
1
Introduction

Passwords have been in use since antiquity to allow certain people access to some exclu-
sive resource. A set of people who are allowed access to the resource, called legitimate
users, are first selected. They are then given passwords (possibly different) which are
meant to be kept secret. When attempting to access a resource these users are asked
to reproduce the password. This process is known as password-based authentication
and is a form of user authentication or user identification. The use of passwords has
carried on through the digital era whereby people are granted access to their computers
or other digital resources.

Of course, nowadays passwords are not the only way to authenticate a user. In gen-
eral, user authentication methods can be divided into three categories [1]; knowledge-
based authentication or authentication based on what a person knows, e.g., passwords,
token-based authentication or authentication based on what a person possesses, e.g.,
smart cards, and characteristics-based authentication or authentication based on what
a person is, e.g., biometrics. Knowledge-based authentication can be further classified
into weak and strong authentication [1, 2]. Textual or graphical passwords can be
considered as weak forms of authentication. On the other hand, one-time passwords,
zero-knowledge identification protocols, and other challenge-response identification pro-
tocols are classified as strong authentication methods. Evidently, weak authentication
is prone to eavesdropping. Strong authentication aims to make it harder for an eaves-
dropper to obtain the secret and consequently impersonate the user.

One-time passwords were first introduced by Lamport in [3], who proposed to suc-
cessively apply a one-way function on an initial password. Each intermediate value
of the one-way function serves as a one-time password. As the name implies, each
of these passwords have to be used only once. Zero-knowlege identification protocols
such as the Fiat-Shamir identification protocol [4], enable a prover (the user) to prove
his identity to a verifier. These protocols do not involve the sharing of any secrets,
and at the end of the protocol the identity of the legitimate user can be proved with

1

2 Introduction

Human H Server C

Adversary A

Input

Terminal

Figure 1.1: Authentication under Matsumoto and Imai’s threat model.

overwhelmingly high probability without revealing any information about the secret
(a zero-knowledge proof); hence the name zero-knowledge. An example of challenge-
response identification protocols is identification through symmetric-key encryption [2,
§10, p. 400]. In such protocols, the prover and the verifier share a secret. The verifier
sends a random message to the prover, who encrypts it with a block cipher using the
shared secret, which serves as the key to the cipher. The prover sends the resulting
ciphertext to the verifier. Since the verifier possesses the same secret, verification of
the ciphertext can be done straightforwardly. Although theoretically, these strong au-
thentication methods authenticate a user based on what he knows, the computations
involved are hard for a human and thus a user has to possess a secure computational
device to do all the computations.

Even though strong authentication mitigates some of the security problems with
weak authentication, all the aforementioned authentication methods have a number of
weaknesses associated with them when examined under a specific threat model. To
understand this, consider a scenario sketched in Figure 1.1.

Matsumoto and Imai’s Threat Model

Suppose a user wants to authenticate himself1 to a remote server. He is given a com-
puter terminal which he uses to authenticate himself to the server in the presence of
an adversary. The adversary has access to the terminal and the communication link
between the terminal and the server. To make matters worse, the adversary can also
observe the user’s actions, including his use of any input/output device (such as a
mouse or a keyboard). Is it possible to securely authenticate the user in this envi-
ronment? Informally, secure authentication means that the adversary should not be
able to impersonate the user even after observing the interaction between the user and
the server. This problem scenario was conceived by Matsumoto and Imai [5], and will
therefore be referred to as Matsumoto and Imai’s threat model.

1Or herself. Any subsequent use of a gender-specific pronoun in this thesis can similarly be inter-
changed with the corresponding pronoun of the opposite gender.

2 Introduction

Human H Server C

Adversary A

Input

Terminal

Figure 1.1: Authentication under Matsumoto and Imai’s threat model.

overwhelmingly high probability without revealing any information about the secret
(a zero-knowledge proof); hence the name zero-knowledge. An example of challenge-
response identification protocols is identification through symmetric-key encryption [2,
§10, p. 400]. In such protocols, the prover and the verifier share a secret. The verifier
sends a random message to the prover, who encrypts it with a block cipher using the
shared secret, which serves as the key to the cipher. The prover sends the resulting
ciphertext to the verifier. Since the verifier possesses the same secret, verification of
the ciphertext can be done straightforwardly. Although theoretically, these strong au-
thentication methods authenticate a user based on what he knows, the computations
involved are hard for a human and thus a user has to possess a secure computational
device to do all the computations.

Even though strong authentication mitigates some of the security problems with
weak authentication, all the aforementioned authentication methods have a number of
weaknesses associated with them when examined under a specific threat model. To
understand this, consider a scenario sketched in Figure 1.1.

Matsumoto and Imai’s Threat Model

Suppose a user wants to authenticate himself1 to a remote server. He is given a com-
puter terminal which he uses to authenticate himself to the server in the presence of
an adversary. The adversary has access to the terminal and the communication link
between the terminal and the server. To make matters worse, the adversary can also
observe the user’s actions, including his use of any input/output device (such as a
mouse or a keyboard). Is it possible to securely authenticate the user in this envi-
ronment? Informally, secure authentication means that the adversary should not be
able to impersonate the user even after observing the interaction between the user and
the server. This problem scenario was conceived by Matsumoto and Imai [5], and will
therefore be referred to as Matsumoto and Imai’s threat model.

1Or herself. Any subsequent use of a gender-specific pronoun in this thesis can similarly be inter-
changed with the corresponding pronoun of the opposite gender.

3

A real world example of this model can be visualized as a user attempting to
authenticate to a remote server using a computer terminal in a public internet cafe.
The terminal can potentially be infected by malware, such as trojan horses and key-
loggers. There can be an added risk of shoulder-surfers peeping at the user’s input.
Hidden cameras, network snoops and spoof websites can complete a realization of
Matsumoto and Imai’s threat model. Criminals have realized this threat model in
many ways to attack different authentication systems. An example is authentication to
an Automated Teller Machine (ATM). Typically, ATM authentication involves swiping
of a bank card and entering of a Personal Identification Number (PIN). Criminals have
used a technique known as card skimming to impersonate an ATM user [6]. First,
they place an unobstrusive magnetic stripe reader on the same place where an ATM
card is swiped [6]. This stores the information contained in the card locally, which can
be retrieved later. To obtain the PIN, they also place a small hidden camera which
records the user’s PIN entry [6]. The card is then easily cloned through magnetic sripe
writers.

Both the customers and the bank can lose large sums of money due to a successful
card skimming attack. Furthermore, even if countermeasures are taken to mitigate
this specific attack, through the use of electromagnetic fields [6] for instance, criminals
are coming up with new and innovative ways to attack ATM authentication and hence
impersonate users. Indeed, recently more sophisticated ways have been used, such as
malware installed into ATMs [6]. The malware functions the same way as a magen-
tic stripe reader, i.e., it gathers and stores users’ information which can be retrieved
later. This situation is of course not specific to ATM authentication, and other user
authentication methods not secure under Matsumoto and Imai’s threat model are, at
least in principle, prone to innovative attacks. Matsumoto and Imai’s threat model is
thus a real-world model, and if an authentication system is not secure under this model
various real world attacks can be mounted on it to impersonate legitimate users. If it
is shown that an authentication system is secure under this threat model then it will
be secure against most, if not all, kinds of attacks mentioned above.

Challenge-Response Authentication

It is evident that traditional authentication methods, such as password or PIN based
authentication, are not secure under this threat model since the adversary can imper-
sonate the user after observing a single session. More elaborate traditional authenti-
cation methods discussed earlier are not sufficiently secure either. Knowledge-based
strong authentication methods such as one-time passwords and zero-knowledge iden-
tification protocols require the user to possess a secure device, and without such a
device the computations involved are too hard for humans to perform on their own.
Characteristics-based authentication methods do not fare much better either. For
instance, biometrics-based authentication supposes that the biometrics sensing equip-
ment cannot be accessed and hence the data cannot be read by the adversary. Addi-
tionally, compared to passwords or bank cards (tokens), biometrics have more privacy
concerns. Unlike knowledge or token-based authentication, this type of authentication
uses data that is characteristic of a user, which once compromised cannot be reissued

4 Introduction

and can lead to unwanted consequences such as tracking of the user’s behavior [7].
However, considerable research is being done to overcome these privacy problems [7],
and it is an interesting area of research. Indeed a system that utilizes all three types
of authentication (multi-factor authentication) is potentially more secure, and research
in all three fronts can lead to a better solution to the problem of user authentication.
The focus of this thesis is mainly on the first type of authentication, i.e., authentication
based on what a user knows, or knowledge-based authentication. In what follows, the
term authentication (or identification) will imply this type of authentication.

Most, if not all, knowledge-based authentication systems can be classified as some
type of challenge-response authentication. In challenge-response authentication, the
server asks a challenge (or a series of challenges) to the user, who responds to the chal-
lenge according to his secret. For example, password-based authentication can be seen
as challenge-response authentication. The challenge is the server’s prompt for a pass-
word, and the response is the user’s password itself. Of course, as already mentioned,
password-based authentication is only secure if the adversary does not observe a single
response. In general, the security of a challenge-response authentication system can be
measured by the number of observed challenge-response pairs the adversary requires
to successfully impersonate the user. Design and analysis of challenge-response type
authentication schemes secure under Matsumoto and Imai’s threat model is the main
focus of this thesis.

The hitherto discussed knowledge-based authentication methods that can be classi-
fied as challenge-response protocols are either too weak (e.g., passwords) or too compu-
tationally intensive (e.g., zero-knowledge protocols, identification using symmetric-key
encryption, etc.) under Matsumoto and Imai’s threat model. A candidate challenge-
response protocol should preserve the ease of use of passwords, with security guarantees
similar to strong authentication methods. The literature on this important area of re-
search is sparse and progressive work is sporadic. Worse still, there is no accepted
solution. The main hurdle is the usual difficulty in finding an acceptable balance be-
tween security and usability, which is heightened in the aforementioned threat model.
Note that to be secure under this threat model, the adversary should not be able
to see any information other than the challenge-response pairs being communicated.
This implies that if the authentication method requires any computations from the
user, these have to be done mentally. Recall that in a password-based system, the
only computation required from the user is recalling the password. More sophisticated
challenge-response authentication methods inevitably require more complex computa-
tions, and the undesired consequence is a longer login time. The goal is to make this
time as close as possible to the case of password-based authentication.

Human Identification Protocols

There are several terms coined for these challenge-response authentication systems.
Matsumoto and Imai [5], and Hopper and Blum [8] have used the term human identi-
fication protocols. Elsewhere they have been referred to as shoulder-surfing resistant
graphical passwords [9]. The term ‘graphical password’ alludes to graphical implemen-
tation of some of these challenge-response protocols and is not all-encompassing. We

5

will show later that all such protocols can be implemented graphically. The other term,
shoulder-surfing, refers to the act of observing the user’s interaction with the termi-
nal either directly or through a hidden camera. Since the term ‘graphical password’
is somewhat of an oxymoron, it is sometimes replaced with terms like pass-icons or
pass-pictures depending on whether the implementation is based on software icons or
pictures, respectively. Some other terms used in literature are cognitive authentication
schemes [10], virtual passwords [11], etc.

It is argued in this thesis that the use of these different terms wrongly suggests that
the referred protocols target secure authentication under different threat models. As
we will show in the next chapter, the difference is nominal and most of these protocols
can be grouped under one umbrella term. The term ‘user identification protocols’ does
not seem to be appropriate either, since it can also mean those identification protocols
in which the user’s device, instead of the user himself, is actually authenticated to
the server; a la zero-knowledge identification protocols. The terms identification and
authentication are considered synonyms in this thesis, and in accordance with the
adopted term human identification protocols, identification instead of authentication
shall be used more frequently. Thus, human identification protocols are protocols
(authentication systems) that are designed to help a human authenticate to a server
under Matsumoto and Imai’s threat model. It is important to note that this term does
not reflect any light on the security of a protocol. A protocol satisfies the definition of
a human identification protocol even if it is only secure for one observed session, such
as password-based authentication.

Passive Adversaries

Human identification protocols considered in this thesis target security against passive
as opposed to active adversaries. An active adversary has the additional capability of
actively interfering with the communication link between the user’s terminal and the
server (see Figure 1.1). More precisely, an active adversary can also insert, modify or
delete messages. Although human identification protocols secure against active attacks
is coveted, it is extremely hard to construct one that ensures both acceptable security
and good human executability. To date there have been a handful of proposals known
to resist some active attacks [8, 12–14]. Among them only the sum of k mins protocol
proposed in [8] has been constructed to be secure against generic active adversaries;
yet, the protocol falls short of usability. The rest of the protocols only treat security
against a known set of active attacks. Due to the difficulty of constructing usable
protocols secure against active attacks, recently the focus of the research community
has been on security against passive (eavesdropping) adversaries [10, 15–18].

Despite this being a weaker threat model, there is still no widely accepted human
identification protocol secure against passive adversaries and this remains an open
problem. This weaker threat model is by no means an entirely unnatural model.
Mounting of active attacks can be made harder by employing other techniques. For
instance, one way to detect active attacks is through the use of digital signatures.
Each time the server sends a challenge to the user, a signature of the challenge (and a
timestamp) is also sent. The signature can be verified through a third device, such as

6 Introduction

the user’s mobile phone. This can be achieved seemlessly without invoking the user.
The user is only prompted once a challenge does not match the signature. Once an
active attack is detected, the user’s secret can be renewed, and further action can be
taken by the network administrator. Note that the user’s mobile phone is not being
used to authenticate him to the server. Instead, it is just used for authenticating the
source of the challenge. Thus, we argue that it is not at all unnatural to restrict the
focus to passive adversaries.

Why Human Identification Protocols?

It is clear that a solution to the problem of identifying a human under Matsumoto and
Imai’s threat model has the potential to solve many security issues with current state of
user authentication, and hence it is important to further the research in human identi-
fication protocols. While it seems improbable that a solution which is both secure and
takes time equivalent to password-based authentication can ever be found, research in
this direction is interesting in many other ways. As will be evident later, different as-
pects have to be considered during the design of a human identification protocol. These
touch different areas of scientific research, such as cryptography, human-computer in-
teraction, and human psychology to name a few prominant ones. Research in each of
these aspects can lead to better understanding of human computational abilities, and
how this can be facilitated by interaction with a computer.

From the perspective of cryptography, it is interesting to know what mathematical
functions can be efficiently computed by humans mentally, and what are the limi-
tations. More specifically, since cryptography deals with constructing cryptosystems
whose security is argued on the basis of the difficulty of solving some underlying mathe-
matical problem, it is worth exploring the extent to which this approach can be applied
in the design of human identification protocols. Matsumoto and Imai [5], Matsumoto
[19], and Hopper and Blum [8] were the pioneers in trying to apply this approach of
finding mathematical problems that can be used as building blocks for human identifi-
cation protocols. Following this direction, this thesis focuses on the mathematical and
theoretical aspects of human identification protocols.

While the real world implementation of these protocols have many different inter-
esting aspects, we only briefly touch this to show that the protocols can in principle be
implemented in a user friendly way. It is important to stress that both the design and
implementation aspects need to be considered in a real world deployment of human
identification protocols, but it is necessary to first consider the security of the protocol
from an analytical point of view, taking a leaf out of research in mainstream cryptogra-
phy. Research in this direction is worthwhile since it has the potential to improve our
understanding of how an insecure computer terminal can be used to assist a human in
computing mathematical functions that are hard for an adversary to solve without the
knowledge of the secret.

7

Contributions of the Thesis

This thesis furthers the research in human identification protocol by first making a
clear distinction between the theoretical and implementation aspects of such protocols.
This distinction has not always been followed in the literature and some protocols
have been constructed with mainly the implementation aspect in mind. Often, such
protocols succumb to simple but innovative attacks. This is illustrated later in this
thesis with a detailed security analysis of two human identification protocols proposed
in the literature. The result of the analysis shows that these protocols are secure for a
much smaller number of identification sessions than originally claimed. This analysis
helps in the understanding of the taxonomy of attacks that are to be avoided in the
construction of human identification protocols.

This leads to another major contribution of this thesis, i.e., the proposal of two
human identification protocols designed to be secure against a passive adversary, with
clearly defined goals in mind. The second protocol is based on a mathematical problem
which is shown to be intractable in a relatively new complexity theoretic sense, i.e.,
fixed-parameter intractability [20]. This is the last main contribution of this thesis,
the link between the area of fixed-parameter intractability and the design of human
identification protocols. It is argued that one way to construct human identification
protocols is to first find a mathematical problem that is fixed-parameter intractable,
and then construct a protocol based on this problem. In fact, we show that many
protocols in literature are actually based on such problems or at least conjectured to
be based on such problems, without their inventors discovering the link with the theory
of fixed-parameter intractability. This helps in establishing hardness of problems used
in human identification protocols by analyzing them under the complexity theoretic
framework.

While the two protocols proposed in this thesis can be efficiently implemented, and
examples are given as such, the research focus of this thesis is not efficient implemen-
tation. Substantial improvements can be made in the implementation of the protocols
through user studies and by studying user behavior. However, the focus of this re-
search is mainly on the mathematical and analytical aspects; the underlying theory
behind the construction of human identification protocols. As mentioned before, often
times the distinction between analytical and implementation aspects of these protocols
is blur. The result is that some of these protocols offer similar security to traditional
methods (such as one-time passwords) with decreased usability. This thesis also at-
tempts to clarify this distinction, in the hope that future reserach into this area should
consider the mathematical aspects in great detail before coming up with a proposed so-
lution. Indeed, the main focus of an authentication protocol is security, with usability
considerations in mind; but it should not be the other way around.

Outline of the Thesis

This thesis can be roughly divided into four main parts. The first part is background;
a formal introduction to human identification protocols. Chapter 2 constitutes this
part. It introduces the notation, definitions and general results that shall be used

8 Introduction

throughout the rest of this thesis. The chapter formally defines the concepts alluded
to in this introduction, and contains a review of the related work in light of the notions
thus developed. Chapter 2 also contains a comprehensive discussion of an example
human identification protocol which will be helpful in understanding the issues related
to the design and implementation of these protocols. Chapters 3 and 4 make up the
second part, security analysis of human identification protocols. This part analyzes
the security of two human identification protocols, namely Bai et al.’s Predicate based
Authentication Service (PAS) [17] and, Sobrado and Birget’s Convex Hull Click (CHC)
protocol [9, 21], and shows that these protocols are far less secure than originally
claimed. The security analysis of these two protocols precedes the description of two
proposed protocols in Chapters 5 and 6, which constitute the third main part of this
thesis. Protocol construction succeeds cryptanalytic part of the thesis so that it is clear
what sort of general attacks are to be avoided in construction of protocols. Chapter
7 is the last main part of the thesis, and contains some interesting theoretical results
about the problems used in different human identification protocols. More specifically,
the chapter briefly describes the theory of fixed-parameter intractability [20] and shows
that many protocols, including the proposed protocol in Chapter 6, are based on fixed-
parameter intractable problems. Chapter 8 concludes this thesis with emphasis on the
limitations of this work and some future directions.

2
Preliminaries and Related Work

This chapter begins with the introduction of the general notation used in this thesis.
While most of the notation introduced here is consistent throughout the text, to avoid
excess some symbols are used with different meanings in different chapters. However,
the meaning implied will be clear from the context, and where there is fear of ambiguity
we will reiterate the intended meaning. Section 2.2 contains a list of definitions per-
taining to human identification protocols. Some initial and general results applicable
to most, if not all, human identification protocols are described in Section 2.3. In Sec-
tion 2.4 we give an example of a human identification protocol, followed by a security
and usability analysis. This will be helpful in understanding the design and imple-
mentation issues concerning the construction of human identification protocols. The
chapter concludes with a thorough discussion of related work in light of the framework
developed in the beginning of this chapter.

2.1 Notation

In accordance with convention we will call the two parties in an identification protocol,
prover and verifier, where the prover is the party who wishes to prove his identity to a
verifier. The prover shall be denoted by H and the verifier by C. This is to acknowledge
that in the real world setting of human identification protocols, the prover is a human
and the verifier, a remote computer. The adversary shall be denoted by A.

Let S be a set. Any subset of S of s elements is called an s-element subset of S.
|S| denotes the number of elements of S. The set of all non-negative integers modulo
an integer d > 1 is denoted Zd. x ∈ Znd denotes an n-tuple of elements from Zd, or
equivalently a vector of n elements from Zd. Any vector x will be considered a column
vector unless otherwise specified. Let x,y ∈ Znd , then x · yT denotes the usual dot
product of the vector x and the transpose of the vector y. Where there is no fear

9

10 Preliminaries and Related Work

of ambiguity, the superscript T shall be omitted, and the dot product will simply be
denoted by x · y. The Hamming weight of x is the number of non-zero entries in x.
Denote the Hamming weight of x by wt(x). The vector 0 (resp. 1) denotes the vector
of all 0’s (resp. 1’s). An n-tuple is defined as an ordered set of n elements. An n-tuple
can be represented by a vector of n-elements in a natural way, and the two terms
will be used interchangeably. Let a and b be non-negative integers, with a < b. The
interval [a, b] denotes the set {a, a+ 1, . . . , b}. The symbol ≈ has the intuitive meaning
‘approximately’. O(.) is the usual Big O notation.

Many terms in thesis are treated as synonyms. We have already mentioned that
identification and authentication define the same concept in this thesis. Likewise we
shall often call the prover H, a human, a human user, or simply, a user. The term
attacker shall also be used at times as a synonym for adversary. We shall often call the
verifier C, the server, or the remote server. An attack is an algorithm that is designed
to exploit weaknesses in a human identification protocol. We shall often refer to attacks
as algorithms.

2.2 Human Identification Protocols

The definitions of identification protocols and human executable protocols stated here
are taken from [8]. Informally, they first define an identification protocol in terms of
an interaction between two interactive Turing machines (ITMs), the prover and the
verifier. A human identification protocol is then defined as an identification protocol
in which the steps from the prover can be performed by a human. To avoid excessive
notation, we use the same symbol H for the ITM as well as the human user. However,
the implied meaning shall be clear from the context.

A protocol is defined as a sequence of interactions between a pair of public and
probabilistic ITMs, denoted (H, C). The result of the interaction between these two
ITMs with respective inputs x and y is denoted by 〈H(x), C(y)〉. The transcript of bits
exchanged between H and C during this interaction is denoted by tr (H(x), C(y)).

Definition 1. An identification protocol is a pair of public, probabilistic interactive
Turing machinces (H, C) with shared auxiliary input z (the secret), such that the fol-
lowing conditions hold:
– For all auxiliary inputs z, Pr [〈H (z) , C (z)〉 = accept] ≥ q
– For each pair x 6= y, Pr [〈H (x) , C (y)〉 = accept] ≤ 1− q where 0.5 < q ≤ 1.

When 〈H, C〉 = accept, it is said that H authenticates to C. Intuitively, the above
definition states that a protocol is an identification protocol if a legitimate prover (one
who shares the same secret as C) can identify himself to C with a probability greater
than 0.5. On the other hand, any entity not possessing the secret can only succeed
in impersonating H with probability strictly less than 0.5. Thus, this definition also
takes those protocols into account which even reject legitimate provers, albeit with a
small probability. An example is the Hopper and Blum (HB) protocol from [8]. Note
that this definition does not explicitly mention that H is a human user.

2.2 Human Identification Protocols 11

Definition 2. An identification protocol is a human identification protocol if the com-
putations H are done by a human mentally.

In principle, any protocol whose steps can be performed by an unaided human can
be called a human identification protocol. However, to be a reasonable candidate for
a human identification protocol, the computational time per authentication session
should be low enough. The following definition from [8] will be used to establish the
usability of a protocol, which states that the computations done by the probabilistic
Turing machine H should be easy enough to be carried out by a human.

Definition 3. An identification protocol (H, C) is (α, β, τ)-human executable if at least
a (1− α) portion of the human population can perform the calculations H unaided and
without errors in at most τ seconds with probability greater than (1− β).

The goal is to minimize α, β and τ . Concrete values to these parameters can be as-
signed by either an intuitive approximation or where it is hard to do so, actual usability
studies can be carried out [8]. Although this definition will be used to theoretically
analyse the usability of protocols in this thesis, this should not be considered as a
replacement for empirical user studies. Indeed, the parameters α, β and τ cannot be
accurately estimated without a reliable theoretical model of human computation. In
the absence of such a model, only empirical user studies can give an accurate indi-
cation of usability. We acknowledge this as a drawback, but shall use the definition
nonetheless in order to at least show the comparative usability of the protocols.

As an exemplary use of these definitions, it is easy to see that the traditional
password-based authentication system satisfies the definition of an identification pro-
tocol, since if H and C share the same password, then H authenticates to C with
probability 1. Otherwise, H is accepted with probability 0. Also, it can be conjectured
that it is (≈ 0,≈ 0, 5)-human executable for say a length 10 password, based on our
everyday experience.

2.2.1 Challenge-Response Protocols

A challenge-response identification protocol is defined as the following sequence of
messages communicated between H and C:

request, (c1, r1), (c2, r2), . . . , (cµ, rµ), accept/reject

The message, request, is sent by H to C. It symbolizes a request to start a protocol
and contains information about H, such as his identity. We shall mostly omit explicit
mention of the exchange of this message in subsequent descriptions of protocols. Each
pair (ci, ri) consists of a challenge ci drawn from some challenge space C by C and a
response ri composed from a response space R by H. H and C also share a secret from
a secret space S. C, R and S are all publicly known sets. At the end of µ challenge-
response pairs, C sends the message accept or reject. This sequence of messages is
called one session (or an identification/authentication session) of the challenge-response
identification protocol. An iteration consists of one challenge-response pair. Each

12 Preliminaries and Related Work

session, therefore, has µ iterations, where µ ≥ 1. Let ρ be a subset of the ternary
cartesian product C × S × R. In other words, ρ is a ternary relation. The challenge,
response and the secret are related through the publicly known relation ρ. If a tuple
(c, s, r) ∈ ρ, then the response is considered correct, otherwise it is considered wrong
or incorrect.

2.2.2 Security Definitions

As mentioned before, the adversary A considered in this thesis is a passive adversary.
The goal of A is to impersonate H by initiating a new identification session with C,
after observing a few identification sessions between H and C. From a theoretical point
of view, the adversary is given a transcript of communication between H and C, and
is then allowed to play a game with C trying to fool C into accepting A as H. The
success of A is measured by the probability of successful impersonation. Notice that
A may not need to find the shared secret between H and C in order to impersonate H.
For instance, A might be able to randomly guess a response to a challenge. More on
this will be detailed later. The following definition, taken from [8], defines the security
of an identification protocol against the passive adversary A.

Definition 4. An identification protocol (H, C) is (p,m) secure against passive ad-
versaries if for all computationally bounded adversaries A and for all auxiliary inputs
z:

Pr [〈A (trm (H (z) , C (z))) , C (z)〉 = accept] ≤ p

Here trm (., .) represents the transcript of m independent identification sessions between
H and C.

If 〈A(trm(H, C)), C〉 = accept for some m, it is said that A impersonates H. The
above definition treatsH and C as interactive Turing machines. In human identification
protocols the computations done by H have to be carried out by a human. Therefore,
all such computations should be done by the human mentally, or else any security
proved against A will be superfluous. Recalling Matsumoto and Imai’s threat model,
the above definition does not explicitly mention that H possesses an insecure computer
terminal. But from a theoretical viewpoint, the definition describes the same model.
That is, there is no further secure computation done at the terminal.

From a challenge-response protocol perspective, A is given all challenge-response
pairs from m identification sessions, i.e., a set of mµ challenge-response pairs. Unless
otherwise mentioned, it is assumed that all such pairs belong to successful identifica-
tion sessions. Abusing notation, from now onwards, m challenge-response pairs shall
represent an arbitrary number of pairs. The security of a protocol shall than be eval-
uated against the number of challenge-response pairs m, required by A such that the
probability of impersonation is non-negligible. For the sake of human identification
protocols, an impersonation probability p of 10−6 shall be considered sufficient for se-
curity [8]. This implies that A has one in a million chance of impersonating H. It is
important to reiterate that the only information unknown to A is the shared secret.

2.3 Some General Results and Attacks 13

2.3 Some General Results and Attacks

Before introducing concrete examples of human identification protocols, it is worth
looking at the general structure of such protocols. This leads to some generalized at-
tacks and results that are applicable to all human identification protocols. A generic
challenge-response type human identification protocol can be described as follows. Re-
call that C, S and R denote challenge, secret and response spaces, respectively. Let
{0, 1}n be the set of all binary strings of length n over {0, 1}. C, S and R can be
considered as sets of binary strings of length ≤ n.

Protocol: Generic Challenge-Response Protocol.

Setup: C and H share a secret s ∈ S. The sets C, S, and R together with the
relation ρ are publicly known.

1: C sends a c ∈ C to H.
2: H sends an r ∈ R to C such that (c, s, r) ∈ ρ.
3: C to H: if r is such that (c, s, r) ∈ ρ then output accept else output reject.

This general structure is followed by most (if not all) human identification protocols.
Note that there is no mention of randomness in the above description. This is done
so to make the description as general as possible, thus including even such trivial
challenge-response protocols as password-based authentication. In order to satisfy the
definition of an identification protocol (cf. Definition 1), a straightforward conclusion
is that the size of R should be greater than 1. Thus, |R| ≥ 2. The relation ρ need
not be a function. An example is the convex hull click based protocol [9, 21], analysed
later in this thesis, which uses a relation rather than a function.

2.3.1 Random Guesses

In light of Definition 4, two general attacks can be carried out by A on the above
protocol, and hence on all human identification protocols. Recall that A’s goal is to
impersonate H with or without knowing the secret. Both these attacks are a form of
random guess, and can be carried out without observing any challenge-response pair.
The first targets the response space, and the second targets the secret space.

Attack: Random Guess 1.

Input: A challenge c ∈ C.
Output: A response r ∈ R.

1: Given a c ∈ C, A uniformly at random returns an r ∈ R.

The success probability of this attack is |R|−1. Thus, in the generic challenge-
response protocol, A can always impersonate H with probability |R|−1 by simply
choosing an r randomly from R. This holds true even if the adversary has not ob-
served any challenge-response pair. There are two ways to mitigate this attack. Either

14 Preliminaries and Related Work

make |R| large enough or iterate the challenge-response process a fixed µ number of
times, so that the probability of a successful guess is small. If the responses are not
uniformly distributed in R, then A can improve his guess by choosing the most likely
response. Thus, a key goal in designing a protocol is to ensure that the response is
uniformly distributed. Otherwise, the number of iterations of the protocol have to be
increased to compensate for the improved probability of guessing the response. The
second random guess attack is as follows.

Attack: Random Guess 2.

Input: A challenge c ∈ C.
Output: A response r ∈ R.

1: Given a c ∈ C, A randomly selects an s ∈ S and returns an r ∈ R such that
(c, s, r) ∈ ρ.

The probability of success of this attack is at least :

1

|S|
+
|S| − 1

|S||R|

This attack can be mitigated by choosing a large enough S. Typically, the size of
S is large enough so that the success probability of this type of attack is negligible.
Indeed, it is easy to see that as |S| grows, the success probability approaches the success
probability of Random Guess 1. As a first line of defense, values of protocol parameters,
in this case the sizes of S and R, should be chosen such that the probability of success
of the random guesses is less than 10−6.

As already mentioned, both these attacks do not require any observed challenge-
response pairs. Once a single challenge-response pair is observed (belonging to a suc-
cessful identification session), A gains some knowledge about the secret, and can try
to impersonate H by finding the secret. However, below a certain number of observed
challenge-response pairs, there are on average many candidates for the secret, and A
has no way to distinguish between them. This number is the information theoretic
bound on m; the number of challenge-response pairs required to find a unique solution,
i.e., the secret.

2.3.2 Information Theoretic Bound on m

Intuitively, for a discrete random variable X, the Shannon entropy H[X] is a measure
of uncertainty in the knowledge of X. If H[X] = 0 then there is no uncertainty about
X. Once one challenge-response pair is observed, some information about the secret
is leaked. However, to reduce the uncertainty in the knowledge of the secret to 0,
more challenge-response pairs are required. Let XS be a discrete random variable
representing the secret set S. Let XC,R be a discrete random variable representing

2.3 Some General Results and Attacks 15

challenge-response pairs. Then the entropy of XS is:

H [XS|XC,R = (c, r)] = −
∑
s∈XS

Pr [XS = s|XC,R = (c, r)]

× log2 (Pr [XS = s|XC,R = (c, r)])

≤ −
∑

s∈XS |(c,s,r)∈γ

|R|
|S|

log2

(
|R|
|S|

)
= log2 |S| − log2 |R|

where the equality holds if S is uniformly distributed over all challenges and responses.
To be more accurate, the above expression should explicitly include the case when
XS equals the shared secret, in which case the conditional probability is 1. However,
this is omitted for simplicity. The effect of this on the overall entropy is negligible.
Given m distinct challenge-response pairs, and the random variables representing them
X

(1)
C,R, . . . X

(m)
C,R, this implies that:

H[XS|X(1)
C,R = (c1, r1), . . . , X

(m)
C,R = (cm, rm)] ≤ log2 |S| −m log2 |R|

Equating the above expression to 0 and observing that |S| ≤ 2n, we get:

m ≤ log2 |S|
log2 |R|

=
n

log2 |R|

Denote the above bound by mlb. This means that a computationally unbounded adver-
sary can always obtain a unique secret after observing more than mlb challenge-response
pairs. On the other hand, below mlb it is information theoretically impossible to ob-
tain a unique secret; there are more than one candidate. Since |R| ≥ 2, we have the
upper bound of mlb ≤ n. Therefore theoretically, in any challenge-response human
identification protocol, the adversary A can obtain the secret with probability 1, by
observing less than n challenge-response pairs. If |S| = 2n and |R| = 2, there exists a
protocol that can be used for n challenge-response pairs before the secret can be found
uniquely. An example is Matsumoto’s protocol from [19], a variant of which will be
discussed shortly.

There are two major restraints in constructing information theoretically secure hu-
man identification protocols. First, if |R| is too small, the protocol needs to be iterated
a fixed number of times before it is secure against Random Guess 1. For instance, if
|R| = 2, then the protocol needs to be iterated 20 times during a session to ensure that
the probability of success of Random Guess 1 is approximately one in a million. This
implies that the number of identification sessions is in fact n

20
, instead of n. Secondly, if

|S| = 2n it becomes prohibitive for humans to remember the secret, since if the number
of sessions are to be increased, values of n should be in the range of 100 to 500, thus
making the size of the secret very large. Therefore, any attempts at constructing a
protocol with information theoretic security in mind can at best be used for a handful
of authentication sessions. As shall be seen later, many protocols in literature are only
secure in this sense.

16 Preliminaries and Related Work

2.3.3 Computational Security

Since mlb cannot be too large, these protocols need to be designed with computational
security in mind. Thus, to be secure for > mlb challenge-response pairs, all attacks on
the protocol should be computationally infeasible. Given m challenge-response pairs,
following is an example generic attack from literature, used frequently in this thesis.

Attack: Intersection Attack.

Input: m challenge response pairs (c1, r1), . . . , (cm, rm).
Output: An s ∈ S.

1: Choose the pair (c1, r1) and find all s ∈ S, such that (c1, s, r1) ∈ ρ (One
can in fact choose any of the m pairs). Let S ′ be the set containing all such
“candidates” for the secret.

2: for i = 2 to m do
3: if an s ∈ S ′ is such that (ci, s, ri) /∈ ρ then discard the element from S ′.
4: if S ′ contains only one element then output the element else sample an element

randomly from S ′ as the output.

In general any element from the secret space S, that satisfies a given set of m
challenge-response pairs shall be called a candidate for the secret. If m > mlb, it
is expected that the shared secret is the only remaining element in S ′, and thus the
Intersection Attack will output the correct secret. One way to carry out this attack
is through brute force (exhaustive search). The time complexity of the brute force
attack is O(|S|). Here lies the dilemma in constructing such protocols. Increasing
|S| increases the memory load on humans, while decreasing |S| makes the brute force
attack computationally feasible. However, as shall be seen next, there is a clever way
to get around this, using the display of the terminal used by H.

Before that, two important considerations are in order. First, it is important to
know the distinction between an intersection attack and a brute force based intersection
attack. While the two appear synonymous, it is possible to carry out the intersection
attack on part of the secret instead of the whole secret. More specifically, since the
secret is a bit string of length ≤ n, a cleverly constructed intersection attack might find
some bits of the secret instead of the whole. The computational time of this attack
will be less than a brute force attack. An example of this will be given in the security
analysis of the convex hull click based protocol from [9, 21]. Thus, an intersection attack
does not always mean a brute force attack. The second important point is that there
might be a computationally efficient algorithm, other than the intersection attack or
brute force, to find the secret once some m ≥ mlb number of challenge-response pairs
are observed. That is, let f be some polynomial, then there might be an efficient
algorithm that can find the secret uniquely with m ≥ f(n) challenge-response pairs.
The goal is to expand the gap: mlb < m < f(n) as much as possible. An example
protocol, discussed next, achieves m = O(n) number of observations, before the secret
can be found through an efficient algorithm.

2.4 An Example Protocol 17

2.4 An Example Protocol

The example protocol mentioned here bears resemblance to Matsumoto’s protocol from
[19]. The shared secret is a binary vector of a fixed low Hamming weight. Low Ham-
ming weight decreases the memory load on humans. This will be explained when
discussing the implementation of the Example Protocol.

Protocol: Example Protocol.

Setup: Let µ, n and k ≤ n be publicly known positive integers. H and C share a
secret x ∈ Zn2 , such that wt(x) = k.

1: for i = 1 to µ do
2: C samples a random c ∈ Zn2 and sends to H.
3: H computes r = c · xT mod 2, and sends r to C.
4: if all responses are correct C accepts H else C rejects H.

Note that the challenge space C is the space of all n-element binary vectors, the
secret space S is the space of all n-element binary vectors of Hamming weight k, and
the response space R is {0, 1}. The relation ρ in this protocol is a function, specifically
the dot product modulo 2.

2.4.1 Security Analysis

In general, security analysis of human identification protocols in this thesis will follow
this order. Random guess and brute force attacks shall be discussed first, followed
by an estimation of the information theoretic bound on m, and concluded by a more
thorough analysis considering the feasibility or infeasibility of other, more sophisticated
attacks.

Random Guess and Brute Force Attacks

The success probability of Random Guess 1 is 2−µ, and that of Random Guess 2 is at
least 1

2n
+ 2n−1

2n
· 1

2
. Choosing large enough µ and n can mitigate these attacks. Since

the Hamming weight of x is k, a brute force intersection attack mentioned before has
complexityO(

(
n
k

)
). Choosing large enough n, and modest size of k can make this attack

infeasible in practice. Once suitable values of the parameters involved are chosen, A
needs to find other types of attacks to impersonate H.

Obtaining a Unique Secret

Assume that A is given m ≥ 1 challenge-response pairs. The information presented
to the adversary consists of a series of binary challenge vectors and the corresponding
response bits. A has to find the secret vector x. Given one challenge-response pair,
there are on average:

1

2

(
n

k

)

18 Preliminaries and Related Work

vectors of Hamming weight k that produce the same response. With m challenge-
response pairs, this number reduces to:(

1

2

)m(
n

k

)
To reduce this to a single candidate gives the following estimate:(

1

2

)m(
n

k

)
< 1

⇒
(
n

k

)
< 2m

⇒ log2

(
n

k

)
< log2(2m)

⇒ m > log2

(
n

k

)
Denote the above lower bound by mlb. Thus, if m > mlb a unique secret can be found,
at least information theoretically. Note that here mlb is far less than n; it is logarithmic
in n as a consequence of restricting the Hamming weight of the secret binary vector.
An intersection attack like the one mentioned before can be used to find the secret
with m > mlb. However, if the intersection attack and/or brute force are infeasible, A
needs to find an efficient alternative to find the secret given m > mlb challenge-response
pairs.

System of Linear Equations

The problem presented to the adversary can also be represented as a system of linear
equations mod 2 as follows. Let C be an m × n matrix, whose ith row is the ith
challenge vector, cT .1 Let b be an m-element binary vector, whose ith entry is the ith
response bit from H. Then A can solve the following system of linear equations to find
the secret:

Cx ≡ b mod 2

where wt(x) = k. Given m > n challenge-response pairs, it is possible to use Gaussian
elimination to solve the above system of equations and efficiently find the secret. Recall
that Gaussian elimination is a polynomial time algorithm. The protocol’s security is
conjectured on the assumption that there is no feasible algorithm (attack) to find a
solution to the above system of linear equations with mlb < m < n observed challenge-
response pairs. Note that below mlb it is possible to find a solution to this system, as
there are so many candidates for the secret. However, it is not possible to distinguish a
solution from the secret. Between mlb and n, however, a unique solution is guaranteed
which is the secret itself. Unfortunately, as shall be seen next, due to implementation
constraints n cannot be too large.

1From now onwards, the symbol C will not denote the challenge space.

2.4 An Example Protocol 19

Of course, for Gaussian elimination to work, the adversary should have n linearly
independent rows in the matrix C. Although C is a random matrix, with large enough
n, it is highly likely that all m rows of C are linearly independent. Given a random
n× n matrix, whose elements are from Zd, where d is a prime, the probability pn that
it is invertible (has n linearly independent rows) is given by [22]:2

lim
n→∞

pn =
∞∏
i=1

(
1− 1

di

)
Thus, given a random matrix A with elements from Z2, the probability that it has the
full rank n, converges quickly to 0.2888 as n grows [22]. From a security perspective,
therefore, it is safer to assume that all m rows of C are linearly independent. If not,
the attacker can still choose m linearly independent rows from O(m) observations.

2.4.2 Implementation

A thorough discussion on the implementation of the Example Protocol will shed light
on its design and feasibility. As described before, the protocol is similar to Matsumoto’s
protocols from [19]. The major difference being the restriction on the Hamming weight,
which was suggested by Hopper and Blum, in a different protocol [8]. Matsumoto sug-
gested the use of graphical objects in the implementation of his protocols in [19].
Following his work, typical implementation of human identification protocols is graph-
ical. For instance, the Example Protocol can be implemented as follows. In the setup
phase, a pool of n graphical icons are shown to H. H selects any k of these icons which
constitute the shared secret between H and C. In the authentication phase, C sends a
challenge to H which is a grid of n cells. Each cell contains a unique icon from the set
of n icons and a random bit. H looks at the cells containing his k icons and adds the
corresponding bits modulo 2, and sends the result to C. Figure 2.1 shows an implemen-
tation of the Example Protocol with specific (but small) values of parameters. Here
n = 10 and k = 4. H sums the bits corresponding to his set of secret icons and checks
if the result modulo 2 is 0 or 1, and selects the appropriate option (radio button) at
the prompt. The shared secret shown in the figure is, of course, not displayed with the
challenge.

The position of the n icons does not change with each challenge. However, the bits
in each cell are randomly selected by C for each challenge. Note that H does not have
to memorize the whole n-element secret vector or even the locations of k 1’s in his
secret vector. H only needs to recall the k secret icons present in the grid. Since the
position of the icons in the grid does not change, after using the protocol many number
of times, H can easily locate his k icons in the grid. For a different implementation,
icons can be replaced with pictures or even text. Since most human identification
protocols involve challenges of n objects, this type of implementation is generic. In
such an implementation, a large n is practical, since the only requirement is to have a
large enough display to show all n icons (or a large subset of them).

2The result in [22] is in fact a general result for all finite fields.

20 Preliminaries and Related Work

0 1 0 1 1

1 0 1 0 0

Challenge

Shared secret ()

What is the answer mod 2?

0 1

Figure 2.1: A challenge and response from the Example Protocol.

However, n cannot be arbitrarily large, since a reasonably sized display unit cannot
accommodate a huge n. So, typically n can range between 100 to 300. If a subset of
n icons is displayed, then it is possible to increase n. However, this introduces some
other constraints, as we shall show during the security analysis of the convex hull click
based protocol from [9, 21] in Chapter 4. Briefly, when only a subset of total icons
are shown in each challenge, the probability that a secret icon appears in the subset
should be the same as the probability of appearance of a non-secret icon. Otherwise,
the adversary can do a “frequency analysis” to find the secret. Thus, even in this case,
n cannot be made arbitrarily large, as that would mean an increase in the number of
secret icons, and hence additional memory load on humans.

Text or Pictures?

