

- 1 -

Chapter 1

Introduction

Service-Oriented Architecture (SOA) is an architectural paradigm for

building information systems based on loosely coupled components

(services) and dynamic binding. SOA achieves loose coupling by defining

the interfaces of the system with a universally available simple and

ubiquitous interface that defines generic semantics for the system.

Services are thus described in a uniform way and can be discovered and

consumed by arbitrary clients. Generally speaking, a service is a well-

defined and self-contained functionality encapsulated in a form that is

readily consumable and understandable by clients. The service interface

is independent of the underlying technology of the service provider and

the service consumer.

The Internet can be seen as a large-scale distributed information

system with numerous information providers and users. From the view-

point of information systems engineering, the Internet has led the

evolution from static contents to web services. Web services are a

realization of the abstract SOA architectural principles. Specifically, web

services are distributed software components which can be accessed over

the Internet using well established web mechanisms and XML

(eXtensible Markup Language)-based open standards and transport

protocols, such as SOAP (Simple Object Access Protocol) and HTTP

(HyperText Transfer Protocol). Public interfaces of web services are

defined and described using the W3C (World Wide Web Consortium)

based standard, Web Service Description Language (WSDL).

Web services have a wide range of applications and are primarily

used for enterprise integration. The biggest advantage of web services lies

Chapter 1. Introduction

- 2 -

on their simplicity in expression, communication, and servicing. The

componentized architecture of web services also makes them reusable,

thus reducing development time and costs [Gottschalk et al., 2002].

1.1 Services Hosted on Mobile Devices

Recently, the processing powers and memory capabilities of high-end

mobile phones and PDAs (Personal Digital Assistant) have increased

significantly. Mobile devices like smartphones are becoming increasingly

pervasive and are being used in a wide range of applications like location

based services, mobile banking services, ubiquitous computing etc. The

higher data transmission rates achieved with Third Generation (3G) and

Fourth Generation (4G) wireless technologies, and the fast creeping all-IP

based mobile broadband networks are boosting this growth in the cellular

market. These developments are bringing out a large scope and demand

for software applications on such high-end smartphones.

Currently, mobile devices are used to access web services, where

mobile device applications request a service that is available on the

Internet (e.g. a stock quote). However, little work has been done in

hosting web services from mobile devices, where an external application

requests a web service provided by the mobile device. A mobile hosted

service has to reside on a mobile device, operating over a wireless

network. Services are requested by an external client (mobile or

stationary) that initiates the request on demand. This opens up a new set

of applications and opportunities in different domains like mobile

community support, collaborative learning, social systems, disaster

management, etc.

The main limiting factor in providing mobile hosted services is

associated with the addressability of the device. To provide services, the

mobile devices must be addressable through the same methods used by

today’s web service implementations. This means that the device needs to

be addressable through an IP address or URL (Uniform Resource

Chapter 1. Introduction

- 3 -

Locator) and be able to receive incoming HTTP (HyperText Transfer

Protocol) requests.

Mobile devices are generally connected to the Internet either

through a GPRS (General Packet Radio Service) network or through a

WLAN (Wireless Local Area Network). The router at the edge of the

network employs Network Address Translation (NAT) to provide access to

the internal addresses, and all responses from within the network appear

to originate from the router [Wikman, 2006]. Furthermore, mobile IP

addresses change frequently as the device roams between cells and

networks, and every time obtains a new IP address.

A solution to the addressability problem has been proposed by

Nokia [Wikman, 2006]. The solution is based on an intermediary gateway

maintaining a connection to the mobile device. The gateway then acts as

an HTTP router and forwards incoming HTTP request to the appropriate

mobile device. The solution has been realized by running a mobile web

server on the mobile device, addressable through a public URL, like

https://username.mymobilesite.net/. Further, the problem of

addressing is also resolved by Mobile IP version 6 (Mobile IPv6) [Johnson

et al., 2004]. The key benefit of Mobile IPv6 is that the existing

connections through which mobile devices communicate are still

maintained, even if they change locations.

1.2 Motivation

To meet the demand of the cellular domain and to reap the benefits of the

fast developing web services standards, the scope of mobile terminals as

both service clients and service providers is promising. Mobile web

services enable communication via XML interfaces and standardized

protocols on the radio link, where today proprietary and application

specific interfaces are required. Several organizations are working on

supporting mobile web services to be applicable. The Open Mobile

Alliance (OMA) and Liberty Alliance (LA) are working on developing the

Chapter 1. Introduction

- 4 -

specifications. SUN and IBM toolkits are available on the development

front for mobile web services; and some data service applications such as

OTA (over-the-air provisioning) and application handover are in progress

on the commercial front. Thus, it can be anticipated that mobile web

services will create many opportunities in the near future to mobile

operators, wireless equipment vendors, third-party application

developers, and end users.

The paradigm shift of mobile devices from the role of service

consumers to service providers is a step towards the practical realization

of various computing domains; such as pervasive computing, ubiquitous

computing, ambient computing, and context-aware computing. For

example, the applications hosted on a mobile device provide information

about the associated user (e.g. location, agenda) as well as the

surrounding environment (e.g. signal strength, bandwidth). Mobile

devices also support multiple integrated devices (e.g. cameras) and

auxiliary devices (e.g. GPS (Global Positioning System) receivers,

printers). The hosted services provide a gateway to make their

functionality available to the outside world (e.g. providing paramedic

assistance). In the absence of such provisioning functionality, the mobile

user has to regularly update the contents with the device’s state to a

standard stationary server.

Hosting services on mobile devices can create a lucrative market.

There are a number of applications where hosting services on mobile

devices is important and can improve a business process. For example, a

mobile device installed on a vehicle or carried by a skilled person can

expose a service to track its exact location at any time. This type of

service can be used by the freight forwarding or shipping companies to

track the delivery and estimate the arrival time directly.

Services hosted on mobile devices can also find their application in

supply chain management systems. A person running a small business

and using a laptop or a handheld device in the field can be part of a

supply chain system used by an enterprise. The services offered by such a

Chapter 1. Introduction

- 5 -

person in the field can be available through hosted services on his mobile

device. For example, a technician in the field can expose his progress of

work through a service to the manager if he is using a device to log the

events and milestones while completing their tasks. The reason for

hosting these services on his mobile device is that the data to be used in

these services needs to be updated frequently. Since he is always

updating the data while working in the field, it makes sense to host the

service on his mobile device.

In an emergency or disaster situation, especially skilled people like

doctors, nurses, and rescue teams can be located using their mobile

services for help and support. In addition, the people needing help from

the rescue teams can provide their location automatically by hosting a

simple tracking service on their smartphones. A number of other

applications, such as a wallet service and a parcel tracking system are

also possible for customers, which are presented in [Srirama et al., 2006a;

McFaddin et al., 2003].

A Motivating Scenario

Let us consider the following scenario in a real-world environment.

Alex is a journalist in a news broadcasting company and has a busy

life travelling on sites for collecting news. He needs to coordinate with

other journalists and organizations at different locations, covering events

like sports, major events in cities, emergency situations, political

demonstrations, accidents, etc. Alex uses his smartphone as a web service

provider and can simply host the contents he gathers and publishes on

the mobile device. Alex collaborates with different journalists and makes

the collected contents available to his editor. The editor can browse

through the data at any instance using a client application which collects

and synchronizes the information available from the journalists’ mobile

service providers. Other journalists in the team can also look at the

Chapter 1. Introduction

- 6 -

contents of Alex’s smartphone and can better synchronize their activities

(e.g. covering some major distributed event).

In the traditional solutions, journalists upload their contents to a

static server held by the editor or a third party. The key difference now is

that Alex’s service provider allows parallel access by both the team

members and the editor without requiring him to upload the contents.

Besides, Alex’s smartphone is equipped with an integrated digital

camera. To publish the photographs using currently available

technologies, Alex has to upload the files to a stationary web server. In

that case Alex has to bear the cost of data transfer between his

smartphone and the web server. But with a web service provider deployed

on his smartphone, the requesting clients of the service become

responsible for the cost of data transfer for the pictures.

Meanwhile, Alex also commutes frequently between suburbs and

city centers on public transports (e.g. buses, trains, ferries). Commuters

on these transports are usually in very close proximity and most people

carry handheld smart devices with one or more network interfaces (e.g.

WLAN, Bluetooth, GSM). These smart devices are diversely equipped and

a wide variety of services could be shared among people in a peer to peer

fashion. For example, location information can be collected by a device

with a GPS receiver and served to others peers. Someone able to access

the Internet could forward news headlines or stock market levels to

others. Commuters can download software components or services from

other peers. People travelling in different directions can also share

information about traffic and delays using their devices.

Let us assume that Alex gets on a busy train and starts the Travel

Planner application, causing his smartphone to broadcast a request for

location information (Figure 1.1). Any device that receives this request

and is able to provide a matching service can potentially respond to it. Let

us also assume that P2 and P5 are able to provide the service using GPS

receivers. So they send back a response to Alex, containing all related

attributes of their service (e.g. accuracy, time).

Chapter 1. Introduction

- 7 -

Figure 1.1: Train travel scenario.

Moreover, each device maintains information about the user’s

mobility pattern, based on his/her past journeys. This information is also

sent to Alex, so that his mobile device may estimate how long the service

provider will be co-located with him. After receiving responses from the

co-located devices, Alex can then select the best result according to his

requirements.

Such a scenario clearly shows the potential of mobile hosted service

provisioning and motivates the research on its development.

1.3 Challenging Issues

The development and deployment of mobile hosted services faces a

number of challenges. Mobile hosted services impose additional

requirements to the service architecture, which are not necessarily

supported by other architectures like enterprise and business services.

The loosely-coupled nature and independence of mobile hosted services

make it difficult to achieve real-time assurance of service performance.

Movement of service providers between networks or movement of services

across domains makes mobile hosted services difficult and complex to

control. In addition, the huge number of services possible with mobile

Chapter 1. Introduction

- 8 -

service hosts makes the discovery of these services quite complex in

wireless networks. Proper discovery mechanisms are required for

successful adoption of mobile hosted services into commercial

environments.

Most of the mobile devices have low resource capabilities.

Therefore, provisioning services from such devices is challenging, due to

the constraints of wireless bandwidth, limited processing power, and

limited memory capacity of the mobile devices. While service delivery and

management from mobile devices were observed to be technically feasible

by previous works, the ability to provide services with a reasonable

scalability appears to be quite challenging. Running complex and heavy-

duty services on a mobile device can consume most of its resources and

may obstruct the device to perform its core functions (e.g. telephony).

In terms of scalability, the mobile service host has to process a

reasonable number of clients, over long durations, and without seriously

impeding normal functioning of the device for its user. The execution

environment of mobile hosted services should be able to make use of the

resources available in its vicinity and leverage the capability to run

heavy-duty services. The architectural design to provide real-time

assurance of services needs to take such factors into consideration. The

challenge is to design a flexible, scalable, and distributed execution

environment, which can exploit resources from available networks based

on the dynamic condition of the mobile service provider.

Moreover, integration with legacy systems further complicates the

design and deployment of the services to be hosted on mobile devices. The

service provisioning architecture may need to provide means to integrate

existing legacy services which do not necessarily conform to mobile hosted

services (e.g. authentication or authorization). Clearly, deployment of

services on mobile devices comes with a different set of requirements and

challenges. This thesis addresses the issues.

Chapter 1. Introduction

- 9 -

1.4 Research Goals

Even though service delivery from mobile devices was shown to be

feasible technically, the capability to provide complex and heavy-duty

services with adequate Quality of Service (QoS) appears to be very

difficult. A major problem is that, in mobile networks nodes can join and

leave at any time. This can result in difficulties keeping an up-to-date

view of the available services and the service providers. Therefore, proper

mechanisms are required for discovering the services, managing the

mobility of service providers, and updating service registries of the mobile

hosted services in commercial environments. Peer to peer (P2P) is a

distributed computing model where nodes can act both as a server and

client. One promising way of utilizing the functionalities of mobile web

services could potentially be in P2P environments. Deploying mobile web

services in P2P networks can open up numerous scopes for both P2P and

mobile web services.

One of the goals of this research is to a construct a framework to

facilitate service provisioning from mobile service providers in P2P

environments. The next goal is to design the architecture of the mobile

service provider to host heavy-duty services. Then the subsequent goals

are to formulate a novel solution for partitioning complex applications,

and developing an adaptive platform that offloads the partitions to

improve performance of the mobile hosted service provisioning. The most

important goals addressed in the thesis are briefly presented below.

