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Introduction

In higher jawed vertebrates, antigen presentation and recognition occurs in two 
steps, where, the peptide ligand first binds to the major histocompatibility complex 
(MHC) molecule followed by recognition of this peptide–MHC (pMHC) complex 
by the T cell receptor (TR). These two steps play a key role in the activation of 
normal adaptive immune responses. The first step in TR-mediated immune response 
is thus the binding and presentation of antigenic endogenous or exogenous peptide 
epitopes, which can be successfully predicted using sequence-based methods for 
alleles with large datasets of known binding peptides (Tong et al. 2007a). The second 
step, however, is an intricate theoretical problem that remains unsolved and is the 
next frontier in Immunoinformatics.

With the development of new structural modeling and docking techniques and 
an increase in the number of protein structures deposited in the Protein Data Bank 
(PDB) (Berman et al. 2000), the use of structure-based approaches to predict 
potential T-cell epitopes is increasingly successful (Ranganathan et al. 2008), often 
producing modeled structures accurate to within 2.00 Å RMSD from the experi-
mental crystal structure, providing a wealth of information for structural analysis 
and prediction. With the development of a fast and accurate docking protocol 
followed by quantitative predictions for both MHC Class I and Class II alleles even 
with limited binding peptide data, we have been successful in unraveling the mystery 
behind the first step (Tong et al. 2004) in adaptive immune response. For an MHC 
molecule to recognize antigenic peptides and for pMHC to be subsequently recog-
nized by TR, geometric and electrostatic complementarity between the receptor and 
ligand are essential, determining the stability of the complex. In this context, the 
introduction of structural information can greatly facilitate our understanding 
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of how well a pMHC complex can associate with TR besides being able to predict 
epitopes, capable of eliciting TR response.

Here we introduce structural immunoinformatics concepts of TR/pMHC interaction 
based on their three-dimensional experimental and modeled structures, toward 
the development of a predictive model. To start with, we briefly describe the 
structural characteristics of pMHC complexes (Tong et al. 2006a), from which 
a novel supertype classification for class I MHC alleles has been developed 
(Tong et al. 2007b). Based on the analysis of these characteristics, we have devel-
oped a rapid and precise docking protocol to generate models of pMHC com-
plexes which has been applied to antigenic epitope prediction for specific alleles 
implicated in different diseases (Tong et al. 2006b, c; Tong et al. 2007c), where 
sequence-based approaches are inapplicable due to limited data on antigenic 
peptides. We then summarize the available TR/pMHC structural resources from 
the Internet. Finally, we extend our pMHC interaction parameters and highlight the 
importance of TR/pMHC interactions to decipher how antigenic peptides elicit a 
T cell response.

MPID-T and Structurally Derived Interaction Parameters

With the growth in the numbers of pMHC and TR/pMHC structures in PDB and 
some interaction parameters being reported as significant for peptide/MHC interac-
tions (Kangueane et al. 2001), there was an increasing need for a database dedi-
cated to these structures and their analysis. Hence a preliminary database called 
MPID (Govindarajan et al. 2003) was developed which is composed of 86 classical 
pMHC structures. This was later extended to the TR level when all the TR/pMHC 
structures along with the new pMHC structures were included. The new version 
was called MPID-T (Tong et al. 2006a) and it contained 187 pMHC and 16 TR/
pMHC structures. MHC–peptide Interaction Database – TR (MPID-T) – is a 
manually curated database comprising all the X-ray crystallographic structures of 
pMHC and TR/pMHC complexes obtained from the PDB. It was developed in 
order to understand the structural determinants of TR/pMHC recognition and 
binding. It provides sequence-structure-function information governing TR/
pMHC interactions besides a web-interface to carry out structural analysis of 
these complexes. The database (April 2008 update) contains over 294 pMHC com-
plexes (Class I complexes: 235, Class II complexes: 59, TR/pMHC complexes: 42) 
from five MHC sources (human 187, murine 101, rat 3, chicken 2, and monkey 1), 
spanning 52 alleles. The analysis of these complexes revealed the significance of 
some protein–protein interaction parameters for the characterization of pMHC 
interface. These parameters include interface area or change in solvent accessible 
surface area (hydrophobic contacts), intermolecular hydrogen bonds, gap index 
(electrostatic interactions), and gap volume (geometric complementarity) between 
the MHC receptor and its corresponding peptide ligand. We will explain each of 
these parameters briefly with the view to extending them to characterize TR/pMHC 
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interactions and thus help us determine the potential of a pMHC complex to bind 
to TR and thereby elicit T cell response.

