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Summary

The thesis studies the theory of Mackey functors as an application of enriched
category theory and highlights the notions of lax braiding and lax centre for
monoidal categories and more generally for promonoidal categories.

The notion of Mackey functor was first defined by Dress [Dr1] and Green
[Gr] in the early 1970’s as a tool for studying representations of finite groups.
The first contribution of this thesis is the study of Mackey functors on a com-
pact closed category T . We define the Mackey functors on a compact closed
category T and investigate the properties of the category Mky of Mackey func-
tors on T . The category Mky is a monoidal category and the monoids are
Green functors. The category of finite-dimensional Mackey functors Mkyfin is
a star-autonomous category. The category Rep(G) of representations of a finite
group G is a full sub-category of Mkyfin.

The second contribution of this thesis is the study of lax braiding and lax
centre for monoidal categories and more generally for promonoidal categories.
The centre of a monoidal category was introduced in [JS1]. The centre of a
monoidal category is a braided monoidal category. Lax centres become lax
braided monoidal categories. Generally the centre is a full subcategory of the
lax centre. However in some cases the two coincide. We study the cases where
the lax centre and centre becomes equal. One reason for being interested in the
lax centre of a monoidal category is that, if an object of the monoidal category
is equipped with the structure of monoid in the lax centre, then tensoring with
the object defines a monoidal endofunctor on the monoidal category.

The third contribution of this thesis is the study of functors between cate-
gories of permutation representations. Functors which preserve finite coprod-
uct and pullback between the category G-setfin of finite G-sets to the category
H-setfin of finite H-sets (where G and H are finite groups) give a Mackey func-
tor from G-setfin to H-setfin for each Mackey functor on H .
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Chapter 0

Introduction

Groups are used to mathematically understand symmetry in nature and in math-

ematics itself. Classically, groups were studied either directly or via their rep-

resentations. In the last 40 years, groups have also been studied using Mackey

functors, a concept which arose out of a formalization of representation theory.

Mackey functors were first introduced by J. A. Green [Gr] and A. Dress [Dr1],

[Dr2] in the early 1970’s as a tool for studying representations of finite groups

and their subgroups. The axioms for Mackey functors follow on from earlier

ideas of Lam on Frobenius functors [La1] which are described in [CR]. Another

structure which appeared early on is Bredon’s notion of a coefficient system

[Br]. There are (at least) three equivalent definitions of Mackey functor for a

finite group G .

The most elementary (in a sense used by some group theorists) definition

is due to Green [Gr]. The most complicated axiom in this definition is based

on the Mackey Decomposition Theorem (see [Ja, p.300] for example) in rep-

resentation theory and this is presumably why Mackey’s name is attached to

the concept. We shall now provide the categorical explanation of this Theorem

which is used to characterize when induced characters are irreducible.

The Theorem provides a formula for the restriction, to a subgroup, of a
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group representation induced from a possibly different subgroup. Restriction

is composition with a functor (the inclusion of the subgroup in the group) and

inducing is an adjoint process amounting therefore to Kan extension.

Consider a functor i : H //G between small categories H and G , and let

M denote a cocomplete category. We write [H ,M ] for the category of func-

tors from H to M and natural transformations between them. A functor Resi :

[G ,M ] // [H ,M ] is defined by composition on the right with the functor i .

This functor Resi has a left adjoint Lani : [H ,M ] // [G ,M ] for which there are

two (closely related) formulas:

Lani (W )(c) =
∫ b∈H

G(i (b),c).i (b)

and

Lani (W )(c) = colim( i ↓ c // H
W //M )

where S.M is the coproduct of S copies of M in M (for any set S) and i ↓ c is the

comma category; see [Ma] for example.

For any functor j : K //G , the comma category i ↓ j is universal with re-

spect to its being equipped with functors p : i ↓ j //H and q : i ↓ j //K , and a

natural transformation

i ↓ j K
q //

G .

j

��
H

p

��

i
//

λ=⇒

The following observation is the basis of the 2-categorical notion of “point-

wise left extension” defined in [St2, pp.127-128].

Proposition 0.0.1. The natural transformation λ induces a canonical natural

isomorphism

Res j ◦Lani
∼= Lanq ◦Resp .
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The following result is an easy exercise in the defining adjoint property of

left Kan extension.

Proposition 0.0.2. Suppose D is a small category which is the disjoint union of

subcategories Dα, α ∈Λ, with inclusion functors mα : Dα
//D. For any functor

r : D //K , there is a canonical natural isomorphism

Lanr
∼=

∑
α∈Λ

Lanr◦mα ◦Resmα .

A groupoid is a category in which each morphism is invertible. For each

object d of a groupoid D , we obtain a group D(d) = D(d ,d) whose elements are

morphisms u : d // d in D and whose multiplication is composition. We regard

groups as one-object groupoids. Let Λ be a set of representative objects in D

for all the isomorphism classes of objects in D . Then there is an equivalence of

categories ∑
d∈Λ

D(d) ' D ;

that is, every groupoid is equivalent to a disjoint union of groups.

Now suppose H and K are subgroups of a group G . To apply the above con-

siderations, let i : H //G and j : K //G be the inclusions. The comma cate-

gory i ↓ j is actually a groupoid: the objects are elements g ∈G , the morphisms

(h,k) : g // g ′ are elements of H ×K such that kg = g ′h, and composition is

(h′,k ′)◦ (h,k) = (h′h,k ′k). Another name for i ↓ j might be K 
G � H since the

set of isomorphism classes of objects is isomorphic to the set

K \G/H = {K g H | g ∈G}

of double cosets K g H = {kg h | k ∈ K ,h ∈ H }. For each object g of i ↓ j , the

projection functor p : i ↓ j //H induces a group isomorphism

(i ↓ j )(g ) ∼= H ∩K g
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where K g = g−1H g , and the projection functor q : i ↓ j //K induces a group

isomorphism

(i ↓ j )(g ) ∼= g H ∩K

where g H = g H g−1. Thus we can identify (i ↓ j )(g ) with both a subgroup H∩K g

of H and a subgroup g H∩K of K . Define pg , qg ,γg by the commutative diagram

g H ∩K H ∩K g
γg //

H .

É

��

(i ↓ j )(g )

∼=
!!D

DD
DD

DD
D

K
qg}}zz

zz
zz

zz
É

��

∼=
}}zz

zz
zz

zz

pg !!D
DD

DD
DD

D

Let [K \ G/H ] ⊆ G represent all double cosets in the form K g H , where g ∈
[K \G/H ], without repetition. Therefore we have an equivalence of categories∑

g∈[K \G/H ]
(i ↓ j )(g ) ' i ↓ j .

Corollary 0.0.3.

Res j ◦Lani
∼=

∑
g∈[K \G/H ]

Lanqg ◦Respg .

Proof. Take r = q and Λ = [K \ G/H ] in Proposition 0.0.2 and substitute the

resultant formula in Proposition 0.0.1.

To apply this to the theory of linear representations of groups, we put M =
Modk for a commutative ring k. Then Lani and Resi are denoted by IndG

H and

ResG
H , and we have the

Mackey Decomposition Theorem. For subgroups H and K of a group G,

there is a canonical natural isomorphism

ResG
K ◦ IndG

H
∼=

∑
g∈[K \G/H ]

IndK
g H∩K ◦Resγg ◦ResH

H∩K g .

We now state Green’s definition. A Mackey functor M for a group G over the

commutative ring k consists of
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• a function assigning to each subgroup H ÉG a k-module M(H),

• for all subgroups K É H ÉG , module morphisms

t H
K : M(K ) //M(H), and r H

K : M(H) //M(K ),

• for all subgroups H ÉG and g ∈G , a module isomorphism

cg ,H : M(H) //M(g H),

subject to the following axioms:

1. if L É K É H then t H
K t K

L = t H
L and r K

L r H
K = r H

L ,

2. if H ÉG , g1, g2 ∈G and h ∈ H then

cg2,g1 H cg1,H = cg2g1,H and ch,H = 1M(H),

3. if K É H ÉG and g ∈G then

cg ,H t H
K = t

g H
g K cg ,K and cg ,K r H

K = r
g H
g K cg ,H ,

4. if H É L and K É L ÉG then

r L
K t L

H = ∑
g∈[K \L/H ]

t K
g H∩K cg ,H∩K g r H

H∩K g .

The morphism t H
K is called transfer, trace, or induction. The morphism r H

K is

called restriction. The isomorphism cg ,H is called a conjugation map. With this

terminology, the relation between axiom (4) and the Mackey Decomposition

Theorem should be striking, however, we shall explain it further below.

A morphism θ : M //N of Mackey functors is a family of k-module mor-

phisms θH : M(H) //N (H), H É G , satisfying the obvious commutativity con-

ditions with the morphisms t ,r and c.
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We shall eventually see that a Mackey functor is actually a functor between

two categories. In the first instance, we shall see that it is actually a pair of

functors agreeing on objects.

For any group G , there is a category CG of connected G-sets. It is the full

subcategory of the category [G ,Set] = G-Set of left G-sets consisting of those

which are transitive (and non-empty). Every transitive G-set X is isomorphic to

the set G/H of cosets of some subgroup H É G with the obvious action. Using

this, we see that there is an equivalence

S (G) 'CG , H � //G/H ,

where S (G) is a category defined by Green [Gr] whose objects are subgroups

of G . A morphism g : H //K in S (G) is an element g ∈ G such that H g É
K ; composition g2 ◦ g1 is product g1g2 in G in reverse order. Each g : H //K

determines a G-set morphism G/H //G/K taking xH to xg K .

Each Mackey functor M on G over k determines two functors

M∗ : S (G)op //Modk and M∗ : S (G) //Modk

with M∗(H) = M∗(H) = M(H). For each g : H //K in S (G), we define M∗(g )

and M∗(g ) by the commutative diagrams below.

M(K ) M(H g )
r K

H g //

M(H)

cg ,H g

��
M(g K )

cg ,K

��

r
g K
H

//

M∗(g )
##H

HHHHHHHHHHHHHH M(H) M(g K )
t

g K
H //

M(K )

cg−1,g K

��
M(H g )

cH ,g−1

��

t K
H g

//

M∗(g )

##H
HHHHHHHHHHHHHH

We shall provide an example of a Mackey functor where the Mackey axiom

comes from the Decomposition Theorem.

Each G-set X determines a groupoid el(X ) whose objects are the elements

x ∈ X and whose morphisms g : x // y are elements g ∈ G such that g x = y .
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In the case of a transitive G-set G/H where H É G , there is an equivalence of

groupoids

H ' el(G/H) , (h : a // a) � // (h : H //H).

It follows that we have an equivalence of categories

[el(G/H),Modk ] ' [H ,Modk ]

where the right-hand side is the category of k-linear representations of the

group H .

Let Cat� denote the 2-category whose objects are additive categories with

finite direct sums, whose morphisms are additive functors, and whose 2-cells

are natural isomorphisms. Let Gpd denote the 2-category of small groupoids.

We have two 2-functors

Rep∗ : Gpdop //Cat� and Rep∗ : Gpd //Cat�

defined on objects D ∈ Gpd by

Rep∗(D) = Rep∗(D) = [D,Modk ].

For f : D // E in Gpd, we define

Rep∗( f ) = Res f and Rep∗( f ) = Lan f .

There is also a 2-functor Ko : Cat� //AbGp, where AbGp = ModZ is the cate-

gory of abelian groups, which assigns to each additive category A with finite

direct sums, the abelian group KoA obtained from the free abelian group on

the set of isomorphism classes [A] of objects A of A by imposing the relations

[A⊕B ] = [A]+ [B ];

this is called the Grothendieck group of A .
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An example of a Mackey functor M on G over Z is obtained by taking M∗ to

be the composite functor

S (G)op el //Gpdop Rep∗
//Cat�

Ko //AbGp

and taking M∗ to be the composite functor

S (G)
el //Gpd

Rep∗ //Cat�
Ko //AbGp

so that M(H) ∼= Ko[H ,Modk ]. Mackey Decomposition gives the Mackey axiom

(4).

Suppose G is finite. We obtain a sub-example of this last example by replac-

ing Modk by the category modk of finitely generated projective k-modules. If k

is a field of characteristic zero then Ko[H ,modk ] is isomorphic to the group of

characters of k-linear representations of H .

We now resume our general discussion. A Green functor A for G over k is

a Mackey functor A for G over k equipped with a k-algebra structure on each

k-module A(H) (associative with unit), for H ÉG , subject to the axioms:

1. the k-module morphisms t H
K ,r H

K and cg ,K for A preserve the algebra mul-

tiplication and unit, and

2. if K É H ÉG , a ∈ A(H), and b ∈ A(K ) then

a.t H
K (b) = t H

K (r H
K (a).b) and t H

K (b).a = t H
K (b.r H

K (a)).

Axiom (2) is called the Frobenius condition since it resembles the following

structural version of Frobenius Reciprocity (see [Ja, Theorem 5.17(3), p.292] for

example).

Frobenius Reciprocity. If V is a k-linear representation of a group G and W

is a k-linear representation of a subgroup H ÉG then

V ⊗ IndG
H (W ) ∼= IndG

H (ResG
H (V )⊗W ).
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A categorical explanation of this reciprocity is as follows.

Proposition 0.0.4. Suppose M is a cocomplete monoidal category whose tensor

product preserves colimits in each variable. Suppose i : H //G is a functor be-

tween small categories. For functors V : G //M and W : H //M , the left Kan

extension of the functor

V �W : G ×H V ×W //M ×M
⊗ //M

along 1G × i : G ×H //G ×G is naturally isomorphic to

V �Lani (W ) : G ×G
V ×Lani (W ) //M ×M

⊗ //M .

Proof.

Lan1G×i (V �W )(c1,c2) ∼=
∫ c,a

(G ×G)((c, i (a)), (c1,c2)).V (c)⊗W (a)

∼=
∫ c,a

(G(c,c1).V (c))⊗ (G(i (a),c2).W (a))

∼=
∫ c

G(c,c1).V (c)⊗
∫ a

G(i (a),c2).W (a)

∼=V (c1)⊗Lani (W )(c2)

∼= (V �Lani (W ))(c1,c2).

Proposition 0.0.5. Let H be a subgroup of a group G, let i : H //G be the in-

clusion, and let ∆ : G //G ×G be the diagonal. Then the comma groupoid

(1G × i ) ↓∆ is connected and there is an equivalence

H ' (1G × i ) ↓∆.

Proof. Objects of (1G ×i ) ↓∆ are elements (g1, g2) ∈G×G . A morphism (g ,h, x) :

(g1, g2) // (g ′
1, g ′

2) is an element of G×H×G such that g ′
1g = xg1 and g ′

2h = xg2;
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so, for any object (g1, g2), we have the morphism (g−1
1 g2,1, g2) : (1,1) // (g1, g2)

proving the comma groupoid connected. The equivalence follows from the

group isomorphism

H ∼= ((1G × i ) ↓∆)(1,1), h oo � // (h,h,h).

Proposition 0.0.6. Suppose M is as in Proposition 0.0.4 and H is a subgroup

of a group G with inclusion i : H //G. The categories [H ,M ] and [G ,M ] are

equipped with the pointwise tensor products. For V ∈ [G ,M ] and W ∈ [H ,M ],

there is a canonical isomorphism

V ⊗Lani (W ) ∼= Lani (Resi (V )⊗W ).

Proof. Contemplate the diagram

H G
i //

G ×G

∆

��

M
V �Lani (W )~~||

||
||

|
G ×H

(i ,1H )

�� 1G×i //

V �W   B
BB

BB
BB =⇒

in the light of Propositions 0.0.1, 0.0.4 and 0.0.5.

If A is a monoidal additive category with direct sums, KoA becomes a ring

via

[A][B ] = [A⊗B ].

It follows that the example of the Mackey functor M with M(H) ∼= Ko[H ,Modk ]

is actually a Green functor.

Notice that the functor el : S (G) //Gpd is the restriction of the coproduct

preserving functor el : [G ,Set] //Gpd. This motivates the second definition of

Mackey functor (see [Dr1] and [Di]).
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We centre attention on the case of a finite group G . We write setfin for the

category of finite sets and G-setfin = [G ,setfin] for the category of finite G-sets.

Every finite G-set is a coproduct (disjoint union) of transitive G-sets. With a

little more work we see that G-setfin is the completion of CG under finite co-

products. Therefore, the functors M∗ and M∗ above extend (uniquely up to

isomorphism) to functors

M∗ : (G-setfin)op //Modk and M∗ : G-setfin
//Modk

which respectively preserve finite products and finite coproducts. So here is the

second equivalent definition.

A Mackey functor M for G over k consists of a pair of functors

M∗ : (G-setfin)op //Modk , M∗ : G-setfin
//Modk

which agree M∗(X ) = M∗(X ) = M(X ) on objects X of G-setfin subject to the

following axioms:

1. for every pullback diagram

P Y
δ //

Z

β

��
X

γ

��

α
//

in G-setfin, the equation

M∗(β)M∗(α) = M∗(δ)M∗(γ)

holds,

2. for inclusions i : X // X +Y and j : Y // X +Y into the coproduct X +Y

of X and Y in G-setfin, the diagram

M(X )
M∗(i )

// M(X +Y )
M∗(i )oo M∗( j ) //

M(Y )
M∗( j )
oo
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is a direct sum situation in Modk .

The axiom (1) is now called the Mackey condition as it is a more categorically

pleasing expression of the previous axiom (4). A morphism θ : M //N of

Mackey functors is a family of k-module morphisms

θX : M(X ) //N (X ), X ∈G-setfin,

which is natural as both M∗ //N∗ and M∗ //N∗. A Green functor A for G over

k is a Mackey functor for G over k equipped with k-bilinear morphisms

A(X )× A(Y ) // A(X ×Y ), (a,b) � // ab

which are natural in X and Y ∈ G-setfin, and are associative and unital in an

obvious way.

A third equivalent definition of Mackey functor appears in [TW] and in-

volves first creating the Mackey algebra µk (G) for the finite group G . The study

of Mackey functors becomes the representation theory of this algebra. The

Mackey algebra µk (G) of G over k is the associative k-algebra defined by the

generators t H
K ,r H

K and cg ,H for subgroups K É H of G and g ∈ G , satisfying the

following relations:

1. if L É K É H are subgroups of G , then t H
K t K

L = t H
L and r K

L r H
K = r H

L , and if

g ,h ∈ H and H is a subgroup of G , then ch,g H cg ,H = chg ,H ,

2. if g ∈G and K É H are subgroups of G , then cg ,H t H
K = t

g H
g K cg ,K and cg ,K r H

K =
r

g H
g K cg ,H ,

3. if h ∈ H and H is a subgroup of G , then t H
H = r H

H = cg ,H ,

4. if K É H Ê L are subgroups of G , then

r H
K t H

L = ∑
g∈[K \H/L]

t K
K∩g Lcg ,K g∩Lr L

K g∩L
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where [K \ H/L] is a set of representatives of the double cosets modulo K

and L in H ,

5. all products of generators, different from those appearing in the previous

four relations are zero,

6. the sum of the elements t H
H over all subgroups H of G is equal to the iden-

tity element of µk (G).

A Mackey functor M for G over k is a µk (G)-module and a morphism of

Mackey functors is a morphism of µk (G)-modules.

The study of Mackey functors on compact Lie groups is described by Lewis

[Le]. Many of the fundamental results on Mackey functors for a finite group are

extended to Mackey functors for a compact Lie group. Mackey functors have

been studied on finite groups for a long time. The study of Mackey functors

for an infinite group has appeared recently: references are in [Lü2] and [MN].

There is also a new concept called globally-defined Mackey functors. They ap-

peared more recently and were studied in [We]. The main difference is that

the globally-defined Mackey functors are defined on all finite groups, where

the original Mackey functors are defined on subgroups of a particular group. A

second main difference is that the original Mackey functors only possess the in-

clusion and conjugation operations but the globally-defined Mackey functors

possess operations for all group homomorphisms.

Some examples of Mackey functors for finite groups are representations

rings, Burnside rings ([Se1],[Di]), group cohomology ([Fe]), equivariant coho-

mology, equivariant topological K -theory ([Se2]), algebraic K -theory of group

rings ([Lü1]), any stable equivariant (co-)homology theories ([LMM]), and higher

algebraic K -theory ([Ku]).

One application of Mackey functors to number theory has been to provide
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relations betweenλ- andµ-invariants in Iwasawa theory and between Mordell-

Weil groups, Shafarevich-Tate groups, Selmer groups and zeta functions of el-

liptic curves (see [BB]).

This thesis consists of four papers. The first develops the main goal and

theory of the thesis: put simply, it develops and extends the theory of Mackey

functors as an application of enriched category theory. The other papers arose

from specific issues that came up in the preparation of the first paper, particu-

larly, they concern techniques for constructing new Mackey and Green functors

from given ones. We saw that, in order for the Dress construction to produce a

Green functor from a given one, we needed a monoid in the lax centre of some

monoidal category. This led us to a general study of lax braidings and lax centre

for monoidal categories and more generally for promonoidal categories. The

second and third papers are the outcome; they have application beyond the

particular needs of the first paper. The final paper is a categorical treatment

of a theorem of Bouc [Bo2] concerning which functors compose with Mackey

functors to yield Mackey functors; again this result may be useful in other ap-

plications.

The first paper entitled Mackey functors on compact closed categories, coau-

thored with Professor Ross Street, was submitted to the Journal of Homotopy

and Related Structures (JHRS) to a special volume in memory of Saunders Mac

Lane. The second paper entitled Lax braidings and the lax centre, coauthored

with Dr. Brain Day and Professor Ross Street, will appear in Contemporary

Mathematics. The third paper entitled On centres and lax centres for promonoidal

categories, coauthored with Dr. Brain Day and Professor Ross Street, was sub-

mitted to “Charles Ehresmann 100 ans”, the 100th birthday anniversary confer-

ence of Charles Ehresmann which was held at the Universite de Picardie Jules

Verne in Amiens between October 7 to 9, 2005. The abstract will appear in
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Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume XLVI-3.

The fourth paper entitled Pullback and finite coproduct preserving functors be-

tween categories of permutation representations consists of the paper [PS2] as

modified in the light of [PS3]. The papers [PS2] and [PS3] are appearing in the

journal of Theory and Applications of Categories, Volume 16, Number 28, pp.

771–784, (2006) and Volume 18, Number 5, pp. 151–156, (2007) respectively.

Chapter 1 consists of the first paper entitled “Mackey functors on compact

closed categories”. This paper develops the theory of Mackey functors as an ap-

plication of enriched category theory. Mackey functors on a compact (= rigid=

autonomous) closed category T are defined and the properties of the category

Mky of Mackey functors on T are investigated. The category Mky is a symmet-

ric monoidal closed abelian category.

We now explain the main constructions and theorems of the sections of this

chapter. In Section 1.1 we give an introduction to this paper. In Section 1.2 we

define the compact closed category Spn(E ) of spans in a finitely complete cat-

egory E . The objects of Spn(E ) are the objects of E and morphisms U //V are

the isomorphisms classes of spans from U to V in the bicategory of spans in E .

The category Spn(E ) is a monoidal category using the cartesian product in E as

the tensor product in Spn(E ). Section 1.3 describes the direct sums in Spn(E ).

Here we take E to be a lextensive category. References for this notion are [Sc1],

[CLW], and [CL]. The coproduct U +V in E is the direct sum of U and V in

Spn(E ). The addition of two spans is also defined in Spn(E ). This makes the

category Spn(E ) into a monoidal commutative-monoid-enriched category. In

Section 1.4 we define the Mackey functors on a lextensive category E using the

approach described by Dress [Dr1] in the G-set case. A Mackey functor M from

E to the category Modk of k-modules consists of two functors M∗ : E //Modk ,

and M∗ : E op //Modk which coincide on objects and satisfy a couple of con-
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ditions. A morphism θ : M //N of Mackey functors M and N is a family of

morphisms θU : M(U ) //N (U ) for each U ∈ E which give two natural transfor-

mations θ∗ : M∗ //N∗ and θ∗ : M∗ //N∗. We denote the category of Mackey

functors from E to Modk by Mky(E ,Modk ) or simply Mky when E and k are

understood.

Proposition [1.4.1]. (Lindner [Li1]) The category Mky(E ,Modk ) of Mackey

functors, from a lextensive category E to the category Modk of k-modules, is

equivalent to [Spn(E ),Modk ]+, the category of coproduct-preserving functors.

Tensor product of Mackey functors is defined in Section 1.5. Here we work

on a general compact closed category T with finite products in place of Spn(E ).

This implies that T has direct sums (see [Ho]) and T is enriched in the monoidal

category V of commutative monoids. A Mackey functor on T is an additive

functor M : T //Modk . The tensor product of Mackey functors M and N is

defined by:

(M ∗N )(Z ) ∼=
∫ Y

M(Z ⊗Y ∗)⊗k N (Y )

using Day’s convolution structure ([Da1]). The Burnside functor J is defined on

objects as the free k-module on T (I ,U ) where I is the unit of T and U is an

object of T . It is a Mackey functor and becomes the unit for the tensor product

of Mackey functors. The category Mky becomes a symmetric monoidal closed

category. The closed structure is described in Section 1.6. For Mackey functors

M and N , the Hom Mackey functor is given by:

Hom(M , N )(V ) = Mky(M(V ∗⊗−), N ).

There is also another expression for this Hom Mackey functor, which is given

by:

Hom(M , N )(V ) = Mky(M , N (V ⊗−)).

Green functors are introduced in Section 1.7. A Green functor A on T is a
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Mackey functor with a monoidal structure

µ : A(U )⊗k A(V ) // A(U ⊗V )

and a morphism

η : k // A(1).

Green functors precisely become the monoids in the monoidal category Mky.

In Section 1.8 we describe the Dress construction of Green functors. The Dress

construction ([Bo5], [Bo6]) is a process to obtain a new Mackey functor MY

from a known Mackey functor M , where MY (U ) = M(U ⊗Y ) for fixed Y ∈ T .

We define the Dress construction

D : T ⊗Mky //Mky

by D(Y , M) = MY . In Proposition 1.8.1 we show that the Dress construction D

is a strong monoidal V -functor. We study the centres and the lax centres of

the monoidal category E /GC (where E /GC is the category of crossed G-sets) to

obtain the Dress construction for Green functors. The detailed study of centres

and lax centres for monoidal categories are in Chapters 2 and 3. We use the

following Theorem to induce the Dress construction on Green functors.

