter Gorer
[19, 20]. He later identified a blood group locus in mice and showed that blood type
segregated with susceptibility and resistance to a transplantable tumour [21-23]. This was
the first case of individual identification of a histocompatibility locus. He then went on to
identify antibody response to tumour inoculation and detect cytotoxic activity of
isoantibodies in mice [24, 25]. Later, the American geneticist, George Snell coined the
term histocompatibility (H) antigen to describe cell-surface antigens provoking graft
rejection [26]. He also demonstrated that differences at the H-2 gene locus provoked the
strongest graft rejection of all the potential H antigens seen among various mouse strains

[27,28].

Snell’s work on mice led to the discovery of HLA proteins by the French immunologist,
Jean Dausset, in early 1950s, when he observed that patients who had multiple blood
transfusions had antibodies (alloantibodies) to lymphocytes from other individuals, but not
to their own lymphocytes [29]. Dausset went on to define the first HLA determinant in
humans, which was the analogue of the murine H-2 complex. In 1969, pioneering research
by the Venezuelan immunologist, Baruj Benacerraf, proved that these genes control the
body’s ability to respond to particular antigens by controlling the cellular responses among
immune system cells, thereby, proving the significance of these genes in immune
responses [30]. The term MHC was introduced in the early 1970s. Snell, Dausset and
Benacerraf shared the 1980 Nobel Prize for physiology or medicine for the discovery of
MHC.

Until the mid-1970s, T cell immunology was confounded with hypotheses ranging from
the resemblance of a TR to a B cell antigen receptor, to theories about how a TR can
recognize the pMHC complex. It was only during the twentieth century that MHC
restriction was recognized, proving that the type of antigens recognized by T cells are
different, compared to those recognized by B cells and that the scenario in which the
former function is fundamentally different from the latter [31, 32]. Hence, discovering the
molecular structure of a TR had become an extensively pursued field of research in the
early 1980s. Aided by vast improvements in monoclonal T cell production technology,
dedicated research groups led by Jim Allison, Ellis Reinherz, John Kappler and Philippa
Marrack identified the two-chained aff TR protein as early as 1982-83, using murine

antibodies [33-36].



Later, Steve Hedrick and Mark Davis together identified the murine TR B-chain employing
molecular biology techniques [37-39]. Subsequently, in 1984, the human TR B-chain was
identified by the Canadian immunologist, Tak Mak and colleagues [40]. Finally, in the
very same year, Davis and co-workers identified the TR a-chain [41], while working on
which, they accidentally stumbled upon another type of TR chain, which they labelled the
TR y-chain. The identification of TR y-chain eventually led to the discovery of a second
type of TR, the y6 TR, which was previously unknown [32]. Identification of all the TR
chains consequently resulted in rapid determination of the TR gene loci. The work
presented in this thesis focuses on afy TR proteins. Therefore, the use of the abbreviation

TR is restricted only to aff TR proteins.

1.3 Genetic makeup of MHC and TR proteins

The human MHC genes or HLA genes are located on chromosome 6. Due to the vital role
played by the MHC proteins in defending against a vast majority of diverse pathogens, the
MHC genes themselves must exhibit great variety. This is perhaps the reason as to why the
MHC region is one of the densest regions in the mammalian genome. Currently, HLA
genes are organized into three major classes or gene complexes, designated class I (MHC-
), II (MHC-II) and III (MHC-III; Fig. 1.1). MHC-III genes, located in between MHC-I
and MHC-II genes (Fig. 1.1), primarily encode components of the serum complement
system and proteins in other body fluids (e.g.C4, C2, factor B, TNF). MHC-I and MHC-II
gene complexes, on the other hand, encode a number of highly polymorphic cell-surface

proteins, responsible for antigen presentation.

The MHC-I gene complex is subdivided into three major loci, HLA-A, -B, and -C [1, 42]
(Fig. 1.1) and other minor loci. Each major locus codes for a polypeptide; the a-chain of
which contains antigenic determinants and is polymorphic. This a-chain, associates with a
B-2-microglobulin chain, encoded by a gene outside the MHC complex and is expressed on
the cell surface. The MHC-II HLA gene complex, referred to as HLA-D, is sub-divided
into at least six loci, namely HLA-DR, -DQ, -DP, -DM, -DO, and -DZ [1, 42, 43], with
HLA-DR, -DQ and —DP (Fig. 1.1) being the most expressed and common [44, 45] ones.
MHC-I and MHC-II genes are the most polymorphic among all the genes in the human
genome. Some of these genes have over 200 allelic variants identified to date. A single
human individual expresses a finite number of MHC alleles and is heterozygous for each

MHC gene, despite considerable MHC polymorphism.
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Figure 1.1: A schematic representation of the human MHC genes. The diagram shows the
location of the genes that encode MHC-I and II proteins. MHC-I gene loci A (orange), B (rose) and
C (pink) along with MHC-II gene loci DP (light green), DQ (turquoise) and DR (lavender) are
shown. The centromere and the MHC-III loci are coloured yellow and light blue, respectively. The
polypeptide chains coded for by the loci are shown within the boxes depicting different loci in

MHC-I and II gene complexes.

a chain (TRA)

B chain (TRB) _

Figure 1.2: A simple example of the rearrangement that occurs during TR a (TRA) and B

(TRB) chain formation. The V, D and J gene segments coding for the variable domain of the TR
are shown in green, turquoise and lavender, respectively. The constant gene segment that codes for

the constant region of the TR is shown in black.

The TR genes are formed by somatic rearrangement of germline gene segments [1] and
resemble immunoglobulin (IG) genes in their structure and mechanisms of diversity
generation. The array of gene segments that encode the o and B chains in a typical aff TR
are located on different chromosomes [1, 3]. The TRA (encoding the a chain) and TRB
(encoding the B chain) loci in human are located on chromosomes 14 and 7, respectively
[3, 46]. Both these chains have constant and variable domains. The constant domains are
encoded by the constant (C) gene segment. Similar to the IG heavy-chain (IGH) locus, the
TR variable region locus contains separate variable (V), diversity (D) and joining (J) gene
segments. These gene segments are brought together by site-specific recombination during
T cell development in the thymus [1, 3, 46, 47]. V and J gene segments are present among

both TRA and TRB loci. However, the D gene segments are present only in the TRB locus
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[3, 48]. Thus, in a seemingly ordered process, one V gene segment, one D gene segment
(only for B chain) and one J gene segment are randomly rearranged together, giving rise to
a V-(D)-J gene (Fig. 1.2) which represents one of a multiple number of possible sequential

recombinations, thereby, generating combinatorial diversity amongst TR proteins.

1.4 Structure and function of MHC

MHC proteins have evolved to protect higher jawed vertebrates from invading pathogens
and virtually all substances bearing non-self antigens [1, 4, 15, 49]. As said earlier, peptide
fragments of potential antigens are presented to circulating T cells (through TR/pMHC
interaction, discussed later) by MHC-I and MHC-II proteins [3, 15, 49]. Hence their role in
immune surveillance is extremely crucial. In general, recognition of pMHC complexes by
T cells, via TR proteins, is aided by certain structural characteristics, critical for the role of
MHC proteins in antigen presentation, shared amongst all MHC proteins [50, 51].
TR/pMHC complex formation, antigen recognition and T cell activation are said to be
MHC restricted [8, 52-54], as TR proteins will only bind to antigenic peptides that are
associated with MHC proteins. However, understanding how TR proteins recognized the
pMHC complex required the first X-ray crystal structure of an MHC protein, which was
achieved in 1987 [55, 56].

It is now clear that each MHC protein consists of an extracellular peptide binding cleft
(Fig. 1.3) formed by paired binding groove a-helices resting on an eight-stranded anti-
parallel B-sheet that forms the floor of the cleft. This peptide binding cleft or groove is
above a pair of immunoglobulin (IG)-like regions or C-LIKE domains and is anchored to
the cell membrane by transmembrane and cytoplasmic regions (Fig. 1.3) [1, 57, 58]. The
binding groove of the MHC protein binds antigenic peptides for presentation on the APC
cell surface where TR proteins interact with the displayed antigen and the helices of the
MHC proteins [59]. The responsibility for different peptide binding specificities among
different MHC alleles rests solely with the highly polymorphic amino acid residues located
in and around this cleft [50]. T cell co-receptors, clusters of differentiation molecules, CD4
and CD8, bind to the non-polymorphic 1G-like regions or C-LIKE domains of the MHC [1,
54, 60, 61]. These CD4 and CDS co-receptors are expressed on the membranes of distinct
subpopulations of mature T cells. They are known to play a considerably significant role in
antigen recognition along with TR proteins. CD8 co-receptors bind specifically to MHC-I
proteins and CD4 co-receptors bind to MHC-II proteins. Therefore, CD8" T cells recognize



only pMHC-I complexes and CD4" T cells recognize only pMHC-II complexes. CD8" T

cells function as cytotoxic T cells and CD4" T cells are helper T cells.

b.

Peptide binding cleft

IG-like region or

p2m C-LIKE domain

domain

Transmembrane

region
Plasma -
membrane -

Cytoplasmic
region

<+——— Cytoso| —

Figure 1.3: A cartoon depiction of typical MHC proteins. a. MHC-1. b. MHC-IL. The o and -2
microglobulin chains of MHC-I are coloured dark and light green, respectively in a. and the a and
B chains of MHC-II are coloured dark and light blue, respectively in b. The peptide binding cleft,

B2m domain, C-LIKE domains, various regions, plasma membrane and the cytosol are labelled.

1.4.1 MHC-I

Typically, MHC-I proteins are ternary heterodimers. They consist of a heavy glycosylated
transmembrane o chain (I-ALPHA in IMGT standardized abbreviations [50]) of roughly
45 kDa which is non-covalently linked to a smaller polypeptide light chain, [,-
microglobulin (Bom), of about 12 kDa [10, 11]. The complete protein has four globular
extracellular domains (Fig. 4a) and the connecting, transmembrane segment and a short
cytoplasmic tail (Fig. 1.3a) that anchor the MHC onto the cell membrane and are usually
excluded from the 3D X-ray crystal structures. The heavy a chain consists of al (G-
ALPHA1), a2 (G-ALPHA?2) and a3 (C-LIKE) domains. The G-ALPHA1 and G-ALPHA2
domains form the peptide binding groove or cleft [59], as shown in Figure 1.4a. Both G-
ALPHA1 and G-ALPHA2 domains have a similar structure. Beginning from the N-
terminus, each domain forms four anti-parallel B-strands followed by a single a-helix

across the B-strands. The association of the two domains is such that their B-sheets are



hydrogen-bonded to each other. This hydrogen-bonding results in the formation of a
platform of a contiguous eight-stranded anti-parallel B-sheet which acts as the floor of the
peptide binding cleft (Fig. 1.4b). There occurs a small propeller twist within this otherwise
relatively flat B-sheet. The two a-helices from the G-ALPHA1 and G-ALPHA2 domains
appear to form a boundary of the peptide binding groove on either side of the anti-parallel
B-sheet (Fig. 1.4b). The C-LIKE a3 domain is made up of an IG-like region. The B,m
forms the fourth domain and is located close to the C-LIKE domain (shown in Fig. 1.3a
and Fig. 1.4a).

-

a. Peptide binding _.} a2 (G-ALPHA2) b.
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Figure 1.4: A ribbon representation of a MHC-I X-ray crystal structure (Protein Data Bank -
PDB [62, 63] code: 1oga [S3]). a. The four domains. b. An aerial view of the peptide binding
cleft. In a. the al (G-ALPHA1), a2 (G-ALPHA2), a3 (C-LIKE) and the B,m domains are coloured
red, yellow, green and blue, respectively, to clearly show the structure of the MHC-I protein.
Highlighted in b. is the anatomy of the peptide binding cleft formed by the two a-helices on either
side of the B-sheet which forms the floor.

Synthesized in the endoplasmic reticulum (ER) within the cells, MHC-I proteins are
present on the surface of almost all nucleated cells, except neurons, in human [43].
Therefore, they are ubiquitously expressed by most cells [59, 64-66]. Aimed at detecting
viral infections in cells, the MHC-I-restricted antigen processing and presentation pathway
is a sophisticated surveillance mechanism. MHC-I proteins mainly function by binding
peptides derived from endogenous antigens and then transporting them to the cell surface
where they are presented for surveillance and recognition by the TR proteins of cytotoxic
CDS" T cells. Most peptide ligands that bind MHC-I proteins are sourced from proteins
that are degraded by proteases [67]. Exactly how the products of such endopeptidase

activity are of such striking precision in terms of the length or size of the peptide ligand



that binds MHC-I proteins, remains an enigma. Perhaps, the proteases directly produce
peptides of strikingly similar and appropriate size, or it could be that the proteases may
generate longer peptides which are further processed to proportionate size by another
biochemical mechanism. A lingering possibility of two short non-continuous peptide
fragments being fused together to create the final MHC-I ligand, by means of post-
translational protein splicing, also exists [68]. In any case, the transporter associated with
antigen processing (TAP) proteins must transport these peptides from the cytosol into the
ER and load them onto the MHC-I peptide binding groove in an ATP-dependent manner
[67, 69]. What happens in the ER lumen to these transported peptides between their release
from the TAP proteins to being loaded onto the MHC-I proteins, is also debatable.
However, it is widely believed that the peptides are directly loaded onto MHC-I proteins
immediately after release from the TAP proteins [70-73]. This would mean that the loaded
peptides are either already of the correct size or they bind as longer peptides and are

subsequently trimmed while being bound to the MHC-I proteins.

1.4.2 MHC-II

MHC-II proteins are also transmembrane heterodimeric glycoproteins consisting of two
polypeptide chains, namely, an a chain (II-ALPHA; 34 kDa) and a B chain (II-BETA; 29
kDa) held together by non-covalent interactions and with very similar overall quaternary
structure to that of MHC-I proteins [12-14, 74-76] (Figure 1.5). Similar to MHC-I proteins,
the MHC-II proteins also have four globular extracellular domains, two on each chain,
namely al (G-ALPHA), a2 (C-LIKE), 1 (G-BETA) and B2 (C-LIKE) domains (Fig. 1.5a)
[59], and the connecting, transmembrane and cytoplasmic regions (Fig. 1.3b) that anchor
the MHC onto the APC membrane and are also not present in the 3D X-ray crystal
structures. However, their peptide binding groove is formed by the G-ALPHA and G-
BETA domains of the a (IIL-ALPHA) and B (II-BETA) chains, respectively [59]. The G-
ALPHA and G-BETA domains mimic the MHC-I G-ALPHA1 and G-ALPHA2 domains
by forming the peptide binding cleft with two a-helices, one from each domain, forming

the boundary on either side of a B-sheet floor (Fig. 1.5b).

The ER also synthesizes the MHC II proteins with two polypeptide chains a (II-ALPHA)
and B (II-BETA) which are assembled and bound by the invariant chain (Ii) [77]. Unlike
MHC-I proteins, which are expressed on most cells, MHC-II proteins are expressed on
specific APC such as dendritic cells, endothelial cells, monocytes and B cells. MHC-II

proteins specialize in binding exogenous antigenic peptides and presenting them at the



APC cell surface for surveillance and recognition by the TR of the CD4 " helper T cells.
The MHC-II foreign peptide presentation pathway occurs in various steps. At first the
antigen is ingested into the APC cytosol and degraded enzymatically into peptide
fragments by endosomes and lysosomes. Unlike the MHC-I proteins, in the MHC-II
peptide presentation pathway, the binding fragments of Ii prevent the loading of the
peptide by binding onto the peptide binding cleft of the MHC-II proteins in the ER.
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Figure 1.5: A schematic ribbon representation of a MHC-II X-ray crystal structure (PDB
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code: lymm [78]). a. The four domains. b. An aerial view of the peptide binding cleft. In a. the
al (G-ALPHA), o2 (C-LIKE), Bl (G-BETA) and B2 (C-LIKE) domains are coloured red, blue,
yellow and green, respectively, clearly illuminating the structure of the MHC-II protein. Illustrated
in b. is the anatomy of the peptide binding cleft formed by the two a-helices sitting on either side
of the B-sheet which forms the floor.

Meanwhile, Ii targets the MHC-II protein to a lysosomal-like compartment termed MHC-II
compartment (MIIC) [79, 80]. As a result of the combined action of proteolytic enzymes
and HLA-DM protein, Ii is removed from MHC-II proteins within the MIIC. Finally, the
degraded peptide antigens bind to the now available peptide binding cleft of the MHC-II
proteins. Consequently, the freshly loaded pMHC-II complexes are transported to the APC
cell surface, where, recognition by the helper T cells results in the production of cytokines,
which stimulate other immune system cells such as B cells and macrophages to carry out

the immune response.

1.5 pMHC binding

Cellular immune responses, especially the adaptive immune responses are stimulated by

essential subunit peptides called as immunogenic antigens or T cell epitopes. These
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immunogenic epitopes are presented for surveillance and recognition by the TR in an
MHC allele- (polymorphic MHC proteins) and supertype- (groups of MHC proteins with
similar peptide binding properties) dependent manner [81, 82] and can be of endogenous or
exogenous origins, as alluded to earlier. Various structural features and interaction
parameters have now been characterised for pMHC-I and pMHC-II binding [15, 50, 83-
85]. The overall physicochemical properties of these interactions remain the same across
pMHC-I and pMHC-II complexes. For example, the nine residues (nonameric core) of the
MHC-II peptides that bind within the peptide binding cleft mimic the normal length of the
MHC-I peptides [11, 15, 49]. However, the pMHC binding criteria vary slightly for
pMHC-I and pMHC-II complexes, particularly in the presence and contribution of the
flanking residues (extending outside the peptide binding cleft) in pMHC-II binding [10, 11,
15, 49]. Today, these structural descriptors are widely used in the study of pMHC
interactions to decipher the peptide binding preferences of different MHC alleles.

1.5.1 pMHC-I

Residues from both the peptides and the binding groove of the MHC proteins mediate the
non-covalent interactions that facilitate peptide binding to MHC-I proteins [50, 51].
Usually, peptides of about eight to eleven amino acids in length are presented by MHC-I
proteins [10, 15, 49-51]. In very rare cases, this range extends on either side such that
peptides from seven to fourteen residues bind to MHC-I proteins. In any case, most of the
peptide residues are bound in an extended conformation within the peptide binding groove
(Fig. 1.6a) [49-51]. The polymorphic ‘pocket’ residues within the peptide binding cleft of
the MHC-I proteins have side-chains that can accommodate and subsequently bind to the
complementary amino acid residues of the peptides (Fig. 1.6a). Hence, the peptide binding
cleft can be subdivided into various pockets (A to F) [86].

There are highly polymorphic residues around the N and C-termini of the peptides (Fig.
1.6a). These residues are called anchor residues due to their vital role in ‘anchoring’ the
peptide firmly within the peptide binding cleft and thus, contribute greatly not only
towards pMHC complex formation but also to their presentation and recognition by TR
proteins since strong-MHC-binding peptides are known to elicit T cell responses [9-15, 49,
87, 88]. Therefore, the polymorphic MHC residues that line these pockets within the
peptide binding cleft along with the polymorphic peptide residues, determine the individual
specificity of a given pMHC interaction. Typically, there are two anchor residues at each

terminus. These termini of the peptide are bound by a set of conserved hydrogen bonds
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[89] causing them to bury deep into the cleft cavity. However, this burial arrangement of
the terminal residues, fascinatingly, does not affect the length of the peptide binding across
the cleft. Longer peptides though, may choose from a zigzag conformation [90] to a bulged
orientation (Fig. 1.6b) [91-93] within the cleft, to allow peptides of greater length maintain

the relative position of their terminal or anchor residues.

Figure 1.6: Different conformations adopted by MHC-I binding peptides. a. A nonameric Tax
peptide bound in a flattened conformation to HLA-A*0201 from the PDB structure 1duz [94].
b. A 13-residue peptide bound in a bulged fashion to HLA-B*3508 from the PDB structure
2ak4 [93]. The peptide and the MHC peptide binding clefts are coloured green and red,
respectively. The N and C-terminal peptide ‘anchor’ residues and the ‘pocket’ residues from the
MHC peptide binding cleft are shown in ball and stick representation and are portrayed in yellow

and blue, respectively, in a. to highlight the strong interactions around the peptide termini.

1.5.2 pMHC-II

The peptides presented by MHC-II proteins are generally twelve to twenty amino acids in
length [10-15, 49-51]. Similar to MHC-I proteins, MHC-II proteins can also have
exceptions in the lengths of the peptides that bind to their peptide binding cleft. Again, in
extreme cases the above mentioned range of twelve to 25 amino acids can be extended on
either side to accommodate a spectrum of peptides with lengths ranging from six (Fig 1.7a)
[95] to 30 amino acids [43]. Again, akin to MHC-I proteins, the peptide binding groove of
MHC-II proteins can also be subdivided into a series of pockets (1 to 9) [76, 96, 97].
Specifically, MHC-II proteins form hydrogen bonds with peptide side chain atoms along
the length of the peptide nonamer (Fig. 1.7b) that is bound to the peptide binding cleft [49-
51, 85, 97], quite unlike pMHC-I binding, where the allele-independent hydrogen bonding
between the MHC and the peptide is focused around the N- and C-termini or anchor

residues of the peptide. MHC-II proteins also make contacts with the atoms forming the
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peptide main chain for the nonamer within the peptide binding cleft [43, 85]. The bound

conformation of the nonamer within the groove is usually flattened (Fig 1.7b).

This liberal nature of the MHC-II binding cleft enforces no absolute constraints on the
complete length of the peptide that can bind to their grooves. The additional residues of the
peptide beyond the nonameric core, called flanking residues, generally extend out of the
peptide binding cleft (Fig. 1.7b), on either side in most cases, and do not strictly adopt any
particular conformation. Yet, they contribute considerably to pMHC-II binding [10, 11, 15,
49] and differentiate it greatly from pMHC-I binding.

Q
\
lll‘l
Ii,.'
ul"
Wy

Flanking residues

Flanking residues

Figure 1.7: Diversity in the lengths of peptides binding to MHC-II proteins. a. A 6-residue
peptidomimetic peptide bound to HLA-DRB1%0401 from the PDB structure 1d5x [95]. b. A
20-residue peptide from myelin basic protein bound to HLA-DR2a heterodimer (composed of
an o chain - II-ALPHA from HLA-DRA*0101 and a B chain - II-BETA from HLA-
DRB5%0101) from the PDB structure 1fvl [97]. The peptide and the MHC peptide binding clefts
are coloured green and red, respectively. The peptide residues interacting with the MHC and the
‘pocket’ residues from the MHC peptide binding cleft are shown in ball and stick representation
and are portrayed in yellow and blue, respectively, in b. to highlight the strong interactions along
the length of the peptide nonamer within the peptide binding cleft. The flattened conformation of
the nonamer is clearly evident. The flanking residues extending out of the peptide binding cleft are

labelled.

1.6 Structure and function of TR

TR proteins are arguably as important a part of T cell-dependent immune responses as the
MHC proteins. Since the groundbreaking isolation of the genes encoding these vital
components of adaptive immune system, more than a quarter of a century ago [40, 41],
well over 30,000 articles have been published highlighting their structure, function,

interaction with pMHC complexes and various other aspects of their biology [98]. This
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vast attention directed towards the TR could be attributed to the fact that specificities
within TR proteins render faithful abilities to T cells for distinguishing self-antigens from
non-self antigens [98-100]. Thereby, exercising self-tolerance (preventing normal cells
from being destroyed) and ensuring a successful immune cascade. Hence, TR proteins are
the focal point of research into autoimmune diseases like multiple sclerosis [99] and
various other immune system related ailments such as melanoma [101] and multiple

myeloma [102-107].

Given these important facts about the vital functionality of a TR protein in T cell mediated
immune responses, an essential component of research in immunology is to study the
structure of a TR for more insights into its functions and to acquire the knowledge of how
exactly it performs its function. As mentioned earlier, a typical aff TR has two chains, o
and B, each divided into two extracellular domains called constant (encoded by the
conserved constant (C) gene segment of the TR coding genes) and variable domains
(encoded by rearranged variable (V), diversity (D) and joining (J) gene segments, V-J for a
chain and V-D-J gene segments for [ chain, respectively) [3, 46-48, 108], which are
followed by a transmembrane and a short cytoplasmic region that anchor the respective

chains and subsequently the TR onto the T cell surface (Fig. 1.8a).

The constant and variable domains perform specific functions and are generally present in
the crystal structures of the TR proteins, which lack the transmembrane and cytoplasmic
regions. The two conserved or constant TR domains (Ca and CP; Fig. 1.8a, b) of both o
and B chains [109, 110] are linked to the upper more diverse or variable domains (Va and
VB; Fig. 1.8a, b), containing the CDR (complementarity determining region) 1, 2 and 3
loops (Fig. 1.8¢c) which recognize the pMHC at the TR/pMHC binding interface [111].
Interestingly, the overall structural assembly, domain organization and chain-fold of the
TR proteins that recognize both pMHC-I and pMHC-II complexes are strikingly similar.
The only significant difference that could contribute to pMHC-I or pMHC-II specificities

of a given TR is the amino acid sequence variation of the Va. and V3 CDRI1, 2 and 3 loops.

The function of TR proteins is similar to certain cell surface receptors of B cell mediated
immune responses, such as Fc receptors, found on the surface of macrophages or
neutrophils, which bind to antigen-bound antibody, resulting in phagocytosis and lysis of
the antigen or pathogen by macrophages or neutrophils [1, 112, 113]. However, the

function of TR proteins differs from B cell mediated cell surface receptors in that, upon
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TR/pMHC complex formation, the TR proteins do not actually cause the T cells to ingest
and break down the pathogen. Instead, they trigger T cells to destroy the infected cells
either directly (via CD8" cytotoxic T cells) or indirectly (via CD4" helper T cells).

Variable _—
domain

Constant_
domain

Transmembrane,
region

Plasma
membrane

Cytoplasmic____,

Figure 1.8: Domains in a TR. a. A cartoon depicting a typical aff TR, its various regions and
domains. b. The variable and constant domains in a 21.30 TR from the TR/pMHC-II X-ray
crystal structure 3mbe (PDB code; [114]). ¢. The Va and VP domains in a M67 TR from the
TR/pMHC-I X-ray crystal structure 3e2h (PDB code; [115]) rotated 180° along their
interacting axis to show the CDR1, 2 and 3 loops. In a. the variable and constant domains along
with the transmembrane and cytoplasmic regions within the TR o chain (orange) and TR B chain
(red), the plasma membrane and the cytosol are labelled. In b. the Va, VB, Ca and CP domains are
labelled and coloured red, yellow, blue and green, respectively. In ¢. pMHC interacting CDR1, 2
and 3 loops from Vo domain are labelled and coloured pink, turquoise and yellow, respectively.
Similarly, the pMHC interacting CDR1, 2 and 3 loops from V[ domain are labelled and coloured

orange, red and green, respectively. The Vo and V3 domains are also labelled in ¢.

Another important thing to note about the function of TR proteins is that they are aided by
co-receptors such as CD proteins [116, 117]. These CD proteins convey intracellular
signals that are triggered when a TR engages with a pMHC [116-118]. Nevertheless, it is
the recognition of pMHC complexes by the TR proteins that activates the T cells resulting
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in the production or secretion of cytokines by the activated T cells [119]. The cytokines
secreted by CD8" T cells cause their differentiation into cytolytic or cytotoxic effector T
cells (CTL), while the cytokines secreted by CD4" helper T cells support their
differentiation into effector helper T cells [120-122]. This phenomenon initiates the
effector response and sheds light on the significance of a TR in the entire adaptive immune

response mechanism.

1.7 First crystal structures of TR/pMHC complexes

Similar to the acceleration in research for identifying the structures of a MHC and a TR
protein, the race to solve the crystal structure of a TR/pMHC complex began in the early
1990s. Diligent efforts were made in October 1996 by Garcia and co-workers [123], when
they solved a crystal structure of a murine 2C TR (PDB code: ltcr) and proposed its
orientation or bound conformation to a pMHC-I complex from TR/pMHC crystals. Using
this model, they were able to explain the positional orientations of CDRI, 2 and 3 loops of
the Va and VP domains from the 2C TR. Shortly thereafter, in November 1996, the
complete X-ray crystal structure of a TR/pMHC complex was solved by Garboczi et al. [7,
124], where they reported a TR/pMHC-I complex (PDB code: 1a07) between the human
A6 TR and a tax peptide from the human T cell lymphotropic virus HTLV-1 bound to
HLA-A2*0201 allele.

Subsequently, the continual efforts of Garcia and co-workers [125] yielded results in 1998
when they crystallized a TR/pMHC-I structure between the murine 2C TR and the pMHC-
I complex formed by the murine MHC-I H2-Kb allele and dEV8 peptide (PDB code 2ckb).
The pioneering work from the Garcia and Garboczi’s groups generated a lot interest among
crystallographers and immunologists, who then began to work together to solve crystal
structures of TR/pMHC complexes, in order to better understand the fundamental
principles underlying TR recognition of pMHC complexes, TR/pMHC complex formation
and hence explain T cell activation. Following in the footsteps of Garboczi and co-
workers, Ding et al. [126] reported another crystal structure in 1998, between the pMHC-I
complex containing the tax peptide and HLA-A*0201 allele and a different human TR
known as B7 (PDB code 1bd2). This marked the beginning of an expansion in TR/pMHC
structural data through the early 2000s. To date, there are 62 TR/pMHC structures reported
for which crystal structures are available in the PDB. One of these (PDB code: 2icw;
[127]) has a superantigen mediating the TR and pMHC binding and is thus not strictly a
TR/pMHC complex.
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1.8 TR/pMHC interaction

The mechanisms of combinatorial diversity and N-diversity of the variable domains of TR
that create 1012 TR per individual [3], the very high number of MHC alleles and most of
all, a vast number of antigenic peptides together with the structural and functional
complexities of these proteins (explained in the earlier sections) involved in this vital
immunological synapse, make the underlying mechanism responsible for the specificity of
TR/pMHC interactions, an elusive but extremely interesting area of research. As one
would expect, right from the time the first crystal structures of TR/pMHC complexes were
reported [7, 124-126], the elusive nature of this machinery’s specificities have led
researchers to propose various theories as probable concepts or reasons that direct and
dictate these interactions. These theories range from the TR "germline bias," in which
TR/pMHC binding is independent of the nature of the peptide and MHC restriction or TR
specificity is based on specific conserved contacts between TR V (variable) domains and
MHC proteins that co-evolve [128, 129], to the role of “diagonal” (below 70°; Fig. 1.9a)
and “orthogonal” (above 70°; Fig. 1.9b) angle of TR binding or docking onto the pMHC in
determining pMHC-I and pMHC-II specificities, respectively, for TR proteins [130, 131].

a. b.

Diagonal

Orthogonal

Figure 1.9: The TR docking angles for TR/pMHC structures. a. The interacting region of the
pMHC from the TR/pMHC-I structure 2e71 (PDB code; [132]) showing the “diagonal” TR
docking angle (44° in this case) seen in most TR/pMHC-I complexes [130, 131]. b. The
interacting region of the pMHC from the TR/pMHC-II structure 1d9k (PDB code; [130])
showing the “orthogonal” TR docking angle (71° in this case) seen in most TR/pMHC-II
complexes [130, 131]. The MHC-I G-ALPHAT1 and G-ALPHAZ2 helices and MHC-II G-ALPHA
and G-BETA helices are shown in red ribbon representation in a. and b. The cognate peptides are
depicted in blue ribbon representation. Similarly, the green ellipses portray the orientation of the
CDRI, 2 and 3 loops of the TR Va and VB domains on the pMHC. The diagonal line (also in
green) cutting across the ellipse (and hence through the centre of the mass of TR Va and VP
domains) shows the TR docking angle, with respect to the linear axis of the bound peptide, formed

on the pMHC interface.
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However, these explanations appear simplistic since, apart from the combinatorial issues
described above, cross-reactivity of MHC and TR proteins [133-135] that effectively
results in brief encounters between a TR protein and several pMHC complexes before the
TR protein actually interacts with a specific pMHC complex, possibly explaining the
feeble TR/pMHC interactions alluded to earlier, also adds to an impediment. Moreover, the
significant role played by the peptide in determining the specificities of TR/pMHC
interactions is widely accepted [133, 136-139]. Also, exceptional TR/pMHC-I [140] and
TR/pMHC-II [99, 114] crystal structures have been reported with unusually “orthogonal”
and “diagonal” TR docking angles, respectively, despite the fact that “diagonal” and
“orthogonal” TR docking angles are the most common and conserved among TR/pMHC-I

and TR/pMHC-II complexes, respectively [130, 131].

The increasing number of TR/pMHC X-ray crystal structures in PDB [62, 63] and in
IMGT/3Dstructure-DB  (http://www.imgt.org/3Dstructure-DB/) [57, 58], the reference
database for immunoglobulins, T cell receptors, MHC and pMHC structures, has resulted
in the identification of many structural characteristics that are common for most TR/pMHC
interactions. Among these, two prominent characteristics are: (i) the common docking
orientation or geometry of the TR proteins on pMHC complexes [53, 54, 139-141]; and (i1)
the CDR3 loops of TR Va and V[ domains, positioned in the center of TR/pMHC binding
interface where they contact the peptide, whereas the CDR1 and CDR2 loops of TR Va
and VP domains contact the tops of the MHC binding groove helices (G-ALPHA1 and G-
ALPHA?2 for pMHC-I and G-ALPHA and G-BETA for pMHC-II complexes), surrounding
the central CDR3-peptide region like a “gasket” [8, 132, 142-146] (Fig. 1.10).

These characteristics are thus, on the whole, similar for both TR/pMHC-I and TR/pMHC-
IT interactions. Yet, there have been differences observed between most TR/pMHC-I and
TR/pMHC-II interactions within these common characteristics. For example, the
“diagonal” and “orthogonal” angle of TR docking observed for TR/pMHC-I and
TR/pMHC-II structures [130, 131], respectively, although the orientations of the TR
proteins on pMHC complexes are overall similar for both TR/pMHC-I and TR/pMHC-II
complexes. Also, TR/pMHC structures [147, 148] have recently been identified where
CDRI1 and 3 loops from the TR Va and VP domains make extensive contacts with the

peptide, which again, is an exception compared to most TR/pMHC complexes. Hence, the
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above mentioned complexities are compounded with the overall commonalities found,
suggest the increasing importance for an in-depth analysis over a broad spectrum of data to

understand the minute physicochemical aspects of this vital binding.

CDR2

Central CDR3-peptide region

Figure 1.10: A pictorial representation of the central CDR3-peptide region surrounded by the
CDRI1 and 2 loops that interact with the MHC helices in the TR/pMHC-I structure 3h9s
(PDB code; [149]). The Va and VP domains are labelled. The Vo CDR1, 2 and 3 loops are
labelled and coloured pink, turquoise and yellow, respectively. Similarly, the VB CDRI, 2 and 3
loops are labelled and coloured orange, red and green, respectively. The dotted blue ellipse

represents the central CDR3-peptide region.

1.9 Issues with T cell epitope prediction

Apart from the complexities highlighted above, the identification of T cell epitopes is
inundated with a number of intrinsic issues and difficulties. There occurs a great diversity
in HLA genes among human population [150-155] with over 6000 known alleles or
variants identified as of January 2011 (http://www.ebi.ac.uk/imgt/hla/stats.html) [156].
Peptide epitopes that bind strongly to MHC proteins are known to elicit T cell response,
albeit with ~50% efficiency [16], forming the basis of T cell epitope prediction and hence
T cell-based peptide vaccines. As mentioned earlier, the high polymorphism of HLA
alleles along with allele specificity of candidate peptides [157], present the biggest obstacle
in determining high-binders to a particular allele. Peptide binding studies have identified
that each HLA allele possesses a unique spectrum of peptide binding specificities that

limits them to choose from only a restricted set of peptides [158].
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It has also been shown that strong and efficient pMHC binding is essential for
immunogenicity or T cell activation [158]. At the same time, evidence indicating that
efficient pMHC binding does not necessarily guarantee immunogenicity, also exists [16,
159]. Therefore, the binding of antigenic peptides to specific MHC alleles becomes a vital
rate-limiting step in the process of T cell activation. Experimental identification of strong-
binding peptides for every allele or T cell epitopes is a tedious, time consuming and
forbiddingly expensive process, not suitable for application in studies involving large
numbers of protein sequences or large-scale pathogen proteome studies [160-165]. Despite
the recent increase in experimental data for HLA-binding peptides in databases such as
IEDB (Immune Epitope Database; http:/www.immuneepitope.org/) [166-169] and
SYFPEITHI [170, 171] (http://www.syfpeithi.de/), there are a number of HLA variants for

which experimental data is either unavailable or limited.

Robust computational approaches with tolerance for imprecision, errors, data bias,
uncertainty, partial truth and limited amount of available data, are necessary and in
particular demand to successfully accelerate the T cell epitope discovery process [17, 172],
as imprecision, errors and biases prevail in currently available experimental data.
Nevertheless, the accuracy of a T cell epitope prediction method or model is highly
dependent on the quantity and quality of existing experimental data from biochemical and
immuno-assays. Therefore, problems related to peptide data have significant implications
on the selective ability and performance of the prediction model. A few major issues

related to peptide data are described below.

1.9.1 Quantity of peptide data

The choice and quality of the prediction model is directly affected by the availability of
considerable numbers of known peptide binders to specific alleles. As mentioned above,
there is a vast need for experimental peptide binding data from biochemical studies for
many HLA alleles. Structure-based predictive techniques (discussed later), especially
docking methodologies, are usually preferred, due to their robustness, when little or no
peptide data is available. For many years now, innate complexities involved with
developing protocols for high-throughput screening of peptides, model building, data
fitting and computational speed have severely hampered the development of computational
tools for use in structure-based prediction methodologies. However recent advances in
peptide docking protocols [10, 11, 49], can be harnessed for successful application of

structure-based techniques in T cell epitope prediction.
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Sequence-based predictive techniques (discussed later) however, are more useful as the
number of available known peptide binders increases. Sequence-based methods using
SVM (Support Vector Machines) outperform ANN (Artificial Neural Networks) based and
decision tree based approaches when employed on a relatively small training dataset of 36
binders and 167 non-binders [173], although with increasing peptide data, ANN-dependent
protocols are known to have a better predictive performance compared to that of methods
using motifs, matrices and HMM (Hidden Markov Models) for T cell epitope prediction
[17]. For MHC alleles with more than 100 known binders, ANN and HMM are the

predictive methods of choice [17].

1.9.2 Quality of peptide data

The development of robust, generic, efficient and useful predictive models has always been
impaired by the presence of noise and errors in accessible datasets. The role and impact of
errors and noise in datasets on building predictive models using various sequence-based
approaches, especially matrix-based methods, is well documented [174-177]. It has been
shown that even a nominal 5% error in a dataset could potentially double the number of
data points compared to a relatively ‘clean’ dataset, required to construct a reasonably
accurate matrix-based models [174]. Ironically, the ability and performance of ANN and
HMM based models to handle incomplete or inaccurate data is not significantly influenced
by similar degrees of error [176-178]. These results again support the choice of ANN and
HMM based methods to develop predictive models provided a high quantity of

biochemical data is used.

1.9.3 Bias in peptide data

Another important factor that has a significant impact on the predictive ability of a model
is the bias in the available data. This usually results in overfitting where a predictive model
is extremely well adapted or overlapped to the training data. The general consequence of
this is that the model includes random disturbances (noise) in the training set as being
significant leading to inadequate performance of the machine learning technique on the
given test dataset due to the fact that these disturbances mask the effect of the underlying
distribution by not reflecting it [43]. The use of a regularizer [179-182] that replaces the
observed amino acid distribution by its estimator, is the typical strategy adopted to

overcome this particular problem. Structure-based protocols however, are usually less
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affected by the above listed barriers, thereby resulting in strikingly accurate predictive

models even for alleles with limited experimental data [11-15].

1.10 Databases and resources available

The role of bioinformatic databases, resources and tools in modeling the network of the
immune system has been instrumental in advancing peptide vaccine discovery. Particular
success has been reported in studies on anti-tumour vaccines [183], malaria [184],
melanoma [185] and multiple sclerosis [186]. The development of various bioinformatic
tools for in-depth analysis and prediction of pMHC and TR/pMHC interactions are greatly
assisted by the availability of general and specialized databases that store, annotate,
disseminate and depict pMHC and TR/pMHC binding information. The most important
and commonly used general and specialized databases and resources for the study of
pMHC and TR/pMHC interactions are discussed below along with some of their

implications towards these studies.

1.10.1 General databases and resources

Several general databases contain useful information ranging from published literature to
protein sequences to X-ray crystal structures of pMHC and TR/pMHC complexes. Table
1.1 gives a list of a few such important databases and resources that are used in day to day

research on pMHC and TR/pMHC interactions. These databases are described below.

1.10.1.1 UniProt

UniProt [187-193] is a comprehensive, high-quality, annotated and freely available
resource for information on protein sequences and their functions. It is a unified
knowledgebase that combines databases such as Swiss-Prot [193-197], a computer-
annotated supplement to Swiss-Prot called as TTEMBL (Translated EMBL) [195], UniRef
[191-193, 198] (a database of protein sequence clusters, developed to speed up sequence
similarity searches) and UniParc [191-193, 199] (an archive for protein sequences, used to
keep track of protein sequence identifiers and changes in protein sequences). The TTEMBL
database consists of all translation of European Molecular Biology Laboratory (EMBL)
nucleotide sequences (from the EBML Nucleotide Sequence Database [200-210]) that are
not available in Swiss-Prot. As of January 2011, the combined number (including Swiss-
Prot and TrEMBL records) of sequence entries within the UniProt knowledgebase is
13,593,921 which encompass 4,392,846,537 amino acids. The TTEMBL database contains
13,069,501 sequence entries, comprising 4,207,640,687 amino acids as of January 2011.
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Table 1.1: List of generalized databases and resources used for the study of pMHC
and TR/pMHC interactions

Title Description URL
UniProt i
A resource for protein sequence and http://swww uniprot.org/
[187-193] functional information.
Swiss-Prot A curated and annotated protein
http://au.expasy.org/sprot/
[193-197] sequence database.

An innovative knowledge platform

neXtProt dedicated to human proteins.

http://beta.nextprot.org/

Protein Data
A resource for structural data of

Bank (PDB) biological macromolecules. http://www.rcsb.org/pdb/
[62, 63]
PubMed A central repository for published http://www.ncbi.nlm.nih.gov/
[211-214] scientific literature. pubmed/

1.10.1.2  Swiss-Prot

Swiss-Prot [193-197] is manually curated and annotated protein sequence database.
Records within Swiss-Prot are deposited by biologists and are further validated by domain
experts. Researchers at Swiss-Prot strive to minimize redundancy and thus furnish high
quality annotation through manual curation. However, manual curation results in
compromised data coverage within Swiss-Prot. It was due to this limitation that TTEMBL
was created as a computer-annotated supplement to Swiss-Prot [195]. As of January 2011,
the Swiss-Prot database within UniProt contains 524,420 sequence records that comprise

185,205,850 amino acids and are obtained from 194,602 published references.

1.10.1.3 neXtProt

neXtProt is a knowledge platform dedicated to human proteins. neXtProt is a new resource
containing a wealth of high-quality data on all human proteins that are coded by the 20,000
protein-coding genes found in the human genome. This web-based interactive platform and
repository has been developed to help understand the functionality and role of human
proteins in health and diseases. The database’s beta release incorporates 20,394 protein

entries abstracted from 264,571 published articles as of January 2011.
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1.10.1.4 Protein DataBank (PDB)

PDB [62, 63] is a one of a kind, up to date worldwide archive for primary (amino-acid
sequence), secondary and tertiary structural data of biological macromolecules. It consists
of protein, nucleic acids and carbohydrate structures. A four-letter identifier, referred to as
the PDB-code or ID is assigned to each structure deposited in the PDB. The first character
in a PDB-code is a number from 1-9. Often several entries correspond to one protein.
These multiple entries could result from the structure being solved in different crystal
forms, in different states of ligation, re-solved using more accurate data collection
techniques or using better (higher resolution) crystals. PDB contains a total of 70,813

structures as of January 2011.

1.10.1.5 PubMed

PubMed is the central repository that comprises over 20 million citations as of January
2011. The citations are indexed for biomedical literature from MEDLINE, life science
journals and online books. Among the fields included in PubMed citations and abstracts
are medicine, nursing, dentistry, veterinary medicine, the health care system and
preclinical sciences. Access to additional relevant and useful websites and links to the
other National Center for Biotechnology Information (NCBI) molecular biology database
and resources are also provided within PubMed. PubMed is a freely accessible resource,
developed and maintained by NCBI, within the U.S. National Library of Medicine (NLM),
located at the National Institutes of Health (NIH).

1.10.2 Specialized databases and resources

Besides the general databases described above, there are various specialized resources that
focus primarily on pMHC and/or TR/pMHC interactions and contain valuable information
pertaining to these significant interactions. A list of such databases, resources and tools is
provided in Table 1.2. Among these, a few significant databases are today actively used in
the study of both pMHC and TR/pMHC interactions. Described below are these pivotal
resources that have contributed significantly over the years towards shaping the way

research is currently pursued in the field of structural immunoinformatics.
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Table 1.2: List of specialized databases, resources and tools used in the study of

pMHC and TR/pMHC interactions.

Title Description URL
IMGT The international ImMunoGeneTics .
. . http://www.imgt.org/
[215-231] information system.

IMGT/3Dstructure-DB A database for immunoglobulin

http://www.imgt.org/

Immune Epitope Database.

[57, 58] (IG), TR and MHC structural data. 3Dstructure-DB/
IMGT/HLA Database A specialist database for HLA http://www.ebi.ac.uk/
[150-156] sequences. imgt/hla/

IEDB http://www.immuneepi

tope.org/

in Immunology binding peptides and lists of T cell

epitopes.