Interface Area Between Peptide and MHC

One of the most significant forces that drive protein folding and protein–protein 
interactions are hydrophobic interactions. The hydrophobic free energy of a protein 
when it is transferred from polar to hydrophobic environment and the change in solvent 
accessible surface area (DASA) upon complex formation share a linear correlation 
(Chothia and Janin 1975). Thus, an indication of the binding strength of the inter-
acting partners is provided by the knowledge of the surface area of a complex 
interface in direct contact with solvent. The measure of the maximum permitted van 
der Waals’ contact area that is covered by the center of a water molecule as it rolls 
over the surface of the protein gives the accessible surface area. Interface area for 
pMHC complexes is defined as the mean DASA on complex formation when going 
from separated MHC and peptide molecules to a pMHC complex state and is calcu-
lated as half the sum of the total DASA of both molecules for each type of complex 
(Tong et al. 2006a). The interface areas of all the molecular systems are computed 
using the program NACCESS (Hubbard and Thornton 1993).

 DASA(pMHC) = [ASA(MHC) + ASA(peptide)– ASA(pMHC)]/2 (1)

The mean DASA for class I pMHC complexes was found to be 903.30 ± 260.90 Å2. 
Similarly, the corresponding DASA for class II pMHC complexes was 
894.40 ± 364.00 Å2 (Ranganathan et al. 2008).

Intermolecular Hydrogen Bonds

The selectivity and stability of proteins and protein–protein complexes depend on 
various factors but one of the most important and major contribution comes from 
hydrogen bonds. Hydrogen bonds are the collective interaction of three atoms 
wherein a hydrogen atom is bound to donor electronegative atom and an acceptor 
electronegative atom in close proximity. The typical observed hydrogen bond dis-
tance is approximately 2.60–3.10 Å (1.00–1.20 Å between donor and hydrogen and 
1.60–2.00 Å between hydrogen and acceptor). The significance of such bonding 
relies on both electronegative atoms being derived from the group: F, N, and O 
(Morrison and Boyd 1992). Only these elements are sufficiently negative and the 
hydrogen bound to any of these three elements is sufficiently positive for the 
required attraction to exist as their small atoms have a high concentration of nega-
tive charge on them. The interactions between side-chains are directed and their 
geometry is restricted due to the presence of hydrogen bonds. With decreasing bond 
length the strength of hydrogen bond usually increases.
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Gap Volume

Gap volume is a measure of the volume enclosed by the two interacting molecular 
subunits. The gap volume between the MHC and the peptide in each complex can 
be computed using the SURFNET program (Laskowski 1991). This is done by the 
algorithm by placing a series of spheres (maximum radius 5.00 Å) between the sur-
faces of each pair of the MHC and the peptide subunit atoms, such that its surface is 
in contact with the surfaces of the atoms on either side. Upon interception by other 
atoms, the size of each sphere is reduced accordingly and is subsequently discarded 
if it falls below a minimum allowed radius (1.00 Å). The gap volume between the 
two subunits is calculated by taking into account the sizes of all the remaining 
allowable gap-spheres.

Gap Index

Electrostatic and geometric complementarity observed between associating mole-
cules has always been an essential feature in receptor–ligand binding. Gap index 
(Jones and Thornton 1996) is a valuable method to evaluate complementarity of 
interacting interfaces:
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The results for the mean gap indices of class I (0.95 ± 0.24 Å) and class II 
(1.12 ± 0.20 Å) pMHC complexes (Kangueane et al. 2001) indicate that the interacting 
surfaces in pMHC complexes are significantly complementary. The gap index in 
class II complexes is, on an average, higher than in class I complexes. This implies 
that the interface area of class I complexes is greater than its corresponding gap 
volume. On the contrary, in class II complexes, the gap volume is greater than the 
interface area. The complexes of different alleles in both class I and class II structures 
did not show much difference in their gap indices.