Theorem [1.8.4]. ([Bo2], [Bo3]) If Y is a monoid in E /Gc and A is a Green

functor for E over k then AY is a Green functor for E over k, where AY (X ) =
A(X ×Y ).

Finite dimensional Mackey functors are introduced in Section 1.9. Here we

assume the compact closed category is T = Spn(E ), where E = G-setfin is the

category of finite G-sets for a finite group G . Also we assume k is a field and

replace Modk by Vect, the category of vector spaces. A Mackey functor M :

T //Vect is called finite dimensional when each M(X ) is a finite-dimensional

vector space. We denote the category of finite dimensional Mackey functors by
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Mkyfin which is a full subcategory of Mky. We show that the tensor product of

finite-dimensional Mackey functors is finite dimensional (Proposition 1.9.1).

Theorem [1.9.2]. The monoidal category Mkyfin of finite-dimensional Mackey

functors on T is ∗-autonomous.

In Section 1.10 we study the cohomological Mackey functors and the re-

lation between the ordinary k-linear representations of a finite group G and

Mackey functors on G . Let Repk (G) denote the finite-dimensional k-linear rep-

resentations of G . The relation between Repk (G) and Mky(G) is shown in the

following Proposition:

Proposition[1.10.1]. The functor k̃∗ : Repk (G) //Mky(G) is fully faithful.

In Theorem 1.10.4 we also show that the adjoint functor Mky(G)fin
//Repk (G)

is strong monoidal. In Section 1.11 we give examples for the compact closed

category T from a Hopf algebra H (or quantum group). The category Comod(R)

becomes an example of T . The objects of the category Comod(R) (see [DMS])

are comonoids C in R (where R is the category of left H-modules) and mor-

phisms are isomorphisms classes of comodules S : C � //D from C to D . The

category Comod(R) is compact closed and a commutative-monoid enriched

category. We also show that Rop('R) is another example for T .

Section 1.12 reviews the modules of enriched category theory. Section 1.13

studies the modules over Green functors. A module M over a Green functor A

or A-module means A acts on M via the convolution ∗. We denote the cate-

gory of left A-modules for a Green functor A by Mod(A). The objects are A-

modules and morphisms are A-module morphisms θ : M //N . The category

Mod(A) is the category of Eilenberg-Moore algebras for the monad T = A ∗−
on [C ,Modk ], where C is a small V -category. In Section 1.14 we study the

Morita theory of Green functors. We define the monoidal bicategory Mod(W )

for W = Mky. The objects are monoids A in W and morphisms are modules
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M : A � //B (that is, algebras for the monad A ∗−∗B on Mky) with a two sided

action A ∗ M ∗B //M . Composition of morphisms is defined by a coequal-

izer. Green functors A and B are defined to be Morita equivalent when they

are equivalent in Mod(W ). In Proposition 1.14.1 we show that if A and B are

equivalent in Mod(W ) then Mod(A) ' Mod(B) as categories. The Cauchy com-

pletion QA of A is the W -category which consists of the modules M : J � //A

with right adjoints N : A � // J , where J is the unit of W . In the following Theo-

rem we obtain an explicit description of the objects of the Cauchy completion

of a monoid A in the monoidal category W = Mky.

Theorem[1.14.3]. The Cauchy completion QA of the monoid A in Mky con-

sists of all the retracts of modules of the form

k⊕
i=1

A(Yi ×−)

for some Yi ∈ Spn(E ), i = 1, . . . ,k.

Chapter 2 consists of the paper entitled “Lax braidings and the lax centre".

This highlights the notions of lax braiding and lax centre for monoidal cate-

gories and more generally for promonoidal categories. Braidings for monoidal

categories were introduced in [JS2] and its forerunners. The centre Z X of a

monoidal category X was introduced in [JS1] in the process of proving that

the free tortile monoidal category has another universal property. The centre

of a monoidal category is a braided monoidal category. The centre is gener-

ally a full subcategory of the lax centre, but sometimes the two coincide. We

examine the cases where these two become equal.

We explain the main constructions and theorems of the sections of this

chapter. An introduction is given at the beginning. In Section 2.1 we study

the lax braidings for promonoidal categories. Let V be a complete cocomplete

symmetric closed monoidal category and C be a V -enriched category in the

sense of [Ke]. The category C is called promonoidal when there are two V -
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functors P : C op⊗C op⊗C //V and J : C //V (called a promagmal structure

on C ) satisfying the associative, and left and right unit constraints. Symmetries

for promonoidal categories were defined by Day [Da1] and braidings by Joyal

and Street [JS2]. A lax braiding for a promonoidal category C is a V -natural

family of morphisms P (A,B ;C ) // P (B , A;C ) which satisfies some commuta-

tive diagrams. A braiding is a lax braiding with each P (A,B ;C ) //P (B , A;C )

invertible. We reprove a result of Yetter [Ye] in Proposition 2.1.3 that if C is a

right autonomous (meaning that each object has a right dual) monoidal cate-

gory then any lax braiding on C is necessarily a braiding.

In Section 2.2 we define the lax centre and centre of a promonoidal cate-

gory C . The objects of the lax centre ZlC of a promonoidal category C are

pairs (A,α) where A is an object of C andα is a V -natural family of morphisms

αX ,Y : P (A, X ;Y ) //P (X , A;Y ) satisfying a couple of commutative diagrams.

The Hom object ZlC ((A,α), (B ,β)) is defined to be the equalizer in V of the

two composed paths around the following square.

C (A,B)

∫
X ,Y

[P (B , X ;Y ),P (A, X ;Y )]P //

∫
X ,Y

[P (B , X ;Y ),P (X , A;Y )]

[1,α]
��∫

X ,Y
[P (X ,B ;Y ),P (X , A;Y )]

P

��

[β,1]
//

The lax centre ZlC of the promonoidal category C is often promonoidal. The

V -functor ZlC //C which take (A,α) to A is a strong promonoidal functor. If

C is monoidal then the category ZlC is also a monoidal category and ZlC //C

is strong monoidal. The centre Z C of C is the full sub-V -category of ZlC

consisting the objects (A,α) where each αX ,Y : P (A, X ;Y ) //P (X , A;Y ) is in-

vertible. Clearly Z C is a braided monoidal category.

The lax centre of a monoidal category is studied in Section 2.3. The lax cen-

tre ZlC of a monoidal V -category C has objects pairs (A,u) where A is an ob-
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ject of C and u is a V -natural family of morphisms uB : A ⊗B //B ⊗ A which

satisfy the following two commutative diagrams.

A⊗B ⊗C B ⊗C ⊗ A
uB⊗C //

B ⊗ A⊗C

uB⊗1C ##G
GGGGGGGGG

1B⊗uC

;;wwwwwwwwww

A⊗ I I ⊗ A
uI //

A

∼=
{{ww

ww
ww

ww
ww

w

∼=
##G

GG
GG

GG
GG

GG

When V = Set and C is monoidal, the lax centre of C was used by P. Schauen-

burg [Sc1] under the name of “weak centre". One reason for being interested in

the lax centre is the following result.

Theorem[2.3.7]. Suppose an object F of a monoidal V -category F is equipped

with the structure of monoid in the lax centre ZlF of F . Then −⊗F : F //F

is equipped with the structure of monoidal V -functor.

In the following two Corollaries we show two cases in which the lax centre

becomes equal to the centre. Corollary 2.3.5 shows that, for any Hopf algebra

H , the lax centre of the monoidal category ComodH of left H-comodules is

equal to its centre. Corollary 2.3.6 shows that, for any finite dimensional Hopf

algebra H , the lax centre of the monoidal category ModH of left H-modules is

equal to its centre. In Section 2.4 we study the lax centre and centre of cartesian

monoidal categories where V = Set. The objects of the lax centre ZlC are pairs

(A,φ) where A is in C and φ is a family of functions φX : C (A, X ) //C (X , X )

such that the following diagram commutes for all f : X // Y in C .

C (A, X ) C (X , X )
φX //

C (X ,Y )

C (1X , f )

&&MMMMMMMMM

C (A,Y )

C (1A , f )

��
C (Y ,Y )

φY

//
C ( f ,1Y )

88qqqqqqqqq

A morphism g : (A,φ) // (A′,φ′) in ZlC is a morphism g : A // A′ in C such

that φX (v g ) = φ′
X (v) for all v : A′ // X . The core CX of the category X with
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finite products in the sense of Freyd [Fr2] is precisely a terminal object in ZlX .

If the core exists, the lax centre can be written as

ZlX ∼=X /CX .

In Theorem 2.4.2 we show that for any small category C equipped with the

promonoidal structure whose convolution gives the cartesian monoidal struc-

ture on [C ,Set], there is an equivalence and an isomorphism of categories:

[ZlC ,Set] ' //[C ,Set]/C[C ,Set]
∼= //Zl [C ,Set].

In Theorem 2.4.5 we show that, if C is a groupoid with a promonoidal struc-

ture, then the lax centre of C is equal to the centre of C . We also show that if

the convolution of the promonoidal structure of C gives a cartesian monoidal

structure on [C ,Set] then the lax centre of [C ,Set] is equal to its centre. In the

following Theorem we show another case where the lax centre coincides with

the centre of the cartesian monoidal category [C ,Set].

Theorem [2.4.4]. If C is a category in which every endomorphism is invert-

ible then the lax centre Zl [C ,Set] of the cartesian monoidal category [C ,Set] is

equal to the centre Z [C ,Set].

In Section 2.5 we develop the theory of central cohypomonads for a monoidal

V -category X . The lax centre ZlX is the V -category of coalgebras for a co-

hypomonad. A cohypomonad on X is a monoidal functor G : ∆op // [X ,X ]

where ∆ is the category with objects the finite ordinals 〈n〉 = {1,2, . . . ,n}. The

morphisms of ∆ are order-preserving functions. A coalgebra for G is an object

A of X together with a coaction morphism satisfying some commutative dia-

grams.

Proposition [2.5.1]. Let X be a complete closed monoidal V -category with

a small dense sub-V -category. The structure just defined on G :∆op // [X ,X ]
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makes it a normal cohypomonad for which X G is equivalent to the lax centre of

X .

Chapter 3 consists of the paper entitled “On centres and lax centres for

promonoidal categories". This reviews the notions of lax braiding and lax cen-

tre for monoidal and promonoidal categories and generalizes them to the V -

enriched context. To a large extent, this is a conference paper summarizing

some results of the last Chapter and of [DS4]. We examine when the centre of

[C ,V ] with the convolution monoidal structure (in the sense of [Da1]) is again

a functor category [D ,V ].

We explain the main constructions and theorems of the sections of this

chapter. Section 3.1 is the introduction of this paper. Section 3.2 reviews some

definitions. A V -multicategory is a V -category C equipped with a sequence of

V -functors

Pn : C op ⊗ . . .⊗C op︸ ︷︷ ︸
n

⊗C //V ,

where we write J for P0 : C //V , P1 for C (−,∼) : C op⊗C //V which is a hom

V -functor, and we write P for P2. Also there are substitution operations which

are V -natural families of morphisms satisfying the associative and unit condi-

tions. For V = Set, this is a multicategory in the sense of [La4]. A promonoidal

V -category [Da1] is a V -multicategory C for which the substitution opera-

tions are invertible. A monoidal V -category is a promonoidal V -category C

for which P and J are representable. That is, there are V -natural isomorphisms

P (A,B ;C ) ∼=C (A �B ,C ), JC ∼=C (U ,C ).

We define lax braiding and braiding for a promonoidal V -category C .

In Section 3.3 we define the lax centre and centre of a monoidal V -category

C . The lax centre ZlC of a monoidal V -category C has objects (A,u) where A
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is an object of C and u is a V -natural family of morphisms

uB : A �B //B � A

such that the following two diagrams commute:

(A �B)�C (B � A)�C
uB �1 //

B � (A �C )

∼=
&&MMMMMMMMM

B � (C � A)

1�uC

��

A � (B �C )

∼=
xxqqqqqqqqq

(B �C )� A)

uB �C

��

∼=
//

A �U U � A
uU //

A .

∼=
~~}}

}}
}}

}}
}

∼=
  A

AA
AA

AA
AA

The monoidal structure on ZlC is defined on objects by

(A,u)� (B , v) = (A �B , w)

where wC : (A �B)�C //C � (A �B) is the composite

A � (B �C )
1�vC //A � (C �B)

∼= //(A �C )�B
uC �1 //(C � A)�B

conjugated by canonical isomorphisms. The lax centre ZlC is a lax-braided

monoidal V -category. The lax braiding on ZlC is defined to be the family of

morphisms

c(A,u),(B ,v) : (A �B , w) // (B � A, w̃)

lifting uB : A � B //B � A to ZlC . The centre Z C of C is the full monoidal

sub-V -category of ZlC consisting of the objects (A,u) with each uB invertible.

Clearly Z C is a braided monoidal V -category. We generalize the constructions

of the lax centre and the centre to promonoidal V -categories C .
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In Section 3.4 we study the lax centre of cartesian monoidal categories C .

We identify the objects of ZlC with pairs (A,θ) where A is an object of C and

θX : A×X // X is a family of morphisms.

Theorem [3.4.1]. Let C denote a small category with promonoidal structure

such that the convolution structure on [C ,Set] is cartesian product.

1. The adjunction Ψ̂ a Ψ̃ defines an equivalence of lax-braided monoidal

categories

Zl [C ,Set] ' [ZlC ,Set]

which restricts to a braided monoidal equivalence

Z [C ,Set] ' [Z C ,Set].

2. If every endomorphism in the category C is invertible then ZlC =Z C .

3. If C is a groupoid then

Z C =ZlC = [ΣZ,C ]

(where ΣZ is the additive group of the integers as a one-object groupoid).

In Section 3.5 we study the autonomous case. Here we consider C to be a

closed monoidal V -category with tensor product � and unit U .

Theorem [3.5.2]. (V = Vectk ) Suppose C is a promonoidal k-linear category

with finite-dimensional homs. Let F = [C ,V ] have the convolution monoidal

structure. Then

Z F =ZlF ∼=F M ' [CM ,V ]

where CM is the Kleisli category for the promonad M on C .

In Section 3.6 we study monoids in the lax centre of a monoidal V -category

C . A monoid (A,u) in the lax centre ZlC determines a canonical enrichment

of the V -functor

−� A : C //C
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to a monoidal functor:

X � A �Y � A
1�uY �1 // X �Y � A � A

1�1�µ // X �Y � A

U
η // A ∼=U � A.

Chapter 4 consists of the paper [PS2] as modified in the light of [PS3]. This

studies the finite coproduct and pullback preserving functors between cate-

gories of permutation representations of finite groups and gives a categorical

explanation of the work of Serge Bouc [Bo1]. A permutation representation of

a finite group G or a finite left G-set is a finite set X together with a function

(called action) G ×X // X , (g , x) � // g x such that 1x = x and g1(g2x) = (g1g2)x

for g1, g2 ∈ G and x ∈ X . We write G-setfin for the category of finite left G-sets

(that is, of permutation representations of G) with left G-morphisms where a

left G-morphism f : X // Y is a function satisfying f (g x) = g f (x). Let M be a

Mackey functor on a finite group H . Then M : Spn(H-setfin) //Modk is a co-

product preserving functor. If F : G-setfin
//H-setfin is a pullback and finite

coproduct preserving functor (where G is finite) then we get a functor

M ◦Spn(F ) : Spn(G-setfin) //Modk

which is a Mackey functor on G .

Bouc [Bo2] studied the pullback and finite coproduct preserving functors

F : G-setfin
//H-setfin interms of (Gop × H)-sets A (where Gop) is G with op-

posite multiplication). The category (Gop × H)-set of such A is equivalent to

the category of finite colimit preserving functors L : G-setfin
//H-setfin. In this

chapter we explained these two constructions.

Let A be a (Gop ×H)-set. For all (K op ×G)-sets B , where K ,G , H are all finite

groups, Bouc ([Bo1]) defines the (K op ×H)-set

A ◦G B = (A∧G B)/G .
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Here A∧G B is a (K op ×G ×H)-set given by

A∧G B = {(a,b) ∈ A×B | g ∈G , ag = a ⇒ there exists k ∈ K with g b = bk}.

This paper provides a categorical explanation for the following Theorem of

Bouc.

Theorem [4.1.1]. ([Bo5]) Suppose K ,G and H are finite groups.

(i) If A is a finite (Gop ×H)-set then the functor

A ◦G − : G-setfin
//H-setfin

preserves finite coproducts and pullbacks.

(ii) Every functor F : G-setfin
//H-setfin which preserves finite coproducts and

pullbacks is isomorphic to one of the form A ◦G −.

(iii) The functor F in (ii) preserves terminal objects if and only if A is transitive

(connected) as a right G-setfin.

(iv) If A is as in (i) and B is a finite (K op ×G)-set then the composite functor

K -setfin
B◦K − // G-setfin

A◦G− // H-setfin

is isomorphic to (A ◦G B)◦K −.

We explain the main constructions and theorems of the sections of this

chapter. Section 4.1 is the introduction of this paper. In Section 4.2 we provide

a direct proof of the well-known representability theorem for the case where

“small” means “finite”.

Theorem [4.2.1]. (Special representability theorem) Suppose A is a category

with the following properties:

(i) each homset A (A,B) is finite;

(ii) finite limits exist;

(iii) there is a cogenerator Q;
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(iv) A is finitely well powered.

Then every finite limit preserving functor T : A // setfin is representable.

In Section 4.3 we study a category A with finite coproducts. An object C

of A is called connected when the functor A (C ,−) : A // Set preserves finite

coproducts. We write Conn(A ) for the category of connected objects of A and

Cop(A ,X ) for the category of finite coproduct preserving functors from A to

X . For any small category C , we write Fam(C op) for the free finite coproduct

completion of C op. The objects are families (Ci )i∈I where Ci are objects of C

and I is finite. A morphism (ξ, f ) : (Ci )i∈I
// (D j ) j∈J consists of a function ξ :

I // J and a family f = ( fi )i∈I of morphisms fi : Dξ(i )
//Ci in C . In Proposition

4.3.3 we show that the following is an equivalence of categories

Fam(Conn(A )op) ' CopPb(A ,setfin)

where the category A has finite coproducts and the properties of Theorem

4.2.1 and CopPb(A ,B) is the category of finite coproduct and pullback pre-

serving functors from A to B. In Section 4.4 we study the application to per-

mutation representations. Let N : CG
//G-setfin denote the inclusion functor

and define the functor

Ñ : G-setfin
// [C op

G ,setfin]

by Ñ X = G-setfin(N−, X ). In Proposition 4.4.4 we show that the functor Ñ in-

duces an equivalence of categories

G-setfin ' Fam(CG ).

In Section 4.5 we study a factorization for G-morphisms. We use these mor-

phisms of a factorization system on G-set to describe the finite coproduct com-

pletion Fam(C op
G ) of the dual of the category of connected G-sets. For any G-set
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X , the set X /G = {C ⊆ X : C is an orbit ofX } is a connected sub-G-set of X . A G-

morphism f : X // Y is said to be slash inverted when the direct image function

f /G : X /G // Y /G of f is a bijection. A G-morphism f : X // Y is said to be or-

bit injective when orb(x1) = orb(x2) and f (x1) = f (x2) imply x1 = x2. In Proposi-

tion 5.2 we prove that the slash inverted and orbit injective G-morphisms form

a factorization system (in the sense of [FK]) on the category of G-sets.

In Section 4.6 we introduce a new category BG of G-sets. The objects of

BG are all the finite G-sets and morphisms are the isomorphisms classes of

the span (u,S, v) : X // Y in which u : S // X is slash inverted and v : S // Y

is orbit injective. In Proposition 4.6.1 we prove that the subcategory BG of

Spn(G-setfin) is closed under finite coproducts. We obtain a finite coproduct

preserving functor Σ : Fam(C op
G ) //BG .

Theorem [4.6.3]. The functor Σ : Fam(C op
G ) //BG is an equivalence of cat-

egories.

In Corollary 4.6.4 we obtain the following equivalence of categories:

BG ' CopPb(G-setfin,setfin).

Then we obtain the following corollary:

Corollary [4.6.6]. There is an equivalence

BGop ' CopPb(G-setfin,setfin), A � // A ◦G −.

In Section 4.7 we construct a bicategory Bouc of finite groups. We define the

category Bouc(G , H) as the pullback of the inclusion of BGop in Spn(Gop-setfin)

along the forgetful functor Spn(Gop×H-setfin) // Spn(Gop-setfin). That is, Bouc(G , H)

is the subcategory of Spn(Gop × H-setfin) consisting of all the objects yet, as

morphisms, only the isomorphism classes of spans (u,S, v) in Gop×H-setfin for

which u is slash inverted and v is orbit injective as G-morphisms.
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Theorem [4.7.1]. There is an equivalence of categories

Bouc(G , H) ' CopPb(G-setfin, H-setfin), A � // A ◦G −.

In Section 4.8 we study the applications to Mackey functors. If the functor

F : G-setfin
//H-setfin preserves pullbacks then this induces a functor Spn(F ) :

Spn(G-setfin) // Spn(H-setfin) (since composition of spans only involves pull-

backs). If F also preserves finite coproducts then Spn(F ) preserves direct sums.

Then we can obtain an exact functor

F̄ : Mkyfin(H) //Mkyfin(G)

defined by F̄ (N ) = N◦Spn(F ) for all N ∈ Mkyfin(H), where Mkyfin is the category

of finite-dimensional Mackey functors. The functor F̄ has a left adjoint

Mkyfin(F ) : Mkyfin(G) //Mkyfin(H).

Let AbCatk denote the 2-category of abelian k-linear categories, k-linear func-

tors with right exact right adjoints, and natural transformations. In Corollary

4.8.1 we obtain a homomorphism of bicategories

Mkyfin : Bouc //AbCatk

given by (A : G //H) � // (Mkyfin(A ◦G −) : Mkyfin(G) //Mkyfin(H)).

This concludes the thesis.
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MACKEY FUNCTORS ON COMPACT CLOSED CATEGORIES

ELANGO PANCHADCHARAM AND ROSS STREET

Dedicated to the memory of Saunders Mac Lane

ABSTRACT. We develop and extend the theory of Mackey functors as an application of
enriched category theory. We define Mackey functors on a lextensive category E and
investigate the properties of the category of Mackey functors on E . We show that it is
a monoidal category and the monoids are Green functors. Mackey functors are seen as
providing a setting in which mere numerical equations occurring in the theory of groups
can be given a structural foundation. We obtain an explicit description of the objects of
the Cauchy completion of a monoidal functor and apply this to examine Morita equiv-
alence of Green functors.

1. INTRODUCTION

Groups are used to mathematically understand symmetry in nature and in mathe-
matics itself. Classically, groups were studied either directly or via their representations.
In the last 40 years, arising from the latter, groups have been studied using Mackey func-
tors.

Let k be a field. Let Rep(G) = Repk (G) be the category of k-linear representations of
the finite group G . We will study the structure of a monoidal category Mky(G) where
the objects are called Mackey functors. This provides an extension of ordinary repre-
sentation theory. For example, Rep(G) can be regarded as a full reflective sub-category
of Mky(G); the reflection is strong monoidal (= tensor preserving). Representations of G
are equally representations of the group algebra kG ; Mackey functors can be regarded
as representations of the "Mackey algebra" constructed from G . While Rep(G) is com-
pact closed (= autonomous monoidal), we are only able to show that Mky(G) is star-
autonomous in the sense of [Ba].

Mackey functors and Green functors (which are monoids in Mky(G)) have been stud-
ied fairly extensively. They provide a setting in which mere numerical equations occur-
ring in group theory can be given a structural foundation. One application has been to
provide relations between λ- and µ-invariants in Iwasawa theory and between Mordell-
Weil groups, Shafarevich-Tate groups, Selmer groups and zeta functions of elliptic curves
(see [BB]).

Our purpose is to give the theory of Mackey functors a categorical simplification and
generalization. We speak of Mackey functors on a compact (= rigid = autonomous)
closed category T . However, when T is the category Spn(E ) of spans in a lextensive
category E , we speak of Mackey functors on E . Further, when E is the category (topos)
of finite G-sets, we speak of Mackey functors on G .

The authors are grateful for the support of the Australian Research Council Discovery Grant DP0450767,
and the first author for the support of an Australian International Postgraduate Research Scholarship, and an
International Macquarie University Research Scholarship.
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2 ELANGO PANCHADCHARAM AND ROSS STREET

Sections 2-4 set the stage for Lindner’s result [Li1] that Mackey functors, a concept
going back at least as far as [Gr], [Dr] and [Di] in group representation theory, can be re-
garded as functors out of the category of spans in a suitable category E . The important
property of the category of spans is that it is compact closed. So, in Section 5, we look at
the category Mky of additive functors from a general compact closed category T (with
direct sums) to the category of k-modules. The convolution monoidal structure on Mky
is described; this general construction (due to Day [Da1]) agrees with the usual tensor
product of Mackey functors appearing, for example, in [Bo1]. In fact, again for general
reasons, Mky is a closed category; the internal hom is described in Section 6. Various
convolution structures have been studied by Lewis [Le] in the context of Mackey func-
tors for compact Lie groups mainly to provide counter examples to familiar behaviour.

Green functors are introduced in Section 7 as the monoids in Mky. An easy con-
struction, due to Dress [Dr], which creates new Mackey functors from a given one, is
described in Section 8. We use the (lax) centre construction for monoidal categories
to explain results of [Bo2] and [Bo3] about when the Dress construction yields a Green
functor.

In Section 9 we apply the work of [Da4] to show that finite-dimensional Mackey func-
tors form a ∗-autonomous [Ba] full sub-monoidal category Mkyfin of Mky.

Section 11 is rather speculative about what the correct notion of Mackey functor
should be for quantum groups.

Our approach to Morita theory for Green functors involves even more serious use of
enriched category theory: especially the theory of (two-sided) modules. So Section 12
reviews this theory of modules and Section 13 adapts it to our context. Two Green func-
tors are Morita equivalent when their Mky-enriched categories of modules are equiv-
alent, and this happens, by the general theory, when the Mky-enriched categories of
Cauchy modules are equivalent. Section 14 provides a characterization of Cauchy mod-
ules.