[166-169]
SYFPEITHI A database of MHC ligands and http://www.syfpeithi.
[170, 171] peptide motifs. de/
NCBI dbMHC A database for DNA and clinical | http://www.ncbi.nlm.
[232] data related to the human MHC. nih.gov/gv/mhc/
MHCBN Corpprehensnfe dgtabase .Of MHC- http://www.imtech.res.
binding, non-binding peptides and T rachava/mhebn/
[233, 234] cell epitopes. f/raghava/micon
A repository containing data from
Dana-Farber Renosito MHCPEP [235-238] database and
for Machine Leparninry selected independent datasets of http://bio.dfci.harvard
& proteins, protein fragments, non- .edu/DFRMLI/

A database containing

http://www.darrenfl
ower.info/AntiJen/

AntiJen experimentally determined
quantitative binding data for MHC-
[239] binding, TAP-binding peptides and
T cell epitopes.
IMGT/LIGM-DB A comprehensive database for IG
and TR nucleotide sequences from
[240, 241] human and other vertebrates.

http://www.imgt.org
/cgi-
bin/IMGTlect.jv/

A database for standardized
IMGT/PRIMER-DB information on oligonucleotides or
primers of IG and TR.

http://www.imgt.org
/IMGTPrimerDB/
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Title

Description

URL

IMGT/GENE-DB

A comprehensive database of IG

http://www.imgt.org

and TR genes from human and /IMGT_GENE-
[242] mouse. DB/GENElect
IPD-MHC Database A centralised repository for MHC | http://www.ebi.ac.uk/ip
[243-246] sequences from different species. d/mhc/
EPIMHC -//bi :
A curated database of MHC ligands. http.//b1o.df91.harvard
[247] .edu/epimhc/
Cancer Immunome A database focussi.ng on human http:/ludwig-
Database gene products against which an sunS5.unil.ch/Cancerlm
immune response is known in N
[248] cancer. munomeDB/
Epitome A database of structurally inferred | http://www.rostlab.org/
[249] antigenic epitopes in proteins services/epitome/
http://bio.dfci.harvard.
HLA Database A database of HLA proteins. edu/Database/db_show
_hla.html
HIV Molecular An annotated collection of HIV-1 http://www.hiv.lanl.
Immunology Database | cytotoxic, helper T cell epitopes and | gov/content/immun
[250] antibody binding sites. ology/
' The global ImMunoGeneTics web
IMGT Repertoire resource for IG, TR, MHC and http://www.imgt.org/te
[220] related proteins of the immune xtes/IMGTrepertoire/

system (RPI).

IMGT-ONTOLOGY
[251-256]

A resource for concise, non
ambiguous and a formal
specification of the terms to be used
in the study of IG, TR and MHC
proteins.

http://www.imgt.org
/textes/IMGTindex/
ontology.html

IMGT Scientific chart
[218, 257-259]

A resource of standardized rules for
sequence description, numbering
and nomenclature of IG, TR, MHC
and RPI from human and other
vertebrate species, belonging to the
immunoglobulin superfamily (IgSF)
and MHC superfamily (MhcSF).

http://www.imgt.org
/textes/IMGTindex/
IMGTchart.html

IMGT/V-QUEST
[260, 261]

A customized and integrated tool for
IG and TR standardized V-J and V-
D-J sequence analysis.

http://www.imgt.org/
IMGT _vquest/share/t
extes/
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Title

Description

URL

IMGT/JunctionAnalysis
[262]

A program to analyse the junction
of IG and TR nucleotide sequences.

http://www.imgt.org
/IMGT _jcta/jcta

IMGT/HighV-QUEST
[261, 263]

A tool to analyse large numbers of
rearranged 1G and TR sequences at
once.

http://www.imgt.org/
HighV-QUEST/

IMGT/Allele-Align

An alignment tool to identify
nucleotide and amino acid
differences by comparing two MHC
alleles.

http://www.imgt.org/A
llele-Align/

An online software package to

IMGT/PhyloGene compute and draw phylogenetic http://www.imgt.org
[264] trees for IG and TR V-REGION /IMGTPhylogeny/
nucleotide sequences.
A web-based tool to display amino http://www.imgt.org
— . . /3Dstructure-
IMGT/DomainDisplay | acid sequences from the domains of DB/cei/DomainDis
the IgSF and MhcSF superfamilies. g .
play.cgi
A tool for visualization of a given httn://swww imet.ore/
IMGT/GeneView gene in a locus for human MHC, IG, p.Locus\'/ie v% /' &
TR and mouse TR.
A program to view multiple genes ) )
IMGT/LocusView in a locus for human MHC, IG, TR http{zv:v:v\./lir;lg‘;.org/
and mouse TR. " W
A tool to obtain information on data
IMGT/Genelnfo resulting from the mechanisms of | http://www.imgt.org/G
[265, 266] V-J and V-D-J gene rearrangements | enelnfoServlets/htdocs/
in human and mouse TR loci.
IMGT/GeneFrequency A tool for graphical representation http://www.imgt.org/I
of rearranged IG and TR gene
[254] MGTGeneFrequency/
sequences.
IMGT/DomainGap A web-based program for analysing http://www.imgt.org/3
Alien . . Dstructure-
g amino acid sequences of IG, TR and . . .
) DB/cgi/DomainGapAli
[58] MHC domains. .
gn.cgi

IMGT/Collier-de-Perles
[267-269]

An analysis tool for graphical
representations of protein domains
from their amino acid sequences.

http://www.imgt.org/3
Dstructure-
DB/cgi/Collier-de-
Perles.cgi
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Title Description URL

http://www.imgt.org/3

IMGT/DomainSuperim | A web-based tool to superimpose Dstructure-
pose IG, TR and MHC domains. DB/cgi/DomainSuperi
mpose.cgi

IMGT/StructuralQuery A tool to retrieve and analyse IG, http://www.imgt.org/3
TR and MHC structural data from Dstructure-
[57] IMGT/3Dstructure-DB. DB/StructuralQuery

1.10.2.1 IMGT

Established in 1989 by Marie-Paule Lefranc, a pioneer in immunogenetics and
immunoinformatics, the international ImMunoGeneTics information system (IMGT; [215-
231]) is a global reference in immunogenetics and immunoinformatics that specializes and
shares a wealth of extremely significant information on IG or antibodies, TR proteins,
MHC proteins of human and other vertebrate species along with immunoglobulin
superfamily (IgSF), MHC superfamily (MhcSF) and related proteins of the immune system
(RPI) of vertebrates and invertebrates. It is a unique centralized high-quality integrated
knowledgebase that consists of sequence databases such as IMGT/LIGM-DB [240, 241]
and IMGT/PRIMER-DB, a genome database called IMGT/GENE-DB [242], a structure
database known as IMGT/3Dstructure-DB [57, 58] and a database of monoclonal
antibodies (mAb) termed IMGT/mAb-DB [270]. IMGT also contains web resources such
as IMGT Repertoire [220] and IMGT Scientific chart [218, 257-259] along with interactive
analysis tools such as IMGT/V-QUEST [260, 261], IMGT/Genelnfo [265, 266] and
IMGT/Collier-de-Perles [267-269]. The IMGT/HLA database, one of the most important
databases used in the study of pMHC and TR/pMHC interactions, is also a part of the
IMGT project and can be accessed through the “IMGT/MHC-DB” link on the IMGT
website (http://www.imgt.org/).

1.10.2.2 IMGT/3Dstructure-DB and IMGT/2Dstructure-DB

IMGT/3Dstructure-DB [57, 58] is an exclusive and unique resource on IG, TR, MHC and
RPI with known three-dimensional (3D) structures. The structural data is sourced from
PDB [62, 63]. The high-quality standardized information within IMGT/3Dstructure-DB
includes IMGT annotation on IG, TR, MHC and RPI sequences, their two-dimensional
(2D) and 3D structures. IMGT/2Dstructure-DB consists of amino acid sequences,
originally obtained from the World Health Organization’s (WHO) International
Nonproprietary Names (INN; [271-274]) and the Kabat [275-277] database, for IG, mAb
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and fusion proteins for immune applications (FPIA). IMGT/3Dstructure-DB portrays 3D
structural information such as chain details and contact details at different levels such as at
the domain/chain interface and the residue level. In particular, contact information relevant
for immunological proteins like IG, TR and MHC is shed light upon since these proteins
interact specifically with a great number of molecules making these interactions extremely
vital for normal immune responses. As of January 2011, IMGT/3Dstructure-DB contains
2,416 entries out of which 1,987 are structural entries extracted from PDB along with
IMGT/2Dstructure-DB containing 94 sequence entries obtained from INN and 335 are

sequence entries sourced from the Kabat database.

1.10.2.3 IMGT/HLA Database

The IMGT/HLA sequence database [150-156] is a specialist database for HLA sequences
and perhaps the most important resource used for the study of HLA proteins and their
interactions apart from the IMGT knowledgebase itself [215-231]. It includes the official
sequences for the WHO HLA Nomenclature Committee for Factors of the HLA System. In
addition to the sequences of HLA proteins, the database contains detailed information
concerning the source of the sequences and data on the validation of the sequences.
Researchers at the IMGT/HLA database strive to avoid the problems associated with
renaming already published sequences and the confusion of multiple names for the same
sequence by officially naming a sequence, in compliance with the WHO HLA
Nomenclature Committee’s rules for naming HLA alleles, prior to the publication of a
HLA sequence. The database also permits users to present complex queries about a
particular HLA sequence, sequence features, references, contacts and allele designations.
As of January 2011, the IMGT/HLA database contains 6,189 allele sequences out of which
6,074 are HLA alleles and 115 are non-HLA alleles.

1.10.2.4 IEDB

The Immune Epitope Database (IEDB; [166-169]) is another vital source of information
for investigations pertaining to pMHC and TR/pMHC interactions. It contains functional
MHC-binding and T cell response information for peptide epitopes, derived from
published in vitro assays. The peptide data is related to antibody and T cell epitopes for
humans, non-human primates, rodents and other species of animals. The available immune
epitope and MHC-binding data are from a variety of different antigenic sources. The
current peptide epitope data relating to all infectious diseases, including National Institute

of Allergy and Infectious Diseases (NIAID) Category A, B, and C priority pathogens,
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NIAID Emerging and Re-emerging infectious diseases, allergens, and autoimmune
diseases, along with non-peptidic allergen epitope data is painstakingly yet completely
curated. On-going curation includes that of peptide epitopes related to
transplant/alloantigen epitopes and that of non-peptidic infectious disease and autoimmune
epitope data. IEDB contains 79,348 confirmed peptide epitopes and 783 confirmed non-
peptidic epitopes, sourced from 2,626 organisms, from 154,423 T cell assays and 201,071
MHC-binding assays, as of January 2011. The current peptide epitope and non-peptidic

epitope data and information are extracted from 11,771 published references.

1.10.2.5 SYFPEITHI

The SYFPEITHI [170, 171] database comprises of more than 7000 peptide sequences (as
of January 2011) that are known to bind MHC-I and MHC-II proteins, along with peptide
motifs from various species such as human, non-human primates, cattle, chicken, and
mouse. All currently available motifs can be accessed as individual entries in the database.
All entries within this resource are obtained and compiled from published reports. It is
possible to search the database for MHC alleles, peptide motifs, natural ligands, T cell
epitopes, source proteins/organisms and references. The database also includes hyperlinks
to data sources such EMBL and PubMed besides enabling the users of peptide binding

predictions for a number of MHC alleles.

1.10.2.6 NCBI dbMHC

The NCBI dbMHC [232] is a semi-curated database for DNA and clinical data related to
HLA proteins. Originally designed and built by NCBI as an open resource for registration
and characterization of HLA DNA-typing kits and reagents [232], NCBI dbMHC
continues to provide a platform where researcher around the globe can submit, edit, view,
and exchange HLA data. The database currently hosts an online tool called Sequencing
Based Typing (SBT; [278]) for typing highly polymorphic HLA sequences, sequence
interpretation and evaluating the allelic composition in SBT results for complementary
DNA (cDNA) or genomic sequences [278], a HLA microsatellite database [279, 280], a
tool known as Microsatellite Markers to search descriptive information for some of the
known short tandem repeats within the HLA gene region, a Primer/Probe database, an
interactive Alignment Viewer for HLA and related genes, a Typing Kit Interface for HLA
alleles, a program for viewing clustering trees for HLA alleles produced using Basic Local
Alignment Search Tool (BLAST; [281]) pairwise alignments and a tool for graphical

visualization of HLA genes, non-HLA genes and pseudogenes within chromosome 6. The
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NCBI dbMHC database also provides links to the IMGT/HLA database for every allele
and is fully integrated with other NCBI resources as well as with the International
Histocompatibility Working Group (IHWG) website (http://www.ihwg.org/). Allele
sequences, both curated and not-curated ones, housed in NCBI dbMHC are retrieved from

IMGT/HLA and GenBank [282-291] databases, respectively.

1.10.2.7 MHCBN

MHCBN [233, 234] is a curated database of MHC-binding peptides, MHC non-binding
peptides, TAP-binding peptides, TAP non-binding peptides and T cell epitopes compiled
from published literature and existing databases. The database provides the scientific
community with a number of web-based tools which allow the user to search for any
information about MHC alleles and peptides, map experimentally determined MHC-
binders, MHC non-binders and T cell epitopes in a given query protein sequence and
conduct a BLAST search against related antigenic and MHC associated proteins. The
resource contains other information such as sequence and structure data for source proteins
of peptides and MHC molecules. MHCBN also provides hyperlinks to major databases
including most NCBI resources, Swiss-Prot (for protein sequences and source
information), PDB (for structural information), IMGT/HLA (for HLA allele sequences),
PubMed (for published references), GenBank (for nucleotide sequences) and the Online
Mendelian Inheritance in Man (OMIM; [292-299]; for MHC linked diseases) database. As
of January 2011, the database contains 20,717 MHC-binders, 4,022 MHC non-binders,
1053 TAP-binding and non-binding peptides and 6,722 T cell epitopes for 450 MHC
alleles extrapolated from 1,519 published articles.

1.10.2.8 Dana-Farber Repository for Machine Learning in Immunology

The Dana-Farber Repository for Machine Learning in Immunology contains all the data
from the earlier MHCPEP [235-238] database and selected independent datasets of
proteins, protein fragments, non-binding peptides and lists of T cell epitopes. This database
has recommendations for scaling and comparison of performance for various sequence-
based MHC-binding and T cell epitope prediction systems. There are also HLA binding
peptide datasets for specific alleles such as HLA-A, HLA-B and HLA-DRBI1 haplotypes,
along with T cell epitope reference lists from tumour and viral antigens. This repository
provides a unique resource that can be used in conjunction with IEDB datasets for the
development of advanced machine learning and pattern recognition solutions which can be

innovatively applied to develop T cell epitope prediction algorithms. MHCPEP is a
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manually curated database that contains more than 13,000 experimentally validated MHC-
binding peptide sequences [238]. Two sources, published reports and direct submissions of
experimental data, are used to compile the entries in the MHCPEP database. Each entry or
record consists of the peptide sequence, peptide’s MHC specificity and where available,
experimental method, observed activity, pMHC binding affinity, source protein, anchor

positions or amino acid within the peptide and published citations.

1.10.2.9 AntiJen

AntiJen [239] is a database containing experimentally determined quantitative binding data
for MHC-binding peptides, T cell epitopes, TAP-binding peptides and other significant
proteins of the immune system. Archived in the database are continuous quantitative data
on a variety of immunological molecular interactions including thermodynamic and kinetic
measures of peptide interactions with TAP and MHC, pMHC complexes binding to TR
proteins, antibodies binding to protein antigens and general immunological protein-protein
interactions apart from functional and cellular data within the context of immunology and
vaccinology. As of January 2011, the database contains over 24,000 entries [300]. The
database is fully sourced from published literature. AntiJen also holds over 3,500 entries

for linear and discontinuous B cell epitopes [300].

1.11 Methods available for T cell epitope prediction

Identification of T cell epitopes that activate both CD8" cytotoxic T cells and CD4 " helper
T cells is extremely important as it forms the basis for the development of peptide vaccines
that are used in the treatment of allergic [301], autoimmune [302] and neoplastic diseases
such as cancer [303, 304], besides combating infectious agents such as viruses [305].
Successful identification of T cell epitopes is also a significant means to understand
disease pathogenesis [306]. Conventional means to identify T cell epitopes included the
synthesis of overlapping peptides spanning the entire length of a protein, followed by
experimental immuno-assays such as in vitro intracellular cytokine staining for each
peptide [307], to determine T cell activation. Therefore, experimental detection of T cell
epitopes has been doomed a tedious, time consuming and expensive process in the recent

years [49].

It is well known that pMHC binding is a prerequisite for TR recognition of pMHC
complexes and subsequent T cell activation. Moreover, it is widely regarded to be the

event that most selectively defines immunogenic or T cell epitopes [308]. Therefore, T cell
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epitope prediction relies primarily on predicting pMHC binding. Consequently,
computational approaches have been developed as an alternative to traditional in vitro
procedures, for the identification of T cell epitopes. Recently developed computational
methods have proven to be vastly time and cost efficient in screening the vast oceans of
peptides and MHC repertoires [17, 49], thereby, significantly decreasing the burden and
cutting down the lead time associated with experimental identification of T cell epitopes.
There are various criteria that have been applied to classify or categorize the available

computational methods for T cell epitope prediction [18, 300, 309].

Nevertheless, two types of classification have stood the test of time. Tong et al. [18] have
used the type of data employed for prediction to classify the methods into “sequence” and
“structure-based” approaches. However, this type of classification groups the methods that
employ both sequence-derived pMHC binding affinity data and 3D structural information
to predict T cell epitopes [310, 311], under the structure-based approaches. On the other
hand, Lafuente and Reche [309] have used the type of data and the technique employed for
prediction to classify methods into “binding pattern recognition”, “quantitative binding
affinity” and “modeling-based” models. Yet, this type of classification schema lists the
above described methods that employ both sequence-derived pMHC binding affinity data

and 3D structural information to predict T cell epitopes [310, 311], under the quantitative

binding affinity models.

Therefore, it has now become important to add a third category namely, ‘sequence-
structure-based’ approaches into the original classification by Tong et al. [18] to classify
the methods that employ both sequence and structure-derived information to predict T cell
epitopes. Hence, the currently available specialized computational methods for the
prediction of T cell epitopes, can be broadly classified into three main categories: (i)
methods based on identifying patterns in sequences of MHC-binding peptides (qualitative)
along with those that attempt to quantify the actual pMHC binding affinity (quantitative),
collectively called as sequence-based approaches; (ii) methods that employ 3D structures
to model pMHC interactions termed structure-based approaches; and (iii) methods that
employ both sequence-derived pMHC binding affinity data and 3D structural information

to predict T cell epitopes, which can be referred to as sequence-structure-based approaches.

The first group includes protocols based on sequence motifs, motif matrices, quantitative

matrices, decision trees, artificial neural networks (ANN), hidden Markov models (HMM)
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and support vector machines (SVM). On the contrary, the second category represents
techniques with distinct theoretical lineage and includes the use of 3D homology modeling,
protein threading, docking and molecular dynamics (MD) techniques. The third category
combines similarity matrices and structure-based techniques such as protein threading for
T cell epitope prediction. Utilizing these algorithms and techniques, many web-based
bioinformatics tools for T cell epitope prediction have been developed in the recent years.
Table 1.3 provides a comprehensive list of such tools and web-servers that are widely used
for the identification of strong-MHC-binding peptides. Described below are the above

mentioned algorithms and techniques, their strengths and their weaknesses.

Table 1.3: List of available tools and web-servers for T cell epitope prediction

Title Technique/Algorithm | MHC class URL
http://www.hiv.lanl.gov/content
Motif Scan Sequence Motifs Iand II /immunology/motif scan/motif
_scan
SYFFPEITHI . ' http://www.syfpeithi.de/ Scripts(
Motif Matrices Iand IT MHCServer.dll/EpitopePredicti
[170, 171] on.htm
EPIMHC ition- i
(247 Pgsgrlionng iﬁg?;gc Iand II http://imed.med.ucm.es/epimhc/
PEPVAC Position-Specific I http://bio.dfci.harvard.edu/PEP
[312, 313] Scoring Matrix VAC/
RANKPEP Position-Specific Land 1l | http/bio.dfciharvard.edw/RAN
[314-316] Scoring Matrix KPEP/
BIMAS N g
Quantitative Matrices I bimas.cit.nih.gov/molbio/hla_bi
[317] nd/
EpiJen . i
P Quantitative Matrices I http.//Www.da}"renﬂower.lnfo/E
[318] piJen/
EpiMatrix e . http://www.epivax.com/immun
Quantitative Matrices Iand IT S NP .
[319] ogenicity-screening/epimatrix/
ProPred-1 . i i
Quantitative Matrices I http://www.imtech.res.in/raghav
[320] a/propredl1/
ProPred o . http://www.imtech.res.in/raghav
1321] Quantitative Matrices II a/propred/
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Title Technique/Algorithm | MHC class URL
Qu?lil/; I??KZ I:/I'atrlces I berlin.mpg.de/MAPPP/binding.
[322] otif Matrices html
Average Relative
Binding-Quantitative http://tools.immuneepitope.org/
IEDB Matrices/Stabilized analyze/html/mhc_binding.html
(166-169] Matrix Method- Tand Il | http://tools.immuneepitope.org/
Quantitative analyze/html/mhc_II_binding.ht
Matrices/Artificial ml
Neural Networks
SMM Stabilized Matrix
Method-Quantitative I http://zlab.bu.edu/SMM/
[323] Matrices
EpiTOP Quantitative Structure- 1 http://www.pharmfac.net/EpiT
[324, 325] Activity Relationship OP/
MHCPred Quantitative Structure- Land II http://www.darrenflower.info/
[326-328] Activity Relationship MHCPRED/
ANNPred Artificial Neural I http://www.imtech.res.in/raghav
[329] Networks a/nhlapred/neural.html
NetMHCpan Artificial Neural I http://www.cbs.dtu.dk/services/
[330, 331] Networks NetMHCpan/
NetMHClIpan Artificial Neural 1 http://www.cbs.dtu.dk/services/
[332, 333] Networks NetMHClIpan/
MULTIPRED Artificial Neural http://antigen.i2r.a-
Networks/Profile Iand I star edu.se/multinred/
[334] Hidden Markov model eau-Sg P
NetMHC Artificial Neural http://www.cbs.dtu.dk/services/
Networks-Weight I NetMHC/
[335-339] Matrices ©
Artificial Neural
NetMHCII Networks/Stabilized I http://www.cbs.dtu.dk/services/
[340, 341] Matrix Method- NetMHCII/
Quantitative Matrices
KISS
Support Yector I http://cbio.ensmp.fr/kiss/
[342] Machines
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Title Technique/Algorithm | MHC class URL
MHC2Pred Support Vector http://www.imtech.res.in/raghav
. I
[343] Machines a/mhc2pred/
POPI Support Vector I http://iclab.life.nctu.edu.tw/POP
[344] Machines I/

SVMHC Support Vector Iand II http://www-apb.informatik.uni-
[345, 346] Machines tuebingen.de/Services/SVMHC/
SVRMHC

Support Vector‘ Iand II http://svrmhe.biolead.org/

[347-349] Machines Regression

MHC-Thread . . http://www.csd.abdn.ac.uk/~gjl
(350] Protein Threading II MHC-Thread/
PREDEP : it huiiac.i
Protein Threading I http://margalit.huj }.ac.ll/Teppre
[351] d/mhc-bind/
HLABinding Adaptive Double I http://atom.research.microsoft.c
[311] Threading om/hlabinding/hlabinding.aspx

1.11.1 Sequence-based approaches

The discoveries that peptides binding to specific MHC alleles are functionally related [352]
and that they share residues with similar properties at various positions of their primary
sequences [353] led to the earliest known attempts at predicting T cell epitopes [354, 355].
As alluded to earlier, MHC-I and MHC-II binding peptides are made up of residues with
side-chains that fit into the cavities or ‘pockets’ made up of polymorphic complementary
residues within the peptide binding cleft of the specific MHC proteins or alleles. These
residues, referred to as the ‘anchor’ residues due to their role in anchoring the peptides
firmly in the MHC binding cleft [352-354, 356-359], contribute the most towards pMHC
binding by taking part in most of the pMHC binding interactions. This fact gave rise to the
notion of “peptide motif” and subsequently helped researchers define peptide motifs [353,
354, 356] for an array of MHC-I and MHC-II alleles.

Following this, numerous research groups around the world began to develop
computational tools that scan peptides fitting these motifs [317, 360-367]. Meanwhile, it
was discovered that sequence motifs alone are inadequate to account for comprehensive

binding ability of a candidate peptide and that residues along other positions (apart from
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anchor residues) of a peptide also play a vital role in pMHC binding [368-370]. This
resulted in a multitude of sequence-based techniques ranging from sequence motifs that
use peptide motifs for prediction to SVM that use the entire length of the peptides for
prediction, being employed by various researchers for large-scale screening of potential T
cell epitopes from vast numbers of protein sequences. These sequence-based techniques

and algorithms are highlighted below.

1.11.1.1 Sequence motifs

The simplest mode of representation of the peptide binding motif for a specific MHC allele
is a sequence motif. Sequence motifs consist of a symbolic peptide string that lists the
amino acid preferences of a given MHC protein for each residue position of the peptide.
Although the general practice to obtain peptide binding motifs is to compare sets of peptide
sequences that are known to bind to MHC proteins [170, 171], the first peptide binding
motifs were identified by pool sequencing of peptide ligands eluted from MHC-I proteins
[353, 356]. As said earlier, the SYFPEITHI database [170, 171] represents one of the
largest collections of peptide binding motifs for MHC-I and MHC-II proteins. Peptide
binding motifs specific for particular MHC alleles were the first models that enabled
prediction of MHC-I restricted T cell epitopes [354, 355]. Although primitive, sequence

motifs continue to be used for identification of T cell epitopes [371].

However, application of sequence motifs to the identification of T cell epitopes is today
considered too simplistic, primarily because of the fact that peptide residues other than the
anchor residues also contribute to binding [369, 372], as highlighted above. Moreover,
immunodominant peptides without the required binding motifs have been identified [373]
and it has also been shown that not all motif-conforming peptides bind to respective MHC
alleles [374]. An investigation on the significance of the role played by peptide motifs in
pMHC binding using in vitro binding assays on HLA-A*0201 binding peptides [369], has
illustrated that only about 30% of motif-conforming peptides were actual MHC-binders.
The extreme rigid nature of sequence motifs renders them unsuitable for T cell epitope
prediction. Hence, use of simple motif models for T cell epitope prediction has proven to
be both non-sensitive and non-specific [374]. Therefore, this approach fails to detect
binders not pertaining to existing motifs and includes non-binding sequences that fit the
required patterns, particularly yielding many false negatives [366]. Despite these
limitations, this approach still presents a useful alternative to random guessing or using a

set of overlapping peptides for the selection of candidate binders [17].
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1.11.1.2 Motif matrices

Representing an enhancement of sequence motif models, motif matrices consist of tables
whose coefficients quantify the contribution of position-specific amino acid frequencies
found within candidate peptides that bind to a specific MHC allele [375, 376]. For a given
peptide sequence, the consensus binding score is calculated by aligning a matrix with the
target protein segments and computing (summing, multiplying or averaging) the relevant
position specific and residue-matched matrix coefficients. These consensus peptide binding
scores are generally continuous and thus, a binding threshold is usually put in place to
distinguish the MHC-binders. First examples of motif matrices were developed by de

Groot et al. [377] and Rammensee et al. [170].

First introduced by Gribskov and co-workers [378] in 1987, ‘profiles’, also known as
position-specific scoring matrices (PSSM), are useful for detecting distantly related
sequences and are similar to motif matrices. Fundamentally, PSSM consist of log-odds
matrices with coefficients defined by the logarithmic ratios of observed amino acid
frequencies with respect to the relevant background frequencies [309]. Later, it was Reche
et al. [314-316] who first applied PSSM to the study of pMHC binding and developed
profiles which were extracted from sets of aligned peptides that were known to bind
specific MHC proteins. A significant improvement in identifying MHC-binders was
achieved due to the use of PSSM, which can be attributed to the ability of profiles to tackle
the problems of sequence redundancies (through sequence weights) and missing data
(using pseudo-counts that are estimated from substitution matrices), unlike basic motif

matrices.

Subsequently, using an expectation-maximization motif discovery program [379] and
peptide binding scores obtained from MHC-II binding peptides, MHC-II-specific profiles
were also generated [314-316] for successful identification of T cell epitopes presented by
MHC-II proteins as well. This was followed by the creation of another type of motif-based
matrices called as the ‘weight matrices’ by Nielsen et al. [337], who applied a Gibbs
sampler to detect weak sequence motifs and characterize them in terms of weight matrices
for MHC-I and MHC-II binding peptides. Weight matrices are almost indistinguishable
from PSSM and perform virtually identically. Rajapakse et al. [380] later utilized a multi-
objective evolutional algorithm to identify a consensus motif for the murine MHC-II allele

[-A(G7). Developed primarily from positive peptide data, all of the above described motif
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matrices consisted of known MHC-binding peptides within the training sets and hence,
lacked a control set (negative or non-binders) resulting in inabilities to accurately identify

experimental negatives.

Mallios [381], realizing this issue, revolutionized the use of motif matrices for the
prediction of peptides binding to MHC-II proteins by describing a motif matrix obtained
and evaluated utilizing positive and negative peptide examples and a stepwise
discriminating analysis (SDA) method. Contrasting to the methods utilizing sequence
patterns, this method resulted in outputs with continuous peptide binding scores that
discriminated peptides as binders and non-binders. Although advanced compared to the
simple sequence motifs, the similarity in the underlying motif concept renders prediction
of T cell epitopes using motif matrix-based predictive methods, susceptible to the same
disadvantages as with utilizing sequence motifs. The basic limitation being the fact that,
motif matrices also assume peptide residues to be contributing independently to pMHC
binding. Despite being well supported by experimental data, such absolute assumptions are
incorrect as there is evidence that supports the influence of neighboring residues on the
contribution of peptide residues to pMHC binding [323], thereby, shedding light on the

ignorance of the effect of the overall structure of peptide by motif matrices.

1.11.1.3  Quantitative matrices

In order to detect weak binding patterns and to account for noisy and collinear data, more
complex forms of matrix-based predictive methods were developed in the following years.
These matrices are termed the quantitative matrices and are the most widely used additive
models in predicting pMHC binding. Although they resemble motif matrices, they are
generated from actual peptide binding affinity data, unlike motif matrices, resulting in
peptide binding scores that reflect actual pMHC binding affinity. The first implementation
of quantitative matrices for the identification of MHC-I binding peptides was by Parker
and co-workers [317]. Methods utilizing quantitative matrices that in turn use binding
affinity data procured from positional scanning combinatorial peptide libraries (PSCPL),
have also been developed [382, 383], where sets of sub-libraries represent all possible
peptides of a particular length with one amino acid being fixed and the remaining residue
positions containing mixtures of all amino acids in each sub-library. Characteristically,
logarithmic peptide concentrations relative to a reference peptide library form the

coefficients of quantitative matrices generated using PSCPL.
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Many means that employ large sets of pMHC binding affinity data have since been used to
construct quantitative matrices. These methods included use of average relative binding
(ARB) [384] and stabilized matrix method (SMM) [385] to derive quantitative matrices for
the prediction of pMHC-I and pMHC-II binding affinity. Although SMM was first applied
to predict pMHC-I binding affinity [323], Nielsen and colleagues [340] applied an
improvised SMM-align approach that focuses on the two most proximal (generally amino-
terminal) peptide flanking residues (PFR) to compute the pMHC binding score, resulting in
enhanced predictive performance for MHC-II proteins. Using peptide libraries to procure a
quantitative representation of the amino acid interactions with pocket residues of the
MHC-II HLA-DR alleles, Sturniolo et al. [386] were able to generate virtual quantitative
matrices which are a close relative of quantitative matrices themselves. Their work
highlighted the importance of selecting binding pocket profiles to compute pMHC binding
affinity for MHC-II alleles, a principle that forms the basis of the TEPITOPE [387]

prediction system.

A consequence of the similarities between motif matrices and quantitative matrices is that
quantitative matrices also assume an independent contribution of peptide side chains to
pMHC binding. To overcome this, Doytchinova ef al. [161, 162] made use of a robust
partial least squares (PLS) multivariate statistical approach to improve the predictive
performance of their protocol by deriving quantitative structure-activity relationship
(QSAR) matrices, where an additive equation was formulated to account for individual
amino acid contributions at each position and interactions with neighbouring residues
together as pMHC binding affinity. The matrices were subsequently solved employing
PLS-regression. Later, Guan et al. [326-328] reassured the usefulness of PLS-QSAR-based
quantitative matrix models and resultantly, incorporated this methodology to develop the
web-server MHCPRED [326-328] for MHC-I and MHC-II restricted T cell epitope
prediction. As good as it is, even the use of quantitative matrices has disadvantages such as
heavy reliance on the availability of large comprehensive training sets of peptides
rendering them inappropriate for accurate prediction of peptides in circumstances where

the peptide data available is insufficient.

1.11.1.4 Decision trees
Decision trees are rule-based models that classify patterns using a sequence of well defined
rules [388]. Due to their popularity as classification algorithms [389], they are also

applicable for T cell epitope prediction. Embedded within the nodes of a decision tree are
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rules extrapolated by converting position-specific binding motifs. Amino acid properties
that correlate strongly to the physicochemical properties of binding peptides are thus
indicated within the resulting tree structure. Subsequently, threading of peptide sequences
occurs through a series of nodes. Finally, the outcome of prediction is determined by the
result of all node-to-node transitions. Credit to its capability to elucidate both linear and
non-linear problems, this approach has been adopted by several groups to identify higher-
level rules for pMHC binding. Savoie ef al. [390] were the first to construct a BONSAI
decision tree to investigate TR preference and peptide epitope motifs for the peptides that
bind to the human MHC-I allele HLA-A*0201. Segal et al. [391] adopted a similar tree-
structured technique to predict peptides binding to murine MHC-I allele H2-Kb. Recently,
Zhu et al. [392] used decision trees that were simultaneously trained on peptide binding
data from different MHC-I alleles, to predict peptides that bind to a specific MHC-I
proteins and achieved an enhancement in their prediction accuracy. An example of a

decision tree network is shown below in Figure 1.11.

Position 8: Position 8:
A,C,D,E,G,H,K,N,P,Q,R,S, T,V W F,LLLM,Y

Position 1: Position 1: Position 5: Position 5:
ACDEF.GH, QSTY E,P,S,TV AF,ILMNY
LK,L,N,P,R,V

Figure 1.11: A pictorial representation of a subset of the decision tree network utilized by
Segal et al. [391]. Represented as each node is the grouping of preferential or non-preferential
amino acid residues at various positions for the peptides binding to the murine MHC-I allele H2-
Kb. The ellipses denote internal nodes and the rectangles depict terminal nodes. The numbers 0 or
1 signify the predictions non-binding (bright red) or binding (bright green), respectively, at each

node.

1.11.1.5 Artificial neural networks
Artificial Neural Networks (ANN) are connectionist models particularly well suited to

perform classification and complex pattern recognition tasks [393]. Therefore they are one
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of the most frequently and extensively used machine learning algorithms for recognizing
pMHC binding patterns. ANN can even encode non-linear data and have been used for
prediction of both MHC-I and MHC-II restricted T cell epitopes [175, 335, 336, 376, 394-
396]. ANN were first employed to predict T cell epitopes restricted to MHC-I alleles,
especially the human allele HLA-A*0201 [376, 394] and the murine allele H2-Kb [395].
They were later extended to MHC-II alleles, specifically applied to the human HLA-DR4
alleles [176, 396]. ANN work by representing peptide features through amino acid
descriptors such as composition, hydrophobicity, volume and charge. The descriptors are
used to train the ANN for classifying peptides into binders and non-binders. An example of

the ANN architecture is illustrated in Figure 1.12.
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Figure 1.12: An example of the three-layer ANN derived by Brusic ef al. [175] for predicting
MHC-I restricted T cell epitopes. The first layer (small red circles) represents input nodes with
the number of nodes corresponding to the length of the input peptide (in this case 9-mer; AA stands
for amino acid). The number of nodes in the second (hidden; blue circles) layer equals the ideal
length of the binding peptides (usually set to 9 residues) and a single output node (green circle)

predicts binders and non-binders.

A comparative study [17] that investigated the predictive performance of ANN has
revealed that, with a gradual increase in the training peptide data, ANN outperform motifs,
motif matrices, quantitative matrices and even HMM, thereby, suggesting that ANN are
better suited for T cell epitope prediction. ANN were also shown to be highly sensitive in

their predictions of pMHC binding affinity for MHC-I proteins [335]. Many research
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groups have since created hybrid versions of ANN to improvise pMHC binding prediction.
For example, Nielsen et al. [336] trained series of ANN using a combination of novel input
representations such as several sequence coding strategies including sparse encoding,
blosum encoding and even HMM derived input to improve the predictive power of the
system. In another example, Brusic et al. [176] successfully devised a system that
automated the strength of matrix models and the efficiency of an evolutionary algorithm to
identify the pMHC binding scores for MHC-II binding peptide dataset, which were

subsequently utilized to train an ANN, resulting in accurate predictions.

The underlying concept that is commendable for the success of the approach integrating an
evolutionary algorithm and ANN can be explained as follows. To begin with, the
evolutionary algorithm selects new alignment matrices based on evolutionary principles.
Two offspring matrices are produced by each parent matrix. One sibling matrix is an exact
copy of the parent matrix and the other is a mutant copy. The child with higher fitness
value is passed on to the next generation to improve accuracy and efficiency of the
prediction. Finally, the ANN are trained by feeding them with the highest scoring
alignments from the final generation matrices. As eminent, a major limitation for the
prediction of T cell epitopes is the availability of experimental peptide binding data. Yet
again, to counter this short-coming, Nielsen et al. [330] developed a method where they
combined the MHC-I peptide binding residues and pMHC binding affinity data for training
the ANN, effecting the prediction of T cell epitopes even for MHC-I proteins with little
binding data.

A similar procedure was has also been followed in developing protocols which can be
utilized to predict T cell epitopes restricted to uncharacterized HLA-DR alleles [332].
Recently, Soam et al. [397] have described a method where they have applied probability
distribution functions to initialize the weights and biases of the ANN for HLA-A*0201
restricted T cell epitope prediction. Despite these recent advances in the use of ANN for
high-throughput screening of peptides to predict T cell epitopes, the requirement of a fixed
input length remains a major drawback of ANN-based methods [18]. The disability to
predict peptide epitopes that are of a different length compared to those in the training

dataset, is another back-drop of any given ANN model.
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1.11.1.6 Hidden Markov models

Hidden Markov models (HMM) have a wide range of applications due to them being a
type of probabilistic graphical models. They are the most widely used technique in speech,
sequence and statistical pattern recognition and classification [398, 399]. Based on
parametric statistical models, HMM work by assuming that the system that is being
modeled is connected by a Markov chain of unknown hidden parameters extracted from
data. Just like the previously described decision trees and ANN, HMM also possess the
capacity to handle non-linear data and this ability renders them suitable for representing
time-series sequences having flexible lengths. Each HMM has a series of discrete-state,
time-homologous, first-order Markov chains associated with it. These Markov chains have
an initial distribution and suitable transition probabilities between states. A discrete or

continuous distribution over possible outputs is contained within each state.

Upon visiting a particular state or during transition from state to state, these outputs are
generated. A set of transition and emission probability rules are followed for undergo
transitions between states. The probability of moving from one state to another via a
connected edge is called the transition probability and the probability of emitting a
particular symbol at any particular state is known as the emission probability. The name
‘Hidden” Markov model is derived from the sequences of states that are hidden from
observance and underlie the Markov chains. By multiplying the emission and transition
probabilities along the path, the overall probability of any given peptide sequence being a
binder or a non-binder is computed. Using HMM has been known to be useful in

surmounting the potential constraints of using ANN to predict T cell epitopes [177, 400].

The first instance of using HMM for T cell epitope prediction was reported Mamitsuka in
1998. The author had described two different HMM topologies known as the profile or
pHMM (Figure 1.13a.) and the fully connected HMM (Figure 1.13b.). Recently, a new
type of HMM topology has been devised for T cell epitope prediction namely structure-
optimized HMM [401, 402]. Nevertheless, the first successful application of HMM to
predict T cell epitopes restricted to HLA-A*0201 was through the use of fully connected
HMM [400]. Figure 1.13b depicts the states that are pairwise connected such that the
underlying digraph is complete within a fully connected HMM. With an exception of
diagonal entries, which correspond to loops or self-transitions, the transition matrix of a
fully connected HMM does not contain any zero entries. Another important aspect of the

fully connected HMM models is the lack of any particular notable starting or terminating
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state. This significant characteristic permits the representation of more than one peptide
sequence pattern veiled within the binding peptide data used for training, due to no
absolute constraints being imparted on the structure of a fully connected HMM. Therefore,
fully connected HMM are very well suited to model nonlinear data as they are able to

recognize different patterns in the binding peptides.

b.

Figure 1.13: An illustration of the first HMM topologies implemented for T cell epitope
prediction [400]. a. A pHMM and b. A fully connected HMM. The partial order of states and

the lack of any given starting or terminating state in a. and b, respectively, are evident.

By making use of tools such as the HMMER and SAM packages [403], pHMM are
extrapolated from sets of aligned peptides. With the underlying directed graph being
acyclic and an exception of loops, pHMM (Figure 1.13a) are linear left-right models.
Therefore, they support a partial order of the states. Consisting of three classes of states
known as the match state, the insert state and the delete state along with two sets of
parameters namely the transition and emission probabilities [404], the pHMM architecture
is unique. Amongst these states, always emitting a symbol are the match and insert states,
while without emission probabilities the delete states act as the silent states. Requiring a
drastically low computing power, pHMM are much weaker in modeling different patterns
compared to fully connected HMM. pHMM derived from pMHC binding data are perhaps
virtually identical to profile matrices or PSSM [404] due to almost ungapped alignments
observed during pMHC binding [309]. Although structure-optimized HMM models have
the capacity to model non-linear data, their connectivity compared to that of fully
connected HMM is greatly reduced. Use of fully connected HMM is often associated with
high computing costs. Furthermore, all HMM-based models can only be trained on known

positive (binding) peptide data unlike other machine learning algorithms described above.
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1.11.1.7  Support vector machines

Support vector machines (SVM) are a new type of machine learning algorithm where
statistical learning methods are based on the structural risk minimization principle [405].
Due to their usefulness in identifying patterns, they are being extensively applied in life
sciences [406-408]. Just like their predecessors (decision trees, ANN and HMM), SVM
also have the skill to encode and work with both linear and non-linear data. Hence, SVM
have also been utilized to predict T cell epitopes. Classification of data within SVM is
done by separating the data optimally into categories which is carried out by constructing
an N-dimensional hyperplane [309]. Representations of amino acid properties such as
residue composition, solvent accessibility, charge, bulkiness, polarity and hydrophobicity
are used to encode and assemble specific feature vectors that denote each peptide sequence
that is being processed within a SVM. As noted above, the margin between the binders and
non-binders is maximized by using an N-dimensional optimal separating hyperplane after
mapping input vectors into a high dimensional feature space to train the parameters used

for optimal classification.

Many researchers in the recent years have chosen to use SVM for T cell epitope prediction
[343, 345, 346, 409] primarily due to their efficiency in the absence of large training
datasets [173]. A consensus-based and combined prediction approach for T cell epitope
prediction has also been embraced [410], where the authors have successfully integrated
the strength of quantitative matrices, the robustness of ANN and the efficiency of SVM
algorithms to create hybrid models. Although peptides are often represented in binary
format, generally, different formats are used to encode the input peptide information or
data that is used to train SVM or any given machine learning algorithm. However, that
each peptide needs to be represented by a fixed length vector, presents a major limitation.
To overcome this barrier, a kernel-based SVM trained on similarity scores of MHC-II
binding allele-specific peptides, have recently been utilized to obtain better prediction
results for MHC-II restricted T cell epitopes [411]. This approach was also able to model
the influence of PFR on pMHC binding.

Subsequently, physicochemical properties of peptides known to bind to MHC-I proteins
have been utilized for training SVM to improved prediction accuracy for MHC-I restricted
T cell epitopes [344]. It is well known that unavailability of peptide binding data is a key
limiting factor in the development of allele-specific T cell epitope prediction protocols.

Recently, by combining the routine SVM formulation and a user-defined measure of
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similarity between alleles, Jacob and Vert [342] have been able to predict T cell epitopes
for MHC-I alleles with few known binders. Although sequence-based methods are well
established and are frequently used to predict T cell epitopes, their use is still persistent
with major limitations such as heavy reliance on the availability of large comprehensive
training sets of peptides. Thus, in cases where the available data is insufficient, the
sequence-based approaches are inappropriate for accurate prediction of peptides rendering
their coverage only to subsets of binding peptides that belong to the most numerous
groups. Therefore, for peptides that are least represented in the dataset [10, 49], these
methods are unable to generate reliable data, implying that structural immunoinformatics is

the only option for such peptides [11-14].

1.11.2 Structure-based approaches

Structure-based approaches are the methods that utilize three-dimensional data for detailed
structural analysis of interactions between the MHC alleles and the respective bound
antigenic segmental peptides [49]. These methods are not trained on peptide binding data
and are exclusively based on the 3D structures of MHC proteins and pMHC complexes,
hence are referred to as the structure-based methods. Due to the complexities and high
developmental costs associated with structure-based methods, they have not been as
extensively studied or used for T cell epitope prediction as the sequence-based methods.
However, their applicability to any MHC allele means that these methods have the utmost
potential to accurately predict T cell epitopes [309] provided their crystal structures are
available. Therefore, diligent efforts have been made with great success in the recent years
to both develop [10, 49, 412, 413] and apply [11-14, 414-416] various structure-based
techniques for T cell epitope prediction. Described below are these structure-based
techniques that have been successfully employed by researchers in the past few years for T

cell epitope prediction.

1.11.2.1 Homology modeling

Originally developed in the early 1990s [413, 417, 418], homology modeling is arguably
one of the most basic structure-based technique that was employed for T cell epitope
prediction [415, 419]. It predicts the unknown structure of an amino acid sequence related
to a homologous protein utilizing the available structure(s) of the homologous protein. As
said, homology modeling has found extensive use in T cell epitope prediction. Here, given
the 3D structures of bound peptides to homologous MHC proteins, homology modeling is

primarily used for modeling the bound conformation of a peptide sequence with an
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unknown structure. One of the first uses of homology modeling for T cell epitope
prediction was reported when Hammer et al. [415] identified specific patterns of peptide
binding from the pMHC crystallographic structure of a HA peptide bound to the human
allele HLA-DRB1*0101 by constructing a series of synthetic pMHC models with designer
peptides bound to other human rheumatoid arthritis associated (DRB1*0401 and
DRB1*0404) and rheumatoid arthritis non-associated (HLA-DRB1*0402) alleles.