Supertype Classification Based on Structural Characteristics

Human leukocyte antigens (HLA) were until now classified based on the common 
structural features of HLA proteins (Doytchinova et al. 2004; Doytchinova and 
Flower 2005) and/or their functional binding specificities (Lund et al. 2004; 
Kangueane et al. 2005). These approaches leave the structural interaction charac-
teristics among different HLA supertypes with antigenic peptides unexplored. We 
therefore classified 68 HLA class I molecules using the number of intermolecular 
hydrogen bonds between each HLA protein and its corresponding bound peptide, 
solvent accessibility of each pMHC complex, gap volume, and gap index as 
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described above. This type of classification of the HLA proteins into supertypes 
helps in the identification of promiscuous T cell epitopes that bind multiple alleles 
and is thus the underlying reason for the development of successful epitope-based 
vaccines covering a wide number in the world population and all the ethnicities 
(Sette et al. 2001; Sette et al. 2002). The interaction parameters investigated in this 
study tend to vary among different alleles and were thus grouped in a supertype 
dependant manner. Our analysis resulted in successful classification of the HLA 
class I molecules into eight supertypes based on their crystallographic structures 
(Tong et al. 2007b). The HLA-A supertypes had three main clusters AI, AII, and 
AIII whereas HLA-B supertypes had five clusters namely BI, BII, BIII, BIV, and BV. 
Our data largely overlap the definition of binding motifs. The proposed methodology 
of classification which considers conformational information of both peptide and 
HLA proteins provides an alternative to the characterization of supertypes using 
either peptide or HLA protein information alone. A hierarchical clustering tech-
nique using the agglomerative algorithm (Doytchinova et al. 2004; Doytchinova 
and Flower 2005) was applied in this approach. The distance between the structures 
was computed by the single-linkage method based on the separation between the 
each pair of data points (Barnard and Downs 1992). The nearest neighbors were 
merged into clusters. Smaller clusters were then merged into larger clusters based 
on inter-cluster distances, until all structures are combined. We have considered the 
last three levels for defining HLA class I supertypes.

The MHC–Peptide Docking Protocol

Of all the techniques used for investigating intermolecular interactions, computer-
simulated ligand binding or docking is the most powerful and widely used. The 
general purpose of docking simulation is: (i) to find the most probable translational, 
rotational, and conformational juxtaposition of a given ligand–receptor pair, and (ii) 
to evaluate the relative goodness-of-fit or how well a ligand can bind to the receptor. 
We now introduce a rapid and highly accurate docking protocol for the modeling 
of bound peptide ligands to the MHC receptor. We begin with the sequence of the 
ligand for which the structure is to be generated (peptide) and the availability of the 
target MHC receptor structure. Our docking protocol consists of four steps in all, 
out of which three essential steps are common for both class I and class II MHC 
complexes: (i) rigid docking of terminal residues of the peptide nonamer; (ii) loop 
closure of central residues by satisfaction of spatial constraints; (iii) followed by ab 
initio refinements of backbone and ligand interacting side-chain. However, for 
MHC class II complexes, the peptide length is usually between 12 and 15 residues 
and therefore there was a necessity to carry out addition of extra residues at both 
ends of the peptide nonamers as these residues usually extend out of the binding 
grove of the MHC molecule. Thus, step (iv) extension of flanking residues was 
included in the docking procedure for class II complexes. The flow diagram of the 
docking protocol is illustrated in Fig. 1.
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Step 1: Rigid Docking of Nonamer Termini

To decide the number of combinations for two molecules within an enclosed sam-
pling space is the key issue in docking simulation methodologies and an important 
factor that determines the best fit for the final output. There are six degrees of 
global-rotational and translational freedom of one molecule relative to the other, as 
well as one internal dihedral rotation per rotational bond. An increase in molecule 
size and sampling space increases search on the conformational space exponen-
tially. Minimization of the conformational search space of ligand within the large 
sampling space enclosed by the MHC binding groove is a challenge in pMHC 
docking simulation. A possible approach to initiate docking simulations is to iden-
tify suitable anchor residues or nonamer termini (probes) for rigid docking. A probe 

Fig. 1 Flowchart of the four-step docking procedure used in this chapter
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must satisfy two criteria: (i) the anchor must have sufficient contact with the recep-
tor, and (ii) the structure of the anchor must be highly conserved.