2. THE COMPACT CLOSED CATEGORY Spn(E )

Let E be a finitely complete category. Then the category Spn(E ) can be defined as
follows. The objects are the objects of the category E and morphisms U // V are the
isomorphism classes of spans from U to V in the bicategory of spans in E in the sense
of [Bé]. (Some properties of this bicategory can be found in [CKS].) A span from U to V ,
in the sense of [Bé], is a diagram of two morphisms with a common domain S, as in

(s1,S, s2) :

S

V .

s2

��<
<<

<<
<<

U

s1

����
��

��
�

An isomorphism of two spans (s1,S, s2) : U // V and (s′1,S′, s′2) : U // V is an invertible
arrow h : S // S′ such that s1 = s′1 ◦h and s2 = s′2 ◦h.

S

V

s2

##FFFFFFFFF

U

s1

{{xxxxxxxxx

S′

h∼=

��s′1

aaDDDDDDDDD s′2

==zzzzzzzzz
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The composite of two spans (s1,S, s2) : U // V and (t1,T, t2) : V // W is defined to be
(s1 ◦proj1,T ◦S, t2 ◦proj2) : U // W using the pull-back diagram as in

S ×V T = T ◦S

T

proj2

��9
99

99
9

W .

t2

��9
99

99
99

S

proj1

����
��

��

U

s1

����
��

��
�

V

s2

��9
99

99
99

t1

����
��

��
�

pb

This is well defined since the pull-back is unique up to isomorphism. The identity span
(1,U ,1) : U // U is defined by

U

U

1

��<
<<

<<
<<

U

1

����
��

��
�

since the composite of it with a span (s1,S, s2) : U // V is given by the following diagram
and is equal to the span (s1,S, s2) : U // V

S

S

1

��9
99

99
99

V .

s2

��9
99

99
99

U

s1

����
��

��
�

U

1

����
��

��
�

U

1

��9
99

99
99

s1

����
��

��
�

pb

This defines the category Spn(E ). We can write Spn(E )(U ,V ) ∼= [E /(U ×V )] where
square brackets denote the isomorphism classes of morphisms.

Spn(E ) becomes a monoidal category under the tensor product

Spn(E )×Spn(E )
× //Spn(E )

defined by

(U ,V ) � //U ×V

[U
S //U ′ , V

T //V ′ ] � // [U ×V
S×T //U ′×V ′ ].

This uses the cartesian product in E yet is not the cartesian product in Spn(E ). It
is also compact closed; in fact, we have the following isomorphisms: Spn(E )(U ,V ) ∼=
Spn(E )(V ,U ) and Spn(E )(U ×V ,W ) ∼= Spn(E )(U ,V ×W ). The second isomorphism can
be shown by the following diagram

S

W
��<

<<
<<

<<

U ×V
����

��
��

�
oo � //

S

W
��<

<<
<<

<<

U
����

��
��

�

V
��

oo � //

S

V ×W .
��<

<<
<<

<<

U
����

��
��

�
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4 ELANGO PANCHADCHARAM AND ROSS STREET

3. DIRECT SUMS IN Spn(E )

Now we assume E is lextensive. References for this notion are [Sc], [CLW], and [CL].
A category E is called lextensive when it has finite limits and finite coproducts such that
the functor

E /A×E /B // E /A+B ;

X

f

��
A

,

Y

g

��
B

� //

X +Y

f +g

��
A+B

is an equivalance of categories for all objects A and B . In a lextensive category, coprod-
ucts are disjoint and universal and 0 is strictly initial. Also we have that the canonical
morphism

(A×B)+ (A×C ) // A× (B +C )

is invertible. It follows that A×0 ∼= 0.
In Spn(E ) the object U +V is the direct sum of U and V. This can be shown as follows

(where we use lextensivity):

Spn(E )(U +V ,W ) ∼= [E /((U +V )×W )]
∼= [E /((U ×W )+ (V ×W ))]

' [E /(U ×W )]× [E /(V ×W )]
∼= Spn(E )(U ,W )×Spn(E )(V ,W );

and so Spn(E )(W,U +V ) ∼= Spn(E )(W,U )×Spn(E )(W,V ). Also in the category Spn(E ),
0 is the zero object (both initial and terminal):

Spn(E )(0, X ) ∼= [E /(0×X )] ∼= [E /0] ∼= 1

and so Spn(E )(X ,0) ∼= 1. It follows that Spn(E ) is a category with homs enriched in
commutative monoids.

The addition of two spans (s1,S, s2) : U // V and (t1,T, t2) : U // V is given by
(∇◦ (s1 + t1),S +T,∇◦ (s2 + t2)) : U // V as in

S

V

s2

��<
<<

<<
<<

U

s1

����
��

��
�

+
T

V

t2

��<
<<

<<
<<

U

t1

����
��

��
�

=

S +T

V +V

s2+t2

��5
55

55
5

V .

∇
��5

55
55

5U +U

s1+t1

��		
		

		

U

∇
��		

		
		

[s1,t1]

��

[s2,t2]

��

Summarizing, Spn(E ) is a monoidal commutative-monoid-enriched category.
There are functors (−)∗ : E // Spn(E ) and (−)∗ : E op // Spn(E ) which are the iden-

tity on objects and take f : U // V to f∗ = (1U ,U , f ) and f ∗ = ( f ,U ,1U ), respectively.

For any two arrows U
f //V

g //W in E , we have (g ◦ f )∗ ∼= g∗ ◦ f∗ as we see from
the following diagram

U

V

f

��;
;;

;;

W .

g

��;
;;

;;
U

1

����
��

�

U

1

����
��

�

V

f

��;
;;

;; 1

����
��

�
pb
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Similarly (g ◦ f )∗ ∼= f ∗ ◦ g∗.

4. MACKEY FUNCTORS ON E

A Mackey functor M from E to the category Modk of k-modules consists of two func-
tors

M∗ : E // Modk , M∗ : E op // Modk

such that:

(1) M∗(U ) = M∗(U ) (= M(U )) for all U in E
(2) for all pullbacks

P V
q //

W

s

��
U

p

��
r

//

in E , the square (which we call a Mackey square)

M(U ) M(W )
M∗(r )

//

M(V )

M∗(s)

OOM(P )

M∗(p)

OO
M∗(q) //

commutes, and
(3) for all coproduct diagrams

U
i //U +V V

joo

in E , the diagram

M(U )
M∗(i )

// M(U +V )
M∗(i )oo M∗( j ) //

M(V )
M∗( j )

oo

is a direct sum situation in Modk . (This implies M(U +V ) ∼= M(U )⊕M(V ).)

A morphism θ : M // N of Mackey functors is a family of morphisms θU : M(U ) //

N (U ) for U in E which defines natural transformations θ∗ : M∗ // N∗ and θ∗ : M∗ // N∗.

Proposition 4.1. (Lindner [Li1]) The category Mky(E ,Modk ) of Mackey functors, from a
lextensive category E to the category Modk of k-modules, is equivalent to [Spn(E ),Modk ]+,
the category of coproduct-preserving functors.

Proof. Let M be a Mackey functor from E to Modk . Then we have a pair (M∗, M∗) such
that M∗ : E // Modk , M∗ : E op // Modk and M(U ) = M∗(U ) = M∗(U ). Now define a
functor M : Spn(E ) // Modk by M(U ) = M∗(U ) = M∗(U ) and

M


S

V

s2

��9
99

99
99

U

s1

����
��

��
�

 = (
M(U ) M(S)

M∗(s1) // M(V )
M∗(s2) // )

.
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6 ELANGO PANCHADCHARAM AND ROSS STREET

We need to see that M is well-defined. If h : S // S′ is an isomorphism, then the follow-
ing diagram

S′ S′1 //

S′

1

��
S

h−1

��

h
//

is a pull back diagram. Therefore M∗(h−1) = M∗(h) and M∗(h−1) = M∗(h). This gives,
M∗(h)−1 = M∗(h). So if h : (s1,S, s2) // (s′1,S′, s′2) is an isomorphism of spans, we have
the following commutative diagram.

M(U )

M∗(s1)

??����������

M∗(s′1)
��?

??
??

??
??

?

M(S)

M∗(s2)

��?
??

??
??

??
?

M∗(h)

���
� �
� �
� �
� �
� �
� �
� �
� �

M(S′)

M∗(s′2)

??����������

M∗(h)

OO�����������������

M(V )

Therefore we get

M∗(s2)M∗(s1) = M∗(s′2)M∗(s′1).

From this definition M becomes a functor, since

M



P

T

p2

��<
<<

<<
<<

W

t2

��<
<<

<<
<<

S

p1

����
��

��
�

U

s1

����
��

��
�

V

s2

��<
<<

<<
<<

t1

����
��

��
�

pb


=

M(U ) M(P )
M∗(p1s1) // M(W )

M∗(t2p2) //

M(S)

M∗(s1)
��9

99
99

99

M(V )

M∗(s2)
��9

99
99

99
M(T )

M∗(t1)

BB�������

M∗(t2)

EE�������

M∗(p1)

CC�������

M∗(p2)

��<
<<

<<
<<

Mackey

= ( M(U ) M(V )
M(s1,S,s2)// M(W )

M(t1,T,t2)// ),

where P = S ×V T and p1 and p2 are the projections 1 and 2 respectively, so that

M((t1,T, t2)◦ (s1,S, s2)) = M(t1,T, t2)◦M(s1,S, s2).

The value of M at the identity span (1,U ,1) : U // U is given by

M


U

U

1

��<
<<

<<
<<

U

1

����
��

��
�

 = ( M(U ) M(U )
1 // M(U )

1 // )

= (1 : M(U ) M(U )// ).

Condition (3) on the Mackey functor clearly is equivalent to the requirement that
M : Spn(E ) // Modk should preserve coproducts.
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Conversely, let M : Spn(E ) // Modk be a functor. Then we can define two functors
M∗ and M∗, referring to the diagram

E Spn(E )
(−)∗ // Modk ,

M //

E op
(−)∗

77nnnnnnnn

by putting M∗ = M ◦ (−)∗ and M∗ = M ◦ (−)∗. The Mackey square is obtained by using
the functoriality of M on the composite span

s∗ ◦ r∗ = (p,P, q) = q∗ ◦p∗.

The remaining details are routine. �

5. TENSOR PRODUCT OF MACKEY FUNCTORS

We now work with a general compact closed category T with finite products. It fol-
lows (see [Ho]) that T has direct sums and therefore that T is enriched in the monoidal
category V of commutative monoids. We write ⊗ for the tensor product in T , write I
for the unit, and write (−)∗ for the dual. The main example we have in mind is Spn(E ) as
in the last section where ⊗=×, I = 1, and V ∗ =V . A Mackey functor on T is an additive
functor M : T // Modk .

Let us review the monoidal structure on the category V of commutative monoids;
the binary operation of the monoids will be written additively. It is monoidal closed.
For A,B ∈V , the commutative monoid

[A,B ] = { f : A // B | f is a commutative monoid morphism},

with pointwise addition, provides the internal hom and there is a tensor product A ⊗B
satisfying

V (A⊗B ,C ) ∼=V (A, [B ,C ]).

The construction of the tensor product is as follows. The free commutative monoid F S
on a set S is

F S = {u : S //N | u(s) = 0 for all but a finite number of s ∈ S} ⊆NS .

For any A,B ∈V ,

A⊗B =
(

F (A×B)/(a +a′,b) ∼ (a,b)+ (a′,b)

(a,b +b′) ∼ (a,b)+ (a,b′)

)
.

We regard T and Modk as V -categories. Every V -functor T // Modk preserves
finite direct sums. So [T ,Modk ]+ is the V -category of V -functors.

For each V ∈ V and X an object of a V -category X , we write V ⊗ X for the object
(when it exists) satisfying

X (V ⊗X ,Y ) ∼= [V ,X (X ,Y )]

V -naturally in Y . Also the coend we use is in the V -enriched sense: for the functor
T : C op ⊗C // X , we have a coequalizer∑

V ,W
C (V ,W )⊗T (W,V ) //

// ∑
V

T (V ,V ) //
∫ V

T (V ,V )

when the coproducts and tensors exist.
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8 ELANGO PANCHADCHARAM AND ROSS STREET

The tensor product of Mackey functors can be defined by convolution (in the sense
of [Da1]) in [T ,Modk ]+ since T is a monoidal category. For Mackey functors M and N ,
the tensor product M ∗N can be written as follows:

(M ∗N )(Z ) =
∫ X ,Y

T (X ⊗Y , Z )⊗M(X )⊗k N (Y )

∼=
∫ X ,Y

T (Y , X ∗⊗Z )⊗M(X )⊗k N (Y )

∼=
∫ X

M(X )⊗k N (X ∗⊗Z )

∼=
∫ Y

M(Z ⊗Y ∗)⊗k N (Y ).

the last two isomorphisms are given by the Yoneda lemma.
The Burnside functor J is defined to be the Mackey functor on T taking an object U

of T to the free k-module on T (I ,U ). The Burnside functor is the unit for the tensor
product of the category Mky.

This convolution satisfies the necessary commutative and associative conditions for
a symmetric monoidal category (see [Da1]). [T ,Modk ]+ is also an abelian category (see
[Fr]).

When T and k are understood, we simply write Mky for this category [T ,Modk ]+.

6. THE HOM FUNCTOR

We now make explicit the closed structure on Mky. The Hom Mackey functor is de-
fined by taking its value at the Mackey functors M and N to be

Hom(M , N )(V ) = Mky(M(V ∗⊗−), N ),

functorially in V . To see that this hom has the usual universal property with respect
to tensor, notice that we have the natural bijections below (represented by horizontal
lines).

(L∗M)(U ) // N (U ) natural in U

L(V )⊗k M(V ∗⊗U ) // N (U ) natural in U and dinatural in V

L(V ) // Homk (M(V ∗⊗U ), N (U )) dinatural in U and natural in V

L(V ) //
∫

U
Homk (M(V ∗⊗U ), N (U )) natural in V

L(V ) // Mky(M(V ∗⊗−), N ) natural in V

We can obtain another expression for the hom using the isomorphism

T (V ⊗U ,W ) ∼=T (U ,V ∗⊗W )

which shows that we have adjoint functors

T ⊥
V ⊗− ++

T .
V ∗⊗−

jj
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Since M and N are Mackey functors on T , we obtain a diagram

T ⊥
V ⊗−

++

N ��:
::

::
::

T
V ∗⊗−

kk

M����
��

��
�

Modk

and an equivalence of natural transformations

M =⇒ N (V ⊗−)
M(V ∗⊗−) =⇒ N .

Therefore, the Hom Mackey functor is also given by

Hom(M , N )(V ) = Mky(M , N (V ⊗−)).

7. GREEN FUNCTORS

A Green functor A on T is a Mackey functor (that is, a coproduct preserving functor
A : T // Modk ) equipped with a monoidal structure made up of a natural transforma-
tion

µ : A(U )⊗k A(V ) // A(U ⊗V ),

for which we use the notation µ(a ⊗b) = a.b for a ∈ A(U ), b ∈ A(V ), and a morphism

η : k // A(1),

whose value at 1 ∈ k we denote by 1. Green functors are the monoids in Mky. If A,B :
T // Modk are Green functors then we have an isomorphism

Mky(A∗B ,C ) ∼= NatU ,V (A(U )⊗k B(V ),C (U ⊗V )).

Referring to the square

T ⊗T Modk ⊗Modk
A⊗B //

Modk ,

⊗k

��
T

⊗
��

C
//

we write this more precisely as

Mky(A∗B ,C ) ∼= [T ⊗T ,Modk ](⊗k ◦ (A⊗B),C ◦⊗).

The Burnside functor J and Hom(A, A) (for any Mackey functor A) are monoids in Mky
and so are Green functors.

We denote by Grn(T ,Modk ) the category of Green functors on T . When T and k
are understood, we simply write this as Grn(= Mon(Mky)) consisting of the monoids in
Mky.
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8. DRESS CONSTRUCTION

The Dress construction ([Bo2], [Bo3]) provides a family of endofunctors D(Y ,−) of
the category Mky, indexed by the objects Y of T . The Mackey functor defined as the
composite

T
−⊗Y //T

M //Modk

is denoted by MY for M ∈ Mky; so MY (U ) = M(U ⊗Y ). We then define the Dress con-
struction

D : T ⊗Mky // Mky

by D(Y , M) = MY . The V -category T ⊗Mky is monoidal via the pointwise structure:

(X , M)⊗ (Y , N ) = (X ⊗Y , M ∗N ).

Proposition 8.1. The Dress construction

D : T ⊗Mky // Mky

is a strong monoidal V -functor.

Proof. We need to show that D((X , M)⊗(Y , N )) ∼= D(X , M)∗D(Y , N ); that is, MX ∗MY
∼=

(M ∗N )X⊗Y . For this we have the calculation

(MX ∗NY )(Z ) ∼=
∫ U

MX (U )⊗k NY (U∗⊗Z )

=
∫ U

M(U ⊗X )⊗k N (U∗⊗Z ⊗Y )

∼=
∫ U ,V

T (V ,U ⊗X )⊗M(V )⊗k N (U∗⊗Z ⊗Y )

∼=
∫ U ,V

T (V ⊗X ∗,U )⊗M(V )⊗k N (U∗⊗Z ⊗Y )

∼=
∫ V

M(V )⊗k N (V ∗⊗X ⊗Z ⊗Y )

∼= (M ∗N )(Z ⊗X ⊗Y )
∼= (M ∗N )X⊗Y (Z ).

Clearly we have D(I , J ) ∼= J . The coherence conditions are readily checked. �

We shall analyse this situation more fully in Remark 8.5 below.
We are interested, after [Bo2], in when the Dress construction induces a family of

endofunctors on the category Grn of Green functors. That is to say, when is there a
natural structure of Green functor on AY = D(Y , A) if A is a Green functor? Since AY is
the composite

T
−⊗Y //T

A //Modk

with A monoidal, what we require is that −⊗Y should be monoidal (since monoidal
functors compose). For this we use Theorem 3.7 of [DPS]:

if Y is a monoid in the lax centre Zl (T ) of T then −⊗Y : T // T is canonically
monoidal.

Let C be a monoidal category. The lax centre Zl (C ) of C is defined to have objects
the pairs (A,u) where A is an object of C and u is a natural family of morphisms uB :
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A⊗B // B ⊗ A such that the following two diagrams commute

A⊗B ⊗C B ⊗C ⊗ A
uB⊗C //

B ⊗ A⊗C

uB⊗1C
##GG

GG
GG

GG
GG

G

1B⊗uC

;;wwwwwwwwwww

A⊗ I I ⊗ A
uI //

A .

∼=
{{ww

ww
ww

ww
ww

w

∼=
##GG

GG
GG

GG
GG

G

Morphisms of Zl (C ) are morphisms in C compatible with the u. The tensor product is
defined by

(A,u)⊗ (B , v) = (A⊗B , w)

where wC = (uC ⊗1B )◦ (1A ⊗ vC ). The centre Z (C ) of C consists of the objects (A,u) of
Zl (C ) with each uB invertible.

It is pointed out in [DPS] that, when C is cartesian monoidal, an object of Zl (C ) is
merely an object A of C together with a natural family A × X // X . Then we have the
natural bijections below (represented by horizontal lines) for C cartesian closed:

A×X // X natural in X

A // [X , X ] dinatural in X

A //
∫

X
[X , X ] in C .

Therefore we obtain an equivalence Zl (C ) 'C /
∫

X [X , X ].
The internal hom in E , the category of finite G-sets for the finite group G , is [X ,Y ]

which is the set of functions r : X // Y with (g .r )(x) = g r (g−1x). The G-set
∫

X [X , X ] is
defined by∫

X
[X , X ] =

{
r = (rX : X −→ X )

∣∣∣ f ◦ rX = rY ◦ f for all G-maps f : X −→ Y
}

with (g .r )X (x) = g rX (g−1x).

Lemma 8.2. The G-set
∫

X
[X , X ] is isomorphic to Gc , which is the set G made a G-set by

conjugation action.

Proof. Take r ∈ ∫
X [X , X ]. Then we have the commutative square

G G
rG //

X

x̂

��
X

x̂

��
rX

//

where x̂(g ) = g x for x ∈ X . So we see that rX is determined by rG (1) and

(g .r )G (1) = g rG (g−11)

= g rG (g−1)

= g rG (1)g−1.

�

As a consequence of this Lemma, we have Zl (E ) ' E /Gc where E /Gc is the cate-
gory of crossed G-sets of Freyd-Yetter ([FY1], [FY2]) who showed that E /Gc is a braided
monoidal category. Objects are pairs (X , | |) where X is a G-set and | | : X // Gc is a
G-set morphism (“equivariant function”) meaning |g x| = g |x|g−1 for g ∈ G , x ∈ X . The
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morphisms f : (X , | |) // (Y , | |) are functions f such that the following diagram com-
mutes.

X Y
f //

Gc

| |
}}zz

zz
zz

zz
zz

| |
!!DD

DD
DD

DD
DD

That is, f (g x) = g f (x).
Tensor product is defined by

(X , | |)⊗ (Y , | |) = (X ×Y ,‖ ‖),

where ‖(x, y)‖ = |x||y |.
Proposition 8.3. [DPS, Theorem 4.5] The centre Z (E ) of the category E is equivalent to
the category E /Gc of crossed G-sets.

Proof. We have a fully faithful functor Z (E ) // Zl (E ) and so Z (E ) // E /Gc . On the
other hand, let | | : A // Gc be an object of E /Gc ; so |g a|g = g |a|. Then the correspond-
ing object of Zl (E ) is (A,u) where

uX : A×X // X × A

with

uX (a, x) = (|a|x, a).

However this u is invertible since we see that

uX
−1(x, a) = (a, |a|−1x).

This proves the proposition. �

Theorem 8.4. [Bo3, Bo2] If Y is a monoid in E /Gc and A is a Green functor for E over k
then AY is a Green functor for E over k, where AY (X ) = A(X ×Y ).

Proof. We have Z (E ) ' E /Gc , so Y is a monoid in Z (E ). This implies −×Y : E // E
is a monoidal functor (see Theorem 3.7 of [DPS]). It also preserves pullbacks. So −×Y :
Spn(E ) // Spn(E ) is a monoidal functor . If A is a Green functor for E over k then
A : Spn(E ) // Modk is monoidal. Then we get AY = A ◦ (−×Y ) : Spn(E ) // Modk is
monoidal and AY is indeed a Green functor for E over k. �

Remark 8.5. The reader may have noted that Proposition 8.1 implies that D takes monoids
to monoids. A monoid in T ⊗Mky is a pair (Y , A) where Y is a monoid in T and A is
a Green functor; so in this case, we have that AY is a Green functor. A monoid Y in E
is certainly a monoid in T . Since E is cartesian monoidal (and so symmetric), each
monoid in E gives one in the centre. However, not every monoid in the centre arises
in this way. The full result behind Proposition 8.1 and the centre situation is: the Dress
construction

D : Z (T )⊗Mky // Mky

is a strong monoidal V -functor; it is merely monoidal when the centre is replaced by
the lax centre.

It follows that AY is a Green functor whenever A is a Green functor and Y is a monoid
in the lax centre of T .

44 Paper 1



MACKEY FUNCTORS ON COMPACT CLOSED CATEGORIES 13

9. FINITE DIMENSIONAL MACKEY FUNCTORS

We make the following further assumptions on the symmetric compact closed cate-
gory T with finite direct sums:

• there is a finite set C of objects of T such that every object X of T can be
written as a direct sum

X ∼=
n⊕

i=1
Ci

with Ci in C ; and
• each hom T (X ,Y ) is a finitely generated commutative monoid.

Notice that these assumptions hold when T = Spn(E ) where E is the category of
finite G-sets for a finite group G . In this case we can take C to consist of a representative
set of connected (transitive) G-sets. Moreover, the spans S : X // Y with S ∈C generate
the monoid T (X ,Y ).

We also fix k to be a field and write Vect in place of Modk .
A Mackey functor M : T // Vect is called finite dimensional when each M(X ) is a

finite-dimensional vector space. Write Mkyfin for the full subcategory of Mky consisting
of these.

We regard C as a full subcategory of T . The inclusion functor C // T is dense
and the density colimit presentation is preserved by all additive M : T // Vect. This is
shown as follows:

∫ C
T (C , X )⊗M(C ) ∼=

∫ C
T (C ,

n⊕
i=1

Ci )⊗M(C )

∼=
n⊕

i=1

∫ C
T (C ,Ci )⊗M(C )

∼=
n⊕

i=1

∫ C
C (C ,Ci )⊗M(C )

∼=
n⊕

i=1
M(Ci )

∼= M(
n⊕

i=1
Ci )

∼= M(X ).

That is,

M ∼=
∫ C

T (C ,−)⊗M(C ).

Proposition 9.1. The tensor product of finite-dimensional Mackey functors is finite di-
mensional.

Proof. Using the last isomorphism, we have

(M ∗N )(Z ) =
∫ X ,Y

T (X ⊗Y , Z )⊗M(X )⊗k N (Y )

∼=
∫ X ,Y ,C ,D

T (X ⊗Y , Z )⊗T (C , X )⊗T (D,Y )⊗M(C )⊗k N (D)

∼=
∫ C ,D

T (C ⊗D, Z )⊗M(C )⊗k N (D).
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If M and N are finite dimensional then so is the vector space T (C ⊗D, Z )⊗M(C )⊗k

N (D) (since T (C ⊗D, Z ) is finitely generated). Also the coend is a quotient of a finite
direct sum. So M ∗N is finite dimensional. �

It follows that Mkyfin is a monoidal subcategory of Mky (since the Burnside functor
J is certainly finite dimensional under our assumptions on T ).

The promonoidal structure on Mkyfin represented by this monoidal structure can be
expressed in many ways:

P (M , N ;L) = Mkyfin(M ∗N ,L)
∼= NatX ,Y ,Z (T (X ⊗Y , Z )⊗M(X )⊗k N (Y ),L(Z ))
∼= NatX ,Y (M(X )⊗k N (Y ),L(X ⊗Y ))
∼= NatX ,Z (M(X )⊗k N (X ∗⊗Z ),L(Z ))
∼= NatY ,Z (M(Z ⊗Y ∗)⊗k N (Y ),L(Z )).

Following the terminology of [DS1], we say that a promonoidal category M is ∗-
autonomous when it is equipped with an equivalence S : M op // M and a natural
isomorphism

P (M , N ;S(L)) ∼= P (N ,L;S−1(M)).

A monoidal category is ∗-autonomous when the associated promonoidal category is.
As an application of the work of Day [Da4] we obtain that Mkyfin is ∗-autonomous.