As mentioned before, the protocol can also be implemented using a text-based imple-
mentation as opposed to graphical. For instance, in each cell an alphanumeric character
can be shown instead of an icon. The user can then remember an alphanumeric pass-
word, and perform the steps by following the cells according to the alphanumerics
in his password. However, a graphical implementation is prefered due to two main
reasons. First, humans can recall a graphical object more quickly than text [1, 23].
In fact, it is much easier for humans to recall a picture due to the characteristics of
human memory, as opposed to words including complete nouns, as some psychological
studies have shown [24]. Secondly, in contrast to a textual implementation, a graphical
implementation is less prone to dictionary attacks [24, 25]. Although there is some
indication that a dictionary can be created from finding patterns in the selection of
secret graphical objects by humans [24], the resulting dictionary attacks are less likely
to be as severe as in the case of (textual) passwords. Thus, from both security and
usability perspectives, a graphical implementation is preferable.

2.4 An Example Protocol 21

Table 2.1: Suggested parameter values for the Example Protocol.

n k µ prg1 prg2 τbf Sessions

200 16 20 10−6 10−6 277 10

Choosing Values of System Parameters

The values of system (protocol) parameters to be used in an implementation are chosen
according to the success probability and time/space complexity of the attacks, and with
usability in mind. Table 2.1 shows a list of suggested values of protocol parameters,
and the time complexities and probabilities of success of known attacks. These values
should be taken with a grain of salt, as the security analysis of the Example Protocol is
by no means comprehensive. Nevertheless, the table is indicative of how the parameter
values are selected for human identification protocols. Throughout this thesis, the
symbols n, k and µ will be mostly reserved for the size of the challenge space, the “cap”
on the secret space, and, the number of iterations of a protocol in one identification
session, respectively.

In the table, µ is set to 20, which implies that the success probability of Random
Guess 1, prg1 is 2−20 or approximately 10−6. The success probability of Random Guess
2, prg2 is approximately 10−6. This means that randomly guessing a secret is almost
as good as randomly guessing a reply. Thus, the secret space is large enough such
that this attack is not a threat. The time complexity of the brute force attack, τbf
is 277 with these values. Typically, we will consider a time complexity of 270 to 280,
infeasible. Finally, the “Sessions” column in the table indicates the number of sessions
the Example Protocol can be used before the secret needs to be renewed. This is ob-
tained as n

µ
= 200

20
= 10. The term n

µ
is obtained by observing that, as discussed before,

the secret can be easily found after the observation of O(n) challenge-response pairs
through Gaussian elimination, and each session has µ challenge-response pairs. Thus,
the protocol’s security is based on the conjecture that there is no efficient algorithm to
find the secret with less than 10 sessions, or 200 challenge-response pairs. Note that
mlb = log2

(
n
k

)
≈ 77. Thus, information theoretically it is possible to find the secret

after about 77 challenge-response pairs. However, the conjecture is that there is no
computationally feasible algorithm (attack) to do so between 77 < m < 200.

Human Executability and Limitations

In light of Definition 4, it can now be conjectured that the Example Protocol is
(10−6, 10)-secure against passive adversaries. However, as is perhaps evident, sum-
ming up 16 bits per challenge over 6 challenges will inevitably take considerably larger
time than password-based authentication. Typically, the time taken to authenticate a
user in human identification protocols ranges from 1 to 3 minutes [8, 21]. User studies
have shown that it is desirable to bring this time down to less than 1 minute [1]. This

22 Preliminaries and Related Work

time bound, although still not close to the ideal time of password-based authentica-
tion, is acceptable due to increased security guarantees offered by these protocols. The
two protocols proposed in this thesis, do not improve much on the time of 3 minutes.
However, they provide a better balance between security and usability as compared
to the existing protocols in literature. The two protocols from literature analyzed in
this thesis, take lesser time for authentication. However, the resulting analysis shows
that they are secure only for a handful of sessions. Furthermore, the second protocol,
the convex hull click based protocol, takes time of more than 1 minute per authenti-
cation, even when implemented with values of protocol parameters that are too small
for sufficient security.

It should be noted that substantial improvements on authentication times can be ob-
tained through detailed usability studies and better implementation of these protocols.
However, whatever the implementation, there exists a one-to-one correspondence be-
tween the theoretical and implementation-specific description of the protocol. In other
words, it is always possible to describe the task of the adversary in terms of solving the
underlying mathematical problem. In the Example Protocol, this task translates into
solving a system of linear equations mod 2. Thus, it is important to first analyze the
security of the protocol by carefully examining attacks on the underlying mathemati-
cal problem. Since the main focus of this thesis is on the analytical aspects of human
identification protocols, more emphasis shall be given to the security analysis of the
theoretical description of protocols. As such, usability and human-executability shall
be given a cursory glance, to show the proof of concept.

2.5 Related Work

The threat model sketched in Figure 1.1 was first described by Matsumoto and Imai
in [5]. They also proposed the first human identification protocol purported to be secure
under this threat model [5]. A simplified version of their protocol can be described as
follows. H and C share two secrets of length k. The first secret, known as the secret
window, is a set of k characters from some alphabet, called the question alphabet.
The question alphabet itself is composed of n characters. The second secret, called
the secret word, is a k-character string from an answer alphabet, where the answer
alphabet is a set of k characters. The challenge is a random string of n characters from
the question alphabet. When presented with a challenge, H locates his secret window,
and one by one inserts characters from his secret word underneath the k locations
corresponding to the characters in the secret window. The remaining locations are
filled with random characters from the answer alphabet. Figure 2.2 shows a simple
example of this protocol, which is the same example used in [5]. In the figure, Q
stands for the question alphabet, W stands for the secret window, A stands for the
answer alphabet, and S stands for the secret word. The bars on the secret window
characters are only there for illustration, and are not present in an actual challenge.

In order to impersonate H, the adversary A has to find both the secret window and
the secret word. According to Matsumoto and Imai’s analysis [5], A needs to observe

2.5 Related Work 23

Challenge

Response

2 8 5 1 7 3 6 4

3 4 3 1 2 1 2 4

Q = {1, 2, 3, 4, 5, 6, 7, 8}

Secret


W = {1, 2, 4, 6}
A = {1, 2, 3, 4}
S = 3124

Figure 2.2: An iteration of Matsumoto and Imai’s protocol.

at most
(
n
k

)
challenge-response pairs to find the secret window. However, Wang et

al. [12] showed that a much smaller number of observations are enough to find the
secret window. They proposed two attacks on this protocol, only one of which is a
passive attack. The attack is based on the observation that since the response contains
all characters from the answer alphabet at least once, the number of challenge-response
pairs required by the adversary is less than

(
n
k

)
. For instance, for the values used in

Figure 2.2, the adversary requires 24 instead of
(

8
4

)
pairs, since the response contains

all characters from the answer alphabet exactly twice. Wang et al. proposed a fix to
Matsumoto and Imai’s protocol, but they did so to avoid the active attack. The number
of observations required for the passive attack is the same as before [12]. Furthermore,
the fix introduces another secret to be memorised by the user, and the resulting protocol
is more complex than the original. Li and Teng [13] came up with another attack on
Matsumoto and Imai’s scheme. They observed that given a few challenge-response
pairs, the adversary can find the secret word by finding subsequence strings common
in all the challenge-response pairs; i.e., the adversary can perform a type of intersection
attack. Matsumoto and Imai recommended the size of the question alphabet, the secret
window and the answer alphabet to be 36, 10 and 4, respectively [5]. With these values,
Li and Teng’s attack can find the secret with only 27 challenge-response pairs. Li and
Teng’s also proposed protocols [13] which make the common subsequence string attack
computationally infeasible, but the resulting protocols seem impractical as they require
a large size of secret (three secrets of 20 to 40 bits).

The examples shown thus far are of protocols whose security is based on heuristic
arguments. Matsumoto [19] attempted to change this by constructing protocols whose
security can be claimed theoretically.

The O(n) Observed Challenge-Response Pairs Conundrum

The Example Protocol described before is similar to Matsumoto’s linear algebra based
protocols from [19], with a few differences. The first main difference is that Matsumoto
didn’t restrict the modulus to 2 in his protocols. Instead, his protocols are generalized
over finite fields. The second major difference is that the Hamming weight of the secret
in Matsumoto’s protocol is not restricted. There are three protocols proposed in [19],
but two of them can be considered variants of the first protocol [1]. The two variants

24 Preliminaries and Related Work

are, essentially, demonstrations of how the main protocol can be implemented in a user
friendly way. The implementation of the Example Protocol and many other human
identification protocols in literature follow the example of Matsumoto’s implementa-
tion. The problem with Matsumoto’s protocol is that the secret can be revealed after
just O(n) observed challenge-response pairs through Gaussian elimination. Below this
bound it is not possible to find a unique secret, as there are many possible candidates
for the secret (recall the discussion on information theoretic security). Since the size
of the secret is n, the protocol cannot be used for many authentication sessions as the
secret size will increase dramatically with increasing n.

A possible fix is to restrict the Hamming weight of the secret to k, where k is much
smaller than n, as is done in the Example Protocol. However, Gaussian elimination
can still be applied after O(n) observed challenge-response pairs. Subsequently, re-
searchers have attempted to construct protocols whose underlying problems cannot be
represented as a system of linear equations that can be solved after O(n) observations.
Hopper and Blum proposed two protocols in [8]. One of the protocols was based on
the NP-Hard problem of learning parity in the presence of noise. This protocol is
known as the HB Protocol in literature. The protocol essentially introduces noise in
the response. Specifically, instead of sending the correct response bit in the Example
Protocol, H sends a wrong response with an error probability ε < 1

2
. The result is that

the adversary needs to observe at least a polynomial in n number of challenge-response
pairs to find the secret. Hopper and Blum also proposed restricting the Hamming
weight of the secret to k, and using the modulus 10 instead of 2; which humans are
more familiar with. A usability study showed that humans can authenticate within
160 seconds [8], although the values of parameters used for the study were not large
enough for sufficient security. There are some other drawbacks of the HB protocol as
well, such as the requirement to send the wrong response with probability ε < 0.5. It
is arguably hard for humans to sample with a fixed probability of ε < 0.5.

The other protocol from [8], namely the Sum of k Mins Protocol, involves the use
of a secret which is a set of ordered pairs of locations. Again, the modulus suggested
for the protocol’s implementation is 10. Considering that the protocol is implemented
in a similar way to the Example Protocol, the user has to compute the minimum
of two random integers from the set {0, 1, . . . , 9} corresponding to his ordered pairs
of locations in the challenge, and sum the results of all k minimums mod 10. If the
adversary wishes to convert this into a system of linear equations, he needs to “expand”
the minimums, resulting in a system of

(
n
2

)
unknowns. Gaussian elimination would

require
(
n
2

)
observed challenge-response pairs, which is quadratic in n instead of being

linear in n as in the case of Matsumoto’s protocols from [19]. The shared secret from
this system of equations is a vector of

(
n
2

)
unknowns with Hamming weight k. The

minimum number of challenge response pairs required to find a unique secret in this
protocol is:

mlb = log2

(
n(n− 1)/2

k

)
Thus, the security of the protocol is based on the conjecture that there is no efficient
algorithm between the bounds mlb < m <

(
n
2

)
. In Chapter 7, we will show that the

2.5 Related Work 25

conjecture is most probably true, since the sum of k mins problem is hard in the sense
of fixed parameter intractability [20]. However, the main drawback of the protocol is
the requirement of memorizing a secret which is a set of k ordered pairs. Remembering
pairs of secret locations can be hard for a human in case of a graphical implementation.
On the other hand, if a textual implementation is used, then learning pairs of locations
might not be hard, as the user can easily recall consecutive letters in a password.
However, still the size of the secret is double than the secret in HB Protocol or the
Example Protocol. Note that the Sum of k Mins Protocol discussed in this thesis is the
variant which targets a passive adversary. As such we do not discuss the full protocol
which is constructed to be secure against active adversaries [8]. Needless to say, the
resulting protocol suffers from severe lack of usability.

Li and Shum’s protocols [14] are also designed to be used for more than O(n)
challenge-response pairs. Their design follows some principles, which include introduc-
ing uncertainty in the system of equations so that Gaussian elimination cannot be used
after only O(n) observed challenge-response pairs. One way of introducing uncertainty
is sending a noisy response with a fixed probability, as is done in the HB protocol from
Hopper and Blum [8]. Li and Shum themselves introduce uncertainty through the use
of a non-linear map [14]. The result is that the adversary cannot represent the problem
as a system of linear equations with a non-negligible probability, and hence the proto-
col can be used for a large number of sessions. We show that one of the protocols from
[14], namely Foxtail, is likely to be hard, as it is based on a fixed-parameter intractable
problem.

There have also been a few attempts at constructing protocols that use the gap
between human and artificial intelligence in certain computational tasks. An example
is Jameel et al.’s image-based protocols from [15, 16]. The protocols borrow the con-
cept from CAPTCHA (Completely Automated Public Turing test to tell Computers
and Humans Apart) [26], which means that it is hard for an automated adversary to
impersonate the user or learn the secret after observing challenge-response pairs. The
main difference from CAPTCHAs is the claim that even a human cannot impersonate
the legitimate user without the knowledge of the secret. However, these security claims
are based on unproven assumptions, as it seems hard to exactly model the problem
in mathematical terms. Thus, it is not clear how the security of these protocols can
be assessed analytically. Furthermore, it appears difficult to automatically generate
random challenges without human intervention from the server side.

Theoretical Work

Major theoretical advances in the area of human identification protocols have been
few and far between. Matsumoto first discussed information theoretic security in his
linear algebra based protocols described before [19]. This gives rise to the information
theoretic bound on the number of challenge-response pairs required to find a unique
secret. Hopper and Blum [8] showed a generalized attack on human identification
protocols which use a secret of k objects from a pool of n objects, and in which the
function computed by the human can be decomposed into intermediate values. The
attack is a form of meet-in-the-middle attack which has been used in one form or the

26 Preliminaries and Related Work

other in solving many hard mathematical problems in cryptography. The generalized
meet-in-the-middle attack on human identification protocols from Hopper and Blum is
a form of time-memory tradeoff, and has time/space complexity O(

(
n
k/2

)
). Thus, any

protocol on which this attack can be applied should use parameter values such that
the attack is infeasible. We will consider a time of 270 to 280, and a space complexity
of 260, infeasible.

To boost usability, in some protocols the user only uses a random subset of the
secret, as opposed to the whole secret, to compute responses to challenges. This de-
creases the number of operations per iteration required by the user. More specifically,
suppose such a protocol is implemented similar to the implementation of the Example
Protocol. Then, using a subset of the secret means that only a subset of secret icons
are shown in each challenge. The challenge itself is a subset of total icons in the pool.
The protocols from [9, 10], are examples of such protocols. Coskun and Herley [27]
showed a generalized brute force attack that reveals the secret in these protocols which
utilize only part of the secret per response. They observed that if only a small subset of
the secret is used to compute each response, then there are many “candidate secrets”
that give the same response as the actual secret. For instance, let S be the secret space
and let s be the secret. Assume s′ ∈ S is different from S in e bits. If e is small, say 1
bit, then the responses constructed from s and s′ will be the same, unless the bit that
is different is used in constructing the response. Thus, if a small number of bits are
used to compute response, candidates for the secret that are similar to s (have a small
value of e) can be easily distinguished from those that are dissimilar (have a large value
of e). After finding one such candidate for the secret, the attack can “move” towards
finding the actual secret by gradually finding the e different bits. This attack reduces
the complexity of naive brute force, which is O(|S|), to:

O

(
|S|(

log2 |S|
e

))
The improvement comes from the fact that the adversary does not need to search
through the whole secret space, and instead need only retain a subset of the secret
space. The tradeoff is that increasing e makes the success probability small, and
decreasing it makes the space of secrets retained higher. Coskun and Herley did not
show an example implementation of their attack on an actual human identification
protocol in [27]. Instead, the attack is only analyzed theoretically. Nevertheless, a
protocol should take into account the success probability of this attack, which requires
that the number of bits of a secret needed to compute a response should not be too
small.

Shoulder-Surfing Resistance

Some authentication systems have been designed to be secure against a restricted ad-
versary; the shoulder-surfer. A shoulder-surfer can be a human or a hidden camera, and
the term itself alludes to looking over a user’s shoulder to obtain information. Similarly,
some other authentication systems target security against malware. The cognitive au-
thentication scheme from Weinshall [10] is an example. However, we argue that all

2.5 Related Work 27

these schemes can be considered human identification protocols. Recalling the defini-
tion of security (Definition 4), a passive adversary only observes the challenge-response
pairs communicated betweenH and C. The exact manner in which the adversary eaves-
drops is not specified. Shoulder-surfing or gathering information through malware are
different manifestations of eavesdropping. Thus, from a theoretical viewpoint, these
schemes can be considered as human identification protocols. Indeed, a protocol that
is secure under Definition 4, by definition resists shoulder-surfing or malware.

However, our definition of human identification protocols does not include protocols
that use auxiliary secure channels. For instance, a different research direction is to con-
struct alternative input devices that use different human senses to hide the challenges
to or the responses from the user, thus effectively using a secure auxiliary channel.
These devices can potentially be more secure than traditional input devices, such as a
keyboard or a mouse, since the adversary’s view is restricted. For example, Sasamoto
et al.’s Undercover [18] uses a haptic device on which the user places his/her palm. The
palm hides any external observation, while the user can receive part of the challenge
from the haptic device through touch sensations on his palm. It is important to men-
tion that there have been attacks reported on the Undercover scheme [28], which are
based on observing the user’s behavior. In general, any human identification protocol
is susceptible to these “side-channel” attacks, and it is important to train users not to
leak any extra information through their actions during an authentication session. For
instance, by avoiding pointing on the screen at one of the secret icons.

Returning to shoulder-surfing resistant authentication schemes, most of these are
built primarily with usability in mind, and as a result, many have been shown to
be insecure. Weinshall’s scheme [10] was cryptanalysed in [29], and was shown to
be susceptible to Satisfiability (Sat) solvers. Golle and Wagner [29] represented the
problem presented to the adversary in Weinshall’s scheme as a set of Sat clauses,
and showed that Sat solvers, programs to solve instances of Sat, can find the secret
in a matter of seconds. The implication is that the parameter values in Weinshall’s
protocol required to make Sat based attacks infeasible, are too large to be practical
for humans. Another example of an insecure system is the virtual password system
from [11] which was broken by Li et al. in [30]. The schemes from [31] and [32]
focus on human shoulder-surfers, and are not secure against an automated adversary.
The security against an automated shoulder-surfer (a hidden camera) is only up to
the aforementioned information theoretic bound on the number of observations. This
bound is much less for these schemes, typically less than 10. Beyond this bound the
adversary can easily find the secret, since the parameter values are small in these
schemes (for usability) making the brute force attack feasible.

However, some schemes purported to be secure against shoulder-surfers or malware,
are potentially secure for a larger number of authentications. Examples are the convex
hull click based identification protocols from [9, 21], and a similar protocol based on
a geometric problem from Zhao and Li [33] which can not only provide good security
against shoulder-surfers, but appear to be based on a hard to learn mathematical
problem. In the convex hull based protocol, the user locates at least three of his secret
icons in a challenge, mentally forms the convex hull of the located secret icons, and
then randomly clicks anywhere within the convex hull. We will show in Chapter 4

28 Preliminaries and Related Work

that this protocol is susceptible to an attack which finds information about the secret
by utilizing the structure of the convex hulls of three points (triangles). Nevertheless,
the protocol can still be used for a much larger number of authentication sessions,
then say, protocols that are designed to be secure only for a handful of authentication
sessions. An example is Bai et al.’s Predicate-based Authentication Service (PAS),
which is claimed to be secure for 10 sessions. However, as we show next, PAS is only
secure for a much smaller number of authentication sessions. Thus, without a careful
mathematical analysis, there is no guarantee that a protocol is secure, even if the
security is claimed to hold for a very small number of authentication sessions.

3
Security Analysis of PAS (Predicate-based

Authentication Service)

Recently a new human identification protocol called PAS (predicate-based authentica-
tion service) was proposed by Bai et al. in [17], purported to be secure under Mat-
sumoto and Imai’s threat model for a limited number of authentication sessions. In
this chapter we give a detailed security analysis of PAS and show that PAS is insecure
against both brute force attack and a probabilistic attack. In particular we show that
the security of PAS against brute force attack was highly overestimated by Bai et al.
Furthermore, we introduce a probabilistic attack, which breaks part of the password
(the shared secret) even with a very small number of observed authentication sessions.
Although the proposed attack cannot completely break the password, it can downgrade
the PAS system to a much weaker system similar to common OTP (one-time password)
systems.

This chapter is organized as follows. We briefly describe how the PAS scheme works
in Section 3.1. A re-evaluation of security and usability of the PAS scheme is given
in Section 3.2, and a probabilistic attack on PAS is described in Section 3.3. The last
section contains concluding remarks.

3.1 Predicate-based Authentication Service

In this chapter, we try to keep the original notations used in [17], due to the bulk of
notation used in that work. As a result, the meaning of most symbols used in this
chapter are quite different from their usage in the rest of this thesis. Using similar
notation allows for easier comparison of the two works. We also keep some of the
terminology used by Bai et al. In particular, Bai et al. used the word password for
the shared secret between the human H and the server C. The password is then

29

30 Security Analysis of PAS (Predicate-based Authentication Service)

further subdivided into entities which Bai et al. refer to as secrets. Thus, this different
terminology is also adopted in this chapter so that the results from Bai et al. [17] and
this chapter can be easily cross-referenced. However, we do change some symbols so
that the description is not too different from the rest of the thesis.

The PAS Scheme

In the PAS scheme, the prover H (the human user) and the verifier C (the PAS server)
share a password S composed of p secrets S1, . . . , Sp. Each secret Si consists of a 2-
D secret cell index (ui, vi) and a secret word of size len Wi = wi[1] · · ·wi[len]. The
2-D index denotes a cell at position (ui, vi) in an m × n 2-D grid, so 1 ≤ ui ≤ m
and 1 ≤ vi ≤ n. Each character of the secret word belongs to an alphabet H of
size H. Since the 2-D cell index can simply be transformed to a 1-D index ci =
(ui − 1) · n + vi ∈ {1, . . . ,M = mn}, in this paper we will analyze the PAS system
by replacing (ui, vi) with the equivalent 1-D cell index ci ∈ {1, . . . ,M}. That is, each
secret will be represented as Si = (ci,Wi) = (ci, wi[1] · · ·wi[len]). A password with
parameter p = 2, len = 7, M = 25 looks like “(12,catchme; 25,beathim)”.

Broadly speaking, the PAS scheme is a challenge-response human identification
protocol, in which the verifier C raises a number of challenges and the prover H must
give correct responses to all challenges in order to pass the authentication process. To
achieve security against passive adversaries, Bai et al. suggested using p “predicates”
(instead of the password S) to make responses to challenges. The p predicates are
dynamically calculated by H from the secret S and a predicate index I, which is
sent from C to H at the beginning of each authentication session. H calculates Î =
(I mod len)+1 and generates the p predicates as follows: ∀i = 1, . . . , p, predi = (ci, hi),
where hi = wi[Î]. We shall say pred = (predi)

p
i=1 is a p-predicate vector. When p = 2,

the p-predicate vector is also called a predicate pair. The predicate pair derived from
the password “(12,catchme; 25,beathim)” and I = 2 will be “(12,a; 25,e)”.

Each challenge raised by C includes l challenge tables, each of which contains M
cells filled with a certain number of distinct characters in H. To ensure that each
character occurs in each cell with probability 0.5, the number of characters in each
cell is always H

2
when H is even, and is H−1

2
or H+1

2
with probability β = 0.5 when

H is odd. To simplify our analysis, we assume H is even and so each cell always
contains H

2
characters. Note that in the default setting of the PAS scheme H = 26.

In addition to the l challenge tables, C also sends a p-dimensional response table to
H. Each dimension of the response table has 2l possible values, so there are 2pl cells
in the response table. All the cells are filled with 2l distinct character strings, each of
which occurs exactly in 2(p−1)l cells.1 See Figures 1 and 2 in [17] for examples of the
challenge and the response table.

H constructs a response to each challenge based on the response table and p hidden
responses generated from the p predicates. For the i-th predicate predi = (ci, hi), the
corresponding hidden response is an l-bit integer Bi = bi[1] · · · bi[l], where bi[j] = 1 if
hi occurs in the ci-th cell of the j-th challenge table and bi[j] = 0 otherwise. With

1Note that for p = 2, this rule actually implies a 2l×2l Latin square filled with 2l distinct elements.

3.1 Predicate-based Authentication Service 31

the p hidden responses, H finds the cell at the position (B1, . . . , Bp) in the response
table, and sends the character string in that cell as the response to the challenge. A
step-by-step description of the authentication process of the PAS scheme is as follows.

Protocol: PAS.

Setup: Let H, p, M , l, len and nr be public parameters. C andH share a password
S = (S1, S2, . . . , Sp).

1: C sends a predicate index I to H.
2: H calculates the p-predicate vector (pred1, . . . , predp) from the password S =

(S1, . . . , Sp) and the predicate index.
3: for i = 1 to nr do
4: C sends a challenge with l challenge tables and a response table with 2pl

cells.
5: H calculates p hidden responses B1, . . . , Bp and finds the cell at position

(B1, . . . , Bp) in the response table.
6: H sends the character string in the cell (B1, . . . , Bd) to C.
7: C outputs accept/reject by checking if all the responses are correct.

For reference, Figure 3.1 shows a very simplified example with a single challenge
table, i.e., l = 1, which contains M = 2 cells. The alphabet H is composed of all
uppercase English letters. The two cells in the challenge table contain 13 letters each.
SupposeH has two secrets in his password (p = 2): (1,hate; 2, love). The response table
has 2pl = 22·1 = 4 cells, and 2l = 21 = 2 characters (bits), which occur 2(p−1)l = 21·1 = 2
times each. Suppose now that the verifier C sends the index I = 3 to H. This is to
indicate to H that he has to reply to the challenge by using the third letter in the two
secret words. H looks at cell 1, since the secret cell index of the first secret is 1, and
checks if the letter ‘t’ is present or not. Since it is absent, he mentally remembers the
answer ‘n’. H then looks at cell 2, since the secret cell index of the second secret is
2, and checks if the letter ‘v’ is there. Since it is present he remembers the answer
‘y’. Finally H replies by sending the bit corresponding to ‘ny’, where ‘n’ is the row
label and ‘y’ is the column label. The bit turns out to be 1 in this case. Bai et al. in
fact use CAPTCHAs in the response table entries to prevent automated gathering of
responses. However, this assumption is not necessary in the threat model considered in
this thesis, since a human can easily solve the CAPTCHAs after gathering challenge-
response pairs. Note that in the Matsumoto and Imai’s threat model, the adversary
can be automated or human, or both.

Generation of the Predicate Index I

In [17], Bai et al. did not clearly mention how the predicate index I should be generated.
Instead, they discussed the number of authentication sessions (denoted by t) each
predicate index Î can be used. The maximal number tmax turns out to be 1 for the
default setting of the PAS scheme. This means that each possible value of Î is used for

32 Security Analysis of PAS (Predicate-based Authentication Service)

A B E Z V U
X D R S W

G H

C V Y Z T U
Q R D S I

O N

y

y

n

n

0

0

1

1

1 2

Figure 3.1: A challenge and response table from PAS.

one authentication session only, and the password has to be renewed after all the len
possible values are exhausted. The predicate indices of the len authentication sessions
may simply be chosen as 1, . . . , len or a permutation of the len values. In this chapter,
we assume the PAS scheme runs in a “random permutation mode”, in which a random
permutation of 1, . . . , len determines the predicate index used for each authentication
session. Note that this is the most complicated (and thus the most “secure”) way
one can adopt to assign the len values of the predicate index to all the authentication
sessions.

Extended PAS

Bai et al. also extended the above basic PAS scheme to allow k > 1 cell indices
in each secret Si. In this case, the ith secret in the password is redefined as Si =
(ci,1, . . . , ci,k,Wi). Accordingly, k predicate indices I1, . . . , Ik will be sent from C to
H for each authentication session. H calculates the ith predicate predi as a set of k
sub-predicates {predi,j}kj=1, where:

predi,j = (ci,Îj,k , hi,j),

hi,j = wi[Îj,len],

Îj,k = (Ij mod k) + 1,

and Îj,len = (Ij mod len) + 1.

With this extended predicate containing k sub-predicates, the hidden response Bi of
the ith predicate is obtained as follows: H first calculates k hidden sub-responses
Bi,1, . . . , Bi,k for the k sub-predicates in the same way as in the basic PAS scheme, and
then determines Bi as the bitwise OR of the k hidden sub-responses: Bi = Bi,1 ∨ · · · ∨
Bi,k. To ensure uniform distribution of Bi over {0, . . . , 2l − 1}, the number of distinct
characters in each cell of each challenge table and the corresponding probability β
should be determined by Eqs. (6) and (8) in [17], respectively.

List of Parameters

A list of the parameters (with the default values) and notations involved in the de-
scription of the PAS scheme is given in Table 3.1. The column labeled “Notation
(extended)” shows the notations from the extended PAS scheme.

3.1 Predicate-based Authentication Service 33

Table 3.1: List of parameters/notations used in the description of PAS.

Parameter Description Default
p The number of secrets in the password 2

len The number of characters in a secret word 10
H The set of all possible characters in a secret word {A, · · · , Z}
H The size of H, i.e., the number of all possible characters 26
l The number of challenge tables in a challenge 2

M = mn The number of cells in a challenge table 25
nr The number of challenges (rounds) in an authentication session 5
k The number of cell indices in each secret Si 1

The number of sub-predicates in each predicate predi
Notation Description

S = (S1, . . . , Sp) The password shared between H and C
Si = (ci,Wi) The i-th secret in the password S

ci ∈ {1, . . . ,M} The secret cell index in the i-th secret Si
Wi = wi[1] · · ·wi[len] The secret word in the i-th secret Si, where wi[1], . . . , wi[len] ∈ H

I ∈ Z+ The predicate index sent from C to H
Î = (I mod len) + 1 The predicate index modulo len

pred = (predi)
p
i=1 The p-predicate vector used by H in an authentication session

predi = (ci, hi) The i-th predicate, where hi = wi[Î]
Bi = bi[1] · · · bi[l] The hidden response corresponding to the i-th predicate predi
bi[j] = 1 (or 0) hi occurs (or does not occur) in the ci-th cell of the j-th challenge table

t The number of authentication sessions a predicate index can be used
Notation (extended) Description

Si = (ci,1, . . . , ci,k,Wi) The i-th secret in the password S
ci,k ∈ {1, . . . ,M} The k-th secret cell index in the i-th secret Si
I1, . . . , Ij,∈ Z+ The predicate indices sent from C to H
Îj,len and Îj,len The j-th predicate index modulo k and len, respectively

predi = {predi,j}kj=1 The i-th predicate, where hi = wi[Î]

predi,j = (ci,Îj,k , hi,j) The j-th sub-predicate in the i-th predicate, where hi,j = wi[Îj,len]

Bi = Bi,1 ∨ · · · ∨Bi,k The hidden response corresponding to the i-th predicate predi
Bi,j The hidden sub-response corresponding to the sub-predicate predi,j

Security and Usability Analysis by Bai et al.

In [17], the security of the PAS scheme was analyzed against three different possible
attacks: brute force attack, random guess attack and Sat (satisfiablity) solver attack.
Three different attack targets were checked: password, predicate, and response. By
assuming each predicate index is used for t authentication sessions, the security was
measured in terms of the cardinality of the attack set, i.e., the size of the reduced
target space, or the number of candidate targets passing all the observed authentication
sessions. Table 3.2 shows the results reported by Bai et al. in [17]. In the table:

N =
pk(MH)pk

2lnrt(k!)p

By setting a minimal security level for each possible attack, Bai et al. also described
how to get tmax, the maximal number of authentication sessions a predicate index Î

34 Security Analysis of PAS (Predicate-based Authentication Service)

Table 3.2: The security of PAS, estimated by Bai et al.

Password Predicate Response
Brute Force MpkHp·len NA NA

Random Guess MpkHp·len (MH)pk/(k!)p 2lnr

Sat
(
M
(
1− (1− 1

M
)N
)len/k)pk

Hp·len
(
M
(
1− (1− 1

M
)N
)len/k

H
)pk

/(k!)p NA

can be repeatedly used. For the default setting of the basic PAS scheme, it was claimed
that tmax ≈ 1 so that the same password S can be used for at least tmax · len = 10
times before renewal.

Bai et al. also did a usability study based on a prototype system with the default
parameters and nr = 2, 3, 4, 5. The average time consumed on deriving the predicates
from secrets was around 35 seconds, and the time taken for each round (iteration)
ranged from 8.37 to 10.5 seconds. When nr = 5, the total login time for one authenti-
cation session was around 84 seconds on average. A survey on the upper bound of the
login time was also conducted, and more than half of the participants chose 2 minutes.
We will use these statistics to discuss the relationship between security and usability
of the PAS scheme.

3.2 Re-Evaluating Security and Usability

First of all, we point out that the definitions of two of the three attacks in [17] are
problematic. Observing Table 3.2, one can see there are two “NA”-s for brute force
attack, and security against brute force attack is the same as security against random
guess attack. In fact, according to the definitions given in [17], the brute force attack
and the random guess attack are actually the same attack if the target is the password.

In our opinion, the brute force attack should be defined as exhaustively searching the
whole password/predicate space S to determine a subspace (i.e., the so-called “attack
set” according to the terminology used by Bai et al. in [17]) S∗ ⊆ S, which is composed
of all candidates of the password/predicate that pass all the authentication sessions
observed by a passive adversary. Apparently, the correct password/predicate used by
the human prover H is always in the subspace S∗. When |S∗| = 1 or small enough,
we say the brute force attack is successful. Just as its name implies, the random
guess attack should be defined as randomly guessing the correct password, predicate
or response of each challenge in order to pass the authentication session. Note that
in the brute force attack the goal is to (maybe partially) reveal the password, but in
the random guess attack the goal is to simply impersonate a claimed identity without
trying to break any target. Recall the definitions of random guess attacks from Chapter
2.

In [17] Bai et al. claimed that brute force attack does not take the predicates as the
target, because they vary from session to session. We have a different opinion. Since

3.2 Re-Evaluating Security and Usability 35

Table 3.3: Re-evaluated security of PAS against three attacks.

Password Predicate Response

Brute Force / Sat

(
1+((MH+k−1

k)
p
−1)

2lnrt

)
len!

(len−k)!
1 +

(MH+k−1
k)

p
−1

2lnrt
NA

Random Guess
1

1/2lnr + (2lnr − 1)
/(

2lnr
(
MH+k−1

k

)p) < 2lnr 2lnr

the cell indices remain the same for all predicates, breaking the cell indices (as part of
each predicate) may help an attacker pass a later authentication attempt with higher
probability before password renewal. As a consequence, it is important to consider
brute force attack targeting predicates. In fact, the first step of the probabilistic
attack described in the next section of this chapter is based on the brute force attack
on predicates.

In the following, we re-evaluate the security of PAS, and point out that the security
of the PAS scheme was over-estimated in [17]. Our new estimate is shown in Table 3.3.
We also point out that the extended PAS scheme is not practical, which allows us to
focus only on the basic PAS scheme in the next section.

3.2.1 Security against Brute Force Attack Targeting Predi-
cates

To facilitate the following discussion, denote the number of distinct p-predicate vec-
tors by N(p, k). In [17], the value of N(p, k) was estimated to be (MH)pk/(k!)p.
Unfortunately, this estimate is wrong. This can be easily verified when k > 1 and
gcd(MH, k) = 1. In this case, (MH)pk/(k!)p is not an integer. To derive the correct
value of N(p, k), note the following fact: the number of distinct sub-predicates in the
ith predicate ranges from 1 to k. Thus, we immediately have:

N(p, k) =

((
MH

1

)
+

(
MH

2

)
+ . . .+

(
MH

k

))p
=

(
MH + k − 1

k

)p
=

(
(MH + k − 1) · · · (MH)

k!

)p
≥ (MH)pk

(k!)p

Although Bai et al. did not over-estimate the value of N(p, k), they neglected the
influence of nr and t on the size of the attack set. However, when the adversary tries
to use a randomly selected incorrect p-predicate vector to calculate the response to
each challenge, the probability of getting the correct response is only 1

2l
(under the

assumption that the calculated response uniformly distributes over all the 2l possible
responses). Assuming that the responses of different challenges are independent of each
other (which is so if all the challenges are generated independently by the verifier C),

36 Security Analysis of PAS (Predicate-based Authentication Service)

the probability that a randomly selected predicate will pass t observed authentication
sessions will be 1/2lnrt. Since there are one correct p-predicate vector and

(
MH+k−1

k

)p−1
incorrect ones, with t observed authentication sessions the average size of the attack
set will be:

1 +

(
MH+k−1

k

)p − 1

2lnrt

which is much smaller than the original estimate in [17]. Note that the computational

complexity of the brute force attack is still O
((

MH+k−1
k

)p)
, since all the possible

predicates have to be checked one by one.

3.2.2 Security against Brute Force Attack Targeting Password

When the target of brute force attack is the password S, Bai et al. estimated the
password space as MpkHp·len, which is the number of all possible p-dimension vectors
(S1, . . . , Sp). However, due to the special design of the PAS scheme, a password S can
be equivalently represented as len!

(len−k)!
distinct p-predicate vectors: pred = (predi)

p
i=1,

where len!
(len−k)!

is the number of all possible values of the k-tuple predicate-index vector

(Î1,len, . . . , Îk,len) and:

predi =
(
ci,Î1,k , . . . , ci,Îk,k , wi[Î1,len] · · ·wi[Îk,len]

)
.

Note that any change in one predicate will not influence any other predicates, so they
are independent of each other. As a result, the password space can be calculated as
the union of all the predicate spaces. Then, we can estimate the size of the modified
password space to be: (

MH + k − 1

k

)p
len!

(len− k)!

which may be much smaller than the size of the original password space in case len > k
and H > len. For the default parameters, Table 3.4 shows how the ratio:

r = log10

(
MpkHp·len(

MH+k−1
k

)p len!
(len−k)!

)

changes as k increases from 1 to len = 10. We can see r is always much larger than 1,
which means the size of the re-represented password space is always much smaller than
MpkHp·len. This can be best demonstrated for the basic PAS scheme. In this case, each
password can be represented as len independent predicates, and the password space is
reduced to (MH)p · len, which is smaller than MpH len·p as long as H len·(p−1) > len. For
the default setting of the basic scheme, we can calculate that the password space is only
(MH)p · len = (25× 26)2 · 10 ≈ 222, which is too small from a cryptographic point of
view. Since the cell index for each predicate is always the same, we can separately store
the p cell indices c1, . . . , cp and the len p-character words {W ∗

j = w1[j] · · ·wp[j]}lenj=1.

3.2 Re-Evaluating Security and Usability 37

Table 3.4: The ratio of sizes of re-represented versus original password space.

k 1 2 3 4 5 6 7 8 9 10
r 24.470 21.286 18.505 16.030 13.814 11.835 10.085 8.5749 7.3418 6.499

Apparently, this is just a reorganization of different parts of the password, so no extra
memory is needed.

After representing the password space as the union of len!
(len−k)!

predicate spaces, we
can easily obtain the size of the attack set with t observed authentication sessions for
each predicate based on the result we obtained in the last subsection. That is:(

1 +

(
MH+k−1

k

)p − 1

2lnrt

)
len!

(len− k)!

In addition, it deserves mention that a dictionary attack can narrow down the password
space even further, since human users have to choose the p secret words as something
that can be easily recalled. This is an inherent drawback of any human authentication
scheme based on textual characters. Changing H to a set of graphical objects (such as
a set of some small icons) may help mitigate this problem to some extent.

3.2.3 Security against Random Guess Attack

As discussed in Chapter 2, in a random guess attack the adversary does not need
to try all passwords/predicates/responses, but randomly pick one from the password,
predicate or response space and see if he can pass the authentication session. For
random guess attack, there is no attack set, but we can use the reciprocal of the
success probability of passing the authentication session as an equivalent metric of
security.

When the adversary chooses a random response, the original estimate in [17] is
correct, since there are 2l possible responses. But the attacker can get a higher success
rate if he chooses a random predicate or a random password. It is because the attacker
has a chance to guess the correct predicate, which will definitely lead to the correct
response. For all the other incorrect predicates, the success rate is the same as that of
randomly guessing the response. Thus, the overall success rate is:

1 · 1(
MH+k−1

k

)p +
1

2lnr
·
(
MH+k−1

k

)p − 1(
MH+k−1

k

)p =
1

2lnr
+

2lnr − 1

2lnr
(
MH+k−1

k

)p > 1

2lnr
. (3.1)

3.2.4 Security against SAT Attack

The Sat attack can be considered as a special form of the brute force attack. Observing
our result obtained for the brute force attack and the one Bai et al. got for the Sat
attack (when the attack target is the password), one can easily see the former is much

38 Security Analysis of PAS (Predicate-based Authentication Service)

smaller than the latter in most cases. For instance, for the basic PAS scheme with the
default parameters and t = 1, the latter is as high as 2103.3, but the former is only
about 222 � 2103.3. This implies that the security analysis on the Sat attack given in
[17] was also highly over-estimated.

Because of the space limit, in [17] Bai et al. did not publish details of the security
results on the Sat attack shown in Table 3.2. Fortunately, an appendix was available
upon request from the first author of [17], which includes the derivation process. After
checking the derivation process, we noticed that Bai et al. actually had not considered
any specific features of the Sat attack. The attack was not transformed to a typical
Sat problem formatted in Conjunctive Normal Form (CNF), either. As a matter of
fact, since the Sat problem is NP-complete and there are many specific Sat solving
algorithms, an analytic estimation on the number of solutions (i.e., the size of the
attack set) and the time complexity of a specific practical Sat problem like the one
from the PAS scheme is often very difficult [34].

Bai et al. actually derived the equations shown in Table 3.2 as follows: 1) as-
sume the Sat solver is capable of making full use of the information leakage as we
did in Section 3.2.1; 2) estimate the number of predicates that pass all the t authen-
tication sessions; 3) calculate the probability that each cell index appears in all the
candidate predicates, and then replace M by the number of candidate cell indices

M∗ = M
(
1− (1− 1/M)N

)len/k
. Unfortunately, this derivation process does not re-

flect the real security level against the Sat attack. As a matter of fact, the process is
not only incorrect for the Sat attack but also for the brute force attack. If a Sat solver
can eliminate an incorrect predicate, then the brute force attack can do so, too. It is
well known that Sat solvers work like an optimized brute force algorithm for search-
ing the whole solution space. The main difference from a naive brute force searching
algorithm and a Sat algorithm is the time complexity of finding one or more solutions.
Since Bai et al. chose the size of the attack set (i.e., the number of solutions) as the
security metric, the Sat attack should have the same “performance” as the naive brute
force attack. This means that the one we obtained for the brute force attack is a more
reasonable upper bound of the Sat attack.

3.2.5 Usability

Although Bai et al. claimed that the usability of the (basic) PAS scheme is much better
than some other solutions (see the last sentence of Section 5.1 of [17]), we doubt if it
is a fair comparison. The main problem is the lack of a consistent security analysis of
the solutions. The existence of multiple security factors also makes it difficult to find
a reasonable parameter set of each solution to compare the usability. For instance,
the Cognitive Authentication Scheme (CAS) proposed in [10] has a low-complexity
variant, which has relatively good usability but a lower security level according to the
cryptanalysis reported in [29]. Comparing the CAS solution with the default setting
of the basic PAS scheme, we have the following results:

• average login time: CAS – 1.5 minutes = 90 seconds, PAS – 84.23 seconds;

• security against random guess attack: CAS – 220 ∼ 225, PAS – 210;

3.3 A Probabilistic Attack 39

• maximal number of authentication sessions a password can be used: CAS – less
than 12, PAS – around 10 (actually less according to our analysis given in the
next section).

Based on the above data, it is obvious that the basic PAS scheme is worse than the
low-complexity variant of CAS in terms of both security and usability. Actually, even
the above comparison is not a fair one, either, since we do not consider all security
and usability factors. In our opinion, comparing performance of different human iden-
tification protocols is not an easy task without a comprehensive security and usability
study of all the systems involved. But one principle is undoubtedly clear: the compar-
ison of usability should be made for the same level of security against various kinds of
attacks, and vice versa. In other words, the performance comparison should be done
by considering both security and usability simultaneously.

Another problem with the basic PAS scheme is that it requires, probably, too long
passwords. For the default setting, each user has to remember two cell indices and two
words of length 10. In total there are 4 digits and 20 characters to be remembered.
Although Bai et el. discussed several ways to create easily memorable and still strong
passwords, we doubt if they indeed work in reality for average users. In [17] it was not
reported if the participants in the user study had difficulties choosing their passwords
and how likely it was for them to forget their passwords. According to a large-scale
user study on web password habits [35], the average password length is around 6 to 9
and passwords longer than 13 characters are rare. Hence, it remains a question if 4
digits plus 20 characters are indeed usable.