Peptide residues at the N and C termini of the nonamer are almost in invariant 
positions at the end of the binding groove of the MHC with mean backbone Ca 
RMSD within 0.15 ± 0.14 Å (Tong et al. 2004) and are ideal for such purpose. To 
model each probe to the receptor, a fast soft-interaction energy function (Fernández-
Recio et al. 2002) is adopted. This is performed using an internal coordinate mechanics 
(ICM) (Abagyan and Maxim 1999) global optimization algorithm, with flexible 
ligand interface side-chains and a grid map representation of the receptor energy 
localized to small cubic regions of 1.00 Å radius from the backbone of each probe. 
Within their respective grid map, each anchor residue performs a random walk. Using 
a Biased Monte Carlo procedure, which begins by pseudo-randomly selecting a set 
of torsion angles in the probe and subsequently finding the local energy minimum 
about those angles, the side-chain torsions were changed at random for each step. 
Upon satisfaction of the Metropolis criteria with probability min (1, exp [−DG/RT]), 
where R is the universal gas constant and T is the absolute temperature of the simula-
tion, new conformations are adopted. To keep the positional variables of the ligand 
molecule close to the starting conformation, loose restraints were imposed on it. The 
stimulation temperature was set to 300 K. The internal energy of the probe and the 
intermolecular energy based on the same optimized potential maps used in the docking 
step together comprised the optimal energy function used during simulations:

 solv
Hvw Cvw el hb hp solv216 253 435 0.20E E E E E E E= + + + + +  (3)

The internal energy included internal van der Waals interactions, hydrogen 
bonding, and torsion energy calculated with ECEPP/3 parameters, and the Coulomb 
electrostatic energy with a distance-dependent dielectric constant (e = 4r). In order 
to select the best-refined solutions the surface-based solvation energy and the 
configurational entropy of side-chains were included in the final energy.

Step 2: Loop Closure of Middle Residues

By satisfaction of spatial constraints (Sali and Blundell 1993) based on the 
allowed subspace for backbone dihedrals in accordance with the conformations of 
nonamer termini docked into the ends of the binding groove, an initial conformation 
of the central loop is generated at this stage. The three steps that are used to perform 
this are: (i) The alignment of the entire peptide sequence and the sequences of probes 
docked into the binding groove gives the distance and dihedral angle restraints on 
the peptide sequence. (ii) By extrapolation from the known 3D structures of probes 
in the alignment, expressed as probability density functions, the restraints on spatial 
features of the unknown central residues are derived. Stereo-chemical restraints 
include bond distances, bond angles, planarity of peptide groups and side-chain 
rings, chiralities of Ca atoms and side-chains, van der Waals contact distances and 
the bond lengths, bond angles, and dihedral angles of cysteine disulfide bridges. 
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(iii) Optimizing the molecular probability density function using variable target 
function technique that applies the conjugate gradients algorithm to positions of all 
non-hydrogen atoms satisfies spatial restraints on the unknown central residues.

Step 3: Refinement of Binding Register

Partial refinement was performed for both the ligand backbone and side-chain to 
improve the accuracy of the initial model using ICM Biased Monte Carlo procedure 
(Abagyan and Maxim 1999). By introducing partial flexibility to the ligand back-
bone, preliminary stages of refinements attempt to nullify the penalty derived from 
the initial rigid docking of terminal residues thus making this an effective and 
flexible docking procedure. Restraints were imposed upon the positional variables 
of the Ca atoms of probes to keep it close to the starting conformation. This refine-
ment step is performed using the energy function:

  E = E
vw

 + E
hbonds

+E
torsions

 + E
electr

+ E
solv

+E
entropy

 (4)

Ligand and receptor side-chain torsions within 4.00 Å from the receptor were 
refined upon the final backbone structure.