 Service provisioning in mobile P2P environments: In recent

years, P2P technology has been used in vast application domains

like entertainment systems, ubiquitous computing, pervasive

computing, collaborative systems, etc. P2P architecture has gained

popularity as a low-cost individual computing technology.

Combining mobile based service provisioning to P2P environments

can lead to scenarios where each mobile device can act both as

Chapter 1. Introduction

- 10 -

service provider and consumer, or create composite services

collaboratively. The merging can also provide better options for

service discovery out of the huge number of possible web services

provided by mobile service providers. One of the main goals of the

thesis is to realize mobile service provisioning in P2P networks and

to build a framework which incorporates effective service discovery

mechanisms, manages the dynamic service registries, and handles

the mobility of the service providers.

 Hosting complex services on mobile devices: The increasing

processing power and storage of mobile devices and their support of

multiple network interfaces allow them to host services in

distributed environments. Some recent efforts have already

attempted to facilitate provisioning of mobile hosted services.

However, these efforts have not addressed the issue about how to

host heavy-duty services on mobile devices with limited computing

resources (e.g. processing power, memory). Another principal goal

of the thesis is trying to build a framework which partitions the

workload of complex mobile services in a distributed environment,

and keeps the web service interfaces on mobile devices. The aim is

to use the mobile device as the integration point with the support

of backend nodes and other web services. The functions requiring

the resources or participation of the mobile device need to be

executed locally. The target is to support hosting services involving

complex business processes on the mobile device, by partitioning

the tasks and transparently delegating the heavy-duty tasks to

remote servers.

 Developing efficient service partitioning algorithm:

Offloading is the mechanism to leverage effectively the capability

of mobile devices, by delegating some computing load to nearby

resource-rich surrogates. It is still lacking of a generic solution to

Chapter 1. Introduction

- 11 -

leverage the capability of mobile devices in hosting services, by

efficiently partitioning the tasks and offloading the resource-

demanding tasks according to the runtime resource context of the

mobile device. One primary objective of the thesis is to establish an

efficient algorithm for service application partitioning, which

considers the dynamic status of the mobile device in terms of the

available processing power, memory space, and communication

bandwidth.

 Designing offloading platform for pervasive services: In

pervasive computing environment, resource availability and user

mobility are highly dynamic. To ensure efficient service execution

on mobile devices, runtime offloading needs an intelligent decision-

making module to adapt to the dynamic changes in the pervasive

environment. An adaptive offloading system is required which can

trigger offloading at the right time and offload the right tasks to

achieve low offloading overhead and efficient service execution. For

example, when the wireless connection is excellent, the offloading

system should decide to offload a large amount of application

execution to avoid additional offloading in the near future. Another

key objective of the thesis is to design an adaptive offloading

system that can efficiently select the right partitions to offload and

beneficially trigger task offloading to surrogates at the right time.

There is increasingly broad availability of tethered computing,

storage, and communication resources being spare on commercial clouds,

or at wireless hotspots, or at user’s personal computers. Hence, the goal is

to enhance a mobile device’s run-time capacity to dynamically and

transparently establish a distributed execution platform with the other

computing resources in its environment.

Chapter 1. Introduction

- 12 -

1.5 Research Contributions

The contributions of the thesis lie in the design of a light-weight and

efficient framework for hosting services involving complex business

processes on mobile devices. The framework provides support for

executing functions locally which require the resources of the mobile

device and offloading the resource demanding tasks to backend servers.

The offloading framework considers both the interaction properties and

the resource consumptions while performing execution partitioning and

offloading. In brief, the contributions of the thesis are highlighted below.

 Scalability and integration of mobile hosted services: In

terms of scalability, the communication using verbose XML based

SOAP messages introduces message overhead to the mobile service

host, consuming its resources extensively. However, compression of

SOAP messages comes with the trade-off of extra processing cost

and causes further performance latencies. The performance

penalties of different compression techniques are studied in detail,

and the observations identified that BinXML is the most suitable

compression option. This binary encoding technique was adapted

for the mobile service invocation cycle. In terms of integration, the

Enterprise Service Bus (ESB) was studied in detail and found to be

the appropriate platform for realizing the integration framework.

 Mobile service provider in P2P environments: The research

acknowledged that P2P environments offer a large scope for many

applications where mobile service providers can be adapted. The

P2P architecture offers several technical advantages to the mobile

host with improved mobile service discovery mechanisms. The

thesis realized mobile service provisioning in P2P environments

using the JXTA (Juxtapose) network. The framework is designed

with a mobile services gateway based on the ESB architecture,

Chapter 1. Introduction

- 13 -

which incorporates effective service discovery mechanisms,

manages the dynamic service registries, and handles the mobility

of the service providers. The framework solves the integration and

interoperability problems with traditional web services platform.

 Partitioning mobile hosted service execution: Compared to

stationary nodes, mobile devices have limited memory capacity and

slower processing speed. Therefore, hosting complex services on

mobile devices demands a flexible and scalable execution

environment, which can exploit backend servers to delegate heavy-

duty executions. The thesis constructs the framework which

partitions the workload of complex mobile services and keeps the

web service interfaces on mobile devices. Light-weight and open

source kXML and kSOAP packages are used for developing the

partitioned mobile service provider architecture. The architecture

facilitates the use of application partitioning techniques to execute

the service application in a distributed manner.

 Efficient partitioning approach: An ideal partitioning solution

must consider the dynamic conditions of the resources, to partition

the tasks between a mobile device and its backend nodes. The

thesis proposes an efficient partitioning algorithm that

considers a combination of the cost values of memory, processing

speed, and bandwidth resources of the mobile device. The

partitioning approach also considers the interaction properties and

dependencies between the tasks while performing execution

partitioning. The proposed partitioning approach thus significantly

increases the efficiency of mobile hosted services in dynamic

execution environments.

 Adaptive offloading system: To accomplish runtime offloading

beneficially on mobile devices, distributed service execution needs

Chapter 1. Introduction

- 14 -

an adaptive offloading system which can trigger offloading at the

right time and offload the right tasks to achieve low offloading

overheads. The thesis designs an adaptive offloading system that

uses the Fuzzy Control model to make effective offloading decisions

and to achieve adaptability in triggering execution offloading. A

composite cost metric which represents the interaction properties

between task executions is used by the adaptive offloading system

for selecting execution partitioning efficiently on the runtime.

1.6 Thesis Structure

The remainder of this thesis is organized as follows.

Chapter 2 discusses the state of the art for the research addressed

by the thesis. The chapter first introduces the web services technology

along with associated standards and protocols. Later, the chapter

introduces the developments in mobile technology domain in terms of

device and transmission capabilities, enabling opportunities for mobile

web services. Then the supported platforms, standardization efforts, and

SOAP transmission mechanisms for mobile web services are discussed in

detail. The chapter concludes with a discussion about the currently open

issues and some related works in realizing mobile web services.

Chapter 3 explains the research with mobile hosted service

provisioning and provides the motivation and related technologies for the

upcoming chapters. First, the chapter introduces the concept of mobile

hosted service provisioning, along with the feasibility, performance, and

application analysis of the mobile service provider. Then some alternative

technologies for hosting services on mobile devices are discussed. The

chapter later addresses the scalability related standards for mobile

service providers. Finally, the integration aspects are discussed for mobile

hosted service provisioning, by introducing the ESB technology, the Java

Business Integration (JBI) specification, and the open source ServiceMix

tool in realizing the integration framework.

Chapter 1. Introduction

- 15 -

Chapter 4 describes the details of mobile web service provisioning

in P2P networks. First, the chapter introduces the convergence of web

services and P2P technologies, the basics of P2P technologies and JXTA

platform, and the related projects addressing this issue. The chapter later

introduces a P2P framework, based on the JXTA network and ESB based

mobile services gateway. Then the chapter discusses how distributed

service registries handle mobility of the service providers in P2P

networks. Later, the discovery mechanisms are discussed for mobile web

services. And finally, the process of service discovery and invocation in

the JXME network (JXTA for J2ME (Java 2 Platform, Micro Edition))

proposed in the thesis, are explained.

Chapter 5 presents the framework for provisioning heavy-duty

services from resource constrained mobile devices, by partitioning the

execution of service applications. The chapter first introduces the service

partitioning techniques along with the design guidelines. Then the

chapter discusses different service partitioning schemes applicable in

hosting partitioned mobile services. Next, the proposed framework for

partitioned mobile service provider is presented. The chapter concludes

with the performance model for partitioned mobile services and the

evaluation of performance with partitioning.

Chapter 6 proposes an efficient service partitioning approach that

considers a combination of the dynamic cost values of memory, processing

speed, and bandwidth resources of the mobile device. First, the chapter

explains the concept of resource consideration in offloading pervasive

services. Then the cost values and implications for dynamic offloading are

discussed in detail. The chapter then presents the efficient

partitioning algorithm that considers the available memory, processing

power, and bandwidth of the mobile device in making partitioning

decision of the tasks. Finally, the chapter concludes with experimental

evaluations that demonstrate the efficiency of the proposed approach.

Chapter 7 presents an adaptive offloading system for pervasive

services in cloud environments, which makes triggering decisions by

Chapter 1. Introduction

- 16 -

using an offloading inference engine. The chapter first identifies the

decision-making problems for adaptive offloading. Then the chapter

introduces a distributed offloading platform and the approach in realizing

the platform using Java virtual machines (JVM). Next, the adaptive

offloading inference engine is introduced, which uses a Fuzzy Control

model to trigger offloading and considers class granularity and a

composite metric for selecting efficient partitioning. The chapter

concludes with the evaluation of different performance metrics and other

factors affecting the performance.

Finally, Chapter 8 concludes the findings of the thesis and

discusses the possible directions for future work associated with this

research.

- 17 -

Chapter 2

Background

The Internet can be seen as a large-scale distributed information system

with numerous information users and providers. Web services are widely

used to realize loose coupling and provide distributed access between

different information systems. The usual convention today is that an

enterprise or a central service provider uses web services to provide

access to its infrastructure. From the viewpoint of information systems

engineering, this has influenced three major trends. First trend is the

evolution from static contents to web services. The next trend is the

evolution from client-server systems to peer-to-peer and pervasive

computing systems. Finally, with the novel developments in wireless

communication technology, the latest trend is the shift from stationary to

mobile distributed information management. This chapter introduces

these developments from the literature and points out the research goals

for the thesis in provisioning services from resource constrained mobile

devices.

2.1 Web Services Technologies

Service-Oriented Architecture (SOA) is a trend in information systems

engineering and the software industry’s response to the problem of

managing large monolithic applications [Burbeck, 2000], [Endrei et al.,

2004]. SOA is a component model that delivers application functionality

as services to end-user applications and other services, bringing the

benefits of loose coupling and encapsulation to the enterprise application

integration. Services encapsulate reusable business function and are

Chapter 2. Background

- 18 -

defined by explicit, platform independent interfaces. Services are invoked

through communication protocols that facilitate location transparency

and interoperability. SOA defines participating roles as, service provider,

service client, and service registry. Figure 2.1 shows the SOA

collaborations. The operations publish, find, bind and the artifacts

services and service descriptions are all shown in the figure. SOA is not a

new notion and many technologies like CORBA (Common Object Request

Broker Architecture) [OMG, 2004] and DCOM (Distributed Component

Object Model) [Brown and Kindel, 1998] at least partly represent this

idea. Using web services for SOA provides certain advantages over other

technologies. Specifically, web services are based on a set of still evolving,

well-defined W3C standards, which allow lot more than just defining

interfaces.

Figure 2.1: SOA collaborations [Gottschalk et al., 2002].

Web services are self-contained modular applications, which can be

described, published, located, and invoked over a network, generally the

World Wide Web (WWW). They are changing the Internet from business-

to-consumer interactions to business-to-business interactions. Web

services technology and its protocol stack are based on open standards

and are widely accepted in the Internet community. Web services have

Chapter 2. Background

- 19 -

wide range of applications and can range from simple stock quotes to

pervasive applications with context-awareness like weather forecasts,

map services etc. The main advantage of web service technology lies in its

simplicity in expression, communication, and servicing. The

componentized architecture of web services also makes them reusable,

thereby reducing the development time and costs [Alonso et al., 2004].