In case the usability of the basic PAS scheme may be a problem, the extended PAS
scheme seems even more difficult for average users to handle. Even when k = 2, the
average login time will be at least doubled, which is about 2×84 seconds ≈ 2.8 minutes,
exceeding the upper bound of more than half of the average users according to the user
study reported in [17]. In addition, if the value of len remains the same, the number
of digits and characters to be remembered will also be doubled. By using a smaller
value of len, the memorability problem can be relaxed, but it has no obvious influence
on the average login time, which does not depend on the value of len. Furthermore,
we expect the error rate will also significantly increase due to the added complexity of
handling more terms in each predicate.

To sum up, although we cannot definitely say if the basic PAS scheme is usable or
not, it is clear that the extended PAS scheme is not usable as an acceptable solution
against passive adversaries for most average users. Because of this fact, in the next
section we will focus our attention mainly on the basic PAS scheme.

3.3 A Probabilistic Attack

Our security analysis given in the previous section has shown that security of the PAS
scheme is much weaker than claimed in [17]. In Section 3.2.1, we also showed that the
number of candidate predicates decreases exponentially as t increases. For the default
setting of the basic PAS scheme, the predicate pair used can be uniquely determined
with high probability when t = 2, since 1 + ((25 × 26)2 − 1)/22×5×2 ≈ 1.4029 < 2.

40 Security Analysis of PAS (Predicate-based Authentication Service)

This leads to partial breaking of the password. To avoid information leakage from the
observed responses, Bai et al. proposed to set tmax = 1. With this setting, on average
one will get 1 + ((25× 26)2− 1)/22×5 ≈ 413.6 predicate pairs for each observed session.
Since the predicate pairs used for different authentication sessions are different, it seems
impossible to break any part of the password when tmax = 1.

In this section, we propose a probabilistic attack that is still able to partially break
the password even when tmax = 1 is used. The key point is that the same set of cell in-
dices appear in the p-predicate vectors used for different authentication sessions. This
makes it possible to further exploit the correlation among different p-predicate vectors
to get more information about the secret cell indices, which can then be used to further
refine the set of candidate p-predicate vectors obtained from each observed authenti-
cation session. When the number of observed authentication sessions is sufficiently
large, we may be able to uniquely determine the cell indices. The probabilistic nature
of the attack allows us to guess the cell indices even when the number of observed
authentication sessions is not high enough. After determining the cell indices, some
secret characters may also be uniquely determined or there are only a few candidates
left.

The success rate of the attack smoothly increases as the number of observed au-
thentication sessions increases. For the default setting of the basic PAS scheme, exper-
imental results show that only 7 observed authentication sessions are enough to achieve
a success rate higher than 50%, which refutes the claim that the password can be used
for at least 10 times before renewal. Even with only two observed authentication ses-
sions, the success rate is not negligible – around 3.5%. The probabilistic attack is also
computationally efficient. Its maximal complexity is always strictly smaller than the
complexity of the brute force attack.

In the following part of this section, we describe how the attack works, and give some
theoretical analyses on the probabilities involved and the computational complexity
of the attack. Experimental results are given to demonstrate the feasibility of the
proposed attack on the default setting of the basic PAS scheme. Finally, we show the
consequence of breaking the secret cell indices is that the PAS scheme is downgraded
to a challenge-response protocol working like a one-time password (OTP) system but
with worse usability and security.

3.3.1 Description of the Attack

The probabilistic attack described next is a form of intersection attack sketched in
Chapter 2. This is a good example to show how the intersection attack need not be
equivalent to a brute force attack. To simplify the description of the probabilistic
attack, we show how it works for the basic PAS scheme when the adversary/attacker
knows the value of len. In this case, given t̂ ≥ 1 observed authentication session(s), a
step-by-step description of the probabilistic attack is as follows:

Attack: Probabilistic Attack.

Input: t̂ ≥ 1 authentication sessions.

3.3 A Probabilistic Attack 41

Output: Candidates for the secret characters.
1: for all observed authentication sessions do
2: obtain a set of p-predicate vectors agreeing with all the nr challenge-response

pairs. Denote all the t̂ sets by Pi, i = 1, . . . , t̂.
3: for all p-predicate vectors (pred1, . . . , predp) in Pi do
4: extract the cell-index part to get a p-tuple cell-index vector (c1, · · · , cp). All

the p-tuple cell-index vectors form a new set Ci.

5: Calculate C∗ =
⋂t̂
i=1 Ci.

6: Use C∗ to refine each set Pi and get a new set as follows: P∗ = {x = (ci, hi)|x ∈
P ∧ ci ∈ C∗}.

7: if |C∗| = 1 then
8: all the p secret cell indices can be immediately determined, and thus some

candidates of those secret characters in P∗i corresponding to the secret cell
indices can also be obtained.

9: else if |C∗| > 1 then
10: count the number of times each cell-index vector occurs in P∗1, . . . ,P∗t̂ and

rank the cell-index vectors in order of their occurrence. All cell-index vectors
that are ranked first are the candidates for the secret cell-index vector. All
characters in P∗1, . . . ,P∗t̂ that correspond to these candidates cell-index vectors
are then the candidates for the secret characters.

In the proposed attack, Steps 1 and 2 correspond to the brute force attack targeting
each p-predicate vector, and Steps 3-6 exploit the correlation existing between different
p-predicate vectors (i.e., the static cell-index vector). Steps 7-10 have two different
cases, according to the cardinality of C∗. The ranking based strategy in Step 10 is
justified by the fact that the secret cell-index vector appears to occur most frequently,
since it occurs at least once while others may never occur. A more detailed analysis
on this ranking probability will be discussed in Section 3.3.2. Step 10 is the main part
to make the attack work in a probabilistic manner.

The proposed probabilistic attack also works for the extended PAS scheme. It
can be done by simply replacing ci with {ci,1, . . . , ci,k}. However, due to the usability
problem with the extended PAS scheme (recall Section 3.2.5), we will only discuss
the basic PAS scheme in the following theoretical and experimental analysis on the
performance of the probabilistic attack.

3.3.2 Theoretical Analysis

In this subsection, we show some theoretical analyses on Steps 7-10 of the attack.

Number of Observed Authentication Sessions to have |C∗| = 1

First let us investigate how many observed authentication sessions will ensure that
|C∗| = 1 happens with high probability. According to our discussion in Section 3.2.1,

42 Security Analysis of PAS (Predicate-based Authentication Service)

the probability that each incorrect p-predicate vector will remain in Pi is 1/2lnr . Then,
we can derive:

Pr[|Pi| = a+ 1] =

(
N1

a

)(
1

2lnr

)a(
1− 1

2lnr

)N1−a

where 0 ≤ a ≤ N1 and N1 = (MH)p − 1. Note that the correct p-predicate vector is
always in Pi, so |Pi| ≥ 1.

Given a set Pi of size a+ 1, let us estimate the probability that an incorrect p-tuple
cell-index vector (c1, . . . , cp) belongs to Ci under the assumption that all incorrect
p-predicate vectors appear in Pi with equal probability. To facilitate the following
discussion, denote the probability by ρ0(a). When a > N1−Hp, we can see ρ0(a) = 1,
since there can be a maximum of N1 − Hp p-predicate vectors with other cell-index
vectors. When a ≤ N1 −Hp, the probability is:

ρ0(a) = 1−
(
N1−Hp

a

)(
N1

a

) = 1−
a−1∏
i=0

(
1− Hp

N1 − i

)

Based on the above results, for a randomly generated set Pi whose size is unknown, the
probability that an incorrect cell-index vector (c1, . . . , cp) belongs to Ci is as follows:

ρ = Pr[(c1, . . . , cp) ∈ Ci]

=
∑N1

a=0
ρ0(a) · Pr[|Pi| = a+ 1]. (3.2)

Assuming the above probability ρ does not depend on the subscript i, we get:

Pr[(c1, . . . , cp) ∈ C∗] =
t̂∏
i=1

Pr[(c1, . . . , cp) ∈ Ci] = ρt̂

Then, we can further derive the probability that |C∗| = 1 as the probability that none

of the Mp − 1 incorrect cell-index vectors is in C∗: Pr[|C∗| = 1] =
(

1− ρt̂
)Mp−1

. Let

Pr[|C∗| = 1] ≥ q, we can derive the following condition:

t̂ ≥
⌈
logρ

(
1− q

1
Mp−1

)⌉
Once the parameters of the basic PAS scheme are all given, one can immediately

estimate the value of ρ and then calculate the minimal value of t̂ corresponding to any
threshold probability q. For the default parameters, we can calculate ρ = 0.4834. With
this value of ρ, Table 3.5 shows the minimal value of t̂ that can ensure |C∗| = 1 happens
with different probabilities. We can see that on average 10 observed authentication
sessions are enough to uniquely determine the secret cell indices with Steps 7 and 8.

3.3 A Probabilistic Attack 43

Table 3.5: The minimal value of t̂ against q to ensure Pr[|C∗| = 1] ≥ q.

q 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t̂ ≥ 7 8 8 9 9 9 10 10 11 11 12

Ranking Probability in Steps 9 and 10

The data in Table 3.5 show that Steps 7 and 8 are not able to effectively reduce the
number of observed authentication sessions. When q = 0.5, we need 10 observed
authentication sessions, which is the maximal number before password renewal. This
does not make too much sense. Although we may also be able to break the password
with 7 observed authentication sessions, the probability is a bit too low. Steps 9 and
10 can help the attack work with even less than 7 observed authentication sessions,
and also with a nontrivial success rate.

To theoretically analyze the ranking probability problem involved in Step 10, we first
need to estimate the size of P∗i . Assuming the number of incorrect p-predicate vectors in
Pi decreases with the same rate as the number of incorrect cell-index vectors in C, i.e.,
(|P∗i |− 1)/(|Pi|− 1) = (|C∗|− 1)/(|C|− 1) = ρt̂, we can have |P∗i | = 1 +ρt̂(|Pi|− 1). Let
E[.] denote expected value. Since E[|Pi|] = 1+N1/2

lnr , we get E[|P∗i |] = 1+ρt̂N1/2
lnr .

After we have the estimation of |P∗i |, we want to know the probability that in∑t̂
i=1 |P∗i | p-predicate vectors the number of times the correct p-predicate vector oc-

curs is not less than any of the incorrect ones. Thus, we need to solve the following
mathematical problem:

There are N = Mp types of objects. Type-1 objects occur with probability
q1 = (Hp−1)/N1, and all other objects occur with probability q0 = Hp/N1.

Randomly pick L =
∑t̂

i=1(|P∗i | − 1) objects with the above probabilities
and add t̂ more type-1 object(s), what is the probability that the number
of type-1 object(s) is not less than the number of objects of any other type?

Note that q1 + (N − 1)q0 = 1 for the above problem. To facilitate our discussion,
denote the number of type-i objects in the L objects by #(Oi). It is not easy to get
an explicit solution to the above problem. Now let us try to derive a practical lower
bound of the probability. When L ≤ t̂, #(Oi) ≤ L ≤ t̂ ≤ #(O1) + t̂ always holds, so
Pr
[
maxNi=2(#(Oi)) ≤ #(O1) + t̂

]
= 1. When L ≥ t̂+ 1, we have the following result:

Pr
[

N
max
i=2

(#(Oi)) ≤ #(O1) + t̂
]

= 1− Pr
[
∃i ∈ {2, . . . , N},#(Oi) > #(O1) + t̂

]
≥ 1− Pr

[
∃i ∈ {2, . . . , N},#(Oi) ≥ t̂+ 1

]
= 1− Pr

[
N∨
i=2

(
#(Oi) ≥ t̂+ 1

)]

44 Security Analysis of PAS (Predicate-based Authentication Service)

Table 3.6: Lower bounds of Pr
[
maxNi=2(#(Oi)) ≤ #(O1) + t̂

]
against t̂.

t̂ 1 2 3 4 5 6 7 8 9 10
The theoretical lower bound 0 0 0.9473 0.9997 1 1 1 1 1 1

Experimental result 0.0504 0.2915 0.9604 0.9999 1 1 1 1 1 1

≥ 1−min

(
1,

N∑
i=2

Pr
[
#(Oi) ≥ t̂+ 1

])

= 1−min

1, (N − 1)
L∑

i=t̂+1

(
L

i

)
qi0(1− q0)L−i

 . (3.3)

When t̂ is close to 1, the above lower bound is generally equal to 0, which does not
make much sense. But as t̂ becomes larger, the lower bound quickly converges to 1.
Taking the default parameters of the basic PAS scheme and assuming:

L = E[
t̂∑
i=1

(|P∗| − 1)] = t̂ρt̂
N1

2lnr

we calculated the above lower bound for t̂ = 1, . . . , 10. For each value of t̂, 10000
random experiments were also made to see how large the probabilities are. Table 3.6
shows the results.

Following a similar argument, we can also estimate the following inequality:

Pr
[
∃i ∈ {2, . . . , N},#(Oi) ≥ #(O1) + t̂

]
≤ Pr

[
∃i ∈ {2, . . . , N},#(Oi) ≥ t̂

]
= Pr

[
N∨
i=2

(
#(Oi) ≥ t̂

)]

≤ min

(
1,

N∑
i=2

Pr
[
#(Oi) ≥ t̂

])

= min

(
1, (N − 1)

L∑
i=t̂

(
L

i

)
qi0(1− q0)L−i

)
. (3.4)

Then, assuming there are Nmax cell-index vectors occurring most often in P∗i , . . . ,P∗t̂ ,
i.e., Nmax is the cardinality of the set {i|#(Oi) = maxM

p

j=1 #(Oj)}, we can get an upper
bound of its expected value as:

E[Nmax] ≤ 1 + (Mp − 1) ·min

(
1, (N − 1)

L∑
i=t̂

(
L

i

)
qi0(1− q0)L−i

)

3.3 A Probabilistic Attack 45

Table 3.7: Theoretical upper bounds of E[Nmax] and estimated values.

t̂ 1 2 3 4 5 6 7 8 9 10
The theoretical upper bound 625 625 607.1 6.842 1.012 1 1 1 1 1

Experimental result 3.6846 3.6184 1.7168 1.0086 1 1 1 1 1 1

For the default setting of the PAS scheme and t̂ = 1, . . . , 10, Table 3.7 shows the
theoretical upper bound and the estimated value from 10000 random experiments.
The data in Tables 3.6 and 3.7 imply that one can recover the secret cell-index vector
with high probability with only 3 observed authentication sessions.

3.3.3 Time Complexity of the Attack

The computational complexity of the proposed probabilistic attack can be calculated
by summing up the complexities of groups of steps. The complexity of Steps 1-2 is
t̂(MH)p, which is the maximal number of p-predicate vectors one has to check for
all the t̂ observed authentication sessions to get Pi. After Step 1 (and 2) is finished,
the average size of each Pi is 1 + N1/2

lnr , so the average complexity of Steps 3-6 is
t̂
(
1 +N1/2

lnr
)
. The complexity of Steps 7-8 is very small, so it can be omitted. The

ranking done in Steps 9-10 has complexity
∑t̂

i=1 |P∗i | = t̂
(

1 + ρt̂N1/2
lnr
)

. The worst-

case complexities of Step 3-6 and 9-10 are always less than the complexity of Steps
1-2. As a whole, we can see the overall complexity of the attack is determined by Steps
1-2, which has an upper bound O(t̂(MH)p). For the default setting of the basic PAS
scheme and t̂ = 4, the complexity is O(t̂(MH)p) ≈ 220.7.

Recalling the size of the password space of the basic PAS scheme, i.e., len · (MH)p,
we can see the complexity of the probabilistic attack is always strictly smaller (although
not by too much) than that of the brute force attack since t̂ < len always holds. Note
that when t̂ = len one does not need to break the system, since all the predicate indices
have been used up and the password has already been renewed.

3.3.4 Experimental Results

Based on the theoretical analysis and the complexity estimate of the probabilistic
attack, we can see that the attack is feasible as long as (MH)pk is not too large
(between 270 to 280). This condition is satisfied for the default setting of the PAS
scheme. In fact, it has to be so, because all the parameters involved (especially p and
k) cannot be too large to ensure an acceptable level of usability.

We developed a MATLAB implementation of the basic PAS scheme with p = 2,
and tested the real performance of the proposed probabilistic attack. On a computer
equipped with a 2.4GHz Intel Core 2 Duo processor, and 2GB memory, one successful
attack with t̂ observed authentication sessions consumes only around 5t̂ seconds.

46 Security Analysis of PAS (Predicate-based Authentication Service)

Table 3.8: Success rate of finding the secret and estimated number of candidates.

t̂ 1 2 3 4 5 6 7 8 9 10
Success rate 0.012 0.035 0.071 0.13 0.24 0.41 0.60 0.76 0.86 0.94

Number of candidates 3.01 2.51 2.02 1.73 1.51 1.36 1.23 1.10 1.03 1.01

The statistical results of 1000 real attacks targeting the default setting of the ba-
sic PAS scheme are shown in Table 3.8. It turned out that the real performance is
worse than the theoretical analysis obtained in Section 3.3.2. We attribute this to
the deviation of real attacks from some of the theoretical assumptions we made in the
theoretical analysis in Section 3.3.2. For instance, we calculate the values in Table 3.6
by assuming E[|P∗i |] = 1 + ρt̂N1/2

lnr and L = t̂ρt̂N1/2
lnr , but in practice their values

vary in a wide range around the means. Despite the mismatch between Table 3.8 and
Table 3.6, we can see the success rate of breaking the secret cell-index pair and the
average number of candidates follow the same pattern as the data in Table 3.7. The
experimental data in Table 3.8 clearly show that with 7 observed authentication ses-
sions one can break the secret cell-index pair with probability greater than 50%. Even
with only two observed authentication sessions, the success rate is high enough (3.5%)
to threaten a considerable percentage of users. Recall that for sufficient security, we
require the success probability to be less than one in a million.

3.3.5 Consequences of the Probabilistic Attack

Note that it is impossible and unnecessary to break the whole password with the proba-
bilistic attack, since some secret characters will never occur until the last authentication
session. In fact, the main consequence of breaking the secret cell indices is the follow-
ing: the password becomes a set of len words {W ∗

j = w1[j] · · ·wp[j]}lenj=1, each of which
is used for exactly one authentication session. After all the len words {W ∗

j }lenj=1 are
used up, a new password (i.e., a new set of len words) have to be issued to the user.
Clearly, this means the PAS scheme now works essentially like a one-time password
(OTP) system, where each word W ∗

j is the OTP used for each authentication session
and expires immediately after being used.

The degradation of the PAS scheme to an OTP-like system has several conse-
quences. First, this fact disqualifies the PAS scheme as a better solution over common
OTP systems against the targeted passive adversaries. Second, the downgraded PAS
scheme is still a challenge-response protocol, which asks the user to go through the
same process as in the original PAS scheme. In comparison, common OTP systems
are not based on a challenge-response structure2 and the user is simply asked to input

2Although we can define an OTP as a challenge-response protocol, where the challenge is the
prompt and the response is the password itself, what we essentially want to say here is that there is
no real computation done by the user in an OTP except for recalling and typing the password.

3.4 Conclusion 47

the dynamic password in an input box, so the usability is much better. Third, the
downgraded PAS scheme offers lower security against random guess attack. Recalling
our analysis given in Section 3.2.3, we can derive that the success rate of randomly
guessing the predicate (which is reduced to be the word W ∗

j) is:

1 · 1(
MH+k−1

k

)p +
1

2lnr
·
(
MH+k−1

k

)p − 1(
MH+k−1

k

)p =
1

2lnr
+

2lnr − 1

2lnr
(
MH+k−1

k

)p (3.5)

Comparing the above equation with Equation (3.1), we can see the success rate becomes
larger due to the lack of M in the denominator of the second term. For the default
setting of the PAS scheme, Equation (3.1) equals to 1

210
+ 210−1

210×(25×26)2
≈ 9.7893× 10−4,

but Equation (3.5) equals to 1
210

+ 210−1
210×262

≈ 2.4544× 10−3, nearly 2.5 times larger. To
maintain the same level of security against random guess attack, the parameter values
have to be increased accordingly, which will make usability even worse.

3.4 Conclusion

In this chapter, we have re-evaluated the security of the predicate-based authentica-
tion service (PAS) presented by Bai et al. [17]. PAS can be considered a human
identification protocol according to our definition of such protocols in Chapter 2. PAS
was designed such that it could be used for at least 10 observed authentication ses-
sions (with default parameter values). Although, this number is already lower, we
have shown that one can break the scheme with even fewer observed sessions. More
specifically, with 7 observed sessions there is a 50% chance of obtaining the secret, and
even with 2 observed sessions there is a 3.5% chance that the adversary can obtain
the secret. The PAS scheme is insecure against both brute force attack and a prob-
abilistic attack. Lack of security against brute force attack is due to the very small
size of the secret space. The probabilistic attack can break part of the password even
with a small number of observed authentication sessions, as already mentioned. The
breaking of part of the password downgrades the PAS scheme to a one-time password
(OTP) like system, thus nullifying its main advantages over common OTP systems.
It is possible to enhance security of the PAS scheme by increasing the values of some
parameters, unfortunately, which will definitely decrease the usability and make the
system not useful as a practical solution.

This chapter demonstrates that without carefully analysing the underlying mathe-
matical structure, a human identification protocol might succumb to simple yet innova-
tive attacks, even if it is designed to be secure for a handful of authentication sessions.
Perhaps the reason why much of the original analysis by Bai et al. [17] was inaccurate
is because PAS does not seem to be based on a clearly defined underlying mathematical
problem. Without such mathematical structure, it is not easy to comprehensively anal-
yse the protocol’s security. It is more desirable, then, to construct protocols that are
constructed from some clearly defined mathematical problem, since then the security
can be thoroughly analysed against the (conjectured) hardness of solving the problem.
The next chapter discusses the security of a protocol from Sobrado and Birget [9, 21]

48 Security Analysis of PAS (Predicate-based Authentication Service)

based on an apparently hard to solve geometric problem. At first glance, it appears
that the protocol might resist all forms of intersection attacks. But as we shall see, due
to the structure of the geometric problem, information about the secret is leaked, and
part of the secret can be revealed after a handful of observed identification sessions.

4
Security Analysis of CHC (Convex Hull

Click)

Sobrado and Birget recently proposed a convex hull based human identification protocol
[21], whose steps can be performed by humans without additional aid. The main part
of the protocol involves the user mentally forming a convex hull of secret icons in
a set of graphical icons and then clicking randomly within this convex hull. While
some rudimentary security issues of this protocol have been discussed, a comprehensive
security analysis has been lacking. In this chapter we analyze the security of this convex
hull based protocol. In particular, we show two probabilistic attacks which reveal
the user’s secret after the observation of only a handful of authentication sessions.
These attacks can be efficiently implemented as their time and space complexities are
considerably less than the brute force attack. We show that while the first attack can
be mitigated through appropriately chosen values of system parameters, the second
attack succeeds with a non-negligible probability even with large system parameter
values which make the protcol unusable.

In [9] Wiedenbeck et al. gave a detailed description of the protocol from [21], with
a usability analysis employing human participants. Since the work reported in [9] is
more comprehensive, we will adhere to the protocol described therein for our security
analysis in this chapter. Following the term used in [9], we call the protocol Convex
Hull Click or CHC in short. The protocol can be roughly described as follows: in the
setup phase, the user and the server share a subset of graphical icons as a secret. As in
all human identification protocols, the setup phase is assumed to take place in a secure
setting, outside the reach of any adversaries. In an identification session, the server
shows a screen of randomly placed graphical icons. The user mentally forms a convex
hull of the secret graphical icons and then clicks a random point inside this convex
hull.

This chapter is organized as follows. In Section 4.1, we give a detailed account

49

50 Security Analysis of CHC (Convex Hull Click)

P7
P6

P5

P3

P2

P4

P1

Figure 4.1: The convex hull of a set of points Π.

of the protocol. Section 4.2 describes first of the two attacks. We digress in Section
4.3 to explore the geometric structure of convex hulls in an attempt to estimate the
information leakage of the secret once a challenge-response pair has been observed.
Section 4.4 describes, in detail, the main attack on CHC which is followed by concluding
remarks in the last section.

4.1 The CHC Human Identification Protocol

We begin with the definitions of polygons and convex hulls [36].

Definition 5 (Polygon). A polygon is a piece-wise linear, closed curve in a plane.
The straight line segments forming the closed curve are called the sides of the polygon.
A point joining two consecutive sides is called a vertex. A polygon is simple if it does
not cross itself.

Definition 6 (Interior, Exterior and Boundary). The set of points in the plane that
lie outside a simple polygon is called its exterior; the set of points lying on the polygon
form its boundary and the set of points inside the boundary of the polygon is called its
interior. If a point P lies on the boundary or in the interior of a polygon, we say that
the polygon contains P or P is contained in the polygon.

Definition 7 (Convex Polygon). A simple polygon is convex if all points on the line
segment joining any two points in its boundary or interior are contained in the polygon.

Definition 8 (Convex Hull). The convex hull of a set of points Π, is the smallest
convex polygon for which every point in Π is contained in the polygon.

Figure 4.1 shows the convex hull of the set of points Π = {P1, P2, . . . , P7}. We
shall denote the convex hull of a set of points Π by ch(Π). We denote the membership
relation “contains” by ∈. For instance, in Figure 4.1, Pi ∈ ch(Π), for 1 ≤ i ≤ 7.
The convex hull of 3 points is a triangle. Hence, we will use the terms convex hull
and triangle interchangeably for the case of 3 points. We describe the CHC human
identification protocol next.

4.1 The CHC Human Identification Protocol 51

4.1.1 The Protocol

In the CHC human identification protocol, initially, H and C choose k graphical icons
from a set of n. These k icons constitute the shared secret between the two parties.
As an example, k can be 5 and n can be 100. This is called the setup phase. When H
wants to prove his identity to C, the following protocol is carried out.

Protocol: Convex Hull Click (CHC).

Setup: H and C share a set of k graphical icons out of n as a secret.
1: C randomly samples a set of m graphical icons out of n. Here, m is a random

positive integer between n and some lower bound mmin. C ensures that at least
3 of the k secret icons are included in these m graphical icons. These icons are
distributed randomly on the screen of the user’s computer terminal within a
rectangular frame and aligned in a grid.

2: H mentally computes the convex hull of any 3 secret icons displayed on the
screen and randomly clicks a point contained in this convex hull. H does not
need to click on the icons themselves. H can click anywhere on the screen in
the interior or boundary of this convex hull. Notice that this is equivalent to
clicking on the convex hull of all the secret icons present in the screen.

3: C repeats the process a certain number of times and accepts or rejects H if all
replies are correct.

1For the ease of analysis, we make some assumptions as follows.

• Instead of choosing m randomly each time, we assume it to be fixed. In fact,
we will later see that once n and k are fixed, we do not have much freedom in
choosing m, if a certain attack is to be avoided.

• We replace graphical icons by non-negative integer lattice points on a real plane,
enclosed within a rectangular area. The lattice points are identified by a unique
integer label from the set {1, 2, . . . , n}. Notice that, graphical icons are displayed
for the ease of humans. Thus, from an analytical point of view, the two repre-
sentations are equivalent. Throughout this text, we will use the terms, icons and
labels, interchangeably.

• One round of the protocol will thus constitute the positive quadrant of the real
plane. The m graphical icons are replaced by randomly placed integer lattice
points on this quadrant, each one having a unique label. The user’s set of secret
icons is thus also a set of integer labels; see Figure 4.2. We shall call the area
enclosed in the rectangle as the rectangular lattice area or simply the rectangle.

1There can be a slight difference in the real setting when it comes to clicking on the boundary
of a geometric object. It is arguably hard for a user to click on the boundary of convex hulls with
accuracy. It is easy to see that a convex hull of more than 3 secret icons contains the convex hull of

52 Security Analysis of CHC (Convex Hull Click)

O(0, 0)
2 4 5 1

3 7 6 9

8 12 14

10 13

15

29

30

281123 22

26

20

18

21

17

×

x

y

Figure 4.2: One iteration of the Convex Hull Click protocol.

Example 1. Suppose n = 30 and m = 25. Further, suppose k = 4, and H and C share
the secret {7, 15, 27, 30}. Figure 4.2 shows one iteration of the protocol. Since the
challenge only contains 7, 15 and 30 from the set of secret labels, H forms the convex
hull of the points corresponding to these labels and outputs a random point contained
in this convex hull. This point is depicted by the symbol × in the figure. Note that this
point is not necessarily a point on the lattice. We can consider this to be a point in the
real plane. That is, it belongs to R2.

4.1.2 Mitigating Random Guesses

Recalling our description of challenge-response protocols, the challenge in the CHC
protocol is a screen full of graphical icons (or labels) and the corresponding response is
a point P ∈ R2. The number of challenge-response pairs in an authentication session
is chosen such that the probability of the adversary A impersonating H with random
clicks is very small (random guess attack). We denote this fixed number by r0 (the
number of rounds or iterations of the CHC protocol). For example, Wiedenbeck et al.
used r0 = 10 [9, §6, pp. 183]. They also mentioned that the implementation of their
protocol ensures that convex hulls of secret icons occupying more than half the screen
are rare [9, §3, pp. 180].2 Thus, we can assume that the average probability of success

any 3 secret icons. Therefore, the boundary points of the latter convex hull might be in the interior
of the former. Thus, these boundary points will be easier for the user to click in the former case. To
simplify our analysis in this paper, we ignore the difference between the two settings.

2If the challenge is generated as mentioned in the protocol description, then there is a chance that
the probability that a random click is contained in the convex hull of secret icons is greater than 1/2.
However, through our experimental results, we found that for the values of system parameters used

4.2 Attack 1: Difference in Distributions 53

of A in impersonating H, through random clicks, is less than (1
2
)r0 .

4.2 Attack 1: Difference in Distributions

Our first observation is that C has to ensure that at least 3 out of k secret labels are
displayed on the screen. There is no such restriction on the non-secret labels. Naturally,
this may lead to two different probabilities for the secret and non-secret labels. The
probabilities depend on how the random challenges are generated. There are several
possible ways to generate random challenges. To simplify our discussion, in this paper
we consider the following approach: first generate a random number l ∈ {3, . . . , k},
then randomly select l secret labels and m− l non-secret labels to form the challenge.
Note that this approach was also the one adopted in the implementation from [9].

We now calculate the probability of generating a secret label and compare it with
the probability of generating a non-secret label. Let N denote the set of all labels and
let K denote the set of secret labels. Thus, |N | = n and |K| = k. Let K denote the set
of non-secret labels. Thus, K ∪K = N . We assume that the adversary A has observed
r ≥ 1 challenges sent from C to H. For each of these challenges, we denote the set of
secret labels appearing in the challenge by Kj and the set of non-secret labels by Kj,
for 1 ≤ j ≤ r. Notice that |Kj ∪ Kj| = m for all j. In this attack, we do not even
require the responses to these challenges. For 1 ≤ i ≤ n and 1 ≤ j ≤ r, define the
following indicator random variables:

Si,j =

{
1 if label i appears in challenge j
0 otherwise

Then, for any i ∈ K and any j ∈ {1, . . . , r}, we have:

Pr [Si,j = 1, i ∈ K] =
∑k

l=3
Pr
[
Si,j = 1

∣∣|Kj| = l
]

Pr [|Kj| = l]

=
3

k

1

k − 2
+

4

k

1

k − 2
+ · · ·+ k

k

1

k − 2

=
1

k (k − 2)

(
k (k + 1)

2
− 3

)
(4.1)

And for any i ∈ K, we have:

Pr
[
Si,j = 1, i ∈ K

]
=

∑k

l=3
Pr
[
Si,j = 1

∣∣|Kj| = l
]

Pr
[
|Kj| = l

]
=

m− 3

n− k
1

k − 2
+
m− 4

n− k
1

k − 2
+ · · ·+ m− k

n− k
1

k − 2

=
1

k − 2

1

n− k
(m− 3 +m− 4 + · · ·+m− k)

=
1

k − 2

1

n− k

(
m (k − 2)− k (k + 1)

2
+ 3

)
(4.2)

in this paper, the probability is less than 1/2. Thus, we do not require any modifications to ensure
that this probability is less than 1/2.

54 Security Analysis of CHC (Convex Hull Click)

Now, let S
(r)
i denote the number of times label i appears in r challenges. Then:

E[S
(r)
i] =

∑r

j=1
E [Si,j]

Thus, for i ∈ K, we have:

E[S
(r)
i , i ∈ K] = rPr [Si,j = 1, i ∈ K]

And for i ∈ K, we get:

E[S
(r)
i , i ∈ K] = rPr

[
Si,j = 1, i ∈ K

]
Thus, the two expected values will be different, provided the two probabilities in Equa-
tions (4.1) and (4.2) are different. For instance, when n = 112,m = 70, k = 5 and
r = 100, we get:

E[S
(r)
i , i ∈ K] = (100)(0.8) = 80

and:

E[S
(r)
i , i ∈ K] = (100)(0.6168) = 61.68

Hence, in 100 randomly generated challenges, we expect the secret labels to appear
around 80 times each and the non-secret labels to appear around 62 times each. This
observation immediately leads to the following probabilistic attack.

Attack: Attack 1.

Input: r challenges.
Output: k labels.

1: Count the number of times each label appears in the r challenges.
2: Output the top k most frequently occuring labels.

The above algorithm has a high success rate provided the two aforementioned prob-
abilities differ considerably. We ran simulations for two different sets of system param-
eter values and the results are shown in the first two rows of Table 4.1. For each set of
values, a total number of 1000 simulated attacks were performed. As can be seen, the
algorithm, on average, outputs almost all the secret labels even with only 100 given
challenges. And, in both sets of values, the probability of obtaining all k secret labels
as the output of Attack 1 is higher than 0.5. Since each identification session contains
r0 = 10 challenges, this implies only 10 identification sessions. The set of labels thus
obtained can be verified against a few responses corresponding to these challenges.
Once the secret labels are obtained, it is trivial for A to impersonate H. To avoid this
attack, the two probabilities should be equal. This gives the following lemma:

Lemma 1. If Pr [Si,j = 1, i ∈ K] = Pr
[
Si,j = 1, i ∈ K

]
for j ∈ [1, r], then n = 2km

k+3
.

4.2 Attack 1: Difference in Distributions 55

Table 4.1: Simulation results for Attack 1.

n m k r
Average Number of Probability of Finding

Secret Labels all k Secret Labels

112 70 5 100 4.6 0.622
500 200 12 100 11.4 0.554
112 90 5 100 0.1 0.000
500 313 12 100 0.2 0.000

Proof. From Equations (4.1) and (4.2), we get:

1

k − 2

1

n− k

(
m (k − 2)− k (k + 1)

2
+ 3

)
=

1

k (k − 2)

(
k (k + 1)

2
− 3

)
⇒ 1

n− k

(
m (k − 2)− k (k + 1)

2
+ 3

)
=

1

k

(
k (k + 1)

2
− 3

)
⇒ km (k − 2)− k2 (k + 1)

2
+ 3k =

nk (k + 1)

2
− 3n− k2 (k + 1)

2
+ 3k

This implies that:

km (k − 2) =
nk (k + 1)

2
− 3n

⇒ 2km (k − 2) = nk2 + nk − 6n

⇒ 2km (k − 2) = n
(
k2 + k − 6

)
⇒ 2km (k − 2) = n (k + 3) (k − 2)

⇒ 2km

k + 3
= n

The last two rows of Table 4.1 show the results of the simulations with the value
of m calculated according to Lemma 1. The results are what we expect if m out of n
objects are sampled at random. Thus, this fix prevents this type of attack. Notice that,
if the value of m is chosen according to the equation in Lemma 1, the probability of any
label appearing in a challenge is m/n. That is, all labels are equally likely to appear in
a challenge. This can be verified by direct substitution. Of course the above formula
does not always give an integral solution. In that case, the nearest integer value of n
or m can be chosen. The resulting probability difference would be statistically small,
requiring a huge number of challenges to differentiate. Alternatively, we can only look
for integral solutions to the equation, for instance n = 120,m = 90 and k = 6. In this
case, Attack 1 will not work no matter how many challenges are observed.

56 Security Analysis of CHC (Convex Hull Click)

Readjusted values of Parameters.

Wiedenbeck et al. used the values n = 112 and k = 5 for their user study. The value of
m was dynamic, ranging from 43 to 112 giving an average value of 83 [9, §4.1, pp. 181].
In light of Lemma 1, for n = 112 and k = 5, we suggest m = 90 instead. It should be
noted that this only guarantees that the system will be secure against Attack 1, since
for such small values brute force attack is feasible. For high security, Wiedenbeck et
al. suggest n = 500, m = 200 and k = 12. However, for m = 200 and k = 12, the value
n = 320 should be used; and for n = 500 and k = 12, the value m = 312.5 ≈ 313 should
be chosen. This last value of m can become prohibitive, since it will most probably be
hard for an average human user to find secret icons among a pool of icons as large as
300. Thus, Lemma 1 limits the values of system parameters that can be used.

4.3 Number of Candidates Satisfying a Challenge-

Response Pair

Before we proceed to the description of our second attack, we would like to try to answer
the following question of theoretical interest: given one challenge-response pair, how
many convex hulls of three labels contain the response point P? For simplicity, we
assume the response point P to be in R2. As before, if P is contained in the convex
hull of the points in S, we denote it by P ∈ ch(S).

We see that each convex hull of three lattice points is a 3-combination of labels.
Also, only m out of a total of n labels occur in one challenge. Therefore the num-
ber of convex hulls of three labels that contain the point P is less than or equal to(
m
3

)
. We assume that all

(
m
3

)
possible 3-combinations of labels are enumerated and

let Γ1, . . . ,Γ(m3) denote these 3-combinations. Thus each 3-combination is a set of 3

labels. We define the indicator random variable corresponding to Γi by Ci, which is 1
if P ∈ ch(Γi). Let C = {Γi|P ∈ ch(Γi), 1 ≤ i ≤

(
m
3

)
}. Then, we have that:

E
[
|C|
∣∣P] =

∑(m3)

i=1
E [Ci|P]

And,

E [|C|] =

∫
R

E
[
|C|
∣∣P] fP (P) dP =

∫
R

(∑(m3)

i=1
E [Ci|P]

)
fP (P) dP

where R denotes the rectangle and fP (P) is the probability density function of the point
P . We assume that the bottom-left corner of the rectangle coincides with the origin of
the xy-coordinate system. Let (a, 0) and (0, b) be the coordinates of the bottom-right
and top-left corners of the rectangle, respectively. The area of the rectangle is therefore
ab. If we assume P to be uniformly distributed over the rectangle, we get:

E [|C|] =
1

ab

∫
R

(∑(m3)

i=1
E [Ci|P]

)
dP =

1

ab

∑(m3)

i=1
Ai

4.3 Number of Candidates Satisfying a Challenge-Response Pair 57

where Ai is the area of ch(Γi). Now, let γ be the fraction of the number of convex hulls
containing the point P . Then, it can be obtained as:

γ =
E [|C|](

m
3

)
There are two things wrong with this approach. First, the bounding rectangle is chosen
such that the number of lattice points it can accomodate is considerably higher than
m. Thus (a + 1)(b + 1) > m. This means that the placement of m labels will be
different in different challenges, thus giving a different value of γ each time. This
feature is included in the CHC protocol to enable humans to conveniently locate the
secret icons. Secondly, and more importantly, the distribution of P is not uniform
over the rectangle. This is true even if we assume the user to select a point uniformly
at random, contained in the convex hull of the secret labels; the points around the
boundary of the rectangle have a much lower probability of being chosen, as they are
contained in the least number of convex hulls. Figure 4.3 shows the distribution of the
point P in a simulation of 10, 000 challenges. We chose the parameters: n = m = 16,
a = 3, b = 3 and k = 3. The point P is generated as a uniform random point contained
in the convex hull of any three secret labels. We used Turk’s method to compute a
random point within a triangle [37] (see Appendix A.1). As the figure shows, the

0 1 2 3

1

2

3

a

b

Figure 4.3: The distribution of P .

density is lower along the boundaries as compared to the center. For these reasons, we
use an experimental approach to find the value of γ. We ran the following algorithm
to find an approximate value of γ. We randomly select k out of n labels as a secret to
calculate the value of γ.

58 Security Analysis of CHC (Convex Hull Click)

Table 4.2: Values of γ.

Runs t n m k a b Average γ

10 100 112 90 5 13 13 0.1460
5 100 160 100 12 13 13 0.1479

Algorithm: Find γ.

Input: Parameters n, m, a, b and k; k secret labels and a precision value t (say
= 100).

Output: Approximate value of γ.
1: for i = 1 to t do
2: Generate a random challenge as in the convex hull protocol.
3: Form a convex hull of any 3 secret labels.
4: Sample a random point P contained in this convex hull.
5: Initialize C ← 0.
6: for all 1 ≤ j ≤

(
m
3

)
do

7: check whether the point P is contained in ch(Γj). If yes, increment C
by 1.

8: γi ← C/
(
m
3

)
.

9: Output γ = 1
t

∑t
i=1 γi.

Table 4.2 shows the values obtained for γ for two different sets of parameters. This
gives us the result that with these parameter values, we expect approximately 15 per-
cent of the convex hulls of 3 labels in a challenge-response pair to contain the response
point. The 3-combinations making up these convex hulls are possible candidates for
the secret 3-combination. While the average is around 0.15 for these choices of pa-
rameters, there was substantial deviation found in individual values with some values
being as low as ≈ 0.016 and some being as high as ≈ 0.25. This is largely because
different challenges have different sizes of convex hulls. As a result, in order to get
accurate results, we compute the value of γ for each challenge-response pair separately.
Thus γ1, γ2, . . ., will now denote the values of γ for challenge-response pairs 1, 2, . . .,
respectively.

4.4 Attack 2

One attack mentioned by the authors in [9] is to find all k-combinations of the set of
n labels whose convex hull does not satisfy a challenge-response pair (does not contain
the response point). Initially, the list contains all k-combinations of n labels. After
the observation of each challenge-response pair, the k-combinations of labels, whose
convex hull does not contain the response point, are discarded from the list. The sole

4.4 Attack 2 59

remaining k-combination is then the k secret labels of H. The attack’s time and space
complexity is O(

(
n
k

)
). Thus, with the values of n = 320, m = 200 and k = 12, the time

and space complexity of this attack is roughly 270, which can be intractable especially
in terms of memory resources.

We notice that the user only has to form a convex hull of 3 labels. Thus, in
theory, there could possibly be an attack of complexity O(

(
m
3

)
). Our second attack

runs within this bound and outputs one of the k secret labels with high probability.
The basic idea of the attack is as follows. We first find all candidate 3-combinations,
i.e., all 3-combinations of labels whose convex hull contains the point P corresponding
to a challenge-response pair. Next, we construct a frequency list that maintains the
record of the number of candidate 3-combinations in which each label appears. We
update the frequency list by including more challenge-response pairs and seeing if the
candidate 3-combinations also satisfy these challenge-response pairs. Finally, the label
that appears with the highest frequency is the output of the attack. Section 4.4.3
explains in detail why the output is one of the secret labels with high probability.
Once one or more secret labels are obtained, the adversary can impersonate H. Notice
that this can be done even with less than k secret labels. Section 4.4.4 describes how
this is achieved. Note that human users tend to remember multiple icons with some
hints. It is quite likely that they will select all secret icons that belong to the same
category, e.g., icons of software or national flags. In this case, revealing part of the
secret will lead to a better guess of the whole set of secret icons.

4.4.1 The Attack

We now describe the attack formally, and do a preliminary analysis followed by a
detailed description of why the attack works. As before, we assume that all

(
m
3

)
possible 3-combinations of labels are enumerated and let Γ1, . . . ,Γ(m3) denote these

3-combinations. Thus, each 3-combination is a set of 3 labels.

Attack 2.

Input: r challenge-response pairs with response points P1, . . . , Pr, respectively, and
a threshold τ .

Output: Label(s) with maximum frequency.
1: Test Set. Initialize C ← φ. For 1 ≤ i ≤

(
m
3

)
, if P1 ∈ ch(Γi), then C ← C∪{Γi}.

2: Frequency List. For each Γ ∈ C, initialize freq(Γ)← 1.
3: for i = 2 to r do
4: For each Γ ∈ C, if Pi ∈ ch(Γ), then freq(Γ)← freq(Γ) + 1.
5: Thresholded Subset. C(τ) ← {Γ ∈ C|freq(Γ) > τ}.
6: Frequency of labels. for each distinct label l in C(τ) compute:

freq(l)←
∑

Γ∈C(τ)|l∈Γ

freq(Γ)

60 Security Analysis of CHC (Convex Hull Click)

7: output all labels l′ such that freq(l′) = max
l∈C(τ)

{freq(l)}.