Step 4: Extension of Flanking Residues

By now, MHC class I ligand models have already been fully constructed and this 
step is applicable only to MHC class II ligands. The only construction remaining 
is of the flanking residues that extend out of the MHC class II binding groove. 
The conformations of the flanking peptide residues are generated by satisfying 
the spatial constraints in the allowed subspace for backbone dihedrals defined by the 
conformation of the bound core nonameric peptide docked into the binding groove. 
This is again performed in three stages: (i) distance and dihedral angle restraints on 
the entire peptide sequence are derived from its alignment with the nonamer 
sequence in the binding groove; (ii) the restraints on spatial features of the flanking 
residues are derived by extrapolation from the known 3D structure of flanking resi-
dues in the alignment, expressed as probability density functions; and (iii) the spatial 
restraints on the flanking residues are then satisfied by optimization of the molecular 
probability density function using a variable target function technique that applies 
the conjugate gradients algorithm to positions of all non-hydrogen atoms.

Epitope Prediction

We will now compare the applications of this protocol for the discrimination of 
binders/non-binders from MHC class I and class II alleles. First, we discuss the 
docking of 68 peptides with known IC

50
 values and 12 peptides with experimental T cell 



85Structural Immunoinformatics

BookID 141320_ChapID 7_Proof# 1 - 02/09/2009

proliferation values on to the binding groove of DQ3.2b MHC class II allele associ-
ated with several allergies and autoimmune diseases. Our model predicts DQ3.2b 
binding peptides with high accuracy [area under the receiver operating characteristic 
(ROC) curve A

ROC
 > 0.88] (Tong et al. 2006b), compared with experimental data. 

Our investigation of the binding patterns of DQ3.2b peptides illustrates that several 
registers exist within a candidate binding peptide. Further analysis reveals that 
peptides with multiple registers occur predominantly for high-affinity binders 
(specificity = 0.95). We successfully predicted 20/23 (87%) binding registers with 
excellent discrimination of low-, medium-, and high-affinity binders. The results 
also proved that our method was of high precision with a sensitivity value as high as 
0.81 (81%) for low-, medium-, and high-affinity binders.

In the second experiment we carried out docking of 51 DRB1*0402-specific 
desmoglein 3 (Dsg3) peptides with known IC

50
 values, 25 DRB1*0402-specific Dsg3 

peptides with experimental T cell proliferation values and 6 DQB1*0503-specific 
Dsg3 peptides with experimental T cell proliferation values into the binding groove of 
Pemphigus vulgaris (PV) associated MHC class II alleles DRB1*0402 and DQB1*0503, 
respectively (Tong et al. 2006c). Docking of anchor peptide residues is performed 
using the docking procedure prior described followed by ab initio modeling of flank-
ing residues. Our models present the best fit of each peptide into the binding cleft of 
each disease associated allele based on the following criteria: (i) pattern of hydrogen 
bonding to the MHC molecule; (ii) pattern of hydrophobic burial of peptide side-
chains, and (iii) the absence of atomic clashes or repulsive contacts. Figure 2 illustrates 
the immunological hotspots that were predicted for both the alleles across the Dsg3 
glycoprotein proteome. These immunological hotspots are the regions that contain 
immunogenic peptide epitopes that are highly suitable for vaccine design.

We were able to successfully predict all 25 and 5/6 peptides in test set II as high-
binders for both DR and DQ alleles, respectively, with high accuracy (A

ROC
 = 0.93) 

and specificity (SP = 0.80). These results were consistent with our earlier qualitative 
structural studies (Tong et al. 2006d). Furthermore, these results confirm that both 
DRB1*0402 and DQB1*0503 are strongly associated with PV. Our analysis 
revealed the existence of multiple immunodominant epitopes that may be responsible 
for both disease initiation and propagation in PV and also suggests that DRB1*0402 
and DQB1*0503 may share similar specificities by binding peptides of different 
binding registers, thus providing a molecular mechanism for the dual HLA associa-
tion observed in PV. In this example, pMHC residues were considered to be in 
contact if at least one pair of their non-hydrogen (“heavy”) atoms was found to be 
within 4.00 Å radius (Fischer and Marquesee 2000). Intra-peptide interactions and 
intra-MHC interactions were not considered as they have minor influence on 
backbone structure. Any atom in the peptide and any atom in the MHC were 
considered to be experiencing atomic clash if their separation is below 2.00 Å 
(Samudrala and Moult 1997) for non-hydrogen atoms and below 1.60 Å for atoms 
participating in hydrogen bonds (Samanta et al. 2002; Wallace et al. 1995).