Utilizing their strategy, they were able to determine striking differences in pMHC binding
for rheumatoid arthritis associated and non-associated alleles. Using homology models for
different MHC-I proteins, Zhang et al. [420] were able to explain the structural principles
that govern the development of peptide binding motifs for MHC-I alleles. Following this,
construction of the bound conformation of peptides to a range of MHC-I alleles using a
two-step approach was described by Rognan et al. [419]. The authors combined 3D models
and a custom-built scoring function called “Fresno” to predict T cell epitopes restricted by
the human MHC-I allele HLA-A*0204 (a close relative of the HLA-A*0201 allele) and the
murine MHC-I allele H2-Kk. Crystal structures of many different proteins such as the 2C
TR, the TR/pMHC complex of A6/Tax-HLA-A2, the 1934.4 TR Va chain, the 14.3.d TR
VB chain and the pMHC complex of ovalbumin peptide-H2-Kb, were together used by
Michielin et al. [421] to successfully develop a homology model of the TR/pMHC
complex of T1/PbCS-H2-Kd.

Based on their previous success, Logean et al. [422] went on to compare and prove the
superiority of their customized scoring function (Fresno) over other available scoring
functions for T cell epitope prediction. They also applied a similar two-step prediction
protocol to the one adopted by Rognan et al. [419] for HLA-B*2705 restricted T cell
epitope prediction. Based on homology to the most similar MHC-bound peptide with
available crystal structure, peptide termini are selected as the first step in their modeling
protocol. Subsequently, by satisfaction of spatial restraints using a knowledge-based loop
search procedure, the remaining residues were constructed as the second step in their
technique. In 2002, identification of critical residues within the A6 TR interacting with
peptide-HLA-A2 pMHC complex was presented by Michielin et al. [423] where they had
applied their previously developed homology modeling-based methodology [421].

Recently, Kosmopoulou et al. have reported an improvised homology modeling-based

approach to HLA-DQ2 and HLA-DQ?7 restricted T cell epitope prediction. They have
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subjected peptides that were initially identified using a combination of sequence patterns,
quantitative matrices and ANN, to homology modeling using the crystal structure of the
insulin-B peptide-HLA-DQ8 pMHC complex as a homologue. Finally, these structural
models were placed into the structural models of the HLA-DQ2 and HLA-DQ7 MHC
proteins, again built using the insulin-B peptide-HLA-DQ8 pMHC complex as a
homologue and energy minimization was carried out to identify potential T cell epitopes.
Although useful, use of this technique is basic, includes complexities in developing high-

throughput T cell epitope prediction models and is not very accurate.

1.11.2.2  Protein threading

An improvised technique compared to homology modeling, protein threading [412] is the
name given to the practice of computing an alignment between the spatial positions of a
3D structure and a target amino acid sequence. It is also generally referred to as side-chain
conformational search [424]. Protein threading is made use of in T cell epitope prediction
to replace the target peptide residues (S, Sy ... Sp) for the amino acids (P, P, ... Py) of a
source peptide (by substituting P; with S;) bound to a MHC protein of interest. Usually, a
scoring scheme for peptides is applied to discriminate the binders from non-binders after
performing a search for the best side-chain conformations for the peptides. The first use of
protein threading for T cell epitope prediction was documented by Altuvia et al. [414]
when they introduced a reasonably quick and accurate (compared to homology modelling-
based protocols) structure-based algorithm to predict HLA-A*0201 restricted T cell

epitopes.

By adopting the protein threading technique and the knowledge-based potential matrix of
Miyazawa and Jernigan [425], they were able to successfully detect binding peptides not
conforming to HLA-A*0201 binding motifs. Subsequently, Altuvia et al. [426] extended
this algorithm to predict T cell epitopes for a multitude of MHC-I alleles. The underlying
feature that governs the predictive ability of their approach comprises of utilizing a form of
protein threading called as peptide threading to fit the peptides within the peptide binding
cleft of the MHC-I proteins and then assess the pairwise pMHC interactions by adopting
the above mentioned statistical pairwise potential table or matrix of Miyazawa and
Jernigan [425]. This approach was also exploited by Schueler-Furman et al. [427] to
predict T cell epitopes for 23 MHC-I proteins. However, this approach could only identify
T cell epitopes for MHC-I proteins with hydrophobic binding pockets and was
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unsuccessful in identifying T cell epitopes for MHC-I alleles with pockets that are charged

or hydrophilic in nature.

To counter this issue, by observing the number of solvent exposed hydrophobic residues on
modeled peptides and the number of atomic clashes in pMHC binding, Kangueane et al.
[428] ingeniously introduced the concept of knowledge-based rules for successful
discrimination of binders and non-binders. Learning from the knowledge and useful
information generated from researching the structures of pMHC complexes, Schueler-
Furman et al. [351] were able to fruitfully overcome the hurdle of developing a generalized
(applicable to most MHC-I proteins) protein threading-based T cell epitope prediction
algorithm. They combined a different pairwise potential table, previously described by
Betancourt and Thirumalai [429], with the peptide-threading approach to effectively come
up with an algorithm that described hydrophilic interactions more appropriately, resulting

in improved prediction for MHC-I alleles with hydrophilic binding pockets.

Following this, Zhao et al. [430] adopted a similar combined procedure and produced
another novel knowledge-based potential matrix which, in combination with the peptide
threading technique, allowed T cell epitope prediction for most MHC-I alleles. Recently,
Singh and Mishra [431] have utilized the inverse folding approach by tethering protein
threading, Miyazawa and Jernigan and Betancourt and Thirumalai pairwise potential tables
together to predict T cell epitopes for MHC-I proteins. Peptide threading has also very
recently been used to predict MHC-II restricted T cell epitopes [432]. Despite being
superior to the basic homology modelling technique, this approach fails to account for both
the appropriate inclusion of the flexibility of peptide side-chains and the flexibility of the
MHC peptide binding groove (binding pockets) itself.

1.11.2.3  Docking

Among all other techniques used for T cell epitope prediction, docking is perhaps the most
successful to date [11-14]. It is the name used to describe a very powerful and systematic
computer-aided technique to investigate intermolecular interactions. It is also known as
computer-simulated ligand binding. This is because this technique essentially performs in
silico simulation or computer-based simulation of receptor and ligand binding. Usually this
is carried out as a two-step protocol which involves: (i) rational determination of the most
appropriate conformational, translational and rotational concurrence for a particular

receptor-ligand pair and; (i1) evaluation of how well a ligand can bind to its receptor or the
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relative goodness-of-fit, habitually estimated by calculating the binding energy (BE) value
for receptor-ligand binding which can then be used for scoring purposes to identify the best

fitting ligands among a group of ligands.

The advantages and robustness of docking have resulted in this technique being
successfully applied to predict T cell epitopes for various MHC alleles in the recent years
[11-14, 433]. So much so, that there has been a surge in both the development [10, 11, 49]
and application [11-14, 433] of docking-based protocols to address the problems associated
with T cell epitope prediction, in the past few years alone. Generally, methods pertaining
to docking can be sub-divided into rigid, semi-flexible and flexible docking and typically,
after the calculation of BE scores for all input peptides, they involve scoring of a series of
peptide candidates using energy-scoring functions for T cell epitope prediction. Initially,
rigid docking of the influenza matrix peptide to the human MHC-I allele HLA-A*0201
with the help of a Monte Carlo-based combinatorial build-up algorithm, was documented

by Caflisch ef al. [434] in 1992.

This triggered persistent efforts from various research groups around the globe to improve
the quality and speed of the docking protocol for effective prediction of the structures of
the bound peptides to MHC proteins as a first step for subsequent T cell epitope prediction.
Resultantly, Rosenfeld et al. [435] presented a semi-flexible protocol for docking of
peptides to MHC proteins where only the peptide backbone was rendered flexible and the
MHC pocket residues were rendered rigid. They also applied this protocol to predict bound
peptide structures for the human MHC-I allele HLA-A*0201 and the murine MHC-I allele
H2-Kb. Later, Rosenfeld et al. [436] developed another protocol for semi-flexible docking
of peptides utilizing a multiple copy algorithm to identify probable peptide termini
conformations and constructing the structure for the middle residues of the peptide

sequences using a loop closure algorithm.

In the very next year, Sezerman et al. [424] created a semi-flexible docking protocol by
making use of the free energy maps of the MHC pocket residues to generate the docked
conformations of the peptides for MHC-I proteins. However, all these methods were still
treating the MHC binding site residues (pocket residues) as rigid entities and hence their
accuracies varied. To conquer this obstacle, Desmet et al. [437] built a docking algorithm
that treated both the peptide and the MHC binding cleft residues flexibly, thereby, giving

birth to use of flexible docking protocols for the prediction of the bound conformation of
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peptides to MHC proteins. Consequently, efforts were directed at developing new and
improved flexible docking procedures that could cope with the complexities of pMHC
binding and T cell epitope prediction. This resulted in the development of an accurate
flexible docking protocol by Tong et al. [10, 11] by integrating the strength of Monte Carlo
simulations and homology modeling to dock peptides to a number of MHC-I and MHC-II

alleles.

They have also been successful in the implementation of their multi-step docking protocol
[10, 11] to predict T cell epitopes (even for MHC alleles with limited peptide binding data)
by making use of a custom-built BE scoring function [11-14]. Subsequently, Bordner and
Abagyan [433] developed a Biased-Probability Monte Carlo procedure for flexible docking
of peptides to MHC proteins and were able to successfully predict T cell epitopes for
human MHC-I allele HLA-A*0201 and the murine MHC-I allele H2-Kb. However, the
speed, accuracy and efficiency of these flexible docking protocols needed to be improved
for high-throughput screening of peptides for fast and efficient T cell epitope prediction.
To surmount this difficulty, Khan and Ranganathan [49] have recently built “pDOCK” (see
publication 3 for details) by combining the strength of the Biased-Probability Monte Carlo
procedure and the efficiency of grid-based fully flexible docking.

Their method (pDOCK) is a fully flexible docking protocol that renders full flexibility to
the peptide backbone, peptide side-chains, the MHC binding cleft residue backbones and
their side-chains. pDOCK is also a rapid, robust and efficient method for docking of
peptides to both MHC-I and MHC-II alleles. It has been noted that accurate prediction of
the appropriate geometry of peptides bound to both MHC-I and MHC-II proteins can
drastically improve the accuracy of T cell epitope predictions, suggesting the usefulness
and advantages of using fully flexible docking for T cell epitope prediction. However, like
all structure based techniques, automation of fully flexible docking protocols for the
development of web-servers to make them comparable with sequence-based methods in
terms of high-throughput T cell epitope prediction, still poses a challenge mainly owing to

the technical complexities and computational costs involved.

1.11.2.4 Molecular dynamics
Molecular dynamics (MD) is another form of generating computerized models of 3D
protein structures through computer simulation of their physical movements based on

statistical mechanics. It combines the abilities of molecular modeling and computer
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simulation and hence, is a powerful and flexible tool to predict and/or analyse molecular
and macromolecular systems [416]. Due to its qualities, MD has often been used in
structure-based drug design. In the process of T cell epitope prediction, MD is generally
used to sample the conformational spaces of the input peptides within the fixed
environments of their respective MHC binding clefts [438]. Although MD has been in use
for T cell epitope prediction since the early 1990s, progress in utilizing MD for T cell
epitope prediction has been relatively slow mainly due to the fact that researchers have
resented from the use of this technique owing to the complexities involved in simulating

the pMHC and/or the TR/pMHC interactions.

The first use of MD for T cell epitope prediction was documented in 1994 by Rognan et al.
[439]. They simulated the pMHC interactions for the human MHC-I allele HLA-B*2705
and six different peptides and found evidence supporting the importance of the role played
by the peptide residues other than the anchor residues in pMHC binding. Similarly,
structures of the human MHC-I allele HLA-A*0201 in complex with 9-mer peptides, were
examined by Lim et al. [440] through the use of MD simulations. Their investigation led to
conclude that the C-terminal residues of the non-binders are rotated away from the binding
pockets by a conformational change within the non-binders resulting in subsequent release
of the peptides from their respective MHC binding clefts. Following this, MD was used in
conjunction with other techniques for T cell epitope prediction. A decade later however,
Fagerberg et al. [438] used an advanced MD based technique known as simulated
annealing (SA) to sample the conformational space of the peptides binding to MHC-I

proteins.

A year later, Sieker et al. [441] performed a comparative analysis of tapasin-dependent
pMHC binding and studied the conformational flexibility of the human MHC-I alleles
HLA-B*4402 and HLA-B*4405 in the presence and absence of bound peptides using MD
simulations. As noted above, up until now, the progress of using MD for T cell epitope
prediction has been tentative, but emergence of high-performance computing and the
development of coarse-grained simulation has now enabled researchers to exclusively use
MD for not only simulating pMHC interactions but also TR/pMHC interactions along with
the cell membranes and CD proteins as a whole to form the entire immunological synapse
or the “immune complex™ [416]. In this regard, Flower ef al. [416] have very recently

described the use of MD simulations to calculate the free energies of binding for pMHC
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and TR/pMHC interaction in four distinct immune complexes and present the potentiality

of MD as a possible T cell epitope prediction technique.

Therefore, the potential use of MD simulations for T cell epitope prediction presents an
exciting prospect for the future due to its advantages in modeling the details of all dynamic
behaviour involved during pMHC and TR/pMHC interactions including the details of the
solvent and the ionic environments within which they occur [416]. Nevertheless, MD
simulations have two prominent limitations: (i) the short time scale of MD simulations
compared with those exhibited by biological processes reflected by the inadequate
sampling of conformational space and; (ii) most, if not all, empirical force fields remain
highly approximate despite increasingly sophisticated parameterization [416]. Hence, the
intrinsic validity of such simulation exercises is still a cause of concern. Although, the
emergence of supercomputing and widely accessible parallel MD code have addressed the
first issue, the second problem still remains unaddressed despite many attempts with
limited success as increasing the time scales results in more and more approximations
[416]. Besides these prominent issues, the need for crystal structures of pMHC and
TR/pMHC complexes and enduring limitations pertaining to molecular modeling and
computer-aided simulation have also hampered the use of MD for T cell epitope
prediction. Finally, their present success rate is very much lower than that of other
structure-based techniques such as docking, implying that much work remains to be done

on developing, refining and applying this technique for T cell epitope prediction.

1.11.3 Sequence-structure-based approaches

As referred to earlier, various research groups have used methods that combine the
sequence-derived pMHC binding affinity data and 3D structural information of MHC
proteins and pMHC complexes to predict T cell epitopes. Despite this, a few prominent
examples of success by combining the two aspects have been documented. Doytchinova
and Flower [160] were the first to introduce a discrimination schema by employing
similarity indices and 3D quantitative structure-affinity relationship (QSAR) using the
powerful comparative molecular field analysis (CoMFA) and comparative molecular
similarity indices analysis (CoMSIA) to predict T cell epitopes among 102 peptides known
to bind the human MHC-I allele HLA-A*0201. Following this, Doytchinova and Flower
[310] again utilized the power of molecular CoMSIA-based 3D-QSAR technique to predict
T cell epitopes from a set of 266 peptides for the human MHC-I allele HLA-A*0201.
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Computational predictive models or algorithms capable of extrapolating T cell epitope
predictions for MHC proteins with very little binding data can also be generated using this
combination of peptide binding data and 3D structural information. This was demonstrated
recently by Jojic ef al. [311] who implemented an adaptive double threading approach by
making use of the peptide binding affinity data and the predictive ability of the protein
threading technique to predict T cell epitopes for HIV related MHC-I alleles. Although
relatively successful, these approaches inherit the coherent limitations of using both
sequence based approaches such as similarity indices and structure-based approaches such
as protein threading. These shortcomings greatly influence and/or limit the ability of these
conjunctive approaches. Hence, successful use of this approach requires addressing several
potential limitations that could emerge due to the use of sequence and structure data such
as the need for significant amounts of peptide binding affinity data and the complexities

with using structural data.

While a comprehensive overview of the field of structural immunoinformatics and its
applications in peptide based vaccine design has been presented above, recent progress and
previous work on successful prediction of T cell epitopes [11-14] using an accurate
docking strategy [10, 11] has been reviewed in publication 1 below. Following this, an in-
depth explanation pertaining to TR/pMHC complex formation, T cell activation, current
knowledge of TR/pMHC interactions and their significance in clinical medicine is
presented in publication 2 along with a preview of the newly characterized TR/pMHC
interaction parameters applied to one TR/pMHC complex (PDB code: 1oga) as a primary
understanding of the TR/pMHC binding.
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Although we have used simplistic terminology such as ‘TR footprint’ to describe the
residues on the pMHC interface that contact the TR in publication 1, we have adhered to
standardized IMGT terminology such as ‘pMHC epitope’ and ‘TR paratope’ to describe
residues on pMHC interface that contact the TR and residues on TR interface that contact

the pMHC, respectively, from publication 2 onwards.
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Synonyms
TCR recognition of MHC-peptide complexes, TR/pMHC interaction, TCR-pMHC binding.

Activated
T Cell

Inactive
T Cell

Figure 1. Steps leading to T cell activation in adaptive immune response. a. antigen
processing and pMHC complex formation. b. transportation of pMHC to APC surface for
presentation. c. pMHC presentation and TR surveillance. d. TR recognition of pMHC,
TR/pMHC complex formation, T cell signaling and activation.

Definition

TR recognition of MHC-peptide complexes is the name given to the vital immunological
synapse within the adaptive immune system of higher jawed vertebrates where, the
antigenic peptide bound major histocompatibility complexes (pMHC) are recognized and
bound by T cell receptor (TR) at the antigen presenting cell (APC) surface for T cell
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signaling (Fig. 1) leading to an immediate immune response to either destroy infected
cells directly (via CD8" cytotoxic T cells) or activate (via CD4" helper T cells) other
immune system cells like B cells and macrophages to carry out the immune cascade.

Characteristics

The adaptive immune system plays an important role in defending higher jawed
vertebrates against infectious, autoimmune, allergic and graft vs. host diseases. It is
named “adaptive” due to its ability to adapt and respond to an ever changing variety of
new pathogens thereby conferring long-lasting or protective immunity to the host. This
significant phenomenon within the body’s defense mechanism works under the influence
of a series of vital protein-protein interactions. These essential interactions are mediated
by certain highly specific and selective proteins, similar to those involved in antibody or B
cell mediated immune response (Alberts et al. 2002). Amongst these proteins, the most
important from a clinician’s perspective are the ones involved in T cell activation namely,
major histocompatibility complexes (MHC), antigenic or immunogenic peptides (p) derived
from antigens and T cell receptors (TR) proteins. To maximize the immunological
protection against a vast repertoire of pathogens, the adaptive immune response cascade
causes MHC or human leukocyte antigens (HLA) in human, to bind to immunogenic
peptides and present them as peptide-MHC (pMHC) complexes on the surface of antigen-
presenting cells (APC), for recognition by TR (Fig. 1) which are bound to the surface of
the T cells (Rudolph et al. 2006). Upon recognition by the TR, the TR and pMHC bind to
form a ternary TR/pMHC complex which is called as the immunological synapse. This
synapse activates the T cells leading to an immediate immune response to either destroy
infected cells directly (via CD8" cytotoxic T cells) or activate (via CD4" helper T cells)
other immune system cells like B cells and macrophages to carry out the immune
cascade. Although it has been more than a decade since the first TR/pMHC structure was
reported (Garboczi et al. 1996), this interaction still poses an intricate theoretically and
structurally unscaled frontier in Structural Immunoinformatics. Therefore, it is extremely
important to understand TR recognition of MHC-peptide complexes at the molecular level
with a focus on its various physicochemical properties, beginning with an in-depth
knowledge of the essential components involved, in order to gain insights into the likes
and dislikes of a TR protein towards a specific pMHC complex and to comprehend the
potential of a peptide epitope to elicit T cell response which, today serves as the first step
in vaccine development through Reverse Vaccinology.

The key players:

MHC

MHC proteins are expressed within most cells and are arguably the most important
element of T cell mediated immunity. They are structurally and functionally similar to
antibodies secreted by B cells (Alberts et al. 2002). Typically, the MHC proteins are
composed of two chains, o and  and are broadly classified into two types, MHC class |
(MHC-I) proteins and MHC class Il (MHC-II) proteins. MHC-I proteins are heterodimers,
consisting of a heavy o chain (I-ALPHA) of about 45 kDa, and a light chain, B2-
microglobulin (B2M) of about 12 kDa with the o chain (I-ALPHA) consisting of a1 (G-
ALPHA1), a2 (G-ALPHA2) and a3 (C-LIKE) domains where G-ALPHA1 and G-ALPHA2
domains form the peptide binding groove or ‘cleft’ (Lefranc et al. 2005; Fig. 2a).
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Figure 2. The key elements of T cell dependant immunity. a. MHC-l a chain (I-ALPHA; gold)
from the PDB structure 1ao7 (Garboczi et al. 1996), with the bound peptide (blue) showing
the peptide binding domains. b. MHC-Il o chain (lI-ALPHA; gold) and  chain (lI-BETA;
green) from the PDB structure 1fyt (Hennecke et al. 2000), depicting the peptide binding
domains with the cognate peptide (blue). c. a typical TR protein from the TR/pMHCH-I
structure 1fyt (PDB code; Hennecke et al. 2000), with the two chains (o - yellow and 8 -
purple) portraying the two constant and two variable domains on either chains.



MHC-II proteins are also heterodimeric proteins consisting of a a chain (lI-ALPHA; 34
kDa) and a B chain (II-BETA; 29 kDa) with very similar overall quaternary structure to that
of MHC-| proteins (Lefranc et al. 2005). However, their peptide binding groove is formed
by the a1 and B1 domains (Fig. 2b) of the two chains, a (IIF-APLHA) and B (II-BETA).
Generally, MHC-I complexes bind and present endogenous (processed within the cell)
peptides whereas MHC-II complexes prefer exogenous (processed outside the cell)
peptides.

Immunogenic peptide antigens

Immunogenic peptides or T cell epitopes are essential subunit peptides that are required
to stimulate cellular immune responses, especially the adaptive immune responses.
Peptide epitopes are presented for surveillance and recognition by the TR in an MHC
allele (polymorphic MHC proteins) and supertype (groups of MHC proteins with similar
peptide binding properties) dependent manner and can be of endogenous or exogenous
origins. Usually, Peptides between 8-11 amino acids in length are presented by MHC-I.
Cytosolic proteases within the cytosol of the cell ‘chop’ these peptides, which are then
carried by “transporters associated with antigen processing” (TAP) proteins in an ATP-
dependent manner to the MHC binding groove, for pMHC complex formation (Tong et al.
2004). This pMHC complex is then translocated to the cell surface and presented for
recognition by the TR of CD8" cytotoxic T cells or cytotoxic T lymphocytes (CTL). MHC-II
presents peptides that are generally 12-20 amino acids in length. Endocytosed into the
cell by the lysosomes, these peptides displace the native MHC-II ligand known as the
‘CLIP’ peptide, to form the pMHC complex (Tong et al. 2004). Just as with the pMHC-I
complexes, pMHC-II complexes are then presented at the APC surface for recognition by
the TR of CD4" T helper cells.

TR

The TR proteins are another vital part of T cell dependant immune response. They
function in a similar way as some cell surface receptors of the B cell mediated immunity
such as, Fc receptors found on the surface of macrophages or neutrophils which bind to
the antigen-bound antibody, resulting in phagocytosis and lysis of the antigen or pathogen
by the macrophages or neutrophils (Alberts et al. 2002). The difference here is that, upon
TR/pMHC complex formation, the TR proteins do not actually cause the T cell to ingest
and break down the pathogen. Instead, they trigger T cells to destroy the infected cells
either directly or indirectly as described above. A typical aff TR has two chains, o and 8
(Fig. 2c) which are divided into constant (encoded by the conserved constant (C) gene
segment of the TR coding genes) and variable domains (encoded by rearranged variable
(V), diversity (D) and joining (J) gene segments, V-J for a chain and V-D-J gene segments
for B chain, respectively) which perform specific functions. The two conserved or constant
domains (Ca and CB; Fig. 2c) of the TR anchor it to the T cell surface through a
transmembrane region. These constant domains are linked to the upper more diverse or
variable domains (Vo and V; Fig. 2c) which recognize the pMHC at the TR/pMHC
binding interface.

TR/pMHC interaction: what’s understood
Many theories have been put forward as an answer to comprehend the rationale behind

TR/pMHC interaction. An interesting one is the “TR germline bias” for MHC which

78 4



suggests that the basis of MHC restriction or TR specificity is a set of specific conserved
and localized contacts between TR V gene (variable gene) products and MHC gene
products that co-evolve (Jerne 2004). The combinatorial diversity problem due to a large
number of antigenic peptides, the variety in the variable regions of TR proteins and many
greater number of MHC alleles all complicate the issue further, contradicting the simplistic
explanation provided by the TR germline bias theory. The cross-reactivity of MHC proteins
implies the ability to the TR to briefly scan through several pMHC complexes before
actually interacting with and binding to a specific one. Over the years, researchers have
singled out many factors that could contribute to or influence the TR/pMHC binding.

L D\
/K}U M\\ \  Peptide residues ’
U

N M interacting with MHC ’

Figure 3. What does a TR “see”: TR/pMHC interaction zones in the structure 1oga (PDB
code; Stewart-Jones et al. 2003). Inset - above: TR paratope and below: pMHC epitope
(except the peptide residues that interact with the MHC — shown in blue). The MHC residues
interacting with the TR and TR residues interacting with the MHC are in green. Similarly, the
peptide residues interacting with the TR and TR residues interacting with the peptide are
highlighted in yellow. All interacting residues are shown in the stick representation.

However, a thorough literature survey helped us identify four major factors: 1. Binding
energy (BE) or binding free energy between the TR and the pMHC ligand; 2. Electrostatic
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Potential computed and displayed on the TR and the pMHC interfaces (Rudolph et al.
2006); 3. The angle formed by docking of the TR onto the pMHC surface and; 4. Residues
or certain broadly conserved structural determinants among pMHC and TR interacting
sequences (Rudolph et al. 2006; Fig. 3) or in other words pMHC epitope (residues on
pMHC interface that contact the TR; Kaas and Lefranc, 2005) and TR paratope (residues
on TR interface that contact the pMHC; Kaas and Lefranc, 2005), that would constitute the
“smoking gun” of “MHC bias” (Garcia et al. 2009).

A recent study on a limited subset (approximately 20) of TR/pMHC X-ray crystal structures
has given some promising and favourable results to TR germline bias theory (Garcia et al.
2009). Nevertheless, vital interaction parameters like electrostatic interactions between
the TR and the pMHC have not been taken into account by the authors, which could
reveal the physicochemical basis of TR/pMHC interaction. Moreover, many more
TR/pMHC crystal structures are now available. Hence, continuing from our preliminary
analysis of the 1oga (PDB code; Stewart-Jones et al. 2003) complex (Khan et al. 2010),
we have applied these new interaction parameters to the same structure (1oga; Stewart-
Jones et al. 2003) for a primary understanding of the TR/pMHC binding. A BE value of -
11.99 kcal/mol and a TR docking angle of 69° have been computed. The electrostatic
potential for the pMHC interface of this TR/pMHC structure depicts a set of
complementary charges on the TR and pMHC surfaces, which could serve as one of the
underlying principles for TR recognition of pMHC complexes. However, a detailed and in-
depth analysis of a larger subset of available TR/pMHC X-ray crystal structures using
these factors as important interaction criteria, is needed in order to thoroughly understand
the governing aspects of the pMHC recognition and TR signaling, perhaps a few
conserved residues at the TR/pMHC binding interface.

Recent advances and implications in vaccine development

Considering the critical role that the peptide plays in determining TR specificity,
identification of true T cell epitopes from repertoires of immunologically significant
antigenic peptide sequences becomes a vital prerequisite in the process of conventional
molecular vaccine design. Identifying T cell epitopes experimentally is a tedious, time
consuming and expensive process, owing to the combinatorial diversity problem
(mentioned earlier) and the extremely low chance of immunogenicity (1 in 2000 peptides;
Khan et al. 2010). Recently, advanced computational methods have proven to be vastly
time and cost efficient in screening the vast oceans of peptides and MHC repertoires.
Current computational methods can be broadly classified into: sequence-based and
structure-based approaches. The former generally require extensive sequence data for
training, whereas the latter utilize three-dimensional structural analysis of interactions
between the MHC and bound segmental antigenic peptides (Khan et al. 2010). Although
sequence-based methods are well established and suitable for large-scale screening of
potential T cell epitopes, a major limitation of such techniques is the heavy reliance on the
availability of large comprehensive training sets of peptides (Khan et al. 2010). Hence,
these approaches are inappropriate for accurate prediction of peptides in circumstances
where the available data is limited. On the other hand, structure-based protocols work
better for detailed analysis of short immunogenic regions of antigens and can generate
reliable data for peptides that are least represented in a dataset (Khan et al. 2010), as
they are computationally intensive and time consuming.
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The development of new structural modeling and docking techniques and an increase in
the number of protein structures is resulting in accurate structure-based flexible-docking
approaches being more commonly used to predict potential T cell epitopes (Khan et al.
2010). Often producing modeled/docked structures of peptide ligands accurate to within
2.00A root mean square deviation (RMSD) from the experimental crystal structure, these
approaches provide a wealth of information for structural analysis and improvement of
epitope prediction methods. An initial but accurate flexible-docking method (Tong et al.
2004) helped us accomplish quantitative predictions for both MHC-I and MHC-II alleles,
with limited binding peptide data (Khan et al. 2010). However, this method is relatively
slow. Therefore, there is an urgent need for a faster, more robust and accurate docking
technique which, along with the results of a comprehensive analysis (mentioned earlier),
could together form the basis of successful in silico identification of true T cell epitopes,
from a large number of predicted MHC-binding peptides, for subsequent in vitro immune
response assessment. Such an approach would significantly reduce the lead time
involved in experimental vaccine development methods, resulting in swift production of
effective, highly specific and efficient peptide vaccines.

Importance of supposedly insignificant molecules

The antigen and MHC allele-specific interaction between a TR on a T cell and a pMHC
complex on an APC, appears to be governed largely by the composition and the
electrostatic interaction on the TR and the pMHC interface regions (Rudolph et al. 2006).
However, other proteins, which are usually considered insignificant, also play a significant
role in this vital immunological synapse. For example, interactions between adhesion
proteins called intercellular adhesion molecule-1 (ICAM-1) present on the APC and
leukocyte function-associated antigen—1 (LFA-1) present on the T cell surface, bring the
APC and T cell close to each other, leading to the formation of the immunological synapse
(Alberts et al. 2002; Rudolph et al. 2006). Cluster of differentiation (CD) proteins bound to
the T cell surface also contribute to the TR/pMHC binding. It is well known that the CD8
proteins specifically recognise MHC-| proteins and CD4 proteins are specific for MHC-II
proteins. This could imply allele related specificity to the TR. The B-2 microglobulin chain
found alongside the MHC a-chain in MHC-| structures, also has a stake in the synapse
formation, by partially recognizing the CD8 proteins along with the MHC a-chain lower
(constant) region.

These proteins that support the immunological synapse are collectively called the
costimulatory proteins. Several structures have been reported highlighting the interaction
of these proteins, which bear witness to the importance of their role in TR/pMHC binding
and TR activation (Gao et al. 1997, Liu et al. 2003). It could also be inferred that once the
TR recognises the pMHC complex, it is the interaction of the CD proteins that locks the
TR/pMHC complex together, thereby giving the TR enough time to stabilize itself on the
pMHC surface, resulting in T cell activation or immune response. Another important
aspect of TR/pMHC binding is the presence of water molecules in and around the
TR/pMHC complexes. These water molecules are usually considered to be water
molecules of crystallization, but some of these lie within 4 A from both the TR and the
pMHC residues, forming hydrogen-bonded bridges between the pMHC and the TR
residues and could be vital for the immunological synapse to occur. Thus, the activation of
T cells depends not only on TR engagement with pMHC but also on the interaction of
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costimulatory proteins. However, as these costimulatory proteins do not bind and/or
present any antigenic/immunogenic peptide determinants, the primary players in the
development of peptide-based vaccines through reverse vaccinology remain the
immunogenic peptides, presented by MHC for recognition by TR proteins.
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Definitions

Adaptive Immune System

Synonyms
Adaptive immune response cascade, Adaptive immunity.

Definition

The adaptive immune system is a collective term given to a group of highly specialized,
systematic cells and processes that prevent vertebrates from certain death by pathogenic
infections (Alberts et al. 2002).

Reference

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The adaptive immune
system. In: Molecular biology of the cell, 4th edn. Garland Science, New York, pp 1363-
1421.

T cell signaling

Synonyms
T cell receptor signaling, TCR signaling, TR signaling.

Definition

A number of signaling cascades that occur after TR/pMHC binding and promote T cell
activation through regulated production of cytokines to ultimately determine infected cell
fate are together called as the T cell signaling process (Alberts et al. 2002; Rudolph et al.
2006).

References

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The adaptive immune
system. In: Molecular biology of the cell, 4th edn. Garland Science, New York, pp 1363-
1421.

Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and
coreceptors. Annu Rev Immunol 24: 419-466.



B cell mediated immune response

Synonyms
B cell mediated immunity, Antibody dependant immune response, Antibody mediated
immunity.

Definition

B cell mediated immune response is defined as the immune response cascade triggered
by the binding of antibodies (produced by the B cells) to the antigens and subsequent
identification by the cell surface receptors of macrophages, neutrophils or other cells of
the B cell mediated immunity to destroy the antigens. It is a type of adaptive immunity in
vertebrates (Alberts et al. 2002).

Reference
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The adaptive immune

system. In: Molecular biology of the cell, 4th edn. Garland Science, New York, pp 1363-
1421.

T cell activation

Synonyms
T cell receptor activation, TCR activation, TR activation.

Definition
Prior to target (infected) cell killing or activation of other immune system cells to do the
same, by the cytotoxic or helper T cells, respectively, the T cells must be activated and
this activation, called T cell activation, occurs via T cell signaling which is in turn caused
by TR/pMHC binding or TR recognition of pMHC complexes (Alberts et al. 2002; Rudolph
et al. 2006).

References
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The adaptive immune

system. In: Molecular biology of the cell, 4th edn. Garland Science, New York, pp 1363-
1421.

Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and
coreceptors. Annu Rev Immunol 24: 419-466.
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Structural Immunoinformatics

Synonyms
Immunoinformatics, Structure-based Immunoinformatics.

Definition

Structural Immunoinformatics is the study of Immune system using computer-aided
biotechnological (bioinformatics) tools and X-ray crystal structures of immune system
components (Khan et al. 2010).

Reference

Khan JM, Tong JC, Ranganathan S (2010) Structural Immunoinformatics: Understanding
MHC-peptide-TR binding. In: Davies MN, Ranganathan S, Flower DR (eds) Bioinformatics
for Immunomics, vol 3 (Immunomics Reviews Series). Springer, New York, pp 77-94.

Reverse Vaccinology

Synonyms
Computer-based vaccine development, Computer-aided Vaccinology.

Definition

Reverse Vaccinology is a quick and efficient method of determining potential vaccine
targets by screening entire pathogenic genomes using bioinformatics approaches, which
later undergo normal wet-lab testing for immunological responses.

T cell epitopes

Synonyms
Peptide epitopes, Immunogenic peptides, Peptide antigens.

Definition

T cell epitopes are endogenous or exogenous immunogenic peptide antigens that are
bound to and presented by the MHC proteins for recognition by the TR at the APC surface
leading to T cell signaling and activation (Tong et al. 2004; Khan et al. 2010).

References
Tong JC, Tan TW, Ranganathan S (2004) Modeling the structure of bound peptide ligands
to major histocompatibility complex. Protein Sci 13 (9): 2523-2532.

Khan JM, Tong JC, Ranganathan S (2010) Structural Immunoinformatics: Understanding

MHC-peptide-TR binding. In: Davies MN, Ranganathan S, Flower DR (eds) Bioinformatics
for Immunomics, vol 3 (Immunomics Reviews Series). Springer, New York, pp 77-94.
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TR germline bias

Synonyms
MHC bias, TCR germline bias.

Definition
TR germline bias is the name given to a theory which suggests that the basis of MHC
restriction or TR specificity are certain specific conserved constellations of contacts
between TR V gene (variable gene) products and MHC gene products that co-evolve
(Jerne 2004).

Reference

Jerne NK (2004) The somatic generation of immune recognition. 1971. Eur J Immunol 34:
1234-1242.

PMHC epitope

Synonyms
TCR footprint, TCR footprint on the pMHC.

Definition

The residues on the pMHC binding interface that contact and/or bind to corresponding
residues on the TR interface are collectively called as the pMHC epitope on the pMHC
surface (Kaas and Lefranc, 2005).

Reference

Kaas Q, Lefranc MP (2005) T cell receptor/peptide/MHC molecular characterization and
standardized pMHC contact sites in IMGT/3Dstructure-DB. In Silico Biol 5: 505-528.

TR paratope

Synonyms
MHC imprint, pMHC imprint on the TR.

Definition

The residues on the TR binding interface that contact and/or bind to corresponding
residues on the pMHC interface are collectively called as the TR paratope on the TR
surface (Kaas and Lefranc, 2005).

Reference

Kaas Q, Lefranc MP (2005) T cell receptor/peptide/MHC molecular characterization and
standardized pMHC contact sites in IMGT/3Dstructure-DB. In Silico Biol 5: 505-528.
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1.12 Objectives

Currently, there is an immense need to develop a means by which characterization and
identification of disease-implicated immunogenic antigens or T cell epitopes can be
performed quickly and efficiently so as to cut down the lead time involved with traditional
(experimental) vaccine design protocols and to gain and share knowledge and information
for a global perspective in peptide-based vaccine development. Since experimental
determination of T cell epitopes for every single disease-implicated MHC allele is
prohibitively expensive, recently developed computer-aided techniques, especially
structure-based techniques such as docking [10, 11], have contributed immensely to the
problem of efficient T cell epitope identification, thereby, assisting in the planning of
critical experiments leading to peptide vaccine design. This is particularly true for alleles
with insufficient biochemical peptide binding data [11-14], a case where most commonly

used sequence-based predictive techniques underperform.

Although accurate, the available docking protocol had multiple steps and hence was
relatively slow compared to the sequence-based methods, posing a limitation for high-
throughput structure-based T cell epitope identification. Until now most prediction models
including docking-based predictive approaches [11-14] have neglected the influence and
significance of TR/pMHC interactions on T cell activation. This was primarily due to the
relatively small number of crystal structures available for TR/pMHC complexes.
Nevertheless, if not large, a substantial number of TR/pMHC complexes are now available
for analysis to characterize TR/pMHC interactions and identify the TR/pMHC interaction
parameters. Also, no work has been done on predicting how well a pMHC complex can
bind to TR. Therefore, three overall aims for this thesis are described below and addressed

in detail in the five specific aims presented thereafter:

I. To develop a new fast, efficient and robust protocol for docking of peptides to
MHC proteins to improve the speed and efficiency of pMHC docking and make
structure-based methods comparable with sequence-based methods for high-

throughput screening of peptide epitopes.
II. To analyze all available TR/pMHC crystal structures to characterize the protein-

protein interactions in TR/pMHC complexes and extrapolate the TR/pMHC

interaction parameters.
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II. To apply the new docking protocol and the derived TR/pMHC interaction
parameters to predict immunogenic peptides with high TR avidity for an example

MHC allele.

Consequently, specific project goals were developed to address the main aims set out

above. These are
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To optimize the new pMHC docking technique, benchmark it with the previous

method and validate it against previously published studies (publication 3).

To develop a new database for sequence-structure-function information of
pMHC and TR/pMHC complexes with crystal structures, augmenting it with
advanced features and new parameters for analysis of pMHC and TR/pMHC

structures (publication 4).

To identify common structural characteristics of TR/pMHC complexes using
existing crystallographic data (publication 5) and use these to develop methods

for accurate prediction of T cell epitopes (publication 6).

To enhance the strategies for effective discrimination of MHC-binding peptides

from the background (publication 6).

To use the combined predictive technique to develop a prediction model for
identifying peptides that can lead to pMHC complexes with improved TR
recognition and thus understand which peptides are actually responsible for T

cell activation in HLA-DQS associated diseases (publication 6).



Chapter 2: Methods and Applications

Methods and applications that were developed and used in this study are summarised in

Table 2.1. The ensuing publications have also been listed and included in the relevant

chapter.

Table 2.1: Methods, applications and publications

Methods/Applications Chapter Refer to
Publication

Structural Immunoinformatics: Understanding MHC-peptide- . |
TR binding.
TR recognition of MHC-peptide complexes. 1 2
pDOCK: a new technique for rapid and accurate docking of
peptide ligands to Major Histocompatibility Complexes. . :
MPID-T2: a database for sequence-structure-function
analyses of pMHC and TR/pMHC structures. ) 4
Understanding TR binding to pMHC complexes: how does
the TR scan many pMHC molecules yet preferentially bind to 5 5
one.
In silico prediction of immunogenic T cell epitopes for HLA- . .
DQs.
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Chapter 3: pDOCK: a new technique for rapid and accurate
docking of peptide ligands to Major Histocompatibility

Complexes

3.1 Summary

Immunogenic peptides or T cell epitopes are an integral part of the vital immunological
synapse between the pMHC complexes and the TR proteins resulting in TR/pMHC
complex formation which activate the T cells leading to the initiation of the adaptive
immune response cascade [1-4, 9]. Identification of these antigenic peptide epitopes is an
essential prerequisite in T cell-based molecular vaccine design. Experimental identification
of T cell epitopes is a tedious, time consuming and expensive process. Recently developed
computational methods, especially structure-based protocols such as docking that are even
suited to alleles with limited epitope data [11-14], have proven to be vastly inexpensive
and efficient compared to experimental approaches in screening numerous peptides against
their cognate MHC alleles [10, 11, 17, 18]. The first step in these structure-based docking
techniques is to identify strong MHC-binding peptides. These docking techniques need

improvement in speed and efficiency to be useful in large-scale screening studies.

Therefore, this publication 3 discusses “pDOCK” which is a new computational technique
for rapid and accurate fully flexible docking of peptides to MHC proteins which has been
primarily applied on a non-redundant dataset of 186 pMHC (149 pMHC-I and 37 pMHC-
IT) complexes with X-ray crystal structures. 159 out of 186 peptides had a Ca RMSD of
less than 1.00 A with a mean of 0.56 A from initial testing of pPDOCK for re-docking of
peptides into their respective MHC grooves. 23 out of 25 peptides used for single and
variant template docking had their Ca. RMSD values below 1.00 A. pDOCK shows upto
2.5 fold improvement in the accuracy and is ~60% faster compared to our earlier docking
methodology [10, 11]. A seven-fold increase in pPDOCK accuracy has been recorded by
validation against previously published studies [419, 424, 433, 435-437, 442, 443].
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Abstract

Background: Identification of antigenic peptide epitopes is an essential prerequisite in T cell-based molecular
vaccine design. Computational (sequence-based and structure-based) methods are inexpensive and efficient
compared to experimental approaches in screening numerous peptides against their cognate MHC alleles. In
structure-based protocols, suited to alleles with limited epitope data, the first step is to identify high-binding
peptides using docking techniques, which need improvement in speed and efficiency to be useful in large-scale
screening studies. We present pDOCK: a new computational technique for rapid and accurate docking of flexible
peptides to MHC receptors and primarily apply it on a non-redundant dataset of 186 pMHC (MHC-I and MHC-II)
complexes with X-ray crystal structures.

Results: We have compared our docked structures with experimental crystallographic structures for the
immunologically relevant nonameric core of the bound peptide for MHC-I and MHC-II complexes. Primary testing
for re-docking of peptides into their respective MHC grooves generated 159 out of 186 peptides with Ca. RMSD of
less than 1.00 A, with a mean of 0.56 A. Amongst the 25 peptides used for single and variant template docking,
the Ca. RMSD values were below 1.00 A for 23 peptides. Compared to our earlier docking methodology, pDOCK
shows upto 2.5 fold improvement in the accuracy and is ~60% faster. Results of validation against previously
published studies represent a seven-fold increase in pDOCK accuracy.

Conclusions: The limitations of our previous methodology have been addressed in the new docking protocol
making it a rapid and accurate method to evaluate pMHC binding. pDOCK is a generic method and although
benchmarks against experimental structures, it can be applied to alleles with no structural data using sequence
information. Our outcomes establish the efficacy of our procedure to predict highly accurate peptide structures
permitting conformational sampling of the peptide in MHC binding groove. Our results also support the
applicability of pDOCK for in silico identification of promiscuous peptide epitopes that are relevant to higher
proportions of human population with greater propensity to activate T cells making them key targets for the
design of vaccines and immunotherapies.
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Background
The molecular machinery by which an antigen presenting
cell (APC) presents T cell epitopes for recognition by T cell
receptors (TR) and subsequent activation of T cells fol-
lowed by the immune response cascade is fascinating. T
cell epitopes are short antigenic peptide sequences (p) that
are bound to and presented by the major histocompatibility
complexes (MHC) for recognition by the TR [1]. These epi-
topes are essential subunit peptides that are required in
order to stimulate cellular immune responses, especially the
adaptive immune responses. Peptide epitopes can be of
endogenous (processed within the cell) or exogenous (pro-
cessed outside the cell) origins, which are presented for sur-
veillance and recognition by the TR in an MHC allele and
supertype dependant manner. Broadly classified into two
types, MHC class I (MHC-I) complexes bind and present
endogenous peptides whereas MHC class II (MHC-II)
complexes prefer exogenous peptides. Typically, MHC-I
proteins are heterodimers, consisting of a heavy o chain (I-
ALPHA) of about 45 kDa, and a light chain, 32-microglo-
bulin (B2M) of about 12 kDa [2,3]. The o chain consists of
al (G-ALPHAL), a2 (G-ALPHA2) and a3 (C-LIKE)
domains where G-ALPHA1 and G-ALPHA2 domains form
the peptide binding groove or ‘cleft’ [4]. MHC-II proteins
are also heterodimeric proteins consisting of an o chain (II-
APLHA; 34 kDa) and a p chain (II-BETA; 29 kDa) with
very similar overall quaternary structure to that of MHC-I
proteins [5-10]. However, their peptide binding groove is
formed by the a1 and B1 domains of the two chains.
Peptides presented by MHC-I are generally between 8-
11 amino acids in length. These peptides are ‘chopped’
within the cytosol of the cell by cytosolic proteases and
are transported to the MHC binding groove within the
endoplasmic reticulum by the transporters associated
with antigen processing (TAP) proteins in an ATP
dependant manner. Following which, the peptides bind
to the MHC to form the peptide-MHC (pMHC) com-
plex which is then transported to the APC cell surface
and presented for recognition by the TR of CD8" cyto-
toxic T cells (CTLs). Similarly, the peptides presented
by MHC-II are usually 12-25 amino acids in length and
are endocytosed into the cell by the lysosomes where
they bind the MHC-II proteins by displacing the original
MHC-II ligand known as the ‘CLIP’ peptide to form the
PMHC complex. And again, they are transported to the
APC cell surface for recognition by the TR of the CD4"
T helper cells. Identification of true T cell epitopes from
the repertoires of immunologically significant antigenic
peptide sequences is a vital prerequisite in the process
of conventional molecular vaccine design for prevention
and treatment of infectious, autoimmune, allergic and
graft vs. host diseases. The key step in TR-mediated
immune response is thus the binding and presentation
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of antigenic endogenous or exogenous peptide epitopes,
which can be reasonably well predicted using sequence-
based methods for alleles with large datasets of known
binding peptides, as reviewed earlier [11,12].