We shall give the details.
For M ∈ Mkyfin, define S(M)(X ) = M(X ∗)∗ so that S : Mkyop

fin
// Mkyfin is its own

inverse equivalence.

Theorem 9.2. The monoidal category Mkyfin of finite-dimensional Mackey functors on
T is ∗-autonomous.

Proof. With S defined as above, we have the calculation:

P (M , N ;S(L)) ∼= NatX ,Y (M(X )⊗k N (Y ),L(X ∗⊗Y ∗)∗)
∼= NatX ,Y (N (Y )⊗k L(X ∗⊗Y ∗), M(X )∗)
∼= NatZ ,Y (N (Y )⊗k L(Z ⊗Y ∗), M(Z∗)∗)
∼= NatZ ,Y (N (Y )⊗k L(Z ⊗Y ∗),S(M)(Z ))
∼= P (N ,L;S(M)).

�

10. COHOMOLOGICAL MACKEY FUNCTORS

Let k be a field and G be a finite group. We are interested in the relationship between
ordinary k-linear representations of G and Mackey functors on G .

Write E for the category of finite G-sets as usual. Write R for the category Repk (G) of
finite -dimensional k-linear representations of G .

Each G-set X determines a k-linear representation k X of G by extending the action
of G linearly on X . This gives a functor

k : E // R.

We extend this to a functor

k∗ : T op // R,
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where T = Spn(E ), as follows. On objects X ∈T , define

k∗X = k X .

For a span (u,S, v) : X // Y in E , the linear function k∗(S) : kY // k X is defined by

k∗(S)(y) = ∑
v(s)=y

u(s) ;

this preserves the G-actions since

k∗(S)(g y) = ∑
v(s)=g y

u(s) = ∑
v(g−1s)=y

g u(g−1s) = g k∗(S)(y).

Clearly k∗ preserves coproducts.
By the usual argument (going back to Kan, and the geometric realization and singular

functor adjunction), we obtain a functor

k̃∗ : R // Mky(G)fin

defined by
k̃∗(R) =R(k∗−,R)

which we shall write as R− : T // Vectk . So

R X =R(k∗X ,R) ∼=G-Set(X ,R)

with the effect on the span (u,S, v) : X // Y transporting to the linear function

G-Set(X ,R) // G-Set(Y ,R)

which takes τ : X // R to τS : Y // R where

τS (y) = ∑
v(s)=y

τ(u(s)).

The functor k̃∗ has a left adjoint

colim(−,k∗) : Mky(G)fin
// R

defined by

colim(M ,k∗) =
∫ C

M(C )⊗k k∗C

where C runs over a full subcategory C of T consisting of a representative set of con-
nected G-sets.

Proposition 10.1. The functor k̃∗ : Repk (G) // Mky(G) is fully faithful.

Proof. For R1,R2 ∈R, a morphism θ : R−
1

// R−
2 in Mky(G) is a family of linear functions

θX such that the following square commutes for all spans (u,S, v) : X // Y in E .

G-Set(X ,R1) G-Set(X ,R2)
θX //

G-Set(Y ,R2)

( − )S

��
G-Set(Y ,R1)

( − )S

��

θY

//

Since G (with multiplication action) forms a full dense subcategory of G-Set, it follows
that we obtain a unique morphism f : R1

// R2 in G-Set such that

f (r ) = θG (r̂ )(1)
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(where r̂ : G // R is defined by r̂ (g ) = g r for r ∈ R); this is a special case of Yoneda’s
Lemma. Clearly f is linear since θG is. By taking Y = G ,S = G and v = 1G : G // G ,
commutativity of the above square yields

θX (τ)(x) = f (τ(x));

that is, θX = k̃∗( f )X . �

An important property of Mackey functors in the image of k̃∗ is that they are cohomo-
logical in the sense of [We], [Bo4] and [TW]. First we recall some classical terminology
associated with a Mackey functor M on a group G .

For subgroups K ≤ H of G , we have the canonical G-set morphismσH
K : G/K // G/H

defined on the connected G-sets of left cosets by σH
K (g K ) = g H . The linear functions

r H
K = M∗(σH

K ) : M(G/H) // M(G/K ) and

t H
K = M∗(σH

K ) : M(G/K ) // M(G/H)

are called restriction and transfer (or trace or induction).
A Mackey functor M on G is called cohomological when each composite t H

K r H
K : M(G/H)

// M(G/H) is equal to multiplication by the index [H : K ] of K in H . We supply a proof
of the following known example.

Proposition 10.2. For each k-linear representation R of G, the Mackey functor k̃∗(R) =
R− is cohomological.

Proof. With M = R− and σ=σH
K , notice that the function

t H
K r H

K = M∗(σ)M∗(σ) = M(σ,G/K ,1)M(1,G/K ,σ) = M(σ,G/K ,σ)

takes τ ∈ E (G/H ,R) to τG/K ∈ E (G/H ,R) where

τG/K (H) = ∑
σ(s)=H

τ(σ(s)) = ∑
σ(s)=H

τ(H) = (
∑

σ(s)=H
1)τ(H)

and s runs over the distinct g K with σ(s) = g H = H ; the number of distinct g K with
g ∈ H is of course [H : K ]. So τG/K (xH) = [H : K ]τ(xH). �

Lemma 10.3. The functor k∗ : T op // R is strong monoidal.

Proof. Clearly the canonical isomorphisms

k(X1 ×X2) ∼= k X1 ⊗k X2, k1 ∼= k

show that k : E // R is strong monoidal. All that remains to be seen is that these iso-
morphisms are natural with respect to spans (u1,S1, v1) : X1

// Y1, (u2,S2, v2) : X2
// Y2.

This comes down to the bilinearity of tensor product:∑
v1(s1)=y1

v2(s2)=y2

u1(s1)⊗u2(s2) = ∑
v1(s1)=y1

u1(y1)⊗ ∑
v2(s2)=y2

u2(y2).

�

We can now see that the adjunction

colim(−,k∗) k̃∗
�

fits the situation of Day’s Reflection Theorem [Da2] and [Da3, pages 24 and 25]. For this,
recall that a fully faithful functor Φ : A // X into a closed category X is said to be
closed under exponentiation when, for all A in A and X in X , the internal hom [X ,ΦA]
is isomorphic to an object of the formΦB for some B in A .
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Theorem 10.4. The functor colim(−,k∗) : Mky(G)fin
// R is strong monoidal. Conse-

quently, k̃∗ : R // Mky(G)fin is monoidal and closed under exponentiation.

Proof. The first sentence follows quite formally from Lemma 10.3 and the theory of Day
convolution; the main calculation is:

colim(M ∗N ,k∗)(Z ) =
∫ C

(M ∗N )(C )⊗k k∗C

=
∫ C ,X ,Y

T (X ×Y ,C )⊗M(X )⊗k N (Y )⊗k k∗C

∼=
∫ X ,Y

M(X )⊗k N (Y )⊗k k∗(X ×Y )

∼=
∫ X ,Y

M(X )⊗k N (Y )⊗k k∗X ⊗k∗Y

∼= colim(M ,k∗)⊗ colim(N ,k∗).

The second sentence then follows from [Da2, Reflection Theorem]. �

In fancier words, the adjunction

colim(−,k∗) k̃∗
�

lives in the 2-category of monoidal categories, monoidal functors and monoidal natural
transformations (all enriched over V ).

11. MACKEY FUNCTORS FOR HOPF ALGEBRAS

In this section we provide another example of a compact closed category T con-
structed from a Hopf algebara H (or quantum group). We speculate that Mackey func-
tors on this T will prove as useful for Hopf algebras as usual Mackey functors have for
groups.

Let H be a braided (semisimple) Hopf algebra (over k). Let R denote the category of
left H-modules which are finite dimensional as vector spaces (over k). This is a compact
closed braided monoidal category.

We write Comod(R) for the category obtained from the bicategory of that name in
[DMS] by taking isomorphisms classes of morphisms. Explicitly, the objects are com-
onoids C in R. The morphisms are isomorphism classes of comodules S : C � //D from
C to D ; such an S is equipped with a coaction δ : S // C ⊗ S ⊗D satisfying the coas-
sociativity and counity conditions; we can break the two-sided coaction δ into a left
coaction δl : S // C ⊗S and a right coaction δr : S // S⊗D connected by the bicomod-
ule condition. Composition of comodules S : C � //D and T : D � //E is defined by the
(coreflexive) equalizer

S ⊗D T // S ⊗T
1⊗δl //

δr ⊗1
// S ⊗D ⊗T .

The identity comodule of C is C : C � //C . The category Comod(R) is compact closed:
the tensor product is just that for vector spaces equipped with the extra structure. Direct
sums in Comod(R) are given by direct sum as vector spaces. Consequently, Comod(R)
is enriched in the monoidal category V of commutative monoids: to add comodules
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S1 : C � //D and S2 : C � //D , we take the direct sum S1 ⊕S2 with coaction defined as
the composite

S1 ⊕S2
δ1⊕δ2 // C ⊗S1 ⊗D ⊕C ⊗S2 ⊗D ∼=C ⊗ (S1 ⊕S2)⊗D .

We can now apply our earlier theory to the example T = Comod(R). In particular,
we call a V -enriched functor M : Comod(R) // Vectk a Mackey functor on H .

In the case where H is the group algebra kG (made Hopf by means of the diagonal
kG // k(G×G) ∼= kG⊗k kG), a Mackey functor on H is not the same as a Mackey functor
on G . However, there is a strong relationship that we shall now explain.

As usual, let E denote the cartesian monoidal category of finite G-sets. The functor
k : E // R is strong monoidal and preserves coreflexive equalizers. There is a monoidal
equivalence

Comod(E ) ' Spn(E ),

so k : E // R induces a strong monoidal V -functor

k̂ : Spn(E ) // Comod(R).

With Mky(G) = [Spn(E ),Vect]+ as usual and with Mky(kG) = [Comod(R),Vect]+, we
obtain a functor

[k̂,1] : Mky(kG) // Mky(G)

defined by pre-composition with k̂. Proposition 1 of [DS2] applies to yield:

Theorem 11.1. The functor [k̂,1] has a strong monoidal left adjoint

∃k̂ : Mky(G) // Mky(kG).

The adjunction is monoidal.

The formula for ∃k̂ is

∃k̂ (M)(R) =
∫ X∈Spn(E )

Comod(R)(k̂ X ,R)⊗M(X ).

On the other hand, we already have the compact closed category R of finite-dimensional
representations of G and the strong monoidal functor

k∗ : Spn(E )op // R.

Perhaps Rop(' R) should be our candidate for T rather than the more complicated
Comod(R). The result of [DS2] applies also to k∗ to yield a monoidal adjunction

[Rop,Vect] ⊥
[k∗,1]

// Mky(G).
∃k∗oo

Perhaps then, additive functors Rop // Vect would provide a suitable generalization of
Mackey functors in the case of a Hopf algebra H . These matters require investigation at
a later time.
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12. REVIEW OF SOME ENRICHED CATEGORY THEORY

The basic references are [Ke], [La] and [St].
Let COCTV denote the 2-category whose objects are cocomplete V -categories and

whose morphisms are (weighted-) colimit-preserving V -functors; the 2-cells are V -
natural transformations.

Every small V -category C determines an object [C ,V ] of COCTV . Let

Y : C op // [C ,V ]

denote the Yoneda embedding: Y U =C (U ,−).
For any object X of COCTV , we have an equivalence of categories

COCTV ([C ,V ],X ) ' [C op,X ]

defined by restriction along Y . This is expressing the fact that [C ,V ] is the free cocom-
pletion of C op. It follows that, for small V -categories C and D , we have

COCTV ([C ,V ], [D ,V ]) ' [C op, [D ,V ]]

' [C op ⊗D ,V ].

The way this works is as follows. Suppose F : C op⊗D // V is a (V -) functor. We obtain
a colimit-preserving functor

F̂ : [C ,V ] // [D ,V ]

by the formula

F̂ (M)V =
∫ U∈C

F (U ,V )⊗MU

where M ∈ [C ,V ] and V ∈D . Conversely, given G : [C ,V ] // [D ,V ], define
∨
G : C op ⊗D // V

by
∨
G(U ,V ) =G(C (U ,−))V.

The main calculations proving the equivalence are as follows:
∨
F̂ (U ,V ) = F̂ (C (U ,−))V

∼=
∫ U ′

F (U ′,V )⊗C (U ,U ′)
∼= F (U ,V ) by Yoneda;

and,

∨̂
G(M)V =

∫ U ∨
G(U ,V )⊗MU

∼= (
∫ U

G(C (U ,−))⊗MU )V

∼=G(
∫ U

C (U ,−)⊗MU )V since G preserves weighted colimits

∼=G(M)V by Yoneda again.

Next we look how composition of Gs is transported to the F s. Take

F1 : C op ⊗D // V , F2 : Dop ⊗E // V

so that F̂1 and F̂2 are composable:
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[C ,V ]

[D ,V ]

F̂1

88ppppppppppppp
[E ,V ].

F̂2

&&NNNNNNNNNNNNN

F̂2◦F̂1

55

Notice that

(F̂2 ◦ F̂1)(M) = F̂2(F̂1(M))

=
∫ V ∈D

F2(V ,−)⊗ F̂1(M)V

∼=
∫ U ,V

F2(V ,−)⊗F1(U ,V )⊗MU

∼=
∫ U

(
∫ V

F2(V ,−)⊗F1(U ,V ))⊗MU .

So we define F2 ◦F1 : C op ⊗E // V by

(1) (F2 ◦F1)(U ,W ) =
∫ V

F2(V ,W )⊗F1(U ,V );

the last calculation then yields
F̂2 ◦ F̂1

∼= àF2 ◦F1.

The identity functor 1[C ,V ] : [C ,V ] // [C ,V ] corresponds to the hom functor of C ;
that is,

∨
1[C ,V ](U ,V ) =C (U ,V ).

This gives us the bicategory V -Mod. The objects are (small) V -categories C . A mor-
phism F : C � //D is a V -functor F : C op ⊗D // V ; we call this a module from C to
D (others call it a left D-, right C -bimodule). Composition of modules is defined by (1)
above.

We can sum up now by saying that

(̂ ) : V -Mod // COCTV

is a pseudofunctor (= homomorphism of bicategories) taking C to [C ,V ], taking F :
C � //D to F̂ , and defined on 2-cells in the obious way; moreover, this pseudofunctor
is a local equivalence (that is, it is an equivalence on hom-categories):

(̂ ) : V -Mod(C ,D) ' COCTV ([C ,V ], [D ,V ]).

A monad T on an object C of V -Mod is called a promonad on C . It is the same as giv-
ing a colimit-preserving monad T̂ on the V -category [C ,V ]. One way that promonads
arise is from monoids A for some convolution monoidal structure on [C ,V ]; then

T̂ (M) = A∗M .

That is, C is a promonoidal V -category [Da1]:

P : C op ⊗C op ⊗C // V

J : C // V

so that

T̂ (M) = A∗M =
∫ U ,V

P (U ,V ;−)⊗ AU ⊗MV.
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This means that the module T : C � //C is defined by

T (U ,V ) = T̂ (C (U ,−))V

=
∫ U ′,V ′

P (U ′,V ′;V )⊗ AU ′⊗C (U ,V ′)

∼=
∫ U ′

P (U ′,U ;V )⊗ AU ′.

A promonad T on C has a unit η :
∨
1 // T with components

ηU ,V : C (U ,V ) // T (U ,V )

and so is determined by

ηU ,V (1U ) : I // T (U ,U ),

and has a multiplication µ : T ◦T // T with components

µU ,W :
∫ V

T (V ,W )⊗T (U ,V ) // T (U ,W )

and so is determined by a natural family

µ′
U ,V ,W : T (V ,W )⊗T (U ,V ) // T (U ,W ).

The Kleisli category CT for the promonad T on C has the same objects as C and has
homs defined by

CT (U ,V ) = T (U ,V );

the identites are the ηU ,V (1U ) and the composition is the µ′
U ,V ,W .

Proposition 12.1. [CT ,V ] ' [C ,V ]T̂ . That is, the functor category [CT ,V ] is equivalent
to the category of Eilenberg-Moore algebras for the monad T̂ on [C ,V ].

Proof. (sketch) To give a T̂ -algebra structure on M ∈ [C ,V ] is to give a morphism α :
T̂ (M) // M satisfying the two axioms for an action. This is to give a natural family of
morphisms

T (U ,V )⊗MU // MV ;

but that is to give

T (U ,V ) // [MU , MV ];

but that is to give

(2) CT (U ,V ) // V (MU , MV ).

Thus we can define a V -functor

M : CT
// V

which agrees with M on objects and is defined by (2) on homs; the action axioms are
just what is needed for M to be a functor. This process can be reversed. �
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13. MODULES OVER A GREEN FUNCTOR

In this section, we present work inspired by Chapters 2,3 and 4 of [Bo1], casting it in
a more categorical framework.

Let E denote a lextensive category and CMon denote the category of commutative
monoids; this latter is what we called V in earlier sections. The functor U : Modk

//

CMon (which forgets the action of k on the k-module and retains only the additive
monoid structure) has a left adjoint K : CMon // Modk which is strong monoidal for
the obvious tensor products on CMon and Modk . So each category A enriched in CMon
determines a category K∗A enriched in Modk : the objects of K∗A are those of A and
the homs are defined by

(K∗A )(A,B) = K A (A,B)

since A (A,B) is a commutative monoid. The point is that a Modk -functor K∗A // B
is the same as a CMon-functor A // U∗B.

We know that Spn(E ) is a CMon-category; so we obtain a monoidal Modk -category

C = K∗Spn(E ).

The Modk -category of Mackey functors on E is Mkyk (E ) = [C ,Modk ]; it becomes
monoidal using convolution with the monoidal structure on C (see Section 5). The
Modk -category of Green functors on E is Grnk (E ) = Mon[C ,Modk ] consisting of the
monoids in [C ,Modk ] for the convolution.

Let A be a Green functor. A module M over the Green functor A, or A-module means
A acts on M via the convolution ∗. The monoidal action αM : A∗M // M is defined by
a family of morphisms

ᾱM
U ,V : A(U )⊗k M(V ) // M(U ×V ),

where we put ᾱM
U ,V (a ⊗m) = a.m for a ∈ A(U ), m ∈ M(V ), satisfing the following com-

mutative diagrams for morphisms f : U // U ′ and g : V // V ′ in E .

A(U )⊗k M(V ) M(U ×V )
ᾱM

U ,V //

M(U ′×V ′)

M∗( f ×g )

��
A(U ′)⊗k M(V ′)

A∗( f )⊗k M∗(g )

��

ᾱM
U ′ ,V ′

//

M(U ) A(1)⊗k M(U )
η⊗1 //

M(1×U )

ᾱM

��
∼=

''NNNNNNNNNNNNN

A(U )⊗k A(V )⊗k M(W ) A(U )⊗k M(V ×W )
1⊗ᾱM

//

M(U ×V ×W ) .

ᾱM

��
A(U ×V )⊗k M(W )

µ⊗1

��

ᾱM
//

If M is an A-module, then M is in particular a Mackey functor.

Lemma 13.1. Let A be a Green functor and M be an A-module. Then MU is an A-module
for each U of E , where MU (X ) = M(X ×U ).

Proof. Simply define ᾱMU
V ,W = ᾱM

V ,W ×U . �
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Let Mod(A) denote the category of left A-modules for a Green functor A. The objects
are A-modules and morphisms are A-module morphisms θ : M // N (that is, mor-
phisms of Mackey functors) satisfying the following commutative diagram.

A(U )⊗k M(V ) M(U ×V )
ᾱM

U ,V //

N (U ×V )

θ(U×V )

��
A(U )⊗k N (V )

1⊗kθ(U )

��

ᾱN
U ,V

//

The category Mod(A) is enriched in Mky. The homs are given by the equalizer

Mod(A)(M , N ) Hom(M , N )// Hom(A∗M , N )
Hom(αM ,1) //

Hom(A∗M , A∗N ) .

(A∗−)
$$JJJJJJJJJJJ

Hom(1,αN )

;;wwwwwwwwww

Then we see that Mod(A)(M , N ) is the sub-Mackey functor of Hom(M , N ) defined by

Mod(A)(M , N )(U ) ={θ ∈ Mky(M(−×U ), N−) | θV ×W (a.m) = a.θW (m)

for all V ,W, and a ∈ A(V ),m ∈ M(W ×U )}.

In particular, if A = J (Burnside functor) then Mod(A) is the category of Mackey functors
and Mod(A)(M , N ) = Hom(M , N ).

The Green functor A is itself an A-module. Then by the Lemma 13.1, we see that AU

is an A-module for each U in E . Define a category CA consisting of the objects of the
form AU for each U in C . This is a full subcategory of Mod(A) and we have the following
equivalences

CA(U ,V ) ' Mod(A)(AU , AV ) ' A(U ×V ).

In other words, the category Mod(A) of left A-modules is the category of Eilenberg-
Moore algebras for the monad T = A∗− on [C ,Modk ]; it preserves colimits since it has
a right adjoint (as usual with convolution tensor products). By the above, the Modk -

category CA (technically it is the Kleisli category C∨
T

for the promonad
∨
T on C ; see

Proposition 12.1) satisfies an equivalence

[CA ,Modk ] ' Mod(A).

Let C be a Modk -category with finite direct sums andΩ be a finite set of objects of C
such that every object of C is a direct sum of objects fromΩ.

Let W be the algebra ofΩ×Ω - matrices whose (X ,Y ) - entry is a morphism X // Y
in C . Then

W = {
( fX Y )X ,Y ∈Ω | fX Y ∈C (X ,Y )

}
is a vector space over k, and the product is defined by

(gX Y )X ,Y ∈Ω( fX Y )X ,Y ∈Ω = (
∑

Y ∈Ω
gY Z ◦ fX Y )X ,Z∈Ω.

Proposition 13.2. [C ,Modk ] ' ModW
k (= the category of left W -modules).
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Proof. Put

P = ⊕
X∈Ω

C (X ,−).

This is a small projective generator so Exercise F (page 106) of [Fr] applies and W is
identified as End(P). �

In particular; this applies to the category CA to obtain the Green algebra WA of a
Green functor A: the point being that A and WA have the same modules.

14. MORITA EQUIVALENCE OF GREEN FUNCTORS

In this section, we look at the Morita theory of Green functors making use of adjoint
two-sided modules rather than Morita contexts as in [Bo1].

As for any symmetric cocomplete closed monoidal category W , we have the monoidal
bicategory Mod(W ) defined as follows, where we take W = Mky. Objects are monoids
A in W (that is, A : E // Modk are Green functors) and morphisms are modules M :
A � //B (that is, algebras for the monad A∗−∗B on Mky) with a two-sided action

αM : A∗M ∗B // M

ᾱM
U ,V ,W : A(U )⊗k M(V )⊗k B(W ) // M(U ×V ×W ).

Composition of morphisms M : A � //B and N : B � //C is M ∗B N and it is defined via
the coequalizer

M ∗B ∗N
αM∗1N //

1M∗αN
// M ∗N // M ∗B N = N ◦M

that is,

(M ∗B N )(U ) = ∑
X ,Y

Spn(E )(X ×Y ,U )⊗M(X )⊗k N (Y )/ ∼B .

The identity morphism is given by A : A � // A.
The 2-cells are natural transformations θ : M // M ′ which respect the actions

A(U )⊗k M(V )⊗k B(W ) M(U ×V ×W )
ᾱM

U ,V ,W //

M ′(U ×V ×W ) .

θU×V ×W

��
A(U )⊗k M ′(V )⊗k B(W )

1⊗kθV ⊗k 1

��

ᾱM ′
U ,V ,W

//

The tensor product on Mod(W ) is the convolution ∗. The tensor product of the modules
M : A � //B and N : C � //D is M ∗N : A∗C � //B ∗D .

Define Green functors A and B to be Morita equivalent when they are equivalent in
Mod(W ).

Proposition 14.1. If A and B are equivalent in Mod(W ) then Mod(A) ' Mod(B) as cate-
gories.

Proof. Mod(W )(−, J ) : Mod(W )op // CAT is a pseudofunctor and so takes equivalences
to equivalences. �
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Now we will look at the Cauchy completion of a monoid A in a monoidal category W
with the unit J . The W -category P A has underlying category Mod(W )(J , A) = Mod(Aop)
where Aop is the monoid A with commuted multiplication. The objects are modules
M : J � // A ; that is, right A-modules. The homs of P A are defined by (P A)(M , N ) =
Mod(Aop)(M , N ) (see the equalizer of Section 13).

The Cauchy completion QA of A is the full sub-W -category of P A consisting of the
modules M : J � // A with right adjoints N : A � // J . We will examine what the objects
of QA are in more explicit terms.

For motivation and preparation we will look at the monoidal category W = [C ,S ]
where (C ,⊗, I ) is a monoidal category and S is the cartesian monoidal category of sets.
Then [C ,S ] becomes a monoidal category by convolution. The tensor product ∗ and
the unit J are defined by

(M ∗N )(U ) =
∫ X ,Y

C (X ⊗Y ,U )×M(X )×N (Y )

J (U ) =C (I ,U ).

Write Mod[C ,S ] for the bicategory whose objects are monoids A in [C ,S ] and whose
morphisms are modules M : A � //B . These modules have two-sided action

αM : A∗M ∗B // M

ᾱM
X ,Y ,Z : A(X )×M(Y )×B(Z ) // M(X ⊗Y ⊗Z ) .

Composition of morphisms M : A � //B and N : B � //C is given by the coequalizer

M ∗B ∗N
αM∗1N //

1M∗αN
// M ∗N // M ∗B N

that is,
(M ∗B N )(U ) = ∑

X ,Z
C (X ⊗Z ,U )×M(X )×N (Z )/ ∼B

where

(u,m ◦b,n) ∼B (u,m,b ◦n)

(t ◦ (r ⊗ s),m,n) ∼B (t , (Mr )m, (N s)n)

for u : X ⊗Y ⊗ Z // U , m ∈ M(X ), b ∈ B(Y ), n ∈ N (Z ), t : X ′⊗ Z ′ // U , r : X // X ′,
s : Z // Z ′.

For each K ∈C , we obtain a module A(K ⊗−) : J � // A . The action

A(K ⊗U )⊗ A(V ) // A(K ⊗U ⊗V )

is defined by the monoid structure on A.