We also performed a docking and binding prediction study of the repertoires for 
HIV-1 p24gag and gp160gag glycoproteins that are known to bind the MHC class 
I allele HLA-Cw*0401 which plays a major role in the control of human immuno-
deficiency virus type 1 (HIV-1) infection. The analysis of predicted Cw*0401-
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binding peptides showed that anchor residues may not be restrictive and the 
Cw*0401 binding pockets may possibly accommodate a wide variety of peptides 
with common physico-chemical properties (Tong et al. 2007c). The potential 
Cw*0401-specific T cell epitopes are well distributed throughout both glycoproteins, 
with 14 and 9 immunological hotspots for HIV-1 p24gag and gp160gag glycopro-
teins, respectively. External validation results indicate that our Cw*0401 predictive 
model provides excellent discrimination between binding and the non-binding 
ligands with high accuracy (A

ROC
 = 0.93) and a sensitivity of 76% (SE = 0.76) and 

a specificity as high as 95% (SP = 0.95). Our results strongly indicate that Cw*0401 
can bind antigenic peptides in amounts comparable to both HLA-A and -B molecules, 
and support the existence of a potentially large number of Cw*0401-specific T 
cell epitopes.

Table 1 gives a summary of the overall comparison of the results from the three 
experiments described above. An important thing to note is the diminishing training 
datasets used in the three experiments which suggests that our prediction model can 
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Fig. 2 Proteome-wide screening of Dsg3 peptides
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give excellent results with as low as six peptides in the training dataset. It, however, 
is yet to be determined as to what proportion of these predicted peptides may be 
expressed at the cell surface and are capable of eliciting functional T cell responses. 
One aspect of this would be to look at the TR/pMHC complex on the whole.

TR/pMHC Interaction

TR/pMHC interaction is the most essential binding step in the entire adaptive 
immune response cascade. It is this interaction that is responsible for eliciting a T 
cell response. After an endogenous or exogenous peptide is bound to the MHC 
class I or class II, respectively, the pMHC complex is transported to the membrane 
of the antigen presenting cell (APC) and is presented at the cell surface for surveil-
lance by the TR which then binds to the pMHC and forms the TR/pMHC complex. 
This binding is also partly determined by the cluster of differentiation (CD) mole-
cules present on the membrane of the T cells as these bind specifically to MHC 
class I and class II proteins. Therefore, class I pMHC molecules stimulate CD8+ 
cytotoxic T cells which directly kill the infected cells whereas class II pMHC mol-
ecules stimulate CD4+ helper T cells which in turn activate B cells, leading to 
antibody production. Three-dimensional structures of the pMHC complex and the 
TR are essential and play a vital role in the activation of the Adaptive immune 
system. With the chance of 1 in 2,000 antigenic peptides being able to stimulate T 

Table 1 Comparison of the training set, test set, and results of the three prediction experiments

DQ3.2b (Tong  
et al. 2006b)

Training set 56 binding and 30 non-binding conformations from 
experimentally determined binding and non-binding peptides

Test set I – 68 peptides with known IC
50

 values II – 12 peptides with 
known T cell proliferation values

Results I – A
ROC

 = 0.88, SE = 0. 81, and SP = 0.95. 20/23 (87%) binding 
registers were predicted correctly. II – Top five predictions 
(SE = 0.95) have known T cell proliferation values

DR and DQ 
(Tong et al. 
2006c)

Training set 8 DRB1*0402-specific Dsg3 peptides 8 DQB1*0503-specific 
Dsg3 peptides

Test set I – 51 DR-specific Dsg3 peptides with known IC
50

 values 
II – 25 DR and 6 DQ-specific Dsg3 peptides with 
experimental T cell proliferation values

Results I – A
ROC

 = 0.93, SE = 0.70 and SP = 0.95. II – All 25 DR-specific 
peptides in test set II were predicted as high binders 
(SE = 0.65, SP = 0.80). 5/6 DQ-specific peptides (all true 
positives) were determined with a cutoff of −26.64 kJ/mol

HLA-Cw*0401 
(Tong et al. 
2007c)