The time complexity of the above attack is O(
(
m
3

)
) or O(m3). The space complexity

is O(γ
(
m
3

)
). Continuing with our theoretical treatment in the previous section, we

would like to first analyze the expected sizes of the frequency lists before we detail the
simulation results of Attack 2 and the reasons for its high success probability.

Let F (i) =
∑

Γ∈C freq(Γ), denote the cumulative frequency after the ith challenge-
response pair. We have seen earlier that:

E[F (1)] = E[|C|] = γ1

(
m

3

)
That is, the expected size of the Test Set is as above. Also, let:

L(i) =
∑

Γ∈C|l∈Γ

freq(Γ)

denote the frequency of a label after the ith challenge-response pair. For L(1), we see
that each label can occur with

(
m−1

2

)
combinations of the remaining labels. Assum-

ing all these combinations to be uniformly distributed, each combination will have a
probability γ1 of being in C. Thus:

E[L(1)] = γ1

(
m− 1

2

)
The above two results can also be obtained differently. Consider the indicator random
variable Yi,j which is 1 if Pi ∈ ch(Γj). Also, let Xi,j be the indicator random variable
which is 1 if Γj exists in challenge i (Since m ≤ n, the jth combination might not even
exist in challenge i). Then, we can see that:

E [Y1,j] = Pr [Y1,j = 1] = Pr [Y1,j = 1|X1,j = 1] Pr [X1,j = 1]

+ Pr [Y1,j = 1|X1,j = 0] Pr [X1,j = 0]

= Pr [Y1,j = 1|X1,j = 1]
m

n

m− 1

n− 1

m− 2

n− 2
= γ1

m

n

m− 1

n− 1

m− 2

n− 2

= γ1

(
m
3

)(
n
3

)
The above result is true since we are assuming that m is chosen according to Lemma
1. From this, it follows that:

E[F (1)] = E[
∑(n3)

j=1
Yi,1] =

∑(n3)

j=1
E [Yi,1] =

(
n

3

)
γ1

(
m
3

)(
n
3

) = γ1

(
m

3

)

4.4 Attack 2 61

Table 4.3: Expected and actual values of the number of combinations and labels.

Simulation Number of labels Number of combinations Secrets
Actual Theoretical Actual Theoretical

1 2815.20 2843.80 84457.00 85315.00 3245.00
2 2101.30 2047.80 63040.00 61434.00 2646.00
3 1156.20 1076.50 34687.00 32295.00 2705.30
4 1073.40 1028.90 32201.00 30867.00 2279.00
5 1327.20 1273.70 39816.00 38210.00 2845.70
6 2466.20 2525.00 73985.00 75751.00 2801.00
7 1885.20 1893.10 56555.00 56794.00 3241.70
8 1892.10 1934.70 56764.00 58042.00 2900.70
9 917.57 930.42 27527.00 27913.00 2147.70
10 2539.20 2534.80 76175.00 76044.00 3483.70

Average 1817.36 1808.87 54520.70 54266.50 2829.58

Which is the same as the result obtained above. Now, since each combination contains
3 labels and we assume all the labels to be uniformly distributed over the combinations,
we get that:

E[L(1)] =
3

m
γ1

(
m

3

)
= γ1

(
m− 1

2

)
We now attempt to find the expected number of Γ’s in C such that Pi ∈ ch(Γ), when
i > 1. We have:

E[
∑(n3)

j=1
Y1,jYi,j] =

∑(n3)

j=1
E [Y1,j]E [Yi,j]

=

(
n

3

)
γ1γi

(
m
3

)2(
n
3

)2 = γ1γi

(
m
3

)2(
n
3

)
So, after r challenge-response pairs, we have that:

E[F (r)] = γ1

(
m

3

)
+ γ1γ2

(
m
3

)2(
n
3

) + · · ·+ γ1γr

(
m
3

)2(
n
3

)
= γ1

(
m

3

)(
1 +

(
m
3

)(
n
3

) ∑r

i=2
γi

)
And:

E[L(r)] =
3

m
E[F (r)] =

3

m
γ1

(
m

3

)(
1 +

(
m
3

)(
n
3

) ∑r

i=2
γi

)
Thus, if we run the attack on a set of r challenge-response pairs, we would expect the
number of times each combination and each label to appear according to the above

62 Security Analysis of CHC (Convex Hull Click)

equations. We ran a simulation to compare the theoretical expected values against
actual mean values. The simulation was run with the following parameters: n = 112,
m = 90, k = 5 and r = 21. Table 4.3 shows the results. As can be seen, the theoretical
values match well with the experimental results. For each challenge-response pair i,
let Si denote the set of 3 secret labels used by the user to form a convex hull. The last
column in the table shows the average of the frequency of occurence of each label in
S1 (corresponding to the Test Set), after 21 challenge-response pairs. Notice that this
value is always higher than the average for all labels. By the pigeonhole principle, this
means that at least one of the secret labels occurs with a frequency higher than the
expected frequency for all labels. This is the motivation behind Attack 2. Since, at
least one of the secret labels appears with a frequency higher than the average, there
is a non-trivial chance that it will occur with the highest frequency as the output of
Attack 2. We give the simulation results for Attack 2 next, following which we attempt
to explain why at least one of the secret labels occurs with an above-average frequency.

4.4.2 Simulation Results for Attack 2

The simulation results for Attack 2 are shown in Table 4.4. The column labeled “pairs”
shows the number of challenge-response pairs used. The column labeled “Secret Ap-
peared” shows the number of times one of the secret labels is the output of Attack 2,
in 100 runs. Thus, this corresponds to the probability of success of Attack 2. As can
be seen, with a non-trivial probability at least one of the secret labels appears with
the highest frequency, i.e., the output of Attack 2. The value of τ , or the threshold, is
chosen such that the size of C(τ) is at least 50. There is no particular reason for this
choice of τ , except to ensure that the size of C(τ) is reasonably large. As τ is dynamic
over different runs, only its average value is shown.

In all the simulation runs the bounding rectangle had end coordinates:

(0, 0), (13, 0), (0, 13), (13, 13)

We used Turk’s method to compute a random point within a triangle [37] (See Appendix
A.1 for Turk’s algorithm). Our simulation results suggest that increasing k makes the
probability of success lower. However, the probability is still higher than k/n, the
success probability of random guess, which is 0.0446 when n = 112 and k = 5, and
0.075 when n = 160 and k = 12. It should be noted that increasing k does not
increase the time and space complexity of Attack 2, which is always O(

(
m
3

)
), although

it does affect the probability of success. Our experimental results also indicate that the
success probability increases with more challenge-response pairs. Thus, the probability
of success of Attack 2 is a function of n, m, k and r.

4.4.3 Why does Attack 2 Work

In this section, we give a qualitative explanation for the success of Attack 2. That is,
we explain why one of the secret label appearing in C has the highest frequency with
high probability. We show this in two steps. First, we show that relative to any point

4.4 Attack 2 63

Table 4.4: Output of Attack 2.

Simulation Number n m k pairs Secret Appeared Average Threshold

1 112 90 5 20 64/100 = 0.64 6.4
2 30 76/100 = 0.76 7.8
3 50 88/100 = 0.88 10.9
4 160 100 12 20 35/100 = 0.35 4.8
5 30 40/100 = 0.40 5.6
6 50 48/100 = 0.48 7.2

P clicked by the user, there are regions in the rectangle where labels of lattice points
have low and high frequencies. Secondly, we reason that the secret labels have a higher
probability of being in the high frequency region as compared to non-secret labels.

We assume that the rectangle has coordinates (0, 0), (a, 0), (0, b) and (a, b) for some
positive integers a and b. For simplicity, we assume that (a + 1)(b + 1) = m. That is,
the number of possible lattice points that can be contained in the rectangle is exactly
m. Assume that we are given a response point P ∈ R2. Let C = {Γi|P ∈ ch(Γi), 1 ≤
i ≤

(
m
3

)
}. Also, for a label l, define:

freq(l) =
∑

Γ∈C|l∈Γ

freq(Γ)

For a lattice point I in the rectangle, let lab(I) denote the label of I. Of interest is the
question that which region of the rectangle, relative to P , contains the lattice points
whose labels have higher values of freq(.).

Abusing notation, we shall denote freq(lab(I)) by freq(I), when considering a generic
label. We can see that freq(I) ≤

(
m−1

2

)
. And it is not hard to see that if I = P , then

freq(I) =
(
m−1

2

)
. We now consider the case when P 6= I. Consider the line segment

IP . Extend this line segment in both directions such that it intersects the boundaries
of the rectangle at points R1 and R2 as shown in Figure 4.4. If any lattice point
lies on the line segment PR2, then all its 3-combinations with I will be in C. We
next consider the case when no lattice point except I, lies on the line R1R2. R1R2

thus divides the rectangle into 2 partitions. Denote the set of lattice points in these
two partitions by Π1 and Π2. Thus, |Π1| + |Π2| = m − 1. Now consider two lattice
points I1, I2 both different from I. A necessary condition for the triangle ∆II1I2 to
contain the point P , is for I1 and I2 to be in different partitions.3 Thus, in this case,
freq(I) ≤ |Π1||Π2|. We wish to find when this product produces the maximum value.
We know that |Π1| = m− 1− |Π2|. Thus:

|Π1||Π2| = (m− 1− |Π2|)|Π2|
3For suppose that is not the case and both I1 and I2 are in Π1, then all the sides of the triangle

∆II1I2 never intersect the line segment IP , except at point I. Hence, the point P cannot be contained
in the triangle unless I = P . But we have already assumed that not to be true.

64 Security Analysis of CHC (Convex Hull Click)

O(0, 0)

×

x

y

P

R2

I

R1

Π1

Π2

Figure 4.4: The 2 partitions Π1 and Π2.

Differentiating the right hand side with respect to |Π2| and equating it to 0, we see
that the above product has a maximum value when |Π2| = (m − 1)/2. This implies
that |Π1| = (m− 1)/2. Thus, the product above will be maximised if the 2 partitions
are equal.

However, not all the pairs in Π1 ×Π2 will form a convex hull with I containing P .
Consider the points I1 ∈ Π1 and I2 ∈ Π2. The triangle ∆II1I2 will contain the point
P , if the side I1I2 intersects the segment PR2. Similarly, if I1I2 intersects R1I or IP
(except at the point P), then the corresponding triangle with I does not contain the
point P . Thus, the longer the segment PR2, the higher will be the number of pairs
from Π1 × Π2 intersecting it. This gives us the following result:

freq(I) will be maximised if: (1) the line R1R2 divides the rectangle into
two partitions with an almost equal number of lattice points, (2) the length
of the line segment PR2 is close to the length of R1R2.

These two observations give us the following informal result:

Result 1. Let P ∈ R2. Draw a line R1R2 that intersects P and divides the rectangular
lattice area into 2 partitions such that the two contain an almost equal number of lattice
points. Suppose R1P is shorter than R2P . Then the labels of the lattice points around
the vicinity of R1P will have higher values of freq(.). Furthermore, the labels of the
lattice points around the vicinity of R2P will have lower values of freq(.).

The terms “almost” and “vicinity” used in the above result hold their natural
meanings and we do not attempt to rigorously define them. We call the region around

4.4 Attack 2 65

O(0, 0)

×

x

y

P

R1

R2

High Frequency Region

Low Frequency Region

Figure 4.5: The high and low frequency regions.

the shorter line segment, R1P , the high frequency region, and the region around the
longer line segment PR2, the low frequency region. Sandwitched between these two
will be the region containing the lattice points whose labels have mid-range values of
freq(.). Figure 4.5 illustrates this result. We insist that the boundaries of these regions
are fuzzy. This analysis is correct except for some degenerate cases; such as when P
is at the center of the rectangle. This is not covered by the above result, because
R1P < R2P is a necessary condition, which does not hold if P is at the center of the
rectangle. In this case, there is an infinite number of ways to partition the rectangle
into equal areas. However, apart from these exceptions, we expect the behavior to be
similar most of the time. The following theorem proves that given any point P , not at
the center of the rectangle, there is always a unique way to partition the rectangle into
two equal areas by a line through P and the center of the rectangle.

Theorem 1. Let R be a rectangle in the xy-plane of real numbers, with vertices (0, 0),
(a, 0), (0, b) and (a, b). Let C(a/2, b/2) be the center of the rectangle R. Let P ∈ R2 be
a point contained in this rectangle with coordinates (xP , yP). Suppose P 6= C. Then,
the line PC is the unique line that divides R into two polygons of equal areas.

Proof. Any line through C divides the rectangle into equal areas. Therefore, given a
point P , the line PC will divide the rectangle into equal areas. Now, suppose there
is another line L, that goes through P and not through C and divides the rectangle
into two polygons of equal areas. Consider the line L′ that is parallel to L and goes
through point C. Thus L′ also divides the rectangle into two polygons of equal areas.

66 Security Analysis of CHC (Convex Hull Click)

However, L′ is different from L since it does not go through P . But this implies that
one of the two polygons resulting from L is contained in one of the polygons resulting
from L′. This means that the area of the polygon is smaller than half. A contradiction.
Therefore, the line PC is the unique line dividing a rectangle into equal areas.

The equation of the line PC is given by:

y − yP
x− xP

=
b/2− yP
a/2− xP

⇒ (a/2− xP)(y − yP) = (x− xP)(b/2− yP)

⇒ (a− 2xP)(y − yP) = (x− xP)(b− 2yP)

⇒ ay − ayP − 2xPy + 2xPyP = bx− 2xyP − bxP + 2xPyP

⇒ (a− 2xP)y = (b− 2yP)x+ ayP − bxP
which holds if xP 6= a/2. If xP = a/2, then the equation of the line PC is y = a/2.

Theorem 1 allows us to construct the line partitioning the rectangle into two equal
parts through the point P . Figure 4.6 shows the line through the point P during a
simulation run. The parameters used were a = b = 9, n = 125, m = 100 and k = 5.
The triangle shown is the convex hull of the 3 secret labels chosen at random by the
user (simulated). As the figure illustrates, the lattice points with the highest values
of freq(.) are populated around the shorter line segment R1P and the lattice points
with the lowest values of freq(.) are populated around the longer line segment R2P .
Incidentally, the figure also shows one of the secret labels (label not shown) appearing
in the high frequency region. The white lattice point in the figure represents the secret
label appearing in the high frequency region. When m < (a+ 1)(b+ 1), there are some
“holes” in the rectangle, however the above results still give us a good approximation.

Equipped with this knowledge, we can finally give a reason for the success of Attack
2. Let S ∈ C be the 3-combination selected by the user to form the convex hull
containing P . Let the 3 secret labels in S be l1, l2 and l3. Since ch(S) is a triangle, at
least one of l1, l2 and l3 will be in the high frequency region with high probability. To
see why this is true, we see that the only way for this not to be true is for one element of
S to be in the low frequency region and the other two in the average frequency region.
But compared to all possible triangles, the number of such triangles is small. Thus
with high probability, at least one of the secrets will be in the high frequency region.
Suppose that point is l1. This means that freq(l1) will have a high value relative to
most labels. This in turn means that l1 will be in a high number of 3-combinations
in C. Since, the number of such 3-combinations is high, given r challenge-response
pairs, these 3-combinations will have a higher value of freq(.) with high probability,
which implies that the frequency of l1 will be high. It should be noted that l1 may not
appear in some challenges or it could be in the low frequency region in some challenges
(because one of the other two secret labels is in the high frequency region). However,
on average, a secret label always has a higher probability to be in the high frequency
region than a non-secret label. This makes the most frequent label a secret label with
high probability. This explains why Attack 2 is successful with high probability.

4.4 Attack 2 67

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

O(0, 0)

R1

P

R2

Figure 4.6: A simulation run showing the low and high frequency regions.

Improved Variant of Attack 2.

The above analysis gives us an interesting way to improve Attack 2. Given r challenge-
response pairs, we choose the pair as the Test Set, which has P closest to the boundary
of the rectangle. This will mean that with high probability, one of the secret labels
will be near the edge and hence will have a high value of freq(.). Our test results show
that indeed this increases the success probability of the attack. The results are shown
in Table 4.5. See in contrast the results obtained in Table 4.4. We call this variant of
Attack 2, the Chosen Test Set Attack.

4.4.4 Impersonation using Attack 2

Attack 2 (and its variant), outputs one of the secret labels with a non-negligible prob-
ability, say p(n,m, k, r) or p(m, k, r), since n is dependent on m and k. We abbreviate
this probability as p. One can run the attack multiple times to obtain the whole set
of secrets. But that requires in the order of kr challenge-response pairs. While this
number is not huge, the adversary can still impersonate H with high probability even
after observing fewer challenge-response pairs. We see that A does not need to find
all the k secrets in order to impersonate H. The impersonation process is described
below.

68 Security Analysis of CHC (Convex Hull Click)

Table 4.5: Output of the Chosen Test Set Attack.

Simulation Number n m k pairs Secret Appeared Sessions

1 112 90 5 20 77/100 = 0.77 10
2 30 83/100 = 0.83 14
3 50 95/100 = 0.95 20
4 160 100 12 20 50/100 = 0.50 77
5 30 67/100 = 0.67 86
6 50 78/100 = 0.78 123
7 320 200 12 20 46/100 = 0.46 83
8 30 46/100 = 0.46 125
9 50 59/100 = 0.59 163
10 357 200 25 20 35/100 = 0.35 330

Algorithm: Impersonate H.

Input: t sets of r challenge-response pairs.
Output: 1 if successful, 0 if unsuccessful.

1: Obtain Secrets. Run Chosen Test Set Attack on each set of r challenge-response
pairs, to obtain the set of labels L = {l1, l2, . . . , lt}.

2: Impersonate H. Initiate an identification session with C.
3: for each of the r0 challenges sent by C do
4: if only one label from L is in the challenge then
5: Click on the lattice point of that label.
6: else if two labels from L are in the challenge then
7: Randomly click any point on the line connecting the two corresponding

lattice points.
8: else if three or more labels from L are in the challenge then
9: Click a random point contained in the convex hull of the corresponding

lattice points.
10: else if no label from L is in the challenge then
11: Click a random point contained in the rectangle.
12: if C outputs accept, then output 1, else output 0.

The probability that “Impersonate H” outputs 1, depends in part on the success
probability of the Chosen Test Set Attack. This also suggests that once k − 2 secret
labels are obtained, they are enough to impersonate H with probability 1. This is true
since every challenge will contain at least one of the k − 2 secret labels, and then the
above impersonation process can be used to impersonate H.4 Thus, if k = 5, only 3

4There is a small probability that the attacker may fail, due to an inaccurate click. A human user
cannot always exactly click the center of an icon or on a line, which may render the clicked point out
of the convex hull.

4.4 Attack 2 69

secret labels are required, and if k = 12, only 10 secret labels are enough. Thus the
effective security of the protocol is k − 2 secret labels.

Even if the number of secret labels obtained is less than k − 2, impersonation can
still be successful with high probability. For instance, the probability that the t labels
in L are all distinct secret labels and the adversary is successful in impersonating H is:

k − 1

k

k − 2

k
· · · k − t+ 1

k

(
Pr[|L| = 0] · 1

2
+ (1− Pr[|L| = 0]) · 1

)r0
pt

=
pt

kt−1
(k − 1) · · · (k − t+ 1)

(
1− 1

2
Pr[|L| = 0]

)r0
=

pt

kt−1
(k − 1) · · · (k − t+ 1)

(
1− 1

2
(1− (m/n))t

)r0
=

(p
k

)t k!

(k − t)!

(
1− 1

2
(1− (m/n))t

)r0
(4.3)

when t < k − 2 and: (p
k

)t k!

(k − t)!
when t ≥ k−2. Here, we have assumed that the probability of success of a random click
is 1/2. In actual, it can be considerably less than 1/2. But that does not result in any
substantial change in the overall success probability of impersonation. Let us consider
the parameter values k = 5, n = 112 and m = 90, and assume that r0 = 10 and
r = 30. From Table 4.5, we get the approximate probability of success of the Chosen
Test Set Attack as p = 0.95. For these values, the above probability has the peak value
of 0.59 at t = 2. This implies that even after observing only tr/r0 = 6 identification
sessions, the adversary has a 60 percent chance of getting t = 2 distinct secret labels
and successfully impersonating H. For k = 12, n = 160, m = 100 and r = 50, we get
the approximate value of p = 0.78 from Table 4.5. These values give a peak probability
value of 0.27 at t = 3. This means only 15 observed identification sessions. Similarly,
for n = 320, m = 200, k = 12 and r = 50, we get the peak probability 0.15 at t = 2.
These probabilities are non-negligible. Notice that the probability of success through
random clicks is less than (1/2)10 ≈ 0.00098.

The output of t trials of Attack 2 can be modeled as following a binomial distri-
bution, where the probability that a secret label is the output is p. Since each secret
label is equally likely to be the output, we can assume that the probability of each
one being the output is p/k. Let X denote the number of trials required before k − 2
distinct labels are obtained, given that each trial is a success. Then [38, §7.2, p. 334]:

E[X] = 1 +
k

k − 1
+

k

k − 2
+ · · ·+ k

3

And since the trials are distributed binomially, we get:

tp = 1 +
k

k − 1
+

k

k − 2
+ · · ·+ k

3

⇒ t =
1

p

(
1 +

k

k − 1
+

k

k − 2
+ · · ·+ k

3

)

70 Security Analysis of CHC (Convex Hull Click)

Thus, the expression above gives the expected number of trials of Attack 2 required
to get k − 2 distinct labels. Each trial takes r challenge-response pairs and there are
r0 challenge-response pairs in each identification session. Thus, under Attack 2, the
protocol can only be used for rt/r0 sessions before the adversary has k − 2 secret
labels to impersonate H with probability 1. The last column in Table 4.5, under the
heading “Sessions”, shows the values of rt/r0 for the corresponding parameters, where
t is obtained from the expression above. These values should be seen with caution, as
they only give a rough estimate of the number of sessions a particular secret can be
used under the attacks mentioned in this paper. We again stress that the adversary
can still impersonate H with a non-negligible probability even with fewer sessions.

The weakness exploited in Attack 2 seems to be an inherent problem for convex
hull based protocols. Even if the user is asked to form a convex hull of more than 3
secret icons, the attack can still be applied. This is true since the point clicked by the
user will be contained in at least one of the possible 3-combinations of the secret icons.

4.4.5 Discussion

A shortcoming of the analysis in this chapter is the lack of an explicit expression for
p(m, k, r), i.e., the success probability of Attack 2 (or its variant). Unfortunately, there
does not seem to be a straightforward way of obtaining such an expression. Still, the
numerical values of p(m, k, r) obtained indicate that the protocol is insecure even for
system parameter values recommended by Wiedenbeck et al. for high security, such
as n = 320, m = 200 and k = 12. For example, there is approximately a 15 percent
chance that the adversary can impersonate a user after observing only 10 identification
sessions with these parameter values. By observing more sessions, the probability can
be improved. It is not clear whether Attack 2 can be modified to obtain secrets with
a number of challenge-response pairs less than kr. So far, we only know how to obtain
the complete set of secret icons by a sequential application of Attack 2.

To mitigate impersonation using Attack 2, we can increase r0. For instance, for
the aforementioned values and r0 = 20, the peak success probability of impersonation
is 0.09. However, increasing r0 increases the number of challenge-response pairs per
session. This in turn implies that the number of identification sessions observed, be-
fore the adversary can obtain the secrets, decreases. The usability of the system also
decreases with increasing r0. Another way is to increase k. This does not necessarily
imply an increase in identification time, since the user has to form a convex hull of
only 3 secret labels. The last row of Table 4.5 shows the probability of success of the
Chosen Test Set attack, when k = 25 and m = 200. While, the success probability
is still non-negligible, with these parameter values, Equation (4.3) indicates that the
user can be authenticated for about 330 sessions before secret renewal based on the
attacks mentioned in this paper. However, increasing k raises some usability issues.
First, remembering 25 graphical icons might not be easy for humans. Secondly, with
k = 25, an averagely larger number of secret icons are to be displayed on the screen.
This means that the convex hull of these icons can occupy a large area of the screen.
This makes the probability of success of the random click attack higher.

4.5 Conclusion 71

4.5 Conclusion

The Convex Hull Click (CHC) graphical human identification protocol is an interesting
alternative to other proposed protocols in literature. The scheme is easy to execute for
humans and is apparently more secure as compared to some of the previous approaches.
The security of the underlying problem was not extensively analyzed previously. This
is partly due to the complex structure of the problem. This work is the first attempt
to extensively analyze the protocol. We have shown two attacks on the CHC protocol.
The first attack outputs the secret icons with high probability after observing a few
authentication sessions. We have proposed a formula which allows to find values of
system parameters for which this attack can be avoided. The second attack outputs
a secret icon with high probability after observing only a handful of identification
sessions. The attack can be improved and then can be used to impersonate the user
with a non-trivial probability.

Our approach in this chapter has been as mathematically rigorous as possible.
However, the problem is not easy to tackle analytically and computer simulations were
needed to supplement the theoretical work. While in its current form, the protocol
does seem to have significant weaknesses, research can be done to find some variants
of the protocol that are easy for humans to compute while being secure at the same
time. An interesting future line of research is to find new geometric problems for
human identification protocols. Some other existing examples of human identification
protocols based on geometric problems appear in [21, 39], but the exact security of
these remains unexplored. Interestingly, the aim of the CHC protocol is shoulder-
surfing resistance [9]. However, as we have seen, from an analytical point of view we
can consider this as a human identification protocol according to the definition stated
in Chapter 2. An automated shoulder-surfer can gain the same knowledge as a passive
adversary in Matsumoto and Imai’s threat model. Thus both the analysis of CHC
protocol in this chapter and the Predicate-based Authentication Service (PAS) in the
previous chapter, justify our classification of these authentication methods under the
general definition of human identification protocols.

We have seen that both PAS and CHC are insecure in the sense that the secret
can be found after observing a number of sessions less than originally claimed. In the
case of PAS, this was probably down to the fact that the underlying problem was not
rigorously defined, and as a result we found many security flaws. On the other hand,
the underlying mathematical structure was obvious in CHC. All we needed to do is to
analyze the properties and geometry of convex hulls to see if the protocol can be used
for a large number of authentication sessions. However, unfortunately, due to the very
structure of convex hull of three points, information about the secret is revealed after a
handful of authentication sessions. Thus, even though the approach used in the latter
protocol is better, we have not improved much on the number of sessions a protocol
can be used before secret renewal. Next, we show our first protocol construction. We
conjecture that the protocol can be used for a large number of authentication sessions.
We back this claim with a detailed security analysis.

72 Security Analysis of CHC (Convex Hull Click)

5
Protocol Construction 1: Kangaroo

Hopping

In this chapter we propose a new human identification protocol which we call the
Kangaroo Hopping Protocol. The protocol is designed so that the underlying problem
cannot be straightforwardly described as a system of linear equations, as in the case of
the Example Protocol from Chapter 2 or Matsumoto’s protocols from [19]. The name
of the protocol alludes to the fact that the prover H essentially jumps over locations
in a challenge based on random integers. This name is inspired by Pollard’s kangaroo
algorithm for solving discrete logarithms [40], although there is no other similarity
between his algorithm and our protocol.

We also propose a new generic passive attack on human identification protocols.
The attack is a variant of the meet-in-the-middle (time-memory tradeoff) attack de-
scribed by Hopper and Blum in [8, §6], briefly discussed in Chapter 2. The main
component of the attack is Coppersmith’s baby-step giant-step algorithm which has
its application in solving the restricted Hamming weight discrete logarithm problem
[41]. It performs better than the attack mentioned in [8] on the two proposed pro-
tocols in that paper, namely HB and Sum of k Mins, further reducing their security.
Our protocol shows better security under both time-memory tradeoff attacks. We also
rigorously analyze other possible attacks to demonstrate their efficacy, or lack thereof,
in breaking our protocol.

The organization of this chapter is as follows. Section 5.1 describes the Kangaroo
Hopping Protocol together with a description of a user friendly implementation. Sec-
tion 5.2 contains the bulk of the results described in this chapter, and corresponds to
the security analysis of the protocol. It also describes the new attack on human identi-
fication protocols based on Coppersmith’s baby-step giant-step algorithm and Hopper
and Blum’s meet-in-the-middle algorithm. A brief usability analysis is described in
Section 5.3, and concluding remarks are present in Section 5.4.

73

74 Protocol Construction 1: Kangaroo Hopping

5.1 Proposed Protocol

We shall refer to a vector of n elements or an n-tuple as an ordered list of n elements.
If c is a vector of n-elements, then c[i] denotes the ith element of c, for 0 ≤ i ≤ n− 1;1

the index i is called the ith location in c. Let n be such that n = ab for positive
integers a and b. We call a the jump constant for reasons that will be clear later. Let
k and d ≥ 2 be positive integers. Let c be a vector of n integers drawn uniformly at
random from the set {0, 1, . . . , d− 1}.

We first describe the protocol formally and then show an implementation that is
human friendly. Sections 5.1.1 and 5.1.2 give a less technical description of the protocol
with example values for the parameters.

Protocol: Kangaroo Hopping.

Setup: Let n, a, b, µ, k and d be public parameters, with n = ab. C and H
choose k + 1 locations in c. These locations are essentially a set of integers:
s0, s1, . . . , sk, where 0 ≤ si ≤ n− 1. s0 is called the starting location. All these
locations constitute the secret.

1: for i = 1 to µ do
2: C generates the vector c and sends it to H.
3: H assigns t← s0.
4: H updates t← (t+ a · c[s0]) mod n.
5: for 1 ≤ j ≤ k do
6: H updates t← (t+ c[sj]) mod n.
7: H sends c[t] to C.
8: C outputs accept if all the answers are correct, otherwise C outputs reject.

Lemma 2. Let S1 and S2 be two sets of secret locations in c. Then, Protocol 1 is an
identification protocol with:

Pr [〈H (S1) , C (S2)〉 = accept] ≤ d−µ

if S1 6= S2 and 1 otherwise.

Proof. Since the protocol is deterministic, if S1 = S2, C will accept H with probability
1. For S1 6= S2, we see that since each element of c is generated uniformly at random
from the integers {0, 1, . . . , d − 1}, the probability that two different sets of locations
generate the same output for c is at most 1/d. The result follows for µ iterations.

5.1.1 User Friendly Implementations

Both graphical and textual implementations are possible for our protocol. In a graph-
ical implementation, we can use n graphical objects such as software icons just as in

1There is a slight difference in notation in this chapter. Instead of defining the index from 1 to n,
we define it from 0 to n − 1, where index 0 is the first index and index n − 1 is the nth index. This
shall prove convenient when analyzing the security of the protocol.

5.1 Proposed Protocol 75

the case of the Example Protocol’s implementation described in Chapter 2. Clearly,
in this case the user’s secret is a set of k icons out of n. Since a graphical implemen-
tation was already described in Chapter 2, here we illustrate an example text-based
implementation.

We represent the secret space, i.e. the locations in c by an alphabet. For instance,
the English alphabet is a candidate. The vector c is presented to H in the form of a
grid with a× b cells, where b = n/a (a is chosen such that it divides n). Each location
in c is mapped to a unique character in the secret space alphabet. Each cell in the grid
contains a unique character from the secret space, below which is the corresponding
random digit from c. The secret is then a string from this alphabet, instead of a set
of integers of vector locations. Thus, the starting location is also a character from this
alphabet.

Given a challenge “grid”, H locates the cell containing the starting character. This
corresponds to the location s0 in the formal description. H then looks at the digit
corresponding to this cell. Let the digit be d0. H moves d0 steps vertically downwards,
with wraparound if necessary, thus reaching a new character location in the same grid.
Call this location l0. H then looks at the digit in the cell containing s1. Let d1 be
the digit. It now moves horizontally to the right of the location l0 and moving to
the start of the next row if the end of the row is reached. This results in the new
location l1. H continues to move horizontally according to the digits corresponding to
the rest of its secret locations. If the bottom right corner of the grid is reached, H
moves to the top left corner, thus moving in a cycle. At the end of this procedure,
H simply outputs the digit corresponding to the final character location thus reached.
Figure 5.1 shows an example. Here a = 12 and b = 6, which implies that n = 72.
In this example and also through most of the chapter, we will choose d = 10, as this
is a common base for humans. The alphabet is composed of the characters a, . . . , z,
A, . . . ,Z, 0, . . . , 9 and special characters: !,@, #, $,% ,∧,& ,*,(,). Notice that the order
of the characters remains the same for all challenges and only the digits corresponding
to these characters change for different challenges. For the graphical implementation,
we simply replace the alphabet with a corresponding set of graphical objects. While the
text-based implementation is shown here as an illustration of our protocol, as before, we
recommend graphical implementation as it is more user-friendly and has less security
issues, such as resistence to dictionary attacks.

5.1.2 Different Ways of Computation

The above mentioned procedure is one way the human user can perform the protocol
steps. There are a number of other ways in which the protocol can be executed. The
user can choose any method he or she prefers.

For instance, a different and probably more efficient way is sketched here.

1. Ignore the starting location and add all the digits corresponding to the remaining
k secret locations.

2. From the starting location, move d0 steps vertically downwards (continuing from

76 Protocol Construction 1: Kangaroo Hopping

a b c d e f g h i j k l
3 2 6 9 2 1 7 5 4 4 6 8

m n o p q r s t u v w x
1 6 7 4 9 7 5 3 2 7 6 1

y z A B C D E F G H I J
3 2 5 1 5 2 9 6 6 8 6 0

K L M N O P Q R S T U V
3 1 7 4 9 7 5 3 4 7 6 1

W X Y Z 0 1 2 3 4 5 6 7
6 3 8 2 6 8 3 2 9 5 8 0

8 9 ! @ # $ % ∧ & ∗ ()
4 7 2 0 9 1 5 3 6 3 4 9

Figure 5.1: An example challenge grid.

the top if the bottom of the grid is reached), where d0 is the digit corresponding
to the starting location.

3. Divide the sum obtained in Step 1 by the jump constant a to get a quotient and
a remainder. The quotient is the number of vertical steps and the remainder is
the number of horizontal steps to be taken. The user can then follows these steps
from the location reached in Step 2 and finally output the digit corresponding to
the location thus reached.

If the jump constant a is a multiple of 10 then the above division can be performed by
most humans mentally. Thus to make this method easy for most users, n and a can be
chosen to be 200 and 20 respectively. These parameters are easy for humans to use. k
can be chosen somewhere between 10 and 15.

5.2 Security Analysis

Recall that for security, we consider the computationally bounded passive adversary
of Definition 4. The adversary can view every challenge-response pair. The adversary
knows the description of the Kangaroo Hopping Protocol and the public parameters
specified in that protocol. The only thing hidden from the adversary is the set of secret
locations shared by C and H. We assume that the secret locations are chosen uniformly
at random from the set of all possible secret locations.

Given m challenge-response pairs (c1, r1), . . . , (cm, rm), the goal of A is to imperson-
ateH either by partially or completely learning the secret locations or by impersonating
H by guessing the answers without knowledge of the secret. We assume that all these
challenge-response pairs correspond to successful authentication sessions between H

5.2 Security Analysis 77

and C. We first look at random guess and brute force attacks, following which we shall
show more sophisticated attacks.

5.2.1 Some Obvious Attacks

Recalling the discussion on the security of the Example protocol in Chapter 2, it is
important to know the probabilities of success of the random guesses and the time
complexity of the brute force attack so that values of system parameters can be chosen
accordingly.

Random Guess 1

The most obvious impersonation attack is to randomly guess the response when given
a challenge. Since the output is in the range {0, 1, . . . , d−1}, a random guess from this
set will be successful with probability 1/d for each challenge. For µ rounds (iterations),
this probability is d−µ.

Random Guess 2

Another method for impersonation is to guess the secret and then answer a challenge
by following the steps of Protocol 1 correctly. We see that there are a total of nk+1

possible ways of choosing k + 1 locations in c. However, due to the commutativity of
the addition operation, any permutation of a given set of locations will generate the
same output. Thus we are looking at the number of ways of choosing the starting
location times the number of ways of choosing k locations from a set of n locations
with replacement and without order, which is exactly: n

(
n+k−1

k

)
. Thus the probability

of success in guessing the correct secret is (n
(
n+k−1

k

)
)−1.

Brute Force

The brute force attack has complexity O(n
(
n+k−1

k

)
). It works by trying all possible

secret locations satisfying m challenge-response pairs. In the next section, we shall see
that after observing m challenge-response pairs, the expected number of candidates
for the secret is: n

(
n+k−1

k

)
/dm. To reduce this number to a unique secret, A needs

on average: n
(
n+k−1

k

)
/dm ≈ 1 ⇒ mlb ≈ logd(n

(
n+k−1

k

)
) challenge-response pairs (the

information theoretic bound on m). Thus O(logd(n
(
n+k−1

k

)
)) challenge-response pairs

are enough to find the secret uniquely. With a lower number of challenge-response pairs,
there are multiple candidates and even a computationally unbounded adversary cannot
distinguish between them. For concrete values, we see that if n = 200 and k = 15,
the brute force attack has complexity roughly 283. An attack with this complexity is
generally considered intractable.

78 Protocol Construction 1: Kangaroo Hopping

5.2.2 Algebraic Interpretation

Given m challenge-response pairs (c1, r1), . . . , (cm, rm), we now consider the problem
of finding the secret locations s0, . . . , sk. We attempt to describe this problem alge-
braically. For any challenge-response pair (c, r), a location r̂ satisfying c[r̂] = r is called
a satisfying location for (c, r). For 1 ≤ i ≤ m, let Ri be the set of all satisfying loca-
tions for (ci, ri). Let Rm = R1 × · · · ×Rm be the m-ary cartesian product over these

m sets. We represent the elements of Rm as m-element vectors, r̂ =
[
r̂1 · · · r̂m

]T
,

in an obvious way. Recall that for any vector x, wt(x) denotes its Hamming weight.
Define the matrix C as:

C =


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
...

...
cm,1 cm,2 · · · cm,n


where ci,j = ci[j]. Then, for each r̂ ∈ Rm we have:

[
aC C

] [x
y

]
≡ r̂ mod n (5.1)

where x and y are n-element vectors with wt(x) = 1 and wt(y) = k. Clearly, x
corresponds to the starting secret location and y corresponds to the k remaining secret
locations. Notice that y need not be a binary vector since each location can be chosen
more than once. There are |Rm| such equations and we cannot write this as a system
of fewer equations as for each satisfying location r̂ for a challenge-response pair (c, r),
r is independent of r̂. This is true since each element of c is generated uniformly at
random from {0, 1, . . . , d− 1}.

We first estimate |Rm|.

Lemma 3. For 1 ≤ i ≤ m, E[|Ri|] = n/d. And E[|Rm|] = (n/d)m.

Proof. Let i ∈ [1,m]. In each pair (ci, ri), if every element of ci is generated uniformly
at random from {0, 1, . . . , d}, then the expected number of times ri occurs in ci is n/d.
This is exactly the expected number of satisfying locations for ri. The result for |Rm|
follows from its definition.

There is exactly one element in Rm that contains the satisfying locations corre-
sponding to H’s secret. We denote this by r̂s. For more compact notation, define

s =
[
x y

]T
and C ′ =

[
aC C

]
. Finding a unique s satisfying C ′s ≡ r̂s mod n thus

translates into finding the secret locations of H. There are 2n unknowns in s. If m is
small, the number of solutions for s is very large. On the other hand, higher m means
a higher value of E[|Rm|] = (n/d)m, which in turn means more equations to be solved,
since A has no way to distinguish r̂s from other elements in Rm.

Let Solve Equations be an algorithm that finds solutions (possibly multiple) to
the linear system defined in Equation (5.1). Further, let τ(n, k,m, d) be the time
complexity of this algorithm. We have the following probabilistic attack for finding s.

5.2 Security Analysis 79

Attack: Attack 5.1.

Input: The matrix C ′ and the set Rm.
Output: A candidate secret.

1: Initialize an empty set S.
2: for each r̂ ∈ Rm do
3: Run Solve Equations on input C ′s = r̂ mod n. If any solutions are found,

assign them to the set S.
4: Output an element uniformly at random from S.

This attack will perform well probabilistically if |S| is small. As we have found
before, the expected size of Rm is (n/d)m. There are a total of nm possible different
output vectors for C ′s mod n. Therefore, the probability that an s, different from H’s
secret, is in the set S can be estimated as (n/d)m

nm
= 1/dm. Thus this probability becomes

lower as m increases. Therefore, we can assume that the performance of this attack is
good. The expected time complexity of Attack 5.1 is:

O
(
τ (n, k,m, d)

(n
d

)m)
If Gaussian elimination is used as the Solve Equations algorithm, we require m ≥ 2n,
but this means that the expected size of Rm will be greater than or equal to (n/d)2n.
We can see the complexity of this attack with concrete values. Let n = 100, d = 10
and k = 16. Then, we have m ≥ 2n = 200. Gaussian elimination takes time O(n3)
giving a total approximate time 2687, which is surely infeasible.

Since the weights of x and y are restricted, we might still be able to use other
methods with a smaller value of m. To this end, given m, we find the number of
possible solutions of the following equation:

C ′s ≡ r̂ mod n (5.2)

where r̂ ∈ Rm. Since wt(x) = 1 and wt(y) = k, with m = 0 there are a total of
n
(
n+k−1

k

)
possible choices for s. With m = 1, we expect a 1/n fraction of these choices

to satisfy the above equation. Continuing on this way, we see that the expected number
of possible choices for s are:

n
(
n+k−1

k

)
nm

=

(
n+k−1

k

)
nm−1

Since the expected size of Rm is (n/d)m, we see that the combined expected number
of solutions are:

n
(
n+k−1

k

)
dm

Equating the above expression to 1, and denoting mlb = m we get:

mlb = logd n+ logd

(
n+ k − 1

k

)
(5.3)

80 Protocol Construction 1: Kangaroo Hopping

Thus mlb ≥ logd n + logd
(
n+k−1

k

)
is required on average to find a unique value of s

in Equation (5.2). This mlb is again the information theoretic bound on m to obtain
a unique secret. By using the concrete values as above, we find that the resulting
value of mlb from Equation (5.3) is approximately 29. Thus in theory, we can have
an algorithm that solves the problem with m ≥ 29. However, this value of m implies
that (n/d)m ≈ 296. Thus whether or not a Solve Equations algorithm that works
for smaller values of m can be found, the overall time complexity of Attack 5.1 is
still very high. Thus it is not possible to improve this complexity without a different
approach. Informally speaking, the main reason for this interesting result is that in our
protocol, the computations are also done on the location indices and not just the digits
corresponding to these locations as for instance in Matsumoto’s protocols from [19].
Since the digits are generated uniformly at random, the final answer is not linearly
dependent on the location indices. Next, we present a time-space tradeoff algorithm
that utilizes fewer challenge-response pairs and has better time complexity.

5.2.3 Time-Memory Tradeoff

In [8, §6], Hopper and Blum sketched a meet-in-the-middle algorithm on k-out-of-n
protocols which has an average-case time complexity of:

O
(
nk(1− ln d

2 lnQ)
)

(5.4)

By k-out-of-n protocols, we mean those protocols that use a shared secret which is
a set of k objects out of n. Here Q is an intermediate result, which in our protocol
corresponds to the range of the intermediate locations during the computation of the
protocol. Thus in our protocol, Q = n. The Kangaroo Hopping Protocol and the
protocols from [8] as well as many other protocols in literature loosely fall in the
category of k-out-of-n protocols (the only difference in our protocol is that we have a
starting location that is computed differently from the k remaining locations). For the
HB protocol, the average-case time complexity of this attack is: O(

(
n
k/2

)
) [8, §3.1, pp.

58]. This is true due to two reasons. First the protocol uses the addition operation,
which is commutative, and the user has to choose k unique locations as a secret.
Therefore, the number of possible secrets are

(
n
k

)
instead of nk. Secondly, Q equals

d in their protocol. Similarly, for the Sum of k Mins Protocol the average-case time
complexity of this attack is O(

(
n(n−1)/2

k/2

)
)[8, §3.2, pp. 59]. However, since the size of

the secret is exactly twice than in the HB protocol, the comparative time complexity
is O(

(
n(n−1)/2

k/4

)
).

This attack is essentially a time-memory tradeoff. The time-memory tradeoff at-
tack that we present here employs a deterministic baby-step giant-step algorithm by
Coppersmith summarised in [2, pp. 109] and detailed in [41, §2.1]. On human identifi-
cation protocols that use a shared secret of k objects out of n, the resulting attack has
average-case time complexity of:

O

(
nk(1− ln d

2 lnQ)n
ln d
lnQ

2
k
2

ln d
lnQ

)

5.2 Security Analysis 81

which is better than the former if 2k/2 < n or k < 2 log2 n. The space complexities of the
two attacks are the same. While the time complexity is comparable to the previously
mentioned meet-in-the-middle attack for generic human identification protocols, our
attack however, performs much better on the two protocols in [8]. The average-case
time complexity of our algorithm on the HB protocol is O(

(
n/2
k/2

)
) and on the Sum of k

Mins Protocol is O(
(
n(n−1)/4

k/4

)
). This is substantially smaller than the previous result.