Proposition 14.2. Every object of the Cauchy completion QA of the monoid A in [C ,S ]
is a retract of a module of the form A(K ⊗−) for some K ∈C .

Proof. Take a module M : J � // A in Mod[C ,S ]. Suppose that M has a right adjoint
N : A � // J . Then we have the following actions: A(V )× A(W ) // A(V ⊗W ), M(V )×
A(W ) // M(V ⊗W ), A(V )× N (W ) // N (V ⊗W ) since A is a monoid, M is a right A-
module, and N is a left A-module respectively.

We have a unit η : J // M ∗A N and a counit ε : N ∗M // A for the adjunction. The
component ηU : C (I ,U ) // (M ∗A N )(U ) of the unit η is determined by

η′ = ηU (1I ) ∈ ∑
X ,Z

C (X ⊗Z , I )×M(X )×N (Z )/ ∼A ;
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so there exist u : H ⊗K // I , p ∈ M(H), q ∈ N (K ) such that η′ = [u, p, q]A . Then

ηu( f : I // U ) = [ f u : H ⊗K // U , p, q]A .

We also have ε̄Y ,Z : N Y ×M Z // A(Y ⊗Z ) coming from ε. The commutative diagram

M(U )
∑

X ,Y ,Z
C (X ⊗Y ⊗Z ,U )×M(X )×N (Y )×M(Z )/ ∼ηU∗1 //

M(U )

1∗εU

��

1

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

yields the equations

m = (1∗εU )(ηU ∗1)(m)

= (1∗εU )[u ⊗1U , p, q,m]A

= M(u ⊗1U )(p ε̄K ,U (q,m))

(3)

for all m ∈ M(U ).
Define

M(U )
iU

11 A(K ⊗U )

rU
rr

by iU (m) = ε̄K ,U (q,m), rU (a) = M(u⊗1U )(p.a). These are easily seen to be natural in U .
Equation (3) says that r ◦ i = 1M . So M is a retract of A(K ⊗−). �

Now we will look at what are the objects of QA when W = Mky which is a symmetric
monoidal closed, complete and cocomplete category.

Theorem 14.3. The Cauchy completion QA of the monoid A in Mky consists of all the
retracts of modules of the form

k⊕
i=1

A(Yi ×−)

for some Yi ∈ Spn(E ), i = 1, . . . ,k.

Proof. Take a module M : J � // A in Mod(W ) and suppose that M has a right adjoint N :
A � // J . For the adjunction, we have a unit η : J // M∗A N and a counit ε : N∗M // A.
We write ηU : Spn(E )(1,U ) // (M ∗A N )(U ) is the component of the unit η and it is
determined by

η′ = η1(11) ∈
k∑

i=1
Spn(E )(X ×Y ,1)⊗M(X )⊗N (Y )/ ∼A .

Put

η′ = η1(11) =
k∑

i=1
[(Si : Xi ×Yi

// 1)⊗mi ⊗ni ]A

where mi ∈ M(Xi ) and ni ∈ N (Yi ). Then

ηU (T : 1 // U ) =
k∑

i=1
[(Si ×T )⊗mi ⊗ni ]A .
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We also have ε̄Y ,Z : N Y ⊗M Z // A(Y ×Z ) coming from ε. The commutative diagram

M(U )
k∑

i=1
Spn(E )(Xi ×Yi ×U ,U )⊗M(Xi )⊗N (Yi )⊗M(U )/ ∼A

ηU∗1 //

M(U )

1∗εU

��

1

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

yields

m =
k∑

i=1
[M(Pi ×U )⊗mi ⊗ε(ni ⊗m)]

where m ∈ M(U ) and Pi : Xi ×Yi
// U .

Define a natural retraction

M(U )
iU

11

k⊕
i=1

A(Yi ×U )
rU

rr

by

rU (ai ) = M(Pik ×U )(mi .ai ), iU (m) =
k∑

i=1
ε̄Yi ,U (ni ⊗m).

So M is a retract of
k⊕

i=1
A(Yi ×−).

It remains to check that each module A(Y ×−) has a right adjoint since retracts and
direct sums of modules with right adjoints have right adjoints.

In C = Spn(E ) each object Y has a dual (in fact it is its own dual). This implies that the
module C (Y ,−) : J � // J has a right dual (in fact it is C (Y ,−) itself) since the Yoneda em-
bedding C op // [C ,Modk ] is a strong monoidal functor. Moreover, the unit η : J // A
induces a module η∗ = A : J � // A with a right adjoint η∗ : A � // J . Therefore, the com-
posite

J �C (Y ,−) // J �η∗ // A ,

which is A(Y ×−), has a right adjoint. �

Theorem 14.4. Green functors A and B are Morita equivalent if and only if QA 'QB as
W -categories.

Proof. See [Li2] and [St]. �
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Lax Braidings and the Lax Centre

Brian Day, Elango Panchadcharam, and Ross Street

Abstract. The purpose of this work is to highlight the notions of lax braid-
ing and lax centre for monoidal categories and more generally for promonoidal

categories. Lax centres are lax braided. Generally the centre is a full subcate-
gory of the lax centre, however we show that it is sometimes the case that the

two coincide. We identify lax centres of monoidal functor categories in various

cases.

Introduction

Braidings for monoidal categories were introduced in [JS1] and its forerunners.
The centre ZX of a monoidal category X was introduced in [JS0] in the process of
proving that the free tortile monoidal category has another universal property. The
centre of a monoidal category is a braided monoidal category. What we now call lax
braidings were considered tangentially by Yetter [Yet]. What we now call the lax
centre ZlX of X was considered under the name “weak centre” by P. Schauenburg
[Sch]. The purpose of this work is to highlight the notions of lax braiding and lax
centre for monoidal categories X and more generally for promonoidal categories C .
Lax centres turn out to be lax braided monoidal categories. Generally the centre is
a full subcategory of the lax centre, however it is sometimes the case that the two
coincide. We have two such theorems under different hypotheses, one in the case
sufficient dual objects exist in the additive context, and the other in the cartesian
context. For a promonoidal category C , we relate the lax centre of the [Day]
convolution on C to the convolution on the lax centre of C . Indeed, sometimes
these are equivalent. One reason for being interested in the lax centre of X is
that, if an object X of X is equipped with the structure of monoid in ZlX , then
tensoring with X defines a monoidal endofunctor −⊗X of X ; this has applications
in cases where the lax centre can be explicitly identified.
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1. Lax braidings for promonoidal categories

Let V denote a complete cocomplete symmetric closed monoidal category and
let C be a V -enriched category in the sense of [Kel]. A promagmal structure on C
consists of two V -functors P : C op⊗C op⊗C // V and J : C // V (called the
protensor product and prounit). Recall from [Day] that a promonoidal structure
on C is a promagmal structure equipped further with V -natural isomorphisms∫ U

P (U,C;D)⊗ P (A,B;U) assoc //
∫ V

P (A, V ;D)⊗ P (B,C;V )

∫ U

P (U,A;B)⊗ J(U) lun //C (A,B) and
∫ V

P (A, V ;B)⊗ J(V ) run //C (A,B)

(called the associativity, left unit and right unit constraints) satisfying two coher-
ence conditions.

The importance of promonoidal structures on C lies in their equivalence to (left-
and -right-) closed monoidal structures on the V -functor category [C ,V ]. Given
a promonoidal structure on C , we obtain a closed monoidal structure on [C ,V ]
where the tensor product ∗ is defined by the convolution formula

(M ∗N)C =
∫ X,Y

P (X, Y ;C)⊗MX ⊗NY

and the unit is J . Conversely, given a closed monoidal structure on [C ,V ], we
obtain a promonoidal structure on C by defining

P (A,B;C) = (C (A,−) ∗ C (B,−))C

and taking the unit as the prounit.
By way of example, every monoidal structure on C determines a promonoidal

one by defining P (A,B;C) = C (B ⊗ A,C) and JC = C (I, C). Another example,
for any comonoidal C , is defined by P (A,B;C) = C (B,C)⊗C (A,C) and JC = I;
the comonoidal structure includes V -functors C // C ⊗ C and C // I which
are used to make P and J into V -functors in the C variable. These two examples
agree in case V = Set(so that every C is comonoidal) and the monoidal structure
on C is coproduct.

Symmetries for promonoidal structures were defined by [Day] and braidings by
[JS1]. We generalize this slightly. A lax braiding for a promonoidal structure on C
is a V -natural family of morphisms cA,B;C : P (A,B;C) // P (B,A;C) such that
the following four diagrams commute.∫ U

P (U,C;D)⊗ P (A,B;U)
∫ U

P (C,U ;D)⊗ P (A,B;U)
R U c⊗1 //

∫ V

P (A, V ;D)⊗ P (B,C;V )

assoc

��

∫ V

P (A, V ;D)⊗ P (C,B;V )

R V 1⊗c

�� ∫ W

P (W,B;D)⊗ P (A,C;W )
assoc−1

//

∫ W

P (W,B;D)⊗ P (C,A;W )

R W 1⊗c

OO

assoc

OO
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∫ V

P (A, V ;D)⊗ P (B,C;V )
∫ V

P (V,A;D)⊗ P (B,C;V )
R V c⊗1 //

∫ U

P (U,C;D)⊗ P (A,B;U)

assoc−1

��

∫ U

P (U,C;D)⊗ P (B,A;U)

R U 1⊗c

�� ∫ W

P (B,W ;D)⊗ P (A,C;W )
assoc //

∫ W

P (B,W ;D)⊗ P (C,A;W )

R W 1⊗c

OO

assoc−1

OO

∫ U

P (U,A;B)⊗ JU

∫ U

P (A,U ;B)⊗ JU

R U c⊗1 //

C (A,B)

run

{{wwwwwwwwwww

lun
##GGGGGGGGGGG

∫ U

P (A,U ;B)⊗ JU

∫ U

P (U,A;B)⊗ JU

R U c⊗1 //

C (A,B)

lun
{{wwwwwwwwwww

run

##GGGGGGGGGGG

A braiding is a lax braiding for which each cA,B;C : P (A,B;C) // P (B,A;C)
is invertible. In particular, by regarding a monoidal category as a promonoidal one
in the manner described above, we obtain the notion of lax braiding and braiding
for a monoidal category; by Yoneda’s Lemma in this case, we can regard the lax
braiding as a morphism cA,B : A ⊗ B //B ⊗ A satisfying four conditions; then
cA,B;C : C (B ⊗A,C) // C (A⊗B,C) is C (cA,B , C).

We can easily adjust the results of [Day] on symmetries to obtain the following
for lax braidings.

Proposition 1.1. Let C be a promonoidal V -category and regard [C ,V ]op,
under the convolution monoidal structure, as promonoidal. Then the Yoneda em-
bedding Y : C // [C ,V ]op preserves promonoidal structures. Moreover, there is
a bijection between lax braidings on C and those on [C ,V ]op defined by the require-
ment that Y should preserve lax braidings; the bijection restricts to braidings and
to symmetries.

Example 1.2. Let V be the monoidal category of vector spaces over the com-
plex number field k. Let A be an abelian category. We write Ag for the subcategory
of A with the same objects but with only the invertible morphisms. We write k∗Ag

for the free V -category on Ag; it has the same objects as Ag and its hom vector
spaces have the homs of Ag as bases. A promonoidal structure on k∗Ag is obtained
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by defining P (A,B;C) to have basis

{(f, g) | 0 //A
f //C

g //B // 0 is a short exact sequence in A }

and defining

JC =

{
k for C = 0
0 otherwise.

The associativity constraints come from contemplation of the following 3 × 3
diagram of short exact sequences.

A A// 0//

D
��

D// C//

B
��

V// C//

�� ��

�� ��

A lax braiding is obtained by defining cA,B;C : P (A,B;C) // P (B,A;C) to take
the basis element (f, g) to the sum of all those pairs (h, k) such that

A
f //

C
k

oo
g //

B
h

oo

is a direct sum situation; the abelian category A must be restricted so that this
sum is finite. This lax braiding is generally not invertible; however, in the case
where A is the category of finite vector spaces over a fixed finite field, it was shown
in [JS3] that it is a braiding.

In the presence of duals, various unexpected things can be proved invertible;
see [JS2, Section 10, Proposition 8], [Yet, Proposition 7.1], and [JS1, Propositions
7.1 and 7.4].

Proposition 1.3. If C is a right autonomous (meaning that each object has a
right dual) monoidal category then any lax braiding on C is necessarily a braiding.

Proof. If B has right dual C then the mate of cA,C is an inverse for cA,B .
While the proof of this is in [JS2, Section 10, Proposition 8], we shall repeat it
below squeezing out a little more in the form of our Proposition 3.1 below. �

We use the terminology of [Kel] so that a monoidal functor F : C //D
is equipped with a natural family of morphisms FA ⊗ FB // F (A ⊗ B) and a
morphism I // FI; these morphisms satisfy coherence conditions but are not
necessarily invertible; in the case where they are all invertible we say the monoidal
functor is strong.

Proposition 1.4. Any lax braiding of a monoidal V -category C equips the ten-
sor product V -functor ⊗ : C⊗C // C with a monoidal structure. Since monoidal
functors preserve monoids, it follows that the tensor product of two monoids in C
is again a monoid.
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2. The lax centre of a promonoidal category

For each promonoidal V -category C , we shall construct a promagmal V -cate-
gory ZlC which we call the (left) lax centre of C . It is quite often canonically
promonoidal in which case it is lax braided.

The objects of ZlC are pairs (A,α) where A is an object of C and α is a
V -natural family of morphisms αX;Y : P (A,X;Y ) // P (X, A;Y ) such that the
following two diagrams commute.

∫ V

P (A, V ;Z)⊗ P (X, Y ;V )
∫ V

P (V,A;Z)⊗ P (X, Y ;V )
R V α⊗1 //

∫ U

P (U, Y ;Z)⊗ P (A,X;U)

assoc−1

��

∫ U

P (U, Y ;Z)⊗ P (X, A;U)

R U 1⊗α

�� ∫ W

P (X, W ;Z)⊗ P (A, Y ;W )
assoc //

∫ W

P (X, W ;Z)⊗ P (Y, A;W )

R W 1⊗α

OO

assoc−1

OO

∫ U

P (A,U ;X)⊗ JU

∫ U

P (U,A;X)⊗ JU

R U α⊗1 //

C (A,X)

lun

{{vvvvvvvvvvvv

run

##HHHHHHHHHHHH

The hom object ZlC ((A,α), (B, β)) is defined to be the equalizer in V of the two
composed paths around the following square.

C (A,B)
∫

X,Y

[P (B,X;Y ), P (A,X;Y )]P //

∫
X,Y

[P (B,X;Y ), P (X, A;Y )]

[1,α]

��∫
X,Y

[P (X, B;Y ), P (X, A;Y )]

P

��

[β,1]
//

Composition in ZlC is defined so that we have the obvious faithful V -functor
ZlC // C taking (A,α) to A.

The promagmal structure on ZlC is defined by taking P ((A,α), (B, β); (C, γ))
to be the equalizer of the two composed paths around the following square in
which the top and left sides are transforms under the tensor-hom adjunction of the
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associativity constraint and its inverse.

P (A,B;C)
[
P (C, Y ;Z),

∫ X

P (A,X;Z)⊗P (B, Y ;X)
]

//

[
P (C, Y ;Z),

∫ X

P (X, A;Z)⊗P (Y,B;X)
][1,

R X α⊗β]

��[
P (Y, C;Z),

∫ X

P (X, A;Z)⊗P (Y, B;X)
]��

[γ,1]
//

We take J(A,α) to be the equalizer of the two legs around the following triangle
in which the top side and left side come from the unit constraints.

JA [P (A,X;Y ),C (X, Y )]//

[P (X, A;Y ),C (X, Y )]
##HHHHHHHHHHHHHHH

[αX;Y ,1]

;;vvvvvvvvvvvvvvv

It is frequently the case that ZlC is promonoidal in such a way that the forgetful
V -functor ZlC // C is strong promonoidal. For example, if C is monoidal then
so too is ZlC and ZlC // C is strong monoidal.

The lax braiding on ZlC is defined by taking the unique c = c(A,α),(B,β);(C,γ)

such that the following square commutes.

P ((A,α), (B, β); (C, γ)) P (A,B;C)
equalizer //

P (B,A;C)

α

��
P ((B, β), (A,α); (C, γ))

c

��

equalizer
//

The centre of C is the full sub-V -category ZC of ZlC consisting of the objects
(A,α) for which each αX;Y : P (A,X;Y ) // P (X, A;Y ) is invertible.

There is a fully faithful V -functor Ψ : (ZlC )op //Zl[C ,V ] defined by

Ψ(A,α) =
(
C (A,−),C (A,−) ∗ F

θF //F ∗ C (A,−)
)

where

θF =

(∫ U

P (A,U ;−)⊗ FU

R U αU;−⊗1F U //
∫ U

P (U,A;−)⊗ FU

)
.

In fact, the promagmal structure on ZlC is obtained by restriction along Ψ of the
promonoidal (actually monoidal) structure on Zl[C ,V ]. The following diagram of
V -functors and V -categories is a pullback.

(ZlC )op Zl[C ,V ]Ψ //

[C ,V ]
��

C op
��

Yoneda
//
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The V -functor Ψ induces an adjunction

Zl[C ,V ]
Ψ̃

// [ZlC ,V ]
Ψ̂oo

defined by

Ψ̂(G) =
∫ (A,α)

G(A,α)⊗Ψ(A,α) and Ψ̃(F, θ)(A,α) = Zl[C ,V ](Ψ(A,α), (F, θ));

this last object can be obtained as the equalizer of two morphisms out of F (A).
In later sections we shall see that this adjunction can be a lax-braided monoidal
equivalence.

3. The lax centre of a monoidal category

Let C denote a monoidal V -category. The lax centre ZlC of C is the lax centre
of C as a promonoidal category with promonoidal structure defined by

JC = C (I, C) and P (A,B;C) = C (B ⊗A,C).

Using the Yoneda lemma, we identify objects of ZlC with pairs (A, u) where A is
an object of C and u is a V -natural family of morphisms uB : A⊗B //B ⊗ A
such that the following two diagrams commute.

A⊗B ⊗ C B ⊗ C ⊗A
uB⊗C //

B ⊗A⊗ C

uB⊗1C

##GGGGGGGGGG

1B⊗uC

;;wwwwwwwwww

A⊗ I I ⊗A
uI //

A

∼=
{{wwwwwwwwwww

∼=
##GGGGGGGGGGG

In the case where V = Set and C is monoidal, the lax centre of C , under the
name “(left) weak centre”, was used in Section 4 of [Sch] where it is shown to be
related to Yetter-Drinfeld modules.

We shall see that the lax centre can be equal to the centre. As a preliminary to
this, we note the following result which implies Proposition 1.3 since every object
of a lax braided monoidal category is equipped with a canonical structure of object
in the lax centre.

Proposition 3.1. If (A, u) is an object of the lax centre of a monoidal V -
category C and X is an object of C with a right dual X∗ then the mate of uX∗ :
A⊗X∗ //X∗ ⊗A is an inverse for uX : A⊗X //X ⊗A.

Proof. The mate of uX∗ is the composite

X ⊗A
1X⊗1A⊗η //X ⊗A⊗X∗ ⊗X

1X⊗uX∗⊗1X// X ⊗X∗ ⊗A⊗X
ε⊗1A⊗1X //A⊗X

where η and ε are the unit and the counit for the duality X a X∗. The proof
that this is a right inverse uses the naturality of u with respect to the morphism
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η : I //X∗ ⊗X and the axioms for uI and uX∗⊗X :

X ⊗A X ⊗A⊗X∗ ⊗X
1X⊗1A⊗η //

X ⊗X∗ ⊗A⊗X

1X⊗uX∗⊗1X

**UUUUUUUUUUUUUUUUUUUU

A⊗X

ε⊗1A⊗1X

ttiiiiiiiiiiiiiiiiiiiii

X ⊗A uX

oo

X ⊗X∗ ⊗X ⊗A

1X⊗η⊗1A

))SSSSSSSSSSSSSSSSS

1X⊗A

��

1X⊗uX∗⊗X

�� 1X⊗1X∗⊗uXoo

ε⊗1X⊗1A

uukkkkkkkkkkkkkkkkk

Alternatively, we can prove it using string diagrams:

X A

X A

X∗ =

X A

Similarly, the proof that the mate of uX∗ is a left inverse uses the naturality of u
with respect to the morphism ε : X∗⊗X // I and the axioms for uI and uX⊗X∗ .

�

Proposition 3.2. Suppose F is a monoidal V -category such that, for each
object F , the functor F ⊗ − : F //F preserves (weighted) colimits. If K :
C //F is a dense V -functor then, for each object F of F and endo-V -functor
T of F , restriction along K provides a bijection between V -natural transformations

u : F ⊗− ⇒ T : F //F

and V -natural transformations

t : F ⊗K− ⇒ TK− : C //F .

The components of u are induced on colimits by the components of the corresponding
t; so that, if t is invertible, so is u.

Proof. The density of K means that each M in F is the F (K−,M)-weighted
colimit colim(F (K−,M),K) of K. Since F ⊗ − : F //F preserves colimits,
we have

F ⊗M ∼= colim(F (K−,M), F ⊗K−).

It follows that V -natural families of morphisms uM : F ⊗ M // TM are in
bijection with V -natural families of morphisms F (K−,M) //F (F ⊗K−, TM)
which, by Yoneda, are in bijection with V -natural families of morphisms tA : F ⊗
KA // TKA. �

Proposition 3.3. Suppose F is a monoidal V -category such that, for each
object F , the functors −⊗ F and F ⊗− : F //F preserve (weighted) colimits.
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If K : C //F is a dense V -functor and u : F ⊗ − ⇒ −⊗ F : F //F is a
V -natural transformation then, in order for the triangle

F ⊗M ⊗N M ⊗N ⊗ F
uM⊗N //

M ⊗ F ⊗N

um⊗1N

!!CCCCCCCCCCCCC

1M⊗uN

=={{{{{{{{{{{{{

to commute for all M and N in F , it suffices that it commute for all M and N
equal to values of K.

Proof. Using the density of K and the colimit preservation properties of the
tensor, we have an isomorphism

F ⊗M ⊗N ∼=
∫ A,B

F (KA,M)⊗F (KB, N)⊗ F ⊗KA⊗KB

which is V -natural in M and N . There are two similar isomorphisms for the other
two vertices of the triangle in the proposition. By V -naturality, the triangle itself
transports across the isomorphisms to the triangle

Z A,B

F(KA, M)⊗F(KB, N)⊗ F ⊗KA⊗KB

Z A,B

F(KA, M)⊗F(KB, N)⊗KA⊗KB ⊗ F

R A,B 1⊗ 1⊗ uKA⊗KB

//

Z A,B

F(KA, M)⊗F(KB, N)⊗KA⊗ F ⊗KB

R A,B 1⊗1⊗uKA⊗1

$$HHHHHHHHHHHHHHHHHH

R A,B 1⊗1⊗1⊗uKB

::vvvvvvvvvvvvvvvvvv

which commutes since it is induced on colimits by triangles that commute by hy-
pothesis. So the triangle of the proposition commutes. �

Theorem 3.4. Suppose F is a monoidal V -category such that, for each object
F , the functor F ⊗− : F //F preserves (weighted) colimits. If the full sub-V -
category of F consisting of the objects with right duals is dense in F then the lax
centre of F is equal to the centre: ZlF = ZF .

Proof. Let C be the full sub-V -category of F consisting of the objects with
right duals, and let K denote the inclusion. Suppose (F, u) is an object of the lax
centre of F . Let t correspond to u under the bijection of Proposition 3.2. By
Proposition 3.1, t is invertible. By Proposition 3.2, u is invertible so that (F, u) is
in the centre of F . �

Corollary 3.5. For any Hopf algebra H, the lax centre of the monoidal cat-
egory ComodH of left H-comodules is equal to its centre.

Proof. For any coalgebra H, every comodule is the directed union of its finite
dimensional subcomodules (see Section 7, Proposition 1 of [JS2]). It follows that
the comodules which are finite dimensional (as vector spaces) are dense in the
category ComodH . The bialgebra structure on H provides the monoidal structure
on ComodH which is preserved by the underlying functor into vector spaces. Since
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H is a Hopf algebra, the objects of ComodH with right duals are those whose
underlying vector spaces are finite dimensional (see Section 9, Proposition 4 of
[JS2]). So Theorem 3.4 applies. �

Corollary 3.6. For any finite dimensional Hopf algebra H, the lax centre of
the monoidal category ModH of left H-modules is equal to its centre.

Proof. Since Yoneda embeddings are dense, the object H of ModH (where
the action is the algebra multiplication) is dense in ModH. Since H is finite
dimensional, it has a right dual in ModH. So the objects of ModH with right
duals are dense and Theorem 3.4 applies. �

Theorem 3.7. Suppose an object F of a monoidal V -category F is equipped
with the structure of monoid in the lax centre ZlF of F . Then −⊗F : F //F
is equipped with the structure of monoidal V -functor.

Proof. Let (F, u) be a monoid in ZlF . So we have a monoid structure on F
with multiplication µ : F ⊗F // F and unit η : I // F such that the following
two diagrams commute.

F ⊗ F ⊗X F ⊗X ⊗ F
1⊗uX // X ⊗ F ⊗ F

uX⊗1 //

X ⊗ F

1⊗µ

��
F ⊗X

µ⊗1

��
uX

//

I ⊗X X ⊗ I
uI

∼=
//

X ⊗ F

1⊗η

��
F ⊗X

η⊗1

��
uX

//

The monoidal structure on the functor − ⊗ F : F //F is defined as follows:
φ0 : I // F is equal to η and φ2;X,Y : X ⊗ F ⊗ Y ⊗ F //X ⊗ Y ⊗ F is the
composite

X ⊗ F ⊗ Y ⊗ F
1⊗uY ⊗1 //X ⊗ Y ⊗ F ⊗ F

1⊗1⊗µ⊗1⊗1// X ⊗ Y ⊗ F.