Experimental identification of T cell epitopes is a
tedious, time consuming and expensive process owing
to the large number and diversity of both MHC alleles
and the antigenic peptides. Not to mention, is the extre-
mely low chance of immunogenicity (1 in 2000 peptides)
even amongst the peptides that bind strongly to the
MHC (50%) [13]. Recently developed computational
methods have proven to be vastly time and cost efficient
in screening the vast oceans of peptides and MHC
repertoires [14]. Current computational methods can be
broadly classified into: 1. Sequence-based approaches
which use sequence motifs [15], matrix models [16,17],
Artificial Neural Network [18-20], Hidden Markov
Model [21] and Support Vector Machine [22-24] for
large-scale screening of potential T cell epitopes from
protein sequence databanks and 2. Structure-based
approaches such as protein threading [25,26], homology
modeling [27,28], rigid docking [29] and flexible docking
[2,3] which utilize three-dimensional data for detailed
structural analysis of interactions between the MHC and
bound segmental antigenic peptides. The former are
more suitable for large-scale screening of potential T
cell epitopes, while the latter work better for detailed
analysis of short immunogenic regions of antigens [2].
Although sequence-based methods are well established,
a major limitation of such techniques is the heavy reli-
ance on the availability of large comprehensive training
sets of peptides. Thus, these approaches are not appro-
priate for accurate prediction of peptides in circum-
stances where the data available is insufficient.
Therefore, the coverage of sequence-based techniques is
limited to subsets of binding peptides that belong to the
most numerous groups and cannot generate reliable
data for peptides that are least represented in the data-
set [2], leaving structural immunoinformatics as the only
option for such peptides [3,5-7].

Antigenic peptides that bind strongly to MHC alleles
are known to elicit T cell responses [1-3,5-7,11]. Hence,
their identification is a vital first step in the process of
structure-based immune epitope prediction. The usual
approach adopted to address this important issue is to
utilize a powerful concept, based on the principle of
structure-based drug design called “docking”, where
peptides are computationally placed in MHC grooves in
the best orientation, reflecting steric and electrostatic
complimentarity, using structure-based docking techni-
ques. The accuracy with which the peptides are docked
is measured in terms of Root Mean Square Deviation
(RMSD) values obtained by comparing the docked
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conformations of the peptides to their original bound
conformations in the respective X-ray crystal structures.
With the development of new structural modeling and
docking techniques and an increase in the number of
protein structures deposited in the Protein Data Bank
(PDB) [30] and the IMGT/3Dstructure-DB [31,32],
structure-based approaches are being more commonly
used to predict potential T cell epitopes [33], often pro-
ducing modeled structures accurate to within 2.00A
RMSD from the experimental crystal structure, provid-
ing a wealth of information for structural analysis and
the development of prediction methods.

The development of an accurate protocol for flexible
docking has helped us to successfully carry out quantita-
tive predictions for both MHC-I and MHC-II alleles
even with limited binding peptide data [3,5-7]. Our ear-
lier docking protocol consisted of three steps (extended
to four for pMHC-II complexes for incorporating the
flanking residues on either side of the nonameric core,
which is the 9-mer anchored to the MHC molecule): (1)
rigid docking of the peptide nonamer termini into the
MHC binding groove; (2) loop closure of central resi-
dues by satisfaction of spatial constraints; (3) followed
by iterative ab initio refinements of ligand backbone
and; (4) extension of flanking peptide residues by satis-
faction of spatial constraints [2,3] (only for MHC-II
related peptides). While accurate, this approach has
multiple steps, resulting in suboptimal computational
speeds. Therefore, the efficiency of this protocol for
peptide docking to MHC needs to be improved for
large-scale screening of T cell epitopes. A grid-based
docking methodology has earlier been reported [34] to
be highly accurate in pMHC docking over a limited
MHC-I data. Hence, we have developed a grid-based
peptide docking method (pDOCK) and have extensively
tested it on both MHC-I and MHC-II peptides. The
motivation behind the development of a faster and more
accurate peptide docking methodology was to eventually
improve the qualitative and quantitative efficacy of
structure-based T cell epitope prediction.

In this study, we present pDOCK: a new computa-
tional technique for rapid and accurate docking of flex-
ible peptides to the MHC receptors and primarily apply
it to re-dock a non-redundant dataset of 186 (149
MHC-I and 37 MHC-II related) peptides, from MPID-
T2 (http://biolinfo.org/mpid-t2) database for which X-
ray crystal structures are available in the PDB and the
IMGT/3Dstructure-DB, back into their respective MHC
grooves. pDOCK comprises of two input preparatory
steps followed by a single consolidated docking and
refinement step as depicted in Figure 1. The pDOCK
protocol involves: Preparatory step 1: receptor modeling
and positioning; Preparatory step 2: determining the
docking grid by defining the grid dimensions (length x
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breadth x height) for ligand placement and grid map
generation within the vicinity of the receptor’s binding
site and; Final docking and refinement step: ligand posi-
tioning within the grid, flexible docking of the peptide
into the peptide binding groove and refinement of all
ligand and binding site residues using the Internal Coor-
dinate Mechanics (ICM) global optimization, docking
algorithm [35] and a biased Monte Carlo procedure (see
Methods section for more details). Our preliminary ana-
lysis of all pMHC complexes from the MPID-T2 data-
base has provided us with standardized dimensions for
the 3-D docking grids for both class I and class II
PMHC structures. These standardized values were used
to set the dimensions of the docking grids in all our
experiments. Unlike the previously reported grid-based
docking method [34], homology model building for
MHC receptors has not been used in the development
of pDOCK, instead using only experimentally deter-
mined X-ray crystallographic structures. The pDOCK
method, however, is generic and is applicable to high
quality homology models of alleles when experimental
structures are not available. Here, the receptor modeling
sub-step mentioned in the preparatory step 1 (Figure 1)
can be used in the absence of structural data for the
MHC proteins. Thus, the direct use of X-ray crystal
structures in our docking simulations ensures accurate
results.

The first experiment that we conducted was to ensure
that an extended peptide bound to its cognate MHC
receptor preferentially selecting the same nonameric
core peptides as in the crystal structure and then to
evaluate the accuracy of the docked peptide. Hence, we
performed re-docking of 186 peptides back to their cog-
nate MHC receptors to check for conformational accu-
racy of the predicted binding registers and their Co
RMSD against their respective crystal structures. We
have then benchmarked pDOCK with our earlier dock-
ing protocol [2,3] for a dataset of 50 selected (35 MHC-
I and 15 MHC-II) pMHC complexes to verify the speed
and accuracy of pDOCK against our earlier method.
This was followed by validation and accuracy checks for
pDOCK against available flexible peptide docking results
obtained from the literature for a dataset of 15 peptides.

In the process of selecting immunogenic peptides for
vaccine design, the two main aspects are to determine:
(1) multiple peptides that bind to the same allele or
MHC molecule and; (2) promiscuous or same peptides
that bind multiple alleles. Therefore, as a secondary
experiment, we have pursued to test the efficacy and
robustness of our docking protocol in modeling the
bound conformations of novel peptides to specific MHC
alleles by carrying out docking of multiple peptides to a
single MHC template structure (same MHC allele), sui-
table for immune epitope prediction from an antigenic
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Figure 1 Flowchart of the pDOCK protocol used in this work. The two preparatory steps followed by a single consolidated docking and
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protein, using a moving window of 9-mers along the
entire sequence [3,5-7]. Our third experiment was to
dock a single peptide from particular PDB structures
onto multiple MHC templates (multiple alleles) from
other crystal structures, suitable for determining promis-
cuous peptides capable of binding to a set of related
alleles and therefore, important for vaccine design.
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The Co. RMSD values have been calculated only for
the nonameric core of the peptide (for both MHC-I and
MHC-II related peptides) which is a contiguous immu-
nogenic segment that forms the “binding register”
within the MHC peptide binding cleft, as reported ear-
lier by our group [3]. For the peptides with nine and
less number of amino acid residues the entire peptide
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was used for Ca. RMSD calculation. pDOCK accurately
detected all 186 binding registers, i.e., the nonameric
cores of the peptides are identical to their respective
crystal structures. pDOCK generated 85.5% of all the
peptides with Ca. RMSD of less than 1.00 A compared
to their respective X-ray crystal structures. Our bench-
marking results imply up to 2.5 fold improvement in the
accuracy of the new peptide docking methodology. The
validation results represent a sevenfold improvement in
the accuracy of our technique compared to that of the
existing methodologies in flexible docking and modeling
of peptides into MHC grooves. Amongst the 21 peptides
docked in the second experiment, the Coo RMSD values
for docked peptides compared to their respective crystal
structures were below 1.00 A for 20 peptides (details in
Results and discussion section). The third experiment
accounted for all 4 peptides docked with less than 1.00
A Co RMSD compared to the same peptides from the
corresponding template crystal structures (details in
Results and discussion section). Overall, pDOCK is up
to 60% faster than our earlier protocol and hence pro-
vides a rapid and accurate docking method to evaluate
pMHC binding for large scale immune-epitope
prediction.

Results and discussion

The fact that our earlier method was comparatively
slower and that it involved rigid-docking of the peptide
termini, acted as the platform for us to ‘revisit’ our
pMHC docking methodology. Based on these require-
ments, we have developed a single step pMHC docking
protocol (details in Methods section) as shown in Figure
1, which allows flexibility over the entire length of the
peptide antigen and can be used as a generic method to
obtain the conformations of bound peptide ligands to
MHC binding grooves of both class I and class II MHC
proteins. A systematic evaluation of pDOCK is per-
formed as three separate tests: (1) exhaustive re-docking
of all non-redundant peptides to their respective MHC
grooves as a test case, benchmarking and validation; we
then address two very significant practical problems
faced by immunologists during the process of allele-spe-
cific peptide vaccine design: (2) the docking of multiple
peptides that bind to same MHC allele, for immuno-
genic epitope scanning of antigenic sequences and; (3)
docking of promiscuous peptides or same peptides bind-
ing to multiple MHC alleles for vaccine design, based on
groups of disease-implicated alleles. A correctly docked
structure is defined as the peptide with at most 2.50 A
Ca RMSD from the respective experimental X-ray crys-
tal structure [2]. pDOCK has also been benchmarked
against our previous docking protocol and validated on
published peptide modeling and docking results from
the literature. Bordner and Abagyan [34] suggested that
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while grid-based docking could be applied for pMHC-II,
it was a more difficult problem. pDOCK has been suc-
cessfully applied for MHC-II peptide docking as well
with excellent results.

Experiment 1

Re-docking bound peptides to their cognate MHC grooves
pDOCK has been applied on a non-redundant dataset of
186 (149 MHC-I and 37 MHC-II) pMHC complexes
from the MPID-T2 database (details in Methods section,
data and docking results in Additional File 1 — Table
S1). Initially, the peptides were extracted from the
experimental pMHC complexes, randomized and set to
extended conformations. This was followed by optimiza-
tion of the peptide ligands and re-docking of the sepa-
rated peptides back to their respective MHC grooves.
As depicted in Figure 2, our technique generated 159
out of 186 peptides with Coo RMSD values less than
1.00 A: 124 out of 149 peptides (83%) and 35 out of 37
peptides (~95%) for class I and class II MHC proteins,

a. MHC-I peptide Ca RMSD distribution

2.01-2.50 A

1.01-2.00A_ 251-3.10 A

(22

0.00-1.00 A
(124)

b. MHC-II peptide Ca RMSD distribution

1.01-1.30 A
@

. 0.00-1.00 A
(35)

Figure 2 Distribution of Cat RMSD of the docked peptides and
their respective crystal structures across the non-redundant
MPID-T2 dataset for peptides for a. MHC-1 complexes and b.
MHC-II complexes. Most of the peptides from both MHC-I (124/
149; 83%) and MHC-II (35/37; ~95%) datasets have their Ca. RMSD
values below 1.00 A, highlighting the accuracy of our docking
protocol. The number of peptides in each Coo RMSD range is given
in parentheses.
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respectively. ~15% (22/149) and ~1% (2/149) of the pep-
tides have their Cao RMSD values within the ranges
1.01-2.00 A and 2.01-2.50 A, respectively amongst the
MHC-I peptides docked (Figure 2a). Similarly, ~5% of
the peptides have their Co. RMSD values within a range
of 1.01-1.30 A amongst the MHC-II related peptides
that were docked using pDOCK (Figure 2b). On an
average, pDOCK resulted in a Cao RMSD value of about
0.56 A for re-docking of peptides into their respective
MHC grooves over the entire dataset of 186 pMHC
complexes.

Our best results are shown in Figure 3, with structural
comparison between the lowest energy docked confor-
mation and the native conformation of the bound pep-
tides for MHC-I (PDB code 1s7q) and MHC-II (PDB
code 1d5x) structures. These docked conformations of
peptide structures have the best Cao RMSD values of
0.09 A and 0.11 A respectively, obtained over the entire
dataset. The MHC-II peptide in Figure 3b has 5 out of
6 amino acid residues replaced by amino acid analogues
(chemical mimics) in the crystal structure. Nonetheless,
it has the best Coo RMSD value among all the MHC-II
related peptides used in this study, supporting pDOCK’s
applicability to peptide or peptide analogues (containing
amino acid mimics in structure-based drug design).
pDOCK also generated the least energy docked orienta-
tions for all the peptides with accurate determination of
their respective binding registers, i.e. having the exact
nonameric core in the binding grooves, with respect to
their native bound conformations in the X-ray crystal
structures. All peptides except one from the class I
PMHC crystal structure (PDB code 2gtw; Coa RMSD of
3.08 A) were within the acceptable 2.50 A Co. RMSD
from their respective native conformations (Figure 2a).
Also, none of the MHC-II related peptides showed any
deviation from the acceptable 2.50 A Co. RMSD thresh-
old (Figure 2b).
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We carefully examined the re-docked conformation of
the peptide LAGIGILTV in the MHC groove of the
complex 2gtw, with the X-ray structure. In 2gtw, peptide
residues 1 to 5 interact with a formic acid molecule,
which was not explicitly introduced into the docking
simulation. When the formic acid molecule was
included in the docking simulation, the predicted orien-
tation of the peptide using pDOCK is energetically more
favourable for pMHC complex formation than the pre-
dicted conformation when the formic acid molecule is
omitted. The improvement in accuracy by the inclusion
of the formic acid molecule is ~13 folds. This is por-
trayed in Figure 4 which clearly indicates that the pep-
tide residues Leu 1, Ala 2, Gly 3, Ile 4 and Gly 5 that
are not correctly predicted in the absence of the formic
acid molecule (Figure 4a), are accurately docked when
the formic acid molecule is introduced into the docking
simulation (Figure 4b), resulting in an improvement in
the Co. RMSD value from 3.08 A to 0.24 A.

Although water molecules and other common biologi-
cal ions such as phosphate and chloride may mediate
pMHC interactions in some cases, they were omitted
from our experiments because the significance and con-
tributions of these molecules towards pMHC binding
vary immensely between different peptides and specific
alleles over a large dataset like the one used in this
study (186 complexes). Our previous protocol achieves a
Co. RMSD of 1.53 A for the bound structure of the pep-
tide from pMHC complex 1jfl, due to the presence of a
water molecule positioned around the peptide residues 5
to 7 in the crystal structure leading to erroneous predic-
tion of the loop formed, which resulted in incorrect
positioning of interacting residues [2]. However,
pDOCK successfully overcomes this restriction to accu-
rately predict the least energy bound conformation of
this peptide with a Ca. RMSD value of 0.30 A. The
enhancement in accuracy of docking is a direct

d.

%
>

b.

Figure 3 Comparison of the lowest energy predicted and the experimental structures of the cognate peptides with the least RMSD
values across the pDOCK test set. a. KAVYNFATM peptide in the MHC-I complex 1s7q (PDB code). b. XXRXXX peptide in the MHC-II
complex 1d5x (PDB code). The peptides are shown in stick representation of all heavy atoms. The Ca. RMSD values between the lowest energy
docked conformation (green) and the native conformation of the bound peptides (blue) for the MHC-I structure 1s7q (PDB code) and the MHC-II
structure 1d5x (PDB code) are 0.09 A and 0.11 A, respectively. X: Amino acid analogues (chemical mimics).
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Figure 4 Structural comparison of the lowest energy docked
conformations and the experimental structures of the bound
peptide for the pMHC structure 2gtw when the formic acid
molecule was a. omitted and b. included in the docking
simulation. The peptides are shown in stick representation of all
heavy atoms. The Co. RMSD values between the lowest energy
predicted (green) and the native conformation of the cognate
peptide (blue) for the structure 2gtw when the formic acid
molecule was omitted and included in the docking protocol were
3.08 A and 0.24 A respectively. The peptide residues of its native
conformation that were not accurately docked in the absence of
the formic acid molecule are labeled in black in (a). The formic acid
molecule is depicted in red in (b).

consequence of the improved sampling of available con-
formational space in pDOCK. This preliminary experi-
ment is a critical first step as it establishes the validity
of our approach and helps us test the ability of our
technique to accurately dock cognate peptides into their
respective MHC receptors, using the proposed single-
step docking procedure.

Benchmarking with our previous methodology

In order to ascertain the improvement in speed and accu-
racy of pDOCK compared to the old technique, we have
benchmarked our peptide docking methodology with our
earlier pMHC docking protocol [2,3] over a subset of 50
PMHC complexes (35 MHC-I and 15 MHC-II) from the
complete non-redundant dataset (listed in Additional File
1 — Table S1) and the results are presented in Table 1.
pDOCK results are consistently better than our earlier
docking methodology in terms of accuracy (Coo RMSD)
of the modelled or docked peptide compared to their X-
ray crystal structures after docking back into their
respective MHC grooves. The new protocol also gener-
ates the least energy docked conformations for all 50
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peptides with Co. RMSD values less than 1.00 A, com-
pared to eight peptides, docked using the earlier method,
having Co. RMSD values above 1.00 A (graphically shown
in Additional File 2 — Figure S1). The new procedure
outmatches the old protocol particularly well for com-
plexes 1s9y, 1hhh, 1jf1, 1e27, 1jpf, 1qo3, 1wbz and 1g7p
(Table 1) amongst the MHC-I structures and for struc-
tures luvq and laqd (Table 1) amongst the MHC-II
structures (highlighted in yellow in Additional File 2 —
Figure S1).

These results suggest that some of the conformational
limitations of our previous methodology, such as the
presence of water molecules in and around the peptide
and within the peptide binding groove in the original
PDB structure, have been addressed in our new docking
protocol making it highly accurate. Besides an improve-
ment in the accuracy, pDOCK is also able to accurately
model docked conformations for some peptides espe-
cially for MHC-II related peptides with more than 9
amino acid residues, thereby improving the coverage
over the entire length of the peptides. Peptides from the
PMHC complexes luvq and 2iam were among the high-
est coverage (20 and 15 residues respectively) obtained
in this experiment with Co. RMSD values 0.42 A and
0.46 A respectively over the length of the entire peptide
(results not shown). The reliability for the accurate pre-
diction of flanking residues (especially for MHC-II pep-
tides) depends upon their interactions with the MHC
residues outside the peptide binding groove and there-
fore, have not been included in the calculation of Ca
RMSD values reported.

In terms of the computational time to complete a sin-
gle docking experiment, pDOCK is up to 60% faster (on
an average) than the earlier method as summarized in
Table 2. The average time taken by pDOCK is approxi-
mately 10 min. (the preparatory receptor positioning
step of ~3 sec. {0.50%}, determining the docking grid
taking ~42.6 sec. {7.10%} and the single docking and
refinement step of ~9.24 min. {92.4%}), compared to
23.50 to 24.50 min (Step 1 taking ~5 min., Step 2 of
~30 sec., Step 3 taking ~18 min. and Step 4, which was
only applicable to MHC-II related peptides, of ~1 min.)
using the old protocol on a 2 CPU 3.20 GHz 3 GB
RAM workstation. The average time taken for each of
the steps using either of the methodologies is calculated
over the entire non-redundant dataset of 186 pMHC
complexes catalogued in additional file 1 — table S1.
The mean Co. RMSD value for the least energy docked
conformations of peptides, from the dataset of 50 pep-
tides used for benchmarking, was 0.27 A using pDOCK
compared to 0.65 A for the old procedure. This denotes
almost two and a half fold improvement in the accuracy
of our novel docking strategy over a larger dataset (50
peptides) than that used previously (40 peptides) [2].
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Table 1 Benchmarking pDOCK with our earlier methodology
S. No. Allele PDB Peptide Length Peptide Sequence Co. RMSD (A)
Previous method pDOCK
MHC-I
1 HLA-A*1101 1qvo 10 QVPLRPMTYK 0.53 0.24
2 HLA-A*0201 1gr1 9 IISAWGIL 046 0.29
3 HLA-A*0201 Takj 9 ILKEPVHGV 087 0.39
4 HLA-A*0201 Tily 9 YLKEPVHGV 0.70 0.66
5 HLA-A*0201 1i7r 9 FAPGFFPYL 0.59 047
6 HLA-A*0201 1i7u 9 ALWGFVPVL 0.32 0.29
7 HLA-A*0201 Toga 9 GILGFVFTL 032 0.16
8 HLA-A*0201 1gsf 9 LLFGYPVAV 0.54 0.34
9 HLA-A*0201 11p9 9 ALWGFFPVL 0.58 0.26
10 HLA-A*0201 159y 9 SLLMWITQS 1.09 0.39
11 HLA-A*0201 Thhh 10 FLPSDFFPSV 1.10 049
12 HLA-A*0201 1jf1 10 ELAGIGILTV 1.53 0.30
13 HLA-B*0801 Tagc 8 GGKKKYQL 0.28 0.23
14 HLA-B*0801 Tmi5 9 FLRGRAYGL 042 0.37
15 HLA-B*2705 Togt 9 RRKWRRWHL 0.51 0.18
16 HLA-B*2705 2a83 9 RRRWHRWRL 0.55 0.18
17 HLA-B*3501 2cik 9 KPIWLHGY 0.74 0.26
18 HLA-B*3508 3bwa 8 FPTKDVAL 0.56 026
19 HLA-B*5101 1e27 9 LPPVWAKEI 1.27 0.18
20 HLA-B*5301 Talm 9 TPYDINOML 0.59 0.28
21 HLA-Cw*0401 1im9 9 QYDDAVYKL 049 034
22 HLA-G*0101 2dyp 9 RIPRHLQL 043 0.16
23 H2-Db 1fg2 9 KAVYNFATC 0.25 0.19
24 H2-Db 3buy 9 LSLRNPILV 0.63 0.23
25 H2-Db Tyn7 10 SSLENFAAYV 0.62 0.14
26 H2-Db 1jpf 11 SGVENPGGYCL 1.14 0.36
27 H2-Dd 1go3 10 RGPGRAFVTI 149 0.17
28 H2-Kb 1t0m 8 SSIEFARL 0.66 0.21
29 H2-Kb Tvac 8 SIINFEKL 0.32 0.22
30 H2-Kb Twbz 9 SSYRRPVGI 0.89 0.19
31 H2-Kb 1579 9 KAVYNFATM 0.20 0.09
32 H2-Kb 197p 9 SRDHSRTPM 0.97 0.17
33 H2-Kd Tvgk 9 SYVNTNMGL 0.86 0.25
34 H2-Kk 1zt1 8 FEANGNLI 0.57 045
35 H2-Ld 2e7I 9 QLSPFPFDL 0.37 0.35
MHC-l
36 HLA-DQB1*0602 Tuvg 20 MNLPSTKVSWAAVGGGGSLY 1.09 023
37 HLA-DRB1*0301 Ta6a 15 PVSKMRMATPLLMQA 038 030
38 HLA-DRB1*0101 Taqd 14 GSDWRFLRGYHQYA 1.08 0.28
39 HLA-DRB1*0101 1fyt 13 PKYVKQNTLKLAT 0.68 0.23
40 HLA-DRB1*0101 2iam 15 GELIGILNAAKVPAD 0.56 024
41 HLA-DRB1*0401 1d5x 6 XXRXXX 0.23 0.1
42 HLA-DRB1*0401 1d5z 7 XXRAXSX 033 0.22
43 HLA-DRB1*0401 1dée 8 XXRXMASX 0.32 0.14
44 HLA-DRB1*0401 1j8h 13 PKYVKQNTLKLAT 0.59 0.20
45 HLA-DRB3*0101 206w " AWRSDEALPLG 0.54 0.30
46 HLA-DRB5*0101 1fv1 20 NPVWHFFKNIVTPRTPPPSQ 0.88 059
47 I-Ad Tiao 14 RGISQAVHAAHAE! 081 027
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Table 1 Benchmarking pDOCK with our earlier methodology (Continued)

48 I-Ak Tiak 13 STDYGILQINSRW 042 023

49 I-Au 2pxy 11 RGGASQYRPSQ 0.78 028

50 I-Ek 1r5v 13 ADLIAYPKAATKF 0.82 028

Ca. RMSD values are calculated only for the nonamer binding cores (shown in bold) for peptides with more than 9 residues in the X-ray crystal structures. X:
Amino acid analogues (chemical mimics). A graphical representation of the results is available in Additional File 2 - Figure S1.

Validation against previously published studies

Keeping in mind the essence of improving the accuracy
and robustness of the proposed strategy, we have vali-
dated pDOCK with seven studies involving MHC-I pep-
tide docking/modeling and one study involving MHC-II
peptide docking, covering 15 pMHC structures and com-
pared the results by re-running our earlier method. The
results of our validation experiments are compiled into
Table 3. Peptides 1, 2, 3, 4 and 15 (Table 3) are new in
this study and are collated from recent publications
[34,36,37], whereas the remaining 10 were from the vali-
dation studies reported for our earlier methodology [2].
To the best of our knowledge, these results represent a
sevenfold increase in the accuracy of pDOCK compared
to available flexible docking techniques in the remodeling
of pMHC complexes. Interestingly, the validation criteria
for almost all of the previously published studies
[34,36-40] involved either docking or remodeling of pep-
tides back into their original crystal structure. Although
the Co. RMSD values (0.29 A and 0.30 A, respectively)
for peptides 2 and 3 (Table 3) were slightly higher, they
are still comparable with the Ca. RMSD values reported
earlier (0.23 A and 0.22 A, respectively) [34]. Peptide 1
(Table 3) however, was generated with a better Ca
RMSD (0.31 A) compared to the Co. RMSD (0.76 A)
reported in the same earlier grid-based docking study
[34]. The enhancement in the accuracy for peptide 1
could be a direct implication of more conformational
sampling space in a flexible environment resulting from a
relatively larger docking grid (35.36 A x 35.52 A x 35.79
A) for MHC-I peptides and a lower temperature (300 K)
used in pDOCK compared to the grid dimensions (34 A

Table 2 Comparison of computational time of pDOCK
with our earlier docking method

Previous method pDOCK
Step 1: ~ 5 min
Step 2: ~ 305 Preparatory Step 1: ~ 3*s

Step 3: ~ 18 min Preparatory Step 2: ~ 426 s

Step 4" ~ 1 min Single docking and refinement
step: ~ 9.24 min

Total: ~ 23.50 - 24.50 min

Both methodologies were applied using a 2 CPU 3.20 GHz 3 GB RAM
workstation. *Only for X-ray crystal structures of MHC proteins. The time taken
for this step would increase if homology modeling needs to be carried out.
*Applicable only to MHC-II related peptides.

Total: ~ 10 min

x 34 A x 25 A) and temperature (700 K) used in the pre-
vious grid-based docking study [34]. Thus, pDOCK is not
only comparable to but also surpasses the available tech-
niques in flexible docking and remodeling of peptides
with regards to the accuracy (Ca. RMSD) with which it
predicts the bound structure of a peptide to its respective
MHC groove. By and large, our results illustrate the
advantages of using grid-based flexible docking over con-
ventional docking protocols.

Figure 5 provides a pictorial representation of an exam-
ple of the above discussed accuracy. This structural com-
parison between the least energy docked conformation
generated using pDOCK and that of the native conforma-
tion of the cognate peptide in the complex 1duz portrays
not only the highly accurate predicted conformation of the
peptide, Co. RMSD of 0.33 A compared to that of 3.01 A
reported earlier [37], but also highlights the fact that the
peptide’s N-terminal residues (Leu 1, Leu 2 and Phe 3)
were better modeled and structurally well aligned to that
of its native conformation when compared to the lowest
energy docked conformation reported earlier [37]. Nota-
bly, the least energy docked conformations generated for a
common murine MHC (H2-Kb) related Sendai virus
nucleocapsid peptide FAPGNYPAL and a very familiar
human HLA (A*0201) related Influenza A virus matrix
peptide GILGFVFTL have significantly lower Co. RMSD
values of 0.25 A and 0.16 A respectively (Table 3) than
those reported in earlier studies (2.70 A and 0.46 A, 1.60
A, 140 A respectively) [38,40-42] and those obtained
using our previous protocol (0.40 A and 0.32 A). These
observations establish the efficacy of pDOCK to dock
highly accurate multi-species related peptide structures
permitting conformational sampling of the peptide in the
binding groove during flexible docking.

Experiment 2

Docking of multiple peptides onto a single template

We applied pDOCK to a subset of 25 non-redundant
pMHC complexes (obtained from the pDOCK test set
of 186 pMHC complexes), with either a common allele
or a common peptide core. The dataset of 18 MHC-I
and seven MHC-II complexes comprises 21 (15 MHC-1
and six MHC-II related) novel peptides which were
known to bind to a single template (same allele) and
four (three MHC-I and one MHC-II related) promiscu-
ous peptides that were known to bind variant templates
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Table 3 Comparison of pDOCK with published MHC-peptide modeling and flexible docking methods

S.No Technique Peptide Sequence MHC class PDB RMSD (A)
Published Previousmethod pDOCK
1 Grid-based Flexible docking [34] RGYVYQGL I Tkpu* 0.76 0.59 031
2 Grid-based Flexible docking [34] ALWGFVPVL I 1i7u 0.23 032 0.29
3 Grid-based Flexible docking [34] ELAGIGILTV | 1jf1 0.22 1.53 0.30
4 Monte Carlo annealing [37] LLFGYPVYV | 1duz’ 301 033 033
5 Simulated annealing [38] FLPSDFFPSV | Thhh 1.59 1.10 048
6 Simulated annealing [38] GILGFVFTL | 1hhi* 046 0.32 0.16
7 Simulated annealing [38] ILKEPVHGV | 1hhj* 087 087 0.55
8 Simulated annealing [38] LLFGYPVYV | Thhk* 0.78 033 033
9 Combinatorial buildup algorithm [39] RGYVYQGL | 2vaa® 0.56 032 0.22
10 Combinatorial buildup algorithm [40] LLFGYPVYV I Thhk* 140 033 033
11 Combinatorial buildup algorithm [40] ILKEPVHGV | 1hhj* 1.30 087 0.55
12 Combinatorial buildup algorithm [40] GILGFVFTL | Thhi* 1.60 032 0.16
13 Multiple copy algorithm [41] FAPGNYPAL | 2vab® 2.70 0.40 0.25
14 Multiple copy algorithm [42] GILGFVFTL | 1hhi 140 032 0.16
15 GOLD/GLIDE Flexible docking [36] XXRXMASX Il 1d6e 1.24/3.06 032 0.14

X: Amino acid analogues (chemical mimics). *These structures are not listed in Additional File 1 - Table S1 due to redundancy in MPID-T2.

Figure 5 Structural comparison between the native
conformation and the lowest energy docked conformation of the
cognate peptide in MHC-I complex 1duz. The peptide is shown in
stick representation wherein the native conformation is in pink and the
docked conformation is in blue. The MHC peptide binding ‘groove’ is
shown as ribbons. The Co. RMSD between the native and the lowest
energy docked conformation of the bound peptide from our work is
0.33 A which is up to three and a half times better than an earlier
reported Co. RMSD of 3.01 A [37]. The peptide residues of our lowest
energy docked conformation that were better modeled and aligned to
that of its native conformation when compared to the lowest energy
docked conformation reported earlier [37] are labeled in black. This
structure is not listed in Additional File 1 - Table S1 since it was a
redundant structure in MPID-T2.
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(multiple alleles). Due to lack of sufficient promiscuous
peptides available in the PDB, only four peptides are
currently tested. The results obtained from the docking
of peptides onto single templates are tabulated in Table
4. 20 out of 21 peptides were docked onto a single tem-
plate with Ca. RMSD values less than 1.00 A compared
to their respective experimental structures. Amongst the
results from single template docking experiments, the
most accurate docked conformation of the least energy
peptide, with a Co. RMSD of 0.06 A compared to its
relevant PDB peptide structure (Table 4), was achieved
for the peptide from the structure 1kbg docked onto the
MHC from the structure 1nam having the same murine
MHC allele (H2-Kb) as the complex 1kbg.

Experiment 3

Docking of same peptides onto variant templates

Results from variant template docking experiments are
listed in Table 5. It is worth noting that the Co. RMSD
values for the peptides docked onto variant templates
were calculated in comparison to the same peptides pre-
sent in the respective template structures. This was
done due to the fact that although the peptides may be
similar, the environments encountered by the same pep-
tides are different in the binding grooves of different
MHC alleles. All four promiscuous peptides were
docked onto variant templates with Co. RMSD values
below 1.00 A (Table 5). This observation suggests the
robustness of pDOCK in docking promiscuous peptides
onto multiple MHC alleles and its adaptability in order-
ing the binding registers or conformations of the pep-
tides according to the changed environments, due to
changes in the amino acid sequences, of the MHC
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Table 4 Docking novel peptides onto a single template: pPDOCK compared to our previous method

MHC Peptide PDB Peptide MHC Template Template Peptide Peptide Sequence Ca. RMSD (A)
class Allele PDB Structure Allele Length
Previous pDOCK
method
| HLA-A*0201 2v2w 1grn HLA-A*0201 9 SLYNTVATL 0.63 0.38
| HLA-A*0201 Thhh Tgm HLA-A*0201 10 FLPSDFFPSV 0.58 0.25
| HLA-A*0201 1gse 1gmn HLA-A*0201 9 LLFGYPRYV 0.62 0.30
| HLA-A*0201 2bng 1gm HLA-A*0201 9 SLLMWITQV 097 0.77
| HLA-A*0201 29j6 Tgm HLA-A*0201 9 LLFGKPVYV 0.56 0.24
| HLA-A*0201 1qr1 1gm HLA-A*0201 9 [ISAWGIL 0.87 0.36
I HLA-A*0201 1qgsf 1grn HLA-A*0201 9 LLFGYPVAV 094 041
| HLA-A*0201 Thd2 Tgm HLA-A*0201 9 LLFGYPVYV 0.68 046
| HLA-A*0201 Thhg Ti4f HLA-A*0201 9 TLTSCNTSV 0.58 0.56
| HLA-A*0201 1hhh 1i4f HLA-A*0201 10 FLPSDFFPSV 148 0.57
I H2-Kb Tosz Tnam H2-Kb 8 RGYLYQGL 0.85 047
| H2-Kb 1fo0 Tnam H2-Kb 8 INFDENTI 0.62 035
| H2-Kb 1gér Tnam H2-Kb 8 SIYRYYGL 0.66 0.1
| H2-Kb Tkbg Tnam H2-Kb 8 RGYVYXGL 040 0.06
| H2-Kb 197p Tnam H2-Kb 9 SRDHSRTPM 141 0.82
Il HLA-DRB1*0101 Tfyt 2iam HLA-DRB1*0101 13 PKYVKQNTLKLAT 0.69 035
Il HLA-DRB1*0101 Tklu 2iam HLA-DRB1*0101 15 GELIGTLNAAKVPAD 0.85 059
Il HLA-DRB1*0101 1t5w 2iam HLA-DRB1*0101 13 AAYSDQATPLLLS 0.99 0.65
Il HLA-DRB1*0101 Tpyw 2iam HLA-DRB1*0101 9 FVKQNAXAL 040 032
Il HLA-DRB1*0101 Tsje 2iam HLA-DRB1*0101 15 PEVIPMFSALSEGAT 0.70 037
Il HLA-DRB1*0101 Taqd 2iam HLA-DRB1*0101 14 GSDWRFLRGYHQYA 1.68 1.01

Ca. RMSD values are calculated only for the nonamer binding core (shown in bold) for peptides with more than 9 residues in the X-ray crystal structures. X:

Amino acid analogues (chemical mimics).

grooves in different MHC alleles. Out of the 4 promis-
cuous peptides, the peptide FAPGNYPAL from the
pPMHC structure 2vaa having the murine MHC allele
H2-Kb, when docked onto the MHC from the structure
1ce6 with the murine MHC allele H2-Db, was generated
with the best Co. RMSD of 0.21 A (Table 5) compared
to the same peptide from 1ce6. The highest Coo RMSD
value (0.79 A) obtained using pDOCK during this
experiment was when the peptide from the structure
1zsd was docked onto the MHC from the structure
2ak4 (Table 5). This value is still well within the accep-
table value of 2.50 A.

In all, only one peptide generated using pDOCK from
the single template docking experiments has the Ca
RMSD value above 1.00 A (Table 4) compared to 5 pep-
tides (three from single template docking and two from
variant template docking) with Coo RMSD values above
1.00 A using our previous methodology (Table 4 and
Table 5). It is thus clear that pDOCK accurately predicts
the structure of cognate peptides in both single and var-
iant template docking cases. These evaluation steps are
also vital to establish the efficiency with which our new
method can dock and subsequently predict novel pep-
tides onto given MHC proteins.

Table 5 Docking promiscuous peptides onto variant templates: comparison of pDOCK with our previous method

MHC Peptide PDB Peptide MHC Template Template Peptide Peptide Co. RMSD compared to
class Allele PDB Structure Allele Length Sequence template peptides (A)
Previous pDOCK
method
| HLA-B*3501 1zhk* 1zhl* HLA-B*3508 13 LPEPLPQGQLTAY 062 044
| HLA-B*3501 1zsd * 2ak4 HLA-B*3508 11 EPLPQGQLTAY 1.15 0.79
| H2-Kb 2vaa® Tceb H2-Db 9 FAPGNYPAL 0.73 0.21
I HLA-DRB1*1501 Tbx2* 1fvi HLA-DRB5*0101 14 ENPVWHFFKNIVTP 1.01 022

Co. RMSD values are calculated only for the nonamer binding core (shown in bold) for peptides with more than 9 residues in the X-ray crystal structures. * The
structures are not listed in Additional file - Table S1 due to redundancy in MPID-T2.
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Conclusions

We have developed pDOCK as a fast, accurate and
robust method for flexible docking of peptides to MHC-
I and MHC-II proteins. Our results provide evidence of
overcoming limitations pertaining to the application of
our previous methodology, such as the presence of
water molecules in and around the peptide and within
the peptide binding groove in the template and relatively
longer computational time required. Benchmarking with
our previous method for a dataset of 50 non-redundant
pMHC complexes consistently produced least energy
docked conformations of peptides below 1.00 A Ca
RMSD from their respective native orientations for all
50 peptides. The Co. RMSD range for the same dataset
was 0.09 A (1s7q) to 0.66 A (1ily) using pDOCK com-
pared to a Coo RMSD range from 0.20 A (1s7q) to 1.53
A (1jf1) applying our previous protocol. These observa-
tions imply an improvement in the accuracy by upto
two and a half folds compared to our previous protocol.
The outcomes of our validation experiments suggest a
seven-fold improvement in the accuracy of the pDOCK
docking protocol. pDOCK can therefore be successfully
applied as a generalized, efficient protocol for docking
of peptides to MHC-I and MHC-II receptors with
improved accuracy, greater coverage of peptide residues
and vastly reduced computational time (up to 60% com-
pared to our earlier method).

The average time taken to perform each step using
pDOCK has also improved drastically compared to our
old technique on a 2 CPU 3.20 GHz 3 GB RAM work-
station. This is mainly due to the consolidation of the
docking and refinement protocols into a single step
docking and refinement procedure. Our results establish
the efficacy of pDOCK to model highly accurate pMHC
complex structures permitting conformational sampling
of the peptide in MHC binding groove. The current
study thus presents one of the most accurate pMHC
docking protocols developed to date. pDOCK targets a
more generic approach to generation of docked confor-
mations of peptides using a single template for each
allele. For some pMHC complexes however, appropriate
addition of mediating molecules or considerations of
solvent effects may lead to a possible improvement in
docking accuracy. Rapid and large scale docking and
scanning for identification of potential candidates for
immunogenicity from repertoires of immunologically
significant antigenic peptide sequences is possible by
automating all the steps. No requirement for experimen-
tal data to be trained and the need of only a suitable
template for a particular allele give pDOCK a prominent
edge over other sequence-based techniques such as Arti-
ficial Neural Networks, Support Vector Machines, and
Hidden Markov Models.
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pDOCK is also highly efficient in accurately predicting
the docked conformations of amino acid analogues or
chemical components within the peptide ligand suggest-
ing its possible use as a docking and evaluation tool in
structure-based drug design protocols and chemoinfor-
matics. The single and variant template docking experi-
ments along with the validation experiments also serve
as strong benchmarks for pDOCK against our old
method. pDOCK can correctly predict the conformation
of residues that extend into the MHC binding cleft and
therefore could help identify essential contacts with the
MHC receptor, responsible for reducing the half life of
the pMHC complex such that the peptide is held long
enough within the MHC groove for presentation at the
APC cell surface leading to surveillance and recognition
by the TR molecules which in turn results in the activa-
tion of T cells and triggers the adaptive immune
response cascade. Another significant improvement in
this study is that the peptide ligand is allowed full flex-
ibility within the peptide biding groove of the MHC
proteins, unlike our previous method where the peptide
termini were docked rigidly to the MHC groove. This
aspect of pDOCK has helped us carry out fully flexible
peptide docking to the MHC proteins. Our results also
indicate the successful application of this protocol for
easy in silico identification of promiscuous peptide epi-
topes that are applicable to higher proportions of
human population with greater propensity to bind to
MHC proteins and consequently activate T cells making
them key targets for the design of vaccines and
immunotherapies.

Methods

Data

pDOCK was tested on a non-redundant dataset of 186
(149 MHC-I and 37 MHC-II) pMHC complexes from
the MPID-T2 (http://biolinfo.org/mpid-t2) database for
which X-ray crystal structures are available in the PDB
and the IMGT/3Dstructure-DB. When there is more
than one complex with the same bound peptide and the
same allele, the structure with the highest resolution is
selected to avoid redundancy. When more than one
bound peptide is available in the selected crystal struc-
ture, all bound peptides in that crystal structure are ana-
lyzed. TR/pMHC structures in MPID-T2 database are
treated as non-redundant entries unless they have the
same peptide, allele and TR type. In which case, the
structure with the best resolution is considered non-
redundant. Similarly, a dataset of 25 (18 MHC-I and 7
MHC-II) pMHC complexes was selected from the
pDOCK test set for single and variant template docking.
When more than one allele is available as template for
docking of peptides into a single or variant template,
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the allele with the highest resolution was selected.
Redundancy in MPID-T2 data is primarily decided from
the similarities in peptides, MHC alleles and TR types
(in case of TR/pMHC structures). Since one publication
can refer to crystal structures of many complexes,
redundancy in the literature is not considered as a cri-
terion for redundancy. Some redundant structures were
used for variant template docking (Table 5) due to lim-
ited number of crystal structures with promiscuous pep-
tides bound to different alleles in the PDB. Although the
MPID-T2 database contains 294 pMHC complexes (273
classical and 21 non classical), the 21 non-classical and
87 redundant structures were discarded from this study
in order to avoid any biasness in our results.

PMHC complexes for benchmarking and validation

A non-redundant dataset of 50 high quality (35 MHC-I
and 15 MHC-II) pMHC complexes, with maximum 3.00
A resolutions, was selected from the 186 pMHC com-
plexes in the pDOCK test set for benchmarking with
the previous methodology. 15 pMHC complexes were
chosen for validation experiments depending on the
ones used in the corresponding reference studies
[34,36-42].

The pDOCK protocol

Unlike our earlier method [2,3], the new technique
incorporates flexibility into the entire length of the pep-
tide ligand. We have now incorporated a receptor mod-
eling sub-step at the beginning of our novel schema
(Figure 1), which involves rigorous homology modeling
of MHC proteins from available MHC sequences by
satisfaction of spatial restraints using MODELLER [43]
followed by structure optimization and stringent struc-
tural quality assessment protocols to affirm the genera-
tion of high quality homology models of MHC proteins
to be subsequently used in the pMHC docking strategy.
Thereby, accounting for the validity of our methodology
even in the absence of experimental structures for the
MHC proteins and when only MHC sequences are
available. However, this sub-step was not used in the
current study as testing, benchmarking, validation, single
template and variant template docking experiments are
performed only on X-ray crystal structures of pMHC
complexes.

The current pMHC docking technique is applied on
MHC-I and MHC-II related peptides in two preparatory
steps and a single consolidated docking and receptor
step as follows: Preparatory step 1: receptor positioning
using the Internal Coordinate Mechanics (ICM) global
optimization algorithm [35]; Preparatory step 2: deter-
mining the docking grid using standardized values for
MHC supertypes (MHC-I and MHC-II) from our preli-
minary studies and; A single docking and refinement
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step involving: ligand positioning, grid ligand docking
followed by iterative ab initio refinements of backbone
and ligand interacting side-chain dihedral angles of the
MHC binding site residues to eliminate or minimize
atomic clash regions at the pMHC interface using a
Biased Monte Carlo procedure. The preparatory steps
were together used to generate the receptor maps and
the final single docking and refinement step was used to
carry out ligand docking, generate the final least energy
conformation and further refine the product.