The original application of Coppersmith’s algorithm is to solve the restricted Ham-
ming weight discrete logarithm problem [42]. But since this algorithm essentially uti-
lizes the knowledge of the restricted Hamming weight, we can modify it to solve our
problem. We notice that there are several other deterministic algorithms that perform
asymptotically better than Coppersmith’s algorithm like the one proposed by Stinson

of time complexity O
(
k3/2(lnn)

(
n/2
k/2

))
[41]. However, for the choice of parameter val-

ues used in this chapter, the performance is comparable to Coppersmith’s algorithm
if not worse. There are also some probabilistic variants, but which cannot be applied
here since the discrete logarithm is always unique and this is not necessarily the case
with the candidate locations in our problem for small values of m. For larger values
of m time-memory tradeoff algorithms become infeasible. We now describe the attack
on our protocol and derive its time complexity. The derivations of the other results
mentioned above are similar.

For simplicity, we assume n and k to be even integers. For arbitrary n and k, the
attack can be carried out with minor differences [41, §5]. For 0 ≤ i ≤ n − 1, define
bi to be a vector of length n such that bi[l + 1] = 1 whenever, l ≡ i + j mod n,
for 0 ≤ j ≤ n/2 − 1, and 0 otherwise. Clearly, for all i, bi is a binary vector with
wt(bi) = n/2. Let B = {bi : 0 ≤ i ≤ n/2− 1}. Now, let Y be the set of all n-element
vectors. From [41, §2.1], we see that for all y ∈ Y with wt(y) = k, there exists a
b ∈ B, such that:

y · b =
k

2

For any y1,y2 ∈ Y , y2 is called the sub of y1, denoted y2 ≺ y1, if y1[l] = 0⇒ y2[l] = 0
for 1 ≤ l ≤ n. Let 1 denote the binary vector of weight n. Let y=k/2 denote a
vector whose weight is k/2. We divide s into two parts: s1 = [x y=k/2]T and
s2 = [0 y=k/2]T . We assume there to be a hash table, initially empty, which will be
used as a data structure in this attack.

Attack: Attack 5.2.

Input: The set B and m challenge-response pairs.
Output: A set S of candidates for the secret s.

1: Initialize an empty set S.
2: for 0 ≤ i ≤ n/2− 1 do
3: for all possible vector s1 = [x y=k/2]T such that y=k/2 ≺ bi do
4: Compute the string q ← c1 · s1 mod n|| · · · ||cm · s1 mod n.
5: Insert this m-digit string q along with s1 in the hash table.
6: for all vector s2 = [0 y=k/2]T such that y=k/2 ≺ 1− bi do

82 Protocol Construction 1: Kangaroo Hopping

7: for 1 ≤ i ≤ m do
8: Initialize an empty set Qi.
9: for 1 ≤ j ≤ n, if ri ≡ (j + ci · s2) mod n, update Qi ← {j} ∪Qi.

10: Insert each string q ∈ Q1 × · · · ×Qm in the hash table along with s2.
11: for each collision in the hash table, construct s = s1 + s2 and update S ←
{s} ∪ S.

12: Output S.

Once Attack 5.2 is executed, we need another attack to uniquely determine the
vector in S that satisfies m ≥ logd(n

(
n+k−1

k

)
) challenge-response pairs.

Attack: Attack 5.3.

Input: The set S and m ≥ logd(n
(
n+k−1

k

)
) challenge-response pairs.

Output: An s ∈ S.
1: for all s ∈ S do
2: if ci · s ≡ ri mod n for 1 ≤ i ≤ m, output s and halt.

The memory requirement of Attack 5.2 is O(n
(
n+k/2−1

k/2

)
). The combined running

time of Attacks 5.2 and 5.3 is:

O
(
n

(
2mn

(
n/2 + k/2− 1

k/2

)
+
(n
d

)m(n/2 + k/2− 1

k/2

))
+ logd

(
n

(
n+ k − 1

k

)) (n+k−1
k

)
dm

)
Neglecting the logarithmic terms as well as the quadratic term in n, we get:

O

(
nm+1

dm

(
n/2 + k/2− 1

k/2

)
+

(
n+k−1

k

)
dm

)
Following a similar procedure to that of [8, §6], in Appendix A.2, we show that to
minimize this quantity the optimum value of m for Attack 5.2 is:

m =

ln

(
(n+k−1

k) ln d

(n/2+k/2−1
k/2) ln(n/d)

)
lnn

− 1

And this value of m gives the running time:

O

((
n+ k − 1

k

)1−ln d/ lnn(
n/2 + k/2− 1

k/2

)ln d/ lnn
)

In contrast, if we use the meet-in-the-middle algorithm from [8], we get a running time
of:

O

((
n+ k − 1

k

)1−ln d/ lnn(
n+ k/2− 1

k/2

)ln d/ lnn
)

5.2 Security Analysis 83

Table 5.1: The time and space complexity of the time-memory tradeoff attack.

n k τtm µtm n k τtm µtm n k τtm µtm

100 10 233 233 120 10 236 235 150 10 239 237

20 255 252 20 260 255 20 265 258

30 272 267 30 279 271 30 286 276

200 10 243 239 300 10 248 243 500 10 255 247

20 272 263 20 283 269 20 296 277

30 297 283 30 2112 292 30 2132 2104

which is considerably larger in the second term. Table 5.1 shows various choices of the
parameters n and k and the resulting combined time and space complexity of Attacks
5.2 and 5.3. We assume d = 10 and the time and space complexities are represented
by the symbols τtm and µtm respectively.

5.2.4 Comparative Time Complexities

The main motivation behind our protocol was to increase Q relative to d in Equation
5.4 without compromising too much on usability. If Q roughly equals the square of
d, then we can choose smaller values of k, as the time complexity of the attack will
increase. This is not straightforwardly possible in the HB protocol and Sum of k Mins.
For instance, if Q = 100 = 102 = d2, these protocols will require k additions of 2 digit
numbers in a single round. This is prohibitively difficult for most humans since the
additions have to be performed mentally. The Kangaroo Hopping Protocol achieves this
by shifting the computations to the locations rather than the values of those locations.
At each step, the user only has to add a 2 or 3 digit number to a single digit number. As
a result, usability is preserved while the time-memory tradeoff attacks perform worse
in our case. Table 5.2 shows a direct comparison of the three protocols in terms of the
time-complexity of our attack. The time complexity of the meet-in-the-middle attack
from [8] is labeled “Old”, whereas our attack is labeled “New”. As can be seen, our
attack is efficient than the previous attack by a few orders of magnitude. Time-memory
tradeoff attacks is one way to attack our protocol. The next section looks at a different
way to attack the protocol.

5.2.5 Significance of the Jump Constant a

Let r̂ denote a location. Clearly it is an integer modulo n. We first attempt to find the
probability distribution of obtaining r̂ as a sum of the values of k locations, ignoring
the starting location and hence the jump constant a. To this end, let p(k, r̂) be the
probability that r̂ is the final location after the sum of the values of k locations as in
our protocol. In other words, it denotes the probability that r̂ is the sum of k integers

84 Protocol Construction 1: Kangaroo Hopping

Table 5.2: Time complexity of time-memory tradeoff attacks on three protocols.

k-weight HB Sum of k Mins Kangaroo Hopping
n k Old New Old New Old New

100 8 222 218 224 222 230 228

12 230 224 234 231 241 238

16 237 229 245 241 251 247

200 8 226 222 228 226 237 236

12 236 230 240 237 252 249

16 246 237 253 249 265 261

300 8 228 224 230 228 242 240

12 240 234 244 241 258 256

16 250 242 257 253 273 270

(not necessarily unique): s1, . . . , sk ∈ Zd. Clearly, p(1, r̂) = 1/d for 0 ≤ r̂ ≤ d− 1 and
p(1, r̂) = 0 for d ≤ r̂ ≤ n− 1. For any subsequent k, we see that the probability p(k, r̂)
can be obtained by:

p (k, r̂) =
∑n−1

i=0
p (k − 1, r̂ − i mod n)p (1, i)

This is similar to [8, §3.2]. The following dynamic programming algorithm of time
complexity O(kn2) then computes these probabilities:

Algorithm: Algorithm 5.1.

Input: n, k and d.
Output: The probabilities p(k, r̂).

1: Assign p(1, r̂)← 1/d for 0 ≤ r̂ ≤ d− 1 and p(1, r̂)← 0 for d ≤ r̂ ≤ n− 1.
2: for 2 ≤ i ≤ k do
3: for 1 ≤ j ≤ n do
4: p← 0.
5: for 1 ≤ l ≤ n do
6: p← p+ p(i− 1, j − l mod n)p(1, l).
7: p(i, j)← p.
8: Output p(k, r̂) for 0 ≤ r̂ ≤ n− 1.

Now, let q(a, k, r̂) denote the probability of obtaining the location r̂ as the sum of
k integers and the starting location, thus including the jump constant a. Then, we can
see that:

q (a, k, r̂) =
1

d

∑d−1

i=0
p (k, r̂ + ia mod n)

Let U denote the uniform distribution over Zn. Let Q denote the distribution of the
q (a, k, r̂)’s. ∆(Q,U) = 1

2

∑n−1
i=0 |q (a, k, i)− 1

n
| is defined as the statistical distance

between the two probability distributions.

5.2 Security Analysis 85

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

n

P
ro

b
ab

il
it

y
p
q

Figure 5.2: The jump constant a makes the distribution nearly uniform over n.

Lemma 4. Fix a k. Suppose d divides n. Then ∆(Q,U) is minimum if a = n
d
.

Proof. a divides n into d blocks, each of length a. Since the starting location is uniform
over Zd, its product with a will then be uniformly distributed over n. If a 6= n

d
, then

either ad < n or ad > n. In both cases, the numbers between ad and n will have
different probabilities of occurence than the remaining numbers.

Figure 5.2 shows the distribution of q(a, k, r̂) against p(a, k, r̂) with n = 120, k = 30
and a = 12. Table 5.3 shows ∆(Q,U) with different values of n and k (a is chosen such
that n = ab). Note that greater value of n requires larger value of k to make ∆(Q,U)
small. Based on these results, we see that if the statistical distance is small, an ad-
versary can distinguish from the uniform distribution after observing 1

∆(Q,U)
challenge-

response pairs on average. The adversary can then (possibly) use some statistical
methods to guess the starting location and then use the following attack to guess the
answer to a challenge probabilistically:

Attack: Algorithm 5.4.

Input: n, k, d and a challenge c.
Output: A guessed response.

86 Protocol Construction 1: Kangaroo Hopping

Table 5.3: The statistical distance ∆(Q,U) against n and k.

n k ∆(Q,U) n k ∆(Q,U) n k ∆(Q,U)

100 10 3.5× 10−16 120 10 4.9× 10−8 150 10 1.0× 10−4

20 7.0× 10−16 20 3.3× 10−15 20 1.6× 10−8

30 9.9× 10−16 30 1.0× 10−15 30 2.5× 10−12

200 10 7.2× 10−3 300 10 9.7× 10−2 500 10 3.3× 10−1

20 8.2× 10−5 20 1.5× 10−2 20 1.7× 10−1

30 9.3× 10−7 30 2.3× 10−3 30 8.8× 10−2

1: Run Algorithm 5.4 to obtain an interval of locations, δ ⊆ [0, n − 1], such that∑
r̂∈δ p (k, r̂) = p (δ), for some probability p(δ).

2: Guess a starting location and shift the interval δ accordingly.
3: Given a challenge c, pick a location r̂ uniformly at random from δ and output

c[r̂].

Then the success probability of this attack is:

p (δ)

nδ
+

(1− p (δ))

n2

Considering p(δ) to be high, we can see that the quantity 1/nδ is less than 1/n2. If
the adversary knows the starting location, then the probability of success becomes
1/δ. As an example, for the parameters used in Figure 5.2, if δ = [0, 49] ∪ [100, 119],
then p(δ) = 0.93 and the success probability of the attack is: 1.34 × 10−4 which is
considerably better than the naive guess which succeeds with probability 7.0× 10−5.

Notice that each session in our protocol consists of µ iterations. Therefore, in light
of the discussion above, we mandate the use of our protocol for 1

µ∆(Q,U)
sessions only,

before secret renewal.

5.3 Usability Analysis

To demonstrate comparable usability, we use similar parameters as used in the ex-
periment in [8]. We use n = 200, k = 15 and µ = 6. With these parameters, the
time and space complexity of our time-memory tradeoff attack is proportional to 261

and 254 respectively. The statistical distance ∆(Q,U) is 4.9× 10−4, which means that

the quantity (∆(Q,U))−1

µ
≈ 340. Thus, with these parameters our scheme can be used

securely for at least 340 authentication sessions.
With n = 200, k = 15 and µ = 7, the experiment done for the usability of HB

Protocol reported in [8] gave an average time of 166 seconds. Notice that there are
µ = 7 rounds instead of 6. This is important to add noise into the answer. The user
sends the wrong answer to one of the challenges. To compare with our protocol, we

5.3 Usability Analysis 87

can see that apart from the starting location, the user has to add two numbers for
each secret location. One of these numbers is in the range [0, 199] and the other is
in the range [0, 9]. Thus arguably, adding a single digit number to a number in the
range [0, 199] will take approximately the same time, as we are well versed with doing
such computations in our heads. For the starting location, we see that the user can
move vertically (with wraparound if necessary) according to the digit corresponding
to the starting location. The user reaches to a new location this way. The result
of the remaining k = 15 locations can then be divided by 20 to get a quotient and
a remainder. The quotient is the number of vertical steps and the remainder is the
number of horizontal steps to be taken. The user can then follows these steps and
output the digit corresponding to the location thus reached. Thus while this last step
takes more time than the other steps, it can surely be done within half the time required
for the computation of the k = 15 other secret locations. Now, one iteration of the HB
Protocol takes 166/7 ≈ 23.7 seconds on average. This implies that according to our
argument, the computation of the last part takes ≈ 12 seconds. Thus, conjecturing
that the calculations for the remaining k = 15 locations amounts to time 142.2 seconds,
we can see that for µ = 6 rounds, this amounts to a total time of ≈ 213 seconds.

From this discussion, we can say that for low values of α and β, our protocol is ap-
proximately (α, β, 213)-human executable. While it takes slightly more time than the
HB Protocol, it is more usable as the user does not have to send a wrong answer with
probability 1/7, which is not possible for most humans. Furthermore, for these param-
eter choices, the time complexity of the time-memory tradeoff attack is proportional to
237 in the case of the HB Protocol. In our case, the complexity is 261. The comparative
time-complexity of the attack on the Sum of k Mins Protocol with similar parameters
is 249. Again, lower than the time-complexity for our protocol. To increase usability,
one can further reduce µ from 6 to 4 and get a time of approximately 143 seconds.
Some of the common authentication mechanisms, such as PIN-based authentication,
use 4-digit numbers for security. We acknowledge the absence of actual experiments
on users.

5.3.1 Handling Errors

Whenever humans are involved in performing computations, errors are unavoidable.
With the default setting of the protocol, the legitimate user can be rejected if he/she
does one mistake in any of the µ rounds of the protocol. We can handle this by requiring
that the user’s answers be correct in most of the rounds. For instance, if µ = 6, then the
server accepts the user if 5 or more of the answers are correct. Although, the probability
of success of a random guess attack will increase, it will still be considerably low. An
interesting area of research would be to devise a protocol that handles user errors by
using error correcting codes.

5.3.2 Suggested Values of Parameters

Table 5.4 shows choices of parameter values for different security requirements and the
resulting parameterized security against different attacks. In the table, µ stands for the

88 Protocol Construction 1: Kangaroo Hopping

Table 5.4: Suggested parameter values for the Kangaroo Hopping Protocol.

Security n k m prg τbf τtm/µtm ∆(Q,U) Sessions

Low 200 12 4 10−4 271 249/244 2.9× 10−3 85
Medium 200 16 4 10−4 287 261/254 4.9× 10−4 500

High 200 20 6 10−6 2101 272/263 8.2× 10−5 2, 000
Paranoid 200 24 6 10−6 2114 283/271 1.4× 10−5 12, 000

number of iterations (rounds) in one authentication session. prg stands for the success
probability of the random guess attack. τbf stands for the complexity of the brute
force attack. τtm/µtm shows the time/space complexity of the time-memory tradeoff
attack. Finally, Sessions, represents the number of authentication sessions a particular

secret can be used. It is obtained as (∆(Q,U))−1

µ
. Notice that, space complexity can be

a severe limitation as well (263/8 ≈ 1018, i.e. about 1 eta byte). For low and medium
level security, the restriction on the number of sessions can be relaxed. Notice that
in comparison with some other protocols found in literature, the number of sessions
is quite high. For instance, the cognitive authentication scheme of Weinshall [10] can
only be used for approximately 40 sessions even when the size of the user’s secret is as
large as 150 [29, §4.1]. For more practical sizes of the secret, the number of allowable
sessions is even lower. Similarly, Bai et al.’s scheme can be used for 10 authentication
sessions only [17].2 For these reasons, we have restricted our comparison to the two
protocols in [8].

5.4 Conclusion

In comparison to protocols analyzed in Chapters 3 and 4, the Kangaroo Hopping Proto-
col described in this chapter can be used for a larger number of authentication sessions
before security renewal. Our confidence in this claim is backed by a detailed security
analysis in which we have shown that it is not possible to represent the challenge-
response pairs as a system of linear equations with a non-negligible probability. Thus,
the main design goal of the protocol was protection from the use of Gaussian elimi-
nation. As discussed before, the two protocols from [8] also attempt to do so; by the
introduction of noise in the case of the HB Protocol, and by introducing pairs of min-
imums in the case of the Sum of k Mins Protocol. These “tricks” help in preventing
the use of Gaussian elimination to find the secret after the observation of only O(n)
authentication sessions.

Some of the protocols in literature have ignored the impact of time-memory trade-
off attacks. We attempted to construct a protocol with security against time-memory
tradeoff attacks in mind. The resulting protocol offers reasonable usability and good

2In fact, less than 7 according to our analysis in Chapter 3.

5.4 Conclusion 89

security. We acknowledge that the protocol can not be used frequently, as authentica-
tion seems to require about 2-3 minutes time. However, it can be used under certain
circumstances such as when the user is using an insecure computer. An interesting
question is whether improvements can be made to find a solution that achieves better
security with progressively smaller values of parameters such as the size of the secret.
Another area of interest is to find other variants of time-memory tradeoff attacks that
can be applied to human identification protocols.

Perhaps the main drawback of the Kangaroo Hopping Protocol is that despite a
detailed account of its security, it is not clear whether it is based on a hard to solve
mathematical problem. This is unlike the HB Protocol, which is shown to be based
on the NP-Hard problem of learning parity in the presence of noise. However, the HB
Protocol actually uses a variant of the problem of learning parity in the presence of
noise. In particular, it uses an unknown secret vector of low Hamming weight k. We
will show later that this variant is hard in the sense of fixed-parameter intractability.
We next show the construction of a protocol that is based on a hard mathematical
problem in the sense of fixed-parameter intractability. Furthermore, we show that
fixed-parameter intractability, in and of itself, does not guarantee that the protocol
can be used for more than O(n) authentication sessions. A formal treatment of fixed-
parameter intractability is the topic of Chapter 7. However, we shall give an intuitive
introduction in the next chapter, which will help in understanding the reason for the
choice of the particular problem to construct the protocol, called the Counting Edges
Protocol.

90 Protocol Construction 1: Kangaroo Hopping

6
Protocol Construction 2: Counting Edges

So far, we have seen that there does not appear to be a clear logical way to de-
sign human identification protocols. A major hurdle is that mathematical problems
used in mainstream cryptography to build secure protocols cannot be directly used
to construct human identification protocols. Discrete logarithm problem, factorization
problem, etc., are only known to be hard with input sizes so huge, that it is beyond
the capability of humans to do any computations on them mentally. In the absence
of such hard problems, researchers have attempted to build their protocols on mathe-
matical problems whose hardness is justified on the basis of infeasibility of all known
attacks. Often, this approach has backfired with some protocols completely succumb-
ing to simple innovative attacks. An example is the Predicate-based Authentication
Service (PAS) from Bai et al. [17] discussed in Chapter 3. We have shown that PAS
can remain secure for a much smaller number of authentication sessions than originally
claimed by Bai et al. In short, systematic research in the area of human identifica-
tion protocols should use known hard mathematical problems much like mainstream
cryptography, but most problems from mainstream cryptography yield protocols that
require computations beyond the capabilities of most humans.

In this chapter, we propose a new way of designing human identification protocols,
i.e., based on fixed-parameter intractable problems. These problems are the subject
of parameterized complexity theory, a relatively new area of complexity theory mainly
introduced by Downey and Fellows [43]. We shall give a very brief yet intuitive expla-
nation of a fixed-parameter intractable problem in this chapter. Detailed introduction
to the area of fixed-parameter intractability together with reductions showing the fixed-
parameter intractability of many problems used in human identification protocols is
deferred to the next chapter. The main focus of this chapter is the construction of a
protocol based on a fixed-parameter intractable problem. Our approach of construct-
ing the protocol is as follows. We first construct a basic version that is based on a
fixed-parameter intractable problem in a straightforward manner. We then alter the

91

92 Protocol Construction 2: Counting Edges

protocol to mitigate security and usability problems. The protocol thus constructed
can be considered as based on a “sparse” version of the underlying fixed-parameter in-
tractable problem. By carefully choosing values of system parameters, we ensure that
the adversary cannot gain advantage from the knowledge of sparsity of the problem.

This chapter is organized as follows. We first give a brief but intuitive explanation of
what is meant by a fixed-parameter intractable problem in Section 6.1. We then proceed
to describe the first construction of the new protocol in Section 6.2. On the basis of
subsequent security analysis, we describe the weaknesses of the first construction in
Section 6.4. In Section 6.5 we describe the main construction of the protocol, followed
by a thorough security analysis. The last section contains concluding remarks.

6.1 Fixed-Parameter Intractable Problems

The HB Protocol from [8] is based on an NP-Hard problem, called Learning Parity
with Noise or LPN in short.1 Recall that the protocol is similar to the description
of the Example Protocol in Chapter 2, with the major difference that H sends a wrong
response bit with probability ε < 0.5. The adversaryA who observes challenge-response
pairs from the HB Protocol, needs to find the secret vector x given the challenges and
the responses (dot products of the challenges and the secret vector). The adversary
also knows that with a known probability ε < 0.5, the responses are incorrect. In other
words, A has to solve the NP-Hard problem, LPN. NP-Hardness of the LPN problem
implies that the best known algorithms to solve the problem run in time exponential
in the size of the input, i.e., n. However, the underlying problem used in HB is slightly
different from the LPN problem.

Recall that Hopper and Blum suggested restricting the Hamming weight of the
secret to k to make it easier for humans to memorize the secret, where k can be small,
say around 15. This can be easier for humans since they only need to memorize the
locations of the 1’s. Thus, the underlying problem has an additional parameter, k. Let
us call this the k-LPN problem. If it is shown that k-LPN is NP-Hard, it only tells us
that the best known algorithms to solve this problem require time exponential in n or
k. It is possible that there is an algorithm that is only exponential in k. Consider for
instance the Vertex Cover problem which is known to be NP-Complete. Yet, there
is an algorithm that solves this in time O(kn + (4

3
)kk2) [44]. Even though this is an

exponential algorithm in the size of the input (k and/or n), since k has to be small in
our case, this yields an efficient algorithm in practice. We are instead more interested
in knowing if the best possible algorithms to solve a particular problem run in time
nf(k) for some function f . If n is large and k is modest, which is the case with human
identification protocols, these algorithms can be prohibitive in practice. Consider for
example the exhaustive search algorithm of time complexity O(

(
n
k

)
). With n = 200

and k = 15, the run time of this algorithm is about 273. Through the theory of fixed-
parameter intractability, which treats k as a parameter separate from the input, it can
be shown that a problem is intractable in the sense that the run-time of algorithms

1From now onwards we shall denote complexity theoretic problems in small capitals.

6.2 The Counting Edges Protocol: First Construction 93

to solve it will have k in the exponent of n. Such problems are called fixed-parameter
intractable.

We shall next show a protocol, called Counting Edges Protocol, which is based
on a fixed-parameter intractable problem. As mentioned before, we shall not describe
the reduction showing the fixed-parameter intractability of the underlying problem.
We defer this to the next chapter, where we will give a more technical background to
the theory of fixed-parameter intractability and show that many problems used in hu-
man identification protocols are in fact based on fixed-parameter intractable problems,
without the inventors of these protocols realizing the link between these two areas.

A Note of Caution

A hardness result showing that a human identification protocol is based on a fixed-
parameter intractable problem should not be taken as a certificate for the security of
the protocol. There are two main reasons for this skepticism. First, the reduction
only guarantees that the problem is NP-Hard and/or fixed-parameter intractable in
the worst case. However, the instances of this problem generated in most of these
protocol are random. It might be the case that random instances of the problem are
not as hard as the worst case instances. We will show an example of this in our
first protocol, described next. Second, the protocol might have other weaknesses that
can be exploited to impersonate H, without having to find the secret by solving the
hard problem. For intance, Li and Shum found several weaknesses in the HB protocol
(based on the LPN problem) in [14, §4.3.1, p. 23]. They noticed, for instance, that
since the Hamming weight of the secret is small, the dot product of the secret and the
challenge vectors is more likely to be 0 as compared to 1, if the number of 1’s in the
challenge vector are small. With this knowledge, the adversary has a higher probability
of impersonating H. Notice that this does not mean that the adversary can guess the
secret. Instead, it shows that the adversary still has a good chance of impersonating
H without having to find the secret vector x; merely the knowledge of wt(x) = k is
enough. Thus, while the hardness results in this thesis show that the mathematical
primitives used to construct protocols are hard to solve, they should not be solely taken
as a guarantee of security of the protocols. A protocol might have other weaknesses
that can be exploited to impersonate H without having to solve the underlying hard
mathematical problem itself. A thorough security analysis is, therefore, still necessary.

6.2 The Counting Edges Protocol: First Construc-

tion

As described in the introduction, we first give a basic construction of a protocol based
on a fixed-parameter intractable problem, and then extend it to a full protocol to
resolve security and usability issues. The main reason for involving a graph is the goal
of prolonging the lifespan of the protocol to O(n2) authentication sessions before secret
renewal; thus mitigating the drawback mentioned in the Example Protocol in Chapter

94 Protocol Construction 2: Counting Edges

2. The protocol is based on counting edges in a small subset of vertices in a graph.
Appendix A.3 contains the terminology of graphs used here.

Protocol: Counting Edges (Basic Construction).
Setup: Let µ, n and k ≤ n be publicly known positive integers. Let V = {1, . . . , n}

be a set of vertices. H and C share a k-element (or k-vertex) subset K of V as
a secret.

1: for i = 1 to µ do
2: C creates an undirected graph Gi = (V,Ei), where Ei is chosen randomly.
3: H counts the number of edges in the induced subgraph, Gi[K], and sends the

result to C.
4: if all µ responses are correct, C accepts H else C rejects H.

6.3 Security Analysis

To analyze the security of the basic protocol, we look at the protocol from an ad-
versarial perspective and attempt to find ways to attack the protocol. In the course
of analyzing the protocol, we shall also show that the underlying problem is fixed-
parameter intractable. Unfortunately, as we shall see later, this does not guarantee the
security of the protocol for a sufficiently large number of observed sessions.

6.3.1 Impersonation without the knowledge of K

As always we shall first see how A can impersonate H without finding the secret set
of vertices K, through random guesses. The number of edges in an induced graph of
k vertices can range between 0 and

(
k
2

)
.2 Thus, A can simply sample an integer in

the range [0, k(k − 1)/2] according to a certain probability. As we already know, this
is known as the random guess attack. The probability of generating an integer from
[0, k(k − 1)/2] depends on the way the graphs Gi are generated. Denote by G, the
graph generated by C in an arbitrary challenge. G is a random graph on V , where the
randomness stems from the way the edge set E is generated. There are a total of

(
n
2

)
possible edges. Assume that each edge is generated with probability p. Then, a graph
G with e edges is generated with probability:

pe(1− p)(
n
2)−e.

If p = 1/2 then all possible 2(n2) graphs are generated with equal probability [45]. We
assume that this is the probability with which each edge is generated. This implies
that the sum of edges in any induced k-subgraph is binomially distributed. More
specifically, let κ =

(
k
2

)
. Then, the probability that G[K] has i edges in a randomly

generated graph G is: (
κ
i

)
2κ

2A 0-edge induced subgraph is an edgeless graph.

6.3 Security Analysis 95

for 0 ≤ i ≤ κ. Thus, an adversary can sample an integer in the range [0, k(k−1)
2

] which
has the maximum probability in the binomial distribution. Specifically, he can reply
with the integer bk(k − 1)/4c = bκ

2
c. Then, the probability that the adversary is

successful is: (
κ
bκ
2
c

)
2κ

Denote the term above by p(κ). The protocol can be iterated enough times so that
the probability of a random guess is low. In other words, choose a µ such that the
probability p(κ)µ is small. We can choose values of these parameters such that this
probability is as low as 10−6, which as mentioned earlier will suffice to be an acceptable
level of security [8]. For instance, if k = 10, we can choose µ = 6 or 7. In Chapter 2,
we called this attack Random Guess 1. That is, random guess on the response space.

6.3.2 Randomly Guessing the Secret

The other form of random guess attack, Random Guess 2 as mentioned in Chapter
2, targets the secret space. More specifically, the adversary randomly chooses a valid
secret and then correctly follows the steps of the protocol using the randomly chosen
secret. As we have seen, the success probability of this attack depends on the size of
the secret space. Since the secret space is of size

(
n
k

)
in our protocol, the probability

of success of correctly guessing the secret is
(
n
k

)−1
for our protocol. For n = 200 and

k = 10, the success probability is about 2−54, which is very low. Due to this reason,
unless otherwise specified, whenever we mention random guess attack here onwards,
we shall mean the random guess attack on the response space.

6.3.3 Finding K

Now, let us assume that A is given m challenge-response pairs. Then an intersection
attack similar to the one mentioned in Chapter 2 can be used to find the secret K as
follows. Denote the m challenge-response pairs by (G1, r1), . . . , (Gm, rm).

Attack: Intersection Attack.

Input: m challenge response pairs (G1, r1), . . . , (Gm, rm).
Output: An s ∈ S, where S is the set of candidates for the secret.

1: Choose the pair (G1, r1) and find k-vertex subsets in G1 whose induced sub-
graphs in G1 have r1 edges (One can in fact choose any of the m pairs). Let S
be the set containing all such k-vertex subsets.

2: for i = 2 to m do
3: if an element (k-vertex set) in S, does not have an induced subgraph in Gi

with ri edges then discard the element.
4: if S contains only one element then output the element else sample an element

randomly from S as the output (Note again that an element of S is a set of k
vertices).

96 Protocol Construction 2: Counting Edges

The main part of the attack is Step 1, in which all k-vertex subsets of G1 (or
equivalently V) have to be found whose induced subgraphs in G1 have r1 edges. Note
that finding one such subset does not suffice. To see this, first note that the probability
that the induced subgraph of any k-vertex subset of G1 has r1 edges is given by:

∑κ

i=0

((
κ
i

)
2κ

(
κ
i

)
2κ

)
=
∑κ

i=0

((
κ
i

)
2κ

)2

=
1

22κ

∑κ

i=0

(
κ

i

)2

=

(
2κ
κ

)
22κ

Where we have used the identity [46, p. 135]:

κ∑
i=0

(
κ

i

)2

=

(
2κ

κ

)
Thus, on average there are: (

2κ
κ

)
22κ

(
n

k

)
possible k-vertex subsets of V whose induced subgraphs in G1 have r1 edges. If we
put n = 200 and k = 10, this amounts to about 251 10-vertex subsets. Thus, if an
algorithm outputs one k-vertex subset of V whose induced subgraph in G1 has k1 edges,
the probability that this is the secret K is very low. So, a better strategy is to keep the
list of all “satisfying” k-vertex subsets and further refining the list with the knowledge
of more challenge-response pairs. One can find all such sets of k vertices with a brute
force attack of complexity O(

(
k
2

)(
n
k

)
). The question is, can one do better?

Another way of executing Step 1 is to count all r1-edge induced subgraphs in G1,
with exactly k vertices. One way to do so is to solve the k-Edge Induced Subgraph
problem. Given a graph G, this problem asks to decide whether G contains an induced
subgraph of r edges. Note that a solution to this problem does not necessarily imply
that the resulting induced subgraph has exactly k vertices. Nevertheless, this problem
has recently been shown to be fixed-parameter tractable [47]. In other words, there
exists an algorithm that solves the problem in time exponential in k but polynomial
in n. On the other hand, the counting version of the problem, which asks to count the
number of r-edge induced subgraphs in G is fixed-parameter intractable [47]. Denote
this problem by k-#Edge Induced Subgraph.3 Note that induced subgraphs can
have isolated vertices too. As counting all r1-edge induced subgraphs in G1 is fixed-
parameter intractable, this approach does not seem to produce an efficient attack (in
the sense of fixed-parameter tractability). However, as mentioned before, the problem
presented to the adversary is a little different from p-#Edge Induced Subgraph.
The adversary at least knows that the induced subgraph of r1 edges has exactly k
vertices. The exact problem can then be stated as follows:

Given m pairs (G1, r1), . . . , (Gm, rm), where Gi is a graph on a vertex set
V of n vertices, find a k-element subset K of V such that the induced
subgraphs Gi[K] have ri edges, for 1 ≤ i ≤ m.

3For counting problems, we use the symbol # following convention. More on this appears in the
next chapter.

6.4 Drawbacks of the Basic Protocol 97

As mentioned before, when m = 1 there are many candidates for the secret set K.
The problem is to find a candidate when m is such that a unique k-vertex subset is
expected (information theoretic bound). We can estimate this as:((

2κ
κ

)
22κ

)m(
n

k

)
< 1

⇒
(
n

k

)
<

((
2κ
κ

)
22κ

)−m
⇒ log2

(
n

k

)
< −m

(
log2

(
2κ

κ

)
− log2 22κ

)
⇒ m > −

log2

(
n
k

)(
log2

(
2κ
κ

)
− log2 22κ

)
Recall that κ =

(
k
2

)
. Denote this lower bound on m by mlb. For instance, when

n = 200 and k = 10, m > 16 challenge-response pairs are expected to give a unique
solution, which will be the secret K. For any m > 1, we call this problem Common
Vertex Subset. In Section 7.5 of the next chapter, we show that this problem is
fixed-parameter intractable. Of course, as mentioned earlier, this result only shows
that the problem is fixed-parameter intractable in the worst case. Since, the graphs
generated in the protocol are random, the result does not necessarily imply hardness of
the problem in this case. Consider for instance a randomized probabilistic algorithm
that when given the pair (G1, r1) simply outputs a random k-vertex subset of V . If
run 22κ/

(
2κ
κ

)
times, the algorithm is expected to output a k-vertex subset of V whose

induced subgraph contains r1 edges with high probability. Of course, this algorithm
will not perform well with m > mlb pairs, as now we expect a unique k-vertex subset
to satisfy all m pairs.

6.4 Drawbacks of the Basic Protocol

Unfortunately, there is an efficient way of attacking the protocol with relatively small
values of m; around 300 to 400. To understand this, denote by xi,j a variable that is
1 if vertices vi, vj are both in K and 0 otherwise. Let A be a binary matrix whose ith
row corresponds to the “stretched out” adjacency matrix of graph Gi. That is, let Ai
denote the adjacency matrix of Gi. Then we create a row vector from this matrix of
length η =

(
n
2

)
, with the entries of Ai in this order: a1,2, a1,3, . . . , a1,n, a2,3, . . . , an−1,n.

This row vector is then the ith row of A. Let r denote the vector of m elements whose
entries are the m responses, i.e., m edge-counts. Then, we have the following system
of linear equations:

Ax = r (6.1)

where x is the unknown vector of the xi,j’s with wt(x) = κ. Figure 6.1 shows two graphs
G1 and G2 on the vertex set V = {1, 2, 3, 4}. For these two graphs the m× η = 2× 6

98 Protocol Construction 2: Counting Edges

matrix A is as follows,

(1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

G1 0 1 0 0 1 1
G2 0 1 0 1 1 0

)

4

3

1

2

G1
4

3

1

2

G2

Figure 6.1: Two graphs G1 and G2 on the vertex set V = {1, 2, 3, 4}.

If there is no efficient algorithm for solving the system of Equation (6.1) for m < η,
then the protocol can be used until η =

(
n
2

)
observed challenge-response pairs, since

Gaussian elimination cannot be used for η <
(
n
2

)
to uniquely solve for the secret.

In other words, potentially, the protocol can be used for O(n2) number of challenge-
response pairs, instead of just O(n) in the case of the Example Protocol mentioned in
Chapter 2. This is the main idea behind the design of this protocol. Unfortunately,
there is an efficient way to solve this system of equations with a far smaller value
of m through linear programming, by considering Equation (6.1) as an integer linear
program. It is important to note that an accurate representation of the problem in
terms of an integer linear program should also include other constraints, such as when
xi,j = 1 and xj,k = 1 then xi,k = 1, for all i, j, k ∈ V . However, with a sufficiently
large m, the adversary does not need to be concerned about these constraints as then a
unique solution to the above system of equations will obey such constraints. If κ� η,
we can solve this problem with a linear programming relaxation. We relax the integer
restriction, i.e., we assume x ∈ R, and then attempt to solve the following linear
program:

minimize 1 · xT subject to Ax = r,x ≥ 0

It turns out that with an appropriate matrix A and sufficiently large m, the solution
returned by the linear program is in fact the solution of the original problem with high
probability [48]. With n = 200, k = 10 and m = 400, we ran the linear programming
solver lp solve4 using MATLAB on randomly generated instances of A and x. The
solver returned the correct secret in all 10 trials with an average time of about 100
seconds. On the other hand, with m = 200 the solver did not output the correct
secret, even after running it a number of times. The probability of finding the correct

4http://lpsolve.sourceforge.net/5.5/

http://lpsolve.sourceforge.net/5.5/

6.4 Drawbacks of the Basic Protocol 99

- 0 1 0

0 - 0 1

1 0 - 1

0 1 1 -

= 1, = 2, = 3, = 4= 1, = 2, = 3, = 4()

Figure 6.2: An example implementation of the basic Counting Edges Protocol.

secret was also very low for m = 300. Thus, it is evident that for some m in the range
[300, 400] with high probability the linear program above gives a solution that is also
the solution of the original problem with wt(x) = κ. Although, this program takes an
m greater than mlb, the value of m that can be safely used is not sufficient for practical
purposes. This will only allow m/µ sessions before the secret needs to be renewed.
We can choose µ to be 6 so that the chance of success of the random guess attack is
around one in a million. With m = 200, this means only about 33 sessions after which
the secret needs to be renewed.

Another drawback relates to the implementation of the protocol. We can implement
the protocol using software icons similar to the one for the Example Protocol described
in Chapter 2. A challenge can then be displayed as a grid of software icons connected
through random edges. However, this way could be cumbersome for the user as n
grows. A better way is to display the adjacency matrix of the graph. The borders of
the matrix can be identified by software icons. In this case, the user will have to find
entries in the matrix corresponding to his secret set of icons, and sum the entries (which
will be binary). See Figure 6.2. The figure shows the adjacency matrix of the graph G1

from Figure 6.1. The user only remembers the secret icons, and counts the positions
corresponding to pairs of secret icons. The transparent icons in the background of
each “cell” make it easier for the user to locate the correct entry. Still however, the
drawback of this protocol is displaying an adjacency matrix of size up to 200 × 200,
which will definitely depend on the size of the display. We consider these two points
and construct the revised Counting Edges Protocol next.

100 Protocol Construction 2: Counting Edges

6.5 The Counting Edges Protocol: Main Construc-

tion

We make two main changes in the revised version of the protocol. First, the response
is now an integer modulo a positive integer d > 1. This is to prevent the problem
from being represented as a linear or integer program, and hence mitigating the attack
mentioned before. Secondly, we now only show a subset V ′ of nodes from V , in a
challenge. This makes it easier for the user to locate the secret vertices among the
reduced set of vertices shown on the user’s terminal. We also limit the maximum
number of non-secret vertices displayed to k′ < k. This reduces the computation
time per challenge. Once again, the idea is to be able to use the protocol for O(

(
n
2

)
)

authentication sessions before secret renewal.

Protocol: Counting Edges (Main Construction).
Setup: Let µ, n and k ≤ n be publicly known positive integers. Let V = {1, . . . , n}

be a set of vertices. H and C share a k-element (or k-vertex) subset K of V as
a secret. Also, let n′ ≤ n, k′ ≤ k and d > 1 be (publicly known) non-negative
integers.

1: for i = 1 to µ do
2: C creates an undirected graphGi = (V ′, E ′i), where V ′ is a random n′-vertex

subset of V containing k′ vertices from K, and E ′i is chosen randomly.
3: H counts the number of edges in the induced subgraph, Gi[K

′], where K ′

is a k′-vertex subset of K, i.e., it contains those secret vertices that are
present in G′. H sends the result modulo d to C.

4: if all µ responses are correct, C accepts H else C rejects H.

Note that the problem is now different from the Common Vertex Set problem,
as we now return an edge count modulo an integer d. However, we shall also show in
the next chapter (cf. Section 7.5) that this variant is also fixed-parameter intractable.

6.6 Security Analysis

Note that we have used the modulus to avoid the problem being represented as a
linear program such that the protocol can be used for O(

(
n
2

)
) authentication sessions

before secret renewal. In spite of this, and the fact that the underlying problem is
fixed-parameter intractable, we still need to consider the exact running time of attacks
so that we can choose values of system parameters accordingly. This will allow us,
for instance, to more accurately calculate the number of authentication sessions the
protocol can be used before secret renewal. Specifically, we conjecture that on the
basis of the evidence from the following analysis, in light of Definition 4, the Edge
Counting Protocol is (d−µ,

(
n
2

)
)-secure against passive adversaries. In the following, we

let η =
(
n
2

)
, η′ =

(
n′

2

)
, κ =

(
k
2

)
and κ′ =

(
k′

2

)
.

6.6 Security Analysis 101

6.6.1 Fine-tuning Protocol Parameters

Since now the secret and non-secret vertices are chosen by C differently, the two prob-
abilities should be same to ensure that an attacker cannot find the secret simply by
examining the frequency with which a vertex appears in challenges. For instance, if
the secret vertices are more likely to appear in a challenge, the attacker can simply
guess that the vertices that appear more often in a given set of challenges are the secret
vertices. Now, the probability with which a secret vertex appears is k′/k. The same
probability for a non-secret vertex is (n′ − k′)/(n− k). If both these probabilities are
equal, we get:

k′

k
=
n′ − k′

n− k

⇒ k′

(n− k)
=

k

(n′ − k′)
⇒ k′n− k′k = kn′ − kk′

⇒ k′n = kn′

⇒ n

k
=
n′

k′
(6.2)

This gives us the following theorem,

Theorem 2. For any challenge in the Counting Edges Protocol, the probability of
appearance of a secret vertex is the same as the probability of appearance of a non-
secret vertex, if and only if n

k
= n′

k′
.

In other words, according to Equation (6.2), the ratio of n′ to k′ should be equal
to the ratio of n to k. Thus, if we choose n = 200 and k = 20, we can use n′ = 50
and k′ = 5. Another consideration is regarding the distribution of the responses. Since
a response is now an integer modulo d, we need to ensure that the reply is almost
uniformly distributed in {0, . . . , d − 1}. Let κ′ =

(
k′

2

)
. Then, as we have seen before,

the probability that the induced graph G′[K ′] has i edges is:(
κ′

i

)
2κ′

where 0 ≤ i ≤ κ′. Let p(j) be the probability of obtaining the integer j as the reply to
a challenge, where j ∈ {0, . . . , d− 1}. Then, we can see that:

p(j) =
∑

i≡j mod d

(
κ′

i

)
2κ′

Thus, we should choose a d > 1, such that with a given k′, the probabilities p(j) are
almost the same. For instance, with k′ = 5 and d = 3, we get:

p(0) = 0.3330078125,

p(1) = 0.3330078125,

p(2) = 0.333984375.

102 Protocol Construction 2: Counting Edges

Unfortunately, for other choices of d, the difference in probabilities is considerably
larger, meaning that µ has to be increased to make the success probability of random
guess equivalent to the case when d = 3.