The following diagrams commute:

X⊗F⊗Y⊗F⊗Z⊗F X⊗Y⊗F⊗F⊗Z⊗F
1⊗uY ⊗1⊗1⊗1 // X⊗Y⊗F⊗Z⊗F

1⊗1⊗µ⊗1⊗1//

X⊗Y⊗Z⊗F⊗F

1⊗1⊗uZ⊗1

��

X⊗Y⊗Z⊗F

1⊗1⊗1⊗µ

��

X⊗F⊗Y⊗Z⊗F⊗F

1⊗1⊗1⊗uZ⊗1

��

X⊗F⊗Y⊗Z⊗F

1⊗1⊗1⊗1⊗µ

��
X⊗Y⊗Z⊗F⊗H

1⊗uY ⊗Z⊗1
//

1⊗1⊗1⊗µ
//

X⊗Y⊗F⊗Z⊗F⊗F1⊗uY ⊗1⊗1⊗1 11cccccccccccc

X⊗Y⊗Z⊗F⊗F⊗F

1⊗1⊗uZ⊗1⊗1

��

1⊗1⊗1⊗1⊗µ

��

1⊗uY ⊗Z⊗1⊗1
--[[[[[[[[[[[[ 1⊗1⊗1⊗µ⊗1 11ddddddddd

1⊗1⊗1⊗uZ⊗1

��
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X ⊗ F

X ⊗ F ⊗ F

1⊗1⊗η

^^==========

X ⊗ F
1⊗µ //

1⊗1

@@����������
Y ⊗ F

F ⊗ Y ⊗ F

η⊗1⊗1

ffMMMMMMMMMMMMMM

Y ⊗ F ⊗ F
uY ⊗1 // Y ⊗ F

1⊗µ //

1⊗η⊗1

PP       1⊗1

99rrrrrrrrrrrrr

which completes the proof. �

4. The cartesian example

For this section we take V = Set and study the lax centre of any category
C equipped with the promonoidal structure defined by P (A,B;C) = C (B,C) ×
C (A,C) and JC = 1. Then the corresponding convolution monoidal structure on
the functor category [C ,Set] is none other than (pointwise cartesian) product.

Consider an object (A,α) of ZlC . In order that the natural family of morphisms

αX;Y : C (X, Y )× C (A, Y ) // C (A, Y )× C (X, Y )

should satisfy the second condition for an object of ZlC , it must be determined by
its second projection; that is,

αX;Y (f, g) = (g, αX;Y (f, g))

for a unique natural family of morphisms

αX;Y : C (X, Y )× C (A, Y ) // C (X, Y )

The first condition on α then follows automatically from naturality. Now we can
apply the Yoneda Lemma to see that such families α are in bijection with dinat-
ural transformations φ (in the sense of [DuSt]) from the representable functor
C (A,−), thought of as constant in a contravariant variable, to the hom functor
C (−,∼) : C op×C // Set of C . In other words, we have a family φ of functions
φX : C (A,X) // C (X, X) such that, for all f : X // Y in C , the following
diagram commutes.

C (A,X) C (X, X)
φX //

C (X, Y )

C (1X ,f)

&&MMMMMMMMM

C (A, Y )

C (1A,f)

��
C (Y, Y )

φY

//
C (f,1Y )

88qqqqqqqqq

In other words, fφX(u) = φY (fu)f for all morphisms f : X // Y and u :
A //X. The bijection is obtained by αX;Y (f, u) = (u, φY (u)f). We therefore
identify objects of ZlC with pairs (A,φ). A morphism g : (A,φ) // (A′, φ′)
in ZlC is a morphism g : A //A′ in C such that φX(vg) = φ′X(v) for all
v : A′ //X.

For a moment let us look at the special case where C has finite coproducts.
Then, in the above notation, αX,Y : C (X, Y ) × C (A, Y ) // C (X, Y ) is deter-
mined by its composite with the natural bijection C (X+A, Y ) ∼= C (X, Y )×C (A, Y )
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so that the Yoneda Lemma can be applied. Thus we have a bijection between the
α and the natural transformations θ : (−) // (−) + A defined by the equations

θX = αX;X+A(copr1, copr2) = φX+A(copr2)copr1 : X //X + A.

We therefore identify objects of ZlC with pairs (A, θ); morphisms g : (A, θ) //

(A′, θ′) are morphisms g : A //A′ in C such that θ′X = (1X + g)θX . For a
category X with finite products, we can take C = X op in the above to see that
the lax centre ZlX = (ZlX op)op of the cartesian monoidal category X has objects
pairs (A, θ) where θ : (−) × A // (−) is a natural transformation. The tensor
product in ZlX is given by

(A, θ)⊗ (A′, θ′) =
(
A×A′, (−)×A×A′

θ×1A′ //(−)×A′
θ′ //(−)

)
.

The lax braiding c(A,θ),(A′,θ′) : (A, θ)⊗(A′, θ′) // (A′, θ′)⊗(A, θ) is the morphism

(θA′ ,pr1) : (A×A′, θ′(θ × 1A′)) // (A′ ×A, θ(θ′ × 1A)).

The core CX of the category X in the sense of [Fre] is precisely a terminal
object in ZlX ; it may not exist in general. Although we shall often write CX for
the underlying object of X , as an object of ZlX it is equipped with a natural
transformation (−) × CX

// (−); however, it is also a monoid in X whose
multiplication is the morphism CX × CX

//CX into the terminal object in
ZlX . If the core exists, we have the identification of the lax centre with a slice
category:

ZlX ∼= X /CX .

The monoid structure on CX defines an obvious monoidal structure on the slice
category and the isomorphism is in fact monoidal. If X is cartesian closed (with
internal hom written as [X, Y ]), we have the formula

CX
∼=
∫

X

[X, X];

but in general this end may not exist either.

Proposition 4.1. If X is a complete cartesian closed category and K : D //

X is a dense functor from a small category D then X has a core CX
∼=
∫

D
[KD, KD].

Proof. The denseness of K amounts to the natural isomorphism

X (X, Y ) ∼=
∫

D

Set(X (KD, X),X (KD, Y )).

Since D is small and X is complete,
∫

D
[KD, KD] exists. We have the calculation:

X
(
Z,

∫
D

[KD,KD]
)
∼=
∫

D

X (Z, [KD,KD]) ∼=
∫

D

X (KD, [Z,KD])

∼=
∫

X,D

Set(X (KD, X),X (KD, [Z,X])) ∼=
∫

X

X (X, [Z,X]) ∼=
∫

X

X (Z, [X, X]),

from which it follows that
∫

X
[X, X] exists and is isomorphic to

∫
D

[KD, KD]. �

We return now to our arbitrary small category C , equipped with the promo-
noidal structure defined by P (A,B;C) = C (B,C)× C (A,C) and JC = 1, so that
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the corresponding convolution monoidal structure on the functor category [C ,Set]
is the product. Recall that the internal hom for [C ,Set] is given by the formula

[F,G](A) ∼=
∫

V

Set(C (A, V )× FV,GV ).

Applying Proposition 4.1 with K equal to the Yoneda embedding C op // [C ,Set],
we obtain

C[C ,Set](A) ∼=
∫

W,V

Set(C (A, V )× C (W,V ),C (W,V )) ∼=
∫

V

Set(C (A, V ),C (V, V ))

where the second isomorphism uses the Yoneda Lemma. In other words, interpret-
ing the last end and using our previous notation, we have a connection between the
core of [C ,Set] and the lax centre of C :

C[C ,Set](A) ∼= {φ | (A,φ) is an object of ZlC }

The canonical function C[C ,Set](A)×F (A) // F (A) takes (φ, a) to F (φA(1A))(a).
The monoid structure ∗ on the functor C[C ,Set] is given by (φ∗φ′)U (h) = φU (h)φ′U (h).

Recall from folklore that the category elF of elements of a functor F : C // Set
has objects pairs (A, a) where A is an object of C and a is an element of F (A);
a morphism g : (A, a) // (B, b) is a morphism g : A //B in C such that
F (g)(a) = b . There is an equivalence of categories

[C ,Set]/F
∼ //[elF,Set]

taking each object ρ : T // F over F to the functor whose value at (A, a) is the
fibre of the component function ρA : T (A) // F (A) over a ∈ F (A). If F is a
monoid in [C ,Set] (that is a functor from C to the category Mon of monoids) then
the obvious monoidal structure on [C ,Set]/F transports to a monoidal structure
on [elF,Set] which is obtained by convolution from the promonoidal structure on
elF defined by

P ((A, a), (B, b); (C, c)) =
{

A
u //C oo

v
B | F (u)(a) ∗ F (v)(b) = c

}
where ∗ is multiplication in the monoid F (C).

As a particular case, we see that the category of elements of C[C ,Set] is ZlC
and the monoid structure on C[C ,Set] corresponds to the promagmal structure on
ZlC .

Putting all this together, we have proved the following result.

Theorem 4.2. For any small category C equipped with the promonoidal struc-
ture whose convolution gives the cartesian monoidal structure on [C ,Set], there is
an equivalence and an isomorphism of categories:

[ZlC ,Set] ' // [C ,Set]/C[C ,Set]

∼= //Zl[C ,Set].

The promagmal category ZlC is lax-braided promonoidal resulting in a lax-braided
convolution monoidal structure on [ZlC ,Set] for which the above composite equiv-
alence is lax-braided monoidal.

The objects of [C ,Set]/C[C ,Set] can also be interpreted in terms of dinatural
transformations. A natural transformation F //C[C ,Set] has components

FA //
∫

U

Set(C (A,U),C (U,U))
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which are in natural bijection with families of morphisms

C (A,U) // Set(FA,C (U,U))

natural in A and dinatural in U . By Yoneda, these families are in natural bijection
with families of morphisms

ρU : FU // C (U,U)

dinatural in U . Write HomC for the set-valued hom functor of the category C .

Proposition 4.3. For any small category C , the lax centre Zl[C ,Set] of the
cartesian monoidal category [C ,Set] is equivalent to the category of dinatural trans-
formations ρ : F //HomC over HomC . Given such a dinatural ρ, the corre-
sponding object of Zl[C ,Set] is (F, u) where

uM : F ×M //M × F

is defined by (uMU)(x,m) = (M(ρU (x))(m), x) for all x in FU and m in MU .

Theorem 4.4. If C is a category in which every endomorphism is invertible
then the lax centre Zl[C ,Set] of the cartesian monoidal category [C ,Set] is equal
to the centre Z[C ,Set].

Proof. Notice in Proposition 4.3 that each ρU (x) is an endomorphism, so
under the present hypotheses, an inverse for uM is defined by

(u−1
M U)(m,x) =

(
x, M(ρU (x)−1)(m)

)
.

�

Before closing this section, let us consider the case where C is a groupoid. Then
the equation fφX(u) = φY (fu)f can be rewritten fφX(u)f−1 = φY (fu) so that

φX(f) = fφA(1A)f−1.

In other words, objects of ZlC can be identified with automorphisms s : A //A;
the corresponding φ is defined by the conjugation formula φX(f) = fsf−1. So
ZlC = C Z is the category of automorphisms in C . As described in Example 9 of
[DaSt], the promonoidal structure is defined by

P ((A, s), (B, t); (C, r)) =
{

A
u //C oo

v
B | usvt = r

}
.

The lax braiding P ((A, s), (B, t); (C, r)) // P ((B, t), (A, s); (C, r)) takes (u, v) to
(usv, u). The family of morphisms αX;Y : C (X, Y ) × C (A, Y ) // C (A, Y ) ×
C (X, Y ) corresponding to the φ corresponding to s is then defined by αX;Y (f, u) =
(u, usu−1f) which is obviously invertible (the inverse takes (u, g) to (us−1u−1g, u)).
This implies that the lax centre of C is equal to the centre of C and that the
lax braiding is a braiding. It also follows that C[C ,Set] = AutC where AutC :
C // Set is the functor taking the object A to C (A,A) and the morphism f to
conjugation by f .

Theorem 4.5. If C as in Theorem 4.2 is a groupoid then

ZlC = ZC = C Z, Zl[C ,Set] = Z[C ,Set], C[C ,Set] = AutC

and there is a braided monoidal equivalence

Z[C ,Set] ∼ //[C Z,Set].
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5. The central cohypomonad

The lax centre of a monoidal V -category X can be, in very special cases,
monadic over X or comonadic over X . However, with the mere assumption of left
closedness, we find that the lax centre ZlX is the V -category of coalgebras for a
“cohypomonad”, a concept we shall now define.

Let ∆ denote the category whose objects are finite ordinals 〈n〉 = {1, 2, . . . , n}
and whose morphisms are order-preserving functions. It becomes strict monoidal
under the tensor product defined by ordinal sum: 〈m〉+ 〈n〉 = 〈m+n〉. Recall that
a comonad on the V -category X can be identified with a strict monoidal functor
G : ∆op // [X ,X ] where the endo-V -functor category [X ,X ] is monoidal
under composition. A monad on X is a strict monoidal functor ∆ // [X ,X ];
a mere monoidal functor is something less, so we call it a hypomonad.

A cohypomonad on X is a monoidal functor G : ∆op // [X ,X ]. More
explicitly, it is an augmented simplicial endo-V -functor

G0 G1
εoo δ // G2

δ0 //

δ1 //ε1
oo

ε0oo
· · ·ε1oo

ε0oo

ε2oo

on X together with V -natural transformations γ2;m,n : Gm ◦ Gn
//Gm+n and

γ0 : 1X
//G0 satisfying naturality of γ2;m,n in 〈m〉 and 〈n〉, plus associativity

and unit conditions. A cohypomonad is called normal when γ0 : 1X
//G0 is

invertible.
A coalgebra for G is an object A of X together with a morphism α : A //G1A

(called the coaction) such that the following two diagrams commute.

A G1A
α //

G0A

εA

��

γ0;A

!!CCCCCCCCCCCCCC A G1A
α //

G2A

δA

((QQQQQQQQQ

G1A

α

��
G1G1A

G1α
//

γ2;1,1;A

66mmmmmmmm

Such a coalgebra gives rise to an extended simplicial diagram on the value of G at
A; we omit the details. A coalgebra morphism is a morphism in X which commutes
with the coactions. We obtain a V -category X G of G-coalgebras by taking the
obvious equalizer in V to define the V -valued homs

We now turn to our principal example of a cohypomonad. Suppose X is a left-
closed monoidal V -category. For each natural number n, define the endo-V -functor
Gn of X by the end formula

GnA =
∫

X1,...,Xn

[X1 ⊗ · · · ⊗Xn, X1 ⊗ · · · ⊗Xn ⊗A],

where the square brackets denote the left internal hom. The end exists when, for
example, we assume X is complete, right closed, and has a small dense full sub-V -
category. (Alternatively, we could avoid the internal homs and these size problems
by looking at modules (= distributors) from X to X rather than functors.)

The functor G : ∆op // [X ,X ] is defined as follows. The value at the ob-
ject 〈n〉 is of course Gn. Let ξ : 〈m〉 // 〈n〉 be an order-preserving function and
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suppose the fibre of ξ over k ∈ 〈n〉 has cardinality mk. The V -natural transfor-
mation Gξ : Gn

//Gm has its component at A defined by commutativity of the
triangle

GnA GmA
GξA //

[Y1 ⊗ · · · ⊗ Ym, Y1 ⊗ · · · ⊗ Ym ⊗A]

projY1,...,Ym

��

projY1⊗···⊗Ym1 ,...,Ym−mn+1⊗···⊗Ym1

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

for all choices of objects Y1, . . . , Ym.
We now describe the monoidal structure on the functor G. In fact, it is nor-

mal; there is an obvious canonical V -natural isomorphism γ0 : 1X
//G0. The

component of the V -natural transformation γ2;m,n : Gm ◦ Gn
//Gm+n at A is

defined by commutativity of the diagram

∫
Y

[⊗
m

Y,
⊗
m

Y ⊗
∫
X

[⊗
n

X,
⊗
n

X⊗A
]] ∫

Y,X

[⊗
m

Y ⊗
⊗
n

X,
⊗
m

Y ⊗
⊗
n

X⊗A]
]

γ2;m,nA//

[⊗
m

Y ⊗
⊗
n

X,
⊗
m

Y ⊗
⊗
n

X⊗A
]

projY,X

��

[⊗
m

Y,
[⊗

n
X,
⊗
m

Y ⊗
⊗
n

X⊗A
]]

∼=

��

∫
Y

[⊗
m

Y,
⊗
m

Y ⊗
[⊗

n
X,
⊗
n

X⊗A
]]

R
Y

[1,1⊗projX]

��

[⊗
m

Y,
⊗
m

Y ⊗
[⊗

n
X,
⊗
n

X⊗A
]]projY

��

[1,canon]
//

for all lists Y = (Y1, . . . , Ym) and X = (X1, . . . , Xn) of objects, where the map
canon: Y ⊗ [X, Z] // [X, Y ⊗ Z] corresponds, under the tensor-hom adjunction
to 1⊗ eval : Y ⊗ [X, Z]⊗X // Y ⊗ Z.

Proposition 5.1. Let X be a complete closed monoidal V -category with a
small dense sub-V -category. The structure just defined on G : ∆op // [X ,X ]
makes it a normal cohypomonad for which X G is equivalent to the lax centre of
X .

References

[Day] B. J. Day, On closed categories of functors, Lecture Notes in Math. (Springer, Berlin) 137

(1970), 1–38.

[DaSt] B. J. Day and R. Street, Monoidal bicategories and Hopf algebroids, Advances in Math.
129 (1997), 99–157.

[DuSt] E. Dubuc and R. Street, Dinatural transformations, Lecture Notes in Math.(Springer,
Berlin) 137 (1970), 126–137.

[Fre] P. Freyd, The theory of core algebras: its completeness (Preprint) (December 2004).

[JS0] A. Joyal and R. Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl.
Algebra 71 (1991) 43-51.

[JS1] A. Joyal and R. Street, Braided tensor categories, Advances in Math. 102 (1993), 20–78.

78 Paper 2



LAX BRAIDINGS AND THE LAX CENTRE 17

[JS2] A. Joyal and R. Street, An introduction to Tanaka duality and quantum groups; Part

II of Category Theory, Proceedings, Como 1990 (editors A.Carboni, M.C.Pedicchio and

G.Rosolini) Lecture Notes in Math. (Springer, Berlin) 1488 (1991), 411–492.
[JS3] A. Joyal and R. Street, The category of representations of the general linear groups over

a finite field, J.Algebra 176 (1995), 908–946.

[Kel] G. M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Notes
Series. (Cambridge University Press) 64 (1982).

[Sch] P. Schauenburg, Duals and doubles of quantum groupoids (×R–Hopf algebras), Contem-

porary Math. 267 (2000), 273–299.
[Yet] D. Yetter, Quantum groups and representations of monoidal categories, Math. Proc.

Camb. Phil. Soc. 108 (1990), 261–290.

Centre of Australian Category Theory, Macquarie University, New South Wales
2109, AUSTRALIA

E-mail address: {elango, street}@maths.mq.edu.au

Paper 2 79



80 Paper 2



81

Chapter 3

Paper 3: On centres and lax centres

for promonoidal categories

(Coauthored with Dr. Brian Day and Professor Ross Street)

This paper was submitted to “Charles Ehresmann 100 ans”, the 100th birth-

day anniversary conference of Charles Ehresmann which was held at the Uni-

versite de Picardie Jules Verne in Amiens between October 7 to 9, 2005. This

paper is now at http://perso.orange.fr/vbm-ehr/ChEh/articles/articlesFrT.htm

The abstract will appear in Cahiers de Topologie et Géométrie Différentielle

Catégoriques, Volume XLVI-3.

Table of Contents
Abstract
3.1. Introduction
3.2 Review of definitions
3.3 Lax centres
3.4 The cartesian case
3.5 The autonomous case
3.6 Monoids in the lax centre
References



82 Paper 3



On centres and lax centres for promonoidal categories

Brian Day, Elango Panchadcharam, and Ross Street

Abstract

Our purpose is to highlight the notions of lax braiding and lax centre for a monoidal
category and more generally for a promonoidal category. Lax centres are lax braided. Gen-
erally the centre is a full subcategory of the lax centre, however it is sometimes the case that
the two coincide. There is always an adjunction involving the (lax) centre of a presheaf cat-
egory and the presheaf category on the (lax) centre. In important cases the adjunction is an
equivalence of (lax) braided monoidal categories. One reason for being interested in the lax
centre of a monoidal category is that, if an object of the monoidal category is equipped with
the structure of monoid in the lax centre, then tensoring with the object defines a monoidal
endofunctor on the monoidal category. This has applications in cases where the lax centre
can be explicitly identified (as in the presheaf cases mentioned above).
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On centres and lax centres for promonoidal categories ∗

Brian Day, Elango Panchadcharam, and Ross Street

In celebration of the hundreth anniversary of Charles Ehresmann’s birth

1 Introduction

Braidings for monoidal categories were introduced in [7] and its forerunners. The centre
ZX of a monoidal category X was introduced in [6] in the process of proving that the
free tortile monoidal category has another universal property. The centre of a monoidal
category is a braided monoidal category. What we now call lax braidings were considered
tangentially by Yetter [13]. What we now call the lax centre ZlX of X was considered
under the name “weak centre” by P. Schauenburg [12]. The purpose of this work is to
highlight the notions of lax braiding and lax centre for monoidal categories X and more
generally for promonoidal categories C . Indeed we further generalize to the V -enriched
context. Lax centres turn out to be lax braided monoidal categories. Generally the centre is a
full subcategory of the lax centre, however it is sometimes the case that the two coincide. We
have two such theorems under different hypotheses, one in the case sufficient dual objects
exist in the additive context, and the other in the cartesian context. We examine when the
centre of [C ,V ] with a convolution monoidal structure (in the sense of [1]) is again a functor
category [D ,V ].

One reason for being interested in the lax centre of X is that, if an object X of X is
equipped with the structure of monoid in ZlX , then tensoring with X defines a monoidal
endofunctor−⊗X of X ; this has applications in cases where the lax centre can be explicitly
identified.

2 Review of definitions

The context in which we work is enriched category theory in the sense of [10]. The base
monoidal category V is symmetric, closed, complete and cocomplete. The tensor product
of V is denoted by ⊗ : V × V // V , the unit by I , and the associativity and unital
isomorphisms will be regarded as canonical (and so unnamed).

∗The authors are grateful for the support of the Australian Research Council Discovery Grant DP0450767,
and the second author for the support of an Australian International Postgraduate Research Scholarship, and an
International Macquarie University Research Scholarship.

1
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A V -multicategory is a V -category C equipped with a sequence of V -functors

Pn : C op ⊗ . . .⊗ C op︸ ︷︷ ︸
n

⊗C // V ,

where we write J for P0 : C // V , where P1 is the hom V -functor C (−,∼) : C op ⊗C
// V , and where we write P for P2. Furthermore, there are substitution operations,

which include V -natural families∫ X

P (X,C;D)⊗ P (A,B;X)
µ1 // P3(A,B,C;D)

∫ Y

P (A, Y ;D)⊗ P (B,C;Y )
µ2oo

∫ X

P (X,A;B)⊗ JX
η1 // C (A,B)

∫ Y

P (A, Y ;B)⊗ JY,
η2oo

satisfying associativity and unital conditions. For V = Set, this is a multicategory in the
sense of [11].

A promonoidal V -category [1] is a V -multicategory C for which µ1, µ2, η1, η2 are
invertible. In this case, Pn is determined up to isomorphism by P0, P1, P2.

A monoidal V -category is a promonoidal V -category C for which P and J are repre-
sentable. That is, there are V -natural isomorphisms

P (A,B;C) ∼= C (A�B,C), JC ∼= C (U,C)

for some A � B (depending on the choice of A and B) and some U . Monoidal structures
on C are in bijection with monoidal structures on C op.

For any small promonoidal V -category C , there is a convolution monoidal structure on
the V -functor V -category F = [C ,V ] defined (following [1]) by

(F ∗G)C =
∫ A,B

P (A,B;C)⊗ FA⊗GB.

The unit J and F is closed (by which we always mean “on both sides”):

F (F, [G,H]l) ∼= F (F ∗G,H) ∼= F (G, [F,H]r)

where

[G,H]lA =
∫

B,C

V (P (A,B;C)⊗GB,HC) and

[F,H]rB =
∫

A,C

V (P (A,B;C)⊗ FA,HC).

Conversely, every closed monoidal structure ∗, J on F = [C ,V ] for a small V -
category C defines a promonoidal structure on C where

Pn(A1, . . . , An;B) = Pn(C (A1,−), . . . ,C (An,−);C (B,−)).

2
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That is, we restrict the promonoidal structure along the Yoneda embedding Y : C //F op.
A lax braiding for a promonoidal V -category C is a V -natural family of morphisms

cA,B;C : P (A,B;C) // P (B,A;C)

such that the following diagrams commute.∫ U

P (U,C;D)⊗ P (A,B;U)
∫ U

P (C,U ;D)⊗ P (A,B;U)
R U c⊗1 //

∫ V

P (A, V ;D)⊗ P (B,C;V )

∼=
��

∫ V

P (A, V ;D)⊗ P (C,B;V )

R V 1⊗c

�� ∫ W

P (W,B;D)⊗ P (A,C;W )
∼= //

∫ W

P (W,B;D)⊗ P (C,A;W )

RW 1⊗c

OO

∼=

OO

∫ V

P (A, V ;D)⊗ P (B,C;V )
∫ V

P (V,A;D)⊗ P (B,C;V )
R V c⊗1 //

∫ U

P (U,C;D)⊗ P (A,B;U)

∼=
��

∫ U

P (U,C;D)⊗ P (B,A;U)

R U 1⊗c

�� ∫ W

P (B,W ;D)⊗ P (A,C;W )
∼= //

∫ W

P (B,W ;D)⊗ P (C,A;W )

RW 1⊗c

OO

∼=

OO

∫ U

P (U,A;B)⊗ JU

∫ U

P (A,U ;B)⊗ JU

R U c⊗1 //

C (A,B)

∼=
{{ww

ww
ww

ww
ww

w

∼=
##G

GG
GG

GG
GG

GG

∫ U

P (A,U ;B)⊗ JU

∫ U

P (U,A;B)⊗ JU

R U c⊗1 //

C (A,B)

∼=
{{ww

ww
ww

ww
ww

w

∼=
##G

GG
GG

GG
GG

GG
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When C is monoidal, the lax braiding is induced by a V -natural family of morphisms

cA,B : A�B //B �A

which we also call the lax braiding in this case. For general promonoidal C , lax braidings
on the convolution monoidal V -category F = [C ,V ] are in bijection with lax braidings on
C : the Yoneda embedding Y : C //F op is a lax-braided promonoidal functor.

A braiding is a lax braiding for which each cA,B;C (and hence each cA,B in the monoidal
case) is invertible. The third and fourth conditions on a lax braiding are automatic in this
case.