2.1.1 Web Services Architecture

Web services architecture is defined by the Web Services Activity (WSA)

[Booth et al., 2004] and enables application-to-application communication

over the Internet. The goal of the Web Services Activity is to develop a set

of technologies in order to lead web services to their full potential

[Gottschalk et al., 2002]. Public interfaces of web services are defined and

described using Web Services Description Language (WSDL). Web

services allow access to software components through standard Web

technologies and protocols like SOAP and HTTP [Fielding et al., 1999],

regardless of their platforms, implementation details. By following the

same architecture as SOA, a service provider develops and deploys the

web service and publishes its description and binding/access details

(WSDL) to a public registry, generally a UDDI based registry. Any

potential client queries the UDDI registry (Find) and retrieves the service

description. After the WSDL has been retrieved, the service requester

binds to the service provider by invoking the service through SOAP. The

communication between the client and UDDI registry is also based on

SOAP [Curbera et al., 2002]. The following subsections introduce web

services protocols, standards, and their industrial adaptability efforts.

2.1.2 Simple Object Access Protocol (SOAP)

SOAP is a lightweight XML based protocol for exchanging structured

information between peers in a decentralized and distributed

environment [Gudgin et al., 2007]. It provides messages to communicate

Chapter 2. Background

- 20 -

between applications running on different operating systems, with

different technologies, and programming languages. A SOAP message is

an XML document that consists of a mandatory SOAP Envelope, which

contains an optional SOAP Header and a mandatory SOAP Body. The

SOAP message structure is shown in Figure 2.2.

Figure 2.2: SOAP message structure (based on [Gudgin et al., 2007]).

Envelope is the root element of the SOAP message. It specifies

two things: an XML namespace and an encoding style. The namespace

declaration gives a clue for the used SOAP version. SOAP versions 1.1

and 1.2 are almost the same; the complete set of differences between

them can be viewed at [Mitra and Lafon, 2007]. The encodingStyle

attribute indicates the serialization rules used in the message, which can

be explicitly overridden in the child elements of the Envelope.

Header is an optional sub-element of Envelope, which is a flexible

mechanism for extending the SOAP message in a decentralized manner

without prior agreement between the communicating parties. The header

entries contain information such as, authentication information, digital

signatures, transaction management details, payment details etc. There

are a couple of defined attributes for the header entries. Such as actor,

Chapter 2. Background

- 21 -

which indicates the recipient of the header element; and

mustUnderstand, which indicates whether successful processing of the

header entry is mandatory by the recipient.

Body is a mandatory sub-element of Envelope, which contains the

message Payload intended for the recipient of the SOAP message.

Generally, it contains marshaled RPC (Remote Procedure Call) calls or

error reports. In the case of a request message, the payload of the

message is typically a request to perform some service, and optionally, to

return some results. In the case of a response message, the payload is

typically the results of the request, or a fault. The optional Fault sub-

element of the SOAP body specifies error information. An error could be

generated at any intermediary along the message path while processing

SOAP message.

2.1.3 Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML based

specification that defines the means of describing web services

[Christensen et al., 2001]. It specifies the Interface information describing

all available public functions, data type information for all message

requests and message responses, binding information about the transport

protocol to be used, address information for locating the specified web

service etc. Using WSDL, a client can locate a web service and invoke any

of its publicly available functions. The process can also be automated,

enabling applications to easily integrate with new services with little or

no manual interaction. A WSDL document describes a web service as a

collection of abstract items called ports or endpoints. The WSDL

specification uses the following main elements in the definition of

services: definitions, types, message, portType, binding, and service. The

WSDL 2.0 version uses the terms interface and endpoint, instead of

portType and port respectively used by WSDL 1.1. The structure of WSDL

is shown in Figure 2.3.

Chapter 2. Background

- 22 -

Figure 2.3: Structure of WSDL document [Christensen et al., 2001].

Definitions is the root element of every WSDL document. It

defines the name of the web service, declares multiple namespaces used

throughout the document, and contains all the sub-elements described

below.

Types is a sub-element of Definitions and the container of all data

type definitions. The element describes all the data types exchanged

between the web service consumer and the web service provider. The

complex data types and the corresponding user defined data types are

represented using some type system, such as XSD (XML Schema

Chapter 2. Background

- 23 -

Definition). If the service uses only XML schema with built-in simple

types such as strings and integers, then the Types element is not

required.

Message is an abstract definition of the data being communicated.

It defines all the input and output parameters of the publicly available

functions of a service. The element specifies the name of the message and

contains zero or more message part elements.

PortType is an abstract set of operations, supported by one or

more ports. It is the most important element of the WSDL document, as it

defines the web service. The element specifies the operations that can be

performed, and the messages that are involved for the service.

Operation is a sub-element of PortType and gives an abstract

description of an action supported by the service.

Binding element describes the concrete specifics of how the service

will be implemented on the wire. WSDL includes built-in extensions for

defining SOAP services, and hence the SOAP specific information is

incorporated in this element.

Service is a collection of related ports. It defines the address for

invoking the specified web service. Port is a sub-element of Service,

which is a single endpoint, defined as a combination of a binding and a

network address.

2.1.4 Universal Description, Discovery and Integration (UDDI)

Universal Description, Discovery and Integration (UDDI) is a cross-

industry effort, driven by all major platform and software providers, such

as Dell, Fujitsu, HP, IBM, Intel, Microsoft, SAP, Oracle, Sun, and

Hitachi. UDDI is the name of a group of web-based registries, which

expose information about an entity (be it a business entity or another

entity), and its technical interfaces, or APIs (Application Programming

Interface). These registries are run by multiple operator sites, whose

basic services can be accessed by anyone free of charge [Bellwood, 2002].

Chapter 2. Background

- 24 -

From a business developer’s point of view, UDDI is similar to an

Internet search engine, which can be used to browse UDDI registries to

view different businesses that expose web services and specifications of

those services. Software developers can use the UDDI Programmers API

to query the registry for discovering services matching different criteria.

Both business developers and software developers can publish new

business entities and services to the UDDI registry. Conceptually, a

business can register three types of information into a UDDI registry.

 White pages with basic contact information and identifiers about a

company, including business name, address, contact information

and unique identifiers. This information allows clients to discover

web services based on the business identification.

 Yellow pages with information that describes a web service using

different categorizations (taxonomies).

 Green pages with technical information that describes the

behaviors and supported functions of a web service. This

information includes pointers to the grouping information of web

services and the locations of web services.

The information that makes up a registration consists of several

data structure types. These data structures are shown in Figure 2.4, and

are briefly described below.

Business Entity represents basic information about a business,

including contact data, categorization, identifiers, descriptions, etc.

Publisher Assertion is used to establish public relationships between two

Business Entity structures. Such a relationship is visible to the public

only if both companies have created the same Publisher Assertion

documents separately, i.e., business relationships cannot be one-sided.

Business Service represents a single, logical service

classification, including information about how to bind to a service, what

Chapter 2. Background

- 25 -

type of service it is, etc. A Business Entity can contain one or more

Business Service structures.

Figure 2.4: Schematic view of a UDDI registry (based on [Bellwood, 2002]).

Binding Template contains the technical descriptions of the web

services, represented by the Business Service structure. It also contains

the access point URL (Uniform Resource Locator) of the web service, but

does not contain the service specification details. A Business Service can

contain one or more Binding Templates. It is similar to the <service>

element of the WSDL described above.

TModel is an abstract description of a particular specification or

behavior, to which the web service adheres. For example, a TModel can be

defined to represent a portType defined by the WSDL. Then a business

service, implementing the portType can be specified by associating the

TModel with one of the binding templates of the business service.

Chapter 2. Background

- 26 -

2.1.5 Web Services Interoperability

In order to facilitate the development of truly interoperable web services,

the Web Services Interoperability (WS-I) organization [WS-I, 2004] was

formed in February 2002. WS-I is an open, industry consortium of about

150 companies from diverse industries like automotive, consumer

packaged goods, finance, government, insurance, media,

telecommunications, travel, and computer industries. As a standards

integrator WS-I supports the relationships with standards bodies who

own specifications and fosters communication and cooperation with

industry consortia and other organizations. The main goal of the

consortium is to encourage web service adoption and accelerating

interoperable web service development by providing guidance, best

practices, and other resources.

WS-I delivers a collection of profiles, which are descriptions of

conventions and practices for the use of specific combination of web

services through which systems can interact. These profiles support

technical requirements and specifications to achieve interoperable web

services. The consortium is also responsible for providing use cases, usage

scenarios, sample applications, and testing tools. WS-I has finalized the

Basic Profile, Attachments Profile, Simple SOAP Binding Profile, and

Basic Security Profile for web services. WS-I Basic Profile Version 1.2

[Ballinger et al., 2007] supports the specifications like SOAP 1.1, WSDL

1.1, UDDI 2.0, WS-Addressing etc. The profile supports three usage

scenarios. A usage scenario is a design pattern of interacting entities like

actors, roles and message exchange patterns [Werden et al., 2003]. The

scenarios are, (1) One-way usage scenario, which is to be used when loss

of information can be tolerated. (2) Synchronous request/response usage

scenario. (3) Basic callback usage scenario simulating an asynchronous

operation using synchronous operations. The Attachment profile

complements the Basic Profile 1.1 to add support for SOAP with

Attachments (SwA), with SOAP messages. Simple SOAP Binding Profile

Chapter 2. Background

- 27 -

is derived from Basic Profile requirements related to serialization of an

envelope, and its representation in the message.

2.2 Developments in Mobile Technology Domain

Alongside to the SOA developments, the capabilities of today’s high-end

mobile phones and PDAs have increased significantly, both in terms of

processing powers and memory capabilities. Smartphones are becoming

pervasive and are being used in wide range of applications like location

based services, mobile banking services, ubiquitous computing etc. The

main driving force for the rapid acceptance of such small mobile devices is

the capability to run applications at anytime and anywhere, especially

while on the move [Helal et al., 1999].

The experience from Japanese market shows that the most

important factor in this development is that the terminals are

permanently carried around, and thus people can use the devices all the

time for various things [Ichikawa, 2002]. The telecom industry estimated

that there are around 5.3 billion mobile users by October 2010 (that is 77

percent of the world population) [ITU, 2010]. According to their analysis

over 85 percent of the mobile handsets will be Internet-enabled by 2011

and the tendency will be growing [ITU, 2010]. The market capture of such

smartphones became evident when 12.1 million PDA-sized devices were

sold in 2003, including all PDA-phones and smartphones. The number of

Java enabled mobile phones sold during the same time, has outnumbered

the number of PCs (Personal Computers) sold [Rollman and Schneider,

2004]. In 2005, smartphones outsold PDAs by a factor of 3.4 to 1. Then

during the first half of 2006, 42.1 million smartphones and PDAs were

sold in combination. According to [CIA, 2006], Internet-enabled

smartphone sales will rapidly grow and will surpass PDA sales by an 11:1

margin in 2011.

Chapter 2. Background

- 28 -

2.2.1 Device Capabilities

Traditionally, the hand-held devices have many resource limitations like

low computation capabilities, limited storage capacities, and small

display screens that could only display few lines of text with poor

rendering quality. The new smartphones have larger graphics-oriented

screens with support for colors, which enhance the wireless experience

and entice the cellular users to exploit them for different services. They

are also being provided with built-in cameras, infrared ports that can be

used to control home devices, and even fingerprint sensors for secure

transactions [NTT DoCoMo, 2005].

From the hardware aspects of smartphones, most of these mobile

devices are using CPUs (Central Processing Unit) which are based on

ARM (Advanced RISC Machine) architecture. The ARM architecture is a

16/32-bit RISC (Reduced Instruction Set Computing) processor

architecture which is being widely used in embedded designs. ARM

processors offer combination of advanced logic, robust functionality, and

energy efficiency at low cost and simpler designs enabling easy

integration. Smartphones are specifically using ARM9 series processors.

ARM9 [ARM, 2005] processor can deliver up to 220MIPS (Million

instructions per second) at 200MHz (Megahertz) on a 0.18µm process.