6.6.2 Meet-in-the-middle Attack

The meet-in-the-middle attack attack, described in great detail in the previous chapter,
is a general algorithm to search a space of

(
n
k

)
objects. This has been applied on

certain counting problems in graphs [49], and also as attacks on human identification
protocols [8]. In a nutshell, the meet-in-the-middle strategy attempts to reduce the
search space of O(

(
n
k

)
) possibilities, to O(

(
n
k/2

)
), by storing the intermediate results

in a table, and finding if there are any collisions. Of course, for this strategy to be
successful, it should be possible to decompose the search space into half, without having
to do further computations when the two halves are joined. In the Common Vertex
Subset problem, halving the search space does not seem to work. This is so because
counting edges in two induced subgraphs of k/2 disjoint vertices does not give us the
result when considering the induced subgraph of the union of the two k/2-vertex sets,
since the vertices from the first vertex-set might be connected to vertices in the second
set.

This is not surprising, since to the best of our knowledge there is no meet-in-the-
middle attack for a related problem, k-Clique (cf. Section 7.5 of Chapter 7). However,
we can still deploy this strategy on the adjacency matrix formulation of the problem as
described in the previous section. More specifically, the problem can now be described
as follows:

Ax ≡ r mod d. (6.3)

However, since x is a vector of η =
(
n
2

)
unknowns with weight κ =

(
k
2

)
, the complexity

of the meet-in-the-middle attack on this system is quite large. Recall that in Chapter
5 we proposed an improved variant of the meet-in-the-middle attack on such systems
of linear equations. The attack from [8] and the one mentioned in Chapter 5 have the
same space complexity, roughly

(
η
κ/2

)
, where η is the number of unknowns and κ is

the Hamming weight of the unknown vector. The time complexity of the attack from
[8] on this protocol is

(
η
κ/2

)
, whereas the time complexity of the attack from Chapter

5 is
(
η/2
κ/2

)
. For n = 200 and k = 20, the first meet-in-the-middle attack on the above

system of linear equations has time complexity in the order of 2864, which is huge.
The meet-in-the-middle attack from Chapter 5 has a complexity of about 2769, which
is still enormous. Notice that the brute force attack has complexity 290, with these
parameters. Of course, after obtaining

(
n
2

)
challenge-response pairs, the adversary can

find the secret with high probability using Gaussian elimination. Thus, we limit the
use of the protocol to

(
n
2

)
challenge-response pairs before secret renewal.

6.6.3 Attacks from Coding Theory

Another way of looking at Equation (6.3) is from a coding theory perspective (see
Appendix A.4 for a brief introduction to coding theory). If we consider A to be the

6.6 Security Analysis 103

parity check matrix, and the vector r to be the syndrome of an unknown codeword, then
finding an x satisfying Equation (6.3) is the same as finding an error vector of weight
κ =

(
k
2

)
. Although A is a random matrix, with large enough n, it is highly likely that all

m rows of A are linearly independent. In fact, given a random matrix A with elements
from Z3, the probability that it has the full rank n, converges to 0.56012 as n grows [22].
From a security perspective, therefore, it is safer to assume that all m rows are linearly
independent. If not, the attacker can still choose m linearly independent rows from
O(m) observations. Thus, assuming A to be of full rank, when m > mlb = logd

(
η
κ

)
we

expect to obtain a unique codeword of weight κ through decoding.5 We will see in the
next chapter that with d = 2 this is the Maximum Likelihood Decoding problem,
which is both NP-Complete and fixed-parameter intractable. It can be shown that the
problem is NP-Complete with any d [50, Appendix A].

Still, if the Hamming weight of x is very low, we can use information set decoding
algorithms to find the secret x [51]. The main idea behind information set decoding is to
find an information set. That is, find a set of m columns of A such that they correspond
to all the non-zero entries in x. If the resulting m×m submatrix of A is invertible, then
Gaussian elimination can be used to recover x. Niebuhr et al. [50] generalize some of
the information set decoding algorithms for finite fields Fd other than F2. Translated
to our formulation, they give lower bounds on the best known information set decoding
algorithms for different values of d, n, m and k. To understand the complexity of the
attacks, we consider concrete values of parameters, that are suggested in Table 6.1.
Note that η′ =

(
n′

2

)
and κ′ =

(
k′

2

)
. With these values, the system in Equation (6.3)

has 19900 unknowns, with the Hamming weight of the unknown x being 190 and
the modulus d = 3. We see that these values of parameters are higher than those
evaluated in [50, §3, p. 7]. Although, d = 3 is not explicitly used, it is evident, that
for much smaller values of η′ and κ′ these algorithms are infeasible. Since the matrix
A is generated at random, it is reasonable to assume that information set decoding
algorithms are the best form of attack on the system from a coding theory perspective,
since information set decoding algorithms can be used even if the underlying code
structure is unknown.

One could also use the knowledge of sparsity of the matrix A, and use Low Density
Parity Check (LDPC) decoding to obtain a solution [52]. LDPC codes use a sparse
parity check matrix. In our case A is sparse, with the average row weight being,
η′

η
· 1

2
· η = η′

2
and average column weight being, m

η
· η′

2
. With the specified set of

system values, and say for m = η
2
, we get an average row weight of 612.5 and average

column weight of 306.5. Thus, we can consider the problem as maximum likelihood
decoding of irregular LDPC codes.6 However, we can see that for comparable values of
parameters, LDPC decoding using information set decoding algorithms takes in order
of 292 operations [53, p. 8]. However, in the case considered in [53] the matrix A is
hidden. It remains an open problem to evaluate the complexity of LDPC decoding
over Z3 with our suggested values of parameters.

5Note that we are using the same notation mlb for a different lower bound.
6Regular LDPC codes have fixed row and column weights.

104 Protocol Construction 2: Counting Edges

6.6.4 Coskun and Herley’s Divide-and-Conquer Attack

We briefly discussed Coskun and Herley’s divide-and-conquer attack in Section 2.5 of
Chapter 2. To recall, Coskun and Herley’s attack is a clever brute force strategy to
find the secret in protocols which use a subset of the secret to compute responses to
challenges [27]. Since the Counting Edges Protocol uses k′ < k secret vertices in each
challenge, their attack is applicable to this protocol. However, Coskun and Herley’s
attack was described on a “hypothetical” human identification protocol; one that uses
an N -bit secret, out of which U bits are used to construct a response to a challenge,
and secrets can differ from each other by 1 bit. In the Counting Edges Protocol, and
many other human identification protocols, the secret is a set of k objects from a total
of n. Thus, their attack needs to be generalized on such “k-out-of-n” protocols. For
instance, in k-out-of-n protocols, it makes no sense to consider secrets that are different
in one bit. We have to instead look at secrets that differ from each other in one or
more objects.

In Appendix A.5, we extend this attack on the Counting Edges Protocol, which
requires substantial revisions of some of the results from [27]. We also implemented
the attack on the Counting Edges Protocol, and the simulation results show that the
attack is infeasible in practice, on the Counting Edges Protocol. This is probably due
to the fact that the number of bits of the secret used to respond to each challenge is
substantially higher in the Counting Edges Protocol, then the numbers evaluated by
Coskun and Herley in [27]. See Appendix A.5 for more details.

6.7 Usability Analysis

Table 6.1 summarizes the suggested values for the system parameters. The values of
the system parameters are chosen according to the time and/or space complexity of
the best known attacks, and the graphic presentation of the protocol. µ is chosen such
that the success probability of random guess attack is less than 10−6. The “Sessions”
column indicates the number of sessions allowed before secret renewal. It is chosen
according to

(
n
2

)
/µ. The total number of edges in a subgraph of k′ = 5 nodes can be

at most κ′ =
(
k′

2

)
= 10. Thus, the user has to count at most 10 edges in a graph of

n′ = 50 nodes, which is arguably practical. As far as implementation of the protocol
is concerned, we can use either a graph based implementation or an adjacency matrix
based implementation. We can use an implementation based on software icons similar
to the one shown in Figure 6.2. The difference now is that the position of the icons is
randomly permuted such that the adversary cannot gain the knowledge of the secret
by merely checking the location of appearance of icons. This random shuffle is bound
to increase execution time of the protocol as users will have to locate 5 secret icons in a
total of 50 cells in the display screen. If we assume that it takes 2 seconds for the user
to locate a secret icon, and a further 1 second to count each edge, then each iteration
of the protocol can be done in 10 + 10/2 = 15 seconds on average (since on average
there will be 10/2 edges present). For µ = 13 iterations, this amounts to 195 seconds.

By comparison, the average authentication time for the HB Protocol was shown to

6.8 Conclusion 105

Table 6.1: Suggested values of parameters for the Counting Edges Protocol.

n k n′ k′ d η κ η′ κ′ µ Sessions

200 20 50 5 3 19900 190 1225 10 13 1530

be about 160 seconds [8]. However, it should be noted that their usability study was
done with values of system parameters that are not large enough for sufficient security.
The specific values used for their usability study were n = 200 and k = 15. The best
known (passive) attack on the HB Protocol is the meet-in-the-middle attack mentioned
before, of space complexity O(

(
n
k/2

)
). With these values of system parameters the

space complexity is about 246, which cannot be considered intractable. If we raise this
to around 260 then the HB Protocol is bound to take more time per authentication
session. Of course, there are some other drawbacks of the HB Protocol as well, such
as the requirement to send the wrong response with probability ε < 0.5. Thus, the
Counting Edges Protocol appears to be better in terms of the balance between usability
and security. To conclude, we conjecture that for low values of α and β, the Counting
Edges Protocol is (α, β, 195)-human executable. We acknowledge the lack of empirical
evidence to back this claim.

6.8 Conclusion

The Counting Edges Protocol proposed in this chapter has been constructed from a
hard mathematical problem, specifically a fixed-parameter intractable problem. How-
ever, the variant of the protocol that we propose for use in practice is essentially based
on a sparse version of the original problem. We use parameters n′ < n and k′ < k,
to ensure that there are not too many icons displayed on the user’s screen in the im-
plementation of the protocol. The security of the protocol is based on the assumption
that there are no substantially better algorithms to solve the sparse variant of the orig-
inal problem. We have also analyzed the ways in which the sparsity of the underlying
problem can be used to attack the protocol. We do not claim that the discussion is
comprehensive. For instance, in the main Counting Edges Protocol, there might be
a way to solve the problem of finding a k-vertex subset having a specified number of
edges in a sparse graph, without having to resort to the much harder adjacency matrix
formulation of the problem. To the best of our knowledge, there does not appear to
be an easy way to solve this problem. Indeed, it is known that the closely related
Densest k-Subgraph problem (See Section 7.5) remains NP-Hard even when the
graph G has maximum degree 3 [54].

The approach used in this chapter is to find fixed-parameter intractable problems
to construct human identification protocols. Problems from this area of computational
complexity theory are appealing since they are “hard” with a fixed parameter, k. This

106 Protocol Construction 2: Counting Edges

fixed parameter can be naturally mapped to the size of the secret in human identifi-
cation protocols. However, as we have seen, mere fixed-parameter intractability is not
enough to guarantee the security of the protocol. We have needed to further anaylze
security employing the randomness of the instances generated by the Counting Edges
Protocol. And, where there are efficient algorithms for random instances, we have
discarded the use of the underlying problem (cf. the basic Counting Edges Protocol).
Secondly, in order to obtain better usability we needed to generate sparse instances
of the underlying problem. If an efficient generic algorithm to attack the sparse vari-
ants of fixed-parameter intractable problems exists, then perhaps we cannot hope for
a practical human identification protocol.

The underlying problem of the Counting Edges Protocol, namely Common Ver-
tex Subset, is not the only fixed-parameter intractable problem used in the construc-
tion of human identification protocol. As we show in the next chapter, many existing
human identification protocols are actually based on fixed-parameter intractable prob-
lems, without the inventors of these protocols realizing the link. These include, the
HB Protocol and the Sum of k Mins Protocol from [8], the Foxtail Protocol from [14],
and even the Example Protocol from Chapter 2. However, mere fixed-parameter in-
tractability does not tell us how many authentication sessions a protocol can be used.
This shall be clear next, where we give a background on the theory of fixed-parameter
intractability, and show that the above mentioned protocols as well as the Counting
Edges Protocol are based on fixed-parameter intractable problems.

7
Fixed-Parameter Intractable Problems in

Human Identification Protocols

As mentioned in the prelude to the previous chapter, to date only one human identifi-
cation protocol is known to be based on a hard mathematical problem. This protocol
is the HB protocol [8], named after its inventors Hopper and Blum. The protocol is
based on the problem of Learning Parity with Noise (LPN in short), which is
an NP-Hard problem. Moreover, there is some evidence which suggests that it is hard
even in the random case [8, 55]. Apart from this protocol, there is no known human
identification protocol in literature based on an NP-Hard or NP-Complete problem.
However, the problems used in the construction of other protocols have often been
conjectured to be hard. For instance, the other protocol from [8] is based on the so-
called Sum of k Mins problem, which Hopper and Blum claim to be some sort of
“sparse subset sum problem” [8, §3.2]. However, without a formal reduction we can
only speculate on the hardness of a problem. Indeed, it is known that the Subset
Sum problem is solvable in pseudo-polynomial time [56, p. 247]. Thus, it is desirable
to know the hardness of problems using formal complexity theoretic reductions.

Furthermore, as we discussed in the last chapter, mere NP-Hardness of a problem
does not suffice in case of human identification protocols. Such protocols use problems
that have another explicit parameter, k. This is necessary so that humans can easily
remember a secret of k objects in a large pool of n objects. Thus, even though LPN
is NP-Hard, the HB protocol proposed for human identification in [8] is based on a
variant of LPN; one that employs a restricted Hamming weight. To show the hardness
of problems that have an additional parameter k, we use the theory of fixed-parameter
intractability, introduced mainly by Downey and Fellows [43], and the notion of fixed-
parameter intractable problems from this theory.

This Chapter is organized as follows. Just as in the previous chapter, we begin by
giving a motivating example using the HB Protocol in Section 7.1; only this time our

107

108
Fixed-Parameter Intractable Problems in Human Identification

Protocols

treatment is more detailed. Section 7.2 contains a brief background on parameterized
complexity theory. This is followed by a series of reduction results showing the fixed-
parameter intractability of the underlying problems in the Sum of k Mins Protocol in
Section 7.3, HB and the Example Protocol in Section 7.4, the Counting Edges Protocol
in Section 7.5, and the Foxtail Protocol [14] in Section 7.6. The final section contains
the concluding remarks.

7.1 A Motivating Example: The HB Protocol

The HB protocol [8], named after its inventors Hopper and Blum, has been the focus
of researchers as a protocol for resource constrained devices [55]. However, the original
protocol was intended for human identification. The protocol is as follows.

Protocol: HB.

Setup: Let µ and n be publicly known positive integers. Let 0 ≤ ε < 1/2 be the
noise parameter. H and C share a secret x ∈ Zn2 .

1: for i = 1 to µ do
2: C samples a random c ∈ Zn2 and sends to H.
3: H computes r = c · xT . With probability ε, H sends the wrong response

1− r, else he sends the correct response r to C.
4: if the number of correct responses are ≥ (1 − ε)µ then C accepts H else C

rejects H.

Consider the problem presented to the adversary, A. A is given a few challenge-
response pairs (the challenge vectors ci’s and their responses ri’s). In order to find the
secret vector x, A has to solve the so-called Learning Parity with Noise problem
which is known to be NP-Hard [8, 57]. As before, we shall call this the LPN problem
in short. If the above mentioned protocol does not have any other weaknesses, finding
the secret might be the only feasible way to impersonate H.

For the sake of usability, Hopper and Blum proposed two main changes to the
protocol. One was changing the base from 2 to 10, which is arguably easier for most
humans. The second was restricting the Hamming weight of x to k. In such a case, k
can be small, say around 15. Let us call this the k-LPN problem, where k emphasizes
the fact that wt(x) = k. The issue here is that once k is fixed, this problem is not
NP-Hard. An obvious brute force algorithm to find x runs in time O(

(
n
k

)
). A better

algorithm sketched by Hopper and Blum is the meet-in-the-middle attack, which works
in time O(

(
n
k/2

)
). These two terms are bounded by O(nk). Since, k is fixed, these

algorithms are polynomial in the size of the problem.
Notice that O(nk) is an exponential time bound, if k is not fixed and is considered

as part of the input to the algorithm. However, in the context of human identification
protocols, k has to be kept small due to the inherent limitations of human memory.
Every protocol designed for human identification would require a “cap” on the cardi-
nality of the secret, k, or else it is not practical. In general among a pool of n objects,

7.2 Parameterized Complexity Theory 109

H would have to choose k objects as a secret. As mentioned above, there is a trivial
brute force algorithm that runs in time O(

(
n
k

)
) to find the secret for such protocols.1 If

k is small and fixed, this means that it is easy to break the protocol in the sense of the
traditional notion of polynomial time computability. However, if n is large, say 200,
then a modest value of k, say 15, means that the run time of the brute force algorithm
is about 273. Thus, even though the algorithm is polynomial in n, it is not feasible in
practice.

Traditional complexity theory divides problems into two main classes: those that
can be solved by polynomial time algorithms and those that can be solved by only
exponential time algorithms. This split is made on the grounds of asymptotic behavior
of algorithmic complexities. This asymptotic behavior is of little relevance to human
computational and memorizing abilities, which are limited. Due to this reason the value
of k in particular has to be kept small. Thus, an algorithm that takes exponential time
only in k, can be an efficient algorithm in practice. An example, that we have already
mentioned, is that of the Vertex Cover problem that is known to be NP-Complete.
However, there is an algorithm that solves this in time O(kn+ (4

3
)kk2) [44]. This time

is exponential if k is considered as part of the input. But if this problem is to be used
as a primitive for a human identification protocol, then this algorithm can efficiently
find the secret. For instance, if n = 200 and k = 15, the running time of the algorithm
is only about 214 in practice. Compare this to the brute force attack which takes time
273.

Researchers have in fact implicitly assumed that the best known attacks on their
proposed human identification protocols run in time close to O(

(
n
k

)
), or O(nf(k)) for

some function f . The protocols from [8] and the CHC Protocol from [21], discussed
in Chapter 4 are examples. However, they have not explicitly shown whether these
claims have any ground. Through the theory of fixed-parameter intractability we can
show that the best possible algorithms to solve a problem run in time nf(k) for some
function f . This framework allows us to formally show the (worst-case) hardness of the
underlying problems used in human identification protocols. Although these results do
not directly show the hardness of random instances of the problems, they give some
evidence that the problems used to construct human identification protocols are likely
to be hard.

7.2 Parameterized Complexity Theory

All the definitions used in this section are taken from [20] with similar notation. Let
Σ be an alphabet. Let Q ⊆ Σ∗ be a problem in classical complexity theory. Define
κ : Σ∗ → N to be a parameterization of Q. That is, to every finite string x the
parameterization of Q associates a natural number κ(x). The problem (Q, κ) is called
a parameterized problem.

Definition 9. A parameterized problem (Q, κ) is called fixed-parameter tractable if
there is an algorithm that decides Q in time at most f(κ(x))p(|x|) for some computable

1provided, of course, that at least one challenge-response pair has been observed.

110
Fixed-Parameter Intractable Problems in Human Identification

Protocols

funciton f and some polynomial p.

An algorithm that runs within the aforementioned time is called an fpt-algorithm.
The class FPT contains all fixed-parameter tractable problems. This can be considered
as the class of problems easy to solve much like the class PTIME in classical complexity.
Let (Q, κ) and (Q′, κ′) be two parameterized problems over alphabets Σ and Σ′.

Definition 10. An fpt-reduction from (Q, κ) to (Q′, κ′) is the map R : Σ → Σ′ such
that

1. For all x ∈ Σ∗, x ∈ Q if and only if R(x) ∈ Q′.

2. R is computable by an fpt-algorithm with respect to κ.

3. There is a computable function g : N→ N, such that κ′(R(x)) ≤ g(κ(x)), for all
x ∈ Σ∗.

The corresponding notion of a nondeterministic Turing machine in parameterized
complexity theory is the notion of κ-restricted nondeterministic Turing machine [20].
Let κ : Σ∗ → N be a parameterization.

Definition 11. A nondeterministic Turing machineM with input alphabet Σ is called
κ-restricted, if there are computable functions f and h, and a polynomial p, such that
on every input x ∈ Σ∗, the machine runs for at most f(κ(x))p(|x|) steps, at most
h(κ(x)) log |x| of which are nondeterministic.

Definition 12. W[P] is the class of all parameterized problems (Q, κ) which can be
decided by a κ-restricted nondeterministic Turing machine.

Both FPT and W[P] are closed under fpt-reductions, and FPT ⊆ W[P] [20]. By
closure, we mean if a problem (Q, κ) is fpt-reducible to a problem (Q′, κ′) ∈ FPT (resp.
W[P]), then (Q, κ) ∈ FPT (resp. W[P]). There is in fact a whole hierarchy of classes
called the W-hierarchy. Each class in this hierarchy is closed under fpt-reductions [20],
so that the following is true:

FPT ⊆W[1] ⊆W[2] ⊆ . . . ⊆W[P]

The reader interested in the difference in these classes can refer to [20]. For the sake
of this text, it suffices to know that all classes W[t], with t ≥ 1 and the class W[P] are
fixed-parameter intractable. In other words, it is unlikely that there is an fpt-algorithm
that solves these problems, in the same sense that there is unlikely that polynomial
time algorithms exist for NP-Hard or NP-Complete problems. Furthermore, we shall
not be interested in the membership of any problem in the W-Hierarchy. Instead we
shall only be interested in the question whether a problem is as hard as any problem
in the W-Hierarchy and hence is not fixed-parameter tractable.

7.3 The Sum of k Mins Protocol 111

7.2.1 Parameterized Counting Problems

#P is the class of intractable counting problems in classical complexity theory. In-
terestingly, the counting versions of many easy decision problems are #P-Complete.
For instance, deciding if a bipartite graph contains a perfect matching is polynomial
time solvable. On the other hand, counting the number of perfect matchings in a bi-
partite graph is #P-Complete, and is therefore a hard problem [20, 58]. Just like the
W-Hierarchy for fixed-parameter intractable decision problems, there is a correspond-
ing #W-Heirarchy for fixed-parameter intractable counting problems. Following the
notation used in [20], the class of fixed-parameter tractable counting problems will also
be denoted by FPT.

Here again, there are many fixed-parameter tractable decision problems whose cor-
responding counting versions are intractable. An example is finding a path of length
k in a directed or undirected graph. Let us call this problem k-Path.2 This prob-
lem is fixed-parameter tractable as it can be solved by an algorithm running in time
2O(k)n2.376 [20, 59]. The corresponding counting problem of counting the number of
paths of length k in a directed or undirected graph, i.e., k-#Path, is #W[1]-Complete
[60].

7.3 The Sum of k Mins Protocol

The section shows the hardness of the Sum of k Mins problem, used as a primitive
in the Sum of k Mins Protocol from [8]. Since this is the first of the hardness results in
this chapter, our treatment is very detailed. We first describe the problem, and show
how this is used as a primitive in the Sum of k Mins Protocol from [8]. This is followed
by illustrating our method of reduction on a variant of the Sum of k Mins problem
(one without the modulus). We then move to show that the original problem is both
NP-Complete and W[1]-Hard.

A construct that shall prove useful in the following discussion is the map:

em : Zn → Z(n2)

which is defined as:

em(v) = (min{v1, v2}, . . . ,min{v1, vn},
min{v2, v3}, . . . ,min{vn−1, vn})

where v = (v1, . . . , vn) and em(v) has
(
n
2

)
= n(n−1)

2
elements. Notice that em(v)

contains all possible pairwise minimums from v. We say that v is expanded by taking
minimums.

2The correct notation should be (Path, k), where Path is the classical problem of finding a path
of maximum length in the graph. However, we shall shorten this by using the prefix k before the
name of a classical problem. In some problems the parameter k shall be explicit. Such as the Sum
of k Mins problem which does not have a classical counterpart. In such a case we shall not use the
prefix k.

112
Fixed-Parameter Intractable Problems in Human Identification

Protocols

7.3.1 The Sum of k Mins Problem

We now restate the Sum of k Mins problem from [8] using similar notation. Let n
and k be positive integers, where k ≤ n. Also, let d ≥ 2 be a positive integer. Let
z = {(x1, y1) , . . . , (xk, yk)} be a set of ordered pairs, where 1 ≤ xi, yi ≤ n, and for each
ordered pair (xi, yi), xi 6= yi. Furthermore, let v be an n-tuple whose elements are
integers mod d. Define f (v, z) as:

f (v, z) =
∑k

i=1
min {v [xi] ,v [yi]} mod d

Then the Sum of k Mins problem is:

Given m ordered pairs (v1, u1) , . . . , (vm, um), find a set z such that ui =
f (vi, z) for all i = 1, . . . ,m, where:

vi ∈ Znd , ui ∈ Zd, and logd

(
n(n− 1)/2

k

)
< m <

(
n

2

)
.

As the reader might have guessed, the inequality:

logd

(
n(n− 1)/2

k

)
< m = mlb

is required to ensure a unique solution, and is the oft-mentioned information theoretic
bound on m. Finding a solution to the problem will be relatively easier, for say m = 2,
since on average there will be about 1

d2

(
n(n−1)/2

k

)
solutions (provided the n-tuples are

generated uniformly at random). Thus, this is the information theoretic lower bound
to guarantee a unique solution. m <

(
n
2

)
is necessary since this is the expected number

of pairs required to use Gaussian elimination to solve uniquely for z. Notice that the
m =

(
n
2

)
pairs obtained should be linearly independent in order to apply Gaussian

elimination. However, we can safely assume that below this bound the adversary
cannot use Gaussian elimination since it requires at least

(
n
2

)
pairs. We have used the

same argument in the previous chapters and it applies whenever we mention the use
of Gaussian elimination throughout this chapter. The difficulty in solving the problem
lies in the conjecture that there is no known efficient algorithm that can solve the
problem given m ordered pairs within these two bounds.

7.3.2 The Protocol

This problem can be used as a primitive to construct a human identification protocol
described in the following. It is a reduced version of the protocol presented in [8], since
we consider passive adversaries only.

Protocol: Sum of k Mins.

7.3 The Sum of k Mins Protocol 113

Setup: H and C agree on a secret which is a set of k ordered pairs of indices:
z = {(x1, y1) , . . . , (xk, yk)} such that 1 ≤ xi, yi ≤ n, and for each ordered pair
(xi, yi), xi 6= yi.

1: H sends an identification request to C.
2: for i = 1 to µ do
3: C sends a random n-tuple, v ∈ Znd to H.
4: H computes the sum of k mins function f(v, z) as described above and returns

the answer to C.
5: if all the µ answers are correct then C accepts H else C rejects H.

For implementation, typical values of parameters can be d = 10, k = 12, n = 100 to
200, and µ = 6 [8]. This gives a one in a million chance for success of a random guess.
The passive adversary A can see the random n-tuples sent by C and the corresponding
responses by H. If the adversary wishes to find the secret shared between the two, it
can do so by solving the Sum of k Mins problem.

7.3.3 Matrix Representation

To better understand the Sum of k Mins problem, it is helpful to represent it in
terms of matrices as is done in [8] as follows:

v1,1,2 v1,1,3 · · · · · · v1,n−1,n

v2,1,2 · · · v2,i,j · · · v2,n−1,n
...

...
...

. . .
...

vm,1,2 · · · vm,i,j · · · vm,n−1,n




z1,2
...
zi,j
...

zn−1,n

 ≡
 u1

...
um

 mod d

Here, vl,i,j = min {vl [i] ,vl [j]}, for 1 ≤ l ≤ m, zi,j = 1 if (i, j) ∈ z, zi,j = 0 if
(i, j) /∈ z, and 1 ≤ i < j ≤ n. Notice that row i of the left hand side matrix is em(vi),
for 1 ≤ i ≤ m. Let this system be denoted by V z ≡ u mod d. The problem then
translates into finding the binary vector z of Hamming weight k. Since this is a system
of
(
n
2

)
unknowns, we need m ≥

(
n
2

)
to solve uniquely for z using Gaussian elimination.

However, since the Hamming weight k is restricted, we can still find a unique solution
with m ≥ mlb = logd

(
n(n−1)/2

k

)
. But, for m <

(
n
2

)
, the best known algorithms are

the aforementioned meet-in-the-middle attack which can solve this particular problem
with time complexity O

(
n(n−1)/2

k/2

)
[8]. A slightly better version of the meet-in-the-

middle attack shown in Chapter 5 works with time complexity O
(
n(n−1)/4

k/2

)
. These

algorithms are better than brute force but are still superpolynomial in the size of the
secret if k is logarithmic in n.

Hopper and Blum mentioned that representing the problem in this way leads to a
sparse subset sum problem [8, §3.2]. However, this way of describing the problem bears
more resemblance to some sort of maximum likelihood decoding problem [44]. We call
this problem the Modulo d Maximum Likelihood Decoding problem defined as
follows:

114
Fixed-Parameter Intractable Problems in Human Identification

Protocols

Given an m × n matrix A with entries from Zd for some d ≥ 2 and a
vector b ∈ Zmd , is there a binary vector x of Hamming weight k such that
Ax ≡ b mod d?

With d = 2, this is the Maximum Likelihood Decoding problem described in [44],
which is not only NP-Complete but also W[1]-Hard [44, 61]. It should be noted that
the version described in [44] and [61] asks for an x with Hamming weight at most
k. However, it is easy to see that the hardness results also apply to the version with
an exact Hamming weight k. As mentioned before, W[1]-Hardness implies that the
problem is fixed-parameter intractable in the sense that it cannot be solved in time
f(k)p(n) for some computable function f and some polynomial p [44]. In other words
the best algorithms for this problem are not expected to run in time less than nf(k) for
some function f .

Nevertheless, this transformation does not guarantee that the original Sum of k
Mins problem has no other weaknesses which could be exploited to solve it efficiently
without having to solve the Modulo d Maximum Likelihood Decoding problem.
From here onwards, we shall call the original Sum of k Mins problem, the Modular
Sum of k Mins problem to distinguish it from a generalized form of the problem
described next, which will simply be refered to as the Sum of k Mins problem. This
generalized problem is used to illustrate the reduction used in the main result, which
is the NP-Completeness and W[1]-Hardness of Modular Sum of k Mins.

7.3.4 Generalized Sum of k Mins

We define the (generalized) Sum of k Mins problem as follows:

Given positive integers n and m, a collection of n-tuples v1, . . . ,vm with
non-negative integers as elements, and a collection of non-negative integers
u1, . . . , um, is there a set of pairs of indices {(x1, y1) , . . . , (xk, yk)} with
k ≤ n (n− 1) /2 and 1 ≤ xi < yi ≤ n, such that:

uj =
∑k

i=1
min {vj [xi] ,vj [yi]}

for all j = 1, . . . ,m?

We will illustrate our method of reduction by reducing a form of 0-1 Integer Pro-
gramming problem to it. We call this problem the 0-1 Integer Programming
Feasibility problem or 0-1 IPF in short, following a terminology similar to [62]. 0-1
IPF can be described as follows:

Given positive integers n and m, an m × n matrix A with non-negative
integer entries, and an m-tuple b whose elements are non-negative integers,
is there a binary vector x of Hamming weight k ≤ n such that:

Ax = b?

The reason for calling this 0-1 IPF is that this is the feasibility version of one class
of 0-1 Integer Programming problems (namely the class of problems in which the
coefficients are non-negative integers).

7.3 The Sum of k Mins Protocol 115

Illustration through an Example

We illustrate our method of reduction with the help of a small example. Suppose,
A = a = (8, 3, 9, 5) and b = 17 is an instance of 0-1 IPF. That is, with n = 4 and
m = 1. In terms of a matrix equation, this becomes:

[
8 3 9 5

] 
x1

x2

x3

x4

 = 17

We need to find values of the binary variables xi, for i = 1, 2, 3, 4. If we treat this as
an instance of Sum of k Mins with m = 1, we get:

[
3 8 5 3 3 5

]

z1,2

z1,3

z1,4

z2,3

z2,4

z3,4

 = 17

where the vector on the left hand side is em(a); the expansion of a by taking mini-
mums. As can be seen, this trivial transformation does not give the required result, as
expansion by taking minimums changes the structure of the original 4-tuple. That is,
after expanding the original n-tuple by taking minimums, the largest integer is left out
(if it occurs only once). Additionally, it disturbs the original order of integers in the
n-tuple. However, notice that if we append the largest element in front of the n-tuple,
then the first n integers, after expanding by taking minimums, will be the original
integers in the same order. Thus, if we create a 5-tuple a′ = (9, 8, 3, 9, 5), then the
equation becomes:

[
8 3 9 5 3 8 5 3 3 5

]  z1,2
...
z4,5

 = 17

The first four integers of em(a′) are the same as in a. All we need to do now is to
somehow remove the “influence” of the last 6 digits, in the above mentioned row vector,
from the overall equation. To do this we can introduce 6 more 5-tuples, such that the
last 6 variables in the equation above equate to 0. Thus after taking minimums, each
of these 5-tuples should have only a single 1 at the right place (corresponding to the
binary variable) with all other entries being 0. We can see that these 5-tuples should
have only two 1’s such that after taking mins there is only one 1 left. All other elements
should be 0. Let us introduce the 6 new 5-tuples, v1, . . . ,v6:

(0, 1, 1, 0, 0)
(0, 1, 0, 1, 0)
(0, 1, 0, 0, 1)
(0, 0, 1, 1, 0)
(0, 0, 1, 0, 1)
(0, 0, 0, 1, 1)

116
Fixed-Parameter Intractable Problems in Human Identification

Protocols

Then the m-pairs (a′, b), (v1, 0), . . . , (v6, 0) can be represented as a Sum of k Mins
problem as: 

8 3 9 5 3 8 5 3 3 5
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 1


 z1,2

...
z4,5

 =


17
0
...
0


Thus any solution to the problem will have the last six binary variables fixed at 0. Thus
if the original instance of 0-1 IPF has a solution, so does this system of equations.
This illustrates the transformation we are going to use in our main result. Note that
this illustration can easily be extended for any m ≥ 1, as is done in the formal reduction
described next.

Formal Reduction

We now formalize the results illustrated in the previous example. Our first lemma shows
that (n + 1)-tuples of the form of a′ in the example above, have the same property in
general.

Lemma 5. Let a = (a1, . . . , an) be an n-tuple, whose elements are non-negative
integers. Let a′ = max{a} be the largest element of a. Let n′ = n + 1 and let
a′ = (a′1, a

′
2, . . . , a

′
n′) be an n′-tuple such that a′1 = a′ and a′i = ai−1 for 2 ≤ i ≤ n′. For

1 ≤ i < j ≤ n′, define:
bi,j = min{a′i, a′j}

then b1,j = aj−1 for 2 ≤ j ≤ n′. In other words, the first n elements of em(a′) will be
the elements of a in the same order.

Proof. Since a′ = max a, the minimum of a′ with any element ai will be the element ai.
Since it is the first element of a′ and the remaining n elements are exactly the elements
of a, the result follows.

The following lemma shows that the binary n-tuples of the form described in the
example above have the same property in general as is exploited in the example.

Lemma 6. Let n be a positive integer. Let i be an integer between 2 and n−1 inclusive
and s be an integer between i + 1 to n − i inclusive. Let v be an n-tuple with binary
elements such that: v[i] = 1, v[s+ i] = 1 and v[j] = 0, for all j 6= i, s+ i. Let v′ be the
n(n− 1)/2-tuple: em(v). That is, with elements:

v′1 = min{v1, v2}
...

...
...

v′n−1 = min{v1, vn}
v′n = min {v2, v3}
...

...
...

v′n(n−1)/2 = min {vn−1, vn}

7.3 The Sum of k Mins Protocol 117

Finally, let s′ = (n− 1) + (n− 2) + · · ·+ (n− i+ 1) + s. Then v′[s′] = 1 and v′[j] = 0
for all j 6= s′.

Proof. Notice that the lemma states that v′ will have only one non-zero entry. Since
there are only two 1’s in v, the result of the minimum of any two elements in v will
yield 0 except when we are taking the minimum of the two 1’s. The exact location of
the 1 in v′ can be calculated as follows: Since the first element in v is a 0, the first
n− 1 elements in v′ will be 0. If the second element is also 0, the next n− 2 elements
in v′ will be zero. This continues until we reach the index i. The minimum of v[i]
with the element v[s+ i] will be the only result equal to 1. The minimum of v[i] with
elements at index less than s + i will again be 0. There will be exactly s− i− 1 such
0’s. The result then follows.

We now describe the reduction formally. Suppose the instance of 0-1 IPF is:
Ax = b, where A is the m× n matrix:

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n


and b = (b1, b2, . . . , bm). Our transformation is as follows: let a′i = max{ai} be the
largest element in ai, the ith row of A. Let n′ = n + 1. Construct m n′-tuples
a′i = (a′i, ai,1, . . . , ai,2). That is, one for each row of A. Construct t = n (n− 1) /2
n′-tuples with binary elements, such that each one is a unique n′-tuple with exactly
two 1’s and the first element fixed at 0. We have:

(0, 1, 1, 0, 0, 0, . . . , 0, 0)
(0, 1, 0, 1, 0, 0, . . . , 0, 0)

...
(0, 0, 0, 0, 0, 0, . . . , 1, 1)

This enumeration exhausts all such n′-tuples. Now, given an instance Ax = b of 0-1
IPF we can transform it into an instance of Sum of k Mins, by using the n′-tuples
constructed above and letting u1 = b1, u2 = b2, . . . , um = bm, um+1 = 0, . . . , um+t = 0.
To see that this transformation gives the desired result, we use Lemmas 5 and 6 to
expand the sum of k mins function on these inputs in the form of matrices as in Section
7.3.3. In the following, let ai,j|k,l denote the minimum of ai,j and ak,l. Also, let a′i denote
the ith n′-tuple constructed above corresponding to the ith row of A and 0 denote the
all-zero n′-tuple. We get:

a′1 a1,1|1,2 a1,1|1,3 · · · a1,n−1|1,n
...

...
...

. . .
...

a′m am,1|m,2 am,1|m,3 · · · am,n−1|m,n
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




z1

z2

z3
...

zn+t

 =



b1
...
bm
0
...
0



118
Fixed-Parameter Intractable Problems in Human Identification

Protocols

This shows that a solution to the above matrix equation should have zn+1 = · · · =
zn+t = 0. The assignment to the variables z1, . . . , zn then decides whether the 0-1 IPF
instance has a solution or not. Therefore, 0-1 IPF has a solution iff Sum of k Mins
has a solution in our transformation.

This transformation is polynomial-time. The first part of the transformation finds
the maximum elements in ai’s which can be done in time polynomial in the size of
the elements of A. The second part introduces n(n− 1)/2, (n+ 1)-tuples with binary
elements which can straightforwardly be constructed in polynomial time. Thus, 0-1
IPF can be reduced to Sum of k Mins in polynomial time.

The original problem in [8] is stated with bounded integers (modulo 10 or in gen-
eral, modulo d). We next show that this reduction can be used to relate the hardness
of the original problem to the Modulo d Maximum Likelihood Decoding prob-
lem mentioned in Section 7.3.3. As mentioned before, with d = 2 this problem is
NP-Complete and W[1]-Hard [44, 61]. We shall show that the problem is also NP-
Complete and W[1]-Hard with a general d.3 This implies that the Modular Sum of
k Mins problem is also NP-Complete and W[1]-Hard, which shows that this problem
is fixed parameter intractable, where the fixed parameter is k. Thus it is unlikely to
substantially improve on the algorithms mentioned in Section 7.3.3 for the Modular
Sum of k Mins problem.

7.3.5 Modular Sum of k Mins

We can employ the reduction used in the previous section to illustrate hardness of the
Modular Sum of k Mins problem. Consider the system of linear equations modulo
d in n unknowns:

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 ,x =


x1

x2
...
xn

 ,b =

 b1
...
bm


represented as Ax ≡ b mod d, where A is an m × n matrix with elements from
{0, . . . , d− 1}, x is the unknown binary vector of Hamming weight k and b is a vector
with elements from {0, . . . , d− 1}. If m > n, we can use Gaussian elimination to get a
unique solution for x (provided, of course, the m rows of A are linearly independent).
However, if logd

(
n
k

)
< m < n, it gives rise to what we call the Modulo d Maximum

Likelihood Decoding problem4, where once again the lower bound on m is the
information theoretic lower bound to guarantee a unique solution.

When d = 2, the variant of the problem which asks for a binary vector x with
Hamming weight at most k was shown to be NP-Complete in [61] and W[1]-Hard in
[44]. However, it can easily be seen that this result also applies to the version of the
problem with Hamming weight exactly k. Thus, we need not consider this distinction

3Although we mentioned in Section 6.6.3 of Chapter 6 that it is shown in [50, Appendix A] that the
problem is NP-Complete with a general d, their result does not imply W[1]-Hardness of this problem.

4This problem is simply refered to as a sparse subset sum problem in [8].

7.3 The Sum of k Mins Protocol 119

here. To prove the result for an arbitrary d, we use some of the results from [44]. The
following notations and definitions are also taken from [44]. Let G = (V,E) be a graph.
A set of vertices V ′ ⊆ V is said to be a perfect code in G, if every vertex of V is either
in V ′ or has a unique neighbour in V ′, but not both. The Perfect Code problem is
described as follows:

Given a graph G(V,E) and a positive integer k, is there a k-vertex perfect
code in G?

This problem is NP-Complete and W[1]-Hard [44]. A red-blue graph G = (R,B,E) is
a bipartite graph with the partition of vertices into the red set R and the blue set B,
where E is the edge set. Let R′ ⊆ R be a non-empty subset of red vertices. Then:

• R′ is a dominating set if every vertex in B (the set of blue vertices) has at least
one neighbour in R′.

• R′ is a perfect code if every vertex in B has a unique neighbour in R′.

As in [44], the definition above of a perfect code for a red/blue bipartite graph is
different from the one for general graphs. However, the distinction will be clear from
the context. Central to the reduction is Theorem 1 from [44] reproduced here:

Theorem 3. Let G be a graph on n vertices, and let k be a positive integer. In time
polynomial in n and k we can produce a red/blue bipartite graph G′ and a positive
integer k′, such that:

P1. Every dominating set in G′ has size at least k′.

P2. Every dominating set in G′ of size k′ is a perfect code in G′.

P3. There is a perfect code of size k in G if and only if there is a perfect code of size
k′ in G′.

See [44] for the proof. We can use this theorem to show that Modulo d Maximum
Likelihood Decoding problem is NP-Complete and W[1]-Hard. The reduction is
from Perfect Code.

Theorem 4. Modulo d Maximum Likelihood Decoding for d ≥ 2 is NP-
Complete and W[1]-Hard.

Proof. First, notice that it is easy to see that Modulo d Maximum Likelihood
Decoding is in NP. Now, given an instance G(V,E) and k of Perfect Code, we
construct the red/blue bipartite graph G′ = (R,B,E ′) of Theorem 3. Let |R| = n′ and
|B| = m′. Let A′ be the red-blue adjacency matrix of G′. That is, set R = {1, . . . , n′}
and B = {1, . . . ,m′}, and let a′i,j = 1 if and only if i ∈ B is adjacent to j ∈ R in G′.
Let 1 denote the all 1 binary vector of m′ elements.

Now, from P2 of Theorem 3, every solution x′ of Hamming weight k′ satisfies
A′x′ = 1 (or A′x′ ≡ 1 mod d). This is true since this property implies that every
column of A′ corresponding to a dominating set R′ ⊆ R in G′ of size k′ has exactly one

120
Fixed-Parameter Intractable Problems in Human Identification

Protocols

entry set to 1 (because such a dominating set is a perfect code in G′). Thus a solution
of Hamming weight k′ implies a perfect code in G′ of size k′, and vice versa. From P3
of Theorem 3, this implies that there is a solution x′ of Hamming weight k′ if and only
if there is a perfect code of size k in G. This completes the transformation.

We now state our main result.

Theorem 5. Modular Sum of k Mins is NP-Complete and W[1]-Hard.

Proof. An instance Ax ≡ b mod d of Modulo d Maximum Likelihood Decoding
can be transformed into an instance of the Modular Sum of k Mins problem using
the same general reduction described in Section 7.3.4 as follows. We first construct a
new matrix V from A, by appending the integer d − 1 in front of each row in A and
introducing n(n− 1)/2 binary (n+ 1)-tuples of the form described in the reduction, as
n(n− 1)/2 new rows in A. The resulting matrix V is as follows:

d− 1 a1,1 a1,2 a1,3 · · · a1,n−1 a1,n
...

...
...

...
. . .