Preparatory steps

Receptor modeling and positioning

Positioning of the MHC receptor is a major requirement
in the pMHC docking simulation to ensure a best fit of
the flexible peptide in the MHC groove. This first pre-
paratory step (receptor modeling and positioning) is the
least time consuming (only applicable to sub-step ‘b’) in
the pDOCK docking protocol and involves two vital
sub-steps: (a) homology model building by satisfaction
of spatial restraints for MHC sequences where no struc-
tural data is available or inserting the MHC crystal
structure into the docking simulation and; (b) position-
ing of the receptor within the docking simulation.
Although not used in this study, high quality homology
models can be generated, using our previously described
three-step homology modeling procedure [44], for alleles
with no structural data. Receptor positioning using the
ICM global optimization algorithm assures the addition
of any important missing residues in the template
besides optimizing the zero occupancy side chains and
any polar hydrogen atoms.

Determining the docking grid

The second, relatively small preparatory step of our
docking procedure is to determining the docking grid
which constitutes two major sub-steps: (a) defining the
dimensions (length x breadth x height) of the 3-D dock-
ing grid and; (b) grid map generation for the receptor
using the ICM stochastic global optimization algorithm.
The ICM algorithm generates a three-dimensional dock-
ing grid (purple box in Figure 6), which encloses all
MHC binding site residue atoms along with peptides
residue atoms, soon after the previous step for genera-
tion of receptor maps. This ensures the localization of
the peptide ligand for docking within the vicinity of the
MHC peptide binding site residues and thereby limits
the flexibility of the allowed peptide side chain torsion
angles to be randomly sampled within the MHC groove.
The dimensions of this 3-D docking box are set to stan-
dardized values derived from our preliminary analysis of
all available pMHC complexes from the MPID-T2 data-
base, for both MHC-I (35.36 A x 35.52 A x 35.79 A)
and MHC-II (58.32 A x 56.36 A x 48.87 A) complexes
used in testing, benchmarking, validation, single and
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Binding Site

Docki
ocking Residues

awHIE B
Figure 6 pMHC docking caught in action. Docking of the
peptide into the MHC peptide binding ‘groove’ is shown for the
pMHC complex 1zhb. The various components like binding site
residues (green), docking grid (purple) dimensions (length, breadth
and height), probe (red) and peptide (blue), involved in the peptide
docking protocol are labeled.

variant template docking simulations. The ICM algo-
rithm then selects all the binding site residues within
the MHC groove by creating three-dimensional spheres
from and around the centre of the MHC groove with
5.00 A radii and selecting all the atoms of the MHC
binding groove residues falling in and on the spheres
(shown in green in Figure 6). 5.00 A is set as the default
radii to select the binding site residues amongst the resi-
dues forming the MHC groove as these are the MHC
residues that are most likely to form hydrogen bonds
(maximum allowed distance — 3.65 A) and van der
Waals contacts (maximum allowed distance — 4.50 A)
with the peptide residues, resulting in strong enough
interactions to hold the bound peptide for presentation
at the APC cell surface leading to surveillance and
recognition by the TR molecules. The stochastic global
optimization in internal coordinates with pseudo-Brow-
nian and collective “probability-biased” random moves
allow flexibility to the peptide ligand interface side
chains and generate a grid potential map of the receptor
energy localized to small cubic regions of side 1.00 A
from the carbon-alpha backbone of the peptide.

Single step docking and refinement

Ligand positioning, grid ligand docking and refinement

As with receptor positioning, ligand positioning is also
equally important in achieving the best docked confor-
mations, with the lowest energy values for flexible pep-
tides using pDOCK. The final, most exhaustive (in
terms of computational time required compared to the
other two steps) single step docking and refinement part
deals with ligand positioning, grid ligand docking and
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refinement, comprising three very important sub-steps:
(a) positioning of the peptide ligand either by using the
original crystal structure or by inserting a peptide model
into the docking simulation using the peptide sequence;
(b) placing and positioning of the probe into the peptide
binding groove using the Internal Coordinate Mechanics
global optimization algorithm and; (c) flexible docking
of the peptide into the MHC groove and refinement of
all ligand and binding site residues using a Biased
Monte Carlo procedure. Ligand positioning was carried
out either by using ICM algorithm for existing peptides
within the X-ray crystal structures of pMHC complexes
or by manually inserting a peptide model into the dock-
ing simulation for each of the available peptide
sequences (docking of novel peptides to a single tem-
plate and docking of promiscuous peptides to variant
templates). This was followed by placing a probe (red in
Figure 6) in the MHC groove which provides an initial
position for conformational sampling and docking simu-
lations using the ICM algorithm.

ICM docking algorithm [35] runs flexible docking of
peptide ligands to MHC peptide binding clefts. During
the docking simulation, the ligand side-chain torsions
that have been previously stored within the grid recep-
tor maps (preparatory step 2) are changed in each ran-
dom step using a Biased Monte Carlo procedure, which
begins by pseudo-randomly selecting a set of torsion
angles in the ligand and consequently finding the local
energy minima about those angles. Upon satisfaction of
the Metropolis criteria, novel conformations are adopted
with a probability min (1, exp[-AG/RT]), where R is the
universal gas constant and 7T is the absolute temperature
of the simulation. The temperature was set to 300 K for
the current study. To keep the ligand molecule close to
the starting conformation, loose restraints are imposed
on its positional variables. The internal energy function
adopted for our simulations integrates internal van der
Waals interactions energy (calculated using an extension
of ECEPP/3 with force field parameters) [45], hydrogen
bonding energy, torsion energy, electrostatic energy with
a distance-dependent dielectric constant (¢ = 4r; where ¢
is the distance-dependent dielectric constant and r is the
distance) [46] and hydrophobic potential between the
atoms of peptide residues and atoms of the binding site
residues. The final energy incorporates configurational
entropy of side chains and the surface-based solvation
energy to select the best-iterated orientations. In brief,
the complete optimal energy function, E, is made up of
the internal energy of the ligand and the intermolecular
energy of the optimized receptor potential maps and
can be summarized as:

E = Epy + Een + 216 ESPN + 2,53 Eyy, + 4.35 Ey,
+0.20 Egopy
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where E,,, is the internal van der Waals interaction
energy, E., is the configurational/conformational entropy,
E gl"l" is the electrostatic energy of solvation, Ey, is the
hydrogen bonding energy, Ey,, is the hydrophobic potential
and E,y is the surface-based solvation energy.

Finally, to improve the accuracy of the initial predicted
conformation, refinement of the ligand as well as bind-
ing site residues backbone and side chains was per-
formed as described in our previous methodology [2,3]
to overcome any atomic clashes detected at the pMHC
binding interface, using ICM Biased Monte Carlo proce-
dure. Again, restraints are imposed upon the positional
variables of the Ca atoms of the peptide residues. The
early stages of the refinement efforts try to trounce the
consequences of docking fully flexible ligands to rigid
receptors by introducing partial flexibility to the back-
bone of MHC peptide binding residues. Refinements of
ligand and receptor side-chain torsions in the vicinity of
4,00 A from the receptor were executed upon the final
backbone structure of the peptides to keep the docked
peptides closest to their starting conformations. The
energy function, E, utilized for this refinement sub-step,
is the sum of energy terms arising from the optimal
energy function described above:

E= va + Ehbonds + Etors + Eelec + Eso[v + Een

where E,, is the torsion energy, E.. is the electro-
static energy and E,,, is the entropic term.

Additional File 1: Table S1. Application of pDOCK to the 186 (149
MHC-I and 37 MHC-II) non-redundant structures from MPID-T2
database. (*.pdf)Application of pDOCK to the 186 (149 MHC-I and 37
MHC-II) non-redundant structures from MPID-T2 database.

Additional File 2: Figure S1. Comparison of Co. RMSD values
obtained using pDOCK and our previous method across the
benchmarking dataset (*.pdf)Comparison of Ca. RMSD values obtained
using pDOCK and our previous method across the benchmarking dataset
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Additional File 1

pDOCK: A new technique for rapid and accurate docking of peptide ligands
to Major Histocompatibility Complexes

Javed M. Khan and Shoba Ranganathan

Table S1 — Application of pDOCK to the 186 (149 MHC-l and 37 MHC-Il) non-

redundant structures from MPID-T2 database.

Ca RMSD values are calculated only for the nonameric core (shown in bold) forming the
MHC binding register for peptides with more than 9 residues in the X-ray crystal

structures. X: Chemical mimics.

PDB . Peptide | Res. | Ca RMSD
Allele code Peptide Sequence Lelr)Igth (A) (A)
MHC-I

HLA-A*0101 1w72 EADPTGHSY 9 2.15 0.42
HLA-A*1101 1gvo QVPLRPMTYK 10 2.22 0.24
HLA-A*1101 1X7q KTFPPTEPK 9 1.45 0.36
HLA-A*1101 2hn7 AIMPARFYPK 10 1.60 1.40
HLA-A*1101 1994 AIFQSSMTK 9 2.40 1.52
HLA-A*0201 1o0ga GILGFVFTL 9 1.40 0.16
HLA-A*0201 1ty SLYNVVATL 9 2.00 0.78
HLA-A*0201 1s8d SLANTVATL 9 2.20 0.65
HLA-A*0201 2gtz ALGIGILTV 9 1.70 0.95
HLA-A*0201 1duy LFGYPVYV 8 2.15 1.12
HLA-A*0201 2p5w SLLMWITQC 9 2.20 0.35
HLA-A*0201 2v2w SLYNTVATL 9 1.60 0.55
HLA-A*0201 2V2x SLFNTVATL 9 1.60 0.78
HLA-A*0201 1qr1 IISAVVGIL 9 2.40 0.29
HLA-A*0201 1grn LLFGYAVYV 9 2.80 0.91
HLA-A*0201 1gse LLFGYPRYV 9 2.80 0.31
HLA-A*0201 1qgsf LLFGYPVAV 9 2.80 0.34
HLA-A*0201 1hhg TLTSCNTSV 9 2.60 1.18
HLA-A*0201 11p9 ALWGFFPVL 9 2.00 0.26
HLA-A*0201 1s9x SLLMWITQA 9 2.50 0.44
HLA-A*0201 1s9y SLLMWITQS 9 2.30 0.39
HLA-A*0201 1tvb ITDQVPFSV 9 1.80 0.38
HLA-A*0201 1tvh IMDQVPFSV 9 1.80 0.43
HLA-A*0201 1akj ILKEPVHGV 9 2.65 0.39
HLA-A*0201 1eey ILSALVGIV 9 2.25 0.92
HLA-A*0201 2guo AAGIGILTV 9 1.90 2.14
HLA-A*0201 1120 SLYNTIATL 9 2.20 0.82
HLA-A*0201 1ao7 LLFGYPVYV 9 2.60 0.58
HLA-A*0201 1eez ILSALVGIL 9 2.30 0.71
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PDB . Peptide | Res. | Ca RMSD

Allele code Peptide Sequence Lel;)\gth (A) (A)
HLA-A*0201 29j6 LLFGKPVYV 9 2.56 0.97
HLA-A*0201 1hhh FLPSDFFPSV 10 3.00 0.49
HLA-A*0201 1i1f FLKEPVHGV 9 2.80 0.64
HLA-A*0201 2clr MLLSVPLLIG 10 2.00 1.01
HLA-A*0201 2gt9 EAAGIGILTV 10 1.75 0.26
HLA-A*0201 1i7r FAPGFFPYL 9 2.20 0.47
HLA-A*0201 1i7t ALWGVFPVL 9 2.80 0.42
HLA-A*0201 1i7u ALWGFVPVL 9 1.80 0.29
HLA-A*0201 1jf1 ELAGIGILTV 10 1.85 0.30
HLA-A*0201 1t1x SLYLTVATL 9 2.20 1.72
HLA-A*0201 1ily YLKEPVHGV 9 2.20 0.66
HLA-A*0201 11z ALYNTAAAL 9 1.90 1.15
HLA-A*0201 2bnq SLLMWITQV 9 1.70 0.55
HLA-A*0201 2c7u SLFNTIAVL 9 2.38 0.86
HLA-A*0201 1i4f GVYDGREHTV 10 1.40 1.25
HLA-A*0201 1bd2 LLFGYPVYV 9 2.50 0.33
HLA-A*0201 2gtw LAGIGILTV 9 1.55 3.08
HLA-A*2402 2bck VYGFVRACL 9 2.80 0.79
HLA-A*6801 1tmc EVAPPEYHRK 10 2.30 0.54
HLA-B*0801 1agc GGKKKYQL 8 210 0.23
HLA-B*0801 1agd GGKKKYKL 8 2.05 0.45
HLA-B*0801 1agb GGRKKYKL 8 2.20 0.28
HLA-B*0801 1mi5 FLRGRAYGL 9 2.50 0.37
HLA-B*1501 1xr8 LEKARGSTY 9 2.30 1.15
HLA-B*1501 3c9n VQQESSFVM 9 1.87 0.80
HLA-B*2101 3bev GHAEEYGAETL 11 210 0.90
HLA-B*2101 3bew REVDEQLLSV 10 2.60 0.33
HLA-B*2705 Tuxs RRRWRRLTV 9 1.55 0.75
HLA-B*2705 1ogt RRKWRRWHL 9 1.47 0.18
HLA-B*2705 2bsr RRIYDLIEL 9 2.30 1.72
HLA-B*2705 2bst SRYWAIRTR 9 210 1.36
HLA-B*2705 2a83 RRRWHRWRL 9 1.40 0.18
HLA-B*2705 TwOv RRLPIFSRL 9 2.27 1.41
HLA-B*2709 TwOw RRLPIFSRL 9 210 0.64
HLA-B*2709 1k5n GRFAAAIAK 9 1.09 0.75
HLA-B*2709 Tuxw RRRWRRLTV 9 1.71 0.47
HLA-B*2709 1jgd RRLLRGHNQY 10 1.90 1.42
HLA-B*3501 2cik KPIVVLHGY 9 1.75 0.26
HLA-B*3501 2axg APQPAPENAY 10 2.00 1.14
HLA-B*3501 1a%9b LPPLDITPY 9 3.20 0.39
HLA-B*3501 1gew FLWGPRALV 9 2.20 0.53
HLA-B*3501 1aln VPLRPMTY 8 2.00 0.39
HLA-B*3508 3bw9 CPSQEPMSIYVY 12 1.75 0.27
HLA-B*3508 3bwA FPTKDVAL 8 1.30 0.26
HLA-B*3508 2ak4 LPEPLPQGQLTAY 13 2.50 1.09
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PDB . Peptide | Res. | Ca RMSD
Allele code Peptide Sequence Lerr,Igth (A) (A)
HLA-B*3508 2axf APQPAPENAY 10 1.80 0.51
HLA-B*4402 1m6o EEFGRAFSF 9 1.60 1.33
HLA-B*4403 1sys EEPTVIKKY 9 2.40 0.65
HLA-B*4403 1n2r EEFGRAFSF 9 1.70 0.99
HLA-B*4405 1syv EEFGRAFSF 9 1.70 0.77
HLA-B*5101 1e27 LPPVVAKEI 9 2.20 0.18
HLA-B*5101 1e28 TAFTIPSI 8 3.00 0.26
HLA-B*5301 1aim TPYDINQML 9 2.30 0.28
HLA-B*5301 1alo KPIVQYDNF 9 2.30 0.84
HLA-B*5703 2bvq KAFSPEVIP 9 2.00 0.50
HLA-B*5703 2bvo KAFSPEVIPMF 11 1.65 217
HLA-B*5703 2bvp ISPRTLDAW 9 1.35 0.65
HLA-Cw*0304 1efx GAVDPLLAL 9 3.00 0.35
HLA-Cw*0401 1im9 QYDDAVYKL 9 2.80 0.34
HLA-E*0101 2esv VMAPRTLIL 9 2.60 0.66
HLA-E*0103 1kpr VMAPRTVLL 9 2.80 1.02
HLA-E*0103 1kt VTAPRTLLL 9 3.10 0.45
HLA-E*0103 3cdg VMAPRTLFL 9 3.40 1.97
HLA-G*0101 2dyp RIIPRHLQL 9 2.50 0.16
H2-Db 1jpf SGVENPGGYCL 11 2.18 0.36
H2-Db 1jpg FQPQNGQFI 9 2.20 0.38
H2-Db 1juf SSVIGVWYL 9 2.00 0.29
H2-Db 1bz9 FAPGVFPYM 9 2.80 1.19
H2-Db 1ceb FAPGNYPAL 9 2.90 0.24
H2-Db 1hoc ASNENMETM 9 2.40 0.46
H2-Db 1ffo AAVYNFATM 9 2.65 0.25
H2-Db 1ffp SAVYNFATM 9 2.60 0.33
H2-Db 1fg2 KAVYNFATC 9 2.75 0.19
H2-Db 1inq SSVVGVWYL 9 2.20 0.42
H2-Db 1n3n SNLQNAASIA 10 3.00 1.34
H2-Db 1qlf FAPSNYPAL 9 2.65 0.26
H2-Db 1s7v KAVYNLATM 9 2.20 0.27
H2-Db 1s7w KALYNFATM 9 2.40 0.62
H2-Db 1s7x KAVFNFATM 9 2.41 0.47
H2-Db Twbx SQLKNNAKEI 10 1.90 0.38
H2-Db Twby SSLENFRAYV 10 2.30 0.31
H2-Db 1yn7 SSLENFAAYV 10 2.20 0.14
H2-Db 2f74 KAVYNFATM 9 2.70 0.27
H2-Db 3buy LSLRNPILV 9 2.60 0.23
H2-Dd 1903 RGPGRAFVTI 10 2.30 0.17
H2-Kb 1g6r SIYRYYGL 8 2.80 0.34
H2-Kb 1s7q KAVYNFATM 9 1.99 0.09
H2-Kb 1s7r KAVYNLATM 9 2.95 1.26
H2-Kb 1s7s KALYNFATM 9 1.99 0.28
H2-Kb 1s7t KAVFNFATM 9 2.30 0.19
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PDB . Peptide | Res. | Ca RMSD
Allele code Peptide Sequence Lel;)\gth (A) (A)
H2-Kb 1g7p SRDHSRTPM 9 1.50 0.17
H2-Kb 197q SAPDTRPA 8 1.60 0.36
H2-Kb 1kbg RGYVYXGL 8 2.20 0.47
H2-Kb 1t0Om SSIEFARL 8 2.00 0.21
H2-Kb 1vac SIINFEKL 8 2.50 0.22
H2-Kb Twbz SSYRRPVGI 9 2.00 0.19
H2-Kb 1rjz SEIEFARL 8 2.60 0.48
H2-Kb 1kj2 KVITFIDL 8 2.71 0.38
H2-Kb 11k2 GNYSFYAL 8 1.35 0.53
H2-Kb 1zhb KALYNYAPI 9 2.70 0.24
H2-Kb Tmwa EQYKFYSV 8 2.40 0.27
H2-Kb 2fo4 SAPDFRPL 8 2.70 0.60
H2-Kb 1n59 AVYNFATM 8 2.95 0.44
H2-Kb 2013 SQYYYNSL 8 2.90 0.30
H2-Kb Tnam RGYVYQGL 8 2.70 0.38
H2-Kb 1fo0 INFDFNTI 8 2.50 0.34
H2-Kb 10sz RGYLYQGL 8 2.10 0.28
H2-Kd 1vgk SYVNTNMGL 9 2.06 0.25
H2-Kd 2fwo TYQRTRALV 9 2.60 0.26
H2-Kk 1zt1 FEANGNLI 8 2.50 0.45
H2-Kk 1zt7 SEFLLEKRI 9 3.00 0.45
H2-Ld 11dp APAAAAAAM 9 3.10 0.59
H2-Ld 11d9 YPNVNIHNF 9 2.40 0.56
H2-Ld 2e7| QLSPFPFDL 9 2.50 0.35
H2-Ld 20i9 QLSPFPFDL 9 2.35 0.55
H2-M3 1mhc MYFINILTL 9 2.10 1.16
H2-Qa-2 1k8d ILMEHIHKL 9 2.30 0.55
Mamu-A*01 1zvs TTPESANL 8 2.80 0.65
RT1.Aa 1kjm AQFSASASR 9 2.35 0.49
RT1-A1C 1kjv NPRAMQALL 9 1.48 0.33
MHC-lI
HLA-DQB1*0201 1s9v LQPFPQPELPY 11 2.22 0.33
HLA-DQB1*0302 1jk8 LVEALYLVCGERGG 14 2.40 0.31
HLA-DQB1*0302 2nna SGEGSFQPSQENP 13 2.10 0.22
HLA-DQB1*0602 Tuvq MNLPSTKVSWAAVGGGGSLV 20 1.80 0.23
HLA-DRA*0101 1zgl VHHFKNIVTPRTPG 14 2.80 1.27
HLA-DRB1*0101 1aqd GSDWRFLRGYHQYA 14 2.45 0.28
HLA-DRB1*0101 1fyt PKYVKQNTLKLAT 13 2.60 0.23
HLA-DRB1*0101 1Kklu GELIGTLNAAKVPAD 15 1.93 0.20
HLA-DRB1*0101 Tpyw FVKQNAXAL 9 2.10 0.81
HLA-DRB1*0101 1sje PEVIPMFSALSEGAT 15 2.45 0.46
HLA-DRB1*0101 1sjh PEVIPMFSALSEG 13 2.25 0.22
HLA-DRB1*0101 1t5w AAYSDQATPLLLS 13 2.40 0.25
HLA-DRB1*0101 2fse AGFKGEQGPKGEPG 14 3.10 0.64
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PDB . Peptide | Res. | Ca RMSD

Allele code Peptide Sequence Lerr,Igth (A) (A)
HLA-DRB1*0101 2iam GELIGILNAAKVPAD 15 2.80 0.24
HLA-DRB1*0301 1a6a PVSKMRMATPLLMQA 15 2.75 0.30
HLA-DRB1*0401 1d5m XXRAMXSX 8 2.00 0.13
HLA-DRB1*0401 1d5x XXRXXX 6 2.45 0.11
HLA-DRB1*0401 1d5z XXRAXSX 7 2.00 0.22
HLA-DRB1*0401 1d6e XXRXMASX 8 2.45 0.14
HLA-DRB1*0401 1j8h PKYVKQNTLKLAT 13 2.40 0.20
HLA-DRB1*0401 2seb AYMRADAAAGGA 12 2.50 0.31
HLA-DRB1*1501 Tymm ENPVVHFFKNIVTP 14 3.50 0.28
HLA-DRB3*0101 296w AWRSDEALPLG 11 2.25 0.30
HLA-DRB5*0101 1fv1 NPVVHFFKNIVTPRTPPPSQ 20 1.90 0.59
HLA-DRB5*0101 1h15 GGVYHFVKKHVHES 14 3.10 0.22
HLA-DRB5*0101 1hqr VHFFKNIVTP 10 3.20 0.56
I-Ab Tmuj PVSKMRMATPLLMQA 15 2.15 0.15

I-Ad 1iao RGISQAVHAAHAEI 14 2.60 0.27

I-Ad 2iad GHATQGVTAASSHE 14 2.40 0.56
I-A(G7) 1es0 YEIAPVFVLLEYVT 14 2.60 0.38
I-Ak 1f3] AMKRHGLDNYRGYS 14 3.10 0.28

I-Ak Tiak STDYGILQINSRW 13 1.90 0.23

I-Ak 1jl4 GNSHRGAIEWEGIESG 16 4.30 0.35

[-Au 1u3h SRGGASQYRPSQ 12 242 0.95

[-Au 2pxy RGGASQYRPSQ 11 2.23 0.28

I-EK 1r5v ADLIAYPKAATKF 13 2.50 0.28

I-EK 1r5w ADLIAYFKAATKF 13 2.90 1.26
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3.2 Conclusions

pDOCK is a fast, accurate and robust method for flexible docking of peptides to MHC-I
and MHC-II proteins. The limitations pertaining to the application of our previous
methodology [10, 11] have been addressed in pDOCK. Consolidation of the docking and
refinement protocols into a single step docking and refinement procedure has resulted in a
decreased average time required to perform each docking using pDOCK. Although
pDOCK benchmarks against experimental structures, it can be applied to alleles with no
structural data using sequence information and a previously described homology modeling
procedure [444] to build structural models that can be subsequently used for docking.
pDOCK can be automated to perform rapid and large scale docking and scanning for
identification of potential candidates for immunogenicity from repertoires of
immunologically significant antigenic peptide sequences. pDOCK can therefore be
successfully applied as a generalized, efficient protocol for docking of peptides to MHC
proteins with improved accuracy, greater coverage of peptide residues and vastly reduced

computational time (up to 60% compared to our earlier method [10, 117).

pDOCK gets a prominent edge over other sequence-based techniques such as ANN, SVM,
and HMM owing to no requirement for large numbers of experimental data for training and
the need of only a suitable template for a particular allele. Conformation of residues that
extend into the MHC binding cleft can also be correctly predicted using pDOCK. This
suggests that essential pMHC contacts responsible for reducing the half life of the pMHC
complexes could possibly be identified using pDOCK. The full flexibility allowed for the
peptide residues and the MHC pocket residues within the peptide binding groove of the
MHC proteins, unlike our previous method where the peptide termini were docked rigidly
to the MHC groove, highlights a significant improvement in the pDOCK peptide docking

procedure.
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Chapter 4: MPID-T2: a database for sequence-structure-
function analyses of pMHC and TR/pMHC structures

4.1 Summary

Understanding the mechanisms underlying pMHC and TR/pMHC binding and recognition
relies mainly of the sequence-structure-function information of these vital immune system
interactions [84]. The knowledge of the physicochemical basis for the selection of certain
specific peptide epitopes by MHC alleles and the consequent recognition of pMHC ligands
by TR proteins is critical for the design of T cell based peptide vaccines [15]. With recent
rise in TR/pMHC structural data in the PDB [62, 63] and in IMGT/3Dstructure-DB [57,
58], and newly recognized interaction parameters [51], there is an increasing demand for
more effective and efficient computational protocols to predict T cell epitopes. Thus,
publication 4 describes a new database for sequence-structure-function information on
pMHC and TR/pMHC interactions known as “MHC-Peptide Interaction Database-TR
version 2 (MPID-T2)”, that has been developed and augmented with latest PDB and
IMGT/3Dstructure-DB data, advanced features and new parameters for analysis of pMHC
and TR/pMHC structures, to gain an in-depth understanding of structural determinants

underlying TR/pMHC binding and recognition.

4.2 Data

MPID-T2 contains interaction information on all available experimental X-ray crystal
structures of pMHC and TR/pMHC complexes extracted from PDB. It is a semi-
automatically curated structure-derived MySQL database hosted on a Linux server. The
November 2010 update of the database comprises 415 entries from five MHC sources
(human: 282, murine: 127, rat: 3, chicken: 2 and monkey: 1), spanning 56 alleles. The 415
entries have 353 pMHC structures (Table 4.1) and 62 TR/pMHC structures (Table 4.2)
from 352 MHC-I complexes and 63 MHC-II complexes, comprising 327 non-redundant
entries (MHC-I: 279 and MHC-II: 48). The database includes non-classical structures (with
T cell receptor like antibodies, CD proteins and natural killer cell immunoglobulin like
receptors or KIR associated to the pMHC) and complexes with non-standard residues.
Within the database, the most accurate and complete structure is stored for PDB structures
with multiple molecular assemblies. Manual verification, classification and analysis for
pMHC and TR/pMHC interactions is carried out on each structure and the results are

stored in the database. MPID-T2 is available online at: http://biolinfo.org/mpid-t2.
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ABSTRACT

Summary: Sequence-structure—function information is critical in
understanding the mechanism of pMHC and TR/pMHC binding and
recognition. A database for sequence-structure—function information
on pMHC and TR/pMHC interactions, MHC-Peptide Interaction
Database-TR version 2 (MPID-T2), is now available augmented with
the latest PDB and IMGT/3Dstructure-DB data, advanced features
and new parameters for the analysis of pMHC and TR/pMHC
structures.

Availability: http://biolinfo.org/mpid-t2.
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Supplementary Information: Supplementary data are available at
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1 INTRODUCTION

Major histocompatibility complexes (MHC) or human leukocyte
antigens (HLAs) in human are important elements of T cell-mediated
immunity. They are cell surface glycoproteins among which MHC-
I proteins are ubiquitously expressed by most cells and MHC-II
proteins are expressed by antigen-presenting cells (APC; Lefranc
et al., 2005). MHC proteins bind immunogenic peptide epitopes
(p) derived from antigens and present them as peptide-MHC
(pMHC) complexes on the cell surface, for subsequent recognition
by T-cell receptors (TR), leading to TR/pMHC complexes, which
are responsible for T-cell activation and triggering the adaptive
immune response cascade (Khan et al., 2010). Understanding the
physicochemical basis for the selection of certain specific peptide
epitopes by MHC alleles and the consequent recognition of pMHC
ligands by TR proteins is critical for the design of T cell-based
peptide vaccines (Khan et al., 2010).

An early collection of pMHC X-ray crystal structures in the
Protein Data Bank (PDB; Berman et al., 2000) led to the
development of MPID (Govindarajan et al., 2003), comprising 86
classical pMHC structures, reporting pMHC interaction parameters.
With increasing pMHC and TR/pMHC structures in the PDB and in
the IMGT/3Dstructure-DB (Kaas et al., 2004) and reports of new
interaction parameters (Kaas and Lefranc, 2005), MPID-T (Tong
et al., 2006) was developed, with 187 pMHC and 16 TR/pMHC

*To whom correspondence should be addressed.

structures along with interaction parameters for the analysis of
PMHC structures alone.

With recent rise in TR/pMHC structural data in the PDB and
in IMGT/3Dstructure-DB (Ehrenmann et al., 2010), and updated
interaction parameters (Kaas et al., 2008), there is an increasing
demand for more effective and efficient computational protocols
to predict T-cell epitopes. Hence, we have updated MPID-T,
augmenting it with advanced features and new parameters for the
analysis of both pMHC and TR/pMHC structures, to gain an in-depth
understanding of the structural determinants underlying TR/pMHC
binding and recognition.

2 RESOURCE DESCRIPTION

MPID-T2 is a semiautomatically curated structure-derived MySQL
database hosted on a Linux server, containing interaction
information on all available experimental X-ray crystal structures of
pMHC and TR/pMHC complexes extracted from PDB. MPID-T2
(November 2010 update) comprises 415 entries from five MHC
sources (human: 282, murine: 127, rat: 3, chicken: 2 and
monkey: 1), spanning 56 alleles; 353 pMHC structures, 62
TR/pMHC complexes; 352 MHC class I (MHC-I) complexes and
63 MHC class II (MHC-II) structures. Overall, 327 entries are non-
redundant (MHC-I: 279 and MHC-II: 48). MPID-T2 includes non-
classical structures (structures with T-cell receptor like antibodies,
cluster of differentiation {CD} molecules and natural killer cell
immunoglobulin like receptors { KIR} associated to the pMHC) and
complexes with non-standard residues. For PDB structures with
multiple molecular assemblies, the most accurate and complete
structure is stored. Each structure is manually verified, classified
and analyzed for pMHC and TR/pMHC interactions.

2.1 Definitions of interaction parameters

2.1.1 Predefined interaction parameters Existing MPID-T
interaction parameters namely (i) intermolecular hydrogen bonds;
(ii) gap volume; (iii) gap index; and (iv) interface area have been
applied to all new pMHC complexes and extended to all TR/pMHC
structures (Tong et al., 2006, 2007).

2.1.2 New interaction parameters Specific new interaction
parameters in MPID-T2, vital for characterizing pMHC and/or
TR/pMHC binding, computed from the 3D coordinates of the crystal
structures, are listed below.
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MPID-T2

Binding energy: binding energy (BE) is a measure of the strength
of the interaction between the ligand and the receptor in terms
of binding free energy (AG). Values for BE between peptide and
MHC for all structures and between pMHC and TR for TR/pMHC
structures were calculated using DCOMPLEX (Liu et al., 2004).

Molecular surface electrostatic potential: interactions between
TR and pMHC depend vastly on charges displayed by TR and pMHC
binding interfaces. Hence, we used webPIPSA (Richter et al., 2008)
to calculate and ICM (Internal Coordinate Mechanics; Abagyan
et al., 1994) to visualize molecular surface electrostatic potential
(MSEP) at the binding interfaces (Supplementary Fig. Sla, b).

TR docking angle: TR docking angle is the angle formed by the TR
interface (paratope) on the pMHC interface (epitope) with respect
to the linear axis of the cognate peptide within the MHC groove.
This value ‘60’ (Supplementary Fig. S1a) was calculated by matching
the respective pMHC and TR interface MSEP for complimentarity
of charges, augmented by TR/pMHC interacting residues from the
literature. The charged residues at the pMHC interface form an
ellipse. The angle between the major axis of the ellipse and the
Ca backbone axis of the peptide was measured using ICM.

Contact area: contact area (CA) is the area enclosed by the
interacting residues of the two molecules (Supplementary Fig. Slc),
as compared to interface area, which is the interaction area at the
molecular level. We have used ICM to compute CA values between
peptide and MHC for all structures and between pMHC and TR for
TR/pMHC structures.

3 IMPLEMENTATION

Each entry in MPID-T2 is given a unique identifier for ease of
identification, comparison, characterization and rapid visualization.
Information for each pMHC and TR/pMHC structure in MPID-
T2 is classified into five major categories: (i) MHC (chain-
id, allele, class and source); (ii) peptide (chain-id, sequence,
source and length); (iii) computed pMHC interaction parameters
(intermolecular hydrogen bonds, gap volume, gap index, interface
area, BE, CA and MSEP); (iv) structural information (structure
determination method, resolution, PDB release year and publication
reference); and (v) hyperlinks to related external databases like PDB
(for sequence—structure information), SYFPEITHI (Rammensee
et al., 1999; for MHC ligands and peptide motifs), IMGT/HLA
(Robinson et al., 2001; for HLA sequences) and IMGT/3Dstructure-
DB (for annotations on pMHC and TR/pMHC sequences with
3D structures; Ehrenmann er al., 2010). However, TR/pMHC
structures in MPID-T2 have additional TR/pMHC interaction
parameters (BE, MSEP, TR docking angle, CA, gap volume, gap
index and interface area). Search page of the database presents
a web interface that allows searching for pMHC and TR/pMHC
complexes based on different categories (MHC class, allele,
source organism, peptide length, user-defined output required and
TR type) or PDB information (PDB-ID, resolution and release
year; Supplementary Fig. S2a). The search output (Supplementary
Fig. S2b) shows various fields; noticeably, TR/pMHC, pMHC,
MHC, peptide and TR 3-D coordinates are downloadable for
structural visualization. The alignment page illustrates pMHC and
TR/pMHC structural alignments based on species, MHC allele,
peptide length and TR type. To portray vital pMHC and TR/pMHC
interactions, precomputed schematic diagrams, generated using
LIGPLOT (Wallace et al., 1995), are provided. Also available in
the patterns page of MPID-T2 are consensus patterns, obtained

using WebLogo (Crooks et al., 2004), showing the conservation of
residues among peptides with same lengths and alleles. MPID-T2
help page lists database usability details, definitions for interaction
parameters and other useful resources.

4 DISCUSSION

MPID-T2 aims to facilitate mining of fundamental relationships
and structural descriptors hidden within TR/pMHC and pMHC
interactions for in-depth characterization. Inclusion of structural
descriptors like BE, MSEP, TR docking angle and CA have
facilitated in understanding the principles underlying TR/pMHC
binding (Khan and Ranganathan, unpublished results). These
descriptors can be used as parameters defining pMHC and
TR/pMHC interactions, thereby facilitating rational development of
methods to identify strong MHC binding T-cell epitopes with greater
propensity to activate T cells. This highlights the utility of MPID-
T2 in vaccine research. We have now enabled TR-specific searches
by classifying TR/pMHC structures based on TR types. Future
enhancements will include listing post-translational modifications
(PTM) for peptides to help understand the effect of PTM on
TR/pMHC binding and interaction. MPID-T2 will be updated on
a quarterly basis.

Conflict of Interest: none declared.

REFERENCES

Abagyan,R.A. et al. (1994) ICM: a new method for protein modeling and design:
applications to docking and structure prediction from the distorted native
conformation. J. Comput. Chem., 15, 488-506.

Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235-242.

Crooks,GE. et al. (2004) WebLogo: a sequence logo generator. Genome Res., 14,
1188-1190.

Ehrenmann,F. er al. (2010) IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a
database and a tool for immunoglobulins or antibodies, T cell receptors, MHC,
1gSF and MhcSFE. Nucleic Acids Res., 38, D301-D307.

Govindarajan,K.R. er al. (2003) MPID: MHC-Peptide Interaction Database for
sequence-structure-function information on peptides binding to MHC molecules.
Bioinformatics, 19, 309-310.

Kaas,Q. and Lefranc, M.P. (2005) T cell receptor/peptide/MHC molecular
characterization and standardized pMHC contact sites in IMGT/3Dstructure-DB.
In Silico Biol., 5, 505-528.

Kaas,Q. er al. (2004) IMGT/3Dstructure-DB and IMGT/StructuralQuery, a database
and a tool for immunoglobulin, T cell receptor and MHC structural data. Nucleic
Acids Res., 32, D208-D210.

Kaas,Q. et al. (2008) IMGT standardization for molecular characterization of
the T cell receptor/peptide/MHC complexes. In Schoenbach,C. et al. (eds)
Immunoinformatics, Immunomics Reviews Series. Springer, New York, pp. 19-49.

Khan,J.M. et al. (2010) Structural immunoinformatics: understanding MHC-peptide-
TR binding. In Davies,M.N. et al. (eds) Bioinformatics for Immunomics, Vol. 3,
Springer, New York, pp. 77-94.

Lefranc,M.P. et al. (2005) IMGT unique numbering for MHC groove G-DOMAIN
and MHC superfamily (MhcSF) G-LIKE-DOMAIN. Dev. Comput. Immunol., 29,
917-938.

Liu,S. et al. (2004) A physical reference state unifies the structure-derived potential of
mean force for protein folding and binding. Proteins, 56, 93-101.

Rammensee,H. ef al. (1999) SYFPEITHI: database for MHC ligands and peptide motifs.
Immunogenetics, 50, 213-219.

Richter,S. et al. (2008) webPIPSA: a web server for the comparison of protein
interaction properties. Nucleic Acids Res., 36, W276-W280.

Robinson,J. et al. (2001) IMGT/HLA Database-a sequence database for the human
major histocompatibility complex. Nucleic Acids Res., 29, 210-213.

Tong,J.C. et al. (2006) MPID-T: database for sequence-structure-function information
on T-cell receptor/peptide/MHC interactions. Appl. Bioinformatics, 5, 111-114.
Tong,J.C. et al. (2007) In silico grouping of peptide/HLA class I complexes using

structural interaction characteristics. Bioinformatics, 23, 177-183.

Wallace,A.C. et al. (1995) LIGPLOT: a program to generate schematic diagrams of

protein-ligand interactions. Protein Eng., 8, 127-134.

164

1193



a. a1 helix

Peptide

Contact area
between T73 and 153

Supplementary Figure S1. Examples of Molecular Surface Electrostatic Potential (MSEP)
and Contact Area (CA) as TR/pMHC interaction parameters. a. MSEP for a Tax-HLA-A2
pMHC interface (PDB code: 1AO7). b. MSEP for A6 TR interface (1A0O7). ¢. CA between
two interacting residues T73 and I53 from the al-helix (G-ALPHA1) of an MHC-I (HLA-
A2) allele and the B-chain of a VB17Va10.2 TR, respectively, in the TR/pMHC complex
10GA (PDB code). The component parts/domains of both pMHC and TR interfaces are labeled
in a. and b. TR interface in b. has been rotated 180° with respect to the pMHC interface in a. Vo
domain of TR interface interacts with a2 (G-ALPHA?2) helix of the MHC and N-terminal half of
the peptide, whereas, VB domain interacts with al (G-ALPHA1) helix of the MHC and C-
terminal half of the peptide. The ellipse (in yellow, with major axis marked diagonally)
represents the paratope of the TR on the pMHC surface, while the green line represents the
peptide axis. The TR docking angle, 6, is the angle between the peptide axis and the major axis
of the ellipse.
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HOME SEARCH STATISTICS PATTERNS ALIGNMENT REFERENCES CONTACTUS HELP
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Search by PDB data:
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Release Year [1999,2001 Search

b.

Search Results:

Entry Number: 12 of 415

MPID-T2 ID MHCAD004 MHC Type Class | MHC Allele ATD201
i t Peptide
PDB ID JAQ7 MHC Source Human Source HTLV-1 Tax
TR Source Human E‘x:::;i;nemal X-ray Diffraction P—Q;L"ﬂg 9
“ Ny
A View 9-mer pMHC Z!‘Hc I"w!f"e View Peptide LLFGYPVYV —“e"x
Alignment alignment ;nlsnlial Potential Sequence
vAM.HQ_Inm 8333 PMHC Gap 10383 pMHC Gap 12
rea Volume Index
pMHC Binding 5, PMHC Contact o0y TR/pMHC 964.0
Energy } Area . Interface Area .
A 7 IR/pMHC
ELUEAT) e HERMHCCIPRY 55 Binding 72
olume Index
Energy
R Docking R/pMHC
Angle =0 Contact Area =4 e (2
TR/pMHC
View AS TR/pMHC
D 260 Rel. Y 1997
Align lignment. Release Year
Total
Peptide Chain ID C Hydrogen 10
Bonds in
PMHC
IR f-Chain
R [; hain | 4 Hdio 2
Bonds
- pMHC :
IR p-Chainld E Complex View 3D Structure

TR Interface
Electrostatic
Potential

IeW Electrostatic PMHC Ligplot |

IMOTAH
TR/pMHC ligplot.jpg IMGT/3Dstructure-D
Ligplot ligplot.ps MMDB

Garboczi, D. N., Bfosy/P., Utz, U., Fan, Q. R, Biddison, W. E., Wiley™8

Reference iolex betwe€n hyfian T-cell receptor, viral peptide and HLA-A. Nature 357 pa

to IMGT/3Dstructure-DB and IMGT/2Dstructur

IMGT/30structure-0B and IMGT2Dstructure-DB Query
page

Supplementary Figure S2. Screenshots of the search page and the search result for a
TR/pMHC-I structure (1AO7) from the MPID-T2 database. a. The web interface for
searching with user defined input parameters (including TR type). b. Search result for
1AQO7 depicting various fields of pMHC and TR/pMHC information. Values for new pMHC
and/or TR/pMHC interaction parameters: BA, CA and TR docking angle can be noted while
MSEP images for both pMHC and TR interfaces can be accessed by clicking on the “View
Electrostatic Potential” links provided as shown in the callout boxes. Structural alignment for
TR/pMHC complexes based on TR types can also be visualized.
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4.3 Data analysis

This section deals with the comparison of all predefined and new interaction parameters
for all pMHC-I, pMHC-II, TR/pMHC-I and TR/pMHC-II structures listed in MPID-T2, to
understand the correlation between the structural characteristics and dependencies of the
interaction parameters upon each other and similarities in structural characteristics across
the pMHC and TR/pMHC datasets. These computed interaction parameters for the pMHC-
I, pMHC-II, TR/pMHC-I and TR/pMHC-II structures are listed in Table 4.3, Table 4.4,
Table 4.5 and Table 4.6, respectively. Similarly, Figure 4.1 shows the graphs for the
correlation between different computed interaction parameters for all pMHC-I complexes

in MPID-T2.

From the figure, it is clearly evident that extremely poor correlations are obtained between
sets of two interaction parameters such as pMHC-I interface area and pMHC-I gap volume
(Figure 4.1a; r"=3E-05), pMHC-I interface area and pMHC-I gap index (Figure 4.1b;
1"=0.1048), pMHC-I gap index and pMHC-I H-bonds (Figure 4.1f; ’=0.0848), pMHC-I
gap index and pMHC-I BE (Figure 4.1g; r’=0.01), pMHC-I gap volume and pMHC-I H-
bonds (Figure 4.lh; ’=0.0271), pMHC-I gap volume and pMHC-I BE (Figure 4.1i;
1’=0.0064), pMHC-I H-bonds and pMHC-I BE (Figure 4.1j; r’=0.028), pMHC-I gap index
and pMHC-I contact area (Figure 4.11; ’=0.1059) and, pMHC-I gap volume and pMHC-I
contact area (Figure 4.1m; r’=0.0003). Same is the case with a few other sets where
slightly better yet poor correlations are seen. These sets include pMHC-I interface area and
pMHC-I BE (Figure 4.lc; r’=0.2362), pMHC-I interface area and pMHC-I H-bonds
(Figure 4.1d; 1’=0.2069), pMHC-I H-bonds and pMHC-I contact area (Figure 4.1n;
1’=0.229) and, pMHC-I BE and pMHC-I contact area (Figure 4.10; 1°=0.2326). However,
two distinct sets of pMHC-I structural descriptors portray excellent correlations, these are
pMHC-I gap index and pMHC-I gap volume (Figure 4.le; r’=0.8797) and, pMHC-I
interface area and pMHC-I contact area (Figure 4.1k; 17=0.9223).

The above observations imply that for all pMHC-I complexes investigated in this study,
the gap index, which measures geometric and electrostatic complementarity between the
bound peptide and MHC protein, is inversely correlated with interface area and contact
area (Figures 4.1b and 4.11). This suggests that complexes with larger interface area and
contact area have better geometric and electrostatic complementarity (i.e. smaller gap
index) which indirectly results in the formation of more intermolecular hydrogen bonds

(Figures 4.1d and 4.1n) contributing to the stability of the pMHC-I complexes. This could
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be the reason behind the observed dependency of BE on interface area and contact area
(Figures 4.1c¢ and 4.10). On the other hand, gap volume has almost no correlation with
contact area and interface area (Figure 4.1m and 4.1a). A change in gap index or gap
volume is also likely to have very little direct effect on the formation of H-bonds between
peptides and MHC-I proteins (Figures 4.1f and 4.1h), hinting at their almost nil
contribution towards pMHC-I BE (Figures 4.1g and 4.11). Surprisingly, their BE seems to
be independent of the number of H-bonds (Figure 4.1j). However, as expected, their gap
volumes and gap indices are directly related just like their interface areas and contact areas

(Figures 4.1e and 4.1k).

The average interface area for pMHC-I complexes is 874 A* and the average gap volume is
852.7 A’. Their almost similar values of average interface area and average gap volume
have resulted in a gap index of 1 A on an average. Due to their relatively low averages for
interface area and contact area (867 A?), their mean BE (-13.5 kcal/mol) remains low
despite the average number of H-bonds (13) formed between MHC-I binding peptides and
their respective MHC-I alleles being relatively higher as indicated by the correlations

portrayed in Figure 4.1.