These higher speeds enable mobile devices to swiftly operate more

complex data and thus tremendously increase their computability. All

ARM9 family processors feature the Thumb compressed instruction set

and EmbeddedICE JTAG-based (Joint Test Action Group) software debug

logic. Apart from smartphones ARM9 processors are used in automotive

control, instrumentation, safety systems, set-top boxes, high-end printers,

PDAs, and multimedia formats such as MP3 (MPEG-1 Audio Layer 3)

audio and MPEG4 (Moving Picture Experts Group) video.

There are also breakthroughs in the memory capabilities of

smartphones, like the NAND flash memory. Traditionally SDRAM

(Synchronous Dynamic Random Access Memory) and NOR-based flash

Chapter 2. Background

- 29 -

memory are used in smartphones. The transition to NAND flash memory

has huge advantage in performance. NAND is 60 times faster and 80

times less energy consuming than NOR-based memory [Greenberg, 2005].

All these improvements expand the utility of mobile devices and fulfill

users’ demand in terms of device performance, and thus expanding their

user base.

2.2.2 Transmission Capabilities

Concurrent to the device capabilities, the data transmission rates across

the wireless network also have increased significantly. Traditionally the

second-generation (2G) GSM (Global System for Mobile communications)

networks delivered high quality and secure mobile voice and data services

like SMS (Short Message Service), circuit switched Internet access, etc.

with full roaming capabilities across the world. The GSM platform is a

widely successful wireless technology. But, with the advent of the

interim-generation (2.5G) technologies [ETSI, 1997] like GPRS (General

Packet Radio Service) [Rysavy, 1998] and EDGE (Enhanced Data rates

for GSM Evolution) [Ericsson, 2003a], and third-generation (3G)

technologies [3GPP, 2007] like UMTS (Universal Mobile

Telecommunications System) [Umtsworld, 2002], still higher data

transmission rates (in the order of few hundred KBs to 2MBs) are

achieved in the wireless domain.

The advent of Fourth Generation Wireless Services (4G)

technologies and their deployment in south Asian countries suggests that

mobile data transmission at the rate of few GB (Gigabyte) is also possible

[4GPress, 2005]. 4G technologies will provide an end-to-end IP solution

where voice, data, and streamed multimedia can be served to users on an

"Anytime, Anywhere" basis. 4G will be capable of providing 100 Mbps and

1 Gbps, in outdoor and indoor environments respectively, with end-to-end

quality of service and high security [Kim and Prasad, 2006]. NTT

DoCoMo had already achieved 2.5Gbps packet transmission in the

Chapter 2. Background

- 30 -

downlink with 4G, while moving at 20km/h [4GPress, 2005]. These higher

data transmission rates achieved with 3G and 4G technologies, along

with the fast growing all-IP broadband based mobile networks boosting

the rapid growth in the cellular market.

2.2.3 Nomadic Mobile Services

The developments in device capabilities and data transmission rates

brought out a large scope and demand for software applications for

smartphones in high-end wireless networks. Many software markets have

evolved like NTT DoCoMo [NTT DoCoMo, 2007c] capturing the demand

of this large mobile user base. Many nomadic services were provided to

the mobile phone users. For example, NTT DoCoMo provides phone, video

phone, i-mode (proprietary mobile internet platform) [NTT DoCoMo,

2007b], and mail (i-mode mail, Short Mail, and SMS) services. With i-

mode, mobile phone users can get easy access to thousands of Internet

sites, as well as specialized services such as e-mail, online shopping,

mobile banking, ticket reservations, and restaurant reviews. Likewise, a

free mapping, search, and navigation application for mobile phones is

being provided by LocatioNet Systems [LocatioNet, 2007]. The company’s

free service called Amaze is like a hybrid between the popular TomTom

GPS (Global Positioning System) system [TomTom, 2007] and Google

Maps [Google, 2007].

Similarly, Google provides its local search tool wireless search

service [Google Mobile, 2007], designed specifically for mobile device

users, in particular travelers. Travel tools like the wireless email device

BlackBerry, provides the ability to be permanently online with instant

access to email. PayPal provides a mobile payment service, that lets

mobile users send and receive funds on their cell phone via text message.

Apart from these services many Location Based Services (LBS) have been

developed in improving the general tourism experience. Further with the

start of initial 4G services to consumers, a range of new choices can be

Chapter 2. Background

- 31 -

offered, including even higher speed in mobile Internet access, video and

TV in an on-the-go, real time, on-demand format, and new options for

networking and entertainment for home. Ultimately, 4G will allow

consumers to select a single provider to deliver their entire home, mobile,

and entertainment services [ETC, 2007].

These nomadic services bring benefits to all the participants of the

mobile Web. The mobile users benefit as their mobile phone becomes the

network computer and wallet PC (Personal Computer). The enterprises

can benefit as they can support technologies and services that allow for

anywhere and anytime connectivity with the business information

sources. The mobile operator networks can increase their revenues with

“open” business models. For example, NTT DoCoMo has proved their

success with the i-mode portal, where the operator provides a framework

and environment in which third party content developers can deploy their

services [NTT DoCoMo, 2007a]. The content providers can in turn get

incentives from these open models.

From the analysis of these nomadic mobile services, each operator

provided some set of services applicable to specific group, over specific

platforms. But most of the approaches were proprietary and followed

specific protocols. This makes the services un-interoperable and the

integration of services becomes highly challenging. Therefore, to

overcome the interoperability issues and to reap the benefits of the SOA

domain, the scope of the mobile terminals as both service clients and

service providers is being observed.

2.3 Mobile Web Services

In the mobile web services domain, the resource constrained mobile

devices are used as both web service clients and providers. Web services

have a broad range of service distributions, and on the other hand

cellular phones have large and swiftly expanding user base. Combining

these two domains brings us a new trend and leads to manifold

Chapter 2. Background

- 32 -

opportunities to mobile operators, wireless equipment vendors, third-

party application developers, and end users. By following the basic web

services architecture, mobile web services enable communication via open

XML interfaces and standardized protocols over radio links. Until

recently, still the proprietary, application-specific, and terminal-specific

interfaces are required for communication over radio links.

To support mobile web services, several organizations are working

on the specifications front, such as, OMA [OMA, 2004, 2006a] and LA

[Tourzan and Koga, 2006]. Some practical data service applications are

available on the commercial front, such as, over-the-air provisioning

(OTA), application handover etc. On the development front, SUN [Sun

Microsystems, 2007e] and IBM toolkits [IBM Corporation, 2007a] are

available for developing mobile web services. Thus, having these

developments in early stages, we can safely assume that mobile web

services are the road ahead. Figure 2.5 shows the deployment scenario of

mobile web services, where mobile devices are used both as service

providers and clients. This section introduces some of the mobile web

services, the platforms, and the APIs supporting mobile web service

development for the smartphones.

Figure 2.5: Mobile devices as service providers and clients.

Chapter 2. Background

- 33 -

Mobile terminals accessing web services are common these days

and they cater for anytime and anywhere access to services [Balani,

2003a], [Forum Nokia, 2004], [Ellis and Young, 2003], [Benatallah and

Maamar, 2003]. Some interesting mobile web service applications are the

services like e-mail, information search, language translation, company

news, etc. for employees who travel regularly. There are also public web

services accessible from smartphones like the weather forecast, stock

quotes etc.

Apart from the applications, there are some research efforts on

efficient access of mobile web services with minimum loads on the mobile

devices. For instance [Yang et al., 2003], propose an infrastructure for

organizing and efficiently accessing mobile web services in broadcast

environments. The idea is that, since sending data from a wireless device

is the most power consuming process, therefore broadcasting can save

power consumption by avoiding the costly uplink transmissions

[Imielinski et al., 1994]. The approach defines a multi-channel model to

carry information about mobile web services. The UDDI channel includes

registry information about m-services (mobile web services); the m-service

channel contains the description and executable code of each service; and

the data channel contains the actual data needed for executing the mobile

web service. The mobile service platforms take care of the resource issues

for the services. The service platforms are discussed in the following

subsection.

The usage of mobile terminals as web service client is also

significant in the geospatial and location based services. Geographic

Information Systems (GIS) make accessing geographical information

service at anywhere and anytime feasible. Open Geospatial Consortium

(OGC) is designing and providing GIS service over Internet with web

service standards [Whiteside, 2007]. OGC Web Services (OWS) represent

evolutionary, standards-based frameworks that enable seamless

integration of a variety of online geo-processing services, and facilitate

accessing them from smartphones and PDAs [Brisaboa et al., 2007].

Chapter 2. Background

- 34 -

Regarding industrial applications, there is a need for cross-

organizational secure provisioning of services by experts who are usually

on the move and only have their handheld devices or laptops with them

[Pulkkinen et al., 2007]. The maintenance experts use mobile phones,

PDAs, laptops to access traditional web services that provide

functionality for the condition monitoring, billing, maintenance, faults

analysis, repair management, and other activities. On the other hand,

there is a need to collect data from their mobile devices. These data

includes activity logs, collected information on customers’ sites (text

notes, photos, videos, audio recordings, etc.), current locations of experts,

their availability, etc. Mobile hosted service provisioning (Chapter 3) may

facilitate and generalize the solutions for accessing the data that reside

on experts’ mobile devices.

2.3.1 Platforms Supporting Mobile Web Services

Unlike the normal desktop applications, mobile applications are

particularly restricted by the runtime environment of the devices.

Usually a mobile application can only run on certain models of devices.

The limitations come from different aspects: device operating system, the

programming language and platforms used, device capabilities, and the

size of device storage. Therefore, many factors have to be considered for

developing applications for mobile devices. This subsection discusses

some of the application development platforms available for smartphones.

Symbian OS (Operating System) C++

Symbian is an operating system derived from the Epoc operating system.

Epoc was developed by Psion for their handhelds in the 80’s [Harrison,

2003]. The C++ based Symbian OS (Operating System) provides a secure,

reliable operating system for mobile information devices. It is specifically

designed with low power consumption and small memory footprint

suitable for mobile devices, and provides a stable platform for the

Chapter 2. Background

- 35 -

telecommunication technologies such as GPRS, Bluetooth, SyncML, and

ultimately 3G. Symbian OS is not only an operating system but actually a

full software and communication platform. Symbian Inc. develops the

base operating system and licenses it out to phone manufacturers.

Vendors then build a user interface on top of the base operating system.

The vendors can also customize the operating system for specific

purposes.

Symbian OS phones available on the market are based on three

user interfaces open to C++ programmers: Nokia Series 80 Platform

(Nokia 9200 series communicator) [Forum Nokia, 2007c], Nokia Series 60

Platform (Nokia 7650, Nokia 3650) [Forum Nokia, 2007b], and UIQ (User

Interface Quartz) technology (SonyEricsson P800/P900/P910i/P990

smartphones) [UIQ, 2007]. Apart from C++ support, all these designs are

also open to Java programming. CodeWarrior for Symbian OS from

Metrowerks, C++Builder Mobile Set from Borland, and Visual Studio

from Microsoft provide tool support for Symbian C++ programmers.

PersonalJava

PersonalJava [Sun Microsystems, 2007d] is a Java programming

environment targeted at developing applications for resource-constrained

devices like smartphones, PDAs, and many other embedded devices. It

was the first attempt by Sun to produce a Java application environment,

Java Virtual Machine (JVM) for mobile devices. PersonalJava specifies a

reduced set of class libraries compared to the Java desktop environment.

Over the years, the Symbian OS port of PersonalJava [Symbian, 2007]

has undergone substantial optimizations that in combination with the

hardware performance enhancements make PersonalJava a powerful

alternative for the development of mobile applications. In addition, the

memory footprint of PersonalJava application environment has been

optimized to run in resource-limited environments while providing near

desktop web-fidelity [Frank, 2004].

Chapter 2. Background

- 36 -

The PersonalJava profile is based on the JDK1.1 (Java

Development Kit) [Sun Microsystems, 2008], but makes a number of

packages, classes, and methods optional. It gives the capability to create

Web applets and other mobile phone applications. Currently

PersonalJava is going through Sun End of Life (EOL) process as J2ME

(Java 2 Platform, Micro Edition) is preferred ahead of PersonalJava.

Further support to this platform will slowly be removed, though some of

today’s smartphones use it. PersonalJava profile supported smartphones

include Nokia Communicator 9200 series phones/PDAs (9210, 9290 and

9210i) and SonyEricsson P800/P900/P910i smartphones [Sun

Microsystems, 2007b].