...
...

d− 1 am,1 am,2 am,3 · · · am,n−1 am,n
0 1 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1


Next we introduce a binary vector z of n + n(n − 1)/2 binary variables zi,j. Finally
we create the vector u of m + n(n − 1)/2 elements, whose first m elements are the
same as b and the last n(n− 1)/2 elements are all 0’s. This constitutes an instance of
Modular Sum of k Mins. Now, by expanding the matrix V by taking minimums
and calling the resulting matrix V ′, we get the system of equations V ′z ≡ u mod d,
with n + n(n − 1)/2 = n(n + 1)/2 variables and m′ = m + n(n − 1)/2 pairs. Since
m′ > n(n+1)/2 is the requirement to use Gaussian elimination for this set of equations,
we have the restriction on m′:

m′ <
n(n+ 1)

2
Now suppose, there is an algorithm that can solve the Modular Sum of k Mins
problem with m′ < n(n + 1)/2. From our transformation, we have seen that this also
solves the Modulo d Maximum Likelihood Decoding problem detailed above
with m′ = m + n(n− 1)/2 < n(n + 1)/2 or m < n(n + 1)/2− n(n− 1)/2 = n. Thus,
an algorithm for Modular Sum of k Mins can be used to solve the Modulo d
Maximum Likelihood Decoding problem. Finally, note that it is easy to see that
this problem is in NP as any candidate solution can be verified in polynomial time by
simply carrying out the sum over mins function m times. This can be carried out in
time polynomial in the size of the input. Thus, this shows that this problem is both
NP-Complete and W[1]-Hard.

This result suggests that it is unlikely to substantially improve on the algorithms
mentioned in Section 7.3.3, for the Modular Sum of k Mins problem. We like to

7.3 The Sum of k Mins Protocol 121

reiterate an important point here. While the protocol based on the Modular Sum
of k Mins problem uses random instances, these reductions are done on worst-case
instances. Thus, these results should not be taken as asserting the security of the
protocol.

7.3.6 A Short Digression: The Case when d = 2

We digress here briefly to discuss another application of showing the fixed-parameter
intractability of problems used as primitives in human identification protocols. It has
been suggested that human identification protocols can be modified for use as identi-
fication protocols in resource limited devices, such as Radio-Frequency Identification
(RFID) tags [55], since these devices share certain attributes with humans, e.g., lim-
ited memory and computational power. Thus, the case when d = 2 deserves further
discussion as this base naturally leads to low cost arithmetic. In [8], Hopper and Blum
proposed the base 10 as a natural base for humans. For computational devices, how-
ever, base 2 is preferable. Thus, we now assume that computations are done in the field
Z2. The group table for the “min” function is shown in Table 7.1. The table shows
that the min function over elements in Z2 is none other than bit multiplication. Thus,
it makes more sense to call the modular sum of mins function as the sum of products
function in this case.

In light of this observation, we redefine the Modular Sum of k Mins prob-
lem, when d = 2. Let n and k be postive integers, where k = O(log2 n). Let
z = {(x1, y1) , . . . , (xk, yk)} be a set of ordered pairs, where 1 ≤ xi, yi ≤ n, and for
each ordered pair (xi, yi), xi 6= yi. Let v ∈ Zn2 . Define f (v, z) as:

f (v, z) =
∑k

i=1
v [xi] v [yi] mod 2

The Sum of k Products problem is:

Given m ordered pairs (v1, u1) , . . . , (vm, um), find a set z such that ui =
f (vi, z) for all i = 1, . . . ,m, where:

vi ∈ Zn2 , ui ∈ Z2, and log2

(
n(n− 1)/2

k

)
< m <

(
n

2

)
.

Then, a protocol similar to the one presented in Section 7.3.2 can be constructed. The
memory or space requirement for this protocol isO((log2 n)2), which is polylogarithmic.
The time complexity of computing the above function is linear in n. As mentioned
earlier, if m <

(
n
2

)
, the best known attacks for these parameters work in O(

(
n(n−1)/4

k/2

)
)

time. A further issue that needs to be addressed here is the restriction on the parameter
k, the length of the secret. Humans would memorize a sum of k mins secret as ordered
pairs of objects. An object could be made up of textual characters or graphical icons,
depending on the type of implementation. On the other hand, in computing devices,
each secret index will be stored as log2 n bits in memory. Thus, it is tempting to
remove the logarthmic restriction on k and enable it to be any value between 1 and

122
Fixed-Parameter Intractable Problems in Human Identification

Protocols

Table 7.1: The min function in Z2 is simply bit multiplication.

min 0 1
0 0 0
1 0 1

n(n− 1)/2. However, this makes the space requirement quadratic in n, and hence the
protocol would not be useful for resource constrained devices.

Typical values of parameters can be n = 1000, k = 20 and the number of loops
required to avoid a random guess attack can be 20. This gives a one in a million
chance for a random guess to be successful. The best known attack, mentioned above,
requires ≈ 2157 time and the protocol can be used for more than 24, 000 sessions, before
Gaussian elimination can be used to obtain the secret. It should be noted that this
protocol is only secure against passive adversaries and needs to be modified to prevent
active attacks.

A final matter of concern regarding this protocol is the disparity evident from Table
7.1. The bit 0 has the probability 3/4 to be an output of the product of two bits as
opposed to the bit 1 which has probability 1/4. But, since the results of the products
are being summed multiple times, this difference in probability is balanced out. More
specifically, let p(k, b) denote the probability that the bit b is obtained as the sum of k
products. Then, it is clear from the table that p(1, 0) = 3/4 and p(1, 1) = 1/4. It can
be shown by a simple induction that:

p(k, b) = p(k − 1, b)p(1, 0) + p(k − 1, 1− b)p(1, 1)

A dynamic programming algorithm can then be used to compute these probabilities,
similar to the one outlined in [8], and described in detail in Section 5.2.5. Define the
statistical distance between the uniform distribution and this distribution as:

∆ =
1

2

∣∣∣∣(1

2
− p(k, 0)

)
+

(
1

2
− p(k, 1)

)∣∣∣∣
Then the expected number of samples required to differentiate the two distributions
is 1/∆. For k = 20, 1/∆ = 2, 097, 152. Thus, it is safe to assume that with the
values of parameters mentioned above, an adversary cannot use the difference in the
two distributions to find the secret with fewer than 2, 097, 152/20 ≈ 104, 857 observed
sessions. This is already higher than the sessions required for Gaussian elimination,
which as stated above is 24, 000. Thus, care must be taken in choosing values of
parameters such that this attack always requires more challenge-response pairs than
Gaussian elimination. As a final observation, as illustrated in Section 7.3.5, the Maxi-
mum Likelihood Decoding problem5 directly reduces to the Sum of k Products
problem, which shows that this problem is both NP-Complete and W[1]-Hard. This
implies that it is unlikely to substantially improve on the running time O(

(
n(n−1)/4

k/2

)
)

to solve the Sum of k Products problem.

5i.e., the version which asks for an x of Hamming weight exactly k, with d = 2.

7.4 HB and the Example Protocol 123

7.4 HB and the Example Protocol

We now return to the problem k-LPN, the underlying problem of the HB Protocol
described in Section 7.1. This is a straightforward reduction from the Maximum
Likelihood Decoding problem mentioned in the previous section. Given an instance
of Maximum Likelihood Decoding we can reduce it to k-LPN by simply setting
ε = 0. Thus, k-LPN is both NP-Hard and W[1]-Hard.

It is important to note that Maximum Likelihood Decoding is polynomial
time solvable if m ≥ n and if A contains n linearly independent rows. In such a case,
Gaussian elimination can be used to efficiently find an x of Hamming weight k. It
is for this reason, that a protocol based on this problem can only be used before the
adversary has observed O(n) challenge-response pairs. In fact, the Example Protocol
from Chapter 2 is based on this exact problem. On the other hand, the HB protocol
tries to stretch the required number of observed sessions by the adversary to at least
quadratic in n by introducing noise into the system of linear equations. However, the
reduction above does not shed light on this “extension”.

The reduction used for the Modular Sum of k Mins problem showed that if an
algorithm exists to solve this problem with m < O(n2), then the same algorithm can
solve the Modulo d Maximum Likelihood Decoding problem with m < O(n).
It would be nice to have a similar reduction for k-LPN, highlighting the number of
observed sessions required to find the secret in the HB Protocol. This is an interesting
open problem.

7.5 The Counting Edges Protocol

We restate the Common Vertex Subset problem, used in the construction of the
basic Counting Edges Protocol.

Given m pairs (G1, r1), . . . , (Gm, rm), where Gi is a graph on a vertex set
V of n vertices, find a k-element subset K of V such that the induced
subgraphs Gi[K] have ri edges, for 1 ≤ i ≤ m.

For any m > 1, we call this problem, Common Vertex Subset. With m = 1 this is
related to the Heaviest Unweighted Subgraph6 problem which is NP-Hard [64].
This can be shown with a reduction from the Clique problem. The parameterized
version of the Clique problem, k-Clique is W[1]-Complete [65]. k-Clique is the
problem of finding a clique of size k in a graph. A clique of size k is a complete
subgraph of k vertices. We show here that Common Vertex Subset is W[1]-Hard,
and hence not fixed-parameter tractable, by a reduction from k-Clique.

Theorem 6. Common Vertex Subset is W[1]-Hard.

Proof. Given an instance of k-Clique, (G, k), where G is a graph on a vertex set V
of n vertices, we transform it to an instance of Common Vertex Subset as follows.

6also known as the Densest k-Subgraph problem [63].

124
Fixed-Parameter Intractable Problems in Human Identification

Protocols

We set G1 = G and r1 =
(
k
2

)
. For the remaining pairs, (G2, r2), . . . , (Gm, rm), we set

each Gi to be an edgeless graph on V , and set ri = 0.

Note that this reduction can easily be used to show that even with m = 1 the
problem is W[1]-Hard (which corresponds to the parameterized version of Heaviest
Unweighted Subgraph). The problem used in the main Counting Edges Protocol is
different from Common Vertex Subset, as in the main protocol the user H returns
an edge count modulo an integer d. However, it can be easily shown that this variant
is also W[1]-Hard, simply by choosing d =

(
k
2

)
+ 1.

7.6 The Foxtail Protocol

The Foxtail Protocol from Li and Shum [14] is a human identification protocol that
also tries to increase the number of authentication sessions a secret can be used to at
least quadratic in n. We show here, that the underlying problem of this protocol is
also fixed-parameter intractable. Central to the protocol is the foxtail function, which
is computed as follows:

r = ft(c,x) =

⌊
c · xT mod 4

2

⌋
where c and x are binary vectors of n elements, and x has Hamming weight k. Intu-
itively, ft(., .) is a function that first maps the result of the dot product of two binary
vectors to the range {0, 1, 2, 3}, and then maps 0 and 1 to 0, and 2 and 3 to 1, which
means that r ∈ {0, 1}. Thus, the protocol is designed such that the adversary does not
know the result of the dot product of the challenge and the secret vector, and therefore
cannot represent the gathered challenge-response pairs as a system of linear equations
with a non-negligible probability. The protocol is described here for reference [14].

Protocol: Foxtail.

Setup: Let µ, n and k ≤ n be publicly known positive integers. H and C share a
random n-element binary vector x of Hamming weight k as a secret. Also let
l ≥ 3 be a publicly known positive integer.

1: for i = 1 to µ do
2: C generates two n-element vectors ci,1 and ci,2 with wt(ci,1) = wt(ci,2) = l.

ci,1 is generated randomly from the space of all n-bit binary vectors of
Hamming weight l. ci,2 is chosen such that ci,2 · xT = i with probability
1/4, for i ∈ {0, 1, 2, 3}. C sends these vectors to H.

3: H sends the following response to C,

r = ft(ci,1 + ci,2,x) =

⌊
(ci,1 · xT + ci,2 · xT) mod 4

2

⌋
4: if all µ responses are correct, C accepts H else C rejects H.

7.6 The Foxtail Protocol 125

Intuitively, the parameter l is used to ensure sparsity. That is, if the Foxtail Protocol
is implemented in a way similar to the Example Protocol (cf. Chapter 2), the parameter
l ensures that no more than 2l icons are present in the grid. The challenge vectors are
divided into two sub-challenges ci,1 and ci,2, each generated from a different probability
distribution. This is to ensure that the secret and the non-secret icons appear in the
challenge with equal probability. See [14] for details.

We first describe a simplified problem, called Foxtail Decoding, as follows:

Given m vectors ci ∈ Zn2 and an m-element binary vector r, is there an x
with wt(x) = k, such that ft(ci,x) = ri?

We show that this problem is NP-Complete and W[1]-Hard by reducing the following
problem to it:

Given an m × n matrix C of binary elements, and an m-element binary
vector r, is there an x with wt(x) = k, such that Cx ≡ r mod 4?

We call this problem Sparse Decoding. The problem used in the protocol above is
slightly different from Foxtail Decoding. Specifically, instead of having a binary
matrix C,7 we have a matrix C whose elements are from {0, 1, 2}. To see this, observe
that the two vectors ci,1 and ci,2 in each challenge i can have overlapping entries set to
1. It can easily be seen that this problem is at least as hard as the Foxtail Decoding
problem, since an algorithm to solve this problem can also solve the case when C is
binary.

Theorem 7. Sparse Decoding is NP-Complete and W[1]-Hard.

Proof. The proof is the same as the proof of Theorem 4, except for a minor difference.
Since, the result A′x′ = 1 holds with or without a modulus d in Theorem 4, we see
that this also holds for A′x′ ≡ 1 mod 4.

The main result for Foxtail Decoding is as follows.

Theorem 8. Foxtail Decoding is NP-Complete and W[1]-Hard.

Proof. Given an instance of Sparse Decoding, Cx ≡ r mod 4, we convert it into an
instance of Foxtail Decoding as follows. From the matrix C with elements ci,j, we
create a new matrix C ′, and from the vector r we create a new vector r′. For 1 ≤ i ≤ m,
the construction is as follows. If ri = 0, we create the following new rows in C ′ and r′:[

ci,1 ci,2 · · · ci,n 0 0
ci,1 ci,2 · · · ci,n 1 0

]
∈ C ′,

[
0
0

]
∈ r′

if ri = 1: [
ci,1 ci,2 · · · ci,n 0 0
ci,1 ci,2 · · · ci,n 1 0

]
∈ C ′,

[
0
1

]
∈ r′

7Composed of the m vectors ci ∈ Zn
2 .

126
Fixed-Parameter Intractable Problems in Human Identification

Protocols

if ri = 2: [
ci,1 ci,2 · · · ci,n 0 0
ci,1 ci,2 · · · ci,n 1 0

]
∈ C ′,

[
1
1

]
∈ r′

and if ri = 3: [
ci,1 ci,2 · · · ci,n 0 0
ci,1 ci,2 · · · ci,n 1 0

]
∈ C ′,

[
1
0

]
∈ r′

Finally we complete the construction of C ′ and r′ with the following two rows,[
0 0 · · · 0 1 0
0 0 · · · 0 1 1

]
∈ C ′,

[
0
1

]
∈ r′

Then, we have a matrix C ′ with 2m + 2 rows and n + 2 columns, and a vector r′ of
m + 2 entries. Let x′ be an unknown (n + 2)-bit vector with Hamming weight k + 2.
Then, we can see that a solution to ft(C ′,x′) = r′ is a solution to the original system
of linear equations Cx ≡ r mod 4 and vice versa. This completes the proof.

Just as in the case of k-LPN, the above reduction does not reflect on the number of
observed sessions the Foxtail Protocol can be used. It would be nice to have a reduction
from a problem that shows fixed-parameter intractability of k-Foxtail Decoding
even if the matrix C has has m > n rows out of which n are linearly independent.
This remains an open problem. However, like the HB Protocol, we can show that the
Foxtail Protocol is based on a hard to learn problem, i.e., learning with errors.

Learning with Errors Formulation

Suppose C is an m× n matrix with entries from {0, 1, 2}. Then, we can formulate the
foxtail function as:

Cx ≡ 2r + e mod 4

where, r is the m-element binary response vector from the Foxtail Protocol and e is a
random m-element binary vector. Rearranging, we get:

Cx− e ≡ 2r mod 4

⇒ Cx + 3e ≡ 2r mod 4

⇒ Cx + e′ ≡ r′ mod 4 (7.1)

where above, e′ = 3e and r′ = 2r. Presented in this way, the problem can be considered
as a Learning with Errors problem [66] (or LwE in short) over Zn4 . Here e′ is an
error vector generated with the probability distribution χ:

χ(0) =
1

2
, χ(1) = 0, χ(2) = 0, χ(3) =

1

2

It should be noted that this version of LwE is over the ring Z4. Nevertheless, there
is evidence that LwE over rings is also hard [67]. In any case, learning with errors
requires a polynomial in n number of samples. Thus, we can conjecture that a solution
of Equation 7.1 requires m > poly(n). In fact we can assume that the best known
algorithm requires 2O(n) equations [66, p. 2]. It remains an interesting open problem
to evaluate the hardness of the problem when wt(x) = k and C is sparse.

7.7 Conclusion 127

7.7 Conclusion

We have shown that several human identification protocols in literature, as well as the
Counting Edges Protocol from Chapter 6, are based on fixed-parameter intractable
problems. This gives us evidence that the best possible algorithms to solve the under-
lying problems run in time nf(k). Thus, it is very likely that the best possible attacks
on these protocols are the time-memory tradeoff algorithms from [8] and Chapter 5.
Central to many reductions in this chapter has been the Modulo d Maximum Like-
lihood Decoding problem. As we have seen, a protocol based on this problem can
only be used for O(n) observed challenge-response pairs before secret renewal. An
example is the Example Protocol from Chapter 2. Yet, the problem is fixed-parameter
intractable. Thus, fixed-parameter intractability only tells us that there are instances
of a problem that are hard. In this case, when m < n. If there are n linearly inde-
pendent rows in an instance of the Modulo d Maximum Likelihood Decoding
problem, then we have an efficient algorithm, namely Gaussian elimination, that can
be used to solve the problem.

However, in showing the fixed-parameter intractability of the Modular Sum of
k Mins problem, we found a nice result that an algorithm to solve this problem with
m < n(n−1)/2 can solve the Modulo d Maximum Likelihood Decoding problem
with m < n. Thus, this gives some evidence that there is no efficient (in the notion
of fixed-parameter tractability) attack on the Sum of k Mins Protocol when only m <
O(n2) challenge-response pairs are observed. Unfortunately, the other reductions did
not shed light on this important parameter in human identification protocols. However,
in such cases, evidence of the hardness of the problem is gathered from elsewhere. For
instance, we showed that the underlying problem used in the Foxtail Protocol from
[14], can be viewed as some sort of Learning with Errors problem. In case of
the Counting Edges Protocol, the underlying problem is shown to be fixed-parameter
intractable with a reduction from a fixed-parameter intractable problem from graph
theory, namely k-Clique. This gives us evidence that the best way to attack the
protocol is through the adjacency matrix formulation (cf. Section 6.4), but this expands
the problem into quadratic in n, meaning the protocol can be used for O(n2) sessions
before secret renewal. It would have been nice to find a reduction for the underlying
problem used in the Kangaroo Hopping Protocol from Chapter 5. However, it is not
clear how this can be done. Nevertheless, we can see that the protocol attempts to
avoid the underlying problem from being represented as a system of linear equations
with a non-negligible probability. Thus, in some sense, it can be thought of as being
based on some sort of Learning with Errors problem, just as the Foxtail Protocol
from [14].

128
Fixed-Parameter Intractable Problems in Human Identification

Protocols

8
Conclusion and Future Research Directions

This thesis has primarily focused on the analytical aspects of human identification
protocols. We have shown that without a comprehensive security analysis, in partic-
ular without properly analyzing the underlying problem used in the construction of
human identification protocols, it is possible to break the protocols through simple
but innovative attacks, and obtain the secret after observing only a handful of authen-
tication sessions. This is true even if the protocol is meant to be used for a small
number of sessions. We have demonstrated this by analyzing and breaking two pro-
tocols from literature. Namely, the Predicate-based Authentication Service (PAS) [17]
and the Convex Hull Click (CHC) [21] protocols. The security analysis of these proto-
cols shows that it is important to first represent the problem of an adversary in terms
of solving a mathematical problem, and then analyze how the information about the
secret can be leaked after the observation of one or more challenge-response pairs. As
such, both information theoretic and computational security aspects have to be taken
into account.

A parallel theme in this thesis has been the search for protocols which can be
used for at least O(n2) challenge-response pairs before secret renewal; an increase
from O(n) challenge-response pairs offered by, for instance, Matsumoto’s protocols
from [19]. Protocols from Hopper and Blum [8], and Li and Shum [14] are previous
examples of protocols that achieve this quadratic increase (or more). The Kangaroo
Hopping Protocol in Chapter 5 was our first attempt towards this end. The idea behind
the design was to avoid the underlying problem from being represented as a system of
linear equations in n unknowns with a non-negligible probability. This prevents the
adversary from finding the secret after observing n challenge-response pairs through
Gaussian elimination. We then proceeded to the construction of the Counting Edges
Protocol in Chapter 6. The intent was to construct a protocol based on a problem
that can be considered hard in the relatively new complexity theoretic sense of fixed-
parameter intractability. Since in general, the shared secret in human identification

129

130 Conclusion and Future Research Directions

protocols is a set of k objects from a large pool of n objects, these protocols have an
inherent additional parameter k (other than n). Therefore, fixed-parameter intractable
problems are natural candidates as primitives for such protocols. We have argued that
if the primitive used to construct a protocol is fixed-parameter intractable, it provides
strong evidence that breaking the protocol will be hard in practice. We showed that
many existing human identification protocols are in fact based on fixed-parameter
intractable problems, without the inventors of these protocols realizing the connection.
In short, the main contributions of this thesis can be summarized as follows.

• We showed a probabilistic attack on Bai et al.’s Predicate-based Authentication
Service (PAS) from [17] which demonstrates the insecurity of the protocol. In
particular, the adversary has a 50% chance of finding the secret after observing
a mere 7 observed sessions. Even with only 2 observed sessions, the adversary
has a non-negligible, 3.5%, chance of finding the secret. These numbers are
considerably lower than the figure of 10 authentication sessions suggested by Bai
et al. for the use of their protocol, before secret renewal.

• We showed a probabilistic attack (different from above) on the Convex Hull Click
(CHC) Protocol from Sobrado and Birget [9, 21]. With the help of this attack,
the adversary has a 15% chance of impersonating the user, after observing only
10 authentication sessions. These figures are for values of protocol parameters
suggested by Weidenbeck et al. for high security in [9].

• We proposed a protocol, named the Kangaroo Hopping Protocol, which is de-
signed to be used for at least O(n2) authentication sessions before secret renewal.
The protocol is designed so that the responses are non-linearly dependent on the
challenges. As a result, the underlying problem cannot be represented as a system
of linear equations in n unknown. This prevents the use of Gaussian elimination
from being used to find the secret after the observation of O(n) sessions. With
the recommended values of protocol parameters, we conjecture that the protocol
can be used for about 2, 000 sessions before secret renewal.

• We gave the construction of a protocol, named the Counting Edges Protocol,
which is based on a fixed-parameter intractable problem. We also conjecture that
this protocol can be used for O(n2) authentication sessions before secret renewal
through a comprehensive security analysis. Fixed-parameter intractability of
the underlying problem gives us some evidence that finding the secret from the
observation of a small number of challenge-response pairs is not straightforward.
We suggest the use of the protocol for more than 1, 500 authentication sessions
before secret renewal.

• We argued that since human identification protocols involve a secret of k objects
out of a total of n, fixed-parameter intractable problems are natural candidates
for use as primitives for these protocols, since these problems have a natural
parameter k. Thus, proving the fixed-parameter intractability of the underlying
problem used in a human identification protocol gives strong evidence for security

131

of the protocol. We showed that many existing protocols in literature are based
on fixed-parameter intractable problems.

However, we do not claim that the treatment of the subject of human identification
protocols in this thesis is comprehensive. We mentioned in the introduction that many
different aspects need to be considered when designing such protocols. Our treatment
of the subject has focused on the analytical aspects, i.e., security analysis of the pro-
tocols by clearly representing the problem of the adversary in mathematical terms. In
practice, however, the security of such protocols should also consider human behavior
while executing these protocols. Furthermore, comprehensive usability studies have to
be carried out to determine the feasibility of these protocols. Such studies can lead to
improved and innovative ways of implementing these protocols. In the following, we
highlight this as well as some other future research directions in the area of human
identification protocols.

Side Channel Attacks

Side channel attacks try to extract information about secrets used in cryptosystems
by analyzing the side channels that are available when such systems are implemented.
For instance, the attacker can analyze the power consumption during a block cipher’s
computation on a message [68], and if there is a difference in power consumption
during the processing of 0 and 1 bits, the attacker can know which of the two bits a
particular point in the trace of the power consumption corresponds to [68]. Similarly,
by examining the time difference in computing cryptographic operations, the adversary
can again gain knowledge of the secret through what is known as the timing attack
[69].

In a similar sense, side channel attacks can also be mounted on human identification
protocols. In Section 2.5, we mentioned the Undercover system from [18], which is
different from the human identification protocol considered in this thesis as it uses
a separate “secure” channel. The channel is realized through a haptic device, on
which the user rests his palm. The user then gets part of the challenge through touch
sensations on his palm. This part of the challenge is assumed to be hidden from the
observation of the adversary. However, it was shown in [28] that the system can be
broken with high probability after the observation of only about 10 authentication
sessions, through observing the user behavior.

Similarly, for the human identification protocols purported to be secure under Mat-
sumoto and Imai’s threat model, information can be leaked by observing the user’s
behavior during the execution of these protocols. For instance, if the user points at
one of the icons displayed on the screen, the adversary can guess that with high prob-
ability it is one of the user’s secret icons. Furthermore, if a reduced number of icons
are present in a challenge, then the adversary can gain information by examining the
time required to respond to each challenge; less time implies less number of secret icons
present in a challenge. The two proposed protocols in this thesis do not seem to be
vulnerable to this type of attack. Still however, user training is required to inform
the users about how information about the secret can be leaked due to an insecure

132 Conclusion and Future Research Directions

interaction with the terminal. In short, the security of human identification protocols
should also be analyzed against these side channel attacks.

Variants of Matsumoto and Imai’s Threat Model

Matsumoto [19] suggested that different variants of the Matsumoto and Imai’s threat
model can be considered, for example by assuming that only one of the two channels,
one through which a challenge is sent from the server and the other through which the
user sends his response, is insecure. Such variants are not completely unrealistic, since
the Undercover system described above utilizes a similar assumption and realizes it
with a haptic device. Thus, depending on the environment, one can assume different
variants of the aforementioned threat model to be applicable. Several other authen-
tication systems have used different variants of Matsumoto and Imai’s threat model.
For instance, one variant is the model that assumes the user terminal to be secure
in the sense that its internal computations cannot viewed by the adversary, but he
can still observe the display. This assumption has been used in many shoulder-surfing
resistant authentication schemes. However, it is not clear how this assumption can be
used to help a user in his computations, as his interaction with the terminal is largely
through the display, and this information can also be viewed by the adversary. Due
to this reason, from a theoretical viewpoint, we didn’t consider this a different threat
model in this thesis. Nevertheless, different variants of Matsumoto and Imai’s threat
model can be considered for different scenarios, and the protocols can potentially take
advantage of the additional secure links at disposal.

Another example of a different threat model is a model that assumes that the
adversary cannot observe more than a fixed number mseq of consecutive challenge-
response pairs. A protocol can then be constructed that takes advantage of the fact
that the adversary has not observed at least one among mseq +1 consecutive challenge-
response pairs. For instance, some additional information can be shown to a user at
the end of each challenge-response pair (or authentication session) without which the
adversary cannot learn the secret. One possibility is to show a new picture (or icon)
at the end of a session, which the user replaces with one of his secret pictures. Of
course, user studies have to be carried out to establish the feasibility of this method, in
particular to find if it is at all easy for humans to recall constantly renewed information.
Nonetheless, this is only a simple example of how a protocol can be constructed under
this threat model. We would like to emphasize that this model is not unrealistic. If we
take the example of ATM authentication, it is reasonable to assume that an attacker
cannot mount hidden cameras in all the ATMs in a considerably large geographical
area. Thus, a mobile user is bound to use different ATMs, and with high probability
one of the used ATMs can be hidden camera free. Note that this threat model is not
unprecedented, and has been employed in authentication protocols for RFID tags [70].

Help from Artificial Intelligence

A few protocols in literature are based on problems that can be considered hard from
an artificial intelligence perspective. The protocol from [15] is an example. It uses a

133

secret question which has a binary answer when applied to an image. For instance,
the secret question can be: “Does the picture contain any animals?” The protocol
is an attempt to extend the idea of CAPTCHAs [26] for use in human identification
protocols. The security of the protocol is based on the conjecture that it is hard for
an automated adversary to obtain the secret since it cannot obtain a set of common
features from a given set of images without a non-negligible error. Moreover, it is
conjectured that the problem is also hard for a human without the knowledge of the
secret question. This second claim does not seem easy to justify. We can perhaps,
extend the idea of CAPTCHAs in a different way so that both human and automated
adversaries are dependent on each other to obtain the secret.

A naive way to construct a CAPTCHA-based human identification protocol is as fol-
lows. The human user and the computer server share a secret which is a set of k objects
out of n. A challenge is composed of n cells, where each cell contains a unique object
from the pool of n objects, and a text-based CAPTCHA (e.g., reCAPTCHA [71]).
The user decodes each CAPTCHA corresponding to his k secret objects, and sends
the resulting text response to the server. Now an automated adversary who observes a
challenge-response pair has a negligible probability of decoding each CAPTCHA. The
adversary inevitably requires human assistance. Since, there are n cells, this would
require O(n) human (adversarial) computational time. We can safely assume that a
human takes at least 1 second to decode each CAPTCHA. Then if n = 200, this means
at least 200 seconds of human computational time. Although this cannot be considered
computationally infeasible, the time required is many orders of magnitude higher than
what an automated adversary would have consumed if CAPTCHAs had not been used.
This approach has been used before in some protocols. For example, the response table
in PAS [17] contains CAPTCHAs in each cell (cf. Chapter 3). However, this is done
only to avoid automated processing of responses, and does not provide sufficient secu-
rity against human adversaries. Thus, one would like to increase human adversaries’
computational time.

One way to increase (adversarial) human computational time, is to construct some
form of contrived responses from the decoded CAPTCHAs as is done in the authen-
tication scheme from [72]. In a nutshell, the user only sends part of the decoded text
from the CAPTCHA as the response. However, this only has the ability to increase the
time linearly in the number of the challenges. Here, we outline a different approach.
We define a multivariate CAPTCHA as a function which takes k objects as argument
and maps them to a response string {0, 1}∗, such that it is hard for the automated
adversary to decode the CAPTCHA given the k objects, but easy for humans. An
important requirement of such a function is that it should not be possible to obtain
its output by concatenating the output of functions with fewer than k arguments. In
other words, the multivariate CAPTCHA should not be decomposable. Otherwise, a
naive way to construct a multivariate CAPTCHA is to concatenate the answers of two
single input CAPTCHAs. However, this violates the criterion just mentioned.

If multivariate CAPTCHAs can be constructed, it will increase the time of the
adversary even with a very small size of the user’s secret. For instance, if a 4-variable
CAPTCHA function is conceivable, then it would require

(
n
4

)
(adversarial) human

computations. This corresponds to about 2 years of human computational time, if

134 Conclusion and Future Research Directions

n = 200. On the other hand, the legitimate human user has to merely remember 4
secret locations and compute a 4-input CAPTCHA function. If the response is from a
large response space, then the total time required by a legitimate user is low. Of course,
stating a mere definition does not imply the existence of multivariate CAPTCHAs. A
possible instantiation of a multivariate CAPTCHA can be realized as follows. In the
setup phase, the user is shown a video clip. During authentication, the challenge
grid sent to the user contains randomly scattered snapshots from this video taken at
different intervals. The user is asked to output the original sequence in which the
snapshots appear in the video corresponding to his secret locations. Of course, this
assumes that the video shown to the user remain hidden from the adversary. Perhaps,
this is the price that has to be paid for such constructions. In any event, artificial
intelligence problems offer some potential for use in human identification protocols.

Pervasive Devices

In [55], Juels and Weis suggested that human identification protocols can be modified
for use in low cost pervasive devices, since these devices have certain characteristics in
common with humans; restricted memory and computational abilities. They modified
the HB Protocol from [8], for use in the authentication of RFID tags [55]. The modified
protocol also considers security against active adversaries. Since then, many variants
of the HB Protocol have been proposed as candidates for lightweight authentication
protocols for resource constrained devices [73]. In Chapter 7 we demonstrated how a
variant of the Sum of k Mins Protocol can be used as a protocol for pervasive devices.
We also showed that this protocol, the Sum of k Products Protocol, is based on a fixed-
parameter intractable problem. However, there were two main short-comings. First,
the protocol only considers passive adversaries, and secondly, the reduction to the fixed-
parameter intractable problem only demonstrates the hardness of worst case instances.
Thus it is an interesting area of research to improve on the Sum of k Products Protocol
to incorporate security against active adversaries, as well as analyze the average case
hardness of the underlying problem. Compounding on this, more fixed-parameter
problems can also be found for use as primitives in human identification protocols, and
in authentication protocols for resource constrained devices.

Improving Implementation

An interesting area of research that also touches the area of Human-Computer Inter-
action (HCI), is to improve the implementation of human identification protocols. We
have argued that it is hard to display more than (say) 200 icons in a challenge due
to the restricted size of the screen at the user’s terminal. However, various techniques
can be used to increase this number. For instance, each cell in a challenge can be pro-
grammed to display a different icon after a fixed duration of time, say 3 seconds. This
is done for each challenge, until the user has responded to the challenge. This increases
the size of the challenge to 600, without requiring a larger display. Of course, there can
be some usability issues with such a method, but it shows that further improvement in

135

the way the user interacts with the terminal can increase the usability of such proto-
cols. Recent advances in authentication methods have used increasingly sophisticated
and innovative ways for the user to interact with the terminal. Some examples are
described in [74]. These designs can also realize secure channels. For instance, the
Pressure-Grid scheme from [74] realizes a secure channel by virtue of the user applying
minute pressure on a touch screen, undetectable by the adversary. Recently, Drucker
showed an interesting way to use images to mentally compute multiplication of multi-
digit numbers [75]. The images are used to aid the human in computations much
like the implementation of the protocols described in this thesis. The techniques illus-
trated by Drucker are not limited to addition and multiplication, and can be extended
to help a human compute other logical operations [75]. These techniques can then be
used to improve implementation of human identification protocols which involve more
sophisticated functions.

Small Number of Authentications

A negative aspect of human identification protocols secure under Matsumoto and Imai’s
threat model is that despite incremental improvement in their design, the time con-
sumed per authentication session is still unacceptable for widespread use. An average
time of about 3 minutes seems to be the best achievable for such human identification
protocols. On the positive side, these protocols can be used for a larger number of
authentication sessions before secret renewal. Perhaps, it might be possible to improve
on this running time by constructing protocols that are secure for a smaller number
of authentication sessions, say around 20. Then an authentication time of around 20
to 30 seconds might be achievable; still high, but a time that users might be ready to
compromise in return for added security. We have seen that some protocols in litera-
ture were designed for a small number of authentication sessions. However, the number
of authentication sessions before secret renewal in these protocols is either too low, 3
to 4 [32] (in terms of security against automated shoulder-surfers), or the protocols’
steps are too computationally intensive for a protocol that can only be used for a small
number of authentication sessions [17]. Thus, while this appears to be an easier target,
the jury is still out to decide on an acceptable solution.

136 Conclusion and Future Research Directions

A
Appendix

A.1 Turk’s Method of Generating a Random Point

Inside a Triangle

Let A, B and C be the vertices of a triangle. Let s and t be uniform random real
numbers in the interval [0, 1]. Turk’s method generates a random point P contained
in the triangle as follows [37].

Algorithm: Turk’s Method.

Input: Vertices A, B and C and the random numbers s and t.
Output: Random point P contained in the triangle ∆ABC.

1: if s+ t > 1 then
2: s← 1− s.
3: t← 1− t.
4: a← 1− s− t.
5: b← s.
6: c← t.
7: Output P ← aA+ bB + cC.

A.2 Optimum Value of m

We have:

nm+1

dm

(
n/2 + k/2− 1

k/2

)
+

(
n+k−1

k

)
dm

137

138 Appendix

Let C1 =
(
n+k−1

k

)
and C2 =

(
n/2+k/2−1

k/2

)
. Taking the first derivative test to find the

minimum:

nC2
d

dm

(n
d

)m
+ C1

d

dm

(
1

dm

)
= 0

⇒ nC2

(n
d

)m
ln
(n
d

)
+ C1

(
1

dm

)
ln

(
1

d

)
= 0

⇒ nC2

(n
d

)m
ln
(n
d

)
=
C1

dm
ln d

⇒ nm+1 =
C1 ln d

C2 ln (n/d)

⇒ m =
ln
(

C1 ln d
C2 ln(n/d)

)
lnn

− 1

⇒ m =

ln

(
(n+k−1

k) ln d

(n/2+k/2−1
k/2) ln(n/d)

)
lnn

− 1 (A.1)

Let,

A =

(
n+k−1

k

)
ln d(

n/2+k/2−1
k/2

)
ln (n/d)

(A.2)

Then putting the value of A from Equation (A.2) into Equation (A.1), we get:

m =
lnA

lnn
− 1 (A.3)

Also re-arranging Equation (A.3) gives us:

nm+1 = A (A.4)

Now let,

W =
nm+1

dm
C2 +

C1

dm

⇒ dmW = nm+1C2 + C1 (A.5)

Putting the value of nm+1 from Equation (A.4) into Equation (A.5):

dmW = AC2 + C1

Now, putting the value of A from Equation (A.2), we have:

dmW =
C1 ln d

C2 ln (n/d)
C2 + C1

⇒ dmW = C1

(
ln d

ln (n/d)
+ 1

)
⇒ dmW = C1

(
ln d+ ln (n/d)

ln (n/d)

)
⇒ dmW = C1

(
lnn

ln (n/d)

)
(A.6)

A.3 Graphs 139

Let,

D =
lnn

ln (n/d)
(A.7)

Then Equation (A.6) becomes:

dmW = C1D

⇒ m ln d+ lnW = lnC1 + lnD

⇒ lnW = lnC1 + lnD −m ln d (A.8)

Putting in the value of m from Equation (A.3) into Equation (A.8):

lnW = lnC1 + lnD −
(

lnA

lnn
− 1

)
ln d

⇒ lnW = lnC1 + lnD − lnA

lnn
ln d+ ln d

⇒ W = C1D
(
e− lnA

)ln d/ lnn
d

⇒ W = C1DdA
− ln d/ lnn (A.9)

Now, putting the values of D and A from Equations (A.7) and (A.2) respectively into
Equation (A.9), we get:

W = C1 ·
lnn

ln (n/d)
· d ·

(
C1 ln d

C2 ln (n/d)

)− ln d/ lnn

⇒ W =
lnn

ln (n/d)

(
ln d

ln (n/d)

)− ln d/ lnn

dC
1−ln d/ lnn
1 C

ln d/ lnn
2

And by neglecting the logarithmic terms in the product:

W = O
(
dC

1−ln d/ lnn
1 C

ln d/ lnn
2

)
Assuming d to be small, and putting in the values of C1 and C2, we see that the total
computational time required is:

O

((
n+ k − 1

k

)1−ln d/ lnn(
n/2 + k/2− 1

k

)ln d/ lnn
)

(A.10)

A.3 Graphs

The elementary concepts of graphs described here are taken from [45]. A graph G is a
pair (V,E) of a vertex set V and an edge set E, where E is a set of two-element subsets
of V . Elements of V and E are called vertices and edges, respectively. A directed graph
is a graph whose edges are ordered pairs of vertices as opposed to unordered pairs in

140 Appendix

7

6

5

3

2

4

1

Figure A.1: A simple undirected graph G.

the case of undirected graphs. A graph is simple if each edge is a pair of distinct
vertices. This text is only concerned with simple undirected graphs, which will simply
be referred to as graphs. Figure A.1 shows a simple undirected graph G, with vertex
set V = {1, . . . , 7} and edge set E = {{1, 3}, {2, 3}, {2, 5}, {3, 6}, {4, 7}, {6, 7}}..

A graph with a vertex set V is called a graph on V . The order of a graph G is the
number of vertices in its vertex set. It is denoted by |G|. If G is a graph on V , then
|V | will also represent the size of the vertex set i.e., the number of elements of V . Let
v1, v2 ∈ V , then the edge {v1, v2} will simply be written as v1v2. Two vertices of G
are adjacent if they share an edge. Let G = (V,E) and G′ = (V ′, E ′) be two graphs.
If V ′ ⊆ V and E ′ ⊆ E then G′ is called a subgraph of G. Furthermore, if G′ contains
all the edges vw from G such that v, w ∈ V ′, then G′ is called an induced subgraph of
G, and is denoted as G′ = G[V ′]. The adjacency matrix A of a graph G on a vertex
set V with |V | = n, is a n × n (square) matrix whose ijth entry, aij, is 1 if vertex vi
is adjacent to vertex vj, and 0 otherwise. By definition, in a simple graph, a vertex vi
is not considered adjacent to itself and hence aii = 0 for 1 ≤ i ≤ n. The adjacency
matrix of the graph in Figure A.1 is:



1 2 3 4 5 6 7

1 0 0 1 0 0 0 0
2 0 0 1 0 1 0 0
3 1 1 0 0 0 1 0
4 0 0 0 0 0 0 1
5 0 1 0 0 0 0 0
6 0 0 1 0 0 0 1
7 0 0 0 1 0 1 0


A.4 Coding Theory

This short introduction to coding theory uses some notation different from the standard
notation used in coding theory texts. This is done so that the treatment is consistent
with the use of notation elsewhere in this thesis. These definitions are taken from [76].

A.5 Coskun and Herley’s Attack 141

For a more detailed account see any introductory text in coding theory. Let Fd be a
finite field, where d is a prime.1 Let Fnd be an n-dimensional vector space over Fd. A
code is a subset C of Fnd . A linear code is a linear subspace of Fnd . An element c ∈ C
is called a codeword. Let G be a r×n matrix whose rows form the basis of C. We say
that C is a [n, r] code, with generator matrix G. The dual code of C, denote C⊥, is the
orthogonal space of C. That is, it consists of vectors y ∈ Fnd such that y ·xT ≡ 0 mod d
for every x ∈ C. If C is an [n, r] code, then C⊥ is an [n, n − r] code. Let m = n − r.
Any generator matrix of C⊥ is called a parity check matrix of C. If A is a parity check
matrix, then C consists of all vectors x such that:

Ax ≡ 0 mod d

Clearly A is an m×n matrix. Let m be an r element (message) vector. Then x = GTm
is the encoding of m. Suppose x is sent over a noisy channel that introduces an error
vector e with weight wt(e) = k. Then y ≡ x + e mod d is the received codeword. Let
A be a parity check matrix. Let Ay ≡ z mod d. Ay is called the syndrome of the
codeword y. We know that Ax ≡ 0 mod d. Then, we have:

Ay − Ax ≡ z− 0 mod d

⇒ A(y − x) ≡ z mod d

⇒ Ae ≡ z mod d

Thus, recovering the codeword x from y is the same as finding an e of Hamming weight
k that satisfies the above system of linear equations.

A.5 Coskun and Herley’s Attack

The attack from Coskun and Herley [27] uses the observation that if a small number
of bits of the secret is used to respond to challenges, then among two “candidates” for
the secret, the one that is similar to the secret (in terms of the number of bits) is more
likely to generate the same response. The adversary can know which of the candidates
for the secret is more likely to be “close” to the secret, by checking their responses on
a given set of challenges. From this, the adversary can “move” further towards the
secret by checking if the “neighbours” of a candidate produce responses similar to the
ones generated by the secret. If they do, they are more likely to be closer to the secret.
Thus, the adversary can iteratively move towards the secret.

As mentioned before, Coskun and Herley’s attack was shown on a generic human
identification protocol which has an N -bit secret out of which U bits are used to
construct a response to a challenge, and secrets can differ from each other by 1 or more
bits. Generalizing this attack on the Counting Edges protocol requires some changes
to the results described in [27]. We begin by first describing the notation that should
be used exclusively in this section, which corresponds to the notation used by Coskun
and Herley in [27].

1Even though there exists a finite field for every prime power, we restrict our treatment to finite
fields when d is a prime. As Zd is a finite field for every prime d, this allows us to use notation from
modular arithmetic.

142 Appendix

k

s

e

s′

Figure A.2: k − e icons between s and s′ are the same, and e are different.