Figure 4.2 depicts the graphs showing the correlation between different computed
interaction parameters for all pMHC-II complexes in MPID-T2. Evidently, extremely poor
correlations are observed between sets of two interaction parameters such as pMHC-II
interface area and pMHC-II gap index (Figure 4.2b; 1°=0.0013), pMHC-II gap index and
pMHC-II H-bonds (Figure 4.2f; r’=0.0535), pMHC-II gap index and pMHC-II BE (Figure
4.2g; r*=0.0009), pMHC-II gap volume and pMHC-II H-bonds (Figure 4.2h; r*=0.0002),
pMHC-II gap volume and pMHC-II BE (Figure 4.2i; ’=0.1036), pMHC-II gap index and
pMHC-II contact area (Figure 4.21; ’=0.0132) and, pMHC-II gap volume and pMHC-II
contact area (Figure 4.2m; r’=0.0968). Slightly better yet poor correlations are seen with a
few other sets, these are pMHC-II interface area and pMHC-II gap volume (Figure 4.2a;
’=0.1797), pMHC-II interface area and pMHC-II H-bonds (Figure 4.2d; r’=0.2442),
pMHC-II H-bonds and pMHC-II BE (Figure 4.2j; 1’=0.1641) and, pMHC-II H-bonds and
pMHC-II contact area (Figure 4.2n; 1°=0.3313). Unlike pMHC-I complexes, the interaction
parameters for pMHC-II complexes have a few good correlations such as pMHC-II
interface area and pMHC-II BE (Figure 4.2¢; r°=0.548), pMHC-II gap index and pMHC-II
gap volume (Figure 4.2¢; r’=0.6237) and, pMHC-II BE and pMHC-II contact area (Figure

4.20; r’=0.5598). However, only one set of structural descriptors portrays excellent
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correlations among pMHC-II complexes. This set includes pMHC-II interface area and

pMHC-II contact area (Figure 4.2k; r*=0.8607).

These findings suggest that for all pMHC-II complexes studied here, unlike pMHC-I
complexes, the geometric complementarity (gap index) plays no direct or indirect part in
the either the increase or decrease of both interface area and contact area of the complexes
(Figures 4.2b and 4.21). Yet, the complexes with larger interface area and contact area have
more intermolecular hydrogen bonds (Figures 4.2d and 4.2n) which assist in the stability of
the pMHC-II complexes. This again could underlie the observed dependency of BE on
interface area and contact area (Figures 4.2c and 4.20). Contrary to observations in pMHC-
I complexes, the gap volumes of pMHC-II complexes seem to be directly correlated to
their contact areas and interface areas (Figures 4.2m and 4.2a). Similar to pMHC-I
complexes, a change in gap index or gap volume is unlikely to have any effect on the
formation of H-bonds between peptides and MHC-II proteins (Figures 4.2f and 4.2h).
However, while their gap indices may portray no relationship with their BE values (Figure
4.2g), their gap volumes have a slight contribution towards their BE values (Figure 4.21).
As expected, although unlike pMHC-I structures, their BE values depend on the number of
pMHC-II H-bonds (Figure 4.2j). The strong interdependencies of gap volume and gap
index and, interface area and contact area are apparent in pMHC-II complexes, though not

as much as in the case of pMHC-I structures (Figures 4.2e and 4.2k).

For pMHC-II structures, the mean interface area and gap volume are 1040.4 A% and 1187.6
A®. Although both these averages are greater than those of pMHC-I structures (874 A” and
852.7 A’, respectively), the systematic increase in both these values for pMHC-II
structures, can be attributed to the mean gap index of 1.2 A making it comparable with the
mean gap index of pMHC-I complexes (1 A). However, an increase in the means of their
interface area, contact area (1181.7 A%) and a relatively larger average number of H-bonds
(15) formed between MHC-II binding peptides and their respective MHC-II alleles, have
resulted in a significant methodical increase in their mean BE (-16.6 kcal/mol) as
suggested by the correlations illustrated in Figure 4.2. Considering pMHC binding is a
vital first step in T cell based immunity, these results indicate the suitability of analysing
disease-implicated MHC-II alleles and their corresponding peptide antigens for T cell
epitope prediction (chapter 6) and the design of MHC-II binding peptide vaccines to

combat various diseases.
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The graphs showing the correlation between various computed interaction parameters for
all TR/pMHC-I complexes in MPID-T2 are exhibited in Figure 4.3. It is obvious that there
occur extremely poor correlations between sets of two interaction parameters. These sets
include TR/pMHC-I interface area and TR/pMHC-I H-bonds (Figure 4.3d; r’=0.0039),
TR/pMHC-I gap index and TR/pMHC-I H-bonds (Figure 4.3f; r’=0.0012), TR/pMHC-I
gap volume and TR/pMHC-I H-bonds (Figure 4.3h; r*=0.0021), TR/pMHC-I gap volume
and TR/pMHC-I BE (Figure 4.3i; r’=0.0114), TR/pMHC-I H-bonds and TR/pMHC-I BE
(Figure 4.3j; 1°=0.0055), TR/pMHC-I gap volume and TR docking angle (Figure 4.3m;
’=0.0313), TR/pMHC-I H-bonds and TR docking angle (Figure 4.3n; r’=0.0501) and,
TR/pMHC-I H-bonds and TR/pMHC-I contact area (Figure 4.3r; r’=0.0003). Poor
correlations occur among a few other sets such as TR/pMHC-I interface area and
TR/pMHC-I gap volume (Figure 4.3a; r’=0.1854), TR/pMHC-I gap index and TR/pMHC-I
BE (Figure 4.3g; r’=0.1772), TR/pMHC-I gap index and TR docking angle (Figure 4.31;
’=0.2825) and, TR/pMHC-I gap volume and TR/pMHC-I contact area (Figure 4.3q;
’=0.1769).

Interestingly, many sets of interaction parameters for TR/pMHC-I complexes show good
correlations unlike pMHC-I structures. Among these sets are TR/pMHC-I interface area
and TR/pMHC-I gap index (Figure 4.3b; r’=0.6239), TR/pMHC-I interface area and
TR/pMHC-I BE (Figure 4.3c; r’=0.4653), TR/pMHC-I interface area and TR docking
angle (Figure 4.3k; r°=0.628), TR/pMHC-I gap index and TR/pMHC-I contact area (Figure
4.3p; 1’=0.6062), TR/pMHC-I BE and TR/pMHC-I contact area (Figure 4.3s; 1°=0.4573)
and, TR/pMHC-I contact area and TR docking angle (Figure 4.3t; r*=0.6108). Similar to
pMHC-I complexes, even TR/pMHC-I structures have two sets of structural interaction
parameters with excellent correlations. These sets are TR/pMHC-I gap index and
TR/pMHC-I gap volume (Figure 4.3e; r’=0.7596) and, TR/pMHC-I interface area and
TR/pMHC-I contact area (Figure 4.30; r°=0.9886).

The above observations convey that for all TR/pMHC-I complexes analyzed here, the
measure of geometric complementarity or gap index plays an indirect role (inverse relation
ship) in the increase or decrease of both interface area and contact area of the structures
(Figures 4.3b and 4.3p). However, contrary to pMHC-I structures, the shifts in TR/pMHC-
I interface areas and contact areas is not dependent on the intermolecular hydrogen bonds
between the TR and the pMHC-I proteins (Figures 4.3d and 4.3r). Yet again, this

highlights the noted dependency of their BE values on their interface areas and contact
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areas (Figures 4.3c¢ and 4.3s). Unlike pMHC-I complexes, the TR/pMHC-I gap volumes
are in slightly inverse relationships with their contact areas and interface areas (Figure 4.3q
and 4.3a), forming the basis of the observed inverse proportionalities of their gap indices

with their interface areas and contact areas (Figures 4.3b and 4.3p).

A change in TR/pMHC-I gap index or gap volume is unlikely to have any effect on the
formation of H-bonds between TR and pMHC-I proteins (Figures 4.3f and 4.3h), as in the
case of both pMHC-I and pMHC-II complexes. The formation of TR/pMHC-I H-bonds is
also unaffected by the measure of their TR docking angles (Figure 4.3n). Alarmingly, yet
similar to pMHC-I complexes, TR/pMHC-I H-bond formation does not seem to contribute
to TR/pMHC-I BE values (Figure 4.3j). Like pMHC-I complexes, TR/pMHC-I gap
volumes portray no relationship with their BE values (Figure 4.31), but contrastingly their
gap indices have a little indirect contribution towards their BE values (Figure 4.3g). An
increase or decrease in their TR docking angle is also inversely affected by their interface
areas and contact areas (Figures 4.3k and 4.3t), shedding light on the significance of the
inverse linear correlation obtained between their BE values and their TR docking angles
(chapter 5). Just like their BE values, even their TR docking angles depict no dependency
on their gap volumes (Figure 4.3m) but show a slight yet direct correlation with their gap
indices (Figure 4.31). Again, strong interdependencies of gap volume and gap index and,
interface area and contact area are reverberant in TR/pMHC-I complexes, mirroring the

behaviour of both pMHC-I and pMHC-II structures (Figures 4.3e and 4.30).

The averages for interface area (915.8 A?), contact area (913 A?) and gap volume (3756.1
A%) are increased for TR/pMHC-I structures compared to that of pMHC-I structures. The
steep increase in the mean gap volume for TR/pMHC-I complexes meant a large mean gap
index of 42 A for these structures. Their average TR docking angle of 42.10° is
attributable to the increased BE (-15.6 kcal/mol) because of their linear inverse relationship
(chapter 5). However, a significant decrease is notable in the average number of H-bonds

(4) formed between TR and pMHC-I proteins.
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Figure 4.1: A graphical depiction of the correlation between different computed structural
interaction parameters for all pMHC-I complexes in MPID-T2. a. pMHC-I interface area vs.
pMHC-I gap volume. b. pMHC-I interface area vs. pMHC-I gap index. c. pMHC-I interface
area vs. pMHC-I BE. d. pMHC-I interface area vs. pMHC-I H-bonds. e. pMHC-I gap index
vs. pMHC-I gap volume. f. pMHC-I gap index vs. pMHC-I H-bonds. g. pMHC-I gap index
vs. pMHC-I BE. h. pMHC-I gap volume vs. pMHC-I H-bonds. i. pMHC-I gap volume vs.
pMHC-I BE. j. pMHC-I H-bonds vs. pMHC-I BE. k. pMHC-I interface area vs. pMHC-I
contact area. . pMHC-I gap index vs. pMHC-I contact area. m. pMHC-I gap volume vs.
PMHC-I contact area. n. pMHC-I H-bonds vs. pMHC-I contact area. o. pMHC-I BE vs.
PMHC-I contact area. The respective units are mentioned in the parentheses next to the names of
the interaction parameters on the x and y-axes. The corresponding regression coefficients (r*) are

shown within each of the graphs.
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Figure 4.2: A graphical illustration of the correlation between different computed structural

interaction parameters for all pMHC-II complexes in MPID-T2. a. pMHC-II interface area
vs. pMHC-II gap volume. b. pMHC-II interface area vs. pMHC-II gap index. c. pMHC-II
interface area vs. pMHC-II BE. d. pMHC-II interface area vs. pMHC-II H-bonds. e. pMHC-
II gap index vs. pMHC-II gap volume. f. pMHC-II gap index vs. pMHC-II H-bonds. g.
pMHCH-II gap index vs. pMHC-II BE. h. pMHC-II gap volume vs. pMHC-II H-bonds. i.
pMHCH-II gap volume vs. pMHC-II BE. j. pMHC-II H-bonds vs. pMHC-II BE. k. pMHC-II

interface area vs. pMHC-II contact area. 1. pMHC-II gap index vs. pMHC-II contact area. m.
pMHC-II gap volume vs. pMHC-II contact area. n. pMHC-II H-bonds vs. pMHC-II contact

area. 0. pMHC-II BE vs. pMHC-II contact area. The respective units are mentioned in the

parentheses next to the names of the interaction parameters on the x and y-axes. The corresponding

regression coefficients (r*) are shown within each of the graphs.
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Figure 4.3: A graphical portrayal of the correlation between different computed structural
interaction parameters for all TR/pMHC-I complexes in MPID-T2. a. TR/pMHC-I interface
area vs. TR/pMHC-I gap volume. b. TR/pMHC-I interface area vs. TR/pMHC-I gap index. c.
TR/pMHC-I interface area vs. TR/pMHC-I BE. d. TR/pMHC-I interface area vs. TR/pMHC-
I H-bonds. e. TR/pMHC-I gap index vs. TR/pMHC-I gap volume. f. TR/pMHC-I gap index
vs. TR/pMHC-I H-bonds. g. TR/pMHC-I gap index vs. TR/pMHC-I BE. h. TR/pMHC-I gap
volume vs. TR/pMHC-I H-bonds. i. TR/pMHC-I gap volume vs. TR/pMHC-I BE. j.
TR/pMHC-I H-bonds vs. TR/pMHC-I BE. k. TR/pMHC-I interface area vs. TR docking
angle. . TR/pMHC-I gap index vs. TR docking angle. m. TR/pMHC-I gap volume vs. TR
docking angle. n. TR/pMHC-I H-bonds vs. TR docking angle. o. TR/pMHC-I interface area
vs. TR/pMHC-I contact area. p. TR/pMHC-I gap index vs. TR/pMHC-I contact area. (.
TR/pMHC-1 gap volume vs. TR/pMHC-I contact area. r. TR/pMHC-I H-bonds vs.
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TR/pMHC-I contact area. s. TR/pMHC-I BE vs. TR/pMHC-I contact area. t. TR/pMHC-I
contact area vs. TR docking angle. The corresponding regression coefficients (1) are shown
within each of the graphs. The respective units are mentioned in the parentheses next to the names

of the interaction parameters along the x and y-axes.
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Figure 4.4: A graphical display of the correlation between different computed structural
interaction parameters for all TR/pMHC-II complexes in MPID-T2. a. TR/pMHC-II
interface area vs. TR/pMHC-II gap volume. b. TR/pMHC-II interface area vs. TR/pMHC-II
gap index. ¢. TR/pMHC-II interface area vs. TR/pMHC-II BE. d. TR/pMHC-II interface
area vs. TR/pMHC-II H-bonds. e. TR/pMHC-II gap index vs. TR/pMHC-II gap volume. f.
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TR/pMHC-II gap index vs. TR/pMHC-II H-bonds. g. TR/pMHC-II gap index vs. TR/pMHC-
II BE. h. TR/pMHC-II gap volume vs. TR/pMHC-II H-bonds. i. TR/pMHC-II gap volume vs.
TR/pMHC-II BE. j. TR/pMHC-II H-bonds vs. TR/pMHC-II BE. k. TR/pMHC-II interface
area vs. TR docking angle. . TR/pMHC-II gap index vs. TR docking angle. m. TR/pMHC-II
gap volume vs. TR docking angle. n. TR/pMHC-II H-bonds vs. TR docking angle. o.
TR/pMHCH-II interface area vs. TR/pMHC-II contact area. p. TR/pMHC-II gap index vs.
TR/pMHC-II contact area. q. TR/pMHC-II gap volume vs. TR/pMHC-II contact area. r.
TR/pMHC-II H-bonds vs. TR/pMHC-II contact area. s. TR/pMHC-II BE vs. TR/pMHC-II
contact area. t. TR/pMHC-II contact area vs. TR docking angle. The corresponding regression
coefficients (r*) are shown within each of the graphs. The respective units are mentioned in the

parentheses next to the names of the interaction parameters along the x and y-axes.

The correlations between various computed structural interaction parameters for all
TR/pMHC-II structures in MPID-T2 are shown in the graphs in Figure 4.4. Extremely poor
correlations between a few sets of two interaction parameters are notable. Among these are
TR/pMHC-II interface area and TR/pMHC-II gap volume (Figure 4.4a; 1°=0.1019),
TR/pMHC-II gap volume and TR/pMHC-II H-bonds (Figure 4.4h; r’=0.0043), TR/pMHC-
IT gap volume and TR/pMHC-II BE (Figure 4.4i; r’=0.0064), TR/pMHC-II gap index and
TR docking angle (Figure 4.41; r*=0.083), TR/pMHC-II gap volume and TR docking angle
(Figure 4.4m; 1°=0.0115) and, TR/pMHC-II gap volume and TR/pMHC-II contact area
(Figure 4.4q; r’=0.1017). Among TR/pMHC-II structures, only three sets with poor
correlations are observable. These sets include TR/pMHC-II gap index and TR/pMHC-II
H-bonds (Figure 4.4f; r’=0.2024), TR/pMHC-II gap index and TR/pMHC-II BE (Figure
4.4g; *=0.223) and, TR/pMHC-II H-bonds and TR/pMHC-II BE (Figure 4.4j; ’=0.3979).

Similar to TR/pMHC-I complexes, TR/pMHC-II structures also display several sets of
interaction parameters showing good correlations with each other. These sets are
TR/pMHC-II interface area and TR/pMHC-II gap index (Figure 4.4b; r’=0.6255),
TR/pMHC-II interface area and TR/pMHC-II BE (Figure 4.4c; r’=0.6265), TR/pMHC-II
interface area and TR/pMHC-II H-bonds (Figure 4.4d; r’=0.415), TR/pMHC-II gap index
and TR/pMHC-II gap volume (Figure 4.4e; r’=0.6705), TR/pMHC-II interface area and
TR docking angle (Figure 4.4k; 1’=0.4059), TR/pMHC-II H-bonds and TR docking angle
(Figure 4.4n; 1°=0.4599), TR/pMHC-II gap index and TR/pMHC-II contact area (Figure
4.4p; 1’=0.625), TR/pPMHC-II H-bonds and TR/pMHC-II contact area (Figure 4.4r;
1’=0.4146), TR/pMHC-II BE and TR/pMHC-II contact area (Figure 4.4s; 1’=0.6266) and,
TR/pMHC-II contact area and TR docking angle (Figure 4.4t; r’=0.406). Just like pMHC-
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IT structures, TR/pMHC-II structures have only one set of structural descriptors with
excellent correlation and this set is TR/pMHC-II interface area and TR/pMHC-II contact

area (Figure 4.40; r’=1).

For all TR/pMHC-II complexes investigated here, the above inferences imply that, just like
TR/pMHC-I structures, TR/pMHC-II gap indices share a significant inverse relationship
with their interface areas and contact areas (Figures 4.4b and 4.4p), thereby, highlighting
the indirect role of geometric complementarity (gap index) in monitoring the BE values of
TR/pMHC-II structures and/or stabilizing them (Figure 4.4g). Changes in TR/pMHC-I
interface areas and contact areas are directly dependent on the number of intermolecular
hydrogen bonds between TR and pMHC-II proteins (Figures 4.4d and 4.4r), which is
similar to the relationships noted in pMHC-II complexes and contrary to those seen in
TR/pMHC-I structures. This again points out the significant contributions of their interface
areas and contact areas to their BE values (Figures 4.4c and 4.4s). Similar to TR/pMHC-I
behaviour, the gap volume for TR/pMHC-II structures has little inverse relationships with
their contact areas and interface areas (Figures 4.4q and 4.4a), which is different from
pMHC-II structures in that their gap volumes share a direct relation with their contact areas

and interface areas (Figures 4.2m and 4.2a).

As in the case of pMHC-I, pMHC-II and TR/pMHC-I complexes, a change in TR/pMHC-
II gap volume is unlikely to have any effect on the formation of H-bonds between TR and
pMHC-II proteins (Figure 4.4h). Surprisingly, their geometric complementarity (gap
index) shares a slight inverse proportionality with TR/pMHC H-bonds (Figure 4.4f),
indicating that a TR/pMHC-II structure that has a low gap index would have more H-bonds
between its TR and pMHC-II proteins. However, this relationship is also attributable to the
low number of currently available TR/pMHC-II crystal structures (12 with one structure,
PDB code: 2icw [127] having a superantigen mediating TR/pMHC binding, rendering only
11 structures for which structural interaction parameters could be computed) as it is unlike
any seen in pMHC-I, pMHC-II and TR/pMHC-I structures. Similarly, the formation of
TR/pMHC-II H-bonds is also inversely affected by the measure of their TR docking angles
(Figure 4.4n) contrary to what was observed for TR/pMHC-I structures (Figure 4.3n).

As expected and similar to pMHC-II complexes, TR/pMHC-II H-bond formation directly
contributes to TR/pMHC-II BE values (Figure 4.4j). Unlike pMHC-II complexes and
similar to pMHC-I and TR/pMHC-I structures, the gap volumes of TR/pMHC-II
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complexes portray no relationship with their BE values (Figure 4.41). Similar to the
behaviour of TR/pMHC-I structures, an increase or decrease in the measure of TR docking
angle for TR/pMHC-II structures is inversely affected by their interface areas and contact
areas (Figures 4.4k and 4.4t), which again sheds light on the importance of the inverse
linear correlation obtained between their BE values and their TR docking angles (chapter
5). TR/pMHC-II TR docking angles also do not depend on their gap volumes (Figure
4.4m) or their gap indices (Figure 4.41). As noted for all pMHC-I, pMHC-II and
TR/pMHC-I structures, the strong relationships shared by gap volume and gap index and,
interface area and contact area (Figures 4.4e and 4.40) are once again prominent among

TR/pMHC-II complexes.

Compared to the averages of interface area (1040.4 A?) and contact area (1181.7 A?) for
pMHC-II complexes, the averages of interface area (937.5 A%) and contact area (937.5 A?)
for TR/pMHC-II complexes are lower. However, as observed for TR/pMHC-I structures,
the steep rise in the mean gap volume (3252.4 A?) is also noted for TR/pMHC-II structures
compared to that of pMHC-II structures (1187.6 A”). Just like TR/pMHC-I complexes, the
sharp increase in the mean gap volume for TR/pMHC-II complexes resulted in relatively a
large average gap index (3.2 A) for these structures. Their greater average TR docking
angle (65.80°) and the lower mean of the number of H-bonds (3) formed between TR and
pMHC-II proteins are attributable to their decreased BE (-14.1 kcal/mol) in comparison to
that of TR/pMHC-I structures (-15.6 kcal/mol). This decrease in TR/pMHC-II mean BE
value (-14.1 kcal/mol) is also relative to that of the average pMHC-II BE (-16.6 kcal/mol).

4.4 Conclusions

MPID-T2 has been developed with the aim to facilitate mining of fundamental
relationships and structural descriptors hidden within TR/pMHC and pMHC interactions
for in-depth characterization. The database provides a platform for the scientific fraternity
to individually perform structural visualization of the MHC proteins, the bound peptides,
pMHC complexes and TR/pMHC complexes, view structural alignment of both pMHC
and TR/pMHC complexes (based on species, MHC allele, peptide length and TR type),
access other immunology databases such as IMGT/HLA [150-156], IMGT/3Dstructure-
DB [57, 58], SYFPEITHI [170, 171] and AntiJen [239] via hyperlinks for more
information on each MPID-T2 record, view pre-computed schematic LIGPLOT [445]
diagrams that illustrate explicit pMHC and TR/pMHC interactions, view WebLogo [446]

consensus patterns among peptides of the same length, species or allele and access many
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other useful resources for pMHC and TR/pMHC interactions (through the MPID-T2 help
page at: http://biolinfo.org/mpid-t2/help.html).

Our understanding of the principles underlying TR/pMHC binding has been enhanced by
the inclusion of structural descriptors like BE, molecular surface electrostatic potential
(MSEP), TR docking angle and contact area (CA). These descriptors can facilitate rational
development of methods to identify strong MHC-binding T cell epitopes with greater
propensity to activate T cells by being used as parameters defining pMHC and TR/pMHC
interactions, thereby, highlighting the significance of MPID-T2 in vaccine research.
MPID-T2 also enables the user to perform TR-specific searches by based on TR types.
This is the first such instance of listing computed TR/pMHC interaction characteristics and
the first report on correlating different structural interaction parameters for pMHC and
TR/pMHC complexes. The analysis of pMHC and TR/pMHC data from MPID-T2 has
revealed various patterns for sets of two structural interaction parameters as explained

above.

The present analysis suggests that the use of a large standardized set of structural
interaction rules may not be applicable for all pMHC and TR/pMHC structures as
interaction characteristics vary across pMHC and TR/pMHC complexes. However, a select
few structural descriptors show similarities across both the datasets and can be exploited
for further studies on pMHC and TR/pMHC interactions. The greater mean values for gap
volume and gap index and the lower number of H-bonds formed between TR and pMHC
proteins in TR/pMHC structures when compared to those for pMHC complexes, indicate a
feeble TR/pMHC binding compared to pMHC binding, as alluded to earlier. Finally, the
poor correlation obtained between the number of H-bonds and the BE for pMHC-I and
TR/pMHC-I along with greater average TR/pMHC-I BE (-15.6 kcal/mol) compared to that
of their mean pMHC-I BE (-13.5 kcal/mol), can all be attributed to the limitations of the
currently available computational programs for the analysis of pMHC and TR/pMHC
interactions, and present possible complexities that need to be addressed through
systematic advancement in the development of computational strategies for more in-depth

understanding of these vital adaptive immune system interactions.
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Chapter S: Understanding TR binding to pMHC complexes:
how does the TR scan many pMHC molecules yet preferentially

bind to one

5.1 Summary

Due to its vital role in adaptive immune responses, it is extremely important to understand
the basis for TR/pMHC binding. Although the first TR/pMHC structure was reported one
and a half decades ago [7], TR/pMHC interaction is still an enigma. This is mainly due to
the complexities of the proteins involved in this association. An in-depth investigation of
this critical interaction could help us comprehend the physicochemical principles and the
specificities that lie beneath TR/pMHC complex formation and hence, possibly provide
clues for better awareness of TR recognition and subsequent T cell activation that triggers
the adaptive immune response cascade. Hence, publication 5 explains the analysis of 61
currently available non-redundant TR/pMHC X-ray crystallographic structures collated
from the MPID-T2 database (described previously in publication 4 and Chapter 4) using
computed BE, TR paratope, pMHC epitope, MSEP and calculated TR docking angle (0) to
comprehend the rationale behind TR/pMHC interaction and to answer two significant
questions: (i) whether there are specific energetically equivalent BE “codon” or amino acid
positions associated with TR binding angles as suggested by Garcia et al., [8] and; (ii) if
the “germline bias” theory really holds good across a large dataset of TR/pMHC structures.

From computed MSEP of pMHC and TR interfaces, the common docking geometry of
almost all TR proteins on their respective pMHC binding interfaces is rationally explained.
This paper also demonstrates a novel and rational approach for 6 calculation, discusses a
linear correlation between BE and 6 which provides an answer to our first question,
highlights the possible reasons for the ability of a TR to scan many pMHC ligands yet
specifically bind one, suggests a mechanism for pMHC recognition by TR leading to T cell
activation and illustrates the importance of the peptide in determining TR specificity,
challenging the “germline bias” theory and providing an answer to our second query.
Finally, it also presents valuable new grouping (clustering) system for TR proteins based
similarities on their binding site, pMHC recognition and MSEP displayed by their
respective interacting pMHC interfaces, suggesting its potential use in the design of

peptide based vaccines.
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Introduction

For maximal immunological protection against a multitude of
pathogens, the adaptive immune response in higher jawed
vertebrates causes major histocompatibility complexes (MHC) or
human leukocyte antigens (HLA) in human, to bind antigenic
peptides (p) and present them as peptide-MHC (pMHC)
complexes on the surface of antigen-presenting cells (APC), for
recognition by T cell receptors (TR) [1]. This TR/pMHC
interaction is relatively feeble compared to other important
interactions between the molecules of the immune system [2],
yet strong enough to trigger TR mediated activation of T cells,
thereby eliciting an immediate immune response to either destroy
infected cells directly (via CD8+ associated cytotoxic T cells) or
activate (via CD4+ associated helper T cells) other immune system
cells like B cells and macrophages to carry out the immune
response. More than ten years after the first TR/pMHC structure
was reported [3], the interaction between TR and pMHC
complexes is still an enigma [4], due in part to the complexities
of the molecules involved in this association. The two constant
domains (Co and CB) of the TR are linked to variable domains
(Voo and VB encoded by rearranged variable (V), diversity (D) and
joining (J) genes, V-J and V-D-]J genes, respectively), whose CDR1,
CDR2 and CDR3 loops recognize pMHC [5]. The MHC
proteins are composed of two chains, o and B, with the a chain (I-
ALPHA) alone forming the peptide-binding groove in MHC class
I (MHC-I) proteins, while MHC class II (MHC-II) proteins have
both chains o (II-APLHA) and B (II-BETA) forming the peptide
binding site [6].

@ PLoS ONE | www.plosone.org

The mechanism responsible for the specificity of the TR/pMHC
interactions remains an unsolved problem. The TR "germline bias",
in which TR/pMHC binding is independent of the nature of the
peptide and MHC restriction or TR specificity is based on specific
conserved contacts between TR 'V (variable) domains and MHC
proteins that co-evolve [7], has been proposed as one of the
solutions. It however, is not as simple as it sounds. This is due to the
mechanisms of combinatorial diversity and N-diversity of the
variable domains of TR that create 1012 TR per individual [5], the
very high number of MHC alleles and most of all a large number of
antigenic peptides. The cross-reactivity of MHC: proteins means
that the TR briefly scans through several pMHC complexes before
actually interacting with a specific one. While this brief scanning by
the TR may provide an explanation for the feeble TR/pMHC
interactions alluded to earlier, it becomes increasingly important to
understand the minute aspects of this vital binding over a broad
spectrum of data. Garcia and co-workers [4] have provided highly
influential hypotheses using a dataset of 20 TR/pMHC structures,
implying that the contacts between CDR1 and CDR2 loops of TR
variable domains and MHC helices are germline-encoded leading
to the conclusion that TR/pMHC binding is peptide independent.
Also inferred in their study is that whatever the TR docking angle,
the bound complexes have equivalent binding free energies (4G;
referred to here as binding energy (BE) in kcal/mol) at “codon’ or
amino acid positions A, B and C (as depicted inset of Figure 2b in
[4]). Therefore, the main questions we address in this work are: (1)
whether there are specific energetically equivalent binding energy
“codon” or amino acid positions associated with TR binding angles
as suggested by Garcia et al., [4] and; (2) if the “germline bias”
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theory really holds good across a large dataset. While addressing
these questions, we have also arrived at a possible answer to another
lingering question in immunology, viz. how can a TR scan through
many pMHC complexes and yet specifically bind to one?

We have analyzed the currently available non-redundant dataset
of 61 TR/pMHC X-ray crystal structures from MPID-T2 database
(http://biolinfo.org/mpid-t2) [8], which were originally obtained
from the Protein Data Bank (PDB) [9] and verified with IMG'T/
3Dstructure-DB (http:/ /www.imgt.org/ 3Dstructure-DB/), the refer-
ence database for immunoglobulins, T cell receptors and MHC
structures [10,11], to determine three major factors that greatly
contribute to or influence TR/pMHC binding: (1) binding energy
(BE) between TR and pMHC complexes [12-14]; (2) molecular
surface electrostatic potential (MSEP) at TR and pMHC interfaces
[15,16] and; (3) angle formed by the major axis of TR and the linear
axis of the cognate peptide when TR is bound to pMHC (TR docking
angle in degrees; herein referred to as ‘0> when calculated and as
‘diagonal’ when obtained from literature) [4,17]. Using wn witro
immuno-assays, researchers have previously reported that weak BE
between TR and pMHC complexes ascribe weak agonistic (T" cell
activating) properties to the pMHC complexes and vice versa [18-20].
This inference is based on the underlying idea that the strength of TR
binding to pMHC plays a vital role in stabilizing the half-life of the
TR/pMHC complex, consequently resulting in T' cell signalling or
activation. This significant finding laid the foundation for us to use BE
as a useful parameter in discriminating weak-, moderate- and strong
pMHC agonists. MSEP has been used in structure based drug design
and in understanding protein-protein interactions by crystallogra-
phers for many years [21]. It has also been applied as a successful
molecular descriptor for large assemblies of molecules such as
microtubules and ribosome [22]. Not only does it include all major
aspects of protein-protein interaction, it is also distinctive of molecular
shapes. Therefore, we have employed MSEP as an analytical tool to
dissect TR/pMHC interactions.

Using computed MSEP of pMHC and TR interacting
interfaces we are able to successfully explain the common docking
geometry of almost all TR proteins on their respective pMHC
binding interfaces. We then discuss a linear correlation between
calculated BE and 0, which provides an answer to our first
question. A TR paratope (residues on TR interface that contact
the pMHC) and pMHC epitope (residues on pMHC interface that
contact the TR) analysis, with a focus on conserved residues
among pMHC and TR interacting sequence patterns, was
conducted in hope of finding certain broadly conserved structural
determinants that would constitute the “smoking gun” of “MHC
bias” [4]. Finally, we also discuss a new and valuable grouping
(clustering) system for TR proteins based on their binding site
similarities (from TR paratope analysis), pMHC recognition
similarities (from pMHC epitope analysis) and similarities in
MSEP displayed by their respective interacting pMHC interfaces
(see Methods section for details). The results of MSEP similarity
calculation at the pMHC interface along with our TR paratope

and pMHC epitope analyses also suggest a weakening of

“germline bias” theory over a larger dataset and highlight the
significant role played by the peptide in determining TR
specificity, thereby, providing an explanation to our second query.
Our detailed results are as follows.

Results
BE as a determinant of weak-, moderate- and strong
PMHC agonists

It has been reported earlier that lack of enough number of TR/
pMHC structures makes differentiation of weak- and moderate-
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agonists from strong-agonists or true-agonists from antagonists,
almost impossible without immunological assays [15]. However,
the availability of a relatively large dataset (61 TR/pMHC
structures) together with our comprehensive BE analysis has now
made it possible to discriminate strong- from weak- and moderate-
agonists for both TR/pMHC-I and TR/pMHC-II structures.
Figure 1 shows a plot of the calculated BE between the TR and
pMHC-I structures (Figure 1la) and pMHC-II = structures
(Figure 1b). As seen, this graphical representation gives a clear
understanding of the discriminatory power of this analysis. We
have computed an overall mean of -15.5 kcal/mol and
—15.4 kcal/mol and standard deviation of *3.3 kcal/mol and
+2.7 kcal/mol for TR/pMHC-I and TR/pMHC-II structures,
respectively. With cutoffs defined by mean and standard deviation
values, we have discriminated weak-, moderate- and strong
pMHC agonists. Since BE is also referred to as binding free
energy, the highest negative value is considered the best. Among
TR/pMHC-I complexes, weak TR agonists have a BE between 0
and —12.2 kcal/mol (= —15.5+3.3), moderate-agonists (shaded
area in Figure la) have BE values between —12.2 and
—18.8 kcal/mol (=—15.5-3.3) while strong-agonists gave BE
values below —18.8 kcal/mol and are potential T cell activators.
TR/pMHCH-II structures with a BE between 0 and —12.7 kcal/
mol (= —15.4+2.7) are classified as weak-agonists, complexes with
BE between —12.7 and —18.1 kcal/mol (=—15.4-2.7) are
moderate-agonists (shaded area in Figure 1b) and strong-agonists
have a BE value below —18.1 kcal/mol and could be more
efficient in activating the T cells.

Figure la shows a few TR/pMHC-I complexes (PDB codes
11p9, 2uwe, 2j8u, 2jcc, 3kpr and 3kps in Table S1) having BE
values well below —20 kcal/mol, reaching up to —23 kcal/mol.
These pMHC ligands are thus very strong-agonists with greater
propensity to elucidate T cell activity, concordant with the results
obtained from experimental immuno-assays by Miller et al. [23],
for the pMHC ligands in the PDB structures 2uwe and 2jcc and
Macdonald et al. [24], for the pMHC ligands in the PDB structures
3kpr and 3kps, respectively. Overall, it was observed that there
were 10 (20%) weak-, 34 (68%) moderate- and 6 (12%) strong-
binding agonists amongst the TR/pMHC-I complexes. The list of
34 moderate agonists includes pMHC ligands from the PDB
structures 2ak4, 2bnr and 2nx5 (Table S1) which have been
previously confirmed by cytotoxicity assays [25—27]. Among the
10 weak-agonists is the pMHC from the PDB structure 20l3,
whose lower propensity to elucidate T' cell activity was validated
by the low level of cytotoxicity observed from cytotoxicity assays
by Mazza et al. [28]. Similarly, Figure 1b highlights the presence of
one such strong-agonist (PDB code 3mbe in Table S1) amongst
TR/pMHCH-II structures with a BE of —22 kcal/mol. Observa-
tions made by Yoshida et al. [29], from functional immuno-assays
clearly indicate the strong-agonistic and T cell stimulating
properties of the pMHC complex in the PDB structure 3mbe.
Amidst the 11 TR/pMHC-II complexes, our analysis established
1 (~9%) weak-, 9 (~82%) moderate- and 1 (~9%) strong-binding
agonist. These results suggest why a very small percentage (9-12%
from our results) of peptide antigens that are predicted to be T cell
epitopes by computational methodologies can actually elicit T cell
response i vitro [30].

pMHC interfaces display a ring of charged amino acids
for recognition by complementarily charged TR Vo and
VB domain interfaces

Most TR proteins that recognize pMHC complexes bind on the
central regions of G-ALPHA1 and G-ALPHAZ2 helices (Figure 2a)
for pMHC-I and G-ALPHA and G-BETA helices (Figure 2¢) for
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Figure 1. Standard curves for the frequency of computed BE between the TR and pMHC complexes for a. TR/pMHC-1 complexes and
b. TR/pMHC-Il complexes. On the X-axis is the range of BE and on the Y-axis is the number of structures having their BE within these ranges. The
pink lines signify the mean BE values. Standard deviation on either side of mean values is represented by shaded area (moderate agonists) in the
graphs.

doi:10.1371/journal.pone.0017194.g001

on CDRI1 and CDR2 loops of TR o and B variable domains
(Figure 2b, f). This was the case in almost all pMHC and TR

pMHC-II proteins [6]. MSEP displayed by the helices of a
pMHC-I (PDB code 2¢7l; Figure 2a) and pMHC-II (PDB code

lu3h; Figure 2¢) clearly depict a sequential clockwise ring of
positively and negatively charged residues on G-ALPHAI and G-
ALPHA2 helices (MHC-I), G-ALPHA and G-BETA helices
(MHC-II) which interact with complementarily charged residues

@ PLoS ONE | www.plosone.org

interacting regions that were analyzed. Interestingly, previous
characterization studies on TR/pMHC complexes have revealed
molecular interactions along similar regions on the TR and
pMHC interfaces [31,32], thereby, supporting our MSEP driven
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Figure 2. An aerial view of the MSEP displayed by the pMHC interfaces of TR/pMHC-I complexes a. 2e7l (PDB code), c. Imwa (PDB
code) and that of TR/pMHC-Il complex e. Tu3h (PDB code) along with b, d, f. their respective contacting TR Va and V§ domain
interfaces rotated 180° along their interacting axis to visualize their binding interface. The charged residues on the pMHC interfaces are
numbered, which interact with the corresponding complementary charges (numbered accordingly) on their respective TR Vo and VB domain
interfaces. These Voo and V[ domain interfaces are collectively formed by the CDR1, CDR2 and CDR3 (shown as coloured dotted ovals in b.) loops that
interact with the pMHC. The locations of CDR1, 2 and 3 loops in b. are the same for the TR interacting regions in d. and f.

doi:10.1371/journal.pone.0017194.g002

interactions theory. However, in very few pMHC-I cases, such as
Imwa (PDB code), the MHC helices exhibit a ring of mostly
positive residues with one/two negative residues on either helix
contributing towards TR docking (Figure 2c). In such complexes,
the corresponding binding TR interface is almost completely
negatively charged, with one/two positive residues on either
variable domain (Figure 2d). Across the entire dataset, the positive
and negative arrangement seems to be by far more preferred than
a ring with predominantly a single charge. It was also observed
that negative charges on the two helices of both MHC-I and
MHC-II structures occur around the N-termini of bound peptides
whereas positive charges are located around their C-termini
(Figure 2a, ¢ and e).

A wice versa arrangement of charges is seen on TR interacting
regions (Figure 2b, d and f). A noteworthy observation is that,
MSEP presented by almost all pMHC interfaces are overall
similar, suggesting that the ability of a TR to scan through many
pMHC interfaces is attributable to the common electrostatic rings
displayed on pMHC interfaces. Interestingly, a few, possibly key
positions on pMHC interfaces vary in the charges displayed across
the entire dataset. This is significant in the context of TR/pMHC
interaction because mutating specific charged interacting residues
on pMHC interfaces is known to cause increase or decrease in
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experimentally determined TR/pMHC binding affinity due to
increased or decreased electrostatic interactions between the TR
and pMHC leading to an enhanced or reduced T cell response,
respectively [29]. As concluded in many earlier studies [16, 20, 28
and 33], our results confirm the importance of peptide in TR/
pMHC binding, opposing the notion that TR/pMHC interaction
is independent of peptide [4,34]. A proof of this is the fact that
various peptides display different combinations of positive and
negative residues  (Figure 2c and e) which interact with
corresponding complementarily charged residues on highly
variable CDR3 loops of TR Vo and VP domains (Figure 2d
and f). Thus, the most variable regions of TR (CDR3) are
positioned in the center of binding interface where they contact
the peptide, whereas the more conserved regions of TR (CDR1
and CDR?2) and the tops of MHC helices engage in contacts that
surround the central CDR3-peptide region like a “gasket” [4].
Therefore, MHC helices along with bound peptides, present a set
of electrostatic charges that are recognised by specific TR
domains.

However, these surfaces should also not be too highly charged
or they would bind other counter-ions that may need to be
removed and hence might compete with TR for interaction. To
support our theory, some short-(salt bridges) to long range (>4 A
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distance) electrostatic interactions have been found in TR/pMHC
crystal structures. For example, between the D10 TR Vo residue
Lys68 IMGT unique numbering {referred to as IMGT} 82; [35])
and murine MHC-II (I-Ak) G-BETA residue Asp76 (IMGT 72) in
the PDB structure 1d9k [36] or between the A6 (PDB code lao7;
[3]), B7 (PDB code 1bd2; [37]) and 2C (PDB code 2ckb; [38]) TR
Vo residue Lys68 (IMGT 82) and the murine/human MHC-I
(H2-Kb/HLA-A2) G-ALPHAZ residue Glul66 (IMGT 76) [6,39].
Amongst other examples, are the electrostatic interactions between
Glu52 (IMGT 63) residue of VB CDR2 loop and Arg79 IMGT
79) residue of HLA-B8 in TR/pMHC-I complex LC13/EBV/
HLA-B8 (PDB code 1mib; [40]) and the interactions between the
human MHC-II (HLA-DR1 and HLA-DR4; PDB codes 1fyt and
1j8h, respectively) G-ALPHA residue Lys39 (IMGT 43) (in a loop
projecting up and away from the floor of B-sheet that forms the
base of MHC binding groove) and the Vf residue Glu56 IMGT
67) of HA1.7 TR [16,41]. A recent molecular modeling study
proved that a single point mutation (G95R; IMGT 107) in VB
CDR3 loop of 2C TR increased its affinity to QL9/Ld pMHC by
a factor of 1000. This, they suggest, is most likely due to direct
electrostatic interaction of Arg95 side chain with an Asp8 (IMGT
8) residue in the QL9 peptide nonamer [42]. Thus, electrostatic
effects can work at a distance [43], especially for orienting
purposes, so their role in orienting TR relative to pMHC at an
early stage during antigen recognition is vital.

It has been reported earlier that diagonal angle of TR docking
on pMHC varies between 22°-71° spanning a range of about 50°
[17]. Charges displayed on MHC helices, when considered
together, secem to present themselves at an angle. Utilizing the
location of these charges, we have computed the corresponding
TR docking angle (0) on each pMHC interface (see Methods
section for details). Our TR docking angle calculation results show
that apart from the PDB structure lymm (0 of 112°; Table S1),
whose diagonal TR docking angle (110°) has been reported to
be of an unusually high value [44], 0 varies between 20°-87° over
the entire dataset (Figure 3), clearly overlapping the previously
reported range of 22°~71° [17] and extending it in both directions.
These results provide further evidence for docking of TR onto
pMHC interface at an angle such that the TR appears almost
“diagonally” [17] attached to the pMHC surface. 8 for TR/
pMHC-II structures was generally around 72° while for TR/
pMHC-I complexes it was 42° on average. We note that when a
TR docks onto pMHC interface with a low 0, the area covered by
TR paratope on pMHC interface is greater due to the increased
number of possible contacts between TR and pMHC interfaces
(Figure 4a), therefore, implying that smaller the 0, stronger the
binding interaction between TR and pMHC and uvice versa
(Figure 4b). This could possibly be one of the underlying reasons
as to why a recent TR-like antibody designing study has yielded a
Fab 3M4E5-based “Fab T1” antibody which gives a 20-fold
affinity improvement compared to Fab 3M4E5 (PDB code 3hae;
[45]) itself and exceeds the affinity of the original TR (1G4; PDB
code 2bnr; [26]) by 1,000-fold, thereby, resulting in increased T

cell cytotoxic activity [45]. The Fab 3M4E5 antibody (which itself

has a 100-fold improvement in affinity compared to the original
1G4 TR [45]) binds the peptide/HLA-A*0201 complex (PDB
code 3hae) at an angle of 40° [45] when compared to the diagonal
TR docking angle of 69° (6 by our calculations is 39°) for the
original 1G4 TR (PDB code 2bnr) [26,45] and it makes more
contacts with the pMHC compared to the 1G4 TR causing
increased T cell cytotoxicity [45]. These additional interactions are
between the A*0201 G-ALPHA2 residue A158 IMGT 69) and
the Fab 3M4E5 VH domain residues G56 & T58 IMG'T 63 and
65), A*0201 G-ALPHA?2 residue Y159 (IMGT 70) and Fab
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Figure 3. TR docking angle (0) range computed using charge
distribution on pMHC interfaces with reference to the axis of
cognate peptide. Charges displayed on pMHC interface are located at
an angle (0) with respect to the axes of linear peptides (green), ranging
from 20° (yellow ellipse) to 87° (white ellipse) (spanning 68°) over the
entire dataset, which is similar to and overlaps the range of diagonal
angles (507 22°-71°) for TR docking reported earlier [17].
doi:10.1371/journal.pone.0017194.g003

3M4E5 VH domain residue S57 (IMGT 64), A*0201 G-ALPHA2
domain residue T163 (IMGT 73) and Fab 3M4E5 VH domain
residues G55 & S57 (IMGT 62 and 64), A¥*0201 G-ALPHA2
domain residues E166 & W177 (IMGT 76 and 77) and Fab
3M4E5 VH domain residue S54 (IMGT 59), which cause a
change in the angle with which the antibody binds the pMHC
complex [45], thereby supporting our hypothesis.