Java ME

JavaTM Platform, Micro Edition (Java ME) [Sun Microsystems, 2007f] is a

subset of the Java 2 Platform, Standard Edition (J2SE), and is the most

ubiquitous Java application platform for mobile devices such as mobile

phones, PDAs, TV set-top boxes, printers, in-vehicle telematics systems,

and a broad range of other embedded devices. The Java ME platform

includes flexible user interfaces, a robust security model, a broad range of

built-in network protocols, and extensive support for networked and

offline applications that can be downloaded dynamically. Java ME is very

successful and every major manufacturer is embedding Java ME on some

of their phones. All Java ME implementations provide support for the

HTTP protocol [Fielding et al., 1999]. This guarantees the availability of

HTTP as a transport mechanism for web services.

Java ME technology was originally created in order to deal with

the constraints associated with building Java applications for small

devices with limited memory, display and power capacity. Java ME

platform is a collection of technologies and specifications that can be

combined to construct a complete Java runtime environment specifically

to fit the requirements of a particular device or market. The Java ME

Chapter 2. Background

- 37 -

technology is based on three elements; configuration as the most basic set

of libraries and virtual machine capabilities for a broad range of devices,

profile as a set of APIs that support a narrower range of devices, and an

optional package as a set of technology-specific APIs. Over time the Java

ME platform has been divided into two configurations; the Connected

Limited Device Configuration (CLDC) [Sun Microsystems, 2000] and the

Connected Device Configuration (CDC) [Sun Microsystems, 2005].

CLDC is specifically designed to cater for the devices with very

limited memory, processing power and graphical capabilities. The

development environment for Java ME on the CLDC devices is the Mobile

Information Device Profile (MIDP). Combined with CLDC and its Kilo

Virtual Machine (kVM) [Sun Microsystems, 2000], this profile provides a

complete Java Runtime Environment (JRE) for mobile phones and

devices with similar capabilities.

CDC comes with three different profiles: the Foundation Profile

(JSR 219), the Personal Basis Profile (JSR 217) and the Personal Profile

(JSR 216). The Personal Profile is aimed at devices that require full

Graphical User Interface (GUI) or Internet applet support, such as high-

end PDAs, smartphones, and game consoles. Personal Profile replaces

PersonalJava technology, and provides PersonalJava applications a clear

migration path to the Java ME platform.

Combining various optional packages can further extend the Java

ME platform. These optional packages offer standard APIs to support

both existing and emerging technologies like Bluetooth, web services,

wireless messaging, multimedia, database connectivity, etc.

.NET Compact Framework

Microsoft .NET Framework [MSDN, 2007b] is a software component

added to the Microsoft Windows operating system. The .NET Compact

Framework [MSDN, 2007a] is a subset of .NET Framework and provides

a robust environment for developing mobile applications. The framework

Chapter 2. Background

- 38 -

is intended to be used by applications created for the Windows platform.

The .NET Compact Framework’s managed code and web services enable

the development of secure, downloadable applications on devices such as

PDAs, mobile phones, and set-top boxes. The framework uses some of the

class libraries of the .NET Framework and a few libraries designed

specifically for mobile devices.

2.3.2 SOAP Implementations for Resource Constrained

Environments

To act as web service clients, the mobile devices should be able to

consume web service messages. To request a web service, a smartphone

should create the web service request messages (SOAP requests), send it

to the web service provider, and be able to process the response messages

received from the provider. To achieve this, the smartphone should

support a SOAP parser for processing the web service messages. Many

SOAP parsers like kSOAP2, WSOAP, etc. exist specifically for the

resource constrained devices. This subsection discusses some of these

platforms and SOAP processors.

gSOAP

The gSOAP toolkit is a platform-independent development environment

for C and C++ based web services [Engelen and Gallivan, 2002]. gSOAP

provides a transparent SOAP API through the use of compiler technology

that hides irrelevant SOAP-specific details from the user. The compiler

automatically maps native and user-defined C and C++ data types to

semantically equivalent SOAP data types, and vice-versa. As a result, full

SOAP interoperability is achieved with a simple API. The gSOAP toolkit

is a mature and fast toolkit and is available as open source. The toolkit

supports many platforms including embedded systems, and follows the

WS-I Basic Profile 1.0a compliance recommendations.

Chapter 2. Background

- 39 -

eSOAP

Embedded SOAP (eSOAP) [Silva, 2001; Silva, 2007] is a small lightweight

implementation of the SOAP 1.1 specification and is exclusively designed

for embedded systems. The eSOAP toolkit has C++ and Java libraries

that provide a SOAP processing engine for the embedded system. eSOAP

achieves easy interoperability for networked embedded systems and the

library is compact with a memory footprint less than 150KB. The toolkit

is also portable as the core engine of eSOAP is written totally in ANSI

(American National Standards Institute) C++. It uses C++ Standard

Template Library (STL) whenever possible, and where STL is not

available it provides a container library. The toolkit also provides a Java

library with interface and classes for web service client development.

WSOAP

The Wireless SOAP (WSOAP) [Apte et al., 2005] aims to provide static

encoding based on SOAP schema, leverages WSDL service description to

create adaptive encoding for web service interfaces. WSOAP is actually a

set of optimization techniques. The approach concentrates on functional

message equivalence (also called Name Space Equivalency) rather than

exactness. This protocol can be extremely useful between mobile devices

and gateways where the resources are very limited, as WSOAP can

reduce SOAP message size by 3-12 times.

Wingfoot SOAP

Wingfoot SOAP [Wingfoot, 2007b] is a lightweight client implementation

of SOAP 1.1. It is specifically targeted for the MIDP/CLDC platform, but

can also be used in PersonalJava, J2SE, and J2EE (Java 2 Platform,

Enterprise Edition) environments. Wingfoot SOAP provides two different

binaries. The first version kvmwsoap_1.06.jar targets the CLDC/MIDP

platforms. The binary package includes a lightweight XML parser and is

Chapter 2. Background

- 40 -

37K in size. The XML parser is based on kXML. The second version

j2sewsoap_1.06.jar targets the CDC/PersonalJava, J2SE, and J2EE

platforms. It also includes the lightweight XML parser and is 34.5K in

size [Wingfoot, 2007a]. Wingfoot SOAP provides its own mechanism of

sending the SOAP messages over HTTP. SOAP over alternative transport

protocols like SMTP (Simple Mail Transfer Protocol), UDP (User

Datagram Protocol) etc. can be realized using Wingfoot SOAP, by

implementing the Transport interface.

Java Specification Request 172 (JSR 172)

The Java Specification Request 172 (JSR 172) [Ellis and Young, 2003],

defines the J2ME web services specification and a set of API for accessing

web services from the J2ME environment. Sun also has provided a

reference implementation of this API with the J2ME Web Services APIs

(WSA) [Sun Microsystems, 2007a]. WSA enables J2ME devices to be web

services clients, providing a programming model that is consistent with

the standard web services platform. The API facilitates web service

access from both CDC and CLDC configurations. JSR 172 also provides a

light weight XML parser for J2ME platform, and is the first attempt

towards the standardization of mobile web services.

kSOAP2

kSOAP is an open source API for SOAP parsing [kSOAP, 2007]. It is

based on kXML parser, a lightweight and open source XML parser. kXML

uses XML pull parser mechanism, a slight modification of DOM

(Document Object Model) parser [Balani, 2003b]. Using the pull parser,

the application is in control of when and where it asks the parser for the

next event. kSOAP provides a SOAP parser with special type of mapping

and marshalling mechanisms. Both kSOAP and kXML are thin, easy to

use, and well documented; and hence can be used for resource constrained

devices like mobile phones. The kSOAP parser automatically converts the

Chapter 2. Background

- 41 -

SOAP messages to Java data objects, similar to SOAP parsers. kSOAP is

completely redesigned to kSOAP2 [kSOAP2, 2007], which has improved

support for literal encoding and made SOAP Serialization support to be

optional. kSOAP2 uses kXML2, the updated version of the kXML.

2.3.3 Different Transportation Protocols

SOAP messages can be carried on top of any underlying protocols such as

HTTP, TCP (Transmission Control Protocol), UDP, BEEP (Block

Extensible Exchange Protocol), and SMTP. Therefore, a binding

framework has been defined for SOAP instead of a fixed binding.

Specifically, the SOAP binding framework specification [Gudgin et al.,

2003] provides a high level of flexibility in terms of how SOAP messages

are transmitted. The following subsections introduce SOAP over different

protocols, and address the ongoing research in this domain.

SOAP over HTTP

HTTP protocol is the most widely used transport mechanism for SOAP

binding among the web services community. SOAP over HTTP is also the

only concrete binding specification defined in the SOAP binding

framework proposal. There are many reasons why HTTP is an attractive

binding option. HTTP is already widely used on the Internet and

universally supported by web servers. This provides a strong base for the

adoption of web services with SOAP over HTTP binding. Moreover HTTP

uses TCP/IP (Transmission Control Protocol/Internet Protocol) as its

underlying transport, which ensures reliability of delivered packets, and

most firewalls allow HTTP packets to pass through them.

SOAP over HTTP message can be transported by encapsulating the

SOAP request into the HTTP GET or POST message body. Similarly, a

SOAP response can be encapsulated into the body of the HTTP response.

The message formats of the HTTP request and response are described in

the Appendix. Listing 2.1 and 2.3 show the sample SOAP request and

Chapter 2. Background

- 42 -

response messages transmitted over the HTTP protocol. The service being

invoked (searchArticle) is to find articles written on a specific date by

a journalist on his mobile device (Listing 2.2).

Listing 2.1: SOAP request message over HTTP protocol.

POST / HTTP / 1.1

SOAPAction: searchArticle

Content-Type: text/xml

Content-Length: 1022

User-Agent: kSOAP/2.0

Host: 192.168.82.94:6666

<soap-env:Envelope

xmlns:xsi="http://www.w3.org/2003/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2003/XMLSchema"

xmlns:soap-enc="http://www.w3.org/2003/05/soap-

encoding"

xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope">

 <soap-env:Header/>

 <soap-env:Body>

 <n0:searchArticle>

 … … …

 </n0:searchArticle>

 </soap-env:Body>

</soap-env:Envelope>

Listing 2.2: Sample web service searchArticle.

<webservice>

 <uri>http://mobilews.com/searchArticle</uri>

 <class>webservices.searchArticle</class>

 <operation>searchArticleByDate</operation>

</webservice>

Chapter 2. Background

- 43 -

Listing 2.3: SOAP response message over HTTP protocol.

HTTP/1.0 200 OK

Server: MobileServiceProvider

Content-Length: 585

Content-type: text/xml

Request-ID: 3

Connection: close

<soap-env:Envelope

xmlns:xsi="http://www.w3.org/2003/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2003/XMLSchema"

xmlns:soap-enc="http://www.w3.org/2003/05/soap-encoding"

xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope">

 <soap-env:Header/>

 <soap-env:Body>

 <n0:searchArticleResponse>

 … … …

 </n0:searchArticleResponse>

 </soap-env:Body>

</soap-env:Envelope>

SOAP over Alternative Transportation Protocols

Instead of transmitting SOAP over HTTP, the message can directly be

transported using TCP as the underlying protocol. There is not yet an

official specification for SOAP binding with TCP; however, Apache Axis2

[Apache Software Foundation, 2007a] and Microsoft WSE (Web Service

Enhancement) 2.0 [MSDN, 2007c] already include APIs that enable

sending SOAP messages via TCP channel.

Axis2 also supports SOAP over JMS (Java Message Service). JMS

offers a common way to create, send, receive, and read enterprise

messages. JMS is appropriate transport protocol for SOAP when there is

a requirement for web services to communicate asynchronously and

reliably. Asynchronous communication ensures the sender of a message

not to wait for a reply, and reliability assures the sender that the

message will be delivered. But the problem with JMS mechanism is that

the communicating parties are required to use the same infrastructure of

Chapter 2. Background

- 44 -

JMS, such as IBM WebSphere MQ [IBM Corporation, 2008]. Considering

this issue, WS-ReliableMessaging [Bilorusets et al., 2005] standard draft

has been developed to provide a framework for interoperability between

different reliable transport infrastructures.

SOAP over SMTP is also possible and is presented in the W3C

specification. In this transport mechanism, SOAP messages are

encapsulated in the bodies of emails. SOAP over SMTP only allows

asynchronous message exchange between web services [Cunnings et al.,

2001]. SOAP over BEEP is also possible and is studied by [Kefali, 2004].