Notation

Let S denote the secret space, where |S| = n. A secret is a k-element subset of S. We
shall call the elements of S, icons (or interchangeably, objects). Thus s ∈ S is a set of
k icons. The symbol s shall be reserved for the secret. A candidate for s (the secret)
is any k-element subset of S. Symbols s′, s′′, . . . , shall represent candidates for s. A
k-element subset of S, s′, is not a candidate for the secret, if given a set of challenges,
at least one of the responses from s′ is different from s.

A response is an element from the set {0, 1, . . . , d− 1}, for some d ≥ 2. A response
shall be denoted by r. A response stream is a sequence of responses to m challenges,
denoted by r1r2 · · · rm. We shall denote the response stream from the secret s by R.
Similarly, for candidates s′, s′′, . . . , the response streams shall be denoted by R′,R′′,
Let s, s′ ∈ S, we say diff(s, s′) = e, if s− s′ = e. That is, the k-element subsets s and
s′ differ from each other in e elements (or icons). We say that s and s′ are a distance
e from each other, or are distance-e neighbours. See Figure A.2. For any s, s′ in S, if
diff(s, s′) = 1, s and s′ may simply be refered to as neighbours (instead of distance-1
neighbours). For any two response streams R and R′, define simm(R,R′) to be the
number of challenges to which s and s′ give the same response. In other words, the
number of places in the m-element strings: r1 · · · rm and r′1 · · · r′m, such that ri = r′i.
Clearly, 0 ≤ simm(R,R′) ≤ m.

A.5.1 The Attack on Counting Edges Protocol

Our description of the attack on the Counting Edges Protocol follows the same structure
as in [27]. In particular, the section headings are the same. We also implemented
various results from [27] using MATLAB, and the results shall be discussed after the
description of the attack. Recall that in a nutshell, the Counting Edges Protocol
requires the user to count the number of edges in the induced subgraph of his secret
vertices, and return the result modulo a positive integer d. Note that, the values of n,
k, k′ and n′ should be chosen according to the rule: n

k
= n′

k′
. The suggested values of

these parameters are: n = 200, k = 20, n′ = 50, k′ = 5 and d = 3.

A.5 Coskun and Herley’s Attack 143

“When Secrets are Close Responses are Closer”

Suppose, the adversary is given one challenge-response pair corresponding to the secret
s. Let r denote the response. Let r′ be the corresponding response constructed from
a candidate s′ to the secret. Assume diff(s, s′) = e. Now the probability that none of
the e different icons between s and s′ were used in constructing the responses r and r′

is given by:
k′−1∏
i=0

(k − i)− e
(k − i)

Let pe denote the probability that r = r′, when diff(s, s′) = e. Then:

pe =
k′−1∏
i=0

(k − i)− e
(k − i)

+
1

d

(
1−

k′−1∏
i=0

(k − i)− e
(k − i)

)
Intuitively, when e is low, pe is close to 1, and if e is closer to k = 20, then pe is
approximately equal to the success probability of random guess, i.e., 1

d
= 1

3
. Let

0 ≤ i ≤ m. The probability that simm(R,R′) = i, such that diff(s, s′) = e, is given by:

Pr[simm(R,R′) = i|diff(s, s′) = e] =

(
m

i

)
(pe)

i(1− pe)m−i = Bpdf(i,m, pe)

That is, the above probability is binomially distributed. We shall refer to the above
probability as the pe binomial, following the terminology used in [27]. Let mpe denote
the mean of the pe binomial. As e decreases, the mean of the binomial moves towards
the right; in other words, the similarity increases.

“It’s Easy to Find a Secret That’s Close”

Let τ denote an integer between 0 and m, which is refered to as the threshold. Coskun
and Herley’s algorithm chooses (retains) those candidates s′ for which:

simm(R,R′) ≥ τ (A.11)

holds. That is, the algorithm only retains those candidates for further processing,
whose response streams are identical to the response stream of the secret in at least
a threshold τ number of places. The threshold can be equal to the mean of the pe
binomial, i.e., τ = mpe , for some e. The reason for this is that, if we choose say e = 12,
and choose the mean of the p12 binomial as the threshold, then we would expect a large
number of candidates to be retained which are at a distance of e = 12 from the secret,
as opposed to those which are at a distance of e = 40. Thus, one can choose the mean
of a given pe binomial as the threshold, such that there is a 50% chance that at least
one of the candidates retained is at a distance e from the secret. For instance, if the
threshold is chosen to be τ = 6, i.e., the mean of the p6 binomial, an approximately
0.52 fraction of candidates which are a distance 6 from the secret are retained. On the
other hand, only about 0.0079 fraction of candidates which are a distance 12 from the
secret are retained.

144 Appendix

Now, given a secret s, the total number of candidates that are a distance i from
the secret is given by:

T (n, k, i) =

(
k

k − i

)(
n− k
i

)
where i ranges from 0 to k. Recall that there are

(
n
k

)
total candidates for the secret

(including the secret itself). Then, the total number of candidates that pass the test
of Equation (A.11) is given by:

k∑
i=0

(
k

k − i

)(
n− k
i

)(
1−

m∑
j=τ

(
m

j

)
(pi)

j(1− pi)m−j
)

=
k∑
i=0

T (n, k, i)(1−Bcdf(τ,m, pi))

Since the total number of candidates that are a distance e from the secret are exactly
T (n, k, e), if the adversary chooses a random sample of size:(

n
k

)
T (n, k, e)

(A.12)

then he would expect at least one candidate to be a distance e from the secret s. If e
is very low, the size of the sample is almost the same as the size of the whole secret
space. As e increases, the size of the random sample decreases. For instance, if e = 1,
the size of the random sample is approximately 279, with e = 6 it is about 240, and
when e = 10 the size is 220.

Now, in this random sample, we expect:∑k
i=0 T (n, k, i)(1−Bcdf(τ,m, pi))(

n
k

)
candidates to pass the test of Equation (A.11). Thus, the total candidates retained
will be: ∑k

i=0 T (n, k, i)(1−Bcdf(τ,m, pi))

T (n, k, e)

As an example, if m = 200 and τ = 6, the total number of candidates retained is
233. This is obtained after checking 240 candidates from a random sample (cf. Equa-
tion (A.12)) to see if they pass the test of Equation (A.11). If we increase m to 1000,
the number of candidates retained becomes 213. However, evaluating 240 candidates
on 1000 challenges takes considerably more time than evaluating them on say, 200
challenges. Thus, ideally m should be low enough, or else the attack is infeasible.

Recall that, retaining candidates in the way mentioned above means that if we
choose τ = mpe then the attacker has a 50% chance that he will have one candidate
which is a distance e from the secret. By doubling the size of the random selection
(Equation (A.12)), the attacker can increase the probability of success exponentially. If
the attacker increases the random sample q-fold, then the probability that the sample
contains at least one candidate which is a distance e from the secret, is given by
1− (1− 0.5)q [27].

A.5 Coskun and Herley’s Attack 145

k

s

e

s′

s′′

1

k

s

e

s′

s′′

1

Figure A.3: Graphical illustration of neighbours of s′.

“Once Close, It’s Easy to Get Closer”

Now, suppose that the attacker has a candidate s′ such that diff(s, s′) = e. Recall that
if diff(s′, s′′) = 1, s′′ is a distance-1 neighbour or simply a neighbour of s′. That is, s′′

is different from s′ in only one icon. This implies that there are a total of k(n − k)
neighbours of s′.

Now, for every neighbour s′′ of s′, there are three cases when considering diff(s, s′′).
For some of these neighbours, we have:

diff(s, s′′) = e− 1,

for some others we have:
diff(s, s′′) = e,

and for the rest of the neighbours, we have:

diff(s, s′′) = e+ 1

This result is different from Coskun and Herley’s result from [27]. This is because in
[27] they deal with differences of single bits, but in our case the difference is in terms
of icons rather than bits. Therefore, in [27], there are only two possibilities; either the
difference between s and s′′ is e + 1 or e − 1. The following theorem quantifies the
number of neighbours belonging to the above mentioned three categories.

Theorem 9. Suppose diff(s, s′) = e, and let s′′ be a neighbour of s′. Then,

diff(s, s′′) = e− 1 for e2 neighbours of s′

diff(s, s′′) = e for e(k − e) + (n− k − e)e neighbours of s′

diff(s, s′′) = e+ 1 for (n− k − e)(k − e) neighbours of s′

Proof. Consider Figure A.3. Call the icon in s′′ which is not present in s′, the singleton.
First suppose that the singleton corresponds to one of the k−e icons s′ has in common
with s (See left hand figure in Figure A.3). This implies that s′′ is already different

146 Appendix

Table A.1: Number of neigbours with differences e− 1, e and e+ 1.

n k e diff = e− 1 diff = e diff = e+ 1 Total = n(n− k)

200 20 6 36 1128 2436 3600

from s in e icons. Thus regardless of the choice of the singleton, diff(s, s′′) cannot
be e − 1 in this case. Next suppose that the singleton corresponds to the e icons in
which s′ and s are different from each other (See right hand figure in Figure A.3).
Then, if the singleton is one of the e icons of s, which are different from s′, we have
diff(s, s′′) = e − 1. There are a total of e possibilities for such a singleton. Therefore,
we have e · e = e2 neighbours of s′ for which diff(s, s′′) = e− 1.

Again, suppose that the singleton corresponds to one of the k − e icons s′ has in
common with s. Then, if the singleton is one of the e icons of s that are different
from s′, we get diff(s, s′′) = e. That is, there is no change in difference. There are
a total of k − e possibilities for such singletons in this case, which implies e(k − e)
possible neighbours s′′ which are a distance e from s. Next suppose that the singleton
corresponds to the e icons in which s′ and s are different from each other. If the
singleton is from the n − k − e icons that are different from the k icons of s, and the
e icons of s′ in which it differs from s, then diff(s, s′′) = e. There are e possibilities for
such singletons, giving the number (n− k− e)e. Combining the two, we get the result
that for e(k − e) + (n− k − e)e neighbours of s′, we have diff(s, s′′) = e.

Finally, suppose again that the singleton corresponds to one of the k−e icons s′ has
in common with s. If the singleton belongs to the n−k−e icons, that are different from
the k icons of s, and the e icons of s′ in which it differs from s, then diff(s, s′′) = e+ 1,
as s′′ already differs from s by e icons. There are a total of k − e possibilities for such
singletons, giving us the quantity: (n − k − e)(k − e). If the singleton corresponds to
the e icons in which s′ and s are different from each other, then regardless of the choice
of the singleton, the difference cannot be e+ 1. Thus, for (n−k− e)(k− e) neighbours
of s′, we get diff(s, s′′) = e+ 1.

The sum of these neighbours is of course k(n − k). Table A.1 shows the number
of neighbours with the three difference levels. As can be seen, there is a much smaller
number of neighbours which have difference e− 1 from the secret. The adversary does
not have the knowledge of which neighbours are closer to s and which are farther.
But he can guess that those neighbours which produce a response stream closer to
the response stream of the secret, are more likely to be closer to the secret. The two
probability distributions corresponding to the differences e and e− 1 are given by:

Pr[simm(R,R′′) = i|diff(s, s′′) = e] = Bpdf(i,m, pe)

and:

Pr[simm(R,R′′) = i|diff(s, s′′) = e− 1] = Bpdf(i,m, pe−1)

A.5 Coskun and Herley’s Attack 147

Notice that we are checking the difference between e and e − 1 instead of e + 1 and
e − 1 as in [27]. For a fixed e, the distance between the two binomials increases with
increasing m. For smaller e’s a smaller value of m suffices. However, as e increases, m
needs to be increased to increase the distance. Thus, the target is to find a balance
between a high e and a low m.

“Putting the Pieces Together”

Finally, Coskun and Herley’s algorithm on k-out-of-n protocols is as follows.

Attack: Coskun and Herley’s Divide-and-Conquer Attack.
Input: A set of m challenge-response pairs.
Output: A candidate for the secret.

1: for all q × (nk)
T (n,k,e)

random candidates s′ do

2: if simm(R,R′) < τ then
3: skip to the next candidate.
4: else
5: initialize an empty list. Put s′ in the list.
6: for i = 0 to e do
7: for all k(n − k) distance-1 neighbour s′′ of each element in list

do
8: calculate simm(R,R′′). Put s′′ in list.
9: retain the 10 candidates that maximize simm(R,R′′), and discard

all others.
10: if simm(R,R′′) = m then
11: break.

Suppose q = 1, then the time-complexity of the above attack is:(
n
k

)
+ 10× k(n− k)× e×

∑k
i=0 T (n, k, i)(1−Bcdf(τ,m, pi))

T (n, k, e)
×m

where the fundamental unit of complexity is the computation of one response. To
decrease the time-complexity, the adversary needs to choose a higher e. However, if e
is too high, the response streams of the distance-1 neighbours are not distinguishable.
Central to the feasibility of the above mentioned attack is the subroutine constituting
Steps 5 to 11. We call this the Hopping-to-the-Secret subroutine, to acknowledge that
this part of the algorithm attempts to move closer to the secret by eliminating the
difference from the secret by at least one icon per iteration. As e increases, we need
a larger value of m to find the secret through the Hopping-to-the-Secret subroutine.
For instance, through our implementation, we found that for e = 5, m = 300 suffices.
However, for e = 6, m = 300 is not enough to find the secret.

148 Appendix

Performance of the Attack on the Counting Edges Protocol

As already mentioned, one needs to increase e to make Coskun and Herley’s attack fea-
sible. The downside is that increasing e means an increase in the number of challenge-
response pairs m on which candidates for the secret needs to be evaluated. Our imple-
mentation results showed that when a candidate is a distance e = 6 from the secret,
the Hopping-to-the-Secret subroutine did not find the secret when m = 300. Thus, we
can consider m = 300 to be a lower bound to obtain the secret when we have at least
one candidate in the random selection from Equation (A.12) which is a distance 6 from
the secret.

If we take the underestimate that the evaluation of m = 300 challenges takes 1
second, this means that in a random sample of 240 candidates, this would take about
240 seconds, or more than 34, 000 years for the attack to output the secret. With a
lower value of e, say 5, the situation is no better, as the size of the random sample (cf.
Equation (A.12)) increases as well (246, when e = 5). Furthermore, with a decreased
e, a much larger number of candidates pass the test of Equation (A.12), which in turn
means that the Hopping-to-the-Secret subroutine needs to be run for each of these
candidates. Given one candidate for the secret such that e = 6, and with m = 1000,
the Hopping-to-the-Secret subroutine took about 3 days to output the secret on an
Intel Core 2 Duo processor at 3.00GHz. Thus, on a larger number of candidates this
subroutine is bound to take considerable time. Thus, we can assume that the attack
is infeasible in practice on the Counting Edges Protocol.

The infeasibility of the attack is perhaps due to the fact that the number of secret
bits to compute the secret in the Counting Edges Protocol is higher than that evaluated
by Coskun and Herley in their generic protocol. Let U denote the number of bits of the
secret used to compute a response. Then, for the Counting Edges protocol we have:

U = log2

(
n

k′

)
= log2

(
200

5

)
≈ 31

In contrast, Coskun and Herley gave theoretical results for a maximum value of U = 10.
They claim that beyond this, the protocols are bound to take an impractical amount of
time (more than 10 minutes per authentication session). However, we argue that this
is not always true, as it depends on how the protocol is implemented, and therefore
human computational time cannot be directly calculated as a function of the number
of secret bits involved in computing challenges.

References

[1] S. Li and H.-Y. Shum. Secure Human-Computer Identification against Peeping At-
tacks (SecHCI): A Survey. Technical Report. (2003). URL http://www.hooklee.

com/Papers/SecHCI-Survey.pdf. 1, 20, 21, 23

[2] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied
Cryptography (CRC Press, Inc., Boca Raton, FL, USA, 1996), 1st ed. 1, 2, 80

[3] L. Lamport. Password Authentication with Insecure Communication. Communi-
cations of the ACM 24, 770 (1981). 1

[4] A. Fiat and A. Shamir. How To Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In Proceedings of CRYPTO ’86, pp. 186–194
(Springer-Verlag, Berlin, 1987). 1

[5] T. Matsumoto and H. Imai. Human Identification through Insecure Channel. In
Proceedings of Eurocrypt ’91, vol. 547, pp. 409–421 (Springer-Verlag, Berlin, 1991).
2, 4, 6, 22, 23

[6] D. Bradbury. A Hole in the Security Wall: ATM Hacking. Network Secu-
rity 2010(6), 12 (2010). URL http://dx.doi.org/10.1016/S1353-4858(10)

70082-9. 3

[7] P. Tuyls, A. H. Akkermans, T. A. Kevenaar, G.-J. Schrijen, A. M. Bazen, and
R. N. Veldhuis. Practical Biometric Authentication with Template Protection. In
Proceedings of AVBPA ’05, pp. 436–446 (Springer-Verlag, Berlin, 2005). 4

[8] N. J. Hopper and M. Blum. Secure Human Identification Protocols. In Proceedings
of Asiacrypt ’01, vol. 2248, pp. 52–66 (Springer-Verlag, Berlin, 2001). 4, 5, 6, 10,
11, 12, 19, 21, 24, 25, 73, 80, 81, 82, 83, 84, 86, 88, 92, 95, 102, 105, 106, 107, 108,
109, 111, 112, 113, 118, 121, 122, 127, 129, 134

[9] S. Wiedenbeck, J. Waters, L. Sobrado, and J.-C. Birget. Design and Evaluation of
a Shoulder-Surfing Resistant Graphical Password Scheme. In Proceedings of AVI
’06, pp. 177–184 (ACM, 2006). 4, 8, 13, 16, 20, 26, 27, 47, 49, 52, 53, 56, 58, 71,
130

[10] D. Weinshall. Cognitive Authentication Schemes Safe Against Spyware (Short Pa-
per). In Proceedings of SP ’06, pp. 295–300 (IEEE Computer Society, Washington,
2006). 5, 26, 27, 38, 88

149

http://www.hooklee.com/Papers/SecHCI-Survey.pdf
http://www.hooklee.com/Papers/SecHCI-Survey.pdf
http://dx.doi.org/10.1016/S1353-4858(10)70082-9
http://dx.doi.org/10.1016/S1353-4858(10)70082-9

150 References

[11] M. Lei, Y. Xiao, S. V. Vrbsky, and C.-C. Li. Virtual Password using Random
Linear Functions for On-line Services, ATM Machines, and Pervasive Computing.
Computer Communications 31(18), 4367 (2008). 5, 27

[12] C.-H. Wang, T. Hwang, and J.-J. Tsai. On the Matsumoto and Imai’s Human
Identification Scheme. In Proceedings of EUROCRYPT ’95, vol. 921, pp. 382–392
(Springer-Verlag, Berlin, 1995). 5, 23

[13] X.-Y. Li and S.-H. Teng. Practical Human-Machine Identification over Insecure
Channels. Journal of Combinatorial Optimization 3(4), 347 (1999). 23

[14] S. Li and H.-Y. Shum. Secure Human-Computer Identification (Interface) Systems
against Peeping Attacks: SecHCI. Technical Report. (2003). URL http://www.

hooklee.com/Papers/SecHCI.pdf. 5, 25, 93, 106, 108, 124, 125, 127, 129

[15] H. Jameel, R. Shaikh, H. Lee, and S. Lee. Human Identification Through Image
Evaluation Using Secret Predicates. In Proceedings of CT-RSA 2007, pp. 67–84
(Springer-Verlag, Berlin, 2007). 5, 25, 132

[16] H. Jameel, R. Shaikh, L. Hung, Y. Wei, S. Raazi, N. Canh, S. Lee, H. Lee,
Y. Son, and M. Fernandes. Image-Feature Based Human Identification Protocols
on Limited Display Devices. In Proceedings of WISA ’08, pp. 211–224 (Springer-
Verlag, Berlin, 2008). 25

[17] X. Bai, W. Gu, S. Chellappan, X. Wang, D. Xuan, and B. Ma. PAS: Predicate-
based Authentication Services Against Powerful Passive Adversaries. In Proceed-
ings of ACSAC ’08, pp. 433–442 (IEEE Computer Society, Washington, 2008). 8,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 47, 88, 91, 129, 130, 133, 135

[18] H. Sasamoto, N. Christin, and E. Hayashi. Undercover: Authentication Usable in
Front of Prying Eyes. In Proceeding of CHI ’08, pp. 183–192 (ACM, New York,
2008). 5, 27, 131

[19] T. Matsumoto. Human-Computer Cryptography: An Attempt. In Proceedings of
CCS ’96, pp. 68–75 (ACM, New York, 1996). 6, 15, 17, 19, 23, 24, 25, 73, 80, 129,
132

[20] J. Flum and M. Grohe. Parameterized Complexity Theory (Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006). 7, 8, 25, 109, 110, 111

[21] L. Sobrado and J.-C. Birget. Graphical Passwords. The Rutgers Scholar
4 (2002). URL http://rutgersscholar.rutgers.edu/volume04/sobrbirg/

sobrbirg.htm. 8, 13, 16, 20, 21, 27, 47, 49, 71, 109, 129, 130

[22] L. S. Charlap, H. D. Rees, and D. P. Robbins. The Asymptotic Probability that a
Random Biased Matrix is Invertible. Discrete Math. 82, 153 (1990). 19, 103

http://www.hooklee.com/Papers/SecHCI.pdf
http://www.hooklee.com/Papers/SecHCI.pdf
http://rutgersscholar.rutgers.edu/volume04/sobrbirg/sobrbirg.htm
http://rutgersscholar.rutgers.edu/volume04/sobrbirg/sobrbirg.htm

References 151

[23] I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and A. D. Rubin. The Design
and Analysis of Graphical Passwords. In Proceedings of USENIX ’99, pp. 1–14
(USENIX Association, Berkeley, 1999). 20

[24] J. Thorpe and P. C. van Oorschot. Graphical Dictionaries and the Memorable
Space of Graphical Passwords. In Proceedings of USENIX ’04, pp. 135–150
(USENIX Association, Berkeley, 2004). 20

[25] X. Suo, Y. Zhu, and G. S. Owen. Graphical Passwords: A Survey. In Proceedings
of ACSAC ’05, pp. 463–472 (IEEE Computer Society, Washington, 2005). 20

[26] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using Hard AI
Problems for Security. In Proceedings of EUROCRYPT ’03, pp. 294–311 (Springer-
Verlag, Berlin, 2003). 25, 133

[27] B. Coskun and C. Herley. Can ”Something You Know” Be Saved? In Proceedings
of ISC ’08, pp. 421–440 (Springer-Verlag, Berlin, 2008). 26, 104, 141, 142, 143,
144, 145, 147

[28] T. Perkovic, A. Mumtaz, Y. Javed, S. Li, S. A. Khayam, and M. Cagalj. Break-
ing Undercover: Exploiting Design Flaws and Nonuniform Human Behavior. In
Proceedings of SOUPS ’11 (ACM, New York, 2011). 27, 131

[29] P. Golle and D. Wagner. Cryptanalysis of a Cognitive Authentication Scheme (Ex-
tended Abstract). In Proceedings of SP ’07), pp. 66–70 (IEEE Computer Society,
Washington, 2007). 27, 38, 88

[30] S. Li, S. A. Khayam, A.-R. Sadeghi, and R. Schmitz. Breaking Randomized Linear
Generation Functions based Virtual Password System. In Proceedings of ICC ’10,
pp. 1–6 (IEEE Communications Society, 2010). 27

[31] R. Dhamija and A. Perrig. Déjà Vu: A user study using images for authentication.
In Proceedings of USENIX ’00, pp. 45–58 (USENIX Association, Berkeley, 2000).
27

[32] V. Roth, K. Richter, and R. Freidinger. A PIN-Entry Method Resilient Against
Shoulder Surfing. In Proceedings of CCS ’04, pp. 236–245 (ACM, New York.,
2004). 27, 135

[33] H. Zhao and X. Li. S3PAS: A Scalable Shoulder-Surfing Resistant Textual-
Graphical Password Authentication Scheme. In Proceedings of AINAW ’07), pp.
467–472 (IEEE Computer Society, Washington, 2007). 27

[34] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. Algorithms for the Satisfiability
(SAT) Problem: A Survey. In Satisfiability Problem: Theory and Applications,
vol. 35 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, chap. 2, pp. 19–152 (American Mathematical Society, 1996). 38

152 References

[35] D. Florêncio and C. Herley. A Large-Scale Study of Web Password Habits. In
Proceedings of WWW ’07, pp. 657–665 (ACM, New York, 2007). 39

[36] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-
rithms (McGraw-Hill Higher Education, 2001), 2nd ed. 50

[37] G. Turk. Graphics gems, pp. 24–28 (Academic Press Professional, Inc., San Diego,
CA, USA, 1990). 57, 62, 137

[38] S. Ross. A First Course in Probability (Prentice Hall, 2006), 7th ed. 69

[39] S. Man, D. Hong, J.-C. Birget, and M. Mathews. A Shoulder-Surfing Re-
sistant Graphical Password Scheme. Technical Report. (2005). URL http:

//clam.rutgers.edu/~birget/grPssw/dwManWIW.pdf. 71

[40] J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics
of Computation 32, 918 (1978). 73

[41] D. R. Stinson. Some Baby-Step Giant-Step Algorithms for the Low Hamming
Weight Discrete Logarithm Problem. Mathematics of Computation 71, 379 (2002).
73, 80, 81

[42] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone. An Implemen-
tation for a Fast Public-Key Cryptosystem. Journal of Cryptology 3(2), 63 (1991).
81

[43] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
computer science (Springer, 1999). 91, 107

[44] R. G. Downey, M. R. Fellows, A. Vardy, and G. Whittle. The Parametrized
Complexity of Some Fundamental Problems in Coding Theory. SIAM J. Comput.
29, 545 (1999). 92, 109, 113, 114, 118, 119

[45] R. Diestel. Graph Theory (Springer-Verlag, Berlin, Germany, 2005). 94, 139

[46] K. P. Bogart. Introductory Combinatorics (Pitman Publishing, Inc., Marshfield,
MA, USA, 1983), 4th ed. 96

[47] B. Lin and Y. Chen. The Parameterized Complexity of k-Edge Induced Subgraphs.
CoRR abs/1105.0477 (2011). 96

[48] D. L. Donoho and J. Tanner. Sparse Nonnegative Solution of Underdetermined
Linear Equations by Linear Programming. Proceedings of the National Academy
of Sciences of the United States of America 102(27), 9446 (2005). 98

[49] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Counting Paths and Pack-
ings in Halves. In Proceedings of ESA ’09, pp. 578–586 (Springer-Verlag, Berlin,
2009). 102

http://clam.rutgers.edu/~birget/grPssw/dwManWIW.pdf
http://clam.rutgers.edu/~birget/grPssw/dwManWIW.pdf

References 153

[50] R. Niebuhr, P.-L. Cayrel, S. Bulygin, and J. Buchmann. On Lower Bounds for
Information Set Decoding over Fq. In Proceedings of SCC ’10, pp. 143–157 (2010).
103, 118

[51] F. Chabaud. On the Security of Some Cryptosystems Based on Error-correcting
Codes. In Proceedings of EUROCRYPT ’94, pp. 131–139 (Springer-Verlag, Berlin,
1994). 103

[52] R. G. Gallager. Low-Density Parity-Check Codes (1963). MIT Press, Cambridge.
103

[53] M. Baldi, M. Bodrato, and F. Chiaraluce. A New Analysis of the McEliece Cryp-
tosystem Based on QC-LDPC Codes. In Proceedings of SCN ’08, pp. 246–262
(Springer-Verlag, Berlin, 2008). 103

[54] U. Feige and M. Seltser. On the Densest k-Subgraph Problem. Technical Report.
(1997). 105

[55] A. Juels and S. A. Weis. Authenticating Pervasive Devices with Human Protocols.
In Proceedings of CRYPTO ’05, pp. 293–308 (Springer-Verlag, Berlin, 2005). 107,
108, 121, 134

[56] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness (W. H. Freeman & Co., New York, NY, USA, 1990).
107

[57] J. Hastad. Some Optimal Inapproximability Results. Journal of the ACM 48, 798
(2001). 108

[58] L. G. Valiant. The Complexity of Computing the Permanent. Theoretical Com-
puter Science 8, 189 (1979). 111

[59] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM 42, 844
(1995). 111

[60] J. Flum and M. Grohe. The Parameterized Complexity of Counting Problems.
In Proceedings of FOCS ’02, pp. 538–547 (IEEE Computer Society, Washington,
2002). 111

[61] E. Berlekamp, R. McEliece, and H. Van Tilborg. On the Inherent Intractability of
Certain Coding Problems. IEEE Transactions on Information Theory 24(3), 384
(1978). 114, 118

[62] Y.-J. Chang and B. W. Wah. Lagrangian Techniques for Solving a Class of Zero-
One Integer Linear Programs. In Proceedings of COMPSAC ’95, pp. 156–161
(IEEE Computer Society, Washington, 1995). 114

[63] M. Liazi, I. Milis, and V. Zissimopoulos. A Constant Approximation Algorithm
for the Densest k-Subgraph Problem on Chordal Graphs. Information Processing
Letters 108, 29 (2008). 123

154 References

[64] G. Kortsarz and D. Peleg. On Choosing a Dense Subgraph. In Proceedings of
SFCS ’93, pp. 692–701 (IEEE Computer Society, Washington, 1993). 123

[65] R. G. Downey and M. R. Fellows. Fixed-Parameter Tractability and Completeness
II: On Completeness for W[1]. Theoretical Computer Science 141, 109 (1995).
123

[66] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In Proceedings of STOC ’05, pp. 84–93 (ACM, New York, 2005). 126

[67] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with
Errors over Rings. In Proceedings of EUROCRYPT ’10, pp. 1–23 (Springer-Verlag,
Berlin, 2010). 126

[68] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Proceedings of
CRYPTO ’99, pp. 388–397 (Springer-Verlag, Berlin, 1999). 131

[69] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Proceedings of CRYPTO ’96, pp. 104–113 (Springer-Verlag,
Berlin, 1996). 131

[70] A. Juels. Minimalist Cryptography for Low-Cost RFID Tags. In Proceedings of
SCN ’04, pp. 149–164 (Springer-Verlag, Berlin, 2004). 132

[71] Google Inc. reCAPTCHA (2010). URL http://www.google.com/recaptcha. 133

[72] H. Gao and X. Liu. A New Graphical Password Scheme Against Spyware by Using
CAPTCHA. In Proceedings of SOUPS ’09, pp. 21:1–21:1 (ACM, New York, 2009).
133

[73] J. Munilla and A. Peinado. HB-MP: A Further Step in the HB-family of
Lightweight Authentication Protocols. Computer Networks 51, 2262 (2007). 134

[74] D. Kim, P. Dunphy, P. Briggs, J. Hook, J. Nicholson, J. Nicholson, and P. Olivier.
Multi-Touch Authentication on Tabletops. In Proceedings of CHI ’10, pp. 1093–
1102 (ACM, New York, 2010). 135

[75] A. Drucker. Multiplying 10-Digit Numbers using Flickr: The Power of Recognition
Memory. Online Article. (2011). URL http://people.csail.mit.edu/andyd/

rec_method. 135

[76] V. D. Tonchev. An Introduction to Coding Theory. Lecture Notes. (2009).
URL http://www.math.mtu.edu/~tonchev/Coding-Theory-Tohoku-June-09.

pdf. 140

http://www.google.com/recaptcha
http://people.csail.mit.edu/andyd/rec_method
http://people.csail.mit.edu/andyd/rec_method
http://www.math.mtu.edu/~tonchev/Coding-Theory-Tohoku-June-09.pdf
http://www.math.mtu.edu/~tonchev/Coding-Theory-Tohoku-June-09.pdf

20 Preliminaries and Related Work

0 1 0 1 1

1 0 1 0 0

Challenge

Shared secret ()

What is the answer mod 2?

0 1

Figure 2.1: A challenge and response from the Example Protocol.

However, n cannot be arbitrarily large, since a reasonably sized display unit cannot
accommodate a huge n. So, typically n can range between 100 to 300. If a subset of
n icons is displayed, then it is possible to increase n. However, this introduces some
other constraints, as we shall show during the security analysis of the convex hull click
based protocol from [9, 21] in Chapter 4. Briefly, when only a subset of total icons
are shown in each challenge, the probability that a secret icon appears in the subset
should be the same as the probability of appearance of a non-secret icon. Otherwise,
the adversary can do a “frequency analysis” to find the secret. Thus, even in this case,
n cannot be made arbitrarily large, as that would mean an increase in the number of
secret icons, and hence additional memory load on humans.

Text or Pictures?

As mentioned before, the protocol can also be implemented using a text-based imple-
mentation as opposed to graphical. For instance, in each cell an alphanumeric character
can be shown instead of an icon. The user can then remember an alphanumeric pass-
word, and perform the steps by following the cells according to the alphanumerics
in his password. However, a graphical implementation is prefered due to two main
reasons. First, humans can recall a graphical object more quickly than text [1, 23].
In fact, it is much easier for humans to recall a picture due to the characteristics of
human memory, as opposed to words including complete nouns, as some psychological
studies have shown [24]. Secondly, in contrast to a textual implementation, a graphical
implementation is less prone to dictionary attacks [24, 25]. Although there is some
indication that a dictionary can be created from finding patterns in the selection of
secret graphical objects by humans [24], the resulting dictionary attacks are less likely
to be as severe as in the case of (textual) passwords. Thus, from both security and
usability perspectives, a graphical implementation is preferable.

32 Security Analysis of PAS (Predicate-based Authentication Service)

A B E Z V U
X D R S W

G H

C V Y Z T U
Q R D S I

O N

y

y

n

n

0

0

1

1

1 2

Figure 3.1: A challenge and response table from PAS.

one authentication session only, and the password has to be renewed after all the len
possible values are exhausted. The predicate indices of the len authentication sessions
may simply be chosen as 1, . . . , len or a permutation of the len values. In this chapter,
we assume the PAS scheme runs in a “random permutation mode”, in which a random
permutation of 1, . . . , len determines the predicate index used for each authentication
session. Note that this is the most complicated (and thus the most “secure”) way
one can adopt to assign the len values of the predicate index to all the authentication
sessions.

Extended PAS

Bai et al. also extended the above basic PAS scheme to allow k > 1 cell indices
in each secret Si. In this case, the ith secret in the password is redefined as Si =
(ci,1, . . . , ci,k,Wi). Accordingly, k predicate indices I1, . . . , Ik will be sent from C to
H for each authentication session. H calculates the ith predicate predi as a set of k
sub-predicates {predi,j}kj=1, where:

predi,j = (ci,Îj,k , hi,j),

hi,j = wi[Îj,len],

Îj,k = (Ij mod k) + 1,

and Îj,len = (Ij mod len) + 1.

With this extended predicate containing k sub-predicates, the hidden response Bi of
the ith predicate is obtained as follows: H first calculates k hidden sub-responses
Bi,1, . . . , Bi,k for the k sub-predicates in the same way as in the basic PAS scheme, and
then determines Bi as the bitwise OR of the k hidden sub-responses: Bi = Bi,1 ∨ · · · ∨
Bi,k. To ensure uniform distribution of Bi over {0, . . . , 2l − 1}, the number of distinct
characters in each cell of each challenge table and the corresponding probability β
should be determined by Eqs. (6) and (8) in [17], respectively.

List of Parameters

A list of the parameters (with the default values) and notations involved in the de-
scription of the PAS scheme is given in Table 3.1. The column labeled “Notation
(extended)” shows the notations from the extended PAS scheme.

6.4 Drawbacks of the Basic Protocol 99

- 0 1 0

0 - 0 1

1 0 - 1

0 1 1 -

= 1, = 2, = 3, = 4= 1, = 2, = 3, = 4()

Figure 6.2: An example implementation of the basic Counting Edges Protocol.

secret was also very low for m = 300. Thus, it is evident that for some m in the range
[300, 400] with high probability the linear program above gives a solution that is also
the solution of the original problem with wt(x) = κ. Although, this program takes an
m greater than mlb, the value of m that can be safely used is not sufficient for practical
purposes. This will only allow m/µ sessions before the secret needs to be renewed.
We can choose µ to be 6 so that the chance of success of the random guess attack is
around one in a million. With m = 200, this means only about 33 sessions after which
the secret needs to be renewed.

Another drawback relates to the implementation of the protocol. We can implement
the protocol using software icons similar to the one for the Example Protocol described
in Chapter 2. A challenge can then be displayed as a grid of software icons connected
through random edges. However, this way could be cumbersome for the user as n
grows. A better way is to display the adjacency matrix of the graph. The borders of
the matrix can be identified by software icons. In this case, the user will have to find
entries in the matrix corresponding to his secret set of icons, and sum the entries (which
will be binary). See Figure 6.2. The figure shows the adjacency matrix of the graph G1

from Figure 6.1. The user only remembers the secret icons, and counts the positions
corresponding to pairs of secret icons. The transparent icons in the background of
each “cell” make it easier for the user to locate the correct entry. Still however, the
drawback of this protocol is displaying an adjacency matrix of size up to 200 × 200,
which will definitely depend on the size of the display. We consider these two points
and construct the revised Counting Edges Protocol next.

142 Appendix

k

s

e

s′

Figure A.2: k − e icons between s and s′ are the same, and e are different.

Notation

Let S denote the secret space, where |S| = n. A secret is a k-element subset of S. We
shall call the elements of S, icons (or interchangeably, objects). Thus s ∈ S is a set of
k icons. The symbol s shall be reserved for the secret. A candidate for s (the secret)
is any k-element subset of S. Symbols s′, s′′, . . . , shall represent candidates for s. A
k-element subset of S, s′, is not a candidate for the secret, if given a set of challenges,
at least one of the responses from s′ is different from s.

A response is an element from the set {0, 1, . . . , d− 1}, for some d ≥ 2. A response
shall be denoted by r. A response stream is a sequence of responses to m challenges,
denoted by r1r2 · · · rm. We shall denote the response stream from the secret s by R.
Similarly, for candidates s′, s′′, . . . , the response streams shall be denoted by R′,R′′,
Let s, s′ ∈ S, we say diff(s, s′) = e, if s− s′ = e. That is, the k-element subsets s and
s′ differ from each other in e elements (or icons). We say that s and s′ are a distance
e from each other, or are distance-e neighbours. See Figure A.2. For any s, s′ in S, if
diff(s, s′) = 1, s and s′ may simply be refered to as neighbours (instead of distance-1
neighbours). For any two response streams R and R′, define simm(R,R′) to be the
number of challenges to which s and s′ give the same response. In other words, the
number of places in the m-element strings: r1 · · · rm and r′1 · · · r′m, such that ri = r′i.
Clearly, 0 ≤ simm(R,R′) ≤ m.

A.5.1 The Attack on Counting Edges Protocol

Our description of the attack on the Counting Edges Protocol follows the same structure
as in [27]. In particular, the section headings are the same. We also implemented
various results from [27] using MATLAB, and the results shall be discussed after the
description of the attack. Recall that in a nutshell, the Counting Edges Protocol
requires the user to count the number of edges in the induced subgraph of his secret
vertices, and return the result modulo a positive integer d. Note that, the values of n,
k, k′ and n′ should be chosen according to the rule: n

k
= n′

k′
. The suggested values of

these parameters are: n = 200, k = 20, n′ = 50, k′ = 5 and d = 3.

A.5 Coskun and Herley’s Attack 145

k

s

e

s′

s′′

1

k

s

e

s′

s′′

1

Figure A.3: Graphical illustration of neighbours of s′.

“Once Close, It’s Easy to Get Closer”

Now, suppose that the attacker has a candidate s′ such that diff(s, s′) = e. Recall that
if diff(s′, s′′) = 1, s′′ is a distance-1 neighbour or simply a neighbour of s′. That is, s′′

is different from s′ in only one icon. This implies that there are a total of k(n − k)
neighbours of s′.

Now, for every neighbour s′′ of s′, there are three cases when considering diff(s, s′′).
For some of these neighbours, we have:

diff(s, s′′) = e− 1,

for some others we have:
diff(s, s′′) = e,

and for the rest of the neighbours, we have:

diff(s, s′′) = e+ 1

This result is different from Coskun and Herley’s result from [27]. This is because in
[27] they deal with differences of single bits, but in our case the difference is in terms
of icons rather than bits. Therefore, in [27], there are only two possibilities; either the
difference between s and s′′ is e + 1 or e − 1. The following theorem quantifies the
number of neighbours belonging to the above mentioned three categories.

Theorem 9. Suppose diff(s, s′) = e, and let s′′ be a neighbour of s′. Then,

diff(s, s′′) = e− 1 for e2 neighbours of s′

diff(s, s′′) = e for e(k − e) + (n− k − e)e neighbours of s′

diff(s, s′′) = e+ 1 for (n− k − e)(k − e) neighbours of s′

Proof. Consider Figure A.3. Call the icon in s′′ which is not present in s′, the singleton.
First suppose that the singleton corresponds to one of the k−e icons s′ has in common
with s (See left hand figure in Figure A.3). This implies that s′′ is already different

	1 Introduction
	2 Preliminaries and Related Work
	2.1 Notation
	2.2 Human Identification Protocols
	2.2.1 Challenge-Response Protocols
	2.2.2 Security Definitions

	2.3 Some General Results and Attacks
	2.3.1 Random Guesses
	2.3.2 Information Theoretic Bound on m
	2.3.3 Computational Security

	2.4 An Example Protocol
	2.4.1 Security Analysis
	2.4.2 Implementation

	2.5 Related Work

	3 Security Analysis of PAS (Predicate-based Authentication Service)
	3.1 Predicate-based Authentication Service
	3.2 Re-Evaluating Security and Usability
	3.2.1 Security against Brute Force Attack Targeting Predicates
	3.2.2 Security against Brute Force Attack Targeting Password
	3.2.3 Security against Random Guess Attack
	3.2.4 Security against SAT Attack
	3.2.5 Usability

	3.3 A Probabilistic Attack
	3.3.1 Description of the Attack
	3.3.2 Theoretical Analysis
	3.3.3 Time Complexity of the Attack
	3.3.4 Experimental Results
	3.3.5 Consequences of the Probabilistic Attack

	3.4 Conclusion

	4 Security Analysis of CHC (Convex Hull Click)
	4.1 The CHC Human Identification Protocol
	4.1.1 The Protocol
	4.1.2 Mitigating Random Guesses

	4.2 Attack 1: Difference in Distributions
	4.3 Number of Candidates Satisfying a Challenge-Response Pair
	4.4 Attack 2
	4.4.1 The Attack
	4.4.2 Simulation Results for Attack 2
	4.4.3 Why does Attack 2 Work
	4.4.4 Impersonation using Attack 2
	4.4.5 Discussion

	4.5 Conclusion

	5 Protocol Construction 1: Kangaroo Hopping
	5.1 Proposed Protocol
	5.1.1 User Friendly Implementations
	5.1.2 Different Ways of Computation

	5.2 Security Analysis
	5.2.1 Some Obvious Attacks
	5.2.2 Algebraic Interpretation
	5.2.3 Time-Memory Tradeoff
	5.2.4 Comparative Time Complexities
	5.2.5 Significance of the Jump Constant a

	5.3 Usability Analysis
	5.3.1 Handling Errors
	5.3.2 Suggested Values of Parameters

	5.4 Conclusion

	6 Protocol Construction 2: Counting Edges
	6.1 Fixed-Parameter Intractable Problems
	6.2 The Counting Edges Protocol: First Construction
	6.3 Security Analysis
	6.3.1 Impersonation without the knowledge of K
	6.3.2 Randomly Guessing the Secret
	6.3.3 Finding K

	6.4 Drawbacks of the Basic Protocol
	6.5 The Counting Edges Protocol: Main Construction
	6.6 Security Analysis
	6.6.1 Fine-tuning Protocol Parameters
	6.6.2 Meet-in-the-middle Attack
	6.6.3 Attacks from Coding Theory
	6.6.4 Coskun and Herley's Divide-and-Conquer Attack

	6.7 Usability Analysis
	6.8 Conclusion

	7 Fixed-Parameter Intractable Problems in Human Identification Protocols
	7.1 A Motivating Example: The HB Protocol
	7.2 Parameterized Complexity Theory
	7.2.1 Parameterized Counting Problems

	7.3 The Sum of k Mins Protocol
	7.3.1 The Sum of k Mins Problem
	7.3.2 The Protocol
	7.3.3 Matrix Representation
	7.3.4 Generalized Sum of k Mins
	7.3.5 Modular Sum of k Mins
	7.3.6 A Short Digression: The Case when d = 2

	7.4 HB and the Example Protocol
	7.5 The Counting Edges Protocol
	7.6 The Foxtail Protocol
	7.7 Conclusion

	8 Conclusion and Future Research Directions
	A Appendix
	A.1 Turk's Method of Generating a Random Point Inside a Triangle
	A.2 Optimum Value of m
	A.3 Graphs
	A.4 Coding Theory
	A.5 Coskun and Herley's Attack
	A.5.1 The Attack on Counting Edges Protocol

	References