In the presence of duals in a monoidal C (more precisely, C should be right autonomous
in the sense of [7]), every lax braiding is automatically a braiding (see [8, Section 10,
Proposition 8], [13, Proposition 7.1], [7, Propositions 7.1 and 7.4]).

3 Lax centres

The lax centre ZlC of a monoidal V -category C is the lax-braided monoidal V -category
defined as follows. The objects are pairs (A, u) where A is an object of C and u is a
V -natural family of morphisms

uB : A�B //B �A

such that the following two diagrams commute:

(A�B) � C (B �A) � C
uB�1 //

B � (A� C)

∼=

&&MMMMMMMMM

B � (C �A)

1�uC

��

A� (B � C)

∼=

xxqqqqqqqqq

(B � C) �A)

uB�C

��

∼=
//

A� U U �A
uU //

A

∼=
~~}}

}}
}}

}}
}}

∼=
  A

AA
AA

AA
AA

A

(where the marked isomorphisms are induced by the substitution operations µ and η and
their inverses). The hom object ZlC ((A, u), (A′, u′)) is defined to be the equalizer in V of

4
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the two composed paths around the following square.

C (A,A′) C (A�B,A′ �B)
−�B //

C (A�B,B �A′)

C (1,u′
B)

��
C (B �A,B �A′)

B�−

��

C (uB ,1)
//

Composition inZlC is defined so that we have the obvious faithful V -functorZlC // C
taking (A, u) to A.

The monoidal structure on ZlC is defined on objects by

(A, u) � (B, v) = (A�B,w)

where wC : (A�B) � C //C � (A�B) is the composite

A� (B � C)
1�vC //A� (C �B)

∼= //(A� C) �B
uC�1 //(C �A) �B

conjugated by canonical isomorphisms. The unit object is U equipped with the family of
canonical isomorphisms U � C ∼= C � U . The faithful V -functor ZlC // C is strong
monoidal.

The lax braiding on ZlC is defined to be the family of morphisms

c(A,u),(B,v) : (A�B,w) // (B �A, w̃)

lifting uB : A�B //B �A to ZlC .
The centre ZC of C is the full monoidal sub-V -category of ZlC consisting of the

objects (A, u) with each uB invertible. Clearly ZC is a braided monoidal V -category.
There are interesting cases where the centre ZC is actually equal to the lax centre.

Much as a lax braiding in the presence of duals is a braiding, we have that, if C is right
autonomous, then ZC = ZlC (see [2, Proposition 3.1]).

It is worth noting that for a closed monoidal C with a dense full sub-V -category, the
objects (A, u) of ZlC are determined by the restriction of uB to those B in the dense sub-
V -category (see [2, Proposition 3.1 and 3.3]).

We can generalize the lax centre construction to promonoidal V -categories C . It is
defined as a V -multicategory to be the pullback ZlC

(ZlC ) (ZlF )opΨ //

F op
��

C
��

Y
//

of V -categories and V -functors. The multicategory structure is defined by restriction along
the fully faithful Ψ (where F = [C ,V ] with convolution).

5
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Similarly ZC is defined by replacing ZlF by ZF in the pullback.
It is frequently the case that ZlC is promonoidal, not merely a multicategory; moreover,

the forgetful V -functor ZlC // C is strong promonoidal. If C is monoidal, this ZlC
agrees with the definition in Section 2.

The objects ofZlC are pairs (A,α) whereA is an object of C and α is a V -natural fam-
ily of morphisms αX;Y : P (A,X;Y ) // P (X,A;Y ) such that the pair (C (A,−), u) is
an object of (ZlF )op, where u is determined by

uC (X,−) = αX;− : C (A,−) ∗ C (X,−) // C (X,−) ∗ C (A,−).

If ZlC is promonoidal, it has a lax braiding

c(A,α),(B,β);(C,γ) : P ((A,α), (B, β); (C, γ)) // P ((B, β), (A,α); (C, γ))

obtained by restriction of αB;C : P (A,B;C) // P (B,A;C) to the equalizers.
The V -functor Ψ induces an adjunction Ψ̂ a Ψ̃:

Zl[C ,V ]
Ψ̃

// [ZlC ,V ]
Ψ̂oo

where

Ψ̂(G) =
∫ (A,α)

G(A,α)⊗Ψ(A,α) and Ψ̃(F, θ)(A,α) = Zl[C ,V ](Ψ(A,α), (F, θ)).

The last object can be obtained as the equalizer of two morphisms out of FA. If ZlC
is promonoidal, this is a lax-braided monoidal adjunction. We shall see that the adjunction
can be an equivalence of lax-braided monoidal V -categories.

Similar remarks apply to ZC .

4 The cartesian case

For this section, suppose V = Set with cartesian monoidal structure. Our concern is
with the lax centre of cartesian monoidal categories C : that is, C is a category with finite
products regarded as a monoidal category whose tensor is product.

It is an easy exercise to see that an object (A, u) of ZlC is such that uX : A × X
//X × A is determined by its first projection A × X //X . In fact, every natural

family of morphisms θX : A×X //X determines an object (A, u) of ZlC via

uX = (θX , pr1).

So we identify objects of ZlC with pairs (A, θ).
We therefore see that the core CC of the category C in the sense of [5] is precisely a

terminal object of ZlC . If this core exists, we have the identification of the lax centre with
a slice category

ZlC ∼= C /CC .

6
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The monoidal structure on C /CC arises from a monoidal structure on CC in C : the mul-
tiplication CC × CC

//CC in C is the unique morphism into the terminal object in
ZlC .

If C is cartesian closed (with internal hom written as [X,Y]), we have the formula

CC
∼=

∫
X

[X,X]

provided the end exists; it does when C has a small dense subcategory and is complete.
Now suppose C is any small category and we shall apply the considerations of this

section to the cartesian monoidal category F = [C ,Set].
The promonoidal structure on C that leads to the cartesian structure on F via convolu-

tion is defined by
P (A,B;C) = C (A,C)× C (B,C).

(This is monoidal if and only if C has finite coproducts.) We can obtain the following
explict descriptions of ZlC and ZC in this case. The objects of ZlC are pairs (A,φ) where
A is an object C and φ is a family of morphisms

φX : C (A,X) // C (X,X)

dinatural in X in the sense of [4]; that is,

f ◦ φX(u) = φY (f ◦ u) ◦ f

for f : X // Y . A morphism g : (A,φ) // (A′, φ′) in ZlC is a morphism g :
A //A′ in C such that φX(v ◦ g) = φ′X(v). The promonoidal structure on ZlC is
defined by

P ((A,φ), (B,ψ); (C,χ)) ={
A

u // C oo
v

B | χX(f) = φX(f ◦ u) ◦ ψX(f ◦ v) for all C
f // X

}
.

The lax braiding on ZlC is defined by

P ((A,φ), (B,ψ); (C,χ))
c(A,φ),(B,ψ);(C,χ) // P ((B,ψ), (A,φ); (C,χ))

(A u // C oo
v

B) 7−→ ( B
αC(u)◦v // C oo

u
A ).

An object (A,φ) of ZlC is in ZC if and only if the function

C (A,C)× C (B,C) // C (B,C)× C (A,C) ; (u, v) 7−→ (αC(u) ◦ v, u)

is bijection for all B,C.

Theorem 4.1. Let C denote a small category with promonoidal structure such that the
convolution structure on [C ,Set] is cartesian product.

7
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(a). The adjunction Ψ̂ a Ψ̃ defines an equivalence of lax-braided monoidal categories

Zl[C ,Set] ' [ZlC ,Set]

which restricts to a braided monoidal equivalence

Z[C ,Set] ' [ZC ,Set].

(b). If every endomorphism in the category C is invertible then ZlC = ZC .

(c). If C is a groupoid then
ZC = ZlC = [ΣZ,C ]

(where ΣZ is the additive group of the integers as a one-object groupoid).

5 The autonomous case

Suppose C is a closed monoidal V -category with tensor product � and unit U . We write
[Y,Z]l for the left internal hom. Put X l = [X,U ]l. We have a canonical isomorphism
U l ∼= D and a canonical morphism Y l �X l // (X � Y )l.

Define a V -functor M : C // C by

M(A) =
∫ X

X l �A�X

when the coend exists (which it does when C is cocomplete and has a small dense sub-
V -category). Using the canonical isomorphism and morphism just mentioned, we obtain a
monad structure on M . Notice that M preserves colimits.

Proposition 5.1. If C has a small dense sub-V -category of objects with left duals thenZlC
is isomorphic to the V -category C M of Eilenberg-Moore algebras for the monad M .

We can apply this in the case where C is replaced by F .

Theorem 5.2. (V = Vectk) Suppose C is a promonoidal k-linear category with finite-
dimensional homs. Let F = [C ,V ] have the convolution monoidal structure. Then

ZF = ZlF ∼= FM ' [CM ,V ]

where CM is the Kleisli category for the promonad M on C .

6 Monoids in the lax centre

Let C be a monoidal V -category. Each monoid (A, u) in ZlC determines a canonical
enrichment of the V -functor

−�A : C // C

8
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to a monoidal functor:

X �A� Y �A
1�uY �1 // X � Y �A�A

1�1�µ // X � Y �A

U
η // A ∼= U �A.

This becomes useful when ZlC can be explicitly identified as in the last two sections.
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PULLBACK AND FINITE COPRODUCT PRESERVING FUNCTORS
BETWEEN CATEGORIES OF PERMUTATION REPRESENTATIONS

ELANGO PANCHADCHARAM AND ROSS STREET

Abstract. Motivated by applications to Mackey functors, Serge Bouc [Bo] character-
ized pullback and finite coproduct preserving functors between categories of permutation
representations of finite groups. Initially surprising to a category theorist, this result
does have a categorical explanation which we provide.

1. Introduction

For a finite group G, we write G-setfin for the category of finite (left) G-sets (that is,
of permutation representations of G) and equivariant functions. We write Spn(G-setfin)
for the category whose morphisms are isomorphism classes of spans between finite G-
sets. Coproducts in Spn(G-setfin) are those of G-setfin and composition in Spn(G-setfin)
involves pullbacks in G-setfin.

According to Harald Lindner [Li], a Mackey functor M on a finite group H is a finite
coproduct preserving functor M : Spn(H-setfin) //Modk

1. A functor F : G-setfin
//

H-setfin which preserves pullbacks and finite coproducts will induce a functor

Spn(F ) : Spn(G-setfin) //Spn(H-setfin)

preserving finite coproducts. By composition with Spn(F ), each Mackey functor M on
H will produce a Mackey functor M ◦ Spn(F ) on G.

This observation led Bouc [Bo] to a systematic study of pullback and finite coproduct
preserving functors F : G-setfin

//H-setfin. He characterized them in terms of Gop×H-
sets A (where Gop is G with opposite multiplication). This perplexed us initially, as the
category (Gop×H)-set of such A is equivalent to the category of finite colimit preserving
functors L : G-setfin

//H-setfin; these L generally do not preserve pullbacks, while the
F generally do not preserve coequalizers. Of course, Bouc’s construction of L from a left
H-, right G-set A is quite different from the standard module theory construction of F
from A. We shall explain the two constructions.

The authors are grateful for the support of the Australian Research Council Discovery Grant
DP0346047, and the first author for the support of an Australian International Postgraduate Research
Scholarship, and an International Macquarie University Research Scholarship.

2000 Mathematics Subject Classification: 58A03,18A30.
Key words and phrases: topos, permutation representations, limits and colomits, adjunction, Mackey

functors.
c© Elango Panchadcharam and Ross Street, 2006. Permission to copy for private use granted.

1Actually, Lindner asked for finite product preserving; but, in our case, the categories have direct
sums.
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2

We put (g, h)a = hag for g ∈ G, h ∈ H and a in the (Gop × H)-set A, so that A
becomes a left H-set and a right G-set. For each left G-set X, define the left H-set
A⊗G X to be the quotient of the set A×X = {(a, x) | a ∈ A, x ∈ X} by the equivalence
relation generated by

(ag, x) ∼ (a, gx), a ∈ A, x ∈ X, g ∈ G.

Write [a, x] for the equivalence class of (a, x) and define h[a, x] = [ha, x]. For A finite,
this defines our functor L = A ⊗G − : G-setfin

//H-setfin on objects; it is defined on
morphisms f : X //X ′ by L(f)[a, x] = [a, f(x)]. Certainly L preserves all colimits that
exist in G-setfin since it has a right adjoint R : H-setfin

//G-setfin defined on the left
H-set Y by R(Y ) = H-setfin(A, Y ) with action (g, θ) � // gθ where (gθ)(a) = θ(ag). All
this is classical “module” theory.

Now we turn to Bouc’s construction. Again let A be a (Gop ×H)-set. Rather than a
mere G-set X, we define a functor on all (Kop × G)-sets B where K, G, H are all finite
groups. Put

A ∧G B = {(a, b) ∈ A×B | g ∈ G, ag = a +3 there exists k ∈ K with gb = bk}.

This becomes a (Kop ×G×H)-set via the action

(k, g, h)(a, b) = (hag−1, gbk).

Then Bouc defines the (Kop ×H)-set

A ◦G B = (A ∧G B)/G,

to be the set of orbits orb(a, b) = [a, b] of elements (a, b) of A∧G B under the action of G.
In particular, when K = 1 and B = X ∈ G-setfin, we obtain F (X) = A ◦G X ∈ H-setfin.
This defines the functor

F : G-setfin
//H-setfin.

1.1. Theorem. [Bo] Suppose K, G and H are finite groups.

(i) If A is a finite (Gop ×H)-set then the functor

A ◦G − : G-setfin
//H-setfin

preserves finite coproducts and pullbacks.

(ii) Every functor F : G-setfin
//H-setfin which preserves finite coproducts and pull-

backs is isomorphic to one of the form A ◦G −.

(iii) The functor F in (ii) preserves terminal objects if and only if A is transitive (con-
nected) as a right G-setfin.
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(iv) If A is as in (i) and B is a finite (Kop ×G)-set then the composite functor

K-setfin
B◦K− // G-setfin

A◦G− // H-setfin

is isomorphic to (A ◦G B) ◦K −.

Our intention in the present paper is to provide a categorical explanation for this
Theorem.

In Section 2, before turning to the problem of preserving pullbacks, we examine finite
limit preserving functors from categories like G-setfin to setfin. We adapt the appropriate
classical adjoint functor theorem to this “finite” situation. To make use of this for the
purpose in hand, in Section 3, we need to adapt the result to include preservation of finite
coproducts and reduce the further preservation of pullbacks to the finite limit case.

Section 4 interprets the work in the finite G-set case. In Section 5 we express the
conclusions bicategorically. Implications for our original motivating work on Mackey
functors are explained in the final Section 6.

2. Special representability theorem

In this section we provide a direct proof of the well-known representability theorem (see
Chapter 5 [Ma]) for the case where “small” means “finite”.

Recall that an object Q of a category A is called a cogenerator when, for all f, g :
A //B in A , if uf = ug for all u : B //Q, then f = g.

A subobject of an object A of A is an isomorphism class of monomorphisms m :
S //A; two such monomorphisms m : S //A and m′ : S ′ //A are isomorphic when
there is an invertible morphism h : S //S ′ with m′ ◦ h = m. We call A finitely well
powered when each object A has only finitely many subobjects. Write Sub(A) for the set
of subobjects [m : S //A] of A.

For each set X and object A of A , we write AX for the object of A for which there
is a natural isomorphism

A (B, AX) ∼= A (B, A)X

where Y X is the set of functions from X to Y . Such an object may not exist; if A has
products indexed by X then AX is the product of X copies of A.

We write setfin for the category of finite sets and functions. A functor T : A // setfin

is representable when there is an object K ∈ A and a natural isomorphism T ∼= A (K,−).

2.1. Theorem. (Special representability theorem) Suppose A is a category with the fol-
lowing properties:

(i) each homset A (A, B) is finite;

(ii) finite limits exist;

(iii) there is a cogenerator Q;
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(iv) A is finitely well powered.

Then every finite limit preserving functor T : A // setfin is representable.

Proof. Using (ii) and (iv), we have the object

P =
∏

[S]∈Sub(QTQ)

STS.

We shall prove that, for each A ∈ A and a ∈ TA, there exists p ∈ TP and w : P //A
such that (Tw)p = a. The following diagram defines δ, ι and S0.

S0 QTQm //

QA (A,Q)

ι

��

Q

prf

++XXXXXXXXXXA

t

��

δ
//

pr(Tf)a

��

f

55

pb

Now δu = δv implies fu = fv for all f : A //Q, so u = v by (iii). So δ is a monomor-
phism. So [S0] ∈ Sub(QTQ). Since T preserves pullbacks, there is a unique s ∈ TS0 such
that (Tt)s = a and (Tm)s transports to 1TQ under T (QTQ) ∼= (TQ)TQ. Let p transport
to (1TS)[S] under TP ∼=

∏
[S](TS)TS. Then we can define w to be the composite

P
pr[S0],s // S0

t // A

with (Tw)p = a.
Now let K be the equalizer of all the endomorphisms e (including 1P ) of P for which

T (e)(p) = p (we are using (i)):

K.

P

l

<<zzzzzzzz

P

l

bbDDDDDDDD

e //

Since T preserves limits, there is a unique k ∈ TK with (T l)k = p. Define

θA : A (K, A) //TA

by θA(r) = (Tr)k; this is natural in A. Moreover, θA is surjective since (K, k) clearly has
the same property that we proved for (P, p).

It remains to prove θA injective. Suppose r and r′ : K //A are such that (Tr)k =
(Tr′)k.
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Let n : U //K be the equalizer of r and r′, and let u ∈ TU be unique with (Tn)u = k.
By the property of (P, p), there exists w : P //U with (Tw)p = u.

K

P

l

99ssssssssss

P

l

eeKKKKKKKKKK

U
w // K

n // l //

From the definition of K, we have lnwl = l. Yet l is a monomorphism (since it is an
equalizer), so nwl = 1 and r = rnwl = r′nwl = r′, as required.

For categories A and X admitting finite limits, write Lex(A , X ) for the full sub-
category of the functor category [A , X ] consisting of the finite limit preserving functors.

2.2. Corollary. For a category A satisfying the conditions of Theorem 2.1, the Yoneda
embedding defines an equivalence of categories

A op ' Lex(A , setfin) , A � //A (A,−).

3. Finite coproducts

Suppose the category A has finite coproducts. An object C of A is called connected
when the functor A (C,−) : A //Set preserves finite coproducts. Write Conn(A ) for
the full subcategory of A consisting of the connected objects.

Write Cop(A , X ) for the full subcategory of [A , X ] consisting of the finite coproduct
preserving functors. Also CopLex(A , X ) consists of the finite coproduct and finite limit
preserving functors. As an immediate consequence of Corollary 2.2 we have

3.1. Corollary. For a category A with finite coproducts and the properties of Theo-
rem 2.1, the Yoneda embedding defines an equivalence of categories

Conn(A )op ' CopLex(A , setfin).

Suppose A is a finitely complete category and T : A // setfin is a functor. For each
t ∈ T1, define a functor Tt : A // setfin using the universal property of the pullback

TtA TA
ιtA //

T1.

T !

��
1
��

t
//

pb

Clearly T ∼=
∑

t∈T1 Tt. Taking A = 1 in the above pullback, we see that each Tt preserves
terminal objects. The following observations are obvious.
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3.2. Proposition. Suppose A is a finitely complete category, T : A // setfin is a
functor, and the functors Tt : A // setfin, t ∈ T1, are defined as above.

(i) If T preserves pullbacks then each Tt preserves finite limits.

(ii) Each Tt preserves whatever coproducts that are preserved by T .

For any small category C , we write Fam(C op) for the free finite coproduct completion
of C op. The objects are families (Ci)i∈I of objects Ci of C with indexing set I finite.
A morphism (ξ, f) : (Ci)i∈I

// (Dj)j∈J consists of a function ξ : I // J and a family
f = (fi)i∈I of morphisms fi : Dξ(i)

//Ci in C .

There is a functor

ZC : Fam(C op) // [C ,Set]

defined by

ZC (Ci)i∈I =
∑
i∈I

C (Ci,−)

which is fully faithful. So Fam(C op) is equivalent to the closure under finite coproducts
of the representables in [C ,Set].

We write Pb(A , X ) for the full subcategory of [A , X ] consisting of pullback pre-
serving functors. Also CopPb(A , X ) has objects restricted to those preserving finite
coproducts and pullbacks.

3.3. Proposition. Suppose the category A is as in Corollary 3.1. The functor ZA

induces an equivalence of categories

Fam(Conn(A )op) ' CopPb(A , setfin).

Proof. Clearly Fam(Conn(A )op) is a full subcategory of Fam(A op) and ZA restricts
to a fully faithful functor

Fam(Conn(A )op) // [A , setfin].

It remains to identify the essential image of this functor as those T : A // setfin which
preserve finite coproducts and pullbacks. However, we have seen in Proposition 3.2 that
such a T has the form T ∼=

∑
t∈T1 Tt where each Tt preserves finite coproducts and is left

exact. By Corollary 3.1, we have

Tt
∼= A (Ct,−)

where each Ct is connected.
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4. Application to permutation representations

A permutation representation of a finite group G, also called a finite left G-set, is a finite
set X together with a function G×X //X , (g, x) � // gx, called the action such that

1x = x and g1(g2x) = (g1g2)x.

If X and Y are such G-sets, a (left) G-morphism f : X //Y is a function satisfy-
ing f(gx) = gf(x). We write G-setfin for the category of finite left G-sets and left
G-morphisms.

The terminal object of G-setfin is the set 1 with only one element with its unique
action. The pullback in G-setfin of two morphisms f : X //Z and k : Y //Z is given
by {(x, y) ∈ X × Y |f(x) = k(y)} with componentwise action g(x, y) = (gx, gy). So
G-setfin has finite limits.

Since the set G-setfin(X, Y ) is a subset of the set setfin(X, Y ) = Y X , it is finite.
The set PG of subsets of G becomes a G-set by defining the action as

gS = {h ∈ G | hg ∈ S}

for S ⊆ G and g ∈ G. For each x ∈ X ∈ G-setfin, we can define a G-morphism
χx : X //PG by

χx(z) = {h ∈ G | hz = x}.

If x, y ∈ X ∈ G-setfin then χx(x) = χx(y) implies 1 ∈ χx(y), so y = x. It follows that
PG is a cogenerator for G-setfin.

Subobjects of X ∈ G-setfin are in bijection with sub-G-sets of X. So G-setfin is finitely
well powered.

From Section 2, we therefore have:

4.1. Corollary. Every limit preserving functor T : G-setfin
// setfin is representable.

The Yoneda embedding induces an equivalence of categories

G-setop
fin ' Lex(G-setfin, setfin).

Recall that a G-set X is called transitive when it is non-empty and, for all x, y ∈ X,
there exists g ∈ G with gx = y.

For any G-set X and any x ∈ X, we put

stab(x) = {g ∈ G | gx = x}

which is a subgroup of G called the stabilizer of x. We also put

orb(x) = {gx | g ∈ G}

which is a transitive sub-G-set X called the orbit of x. We write X/G for the set of
orbits which can be regarded as a G-setfin with trivial action so that orb : X //X/G is
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a surjective G-morphism. If u ∈ X/G, we also write Xu for the orbit u as a sub-G-set of
X. So every G-set is the disjoint union of its orbits.

The empty coproduct is the empty set 0 with its unique action. The coproduct of two
G-sets X and Y is their disjoint union X + Y with action such that the coprojections
X //X + Y and Y //X + Y are G-morphisms. So every G-set X is a coproduct

X ∼=
∑

u∈X/G

Xu

of transitive G-sets (the orbits Xu).
Each subgroup H of G determines a transitive G-set

G/H = {xH | x ∈ G}

where xH = {xh | h ∈ H} is the left coset of H containing x, and where the action is

g(xH) = (gx)H.

Every transitive G-set X is isomorphic to one of the form G/H; we can take H = stab(x)
for any x ∈ X.

The G-morphisms f : G/H //X are in bijection with those x ∈ X such that H ≤
stab(x). The G-sets G/H and G/K are isomorphic if and only if the subgroups H and K
are conjugate (that is, there exists x ∈ G with Hx = xK).

We provide a proof of the following well-known fact.

4.2. Proposition. A finite G-set X is transitive if and only if X is a connected object
of G-setfin.

Proof. A G-set X is non-empty if and only if G-setfin(X,0) is empty; that is, if and
only if G-setfin(X,−) preserves empty coproducts.

A morphism G/H //Y + Z is determined by an element of Y + Z stable under H;
such an element must either be an element of Y or an element of Z stable under H. So
transitive G-sets are connected.

Assume X is connected. We have already seen that X is non-empty so choose x ∈ X.
Then

X = orb(x) + U

for some sub-G-set U of X. We therefore have the canonical function

G-setfin(X, orb(x)) + G-setfin(X, U) //G-setfin(X,X)

which is invertible since X is connected. So the identity function X //X is in the image
of the canonical function and so factors through orb(x) ⊆ X or U ⊆ X. Since x /∈ U , we
must have orb(x) = X. So X is connected.
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We have thus identified Conn(G-setfin) as consisting of the transitive G-sets. This
category has a finite skeleton CG since there are only finitely many G-sets of the form
G/H. Corollary 3.1 yields:

4.3. Corollary. The Yoneda embedding induces an equivalence of categories

C op
G ' CopLex(G-setfin, setfin).

Let N : CG
//G-setfin denote the inclusion functor and define the functor

Ñ : G-setfin
// [C op

G , setfin]

by ÑX = G-setfin(N−, X).

4.4. Proposition. The functor Ñ induces an equivalence of categories

G-setfin ' Fam(CG).

Proof. We first prove that N is dense; that is, that Ñ is fully faithful. Let θ :
ÑX // ÑY be a natural transformation. For each u : C //D in CG we have a com-
mutative square

G-setfin(D, X) G-setfin(D, Y )
θD //

G-setfin(C, Y ).

−◦u
��

G-setfin(C, X)

−◦u
��

θC

//

Since the single-object full subcategory of G-setfin consisting of G is dense (Gop //G-setfin

is a Yoneda embedding), by restricting C and D to be equal to G ∈ CG, we obtain a G-
morphism f : X //Y defined uniquely by f(x) = θG(x̂)(1) where x̂ : G //X is given
by x̂(g) = gx. Then, for all w : D //X and d ∈ D, the above commutative square, with
C = G, yields

θD(w)(d) = (θD(w) ◦ d̂)(1) = θG(w ◦ d̂)(1) = θG(ŵ ◦ d)(1) = (f ◦ w)(d).