SOAP over JXTA, a peer to peer (P2P) technology, is addressed in [JXTA

Community, 2007a]. In this mechanism, the SOAP messages are

exchanged over the JXTA pipes.

Apart from these protocols, SOAP over UDP specification [Gudgin

et al., 2004] defines the means of encapsulating SOAP messages into

UDP packets. With this specification the SOAP message must be small

enough to fit in one UDP packet. So the maximum size of a message

should be 65,536 bytes (216). The specification supports four messaging

patters: Unicast one-way, Multicast one-way, Unicast request, unicast

response and Multicast request, unicast response. Using a set of extensive

experiments, [Lai et al., 2005] show that the throughput of SOAP over

UDP is 10 times higher than SOAP over HTTP in Wi-Fi environments.

However, UDP is highly unreliable and packets delivered by UDP may be

duplicated, arrive out of sequence, or even not reach their destinations.

But UDP can be used reliably to transport messages by applying an

Automatic Repeat Request (ARQ) protocol over UDP. [Gehlen et al., 2006]

presents a reliable UDP SOAP binding for a mobile web service based

middleware.

Considering the issues discussed above and not having proper

standards and specifications, the thesis proceeded with SOAP over HTTP

for mobile hosted service provisioning. Moreover, in mobile application

development the J2ME standard mandates that all MIDP

implementations must provide support for the HTTP protocol.

Chapter 2. Background

- 45 -

2.3.4 Standardization Efforts for Mobile Web Services

Most of the platforms and implementations supporting the development

of mobile web services are proprietary, and have evolved concurrently.

Hence, there are some standardization efforts from different groups to

achieve some uniformity among these developments. This subsection

discusses some of the prominent standardization efforts.

JSR 172

Before the emergence of JSR 172, there was no standardized support for

web services in mobile environments. JSR 172 is the first attempt

towards the standardization for mobile web services [Ellis and Young,

2003]. JSR 172 defines a J2ME web services specification and thus

extends the web services platform to include Java ME client devices.

J2ME web services specification defines two new optional packages: XML

Processing APIs and RPC-based access to web services.

With JSR 172, the web services applications are portable and the

specification allows generated stubs to be independent of the

implementations. Therefore, these applications can be dynamically

provisioned to any J2ME supported platform. With JSR 172, services and

clients no longer have to be implemented on the same platform or by the

same organization [Sun Microsystems, 2007c].

LA

Liberty Alliance (LA) project is the global body that is working to define

and provide technology, knowledge, and certifications to build identity

into the foundations of mobile and web service communication. The

members of the Liberty Alliance envision a networked world, across

which individuals and businesses can engage in virtually any transaction

without compromising the privacy and security of the identity

information [LA, 2007].

Chapter 2. Background

- 46 -

The Liberty Alliance project proposes the use of federated network

identity to solve network identity problems, due to the lack of

connectivity between identities in the wireless applications, especially in

mobile networks. The Liberty Identity Web Services Framework (ID-WSF)

[Tourzan and Koga, 2006] builds the federated identity foundation, and

provides a framework for identity-based web services in a federated

network environment. Nokia has developed Nokia Mobile Web Services

Framework for its Series 60 and Series 80 phones, based on the Liberty

ID-WSF specification [Forum Nokia, 2007a].

OMA

Open Mobile Alliance (OMA) group is directed at defining a unique

specification/framework for mobile data services to achieve

interoperability. OMA was formed in June 2002 by nearly 200 companies

including the world’s leading mobile operators, device and network

suppliers, information technology companies, and content and service

providers [OMA, 2004].

The current possible applications have a number of drawbacks.

Firstly, the applications have to be created through tightly-coupled,

costly, and close alliances between value-added service providers.

Secondly, the applications have to be created based on mostly propriety

models and disparate standards such as Wireless Application Protocol

(WAP), Location, Presence, Identity etc. Thirdly, most of these standards

have been devised specifically for the mobile environment from the

ground up.

The OMA Web Services Enabler specification [OMA, 2006b] and

OMA Mobile Web Services Requirements specification [OMA, 2006a] are

destined to cover the drawbacks and envisioned to support the four types

of mobile web service interactions: server-to-server, server-to-mobile

terminal, mobile terminal-to-server, and mobile terminal-to-mobile

terminal (peer-to-peer).

Chapter 2. Background

- 47 -

2.4 Open Issues and Challenges

The next generation devices such as smartphones and PDAs are enabled

to conduct tasks almost like personal computers and bring endless

possibilities for wireless communication. Meanwhile, web services

technology is designed to support interoperable machine to machine

interaction over the network so that applications could communicate with

each other directly in order to exchange data or conduct a task. Recent

developments of 3G and 4G technologies have significantly increased the

wireless data transmission rates and due to their popularity a great

amount of applications for mobile based services are available and more

are under development.

Mobility is the primary benefit provided by smartphones [Fox and

Box, 2004]. But no effective mechanism is available for publishing and

discovering mobile based services from smartphones with reasonable

performance. Therefore, an efficient discovery mechanism is necessary

and is critical to reduce bottlenecks in mobile service provisioning with

success. The frequently used centralized registry UDDI for web services

is designed for stable networks and cannot cater for the dynamic and

spontaneous nature of mobile nodes. Therefore, an appropriate and

effective mechanism for mobile service discovery is of urgent need.

Lack of interoperability is a major barrier of mobile based service

provisioning. The mobile phone environment is characterized by different

devices, platforms, and APIs [Teder, 2006]. This diversity hinders the

deployment of mobile based services. Firstly, it increases the number of

applications need to be developed and deployed for individual platforms

in the smartphone market. Secondly, the applications must be customized

for every mobile configuration with which it interfaces. The large number

of existing configurations makes this complex and time consuming [OMA,

2006b].

Cellular networks provide security for the carried messages only

up to the extent of mobile networks; whereas, mobile web service

Chapter 2. Background

- 48 -

messages may travel beyond this range [Moyo et al., 2006]. As mobile

computing differs from traditional computing paradigms, therefore it

would be inappropriate to implement WS-Security [Nadalin et al., 2006a]

on smartphone platforms in the same manner as on traditional platforms

[Nadalin, 2003]. The current processing power and memory of

smartphones render the implementation of cryptographic operations on

smartphones [Zheng and Ni, 2006].

The growth of data resulting from WS-Security is problematic

because mobile subscribers are usually charged by the amount of data

they transfer [Tian et al., 2004], and the battery power is consumed more

by data transfer operations than CPU processing [Kangasharju, 2007].

Solutions exist to mitigate the additional size of SOAP messages; for

example, data compression and binary XML encodings [Tian et al., 2004].

On the other hand, compressing and encrypting XML data results in

interoperability problems. XML Encryption does not provide a

mechanism to instruct a decrypting entity that it must decompress data

after decrypting. Therefore, binary XML encodings are preferred to

reduce the size of secured XML elements [Kangasharju et al., 2006].

Mobile web services operate in a networked environment

characterized by limited bandwidth and high latency [Hirsch et al., 2006].

The requirement that the devices need to continue processing in the

absence of a network connection is also an important fact. The mobile

network constraints of high latency and disconnected operation may be

handled programmatically through the use of asynchronous method calls

[Kangasharju et al., 2007]. An asynchronous method does not block after

finishing execution, and continues to perform other tasks in the

meanwhile [Hirsch et al., 2006]. This allows processing to take place

while a response is pending. On the arrival of the response, a callback

method is invoked allowing the response to be handled.

With advances in mobile devices and wireless communications, the

demand for mobile devices to run heavy-duty applications is increasing.

But most of the available mobile devices have low resource capabilities.

Chapter 2. Background

- 49 -

In comparison to desktop nodes, mobile devices usually come with limited

memory capacity, slower processing speed, and limited communication

bandwidth. Meanwhile, in real-life environments stationary computing

resources are normally rich. For instance, in offices or cafes, some

stationary computers may remain idle while mobile devices are busy. As

such, it makes sense for these resource constrained mobile devices to

make use of the resources available in their vicinity and leverage their

capability to run heavy-duty applications.

Mobile devices can provide services involving complex business

processes by partitioning the tasks and delegating the heavy-duty tasks

to remote servers. An ideal partitioning solution should consider memory,

CPU and bandwidth simultaneously. Therefore, to successfully host

complex services on mobile devices, the demand for a flexible, light-

weight, and scalable execution environment is crucial, which can exploit

resources from available networks or the Cloud as necessary.

2.5 Related Work

There have been some research works on facilitating mobile devices in

hosting services. However, the existing work in the area is only feasible

for simple services that demand very less resources. One of the earliest

works in this area was proposed by IBM. They developed a prototype for a

shopper-kiosk application running on a PDA where a shopper can use

his/her wallet services to pay bills [McFaddin et al., 2003]. But this effort

was specific to a particular scenario using Bluetooth and therefore not

suitable for generalized application scenarios.

[Srirama et al., 2006a] have investigated web service hosting on

mobile devices in detail. Later, this work is further extended to provide a

secure communication and an access control for mobile web service

provisioning [Srirama and Naumenko, 2007; Srirama et al., 2007b]. The

authors presented a distributed semantics-based authorization

mechanism for accessing mobile web services. [Pham and Gehlen, 2005]

Chapter 2. Background

- 50 -

also proposed a light-weight SOAP server architecture for mobile devices

and provided an implementation with J2ME platform. The proposed

SOAP server is useful for its light-weight architecture in providing access

to web services via HTTP protocol.

Riva et al. proposed a mobile service framework, which can reflect

dynamic context changes in an ad-hoc network [Riva et al., 2010]. This

method monitors the context of a service requester and forwards the

requester to a relevant host. However, the proposed framework is

designed for an ad-hoc environment and requires the client to monitor the

context. Hemmati et al. also proposed a framework, which supports the

migration of service codes and execution states [Hemmati et al., 2005].

The proposed framework decides a relevant target host based on their

context information, which is collected by a context manager. However,

this method does not support the web based mobile services.

Hao et al. proposed a cost model and a web-let infrastructure,

which supports the migration and execution of web services to improve

the performance of real-time applications [Hao et al., 2006]. Specifically,

they use an algorithm for making the decision about a target host.

However, their method needs a user’s intervention for taking the decision

of migration. Pratistha et al. also proposed a cost model, which is used to

decide about a target host for service migration [Pratistha et al., 2005a;

Pratistha et al., 2005b]. However, this method is not based on any mobile

environment and requires selecting a cost model manually for the service

provider.

In another work, a light-weight infrastructure referred to as Micro-

Services was proposed, which is capable of hosting web services from

mobile devices [Pratistha et al., 2003]. It is limited to performing simple

and short operations and does not consider the intermittent bandwidth

characteristic of the wireless medium. Gu et al. also proposed an adaptive

infrastructure for Java application offloading [Gu et al., 2003], which

adopted the MINCUT heuristic algorithm [Stoer and Wagner, 1997] to

dynamically partition an application. Their effort only considers memory

Chapter 2. Background

- 51 -

requirement for partitioning decisions. However, most of the mobile

applications are equally sensitive to bandwidth and CPU usage

constraints.

Most of the existing efforts only consider how to host simple

services on mobile devices. The work presented in this thesis, provides a

complete framework for hosting complex and heavy-weight services on

mobile devices [Hassan et al., 2010]. The proposed mechanisms and

algorithms for partitioning service execution are briefly illustrated and

justified with prototype experiments. In particular, the framework takes

into account the available memory, CPU, and bandwidth resources of the

mobile device to dynamically partition the work load of the hosted

services. Another work presented in the thesis, realizes mobile service

provisioning in P2P environments [Hassan, 2009]. The proposed approach

exploits the JXTA architecture to provide P2P based mobile services,

which supports integration with traditional web service platforms.

2.6 Summary

This chapter discussed the background study for the research addressed

by the thesis. The chapter first introduced the web services technology

along with associated standards and protocols. Later, the developments

in mobile technology domain are discussed in terms of device and

transmission capabilities for mobile web services. The supported

platforms, standardization efforts, and SOAP transmission mechanisms

for mobile web services were introduced. The chapter concluded with a

discussion on the currently open issues and some related works in

realizing mobile web services.