Training set 6 peptide sequences with known IC
50

 values
Test set 58 peptides known to bind Cw*0401
Results Test set accuracy: A

ROC
 = 0.93, SE = 0.76, and SP = 0.95. 14 

and 9 potential Cw*0401-specific T cell immunogenic 
regions or hotspots were predicted for HIV-1 p24gag and 
gp160gag glycoproteins, respectively



88 J.M. Khan et al.

BookID 141320_ChapID 7_Proof# 1 - 02/09/2009 BookID 141320_ChapID 7_Proof# 1 - 02/09/2009

cells (Yewdell and Bennink 1999), finding immunogenic peptide epitopes poses a 
great challenge. In view of this enormity, it is experimentally impossible to scan all 
the putative peptides arising from the proteomes of all pathogens known today. An 
in-depth analysis of TR/pMHC complexes using structural immunoinformatics 
combines the power of computational analysis with detailed structural data to 
accelerate immune system research and provides clues for the development of 
vaccines for immunotherapeutic applications.

Figure 3 depicts the TR footprint on a pMHC complex. The residues (both MHC 
and peptide residues) that comprise the footprint are the key to pMHC recognition 
by the TR molecule via the variable regions of the a and b chains. The residues on 
the TR molecule that interact with the residues of the pMHC complex (Fig. 4) are 
also equally essential to this process as they recognize the corresponding residues 
on the pMHC complex and form H-bonds with them to anchor the TR molecule to 
the pMHC complex.

However, it is the peptide epitope that is important for vaccine development as 
a few of its residues take part in the peptide–MHC binding and the others take part 
in the TR/pMHC recognition and binding. Therefore, it can be inferred that it is the 
epitope that acts as a key to unlock the immune cascade and thereby plays the most 
important role in this major defense mechanism in higher vertebrates.

A detailed analysis of the types of inter-residue interactions observed in this 
complex is shown in Fig. 5. The peptide residues, Gly4(C), Thr8(C), and Val6(C), 
interact with TR residues, Gln52(E), Asp32(E), Gln52(E), and Ser99(E), respec-
tively, to form H-bonds and thereby stabilize the TR/pMHC complex besides 
anchoring TR to the pMHC complex. Gly97(D) and Ile53(E) of the TR are also 

Peptide 
residues 
interacting 
with MHC

Footprint of TR on 
the pMHC complex

Peptide residues interacting
with TR

Fig. 3 A schematic structure of the top view of the MHC groove and the bound peptide in a class 
I TR/pMHC complex (PDB ID – 1OGA) (Stewart-Jones et al. 2003) in Ca trace ribbon represen-
tation, with MHC in red and peptide in blue. Residues interacting with TR are highlighted in green 
(MHC) and yellow (peptide), with heavy side-chain atoms shown in stick representation. 
The black oval contains these residues or the footprint of the TR on the pMHC complex
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involved in hydrophobic interactions with Gly4(C) and Phe5(C), Thr8(C), respec-
tively, thereby contributing to the overall stability of the TR/pMHC complex. Such 
interactions are also seen between the MHC and the peptide residues suggesting the 
importance of peptide epitopes for immunotherapy and vaccine development. 
Water bridges (not shown) also play a significant role in this TR/pMHC complex 
formation and stability.

Analysis of the 1OGA Complex

We now extend our interaction parameters to the TR level in order to analyze the 
1OGA TR/pMHC structure, using the formulae described earlier. The interface area 
for the TR/pMHC complex is 733.55 Å2 which is lower compared to that of the 
pMHC complex (856.00 Å2) for the same structure. This suggests that the TR/pMHC 
binding is localized. As seen in Fig. 5 , the peptide is sandwiched between the TR 
and the pMHC and is fairly well buried in terms of the accessible surface area.

Figure 5 indicates the presence of four H-bonds between the peptide and the TR 
residues [Gly4(C) with Gln52(E), Val6(C) with Gln52(E), and Ser99(E), Thr8(C) 
with Asp32(E)]. The average H-bond length between the peptide and the TR resi-
dues is 2.95 Å. H-bonding (not shown) between the TR residue, Arg98(E) and the 
MHC residues, Ala150(A) and Gln155(A) with an average bond length of 2.92 Å, 
also plays a vital role in anchoring the TR onto the pMHC complex. Notably, 12 
hydrogen bonds are seen to stabilize and anchor the peptide firmly onto the MHC 
molecule, of length 2.67–3.08 Å. Hydrophobic interactions are also seen to occur 
specially between the MHC and the TR molecules, involving Val152(A), Gln155(A), 
and Lys66(A) residues of MHC (interacting TR residues not shown in Fig. 5), while 
Thr73(A) interacts strongly with its neighboring TR residue, Ile53(E).