BE is inversely proportional to 6

Utilizing TR BE values computed for pMHC-I and pMHC-II
weak-, moderate- and strong agonists and 0 calculated using
MSEP on their pMHC binding interfaces, we have established a
significant correlation between BE and 6, as shown in Figure 5.
Evidently, weak-agonists have a higher 6 when compared to
moderate-agonists and strong-agonists. Strong-agonists have the
least 0 amongst both TR/pMHC-I and TR/pMHC-II structures.
This observation clearly highlights the significance of the derived
correlation suggesting that for a given pMHC complex, TR BE is
inversely proportional to 6 and implying that, lower the 8 stronger
the binding between pMHC ligand and the respective TR and vice
versa. Graphs in Figure 5 are explanatory of the above said
correlation. Pearson correlation coefficient (r) between BE and 6
for TR/pMHC-I complexes is 0.92 with a regression coefficient
() of 0.841. Similarly, for TR/pMHC-II complexes, Pearson
correlation coefficient (r) is 0.91 and regression coefficient
7 =0.821. Interestingly, onc TR/pMHC-I structure (11p9; cyan
in Figure 5a) seems to be an outlier from our correlation despite
being classified as a strong-agonist. This was primarily owing to
the collaborative contribution of the Voo CDRI1, 2 and 3 loops
which bind strongly to the MHC G-ALPHA2 residues 154167
(IMGT 65-77) and MHC G-ALPHAL residues 65-69 IMGT 65—
69) [46]. Comparatively, the binding exhibited by VB CDRI
which only binds to the peptide residue F6 (IMGT 6) and V[
CDR2 loops that bind to MHC G-ALPHAL residues 65-72
(IMGT 65-72), respectively, is weak with only V CDR3 loops
binding strongly to MHC G-ALPHAZ2 residues 146-155 (IMGT
58-66), resulting in an overall greater diagonal TR docking angle
[46]. Therefore, the strong binding of Voo CDRI1, 2, 3 and Vf
CDR3 loops with MHC G-ALPHA1 and G-ALPHA2 residues
coupled with the tilt in the TR paratope due lack of interactions
between VB CDR1 and MHC: residues and weak interactions
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Figure 4. Relationship between 0 and area covered by TR paratope on pMHC interface. a. Small 0 value leading to a large interaction area
compared to b. Large 6, resulting in a smaller paratope area. pMHC binding interface is shown as Co trace with MHC helices in red and cognate
peptide in green. Ellipses represent TR paratopes on pMHC, which are at distinct small and large 6 with respect to the axis of bound peptides (angle
calculation is shown previously in Figure 3). Shaded regions within the ellipses denote corresponding areas covered by TR paratopes. These areas
clearly suggest large and small number of contacts that TR could make with pMHC in a. and b., respectively.
doi:10.1371/journal.pone.0017194.g004

between VB CDR2 loops with MHC G-ALPHALI resulted in our strong-agonists. Hence, this outlier was removed from our
observations of the 1Ip9 structure having an overall high TR/ depicted correlation for TR/pMHC-I structures in Figure ba.
pMHC BE and a relatively higher 0 value compared to other Upon inclusion of the outlier, the Pearson correlation coeflicient (r)

a. BE and TR docking angle correlation for
TR/pMHC-I complexes
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Figure 5. Correlation between BE and 0 for a. pMHC-I agonists and b. pMHC-Il complexes. The regression coefficients r* = 0.841 for pMHC-
| agonists and r*=0.821 for pMHC-Il complexes are shown. The single outlier (PDB code 1Ip9) in a. is highlighted in cyan.
doi:10.1371/journal.pone.0017194.g005

“E). PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e17194

218



between BE and 0 for TR/pMHC-I complexes decreases to 0.90
with a reduced regression coefficient () of 0.808.

TR paratope and pMHC epitope analyses reveal
conserved positions

Residues on TR variable domains that contact the residues on
pMHC interface are collectively referred to as ““I'R paratope”.
Similarly, residues on pMHC interface that contact the residues on
TR variable domains are collectively termed as “pMHC epitope”.
Analyzing TR paratope and pMHC epitope across a wide dataset
such as this is an important aspect in our quest to uncover the
physicochemical basis of TR specificity and pMHC selectivity.
Our results reaffirm the results of Garcia ef al., [4] and Rudolf
et al., [15] that there were no major conserved contacts observed
between TR variable domains and pMHC interfaces over the
entire dataset. However, we note that there are sets of pMHC
ligands which have strikingly similar, even identical, patterns of
interacting residues. Same is the case with TR variable domains
which seem to fall into sets which show highly conserved patterns
of interacting residues. These sets, along with MSEP based cluster
dendograms (Fig. S1) and heat maps (Fig. S2) for pMHC interfaces
obtained from our MSEP analysis, were used to cluster TR
proteins (see Methods section for details). This characteristic was
prominent in both TR/pMHC-I and TR/pMHC-II sequences.

One, very significant and highly conserved contact was
observed on all 11 pMHC-II interfaces. This residue was Gln
(Q) 57 (IMGT 65), while Gly (G) 58 (IMGT 66) was mostly
conserved on MHC G-ALPHA helix (labeled in Figure 6¢). These
residues are of utmost importance, as it could be this pair along
with a few peptide residues that the TR variable domains could be
looking for TR/pMHC complex formation in TR/pMHC-II
structures. Amongst TR/pMHC-II complexes, these residues,
perhaps serve as an alarm for TR signaling. Besides these
conserved residues, we identified several conserved positions on
the peptides, G-ALPHAl and G-ALPHA2 MHC-I helices
(Figure 6a), G-ALPHA and G-BETA MHC-II helices (Figure 6c¢),
CDRI1, CDR2 and CDRS3 loops of respective pMHC-I and
pMHC-II binding TR Vo and VB domains (Figure 6 b and d).
These conserved residues and positions identified are listed in
Table 1.

At this stage there are no absolutely conserved residues found in
the interacting regions of TR/pMHC-I structures on the whole,
but, as said above, there seems to be grouping and a definite
pattern of conserved positions on interacting regions of both
pMHC and TR, which present different combination of residues
according to complementary MSEP displayed on corresponding
interacting regions. Therefore, specificity of TR for one pMHC
could possibly come from the specific pattern of interacting
residues exhibited by that particular pMHC ligand at the above
described conserved positions for both pMHC-I and pMHC-IIL.
Based on our observations, we suggest that conserved residues
along with residue variations at conserved positions form the basis
of TR selectivity and specificity. Hence, these results, together with
the common electrostatic rings seen on pMHC interfaces, explain
the ability of a TR to survey many pMHC complexes before
actually binding to one specific pMHC. Interestingly, number of
conserved positions for TR/pMHC-I structures, are less compared
to that of TR/pMHC-II structures. One fact that could be
attributed to such a result is the small proportion of TR/pMHC-II
structures (11) when compared to TR/pMHC-I (50) structures in
the current data. Nevertheless, one could easily comprehend that
with the increase in number of TR/pMHC-II structures, the
number of conserved positions would eventually decrease.
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Combining the results from our TR paratope, pMHC epitope
and TR docking angle analyses, it is obvious that when a TR
docks onto a pMHC: binding interface with an overall small 6, the
number of contacts between pMHC and TR are greater, thereby,
increasing the area covered on pMHC interface by TR Vo and
VP domains (TR paratope; Figure 4a), compared to the area
covered when the TR docks with an overall large 0 (Figure 4b),
hence proving our earlier inference. This increase or decrease in
number of contacts between pMHC and TR according to the
decrease and increase in 0, respectively, has a direct consequence
on BE between pMHC and TR as shown in the above correlation.

TR grouping is allele and species dependent but TR
specificity is peptide dependent

Calculation of MSEP similarities for all pMHC interfaces using
webPIPSA server [47] and CLUSTALX [48] multiple sequence
alignment of all TR paratopes and pMHC epitopes, have together
provided us substantial evidence to define grouping (clustering)
among TR proteins (see Methods section for details). These analyses
formed the basis of our understanding of TR/pMHC binding and
pMHC recognition similarities shown by TR proteins. webPIPSA
uses the software R [49] for statistical computing and analytical
grouping to produce a dendrogram (Fig. S1) and generate a heat
map (Fig. S2). Table SI portrays a clear clustering amongst TR
proteins obtained by summarizing the results of webPIPSA analysis
and multiple sequence alignment for TR paratopes and pMHC
epitopes. By initial mapping of respective MHC alleles onto cluster
dendograms in Figure S1, it was evident that similarities in MSEP
displayed by pMHC interfaces were allele based.

Further investigation by mapping corresponding TR  types
(names for all TR proteins obtained from the literature) onto
cluster dendograms alongside MHC alleles revealed that many TR
proteins bind to same MHC: allele which in turn is bound to
different peptides (Table S1). This implies that TR specificity is
perhaps primarily peptide dependent rather than completely allele
dependent, shedding light on the impact of peptide properties in
this significant immunological synapse, thus, further enforcing our
earlier conclusion and weakening the “TR-MHC germline bias”
theory. As seen, there were three clusters identified among
pMHC-I binding TR proteins. Cluster 1.1 comprises of six
different types of TR proteins all of which are known to bind
pMHC with murine MHC alleles. Cluster 1.2 is made up of eight
TR types which behave in a more diverse fashion by binding to
pMHC with human alleles other than A*0201. Eight types of TR
proteins which recognize pMHC-I with A*0201 allele fall under
Cluster 1.3. pMHC-II binding TR proteins were segregated into
two distinct clusters, where, Cluster II.1 has five types of TR
proteins which are associated with murine I-Au, I-Ag7 and I-Ak
alleles and Cluster I1.2 includes four TR types associated with
human DR-alleles. These results are also noted to be species
specific since all murine pMHC structures are clustered together
implying that all TR types associated with murine MHC alleles are
clustered together. This adds another dimension to this significant
TR grouping system. It is worth noting that at the TR level the
MHC supertype definitions do not apply.

Interestingly, there are multiple PDB structures for a single TR/
pMHC complex, showing different TR binding angles, where we
have tested the validity of our inverse relationship between calculated
BE and 0. 2f54 and 2bnr (PDB code; bold in Table S1) form one such
pair. Here, 0 for 2{54 was computed to be 36° which is 3° smaller
than that of 2bnr (39°). The calculated BE values for the two
structures are —15.6 kcal/mol (254) and —14.9 kcal/mol (2bnr),
respectively, which are inversely related to the 0 values. These subtle
changes in 0 and BE are due to the underlying fact that the side chain
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Figure 6. Residue conservation at pMHC and TR interfaces for a. pMHC-I ligands. b. pMHC-I binding TR. c. pMHC-Il complexes and
d. pMHC-II-binding TR. Conserved residue Q57 (IMGT 65) and mostly conserved residue G58 (IMGT 66) on G-ALPHA helix of pMHC-II interface in ¢
are labelled. Conserved positions are labelled according to their chain locations on pMHC and TR interfaces. Highlighted in red are conserved
positions, a conserved residue and a mostly conserved residue on G-ALPHA1 helix of pMHC-I and G-ALPHA helix of pMHC-II interfaces in a. and c.,
respectively. Conserved positions on G-ALPHA2 helix of pMHC-I in a. are in gold. Residue positions on peptides are in blue and on G-BETA helix of
PMHC-Il in c. are in orange. Conserved residues and positions in b. and d. are coloured according to their CDR loops as follows: Vo CDR1: pink, CDR2:
cyan, CDR3: yellow, V3 CDR1: pale orange, CDR2: pale pink and CDR3: green. The colouring scheme used for CDR loops is the same used in Figure 2b.

Protein backbones are represented as Ca trace in grey.
doi:10.1371/journal.pone.0017194.g006

of Q155 (IMGT 66) residue from MHC G-ALPHA2 domain forms a
hydrogen bond with the side chain of TR Va residue S51 (IMGT 58)
in 2f54 [50] resulting in a well ordered Q155 (IMGT 66) side chain,
when compared to its relatively disordered side chain orientation due
to hydrogen bond formation with the side chain of TR Vo residue
T95 IMGT 109) in 2bnr [26]. Similarly, 2vlj, 2vlk and loga (bold
and italics in Table S1) represent the same TR/pMHC complex,
with different TR docking orientations. Compared to that of loga
(69% [17]), the diagonal TR docking angles for 2vlj and 2vlk are
reported to be roughly up to 5° larger [51], whereas our computed 6
values are 1% and 1.5 larger than both the diagonal TR docking
angle and the computed 6 value for loga (69°), respectively. Their
respective calculated BE  values are —11.7 kcal/mol (2vlj),
—11.4 kcal/mol (2vlk) and —11.9 kcal/mol (loga), which are in
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accord with our computed 0 values and the diagonal TR docking
angles reported. Yet again, the core residues involved in TR/pMHC
interaction are conserved in all three of these structures and slight
variations in 0 and BE are a direct consequence of the subtle
positional changes accommodated by the peripheral residues at the
binding interface through regulations in their side chain conforma-
tions [51]. These are mainly MHC G-ALPHAL residue Q72 (IMGT
72), MHC G-ALPHA2 domain residue Q155 (IMG'T 66) and the
TR VB residue 153 (IMGT 58) [51].

Discussion

We have analyzed available TR/pMHC structures using a
number of physicochemical characteristics to understand any basic
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differences between pMHC-I and pMHC-II interactions with TR.
The avidity of TR/pMHC interaction has been classified as weak-
, moderate-, and strong-, based on the BE values that were
computed for pMHC and TR binding interfaces. Using BE as a
discriminator between weak-, moderate- and strong-agonists will
add value to prediction methods enabling them to successfully
predict true T cell epitopes or strong-agonists that are highly likely
to initiate T cell response. Also, it would be interesting to
decompose BE into electrostatic and van der Waals components to
get an insight into the energetic contributions and correlate these
with the differing amino acids at the TR and pMHC interfaces.
We have also proposed a novel and rational approach to
computing 0 value by mapping charged rings formed from MSEP
on the pMHC interface. Here, we note from literature that,
although for some TR/pMHC crystal structures the entire TR
paratope is used to calculate the diagonal TR docking angle [17],
using the central mass of TR Vo and V[ domains as a reference to
draw an axis [46,52] that cuts the cognate peptide axis at an angle
(generally much greater than the angle obtained by using the
entire paratope) appears to be the common practice of diagonal
TR docking angle calculation for most crystal structures. Hence,
the fact that we employ TR paratope, pMHC epitope and MSEP
at pMHC interfaces to procure the 0 values, could be the
fundamental reason for our 0 values being extremely close or fairly
distant to the diagonal TR docking angles reported for some
structures (Table S1). Results from our MSEP analysis explain the
common TR docking geometry on pMHC interface, seen in all
TR/pMHC structures. None of the structures available to us for
analysis has a glycan molecule at or near the TR/pMHC
interface. However, some of these molecules have a glycan shield
around them which may also contribute towards docking by
excluding certain modes of binding and helping in orientation of
TR [53]. This is a possible complexity that needs to be factored in
as more data becomes available. Using MSEP in epitope
prediction methods could further accelerate the progress of
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Table 1. List of conserved residues and positions.
MHC Class Structural Location Loop Conserved Residues Conserved Positions
| MHC G-ALPHA1 helix = 065, 069 and 72
MHC G-ALPHA2 helix - o150, 2151 and o155
Peptide - - P4, P6, P7 and P8
TR Vo CDR1 - 30
CDR2 = =
CDR3 - 299 and o100
TR VB CDR1 - B30
CDR2 -
CDR3 - 97 and 98
Il MHC G-ALPHA helix Q57 and G58 (mostly conserved) 61, 264 and 065
MHC G-BETA helix - - B67, B70, B73, p76, 77 and 81
Peptide - P2, P4, P6, P8 and P9
TR Vo CDR1 = 027, 029
CDR2 50
CDR3 =
TR VB CDR1 30 and B31
CDR2 B48, B50 and P56
CDR3 96, P97 and B98
doi:10.1371/journal.pone.0017194.t001

structure-based prediction techniques besides minimizing false
positives and true negatives from actual agonistic peptides in a
given set of peptide antigens. We have reported a strong
correlation between BE values and 0 across the entire dataset
which solves the first query addressed in this manuscript (described
earlier in Introduction section). Analysis of TR paratopes and
pMHC epitopes revealed that although there are no absolutely
conserved residues found in interacting regions of both TR and
pMHC ligands, there are vital conserved positions on both
interfaces across TR/pMHC-I and TR/pMHC-II structures that
could have fundamental implication for peptide vaccine design.
Identification of conserved residues/positions on pMHC and TR
interacting regions provides clues to the positional specificity of
TR proteins. Furthermore, we have clustered TR proteins based
on their binding site similarities, pMHC recognition similarities
and similarities in MSEP on their respective interacting pMHC
interfaces, to dissect TR/pMHC binding requirements. MSEP
similarity calculation at the pMHC interface together with TR
paratope and pMHC: epitope analyses have thus given us enough
evidence to suggest a weakening of “germline bias” theory over a
larger dataset and highlight the significant role played by the
peptide in determining TR specificity, thereby, answering our
second question (see Introduction section for details).

Based on our findings, we wish to propose a mechanism for
TR/pMHC binding and TR activation which explains the
phenomenon of pMHC recognition by TR and TR specificity
simultaneously. We suggest that, after peptide binding to MHC,
many similar pMHC complexes are presented on the cell surface
which exhibit similar charged rings of MSEP (explained ecarlier in
the results of our TR and pMHC interface MSEP analysis)
thereby signalling or attracting the TR towards them through
long-range electrostatic steering. Due to their electrostatic
similarity, the TR actually surveys many pMHC complexes. This
is possible by temporary interactions between the rings of charged
residues displayed on MHC helices and on CDR1 and CDR2
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loops of TR Vo and VP domains. This phenomenon is followed
by the recognition of specific arrangements of pMHGC residues (at
conserved positions) by CDR3 loops. Once this recognition occurs,
the TR localizes itself on the pMHC such that the half-life of TR/
pMHC complex is sufficiently stabilized for T cell activation.
Therefore, the entire process of pMHC recognition and TR
signalling is possibly governed by two factors, the electrostatic ring
displayed by pMHC interface and a specific arrangement of
residues presented by pMHC.

From our extensive studies on TR/pMHC interactions we have
defined structural features that can be analyzed as parameters
governing TR/pMHC complex formation relevant for immune
system activation. These parameters are MSEP of TR and pMHC
interfaces and TR docking angle (0), which, when coupled with the
knowledge of specific arrangement of residues at conserved
positions on TR and pMHC interfaces, could be used as
discriminants for  silico identification of strong-agonistic pMHC
complexes. Results of these analyses could be used to develop and/
or enhance methods to successfully predict T cell epitopes in
accordance with their MHC and TR binding specificities. This
could greatly improve the efficacy of T cell epitope prediction
models in separating true T cell epitopes from a large number of
predicted MHC-binding peptides. This kind of structure-based
screening helps overcome the barriers of insufficient training data
and lack of peptide binding motifs, especially for MHC-II alleles,
thereby cutting down the lead time involved in experimental
vaccine development methods, resulting in production of effective
and highly specific peptide vaccines with a wide population
coverage. Our results will facilitate the rational development of
peptide vaccines, capable of eliciting T cell response, for
immunotherapies to protect against or combat infectious,
autoimmune, allergic and graft vs. host diseases.

Methods

Data

The data used in this study comprises of 61 non-redundant TR/
pMHC structures from the MPID-T?2 database (http://biolinfo.org/
mpid-t2) [8], which were originally obtained from the Protein Data
Bank (PDB) [9] and verified with the IMGT/3Dstructure-DB
(http://www.imgt.org/ 3Dstructure-DB/) database [10,11]. The
PDB structure 2icw was not included in this study as it has a
superantigen between the TR and the pMHC which prevents actual
TR/pMHC interaction by mediating the TR/pMHC binding [54].
Out of the 61 structures, 50 were MHC-I complexes spanning 9
alleles from human (7) and mouse (2) and 11 MHC-II complexes
spanning 7 alleles, again from human (4) and mouse (3). When there
is more than one structure with the same peptide sequence, MHC
allele and TR type, mutations in the MHC o (I-ALPHA) chain
(MHC-I), TR Voo and VB CDR2 & 3 loops and the degree of tilt or
relative change (compared to the first structure with similar TR type,
MHC allele and peptide sequence in Table S1) in 8 were taken into
account as primary criteria to consider the structures non-redundant.
Coordinates for truncated versions of the X-ray structures,
encompassing single structural complexes of the pMHC binding
interfaces and the variable domains of the TR were extracted for TR
paratope, pMHC epitope analyses and MSEP calculations.

BE calculation

The interaction of most ligands with their binding sites can be
characterized in terms of binding free energy or binding energy
(BE). In general, high energy TR/pMHC binding results from
greater intermolecular force between the pMHC and its TR while
low energy ligand binding involves less intermolecular force

@ PLoS ONE | www.plosone.org

222

Understanding TR Binding to pMHC Complexes

between the pMHC and its TR. High energy binding involves a
longer residence time for the TR on its respective pMHC than in
the case of low energy binding. High energy binding of pMHC to
a TR is often physiologically important as some of the BE can be
used to cause a conformational change in the TR, resulting in a
physiological response or T cell response [55,56]. Since BE is also
referred to as binding free energy, the most negative value is
considered the best. In literature, BE (4G) is usually derived from
the binding constants of the interaction such as A, and A,
The general thermodynamic formulae used are as follows:

AG=RTInK, (1)

Ko=l/g, 2
where K is the dissociation constant, R is the universal gas
constant, 7 is the absolute temperature and £, is the association
constant. BE values between the pMHC and TR for all TR/
pMHC structures were calculated using the program DCOM-
PLEX [57], which uses DFIRE-based potentials [58]. The
program first calculates the total atom-atom potential of mean
force, G, for each structure, which is given by:

G= %Zﬁ(ﬂbrw) 3)

where # is the atom-atom potential of mean force between two
atoms, 7 and j that are a distance 7 apart, the summation is over
atomic pairs that are not in the same residue and a factor of 72 is
used to avoid double-counting of residue-residue and atom-atom
interactions [57].

The binding free energy between two interacting proteins A and
B can also be obtained by using:

AGbind = Gcomplex - (GA + GB) (4)
where 4 and B are considered as two rigid bodies whose interface
residues contribute most to AGy;q [57]. Therefore, the final
equation used by DCOMPLEX [57] to calculate BE is as follows:

] interface

AGbind:E % (1) (5)

DCOMPLEX provides an overall BE, without details of specific
components for electrostatic, van der Waals, hydrophobic and
entropic terms.

MSEP similarity calculation

MSEP in proteins is a result of charged side chains of the amino
acid residues and bound ions. These potentials play a vital role in
protein folding, stability, enzyme catalysis and specific protein-protein
recognitions. MSEP similarity between any two protein molecules is a
measure of the similarity in their composition of charged residues.
Interactions between the TR and pMHC in all the structures depend
vastly on the charges that the binding site on the pMHC displays.
Thus, the web server webPIPSA [47] was used to calculate the MSEP
and compare the electrostatic interaction properties of only the
pMHC binding interfaces in all the structures. The algorithm begins
with calculation of the protein MSEP and then calculates similarity
indices for all pairs of proteins based on the electrostatic similarity.
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The similarity indices are then converted to electrostatic distances
which are then displayed as a colour coded matrix called as the heat
map (Fig. S2) and as a tree or a cluster dendogram (Fig. S1). These
cluster dendograms and heat maps were consequently used for TR
clustering (described below). Structural models of only the pMHC
interfaces were used for this analysis. ICM [59,60] was then used to
visually analyse the electrostatic images of all the structures.

Calculation of TR docking angles (6)

Similarly, we generated and visualized electrostatic images of the
TR binding interfaces (Vorand VB domains). The respective pMHC
and TR interfaces were then matched for complementarities of
charges and the corresponding charges were numbered accordingly
on both the interfaces (Figure 2). These charged residues were cross
verified with the list of p MHC and TR interacting residues collated
for TR paratope and pMHC epitope residue conservation analyses.
The charged residues missing from these lists were omitted and the
charges were renumbered for consistency in results. A line was
drawn which connects the numbers on each of the pMHC
interfaces using ICM [59,60]. Once connected, the numbers on a
given pMHC interface formed an ellipsoidal shape, which
determines the TR paratope on the pMHC (Figure 3). These
ellipses were noticed to be at a certain angle with respect to the Co
backbone axes of the respective cognate peptides across the entire
dataset. Finally, straight lines were drawn diagonally across the
ellipses which cut the axes of the bound peptides at a given angle
(Figure 3). These angles were measured using ICM [59,60] and are
called TR docking angle (6) on the pMHC interfaces (Figure 3).

TR paratope and pMHC epitope residue conservation

analyses

These analyses required us to manually extrapolate and list the
interacting residues of the p MHC and TR for each structure either
from the literature or by using ICM [59,60] computer program.
CLUSTALX [48] was later used to perform multiple sequence
alignment in the hope of identifying any conserved patterns in the
interacting residues of pMHC and TR interfaces.

TR grouping

Initially, the sets of pMHC and TR interfaces, obtained from our
TR paratope and pMHC epitope residue conservation analyses,
showing similar pattern of interacting residues (mentioned earlier in
the Results section), were matched against the cluster dendograms
(Fig. S1) and heat maps (Fig. S2), to verify if the structures that display
the sets observed in residue conservation analyses, are present within
distinct clusters of pMHC complexes (Fig. S1 and S2). After this
confirmation, the respective MHC: alleles and corresponding TR
types were mapped onto the cluster dendograms which clearly
indicated the grouping (clustering) amongst the TR molecules based
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Table S1 Grouping of TR proteins. Mutations in MHC o
(I-ALPHA) chain and TR Vf domain (MHC-I; TR Cluster 1.2
and L.3), TR mutant names and the degree of tilt or relative
change (compared to the first structure with similar TR type,
MHC allele and peptide sequence) in 6 are mentioned in
parentheses (see Methods section for details).

(PDF)

Figure S1 Cluster dendograms for all pMHC interfaces
based on their MSEP similarities. a. pMHC-I complexes
clustered into three distinct clusters. b. pMHC-II ligands clustered
into two distinct clusters. Each pMHC interface is denoted by its
corresponding PDB code. Every pMHC is mapped onto its
respective MHC allele and the interacting TR type (TR name).
This clearly indicates the clustering amongst the TR proteins. The
three distinct clusters of pMHC-I binding TR proteins are coloured
yellow: cluster 1.1, green: cluster 1.2 and orange: cluster 1.3. The two
clusters amongst pMHC-II binding TR proteins are highlighted in
light blue: cluster IL.1 and lavender: cluster I1.2. TR grouping
(clustering) is in accordance with Table S1.

(PDF)

Figure S2 Heat maps for all pMHC interfaces based on
the calculated MSEP values depicted as a colour coded
matrix showing clustering amongst pMHC complexes in
a reverse order as compared to the cluster dendograms
in Figure S1. a. pMHC-I complexes clustered into three. b.
pMHCH-II structures in two distinct clusters. Each pMHC
interface is again denoted by its corresponding PDB code. Inset,
are the legends showing the color key used to create heat matrices
and the MSEP value ranges for pMHC interfaces. Also shown is
the formula used to calculate electrostatic distances for clustering.
(PDF)
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Supplementary Figure S1

Understanding TR binding to pMHC complexes: how does the
many pMHC molecules yet preferentially bind to one

Javed M. Khan and Shoba Ranganathan
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Figure S1. Cluster dendograms for all pMHC interfaces based on their MSEP similarities.
a. pMHC-I complexes clustered into three distinct clusters. b. pMHC-II ligands clustered
into two distinct clusters. Each pMHC interface is denoted by its corresponding PDB code.
Every pMHC is mapped onto its respective MHC allele and the interacting TR type (TR name).
This clearly indicates the clustering amongst the TR proteins. The three distinct clusters of
pMHC-I binding TR proteins are coloured yellow — cluster 1.1, green — cluster 1.2 and orange —
cluster I.3. The two clusters amongst pMHC-II binding TR proteins are highlighted in light blue —
cluster II.1 and lavender — cluster I1.2. TR grouping (clustering) is in accordance with Table 1.




Supplementary Figure S2

Understanding TR binding to pMHC complexes: how does the TR scan
many pMHC molecules yet preferentially bind to one

Javed M. Khan and Shoba Ranganathan
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Figure S2. Heat maps for all pMHC interfaces based on the calculated MSEP values
depicted as a colour coded matrix showing clustering amongst pMHC complexes in a
reverse order as compared to the cluster dendograms in Supplementary Figure 1. a.
PMHC-I complexes clustered into three. b. pMHC-II structures in two distinct clusters.
Each pMHC interface is again denoted by its corresponding PDB code. Inset, are the legends
showing the color key used to create heat matrices and the MSEP value ranges for pMHC
interfaces. Also shown is the formula used to calculate electrostatic distances for clustering.



5.2 Conclusions

A number of physicochemical characteristics have been utilized to analyze all available
TR/pMHC structures such that any basic differences between pMHC-I and pMHC-II
interactions with TR proteins are understood. Based on the computed TR/pMHC BE
values, the avidity of TR/pMHC interaction has been classified as weak-, moderate-, and
strong-. By mapping charged rings formed from MSEP on the pMHC interface, a novel
and rational approach to computing 6 value has been described. No absolute conserved
residues were found in interacting regions of both TR and pMHC from the analysis of TR
paratopes and pMHC epitopes, yet vital conserved positions were observed on both
interfaces across TR/pMHC-I and TR/pMHC-II structures. These conserved positions
could have fundamental implication for peptide vaccine design and could potentially
provide clues to the positional specificity of TR proteins. Furthermore, TR/pMHC binding

requirements have been dissected by clustering the TR proteins.

The findings suggest that the entire process of pMHC recognition and TR signalling is
possibly governed by two factors, the electrostatic ring displayed by pMHC interface and a
specific arrangement of residues presented by pMHC, thereby, explaining the phenomenon
of pMHC recognition by TR and TR specificity simultaneously. The extensive studies on
TR/pMHC interactions have helped define structural features, especially MSEP, that can
be analyzed as parameters governing TR/pMHC complex formation relevant for immune
system activation. These parameters could be used to develop, enhance and/or accelerate
the progress of structure-based prediction techniques to successfully predict T cell epitopes
in accordance with their MHC and TR binding specificities besides minimizing false
positives (FP) and true negatives (TN) from actual agonistic peptides in a given set of

peptide antigens.
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Chapter 6: In silico prediction of immunogenic T cell epitopes

for HLA-DQS8

6.1 Summary

MHC-II proteins play a critical role in adaptive immune responses. They bind antigenic
peptide fragments and present them on the APC surface for recognition by the CD4" helper
T cells and subsequent immune response. While MHC-I alleles have been extensively
studied [2, 314, 331], investigations pertaining to MHC-II alleles have been hindered,
especially in the context of MHC-II restricted T cell epitope prediction, primarily due to
the lack of MHC-II related biochemical, functional and crystallographic data [11, 15, 18].
Nevertheless, development of T cell epitope prediction methods applicable to MHC-II
proteins [11, 13, 14] was made possible by recent growth in both experimental and
structural data for MHC-II alleles. Many MHC-II alleles such as HLA-DQ are known to be
associated with pathogenesis of autoimmune disorders [447] and hypersensitivity reactions
[448, 449]. Due to its association with various human autoimmune [450, 451] and
hypersensitivity disorders [448, 449], HLA-DQS is an allele of particular interest among
all HLA-DQ alleles. Sequence-based computational techniques for predicting HLA-DQS8-
restricted T cell epitopes [452-454], have encountered limited success, with Wang et al.
[455] recently reporting the average area under the receiver operating characteristic (ROC)
curve, Aroc, of 0.88 (for HLA-DR, DP and DQ alleles), whereas the accuracy and
efficiency of a recently developed structure-based model [11] need to be enhanced. Hence,
publication 6 describes a combined structure-based prediction model for DQ8-restricted T
cell epitope prediction using pDOCK [49], and MSEP-based clustering (as described in
Chapter 5) of peptide docked pMHC binding interfaces to predict immunogenic T cell
epitopes. It also highlights the use of both pMHC and TR/pMHC interaction knowledge
and parameters to identify T cell activating peptide epitopes. The prediction model was
rigorously trained, tested and validated using experimentally binding and non-binding data
for DQS. High prediction accuracy (average Aroc>0.94) for DQS8-binders is verified
against experimental data. 77 % (24 out of 31) accuracy is recorded for the prediction of
known T cell activators and all peptide binding registers were accurately predicted using
this novel prediction model. The binding patterns of DQS8-binding peptides were also
studied and our results reconfirm that peptide epitopes that do not conform to binding

motifs exist and are precisely identified by the developed T cell prediction model.
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ABSTRACT

Motivation: HLA-DQ alleles are involved in the pathogenesis of
hypersensitivity reactions, with HLA-DQ8 associated with several
human autoimmune disorders. Limited success has been achieved
using sequence-based computational techniques for predicting HLA-
DQ8-restricted T cell epitopes while accuracy and efficiency of re-
cently developed structure-based models need to be improved.
Methods: We describe a combined structure-based prediction ap-
proach for DQ8-restricted T cell epitope prediction using a recently
developed fast and accurate docking protocol, pDOCK, and molecu-
lar surface electrostatic potential (MSEP)-based clustering of pMHC
binding interfaces. The prediction model was rigorously trained,
tested and validated using experimentally verified DQ8 binding and
non-binding peptides.

Results: High prediction accuracy (average area under the ROC
curve, average Agroc>0.94) is validated against experimental data.
Our model also predicts all binding registers correctly and known T
cell activators with 77% accuracy. We also studied the patterns of
DQ8-binding peptides and reassure the existence of epitopes not
conforming to binding motifs.

1 INTRODUCTION

Among many important proteins that take part in adaptive immune
responses, major histocompatibility complex (MHC) proteins ar-
guably play the most crucial role. They bind and present short
antigenic peptides on the cell surface, as peptide-MHC (pMHC)
complexes, for recognition by T cell receptor (TR) proteins to form
T cell receptor-peptide-MHC (TR/pMHC) complexes which sub-
sequently activate the T cells to carry out the immune response
(Rammensee, et al., 1993; Lefranc and Lefranc, 2001). Both of
these steps trigger a series of immunological events essential for
initiation and regulation of immune responses (Khan and Rangana-
than, 2010; Khan, et al., 2010; Khan and Ranganathan, 2011).
Broadly classified into two types, MHC class I (MHC-I) proteins
bind and present endogenous (processed within the cell) peptides
for recognition by the CD8" cytotoxic T cells whereas MHC class
II (MHC-II) proteins prefer exogenous (processed outside the cell)

"To whom correspondence should be addressed.

peptides for recognition by the CD4" helper T cells (Khan and
Ranganathan, 2010). While MHC-I alleles have been extensively
studied (Rammensee, ef al., 1993; Reche, et al., 2002; Hoof, et al.,
2009), investigations pertaining to MHC-II alleles have been hin-
dered, especially in the context of MHC-II restricted T cell epitope
prediction, primarily due to the lack of MHC-II related biochemi-
cal, functional and crystallographic data (Khan, et al., 2010). How-
ever, recent growth in both experimental and structural data for
MHC-II alleles has facilitated their analysis for the development of
T cell epitope prediction methods applicable to MHC-II proteins
(Tong, et al., 2006a; 2006b; 2007).

Currently available computational protocols for the identifica-
tion of MHC-II restricted T cell epitopes can be categorized into
sequence and structure-based methods. Sequence-based methods
are relatively advanced in predicting T cell epitopes for MHC-II
alleles, such as HLA-DR (Brusic, et al., 2004; Nielsen, et al.,
2008; Dimitrov, et al., 2010), with abundant biochemical peptide
binding data. Nonetheless, for MHC-II alleles with limited peptide
data, such as HLA-DQ, these approaches have been used with
varying degree of success (Godkin, et al., 1997; 1998; Harfouch-
Hammoud, ez al., 1999; Rammensee, et al., 1999), with Wang et
al., (2010) recently reporting an average area under the ROC curve
(Aroc) of 0.88 (for HLA-DR, DP and DQ alleles), owing to their
dependence on experimental data for training purposes. On the
other hand, structure-based procedures such as docking (Tong, et
al., 2004; Tong, et al., 2006b) have been successfully applied to
predict T cell epitopes even for MHC-II alleles with very limited
peptide data while addressing the dual issues of docking and scor-
ing for MHC-II binding peptides (Tong, et al., 2006a; 2006b;
2007). However, similar to all other methods, even this combined
docking and scoring-based approach, utilizes only pMHC interac-
tion data for T cell epitope prediction which affects its accuracy as
only 50% of strong MHC-binding peptides are known to activate T
cells (Yewdell and Bennink, 1999). Therefore, given the signifi-
cance of TR/pMHC binding in T cell mediated immunity, it be-
comes extremely important to factor in TR/pMHC interaction
knowledge in conjunction with pMHC binding data for improved
prediction of immunogenic T cell epitopes. Also, the speed and
efficiency of the docking protocol need to be improved for high-
throughput screening of MHC-binding peptides to identify high-
binders.

© Oxford University Press 2005
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Many HLA-DQ alleles are known to be involved in the patho-
genesis of hypersensitivity reactions (Neeno, et al., 1996; Krco, et
al., 2000) and autoimmune disorders (Klein, ez al., 2000). Among
these, an allele of particular interest is HLA-DQS8 (made up of the
haplotypes DQA1*0301 and DQBI1*0302, and also known as
HLA-DQ3.25) due to its association with various human autoim-
mune disorders such as insulin-dependent diabetes mellitus
(IDDM) (Erlich, et al., 1993; Nepom and Kwok, 1998), autoim-
mune encephalomyelitis (Mangalam, ez al., 2009), autoimmune
polyendocrine syndrome type II (APS-II) (Robles, et al., 2002),
IDDM-associated periodontal disease (Faustman, ef al., 1991) and
celiac disease (Sollid and Thorsby, 1993) and hypersensitivity
disorders including house dust mite allergy (Neeno, ef al., 1996;
Krco, et al., 2000). DQS is found in approximately 20-30% of the
human population (Gonzalez-Galarza, et al., 2011) and is prevalent
in about 86% of IDDM patients (Graham, et al., 2002). Hence, in
order to elucidate the role of DQS8 both in autoimmunity and aller-
genicity, enhanced understanding of DQS8-restricted pMHC and
TR/pMHC binding is essential.

Recently, we have developed pDOCK (Khan and Ranganathan,
2010) which is a robust new protocol for rapid and accurate fully-
flexible docking of peptides to MHC-I and MHC-II alleles.
Benchmarking pDOCK with the previous docking technique
(Tong, et al., 2004; 2006b) revealed a 2.5 fold and ~60% increase
in its accuracy and speed, respectively. Upon validation against
previously published studies, a seven-fold increase was recorded in
pDOCK accuracy. pDOCK also accurately determined the binding
registers of all MHC-I and MHC-II binding peptides used in that
study. Following which, we have also very recently analyzed 61
(50 TR/pMHC-I and 11 TR/pMHC-II) available TR/pMHC crystal
structures (Khan and Ranganathan, 2011) collated from the MPID-
T2 (Khan, et al., 2011) database and identified certain structural
interaction characteristics such as molecular surface electrostatic
potential (MSEP) that can be used as parameters governing
TR/pMHC complex formation for T cell epitope prediction. We
have now combined the power of pDOCK to successfully identify
strong MHC-binding peptides using a previously developed com-
plementary scoring function (Tong, et al., 2006b) and the efficient
MSEP-based clustering of pMHC binding interfaces (Khan and
Ranganathan, 2011) to predict DQS8-restricted immunogenic T cell
epitopes with high accuracy and correct binding registers. We also
investigated the binding patterns of DQS8-restricted peptides and
confirm the existence of peptide epitopes that do not conform to
binding motifs, as reported earlier (Tong, et al., 2006b).

2 METHODS
2.1 Data

2.1.1 Structural data The crystal structure of Insulin B9-23-DQ8 pMHC
complex (Lee, et al., 2001), with the Protein Data Bank or PDB (Berman,
et al., 2002) code 1jk8, was used to extrapolate the structural coordinates of
the DQ8 allele. Internal Coordinate Mechanics (ICM) package version 3.6-
1 (Abagyan, et al., 1994) was then used to relax the extracted structure by
conjugate gradient minimization.

2.1.2 Biochemical and functional peptide binding data The dataset
of 1719 peptides with known binding affinity values for DQS, used by
Wang et al., (2010), is both not publicly available and/or listed in the pub-

lished article. Therefore, we have used the available set of peptides known
to bind DQS8 and/or elicit T cell proliferation, for this study. The experi-
mental data used for this investigation was primarily divided into two data-
sets: (i) peptides from biochemical studies with experimental ICs, values
and (ii) peptides from functional T cell assays that are known to cause T
cell activation.

127 peptides with experimentally determined ICs, values, obtained from
biochemical studies (Godkin, et al., 1998; Sidney, et al., 2002; Suri, et al.,
2005; Chang and Unanue, 2009), comprised dataset I. These peptides with
known ICsy values were further classified as high-affinity MHC-binders:
1Csy < 500 nM, medium-affinity binders: 500 nM < ICs, < 1500 nM, low-
affinity binders: 1500 < ICso < 5000 nM and non-binders: 5000 < ICs).
Therefore, dataset I was made up of 70 high-affinity, 14 medium-affinity,
29 low-affinity binders and 14 non-binders. Although 14 peptides were
considered non-binding based on their ICs, values, some of them have
reported binding registers. Similarly, some of the peptides that are regarded
as binders (high-, medium- and low-affinity binders; 113 peptides) did not
have any known binding registers. Therefore, 87 (84 binding and three non-
binding) peptides in this dataset had experimentally determined binding
registers and 40 (29 binding and 11 non-binding) peptides had no known
binding registers. This dataset was further divided into the training set
(Supplementary Table S1; 57 peptides with 43 high-, five medium-, five
low- and four non-binders) and test set 1 (Supplementary Table S2; remain-
ing 70 peptides with 27 high-, nine medium-, 24 low- and 10 non-binders).

36 DQ8-specific peptides, out of which, 31 were known to cause DQS8-
restricted T cell proliferation and five were known to not activate T cells,
formed dataset II. These peptides were derived from functional studies
(Neeno, et al., 1996; Krco, et al., 2000; Paisansinsup, et al., 2002; Chang
and Unanue, 2009) that conducted in vitro immuno-assays to detect T cell
activity and were subsequently used as test set 2 (Supplementary Table S3)
in this study.

Input MHC crystal structure Input peptide model based on sequence

Docking of peptides to MHC using
pDOCK (Khan and Ranganathan, 2010)

Application of optimized
irical free energy
scoring function
(Tong et al. 2006b),

False negatives

Non-binders (TN+FP)
eliminated

High-binders (TP)

ISEP-based clustering
of pMHC interfaces using
webPIPSA (Richter et al. 2008)

All negatives and
false positives
eliminated

T cell epitopes capable of T cell activation

Fig. 1. Flowchart of the prediction model used in this work.

2.2  Prediction Model

DQ8-binding and non-binding peptide sequences were docked into the
MHC peptide binding groove of the X-ray crystallographic structure for
DQ8 using pDOCK (Khan and Ranganathan, 2010). Following this, a
previously reported customized free energy scoring function (Tong, et al.,
2006b) was utilized to improve the predictive performance of the model.
Finally, MSEP-based clustering (Khan and Ranganathan, 2011) of the
peptide docked pMHC binding interfaces from test set 2 was performed to
enhance the accuracy of the model and effectively predict DQ8-restricted
immunogenic T cell epitopes. Figure 1 illustrates the prediction model
developed using the combined approach in this study.
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2.2.1 Docking of peptides to DQS Docking of all peptides to the ex-
tracted template crystal structure of DQ8 was performed using pDOCK
(Khan and Ranganathan, 2010). pDOCK utilizes the ICM (Abagyan, et al.,
1994) optimal-bias Monte Carlo minimization procedure (Abagyan and
Totrov, 1999) which in turn uses the Merck Molecular Force Field or
MMFF (Halgren, 1995) and Empirical Conformational Energy Program for
Peptides 3 (ECEPP/3) force field parameters (Nemethy, et al., 1992) to
perform each docking. In brief, the pDOCK protocol involves: (i) prepara-
tory step 1: MHC receptor modeling and/or positioning using the ICM
global optimization algorithm (Abagyan, et al., 1994); (ii) preparatory step
2: determining the docking grid by defining the grid dimensions (length x
breadth x height) based on standardized values (Khan and Ranganathan,
2010) for MHC supertypes (MHC-I and MHC-II; MHC-II in this case) for
peptide placement and grid map generation within the vicinity of the MHC
peptide binding site and; (iii) a single consolidated final docking and re-
finement step: peptide positioning within the grid, fully flexible docking of
the peptides into the peptide binding groove followed by iterative ab initio
refinements of all peptide residues along with the backbone and peptide
interacting side-chain dihedral angles of the MHC binding site residues to
eliminate or minimize atomic clash regions at the pMHC interface, using
the ICM global optimization docking algorithm (Abagyan, et al., 1994) and
a biased Monte Carlo procedure (Abagyan and Totrov, 1999). The prepara-
tory steps were together used to generate the MHC receptor maps and the
final single docking and refinement step was used to carry out peptide
docking, generate the final least energy docked peptide conformation and
further refine the product. pPDOCK was run on a 2 CPU 3.20 GHz 3 GB
RAM workstation.

2.2.2 Empirical free energy scoring function A previously reported
scoring function (Tong, et al., 2006b) is employed in this investigation.
Originally based on the free energy potential (Abagyan and Totrov, 1999)
in the ICM 3.6-1 software package (Abagyan, et al., 1994), this adopted
scoring function has its binding free energy calculated as the difference
between the energy of the solvated pMHC complex and the sum of the
energy of the solvated MHC receptor and the peptide. The fully relaxed
conformation of the free peptide in water (Schapira, e al., 1999) is chosen
as the reference state for a given peptide. The MHC and the peptide are
separated after docking and their relaxed energies are computed, following
energy minimization in water for all binding energy calculations. There-
fore, the binding free energy (AGuing) function used here is expressed as
follows:

AGying = 0AGg, + BAGy +YAGey+C (1)

where, AGy; is the electrostatic contributions from the desolvation of par-
tial charges transferred from an aqueous medium to a protein core envi-
ronment and the pMHC coulombic interactions. Using an implementation
of the boundary element algorithm (Bharadwaj, et al., 1995; Schapira, et
al., 1999), the numeric solution of the Poisson equation determines AGg;.
The hydrophobic energy (AGy) is composed of the product of solvent ac-
cessible surface area (determined by rolling a sphere of radius 1.4A along
the surface of the molecule) by the surface tension. The entropic term of the
protein side-chains is denoted by AGgy and is computed from the maximal
burial entropies for each type of amino acid and their relative accessibili-
ties. Entropy change in the system due to the decrease of free molecular
concentration and the loss of rotational/translational degrees of freedom
upon binding (Schapira, et al., 1999), is accounted for by the constant term
C or K (Rognan, ef al., 1999). Generally, physical parameters that are inde-
pendent of the dataset used represent C. It has been noted (Janin, 1995)
that, among various research groups, there are great variations in the value
used for C. To obtain the best separation of binders and non-binders, the
coefficients (a, 0, 0) assigned to each energy term in this scoring function
were optimized. Many previous studies (Krystek, et al., 1993; Novotny, et
al., 1997; Schapira, et al., 1999; Tong, et al., 2006b) have successfully used
this separation schema consisting of the most significant potentials contrib-
uting to protein-protein, protein-ligand and protein-peptide interactions.