- 53 -

Chapter 3

Mobile Hosted Service Provisioning

While mobile service clients are common these days and many software

tools already exist in the market, the research with providing services

from mobile devices is still scarce. However, a mobile device in the role of

a service provider enables entirely new scenarios and end-user services.

This chapter explains the research with mobile hosted service

provisioning and tries to provide motivation and state of the art for the

upcoming chapters.

3.1 Mobile Devices as Service Providers

In recent time speed of wireless data transmission has increased

significantly with the introduction of 3G and beyond mobile technologies

like UMTS, GPRS, and EDGE [GSM1 2009]. Also processing power and

capabilities of mobile devices have increased drastically, enabling better

usage of mobile devices in different application domains. This enables

communication via XML-based service interfaces and standardized

protocols also on the radio links. Mobile hosted services lead to many

opportunities to mobile operators, third-party application developers, and

end users. It is easy to imagine that in future mobile based service

applications will generate a large percentage of all service requests.

 The paradigm shift of mobile devices from the role of service

consumer to service provider is a step towards the realization of various

computing paradigms such as pervasive computing, ubiquitous

computing, ambient computing and context-aware computing. For

example, the applications hosted on a mobile device provide information

Chapter 3. Mobile Hosted Service Provisioning

- 54 -

about the associated user (e.g. location, agenda) as well as the

surrounding environment (e.g. signal strength, bandwidth). Mobile

devices also support multiple integrated devices (e.g. camera) and

auxiliary devices (e.g. GPS receivers, printers). For the hosted services, it

provides a gateway to make available its functionality to the outside

world (e.g. providing paramedics assistance). These developments have

resulted in a service research paradigm which is referred to as Nomadic

Mobile Services [Halteren and Pawar, 2006]. A Nomadic Mobile Service

(NMS) is hosted on a mobile device such as a handheld device,

smartphone, or an embedded device capable of connecting to the Internet

using a wireless network. The mobile device roams from one network to

another which gives nomadic characteristics to the services it hosts.

In general, mobile hosted services have several potential

advantages in addition to the current web service solutions. As a service

provider, the mobile terminal becomes a multi-user device where the

carrier of the device can work in parallel with the service clients. From a

business viewpoint, this is profitable to the service owner. Traditionally

the service owner subscribes and pays to upload the services to a

stationary server and then clients pay to access the information. In the

mobile service provisioning scheme, the service owner hosts services

locally and the payment responsibility shifts to the actual clients using

the services. Another commercial aspect would be the possibility for small

mobile operators to set up their own mobile based service business

without having stationary structures. Thus moving the service

provisioning arrangement from centralized to decentralized architectures.

In such architecture, individuals can host services within proximity for

business purposes; such as, delivery/pick-up services, temporary retail

services, collaborative journalism, emergency services etc.

Chapter 3. Mobile Hosted Service Provisioning

- 55 -

3.1.1 Feasibility of Implementing Mobile Service Provider

Previously, nomadic mobile service provisioning was attempted in several

research works with different proprietary technologies. For instance,

Halteren et al. proposes a proxy based middleware based on the Jini

surrogate architecture [Halteren and Pawar, 2006]. Such proprietary

approaches seriously affected the interoperability of the provided NMS.

Later, the interoperability issues and the issues with integration of NMS

were overcome in the project mobile web service provisioning [Srirama,

2007]. In this project, a web services based Mobile Host was developed on

a smartphone and its performance was extensively analyzed, proving the

feasibility of the concept of hosting services on mobile devices [Srirama,

2004].

 Similar to the web services architecture, the basic architecture of

the mobile host as a service provider can be implemented on

smartphones. Though the service provider is hosted on a smartphone,

standard WSDL can be used to describe the services and standard UDDI

registry can be used for publishing and un-publishing the services (Figure

3.1) [Srirama et al., 2006a]. The mobile host has been developed as a web

service handler built on top of a normal web server. Mobile web service

messages can be exchanged using the SOAP over different transportation

protocols like HTTP, BEEP, UDP, and WAP. In the implementation of

mobile host, the web service requests sent by HTTP tunneling are

diverted and handled by the web service handler. The key challenges

addressed in the development of mobile host are threefold: to keep the

mobile host fully compatible with the web service interfaces such that

clients will not notice the difference; to design the mobile host with a very

small footprint that is acceptable in the smartphone world; and to limit

the performance overhead of the web service functionality such that

neither the services themselves, nor the normal functioning of the

smartphone for the user is seriously impeded.

Chapter 3. Mobile Hosted Service Provisioning

- 56 -

Figure 3.1: Mobile devices as service provider [Srirama et al., 2007a]).

Alternate architectures for mobile service provisioning are also

possible with SOAP compliant proxy or gateway in between the mobile

host and the service requester. The communication between the client

and the proxy would be using SOAP, and the communication between the

proxy and the mobile host can be using a protocol efficient for data

transport across the mobile networks. Many such proprietary protocols

and implementations have evolved like gSOAP, eSOAP etc. But while

developing the mobile host, only the basic mobile web services

architecture was considered. The main interest was to check the

feasibility with performance, of having such a standard mobile host

implemented on smartphone.

3.1.2 Sample Services Provided by Mobile Service Provider

This subsection describes some of the basic services successfully provided

from the mobile host. The sample services give an idea of the services

already possible from smartphones. These services were used in

calculating the performance loads of the initial mobile service provider.

Chapter 3. Mobile Hosted Service Provisioning

- 57 -

Mobile Photo Album Service

Generally, today’s smartphones are being equipped with an integrated

digital camera. The photographs taken with these smartphones can later

be uploaded or transferred to PCs through cables or by using wireless

methods like Infrared or Bluetooth. Using currently available

technologies, if a user wants to publish the photographs taken with the

mobile device to the public or individuals, he has to upload the images to

a web server from where they can be accessed. The user can also send the

images through Multimedia Messaging Service (MMS) [Novak and

Svensson, 2001] or some other means of messaging to the clients.

Therefore, the mobile owner bears the payment for the

communication between his smartphone and the web server or the

receiver’s device. With a mobile service provider implemented and

deployed on the smartphone, interested people can access the mobile host

using a standard service client, and can browse through the pictures they

are interested in. Here the responsibility for the payment shifts to the

actual clients who are accessing the pictures provided by the mobile

service host. This service is comparable to any other online image album

service or blog service, but implemented on the mobile terminal.

Location Information Service

This dedicated service provides the exact location information of the

mobile terminal, such as Global Positioning System (GPS) data

[NAVSTAR, 1995]. The GPS is a satellite-based radio navigation system

worldwide developed by the Department of Defense (DoD). The

constellation consists of 24 satellites and is fully operational since 1995.

GPS provides two levels of service, Standard Positioning Service and the

Precise Positioning Service. The Standard Positioning Service is a

positioning and timing service which is available to all GPS users

worldwide. The Precise Positioning Service is a highly accurate military

Chapter 3. Mobile Hosted Service Provisioning

- 58 -

positioning, velocity, and timing service which is available worldwide to

users authorized by the U.S. [NAVSTAR, 2007].

The Location Information Service uses a Socket GPS receiver for

getting the GPS co-ordinates using Standard Positioning Service. The

external device connects to the smartphone via Bluetooth. The GPS data

can also be collected while taking the pictures and these two details can

be mapped together, which opens up scopes for many interesting

scenarios (e.g. traveler’s diary). The GPS co-ordinates can always be

mapped to geospatial maps.

3.1.3 Performance Evaluation of Mobile Service Provider

The evaluation of the mobile service provider was conducted using the

mobile photo album service and the location information service described

above [Srirama et al., 2006b]. The test setup comprised a mobile service

provider deployed on a SonyEricsson P800 smartphone and a standalone

Apache Axis [Apache Software Foundation, 2007d] web service client. The

smartphone had an internal memory of 12 MB and a 128 MB memory

stick duo card. The ARM9 processor of the device clocked at 156MHz. The

Axis client invoked different services (in this context, it is assumed that

the client knows the location (Uniform Resource Identifier (URI)) of the

service and the service description deployed on the mobile device. The

performance of the mobile service provider was observed, by taking

timestamps and memory foot prints while the service provider was

processing the web service request.

Performance Model of the Mobile Service Provider

Figure 3.2 shows different operations performed and time components

that constitute one complete service invocation cycle, along the time axes.

The client initiates the call for the web service and then the mobile host

processes the request, populates the response, and sends response back to

the client. The total time taken for this service invocation ()

Chapter 3. Mobile Hosted Service Provisioning

- 59 -

constitutes, the time taken by client for constructing valid SOAP message

(), the time taken to transmit the SOAP request to mobile host (),

the time taken for de-serializing the XML based SOAP message to SOAP

Envelope object (), the time taken by the mobile host to execute the

respective business logic and to populate the response (), the time

taken for serializing the SOAP Envelope object back to XML data streams

(), the time taken to transmit the SOAP response back to the client

(), and lastly the time taken by the client to process the response

().

Figure 3.2: Mobile service invocation [Srirama et al., 2006b].

The invocation process is shown in Figure 3.2 and the total time

taken for the service invocation is given in the following equation.

 (3.1)

Chapter 3. Mobile Hosted Service Provisioning

- 60 -

The request and response messages are transferred to the mobile

host in the form of TCP packets. Therefore, some delay could be caused by

packet loss, TCP acknowledgements, TCP congestion control etc. The

delay is shown in the figure as the slanting lines for request and response

transmissions. represents this delay caused by the transmission

protocol.

 (3.2)

where, and are the respective propagation delays caused while

transmitting the SOAP request and response messages. In the

performance model the transmission times (,) also include these

TCP delays and an estimation of these delays is not specifically observed.

Besides, and are almost negligible, as the client in this analysis is

a PC. Hence the total transmission delay () can be obtained by

subtracting the total server processing time from the , as shown in

the following equation.

 (3.3)

Performance Analysis of the Mobile Host

For the analysis of the mobile photo album service, 8 different images

were selected with memory sizes ranging from 5KB to 100KB. The service

client tried to browse through these pictures. The location information

service used an external GPS device for providing the GPS data to the

client and had a response size of approximately 2KB. The services, mobile

photo album service and location information service were observed to be

quite appropriate for the performance evaluation. The response of the

mobile picture service is comparatively large and this provided a large

scope for observing the effects of different parameters like the

Chapter 3. Mobile Hosted Service Provisioning

- 61 -

transmission delays, the encoding performed on response messages, the

actual service delay etc. on the performance of the mobile host. The

location information service returns just a small string (approximately

2KB) containing the GPS data as the response, which provided the scope

for observing the behavior of the mobile host under concurrent requests

from multiple clients. This enables observing the robustness of the mobile

host.

In the analysis, first the mobile picture service was used for

observing the SOAP processing delay of the server. The results showed a

significant difference (approximately 20%) between the time taken for

web service access and the normal HTTP access (Figure 3.3). The SOAP

overhead and the Base64 encoding performed on the images before

serialization of the response have caused the size of the response to

increase by more than 50%. The actual SOAP overhead caused to the size

of the response is observed to be 578 bytes. The increase in the size has

increased the transmission delay and thus increasing the delay in

response.

Figure 3.3: Difference between round-trip durations for SOAP and HTTP

requests [Srirama et al., 2006b].

0

20000

40000

60000

80000

100000

120000

IMG1
(5.45)

IMG2
(9.74)

IMG3
(15.81)

IMG4
(23.20)

IMG5
(33.35)

IMG6
(49.84)

IMG7
(73.77)

IMG8
(92.81)

D
u

ra
ti

o
n

 (
m

s)

Image name (image size in KB)

SOAP duration

HTTP duration

Chapter 3. Mobile Hosted Service Provisioning

- 62 -

In order to identify the actual times taken for different activities on

the mobile host like , , etc., the location information service

was requested by the client and the time stamps were taken while the

mobile host was processing the request. These time stamps were later

processed to get the operational time delays. Figure 3.4 shows the time

delays of different activities for the location information service.

Figure 3.4: Timestamps for GPS data provisioning service

 [Srirama et al., 2006b].

By observing the results and the performance of the mobile host, it

can be concluded that service delivery as well as service administration

can be performed with reasonable ergonomic quality by normal mobile

device users. As the most important result, it turns out that the total

service processing time on the mobile host is only a small fraction of the

total request-response invocation cycle time (10%). Rest of the time is

taken for transmission delay in the GPRS network. Therefore, increase in

the transmission rates can increase the processing capability of the

mobile host. This makes the performance of the mobile service provider

directly proportional to the achievable higher data transmission rates.