So θD = G-setfin(D, f) for a unique G-morphism f .
The proof of the equivalence of categories will be completed by characterizing the es-

sential image of Ñ as finite coproducts of representables in [C op
G , setfin]. If F ∈ [C op

G , setfin]
is a finite coproduct of representables then we have a finite family (Ci)i∈I of objects of
CG and an isomorphism F ∼=

∑
i C (−, Ci). We have the calculation:∑

i

C (−, Ci) ∼=
∑

i

G-setfin(N−, Ci)

∼= G-setfin(N−,
∑

i

Ci)

∼= Ñ(
∑

i

Ci).
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So F is in the essential image of Ñ . Conversely, every X ∈ G-setfin is a coproduct
X ∼=

∑
i Ci of connected G-sets. So the same calculation, read from bottom to top, shows

that Ñ(X) is a finite coproduct of representables.

5. A factorization for G-morphisms

For any G-set X, we have the set X/G = {C ⊆ X : C is an orbit ofX} of connected
sub-G-sets of X. We have the function orb : X //X/G taking each element x ∈ X to
its orbit orb(x) = {gx : g ∈ G}. Each G-morphism f : X //Y induces a direct image
function f/G : X/G //Y/G defined by (f/G)(C) = f∗(C).

A G-morphism f : X //Y is said to be slash inverted when f/G : X/G //Y/G is
a bijection.

5.1. Proposition. A G-morphism f : X //Y is slash inverted if and only if it is
surjective and f(x1) = f(x2) implies orb(x1) = orb(x2).

Proof. Suppose f is slash inverted. For each y ∈ Y there exists x ∈ X with f∗(orb(x)) =
orb(y). So f(x) = gy for some g ∈ G. It follows that y = f(g−1x), so f is surjective.
If f(x1) = f(x2) then (f/G)(orb(x1)) = (f/G)(orb(x2)); so orb(x1) = orb(x2). For the
converse, take orb(y) ∈ Y/G. Then y = f(x) for some x ∈ X and so orb(f(x)) = orb(y).
Also, if orb(f(x1) = orb(f(x2)), then f(x1) = gf(x2) = f(gx2) for some g ∈ G. So
orb(x1) = orb(gx2) = orb(x2).

A G-morphism f : X //Y is said to be orbit injective when orb(x1) = orb(x2) and
f(x1) = f(x2) imply x1 = x2. Orbit injective morphisms were considered by Bouc [Bo].

5.2. Proposition. The slash inverted and orbit injective G-morphisms form a factoriza-
tion system (in the sense of [FK]) on the category of G-sets.

Proof. To factor a G-morphism f : X //Y , construct the G-set S =
∑

C∈X/G

f∗(C) and

define G-morphisms u : X //S and v : S //Y by

u(x) = f(x) ∈ f∗(orb(x)) and v(y ∈ f∗(C)) = y.

Then f = v ◦ u while u is slash inverted and v is orbit injective.
The only other non-obvious thing remaining to prove is the diagonal fill-in property.

For this, suppose k ◦ u = v ◦ h where u is slash inverted and v is orbit injective.
If u(x1) = u(x2) then orb(x1) = orb(x2), so orb(h(x1)) = orb(h(x2)). Yet we also have

v(h(x1)) = k(u(x1)) = k(u(x2)) = v(h(x2)). Since v is orbit injective, we deduce that
h(x1) = h(x2).

Since u is surjective, for each s ∈ S there is an x ∈ X with u(x) = s. By the last
paragraph, the value h(x) is independent of the choice of x. So we obtain a function r by
defining r(s) = h(x). Clearly r is a G-morphism with r ◦ u = h and v ◦ r = k; and r is
unique since u is surjective.
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This factorization system has a special property.

5.3. Proposition. The pullback of a slash inverted G-morphism along an orbit injective
G-morphism is slash inverted.

Proof. Suppose the G-morphisms u : X //S and v : Y //S are slash inverted and
orbit injective, respectively. Let P be the pullback of u and v with projections p : P //X
and q : P //Y . We claim that q is slash inverted. It is clearly surjective so suppose that
q(x1, y1) = q(x2, y2) where u(x1) = v(y1) and u(x2) = v(y2). So y1 = y2 and u(x1) = u(x2).
Since u is slash inverted, orb(x1) = orb(x2); so there exists g ∈ G with x2 = gx1. Since
y1 and gy1 are in the same orbit, the calculation

v(gy1) = gv(y1) = gu(x1) = u(gx1) = u(x2) = v(y2) = v(y1)

implies that gy1 = y1 = y2. So g(x1, y1) = (x2, y2), which implies that (x1, y1) and (x2, y2)
are in the same orbit.

6. A new category of G-sets

For a finite group G, we write G-setfin for the category of finite G-sets and G-morphisms.
We write CG for (a skeleton of) the category of connected G-sets and all G-morphisms
between them. There is also the category Spn(G-setfin) whose objects are finite G-sets
and whose morphisms are isomorphism classes of spans between finite G-sets. All these
categories are important for the study of Mackey functors.

However, we now wish to introduce another category BG whose objects are all the
finite G-sets. In fact, BG is the subcategory of Spn(G-setfin) whose morphisms are the
isomorphism classes of those spans (u, S, v) : X //Y in which u : S //X is slash
inverted and v : S //Y is orbit injective. It follows from Proposition 5.2 and Proposition
5.3 that these particular spans are closed under span composition.

6.1. Proposition. The subcategory BG of Spn(G-setfin) is closed under finite coproducts.

Proof. The coproduct in Spn(G-setfin) is that of G-setfin, namely, disjoint union. For
G-sets X and Y , the coprojections X + Y in Spn(G-setfin) are the spans

(1X , X, copr1) : X //X + Y and (1Y , Y, copr2) : Y //X + Y

which clearly yield morphisms in BG. Moreover, if (u, S, v) : X //Z and (h, T, k) :
Y //Z are spans with u and h slash inverted and with v and k orbit injective then
u + h : S + T //X + Y is slash inverted and [v, k] : S + T //Z orbit injective. So the
induced span (u + h, S + T, [v, k]) : X + Y //Z yields a morphism in BG.
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6.2. Remark. While the coproduct in Spn(G-setfin) is also the product (since Spn(G-setfin)
is self dual), this is no longer true in BG.

There is a functor Cop
G

//BG taking each connected G-set to itself and each G-
morphism f : C //D between connected G-sets to the isomorphism class of the span
(f, C, 1C) : D //C; clearly f must be slash inverted since C and D each have one or-
bit. Using the universal property of Fam(Cop

G ) and Proposition 6.1, we obtain a finite
coproduct preserving functor Σ : Fam(Cop

G ) //BG extending Cop
G

//BG.

6.3. Theorem. The functor Σ : Fam(Cop
G ) //BG is an equivalence of categories.

Proof. Each object of BG is a coproduct of connected G-sets so Σ is certainly essentially
surjective on objects. To prove Σ fully faithful we need to use the description of Fam(Cop

G )
just after Proposition 3.2. The objects are finite families (Ci)i∈I of connected G-sets
and a morphism (ξ, f) : (Ci)i∈I

// (Dj)j∈J consists of a function ξ : I // J and a

family f = (fi)i∈I of morphisms fi : Dξ(i)
//Ci. The functor Σ takes the morphism

(ξ, f) : (Ci)i∈I
// (Dj)j∈J to the isomorphism class of the span (u, S, v) : X //Y where

X =
∑

i∈I Ci, Y =
∑

j∈J Dj, S =
∑

i∈I Dξ(i),

u ◦ copri = copri ◦ fi and v ◦ copri = coprξ(i).

Notice that u induces a bijection S/G //X/G and that both of these sets are isomorphic
to I. It is then clear that u is slash inverted and v is orbit injective. Yet this process can
be inverted as follows. Given any span (u, S, v) : X //Y for the same X and Y , with u
slash inverted and v orbit injective, the direct image v∗u

∗(Ci) of the inverse image u∗(Ci)
of Ci must be an orbit Dξ(i) of Y . This defines a function ξ while fi is the composite
of the restriction of u to u∗(Ci) with the inverse of the isomorphism u∗(Ci) ∼= v∗u

∗(Ci)
induced by v.

6.4. Corollary. There is an equivalence

BG ' CopPb(G-setfin, setfin)

taking the left G-set C to the functor∑
w∈C/G

G-setfin(Cw,−)

where Cw is the orbit w as a sub-G-set of C.

There is an isomorphism of categories

`G : Gop-setfin
//G-setfin

which preserves the underlying sets. If A is a right G-set then `GA = A as a set with
left action ga in `GA equal to ag−1 in A. As a special case of the construction in the
Introduction, for a right G-set A and a left G-set X, we have

A ∧G X = {(a, x) ∈ `GA×X | stab(a) ≤ stab(x)} and

A ◦G X = (A ∧G X)/G.
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Each (a, x) ∈ A ∧G X defines a G-morphism

θX(a, x) : `GAu
//X

where u = orb(a) and θX(a, x)(ag−1) = gx (which is well defined since ag−1
1 = ag−1

2
+3 g−1

2 g1 ∈
stab(a) +3 g−1

2 g1 ∈ stab(x) +3 g1x = g2x). This defines a function

θX : A ∧G X //
∑

u∈G\A

G-setfin(`GAu, X)

naturally in X ∈ G-setfin (where G\A is the set of orbits of the right action). Clearly

θX(a, x) = θX(b, y) if and only if orb(a, x) = orb(b, y).

This proves:

6.5. Proposition. For all A ∈ Gop-setfin, the natural transformation θ induces a natural
isomorphism

θ̄ : A ◦G − ∼=
∑

u∈G\A

G-setfin(`GAu,−)

between functors from G-setfin to setfin.

6.6. Corollary. There is an equivalence

BGop ' CopPb(G-setfin, setfin), A � //A ◦G −,

and on morphisms, takes a span (u, S, v) from A to B with u slash inverting and v
orbit injective, to the natural transformation whose component at X is the function
A ◦G X //B ◦G X taking [a, x] to [v(s), x] where u(s) = a.

7. A bicategory of finite groups

The goal of this section is to consolidate our results in terms of a homomorphism of
bicategories which is an equivalence on homcategories. We construct a bicategory whose
objects are finite groups and whose morphisms are permutation representations between
them. This bicategory is the domain of the homomorphism. The codomain is the 2-
category of categories of the form G-setfin and pullback-and-finite-coproduct-preserving
functors between them.

For any finite monoid H and any category X with finite coproducts, there is a monad
H· on X whose underlying endofunctor is defined by H · X =

∑
H X (the coproduct of

H copies of X); the unit and multiplication are induced in the obvious way by the unit
and multiplication of H. The category XH· of Eilenberg-Moore algebras for the monad is
none other than the functor category [H,X ] where H is regarded as a category with one
object and with morphisms the elements of H. We are interested in the particular case
where H is a finite group and X = BGop .
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Define Bouc(G, H) to be the category obtained as the pullback of the inclusion of BGop

in Spn(Gop-setfin) along the forgetful functor Spn(Gop ×H-setfin) //Spn(Gop-setfin).
That is, Bouc(G, H) is the subcategory of Spn(Gop×H-setfin) consisting of all the objects
yet, as morphisms, only the isomorphism classes of spans (u, S, v) in Gop × H-setfin for
which u is slash inverted and v is orbit injective as G-morphisms.

There is an isomorphism of categories Γ : Bouc(G, H) // [H,BGop ] defined as follows.
For each Gop × H-set A, the left action by H provides injective right G-morphisms h :
A //A for all h ∈ H; so the isomorphism class of the span (1A, A, h) : A //A is a
morphism in BGop . So the right G-set underlying A becomes a left H-object ΓA in BGop .
Conversely, each left H-object X in BGop has, for each h ∈ H, an invertible morphism
[uh, Mh, vh] : X //X in BGop ; it follows that uh and vh are invertible and so [uh, Mh, vh]=
[1X , X, wh] where the wh : X //X define a left H-action on X making it a Gop ×H-set
A with ΓA = X. That Γ is fully faithful should now be obvious.

7.1. Theorem. There is an equivalence of categories

Bouc(G, H) ' CopPb(G-setfin, H-setfin), A � //A ◦G −.

Parts (i), (ii) and (iii) of Theorem 1.1 follows from Theorem 7.1. It is also clear, in
the setting of Theorem 1.1(iv), that there exists a (Kop ×H)-set C such that

A ◦G (B ◦K −) ∼= C ◦K −

since the composite of pullback and finite coproduct preserving functors also preserves
them. It remains to identify C as A ◦G B. We do this directly.

7.2. Proposition. If A, B and Z are respectively (Gop × H)-, (Kop × G)-, and K-sets
then

A ◦G (B ◦K Z) ∼= (A ◦G B) ◦K Z , [a, [b, z]] � // [[a, b], z]

is an isomorphism of H-sets.

Proof. To say (a, [b, z]) ∈ A ∧G (B ◦K Z) is to say that ag = a implies g[b, z] = [b, z];
that is, there exists k ∈ K such that gb = bk and hz = z. In particular, this means that
(a, b) ∈ A∧G B. We need to see that ([a, b], z) ∈ (A◦G B)∧K Z. So suppose [a, b]k = [a, b].
Then there exists g ∈ G with a = ag and bk = gb. The former implies there is k1 ∈ K
such that gb = bk1 and k1z = z. Then bk = gb = bk1, so bkk−1

1 = b. Since (b, z) ∈ B∧K Z,
we have kk−1

1 z = z; so kz = z. One also sees that

[a, [b, z]] = [a′, [b′, z′]] ks +3∃g ∈ G, k ∈ K : a = a′g, gb = b′k, kz = z′

ks +3 [[a, b], z] = [[a′, b′], z′].

This proves the bijection. Clearly the H-actions correspond.
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Chapter 5

Conclusion

In this thesis we study Mackey functors as an application of enriched category

theory and give a categorical simplification and generalization. The first paper

Mackey functors on compact closed categories, which constitutes Chapter 1, is

the main paper of this thesis. The papers Lax braidings and the lax centre and

On centres and lax centres for promonoidal categories, which are Chapters 2 and

3 respectively, are the supporting papers of our main paper. The last paper Pull-

back and finite coproduct preserving functors between categories of permutation

representations, which is in Chapter 4, is the extension of the work of our main

paper.

In Chapter 1, we define a compact closed category Spn(E ) of spans for a

lextensive category E . We show that the category Spn(E ) is a commutative-

monoid-enriched category. We use the approach of Dress [Dr1] on Mackey

functors and define a Mackey functor M form the lextensive category E to the

category Modk of k modules, where k is a commutative ring. A Mackey func-

tor M : E //Modk consists of a couple of functors M∗ and M∗ satisfying cer-

tain axioms. We show that a Mackey functor M : E //Modk is equivalent to a

coproduct preserving functor M : Spn(E ) //Modk , using Linder’s [Li1] result.

Then we work on a general compact closed category T with direct sums and
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develop the theory of Mackey functors as an enriched categorical study.

The category Mky of Mackey functors from the category T to the cate-

gory Modk is a symmetric monoidal closed category. The tensor product of

the Mackey functors M and N is defined by a Day [Da1] convolution structure

and is given by

(M ∗N )(Z ) ∼=
∫ Y

M(Z ⊗Y ∗)⊗k N (Y ).

The unit J of this tensor product is the Burnside functor. The monoids of the

monoidal category Mky are defined to be Green functors. The Dress construc-

tion ([Bo5], [Bo6]) is a process to obtain a new Mackey functor MY from a

known Mackey functor M , where MY (U ) = M(U⊗Y ) for fixed Y ∈T . We define

the Dress construction

D : T ⊗Mky //Mky

by D(Y , M) = MY and show that the Dress construction D is a strong monoidal

V -functor. To apply the Dress construction to a Green functor A, that is to

make AY a Green functor, we use the results form our supporting papers which

are in Chapters 2 and 3. If A is a Green functor and Y is in the lax centre Zl (E )

of E , where E =G-setfin is the category of finite G-sets for a finite group G , then

we show that AY is a Green functor.

A Mackey functor M : T //Vect is called finite dimensional when each

M(X ) is a finite-dimensional vector space. Here we assume T = Spn(E ), where

E =G-setfin, and k is a field and replace Modk by Vect which is the category of

vector spaces. We show that the category Mkyfin of finite dimensional Mackey

functors is a star-autonomous full sub-monoidal category of Mky. Let Repk (G)

be the category of finite-dimensional k-linear representations of G . Then the

functor Mky(G)fin
//Repk (G) is strong monoidal and has an adjoint functor

Repk (G) //Mky(G)fin which is monoidal and closed under exponentiation.

We give notions of Mackey functors for quantum groups. We show that,
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the category Comod(R) and Rop(' R) are two examples of a compact closed

category T from a Hopf algebra H (or quantum group). Here R is the category

of left H-modules and Comod(R) is obtained from [DMS].

We work out the Morita Theory for Green functors using enriched category

theory especially the theory of (two-sided) modules rather than Morita contexts

as in [Bo3]. Green functors A and B are defined to be Morita equivalent when

they are equivalent in the Mky-enriched category Mod(W ), where Mod(W ) is

the category of (two-sided) modules of W = Mky. The Cauchy completion QA

of the monoid A in the category Mky of Mackey functors consists of all the re-

tracts of modules of the form

k⊕
i=1

A(Yi ×−)

for some Yi ∈ Spn(E ), i = 1, . . . ,k. Green functors A and B are Morita equivalent

if and only if their Mky-enriched categories QA and QB are equivalent.

We define the notions of lax braiding and lax centre for monoidal categories

and more generally for promonoidal categories in this thesis. These are studied

in the papers entitled “Lax braidings and the lax centre”, and “On centres and

lax centres for promonoidal categories” which are in Chapters 2 and 3 respec-

tively.

A lax braiding for a promonoidal category C is a V -natural family of mor-

phisms P (A,B ;C ) // P (B , A;C ) which satisfies some commutative diagrams.

A braiding is a lax braiding with each P (A,B ;C ) //P (B , A;C ) invertible. If C

is a monoidal category, then we can regard the lax braiding as a morphism

A⊗B //B ⊗A. A braiding is a lax braiding in which each A⊗B //B ⊗A invert-

ible. We reprove a result of Yetter [Ye] that if C is a right autonomous (meaning

that each object has a right dual) monoidal category then any lax braiding on

C is necessarily a braiding.

The objects of the lax centre ZlC of a promonoidal category C are pairs
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(A,α) where A is an object of C and α is a V -natural family of morphisms

αX ,Y : P (A, X ;Y ) //P (X , A;Y ) satisfying a couple of commutative diagrams.

The Hom object ZlC ((A,α), (B ,β)) is defined to be an equalizer in V . The lax

centre ZlC of the promonoidal category C is often promonoidal. The cen-

tre Z C of a promonoidal category C consists of objects (A,α) for which each

αX ,Y : P (A, X ;Y ) //P (X , A;Y ) is invertible. The centre Z C of C which is a

sub-V -category of ZlC , is a braided monoidal category.

The lax centre ZlC of a monoidal V -category C has objects pairs (A,u)

where A is an object of C and u is a V -natural family of morphisms uB : A ⊗
B //B ⊗ A satisfying a couple of commutative diagrams.The centre Z C of a

monoidal V -category C is a lax centre with each uB : A⊗B //B ⊗ A invertible.

The lax centre of a monoidal category is a lax braided monoidal category and

the centre of a monoidal category is a braided monoidal category. Generally the

centre is a full subcategory of the lax centre but in some cases the two coincide.

In these two Chapters we identify cases where these two coincide. One reason

for being interested in the lax centre of a monoidal category C is that, if an

object X of C is equipped with the structure of monoid in ZlC , then tensoring

with X defines a monoidal endofunctor −⊗ X of C ; we use this result for the

Dress construction of Green functors in Chapter 1.

Let F be a monoidal V -category with the functor F ⊗− : F //F preserve-

ing (weighted) colimits for each object F of F . If the full sub-V -category of

F consisting of the objects with right duals is dense in F , then we show that

the lax centre of F is equal to the centre of F . For a Hopf algebra H we find

two cases where the lax centre and centre becomes equal: the lax centre of the

monoidal category ComodH of left H-comodules is equal to its centre and if H

is finite dimensional then the lax centre of the monoidal category ModH of left

H-modules is equal to its centre.



Conclusion 115

We also calculate the centre and lax centre for cartesian monoidal cate-

gories; here V = Set with cartesian monoidal structure. The lax centre ZlC

of a cartesian monoidal category C has objects pairs (A,φ) with A in C and φ

is a family of functions φX : C (A, X ) //C (X , X ) satisfying a commutative di-

agram. A morphism g : (A,φ) // (A′,φ′) in ZlC is a morphism g : A // A′ in

C such that φX (v g ) = φ′
X (v) for all v : A′ // X . We identify the objects of ZlC

with pairs (A,θ) where A is an object of C and θX : A × X // X is a family of

morphisms. The core CX of the category X with finite products in the sense

of Freyd [Fr2] is precisely a terminal object in ZlX . If the core exists, we iden-

tify the lax centre of X with a slice category:

ZlX ∼=X /CX .

If C is a category in which every endomorphism is invertible then we show

that the lax centre Zl [C ,Set] of the cartesian monoidal category [C ,Set] is equal

to the centre Z [C ,Set]. If C is a small category equipped with the promonoidal

structure such that the convolution structure on [C ,Set] is cartesian monoidal,

then we show that

[ZlC ,Set] ' //[C ,Set]/C[C ,Set]
∼= //Zl [C ,Set].

If C is also a groupoid then we prove the following equalities

ZlC =Z C =C Z, Zl [C ,Set] =Z [C ,Set], C[C ,Set] = AutC ,

and show that the following functor

Z [C ,Set] ∼ //[C Z,Set]

is a braided monoidal equivalence. We examine when the centre of [C ,V ] with

a convolution monoidal structure (in the sense of [Da1]) is again a functor cat-

egory [D ,V ]. If C is a small category equipped with the promonoidal structure
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such that the convolution structure on [C ,Set] is cartesian then the adjunction

Ψ̂a Ψ̃ defines an equivalence of lax-braided monoidal categories

Zl [C ,Set] ' [ZlC ,Set]

which restricts to a braided monoidal equivalence

Z [C ,Set] ' [Z C ,Set].

If C is a promonoidal k-linear category with finite-dimensional homs and the

category F = [C ,V ] has the convolution monoidal structure, where V = Vectk ,

then we obtain the following result

Z F =ZlF ∼=F M ' [CM ,V ],

where CM is the Kleisli category for the promonad M on C .

We consider the monoids in the lax centre of a monoidal V -category C . A

monoid (A,u) in the lax centre ZlC determines a canonical enrichment of the

V -functor

−⊗ A : C //C

to a monoidal functor:

X ⊗ A⊗Y ⊗ A
1⊗uY ⊗1 // X ⊗Y ⊗ A⊗ A

1⊗1⊗µ // X ⊗Y ⊗ A

U
η // A ∼=U ⊗ A.

If M is a Mackey functor on a finite group H then by Lindner [Li1] the func-

tor M : Spn(H-setfin) //Modk preserves coproducts, where H-setfin is the cat-

egory of finite left H-sets (or permutation representation) for a finite group H .

If F : G-setfin
//H-setfin is a pullback and finite coproduct preserving functor

(where G is finite) then the functor

M ◦Spn(F ) : Spn(G-setfin) //Modk
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is a Mackey functor on G . In the last paper entitled “Pullback and finite coprod-

uct preserving functors between categories of permutation representations”

which is in Chapter 4, we study the functors which preserves finite coprod-

ucts and pullbacks between categories of permutation representations of finite

groups and give a categorical explanation for the work of Bouc [Bo1]. For finite

groups K ,G and H Bouc [Bo1] shows that, every functor F : G-setfin
//H-setfin

which preserves finite coproducts and pullbacks is isomorphic to one of the

form A ◦G − where A is a (Gop ×H)-set (Gop is G with opposite multiplication).

The set A ◦G B is defined by the following equation

A ◦G B = (A∧G B)/G

which is a (K op ×H)-set for each (K op ×G)-set B , where

A∧G B = {(a,b) ∈ A×B | g ∈G , ag = a ⇒ there exists k ∈ K with g b = bk}.

We provide a direct proof of the well-known representability theorem for

the case where “small” means “finite”. We show that there is an equivalence of

categories

(Gop ×H)-set ' CopPb(G-setfin, H-setfin) , A � // A ◦G −

where CopPb(A ,B) is the category of finite coproduct and pullback preserving

functors from A to B. Let Bouc be the bicategory whose objects are finite

groups and hom-categories are

Bouc(G , H) = (Gop ×H)-set,

then we obtain a homomorphism of bicategories

Bouc //CopPb.
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If the functor F : G-setfin
//H-setfin preserves pullback and finite coproducts

then we can obtain an exact functor

F̄ : Mkyfin(H) //Mkyfin(G)

defined by F̄ (N ) = N◦Spn(F ) for all N ∈ Mkyfin(H), where Mkyfin is the category

of finite-dimensional Mackey functors for a finite group G . The functor F̄ has a

left adjoint

Mkyfin(F ) : Mkyfin(G) //Mkyfin(H)

defined by

Mkyfin(F )(M) =
∫ C

Spn(H-setfin)(F (C ),−)⊗MC

where C runs over the connected G-sets as objects of Spn(G-setfin) and the

tensor product is that of additive (commutative) monoids. Let AbCatk denote

the 2-category of abelian k-linear categories, k-linear functors with right exact

right adjoints, and natural transformations. Then we obtain a homomorphism

of bicategories

Mkyfin : Bouc //AbCatk

given by (A : G //H) � // (Mkyfin(A ◦G −) : Mkyfin(G) //Mkyfin(H)). Actually

Mkyfin(G) is much more than an abelian k-linear category; we show that it

is ∗-autonomous category in Chapter 1. Let ∗-AbCatk denote the 2-category

of ∗-autonomous monoidal abelian k-linear categories, ∗-preserving strong-

monoidal k-linear functors with right exact right adjoints, and natural trans-

formations. Many of our results are summed up in the statement that we have

the following homomorphism (or “pseudofunctor”) between bicategories

Mkyfin : Boucc //∗-AbCatk .
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