In silico prediction of immunogenic T cell epitopes for HLA-DQ8

2.2.3 Optimizing the scoring function A similar approach to that em-
ployed by Tong et al., (2006b) was again utilized for optimization of the
above described scoring function. Initially, the concentration of ligand
required to saturate half of the available binding sites of the protein (Bock
and Gough, 2002), in other words, the reported ICs, values (for dataset I),
were considered to be similar to the equilibrium dissociation constants (K,)
since the concentration of the ligand in the unbound state is much lower
than K, of the ligand in the binding assay, such that AGying = -RT In (ICs0)
(Rognan, et al., 1999). This was followed by recalibration of the coeffi-
cients for different energy terms by standard least-square multivariate re-
gression analysis, as previously described by Wang et al., (2002), of the
training set to improve the discriminative power of the scoring function.
Subsequently, quality of the scoring function was assessed using 10-fold
cross-validation (Figure 2) (Bock and Gough, 2002). The technique utilized
here is called k-fold cross-validation, where a scoring function is trained on
(k-1) partitions by constructing & random, (approximately) equal-sized,
disjoint partitions of the sample data, and tested on the excluded partition.
After k such experiments, the results are averaged and an estimate of the
error rate expected upon generalization to new data is given by the ob-
served error rate. Finally, the cross-validation coefficient ¢° and the stan-
dard error of prediction s,,., were used to evaluate the predictive power of
the scoring function. Further evaluation using evolutionary regression
analysis (Wang, ef al., 2002) with different subsets representing 5-fold, 4-
fold, 3-fold and 2-fold cross-validation (Figure 2), was also conducted to
assess the robustness of the scoring function.
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Experimental binding energy (kJ/mol)
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Predicted binding energy (kJ/mol)

Fig. 2. Relationship between experimental and predicted binding energies
from 1-fold to 10-fold cross-validations. Although the figure depicts folds
1-10, cross-validation results only for folds 2, 3, 4, 5 and 10 are discussed.

2.2.4 Clustering of pMHC interfaces This step was carried out as re-
cently outlined by us (Khan and Ranganathan, 2011). However, in this case
the peptide docked pMHC complexes from test set 2 were used to extract
the coordinates for truncated versions of the pMHC complexes, encompass-
ing the pMHC binding interfaces. These pMHC interfaces were subjected
to MSEP-based clustering along with known human T cell activating
pMHC-II binding interfaces (Khan and Ranganathan, 2011) from all six
currently available human TR/pMHC-II crystal structures to identify MSEP
similarities between the peptide docked pMHC interfaces and the human
pMHC-II interfaces known to activate T cells depending on the electro-
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static distances between them. The webPIPSA (Richter, et al., 2008) server
was used to calculate MSEP and compare electrostatic interaction proper-
ties of the pMHC interfaces. The web-server begins with calculation of
pMHC interface MSEP using the University of Houston Brownian Dynam-
ics (UHBD) program (Madura, et al., 1995) and then compares their elec-
trostatic properties by calculating similarity indices for all pairs of pMHC
interfaces based on their electrostatic similarity, using the PIPSA algorithm
(Blomberg, et al., 1999). These similarity indices are then converted to
electrostatic distances which are clustered and displayed as a colour coded
matrix called heat map (Supplementary Figure S1) using the R (Thaka and
Gentleman, 1996) software package. This clustering output (Supplementary
Figure S1) was divided into five groups with the six known human T cell
activating pMHC-II interfaces in group A, the test set 2 pMHC interfaces
nearest to group A forming group B (regarded as strong-agonists), group C
comprising the moderate-agonists which are test set 2 pMHC interfaces
next to group B, test set 2 pMHC interfaces next to group C making up
group D (considered as weak-agonists) and group E being composed of test
set 2 pMHC interfaces furthest from group A making them non-agonists.

2.3  Training, testing and validation

The bound conformations of binding peptides with experimentally deter-
mined registers and the best conformations of non-binding peptides without
any preferred registers were sampled to initially train the DQS8 prediction
model. Among the 57 peptides in the training set, 55 (53 binding and two
non-binding) peptides had known binding registers and 2 non-binding
peptides had no known binding conformations. After optimization of the
empirical free energy scoring function by statistical analyses performed on
the training set, the optimized scoring function was tested on test set 1 to
further assess its predictive ability. Test set 1 had 32 (31 binding and one
non-binding) peptides with known binding registers and 38 (29 binding and
nine non-binding) peptides with no known binding registers. Following
this, the optimized scoring function and the MSEP-based clustering ap-
proach were together applied on test set 2 to improve the overall accuracy
of the prediction model, thereby, validating it against experimental T cell
activation data. Test set 2 had 22 DQS8-binding peptides with known bind-
ing registers and 14 DQ8-binding peptides with no known binding regis-
ters.

Similar to the method reported by Tong et al., (2006b), we performed
sensitivity (SE), specificity (SP) and receiver operating characteristic
(ROC) analyses, described previously by Brusic et al., (2002), on test set 1
to evaluate the efficiency of the optimized scoring function. The percent-
ages of correctly predicted binders and non-binders are given by
SE=TP/(TP+FN) and SP=TN/(TN+FP), respectively. Experimental binders
with at least one predicted binding register and experimental non-binders
with no predicted binding register are represented by true positives (TP)
and true negatives (TN), respectively. Whereas, experimental binders pre-
dicted as non-binders and experimental non-binders predicted as binders,
are denoted by false negatives (FN) and false positives (FP), respectively.
ROC analysis, where the ROC curve is generated by plotting SE as a func-
tion of (1-SP) for various classification thresholds, was used to verify the
accuracy of our predictions. A measure of the prediction accuracy is pro-
vided by the area under the ROC curve (Aroc), where Aroc<70% denotes
poor, Aroc>80% is for good and Aroc>90% represents excellent predic-
tions (Brusic, ef al., 2002). The values of SP>80% are considered useful in
practice (Tong, et al., 2006b). Thus, SE values for three values of SP (80%,
90% and 95%) in test set 1, were assessed.

3 RESULTS AND DISCUSSION

Evaluation of the accuracy of the DQ8 prediction model was car-
ried out in two steps: (i) assessment of efficiency of the optimized
scoring function using test set 1; and (ii) verification of the overall
prediction accuracy of the model using test set 2. The accuracy of

our model partially relies on the scoring function used. Reasonable
correlation (7=0.79, s=2.05 kJ/mol) between the predicted binding
energy values (from docking) and the experimental binding free
energy values (computed using ICs, values), was obtained for the
training set by using default ICM coefficients (a==y=1; C=0) in
the scoring function. Better correlation (°=0.82, s=1.95 kJ/mol)
was achieved after recalibration of the scoring function by fitting
to the training data using multiple linear regression thereby signifi-
cantly improving the discriminative power of the scoring function.
Following 10-fold cross-validation (N=51, q'7=0.80, Spress=2-20
kJ/mol), the optimal scoring function is:

AGying = 0.015AGg;, — 0.859AGy + 0.827AGEy — 1.91 (2)

The entropic and the electrostatic terms are positive, while the
overall computed binding energy and the hydrophobic term are
negative.

Rognan er al., (1999) performed a leave-one-out cross-
validation on training datasets of five and 37 pMHC complexes.
However, the current training set of 57 complexes is comparatively
larger for such analyses. Contrastingly, Wang et al., (2002) and
Bock and Gough (2002) used training sets of 200 and 2617 com-
plexes, respectively, for extensive cross-validation analyses. Yet
again, our training set is too small for extensive cross-validation
analyses. It is also worth noting that the standard error in the train-
ing set after recalibration of the scoring function (s=1.95
kJ/mol=0.46 kcal/mol) is less than the standard error after 10-fold
cross-validation (sp,=2.20 kJ/mol=0.52 kcal/mol) as expected
and unlike the higher standard error after recalibration (s=4.77
kJ/mol=1.13 kcal/mol) than the standard error after 10-fold cross-
validation (8,.,=2.20 kJ/mol=0.52 kcal/mol) reported by Tong et
al., (2006b), highlighting the ability of pDOCK (Khan and
Ranganathan, 2010) to handle noise in data and showcasing its
robustness. Also, our standard error values both before and after
recalibration (s=2.05 kJ/mol and s=1.95 kJ/mol, respectively) are
significantly lower to the ones (s=2.91 kJ/mol and s=4.77 kJ/mol,
respectively) documented by Tong et al., (2006b). We have also
carried out evolutionary regression analysis, similar to the one
carried out previously (Tong, et al., 2006b), to estimate the robust-
ness of the scoring function for 5-fold (N=46, q2=0.79, Spress=2-09
kJ/mol), 4-fold (N=43, ¢°=0.77, Spress=2.07 kJ/mol), 3-fold (N=38,
4°=0.78, $,=2.05 kJ/mol) and 2-fold (N=29, ¢°=0.74, 5,.,«2.03
kJ/mol) cross-validations and once again the standard error values
for our training set were comparatively lower. Importantly, the
cross-validation coefficient ¢° and the standard error of prediction
Spress are stable all through, with mean values of q2=0.78 and
Spress=2-09 kJ/mol, and the respective standard deviation values of
0.02 and 0.07 kJ/mol. These results do not indicate any unusual
increase in the standard error values for any of the folds contrast-
ing to the reports of an uncharacteristic increase in the error value
for 2-fold cross-validation by Tong et al., (2006b). The internal
consistency of the optimized scoring function used in this predic-
tion model is therefore validated by this iterative regression proce-
dure, rendering it suitable for the identification of MHC-binders
within the test datasets and hence for use in our prediction model.
In order to evaluate the efficiency of the optimized scoring func-
tion, three decision threshold binding energy values (Table 1),
which define levels of specificities suitable for practical applica-
tions (Brusic, ef al., 2002), were used to determine the correspond-
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ing sensitivity values on different subsets — H (high-affinity bind-
ers only; Aroc=0.89); MH (medium- and high-affinity binders;
Aroc=0.96); and LMH (low-, medium-, high-affinity binders;
Aroc=0.98) from test set 1. The suitable use of structural data for
discriminating MHC-II binding peptides from the background with
almost excellent accuracy (Aroc=>0.89) is advocated by these out-
comes. In general, very few false positives and a large number of
true positives are observed at SP=0.95 contrasting to the previous
report of fewer true positives at SP=0.95 (Tong, et al., 2006b),
shedding light on pDOCK’s efficiency even at higher levels of
specificity. High-sensitivity predictions are commonly expected at
SP=0.80 (Tong, et al., 2006b). Our MHC-binding prediction re-
sults for test set 1 (Table 1) fit almost perfectly with the expected
binding patterns of DQS8-binding peptides, providing a sensitivity
0f 99% (at SP=0.80 for MH and H). With higher levels of specific-
ity, a gradual decrease in sensitivity values (at SP=0.90, SE=0.97
for LMH and MH and SE=0.96 for H; at SP=0.95, SE=0.97, 0.94
and 0.89 for LMH, MH and H, respectively) is observed. On an
average however, the sensitivity values are above 96%, with
S=0.89 (89% of high-affinity binders are correctly identified) be-
ing the worst case scenario. The efficacy of pDOCK (Khan and
Ranganathan, 2010) in accurately detecting binding registers was
also evaluated with experimentally determined registers. Our find-
ings reconfirm our earlier observation (Khan and Ranganathan,
2010) that pDOCK accurately determines binding registers for all
the peptides docked from the training set and test set 1 (Supple-
mentary Tables S1 and S2, respectively). All 22 experimentally
determined registers from test set 2 (Supplementary Table S3)
were also correctly predicted by pDOCK.

Table 1. Identification of MHC-binders to DQS: sensitivity values and
binding energy thresholds for specificity levels of 0.80, 0.90 and 0.95

Specificity Group Sensitivity Binding Energy
(SP) Level (SE) Threshold (kJ/mol)
LMH 0.98 -29.55
SP=0.80 MH 0.99 -34.00
H 0.99 -35.20
LMH 0.97 -29.63
SP=10.90 MH 0.97 -34.90
H 0.96 -36.50
LMH 0.97 -29.70
SP=0.95 MH 0.94 -35.25
H 0.89 -37.91

Finally, using the binding energy decision threshold (-37.91
kJ/mol) defined above for high-affinity binders at the specificity of
95% (SE=0.89), the predictive performance and the accuracy of
the scoring function was tested on a functional dataset of 36 pep-
tides (test set 2) know to bind DQS, out of which, 31 were T cell
activators and 5 were non-activators. However, the top 31 predic-
tions by applying the scoring function included the 5 non-
activators. Through structural analysis of all available TR/pMHC
crystal structures, we have recently shown that MSEP at both
pMHC and TR binding interfaces play a major role in TR/pMHC
complex formation and thus in T cell activation (Khan and
Ranganathan, 2011). Therefore, we applied this knowledge and
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performed MSEP-based clustering of all peptide docked pMHC
interfaces from test set 2 along with pMHC interfaces from all six
available TR/pMHC-II structures using the webPIPSA (Richter, et
al., 2008) server, to identify electrostatic similarities between
them. The electrostatic distances for all pMHC interfaces clustered,
varied from 0.063 to 1.187 (colour key and density plot-inset in
Supplementary Figure S1). Clustering identified nine pMHC inter-
faces (group E in Supplementary Figure S1) as non-agonists which
included two known non-activators (pMHC 4 and 8 in group E
from Supplementary Figure S1; peptides 34 and 35 in Supplemen-
tary Table S3). Hence, combining the results from the application
of the optimized scoring function and from clustering, those pep-
tides that were predicted to be T cell activators in both instances
were selected, resulting in 24 true positives (Supplementary Table
S4). The predicted binding energy values for these 24 peptides
range from -50.15 to -36.96 kJ/mol and all of these are known T
cell activators. This is in accordance with existing reports that
high-affinity binders have a greater chance of stimulating T cells
(Deng, et al., 1997; Keogh, et al., 2001; Jensen, 2007) and that
they are critical for peptide vaccine design. Nonetheless, TR ago-
nistic properties of pMHC interfaces obtained from MSEP-based
clustering are used as primary criterion and predicted pMHC bind-
ing energy is used as secondary parameter in ranking the peptides
in Supplementary Table S4. This is primarily because although
strong pMHC binding is a prerequisite for TR recognition (Jensen,
2007), it does not necessarily mean T cell activation as there is
only a 50% chance of immunogenicity (Yewdell and Bennink,
1999) even among strong MHC-binding peptides.

Our prediction model successfully identified the Dermato-
phagoides pternnyssinus (Der p 2) allergenic peptide 31-50
(pMHC 4 in group E from Supplementary Figure S1; peptide 34 in
Supplementary Table S3) as a non-activator as opposed to its iden-
tification as a T cell activator by Tong et al., (2006b). Similarly,
the Der p 2 peptide 41-60 (Supplementary Table S4) is ranked 4 in
our prediction which is in complete agreement with the experimen-
tal study (Krco, et al., 2000) and is again contrasting to its last
(#12) ranking prediction made by Tong et al., (2006b). The above
two examples shed light on the efficiency of our prediction model.
This combined approach correctly predicts 24 of the 31 T cell acti-
vators, resulting in 77% accuracy for successful prediction of im-
munogenic T cell epitopes. The specificity and sensitivity results
are also consistent with the results obtained from ROC analysis.
Therefore, the current prediction model is suitable to screen for
high-affinity binders at SP=0.95 and then, to identify immunogenic
T cell epitopes among the high-binders.

3.1 Epitopes not conforming to binding motifs exist

Identification of potential immunodominant epitopes within au-
toantigenic proteins has been done for many MHC-II alleles by
developing allele-specific consensus peptide-binding motifs. Nev-
ertheless, there have been reports that the existence of these motifs
in a given peptide does not necessarily render allele-specificity to it
(Harfouch-Hammoud, ez al., 1999). This study has revealed that
considering all relevant residue positions (P1, P4, P6, P7, P9) for
peptides, all 70 peptide sequences (Supplementary Table S5) have
one or more amino acid residues and 56 peptides (Supplementary
Table S5) have two or more residues that do not conform to avail-
able DQS8 binding motifs (Godkin, ef al., 1997; Rammensee, ef al.,
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1999), in test set 1 alone. Despite using existing DQS8 binding mo-
tifs, the peptides A-gliadin 49-63 (#1), VP16 (#23) and MHC Ia
4663 (#24) are generally considered negatives, however, from
supplementary table S5 it is evident that these T cell epitopes are
easily identified just by using our scoring function, thereby, reaf-
firming earlier observations by Tong et al., (2006b). This yet again
proves that many other factors such as peptide and MHC binding
groove physicochemical composition have to be considered in T
cell epitope prediction systems and binding motifs by themselves
are inadequate for identifying T cell epitopes. Despite rapid ad-
vances in peptide vaccine development, identifying allele-specific
T cell epitopes, especially MHC-II restricted epitopes, suitable for
designing vaccines and immunotherapies remains a challenging
prospect. Various excellent approaches (Brusic, et al., 1998; Mal-
lios, 2001; Doytchinova and Flower, 2003) have been adopted by
researchers to address this issue. However, training of predictive
models using peptide nonamers preselected based on existing bind-
ing motifs renders them unable to predict epitopes that do not con-
form to binding motifs.

Our overall significant outcomes along with increasing evidence
for inadequacy of binding motifs in defining T cell epitopes, sug-
gest that we have developed a model that can be successfully ap-
plied as a generic protocol for easy in silico identification of poten-
tial immunogenic T cell epitopes. The current model is therefore
applicable for screening vaccine candidates irrespective of se-
quence motifs. Also, pPDOCK (Khan and Ranganathan, 2010) ac-
curately predicts all binding registers, eliminating the use of the
nine-residue sliding window approach used by Tong et al., (2006b)
resulting in multiple registers within candidate DQ8-binding pep-
tides. We have also illustrated efficient discrimination of different
categories of peptide binders from non-binders, using the scoring
function, as well as different categories of pMHC agonists from
non-agonists, using MSEP, while accurately predicting the binding
register of DQS8-restricted peptides. This combined approach pro-
vides a set of sensitive and specific computational tools to facilitate
high-throughput screening of peptides for immunotherapeutic ap-
plications such as controlling allergic and autoimmune responses.
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Supplementary Table S1

In silico prediction of immunogenic T cell epitopes for HLA-DQ8

Javed M. Khan, Gaurav Kumar and Shoba Ranganathan

Table S1. HLA-DQ8 specific peptides with experimentally determined ICs
values used in the training set for this study.

The nonamer in the binding groove is underlined in bold font for peptides with experimentally

determined binding registers (#1-#55).

S.No Description Peptide sequence IC5 (NM) Reference
1 Thyroid per 632-645Y IDVWLGGLAENFLPY 39.00 Sidney et al. 2002
2 Thyroid per 632-645Y analog IDVWLGGLAENVLPY 22.97 Sidney et al. 2002
3 Thyroid per 632-645Y analog IDVWLGGLAESFLPY 17.94 Sidney et al. 2002
4 Thyroid per 632-645Y analog IDVWLGGLAEDFLPY 33.85 Sidney et al. 2002
5 Thyroid per 632-645Y analog IDVWLGGLAENFLPD 25.74 Sidney et al. 2002
6 Thyroid per 632-645Y analog IDVLLGGLAENFLPY 119.29 Sidney et al. 2002
7 Thyroid per 632-645Y analog IDVWLGGLAEYFLPY 24.58 Sidney et al. 2002
8 Thyroid per 632-645Y analog IDVWLGGLAENYLPY 30.49 Sidney et al. 2002
9 Thyroid per 632-645Y analog IDVWLGGLAENFLPL 32.18 Sidney et al. 2002
10  Thyroid per 632-645Y analog IDVWLGGLAEKFLPY 31.47 Sidney et al. 2002
11 Thyroid per 632-645Y analog IDVWLGGLAENFYPY 57.61 Sidney et al. 2002
12 Thyroid per 632-645Y analog IDVWLGGLAENFDPY 25.35 Sidney et al. 2002
13 Thyroid per 632-645Y analog IDVWLGGLAENDLPY 16.77 Sidney et al. 2002
14 Thyroid per 632-645Y analog IDVWLGYLAENFLPY 325.00 Sidney et al. 2002
15  Thyroid per 632-645Y analog IDVSLGGLAENFLPY 72.43 Sidney et al. 2002
16  Thyroid per 632-645Y analog IDVWLGGLAENFLSY 195.00 Sidney et al. 2002
17  Thyroid per 632-645Y analog IDVWLGGLAEQFLPY 34.50 Sidney et al. 2002
18 Thyroid per 632-645Y analog IDVWLGGVAENFLPY 92.86 Sidney et al. 2002
19 Thyroid per 632-645Y analog IDVWYGGLAENFLPY 62.95 Sidney et al. 2002
20  Thyroid per 632-645Y analog IDVWLGGLAENFLLY 139.29 Sidney et al. 2002
21 Thyroid per 632-645Y analog IDVWLLGLAENFLPY 130.00 Sidney et al. 2002
22 Thyroid per 632-645Y analog IDVWSGGLAENFLPY 35.88 Sidney et al. 2002
23 Thyroid per 632-645Y analog IDVWLGGLAENFLKY 278.57 Sidney et al. 2002
24 Thyroid per 632-645Y analog IDVWLGGSAENFLPY 216.67 Sidney et al. 2002
25  Thyroid per 632-645Y analog IDVWLGGLAENFVPY 76.82 Sidney et al. 2002
26  Thyroid per 632-645Y analog IDVWLYGLAENFLPY 125.81 Sidney et al. 2002
27  Thyroid per 632-645Y analog IDVWLGGLAENFLPK 66.00 Sidney et al. 2002
28  Thyroid per 632-645Y analog IDVWLGGLALNFLPY 130.00 Sidney et al. 2002
29  Thyroid per 632-645Y analog IDVWLGGKAENFLPY 177.27 Sidney et al. 2002
30 Thyroid per 632-645Y analog IDVWLGGLAENFLPF 50.47 Sidney et al. 2002
31 Thyroid per 632-645Y analog IDVWLGGYAENFLPY 139.29 Sidney et al. 2002
32 Thyroid per 632-645Y analog IDVWLKGLAENFLPY 325.00 Sidney et al. 2002
33 Thyroid per 632-645Y analog IDVWLDGLAENFLPY 100.00 Sidney et al. 2002
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S.No Description Peptide IC5o (NM) Reference
34 Thyroid per 632-645Y analog IDVWLGGLAENFLPS 69.57 Sidney et al. 2002
35 Thyroid per 632-645Y analog IDVWLGGLAENKLPY 1677.00 Sidney et al. 2002
36 Thyroid per 632-645Y analog IDVKLGGLAENFLPY 2028.00 Sidney et al. 2002
37 Thyroid per 632-645Y analog IDVWDGGLAENFLPY 83.22 Sidney et al. 2002
38 Thyroid per 632-645Y analog IDVWKGGLAENFLPY 96.97 Sidney et al. 2002
39 Thyroid per 632-645Y analog IDVWLSGLAENFLPY 105.41 Sidney et al. 2002
40 Thyroid per 632-645Y analog IDVWLGSLAENFLPY 78.00 Sidney et al. 2002
41 Thyroid per 632-645Y analog IDVWLGDLAENFLPY 105.41 Sidney et al. 2002
42 Thyroid per 632-645Y analog IDVWLGGLSENFLPY 390.00 Sidney et al. 2002
43 Thyroid per 632-645Y analog IDVWLGGLDENFLPY 177.27 Sidney et al. 2002
44 Thyroid per 632-645Y analog IDVWLGGLAENFLYY 108.33 Sidney et al. 2002
45 Thyroid per 632-645Y analog IDVWLGGLAENFSPY 53.94 Sidney et al. 2002
46 MHC Il E8 51-65 FDGDEIFHVDIEKSE 1000.00 Suri et al. 2005
47 MHC Il E8 51-65 analog FDGDEIAHVDIEKSE 3300.00 Suri et al. 2005
4g  TRAL recaenp;fggz 364-380  GRFTYQNAAAQPATGPG 100000  Surietal. 2005
49 Nicastrin 65-78 ISGDTGVIHVVEKE 1000.00 Suri et al. 2005
50 Nicastrin 65-78 analog ISGDTGVIHVVAKE 4300.00 Suri et al. 2005
51 E25B protein 112-126 YQTIEENIKIFEEDA 800.00 Suri et al. 2005
52 E25B protein 112-126 analog YQTIEENIKIFEEKA 1700.00 Suri et al. 2005
53 ZnT8 diabetic autoantigen LYPDYQIQAGIMIT 70000 ~ Changand Jnanue,
54  znT8 diabetic autoantigen AVDGVISVHSLHIW 1800000 Chang 2’5%5’”3””6’
55  znT8 diabetic autoantigen SKRLTEGWYRAEIL 2020000 ©hang Zg%g“a””e’
56 B2m 91-104 TPTEKDEYCARVNH 10000.00 Sidney et al. 2002
57 Artificial sequence YARFQSQTTLKQKT 10000.00 Sidney et al. 2002
2
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Supplementary Table S2

In silico prediction of immunogenic T cell epitopes for HLA-DQ8
Javed M. Khan, Gaurav Kumar and Shoba Ranganathan

Table S2. HLA-DQ8 specific peptides with experimentally determined ICs
values used as test set 1 for this study.

The nonamer in the binding groove is underlined in bold font for peptides with experimentally

determined binding registers (#1-#32).

S.No. Description Peptide sequence IC50 (NM) Reference
1 Thyroid per 632-645Y IDVWLGGLAELFLPY 22 71 Sidney et al.
analog - 2002
> Thyroid per 632-645Y IDVWLGGLAENSLPY 34.94 Sidney et al.
analog - 2002
3 Thyroid per 632-645Y IDVDLGGLAENFELPY 20.28 Sidney et al.
analog - 2002
4 Thyroid per 632-645Y IDVWLGGLYENELPY 195.00 Sidney et al.
analog - 2002
5 Thyroid per 632-645Y IDVWLGGLAYNFLPY 100.00 Sidney et al.

analog —_— 2002
6 Thyroid per 632-645Y IDVYLGGLAENFLPY 52 00 Sidney et al.
analog —_ 2002
7 Thyroid per 632-645Y IDVWVGGLAENELPY 44 30 Sidney et al.
analog —_— 2002
8 Thyroid per 632-645Y IDVWLGGLAENFLDY 4194 Sidney et al.
analog _— 2002
9 Thyroid per 632-645Y IDVWLGGLASNFLPY 354 55 Sidney et al.
analog _— 2002
10 Thyroid per 632-645Y IDVWLGLLAENFLPY 50.65 Sidney et al.
analog —_— 2002
11 Thyroid per 632-645Y IDVWLGGLAENFKPY 74 56 Sidney et al.
analog —_— 2002
12 E25B protein 112-126 YQTIEENIKIFKEDA 1000.00 Suri et al.
analog _— 2005
13 E25B protein 112-126 YQTIEENIKIFEADA 1800.00 Suri et al.
analog _ 2005
14 E25B protein 112-126 YQTIEENIKIFEAAA 2500.00 Suri et al.
analog _ 2005
15 E25B protein 112-126 YQTIEENIKIFAAAA 1700.00 Suri et al.
analog _ 2005
16 E25B protein 112-126 YQTIKENIKIFEEDA 3800.00 Suri et al.
analog —_ 2005
TRAIL receptor 2 364- Suri et al.
17 380 analog GRFTKQNAAAQPETGPG 3700.00 2005
TRAIL receptor 2 364- Suri et al.
18 380 analog GRFTAQNAAAQPATGPG 3100.00 2005
TRAIL receptor 2 364- Suri et al.
19 380 analog GRFTAQNAAAQPETGPG 1700.00 2005
TRAIL receptor 2 364- Suri et al.
20 380 analog GRFTYQNAAAQPETGPG 1700.00 2005
21 | Nicastrin 65-78 analog ISGDTGVIHVVAKE 4300.00 8“2”08?"
22 | Nicastrin 65-78 analog ISGATGVIHVVEKE 2300.00 8“2”08?"
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S.No. Description Peptide sequence ICso (NM) Reference
Superoxide dimutase 1 Suri et al.
23 | 50103 AGKDGVANVSIEDR 2000.00 oo
Superoxide dimutase 1 Suri et al.
24| 7590103 analog AGKAGVANVSIEDR 1800.00 oo
Superoxide dimutase 1 Suri et al.
25 | 790103 analog AGKDGVANASIEDR 2800.00 oo
26 | MHC Il E851-65 FDGKEIFHVDIEKSE 2800.00 | Suietal
analog 2005
o7 | MHC Il E851-65 FDGAEIFHVDIEKSE 200000 | Suietal
analog 2005
og | MHC Il E851-65 FDGDEIFHADIEKSE 310000 | Suretal
analog —— = 2005
i [ Chang and
29 | ot LTIQIESAADQDPS 250000 | Unanue,
autoantigen
2009
i i Chang and
30 | ot RTGIAQALSSFDLH 250000 | Unanue,
autoantigen
2009
i i Chang and
31 | 4nT8 diabetic ILSVHVATAASQDS 4900.00 Unanue,
autoantigen
2009
i i Chang and
32 | atiaan AILTDAAHLLIDLT 720000 | Unanue,
autoantigen
2009
33 | A-gliadin 30-44 FPGQQQQFPPQQPYP s00.00 | Sl etal
34 | A-gliadin 34-48 QQQFPPQQPYPQPQP 10000.00 | Sodmetal
35 | A-gliadin 41-55 QPYPQPQPFPSQQPY 112000 | Coddetal
36 | A-gliadin 49-63 FPSQQPYLQLQPFPQ 2000 | Godnetal
37 | A-gliadin 56-70 LQLQPFPQPQPFPPL 20.00 GOd:‘éggt al.
38 | A-gliadin 77-91 SFPPQQPYPQPQPQY 370.00 G“}‘é’égt al.
39 | A-gliadin 196-210 PSSQFQQPLQQYPLG 1000000 | Godkinetal
40 | A-gliadin 201-215 QQPLQQYPLGQGSFR 2180.00 GOdgégt al.
41 | A-gliadin 207-221 YPLGQGSFRPSQQNP 100.00 G"d&gt al.
42 | A-gliadin 227-241 VQPQQQLPQFEIRNL 73.00 GOd:‘éggt al.
43 | 34P3A IARAKMFPAVAEK 541.00 Sidg‘zyogt al.
44 | Artificial sequence AAAAAVAAEAY 48.00 Sidg‘%gt al.
45 | Artificial sequence YARFQRQTTLKAAA 10000.00 | Sty etal
Artificial sequence Sidney et al.
46 (ROIV) YAHAAHAAHAAHAAHAA 2942.00 609
47 | CD20 249-262 analog EEDIEIPIQEEEY 21.00 S'dg‘?)yogt al.
48 | CLIP 95-102 KPVSKMRMATPLLMQALP 650.00 | Soneyetal
2
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S.No. Description Peptide sequence ICso (NM) Reference
49 | CLIP 96-114 KLPKPPKPVSKMRMATPLL 10000.00 Sid"z%%gt al.
50 | DQa10501 16-30 YQSYGPSGQYTHEFD 10000.00 Sidg%%gt al.
51 | FceR 104-122 SQDLELSWNLNGLQADLSS 12300 | Sldneyetal
52 | FceR 104-122 analog SQDLELSWNLNGLQAY 118.00 Sid"z%%gt al.
53 | GAD 101-115 CDGERPTLAFLQDVM 69.00 Sid"z‘%gt al.
54 | MHC Ia 46-63 EPRAPWIEQEGPEYW 519.00 | Sideystal
55 | GADB5 253-265 IARFKMFPEVKEK 371200 | Stdneyetal
56 | HA 255-271Y FESTGNLIAPEYGFKISY 6200 | Stdneyetal
57 | HSV DMTPADALDDFDL 17300 | Stdneyetal
58 | IA-2 499-509 GVAGLLVALAV 9500 | Stdneyetal
59 | IA-2 499-509 MSSGSFINISV 247000 | Stneyetal
60 | Insulin B 5-15 FVNQHLCGSHLVEAL 10000.00 | S9eyetal
61 LZTba repressor 12— LEDARRLKAIYEK 717.00 Sidnzeo)égt al.
62 | Lolp1101-120 APYHFDLSGHAFGSMAKKGE | 360200 | S'9neyetal
63 | MHC la 51-63 analog YPFIEQEGPEFFDQE 1156.00 | Sldnevetal
64 | MLLSR25-17 GVTYEIDLTNKN 10000.00 | S9eyetal
65 | OVA267-276 Y LTEWTSSNVMEERY 62.00 Sidnzeo%gt al.
66 | p2151-66; C out LLDILDTAGLEEYSAMRD 202.00 | Soneyetal
67 | PfABRA 487-506 DSNIMNSINNVMDEIDFFEK 17100 | Sldneyetal
o PRI | mcieos | oo | SO
69 | PfMSP-1250-271 FGYRKPLDNIKDNVGKMEDYIKK | 1000000 | Si9neyetal
70 | VP16 PPLYATGRLSQAQLMPSPPM 538.00 Sid"z%%gt al.
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Supplementary Figure S1

In silico prediction of immunogenic T cell epitopes for HLA-DQ8

Javed M. Khan, Gaurav Kumar and Shoba Ranganathan
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Figure S1. Heat map showing the clustering output for all pMHC interfaces from test
set 2 along with all six available human pMHC-II interfaces from TR/pMHC-II
crystal structures based on the calculated MSEP values depicted as a colour coded
matrix. Groups A, B, C, D and E represent the six available human pMHC-II interfaces
from TR/pMHC-II crystal structures, strong-agonists (SA), moderate-agonists (MA),
weak-agonists (WA) and non-agonists.
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6.2 Conclusions

The current prediction model is efficient at screening for high-affinity binders at SP=0.95
and identifying immunogenic T cell epitopes among the high-binders. The discriminatory
power of this model is also highlighted by efficient discrimination of both different
categories of binders from non-binders and different categories of pMHC agonists from
non-agonists while accurately predicting the binding registers of all DQS8-restricted
peptides. The increasing evidence for inadequacy of binding motifs in defining T cell
epitopes and our significant results indicate that we have developed a model that can be
successfully applied as a generic protocol for easy in silico identification of potential
immunogenic T cell epitopes for other MHC alleles. The current model is therefore
applicable for screening of vaccine candidates irrespective of sequence motifs. This
combined approach provides a set of sensitive and specific computational tools to facilitate
high-throughput screening of peptides for immunotherapeutic applications such as
controlling allergic and autoimmune responses. Due to precise predictions of all binding
registers by pDOCK [49], we have eliminated using the previously described [11]
approach that utilizes a sliding window of size nine residues to identify multiple registers

within candidate DQ8-binding peptides.
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Chapter 7: Conclusions and future directions

7.1 Summary

This thesis is divided into seven chapters. Chapter 1 provides a literature survey on MHC
and TR biology and diversity, the complexities involved in identifying T cell epitopes,
existing bioinformatics resources and applications that are available for the study of MHC
proteins, pMHC and TR/pMHC complexes and prediction of T cell epitopes. The second
chapter lists the publications included in this thesis and the respective chapters they are
included in as a table for cross reference purposes. A new rapid, accurate, robust and
generic protocol (pDOCK) for docking peptides to MHC-I and MHC-II proteins is
described in Chapter 3. The accuracy of the docking protocol was assessed against a large
dataset of non-redundant pMHC complexes for which 3D structures are available. The
method was also benchmarked with the earlier multi-step docking technique [10, 11] and
validated against previously published studies [419, 424, 433, 435-437, 442, 443]. This
procedure forms the methodological basis for subsequent T cell epitope prediction for

specific MHC alleles and hence vaccine design.

This is followed by a description of the MPID-T2 database that stores, disseminates and
depicts pMHC and TR/pMHC binding and sequence-structure-function information, in
Chapter 4. Data analysis based on the correlation of all predefined and newly characterized
structural interaction parameters is also presented in this chapter. Chapter 5 describes the
use of structural descriptors such as computed BE, TR paratope, pMHC epitope, MSEP
and calculated TR docking angle to analyse 61 TR/pMHC crystallographic structures to
comprehend TR/pMHC interaction. It also demonstrates a novel/rational approach for 6
calculation, a linear correlation between BE and 0, an explanation for TR ability to scan
many pMHC ligands yet specifically bind to one, a proposed mechanism for pMHC
recognition by TR leading to T cell activation and illustrates the importance of peptide in

TR/pMHC interaction.

Chapter 6 details the use pDOCK, a complementary scoring function, and a MSEP-based
clustering of pMHC interfaces to develop a prediction model or a predictive approach for
functional prediction of HLA-DQS restricted T cell epitopes. High prediction accuracy of
MHC-II binding immunogenic peptides was validated by experimental biochemical and

functional data obtained from the literature. This approach successfully identified known
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antigenic peptide epitopes including the ones that lacked any conserved binding motifs.

Chapter 7 highlights the innovations, significance and contributions of this thesis and

draws conclusions from the bioinformatic-based approach to TR/pMHC structural analysis

and T cell epitope prediction. This chapter also discusses future directions. The work

presented in this thesis has been published in a series of book chapters and journal articles

including the development of an interaction database for pMHC and TR/pMHC

crystallographic structures (Chapter 4).

7.2 Conclusions

This thesis reports a series of pioneering work in the field of structural immunoinformatics

through the use of 3D X-ray crystallographic structures and structural models of pMHC

and TR/pMHC complexes. In conclusion, the following inferences can be drawn:

1.

Through systematic improvements in speed, accuracy and hence the efficiency
compared to our previous docking technique and existing methodologies, I have
developed a new robust pMHC docking protocol (pDOCK; Chapter 3), that can be
applied as a generic methodology for high-throughput screening of peptides for
easy in silico identification of promiscuous strong-MHC binding peptide epitopes
which can then be subjected to further filtering through the use of newly developed
TR/pMHC interaction parameters (Chapter 5) to identify true immunogenic peptide
epitopes with greater propensity to bind to MHC proteins and consequently activate

T cells making them key targets for the design of vaccines and immunotherapies.

The extremely high polymorphism of MHC alleles [157] and diversity of TR
proteins [3, 46-48, 108] has been a confounding factor in the study of TR/pMHC
binding specificities. For a TR protein to recognize a specific pMHC complex,
geometric and electrostatic complementarity between the receptor (TR) and its
corresponding ligand (pMHC) is essential for the formation of chemical bonds
between their functional groups, which in turn determines the net stability of the
TR/pPMHC complex. To this end, I have successfully introduced the use of
structural interaction information to analyse high-level relationships hidden within
TR/pMHC crystallographic structures and demonstrated the existence of different
interaction characteristics among different pMHC and TR types (Chapter 5). The
result of this analysis paves the way for more accurate inferences about TR/pMHC

binding specificities.
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3. An innovative systematic stepwise application of pDOCK and the MSEP-based
pMHC interface clustering (Chapter 6) for the analysis of the human MHC-II allele
HLA-DQ8 binding and non-binding peptides for subsequent T cell epitope
prediction, has demonstrated the utility of the methods and protocols developed in
this thesis besides addressing the issue of degeneracy in peptide binding to MHC-II
proteins by reassuring the existence peptide epitopes which lack conserved binding
motifs within a candidate MHC-II binding peptide. This provides new insights to
the binding specificities of MHC-II alleles, suggesting that pMHC binding and/or T
cell activation is not necessarily peptide motif or MHC germline dependent. Rather,
the accurate prediction of T cell epitopes in test set-1I, that are known immunogenic
antigens or T cell activators, by using the above mentioned two-step procedure
(Chapter 6) strengthens the idea that T cell activation is primarily dependent on the
electrostatic ring displayed by pMHC interface and a specific arrangement of

residues presented by pMHC interface.

4. These results support the applicability of the above mentioned two-step prediction
model to other disease-implicated alleles for successful identification of true or
immunogenic T cell epitopes. The outcomes of this study will therefore facilitate
the rational development of effective and highly specific peptide vaccines capable
of eliciting T cell response with wide population coverage, for immunotherapies to
protect against or combat infectious, autoimmune, allergic and graft vs. host
diseases, thereby, cutting down the lead time involved in experimental vaccine

development methods.

7.3 Innovations

This thesis highlights original findings from application of bioinformatic tools to the study
of TR/pMHC interactions and its significance in celiac disease and insulin-dependent
diabetes mellitus (IDDM) associated HLA-DQS allele. Several novel aspects are presented
in this thesis. The new docking protocol, pPDOCK, developed as a part of this work, is a
fast, accurate and robust method for high-throughput screening of pathogenic sequences,
based on fully flexible docking of peptides to MHC-I and MHC-II proteins. Besides this,
many other innovations such as use of MSEP of the pMHC binding interfaces to calculate
the TR docking angle, analysis of pMHC epitopes and TR paratopes across all available
TR/pMHC structures to identify conserved positions that could contribute significantly to
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TR/pMHC binding, use of computed or calculated TR/pMHC BE as a discriminator for
weak-, medium- and strong- pMHC agonists and an excellent correlations between the BE

and TR docking angle, are presented in this thesis.

This is, to the best of my knowledge, the first study of its kind, where structural interaction
parameters have been used for the analysis of TR/pMHC crystal structures. Structural
interaction characteristics among different pMHC and TR types have been discovered,
using which, a novel and rational grouping system for TR proteins has been developed.
Finally, the innovative use of pDOCK and MSEP of pMHC interfaces to predict
immunogenic epitopes for the disease-implicated human MHC-II allele HLA-DQS is also

presented.

7.4 Significance and contributions

This work reverberates with inherent importance. Among many other significances and

contributions of this thesis, a few critical ones are listed below:

1. The thesis presents an improvement in the speed and accuracy of pMHC docking

methodology through a new docking technique called pDOCK (Chapter 3).

2. It offers compelling insights into physicochemical basis associated with TR/pMHC
interaction, TR specificity and T cell activation (Chapter 5).

3. It lists new structural descriptors that could be used to improve T cell epitope

prediction efficacy (Chapter 4 and Chapter 5).

4. It outlines the rationale behind the ability of a TR protein to survey many pMHC
interfaces and yet specifically bind to one (Chapter 5).

5. It provides evidence for the vital role of peptide in TR/pMHC recognition and
binding (Chapter 5).

6. It describes an improved epitope prediction accuracy based on improvement in the
speed and efficiency of the docking protocol and application of the new TR/pMHC
analytical parameters characterized (Chapter 6). The overall approach in Chapter 6

includes free energy estimates used as a first step to successfully identify
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immunogenic epitopes and brings together a range of methods from fast coarse-
grained docking to detailed computation. The success of this methodology for
peptides is encouraging, with possible applicability as a generalized protocol for

larger biomolecular systems.

7. It helps in understanding the molecular basis of immune function in defense and in

disease, in the light of allelic variability in human population.

8. It helps further accelerate the development of structure based prediction techniques.

9. It contributes towards rational development of vaccines for prevention and
immunotherapy to combat infectious, autoimmune, allergic and graft vs. host

diseases

10. It assists in clinical vaccine development and hence cuts down the lead time and

effort involved in classical vaccine design.

7.5 Future directions

The studies presented in this thesis could lead to advancements in many directions for
better understanding of TR/pMHC interactions. The methodology (pDOCK) described in
Chapter 3 could be automated for high-throughput identification of strong-MHC binding
peptides and combined with an automated MSEP clustering approach to develop a fully
automated structure-based T cell prediction model. This fully automated prediction model
can then be implemented as a research tool or a web-server that provides service to the
scientific community, especially to immunologists and computational biologists.
Preliminary work for the implementation of the research tool has already begun. The
database (MPID-T2) covered in Chapter 4 paves way for further developments that will
facilitate the extraction of high-level relationships hidden within TR/pMHC interactions by
both extending the currently presented work to larger datasets as more TR/pMHC
structural data becomes available and extrapolating new structural descriptors that can be
factored in as parameters for TR/pMHC binding. Future developments will include listing
post translational modifications (PTM) for peptides to help understand the effect of PTM
on TR/pMHC binding and interaction.
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The analysis done in Chapter 5 has revealed a series of interesting features that could
potentially be applied for more in-depth analysis of TR/pMHC complexes. Although the
current methodology focuses on the use of existing crystallographic data for analysis, this
work may be extended to theoretical models for alleles without experimental structures.
Such analysis will prove useful as the majority of MHC alleles have not been crystallized
and much remains unknown with regards to the binding mechanisms underlying both
pMHC and TR/pMHC interactions. The classification of TR types into clusters may be
further formulated by taking into account more TR/pMHC structural descriptors and any
new interaction information or characteristics. This will allow finer selection of

representative proteins that can effectively cover TR/pMHC specificity space.

The analysis and T cell epitope prediction exhibited in Chapter 6 serve as an essential
preliminary step towards better understanding the pathology of disease-related peptide
antigens by focusing on one such disease-implicated human MHC-II allele HLA-DQS. A
similar approach may be applied for the analysis of other disease-associated alleles and
their related antigenic peptides. This will also provide valuable insights into disease
pathology and facilitates the fine profiling of T cell epitope repertoire among peptides
binding to disease-implicated alleles. Furthermore, an automated methodology for TR
docking angle calculation based on pMHC interface MSEP as described in Chapter 5 can
also be developed and included into the above mentioned prediction model for further fine-
tuning and accuracy enhancement in T cell epitope prediction. There is also scope to
explore and/or venture into other modes of docking using the technique that underlies
pDOCK, for example, docking of peptides to TR interfaces and perhaps then modeling the
MHC proteins around the docked peptides as an alternative to MD simulations of the entire

immune complex [416] for subsequent identification of immunogenic T cell epitopes.

Moreover, it would be interesting to investigate whether the small TR docking angle (0)
and high binding energy reported in Chapter 5 and publication 5 are a result of the
alignment between macroscopic dipoles. Finally, it would be interesting to analyse other
aspects of both pMHC and TR/pMHC complex formation, such as the burial of polar

regions while taking into account the incurred desolvation penalties.
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