The gap volume between pMHC and TR was calculated using a molecular 
model of only the interacting regions from both pMHC and TR, generated from the 

TR residues 
interacting with the 
pMHC complex

Fig. 4 Schematic Ca trace ribbon representation of the T cell receptor (PDB ID – 1OGA) in red, 
with the residues in its variable regions interacting with the pMHC complex highlighted in green
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Fig. 5 A LIGPLOT schematic diagram of the peptide ligand from the three dimensional structure 
of class I TR/pMHC complex (PDB ID – 1OGA) showing the solvent accessibility and the inter-
actions between its residues and the corresponding MHC and TR residues. The TR residues, 
Gln52(E), Asp32(E), Ser99(E), Ile53(E), and Gly97(D) that together anchor the TR on the pMHC 
are shown in dotted rectangles. The letters in the brackets correspond to the respective chain IDs 
to which the residues belong. (A) – MHC a chain, (C) – peptide, (D) and (E) – TR a and b chains, 
respectively
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template structure, 1OGA using MODELLER (Sali and Blundell 1993). The gap 
volume was then computed to be 3304.43 Å3 using SURFNET (Laskowski 1991), 
depicted by the blue region in Fig. 6. This value of the gap volume between the TR 
and pMHC is very large compared to that between the peptide and MHC suggesting 
that the binding between peptide and MHC is much stronger than that between 

TR

Gap volume

pMHC

ba

TR

Gap volume

pMHC

c

Fig. 6 (a) A space filling representation of the interacting residues of TR (green) and pMHC 
(red) from the 1OGA crystal structure, showing the gap volume (blue) between the two com-
plexes. A fairly large gap volume supports the theory that the binding is not very strong, unlike 
the pMHC binding. The surface representation file used for visualization was generated using 
SURFNET (Laskowski 1991). (b) Top view of the TR/pMHC complex shown in an atomic mesh 
representation. The TR binds to the pMHC at an angle of 69° (Stewart-Jones et al. 2003). (c) Side 
view of the TR/pMHC interacting regions, in ball and stick surface representation
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pMHC and TR. These results underline the importance of strong peptide binders in 
the first step of the entire adaptive immune response cascade. A large gap volume 
and a small interface area indicate that the gap index of the TR/pMHC complex is 
high (4.50 Å), compared to that of the peptide and the MHC (0.60 Å). This suggests 
that the electrostatic and the geometric complementarities of the TR and pMHC are 
not as significant as between the peptide and MHC.

Conclusion

Our analysis and extensive studies on peptide–MHC interactions have revealed 
structural features that can be analyzed in terms of the parameters governing the 
pMHC complex formation. We have now extended this formalism to defining the 
interaction between TR and pMHC, relevant for immune system activation. Based on 
our pMHC analyses, we have developed methods to successfully predict T cell 
epitopes in accordance with their MHC binding specificities. The next challenge is to 
extend this methodology to the unexplored TR level as this would greatly improve 
the efficacy of our prediction model, in separating a large number of predicted MHC-
binding peptides from true T cell epitopes. The complexities involved in methodology 
development and the computational costs incurred in docking peptides and proteins 
have hindered the progress of structure-based prediction techniques. In the era of high 
throughput and distributed computing over global grids, the necessary computational 
requirements for large-scale structure-based screening of potential T cell epitopes are 
now available. We can therefore expect new structure-based approaches to predicting 
promiscuous peptide epitopes for MHC supertypes and TR activation, for the design 
of sub-type-specific vaccines with wide population coverage. Large-scale structure-
based screening helps overcome the barriers of insufficient training data and the lack 
of peptide binding motifs, especially for MHC class II alleles by cutting down the 
lead time involved in experimental vaccine development methods, resulting in the 
production of effective and highly specific peptide vaccines.
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