5300

4456

344 297 203

0

1000

2000

3000

4000

5000

6000

T_mwsp T_trans T_sd T_process T_ss

D
u

ra
ti

o
n

 (
m

s)

Location information service invocation: Timestamps

Chapter 3. Mobile Hosted Service Provisioning

- 63 -

The evolving mobile communication technologies in 3G, 3.5G, and 4G will

help the mobile service provider to perform successfully in commercial

environments [Srirama et al., 2006b].

In terms of performance of the mobile host, the key question was

whether a reasonable number of clients could be supported without

preventing the mobile user from using the smartphone in the normal

fashion (e.g. use other services, or perform telephony operations). This

study can define the limit for the number of concurrent participants in

the collaborative application environments. Concurrent requests were

generated by simulating multiple clients for the services deployed on the

mobile host. The results of this scalability analysis are very encouraging

and the mobile host was successful in handling up to 10 concurrent

accesses for reasonable service like location information service with a

response size of approximately 2KB. But the same analysis conducted for

the mobile photo album service could process only 3 concurrent requests,

where the response size is approximately 50KB. The main reason for not

being able to process more service clients was due to the transmission

delay. It was also observed that the number of concurrent access affects

the ability of the mobile host to access its internal and external resources.

The study of the memory footprints revealed that memory usage

was not a major problem with the mobile service provider, as most of the

time the amount of free memory was at least 20% of the total memory

allocated for the JVM (Java Virtual Machine). Approximately 200 data

traces were observed as the experiments were repeated several times in

order to have statistically valid results [Srirama, 2004].

3.1.4 Applications of Mobile Service Provider

Mobile service provider opens up a new set of applications and it can be

useful in many domains like mobile community support, collaborative

learning, social systems, emergency services etc. Primarily, the

smartphone can act as a multi-user device without additional manual

Chapter 3. Mobile Hosted Service Provisioning

- 64 -

effort on the mobile carrier’s side. Thus, the mobile service provider is of

significant use in any scenario that requires monitoring and tracking of

the mobile carrier’s activities. For example, the mobile device can be used

to get the location details of an individual, which can be used in scenarios

like emergency services, guided tourism etc. In a distress call, the mobile

terminal could provide a geographical description of its location (as

pictures) along with location details.

Another interesting scenario is with Remote Patient Tele-

Monitoring, where the mobile device gathers patient’s data collected from

medical sensors attached to the patient’s body and delivers this data in a

real-time fashion to the healthcare professionals. Attaching medical

sensors and other equipment to mobile devices has become feasible with

advancements in technologies like Bluetooth.

An interesting application scenario involves the smooth co-

ordination between journalists and their respective organizations

[Srirama et al., 2006a]. Journalists can be at different locations across the

globe, covering different events like sports, conferences etc. An editor can

always keep track of the location of journalists and the content they have

gathered. Standard client applications can be developed for the editor,

which synchronize the information stored by editor and data delivered by

the mobile service providers. Traditionally, the journalists upload their

contents to a server held by the editor. But in the new scenario, parallel

access to the mobile service provider by both the journalist and the editor

is possible. Even the other journalists in the team can access each other’s

information, thus better synchronizing their activities (e.g. in covering

some major distributed event).

The scope of the mobile service provider in many m-learning

(mobile learning) application scenarios can be envisioned, like podcasting,

mobile blogging, mobile learning, media sharing service, expertise finder

service etc. As the service provider, the mobile terminal can provide

access to information like pictures, audios, videos, tags, documents,

location details, and other learning services [Chatti et al., 2006]. In

Chapter 3. Mobile Hosted Service Provisioning

- 65 -

mobile learning, learners can share audio or video lecture recordings or

go for the field study and take the pictures of the location. Peers can then

browse through the pictures taken, add tags, and give their suggestions

or comments. In an expertise finder, learners can look for reliable sources

of resources, persons who share the same interests, and experts with the

required know-how that can help achieving better results. In the m-

learning aspect these experts can share the information among the other

users. Examples of such use cases could be exchanging mathematical

formulas and the experts validating or even correcting those [Belov et al.,

2005].

Services hosted on a mobile device can also find their application in

supply chain management systems. A person running a small business

and using a laptop or a handheld device in the field can be a part of a

supply chain system used by an enterprise. The services offered by him in

the field can be available through the hosted services on his mobile

device.

From commercial viewpoint, with the mobile service providers

there can be a reversal of payment structures in the cellular world.

Traditionally the service owners have to pay to upload their service and

data to a stationary server. Then the clients have to pay again to access

the information. In the mobile services scheme, the responsibility for

payment can be shifted only to the actual clients who access the

information or services provided by the service owners from their mobile

devices. Thus mobile service provisioning renders the possibility for small

mobile operators to set up their own mobile based service businesses

without resorting to stationary server structures.

3.2 Related Mobile Server Approaches

Web services are not the only means of providing services from devices

like smartphones and PDAs. The provisioning can also be based on any

distributed communication technology like Java Remote Method

Chapter 3. Mobile Hosted Service Provisioning

- 66 -

Invocation (RMI) or Jini, if the device supports the respective platform.

Halteren et al. have addressed nomadic mobile service provisioning based

on Jini technology. The Jini system architecture consists of three

categories: programming model, infrastructure, and services [Sun

Microsystems, 2001]. The infrastructure is the set of components that

enables building a federated Jini system, while the services are the

entities within the federation. The basic infrastructure consists of the

discovery/join protocol and the lookup service. Discovery is the process by

which a Jini-enabled device locates lookup services on the network and

obtains references to them. Join is the process by which a device registers

the services it offers with a lookup service. The programming model

includes models for leasing, event notification, and transactions. The Jini

infrastructure is built on top of the Java application environment. Figure

3.5 shows the architecture of nomadic mobile service provisioning.

Figure 3.5: Proxy based NMS provisioning [Pawar et al., 2007].

The Jini based nomadic mobile service provisioning proposes the

Mobile Service Platform (MSP) as a supporting infrastructure, which

extends the SOA paradigm to the mobile device. MSP is a middleware

that facilitates the development and deployment of innovative services on

the mobile device for clients located anywhere on the Internet. The MSP

design is based on the Jini Surrogate Architecture Specification which

enables a device to join a Jini network (device that cannot directly

participate in a Jini Network) with the aid of a third party [Sun

Chapter 3. Mobile Hosted Service Provisioning

- 67 -

Microsystems, 2007g]. MSP consists of an HTTPInterconnect protocol

to meet the specifications of the Jini Surrogate Architecture and provides

a custom set of APIs for building and running services on a mobile device.

Using this architecture a service provided from a device is

composed of two components: (1) a device service, which is a service

running on the mobile device; and (2) a surrogate service, which is the

representation of the device service in the fixed network. The surrogate

service (SS) functions as a proxy for the device service (DS) and is

responsible for providing the service to the clients. The MSP supports the

communication between the device service and the surrogate service.

Thus using mobile service platform a service hosted on a mobile device

can participate as a Jini service in the Jini network [Halteren and Pawar,

2006]. Figure 3.6 shows the elements of MSP and the stages of NMS

lifecycle are numbered from 1 to 6.

Figure 3.6: MSP and NMS lifecycle [Halteren and Pawar, 2006].

For publishing a service in the network, the surrogate contacts the

Jini lookup service for the service registration. After the lookup service is

discovered either through unicast or multicast discovery [Sun

Microsystems, 2001], the NMS description is registered with the lookup

service. The surrogate needs to periodically renew the NMS registration.

In case the registration is not renewed for a certain time, the lookup

service will discard it. For accessing the published service, a client

downloads a service proxy which communicates with the actual service

using any remote invocation protocol (e.g. RMI). To ensure that the client

Chapter 3. Mobile Hosted Service Provisioning

- 68 -

receives latest data from the device service, some mechanism is necessary

for the communication between the device service and surrogate, and

regular synchronization of their respective data.

For this purpose the MSP uses the HTTPInterconnect protocol,

which defines the following three types of interactions between the device

service and surrogate: (1) One-Way messaging allows for unacknowledged

message delivery; (2) Request-Response messaging supports reliable

message delivery; (3) Streaming interaction supports exchange of

continuous data (streams). Each message has an operationID and

sequenceID. Each operation offered by the service to its surrogate has a

unique operationID, so each message can trigger a certain operation.

The body of a message contains data specific to the operation to be

performed by the message.

The approach has some advantages over mobile hosted service

provisioning. Since the surrogate is located in the fixed network, it serves

a potentially unlimited number of clients and thus minimizes the

bandwidth usage in the mobile network. However, the surrogate must be

aware of the change in the state of a device service. Most serious

limitation of this approach is that, it is based on a proprietary protocol.

The technology (Jini) is not interoperable. So the client should be aware

of Jini technology to be able to access the services.

Moreover, the services are to be developed both for the surrogate

and the mobile device and changes are not propagated. Therefore, the

approach tightly fixes the service provided by the mobile device to the

protocol (HTTPInterconnect), technology (Jini), and surrogate host;

thus seriously affecting the interoperability of the provided services. The

only advantage with this approach is the support for unlimited number of

clients, which can also be achieved with proper QoS support for the

mobile hosted service provisioning using a partitioned mobile services

framework [Hassan et al., 2010]. The partitioned mobile services

framework is discussed in Chapter 5.

Chapter 3. Mobile Hosted Service Provisioning

- 69 -

3.3 Scalability Aspects of Mobile Service Provider

Providing proper scalability is crucial in achieving suitable QoS from the

mobile service provider. The pattern of web service communication

introduces a lot of message overhead to the XML based SOAP messages

exchanged. This consumes a lot of resources, since this additional

information is to be exchanged over the radio link. Moreover, XML-based

messages are larger and require more processing than other protocols

such as RMI or CORBA [OMG, 2004] and the binding requires more

computation [Davis and Parashar, 2002]. Hence only few concurrent

requests can be handled by the mobile service provider. Thus for

improving scalability, the messages are to be compressed without

seriously affecting the interoperability of the mobile hosted services.

The messages can be compressed with standard compression

techniques like Gzip or XML-specific compression techniques like XMill

to obtain smaller message sizes. Canonical XML [Boyer, 2001] targets the

logical equivalence of these compressed XML messages. There is also an

effort with the Fast Web Services [Sandoz et al., 2003], Fast Infoset

standard draft [Sandoz et al., 2004], Efficient XML [AgileDelta, 2007],

BinXML [Ericsson, 2003b] etc. to specify a binary format for XML data,

that is an efficient alternative to XML in resource constrained

environments. Similarly, there is some effort with BiM (Binary Format

for Metadata) standard [Heuer et al., 2002] for the binary encoding of

MPEG-7 Metadata. This section introduces some of these XML data

compression technologies.

3.3.1 XML Compression

XML has become a de facto standard for information transfer on the

machine level and the application independent information storage. This

is the reason why XML is used in service communication to send data

without having to worry about the incompatibilities between data

representations in computer architectures, operating systems, and

Chapter 3. Mobile Hosted Service Provisioning

- 70 -

services. But XML is quite verbose and is expensive in terms of storage

space, processing time and resources required for parsing. Simple text

compressors such as GZip could reduce the size, but they do not adapt to

the specific demands of XML language, such as duplication of names and

tags that are spread throughout the document. GZip compression [Loup

Gailly, 2007] is based on numerous improvements to the LZ77

compression algorithm [Ziv and Lempel, 1977]. The basic idea behind

LZ77 is to try to match current data in a dictionary of previously observed

data. The dictionary and the current data are implemented using a fixed

size window that slides over the data. When previously observed data are

encountered, it is replaced by a reference to the dictionary; thus reducing

the size of the text.

There are mainly two drawbacks with the simple text compressors.

Firstly, the redundant information in XML is spread over the whole

document, but most text compressors work locally. For example, LZWM

flushes its dictionary-based statistical table several times when working

through large files. This approach is useful in text documents with few

repetitions of words at the beginning and end of the files, but with XML

this approach would be futile. Secondly, the compressors lack the

semantic understanding of different types of XML elements.

There are also some XML aware text compressors such as XMill

[Liefke and Suciu, 1999], XMLPPM etc. XMill is a user-configurable XML

compressor that groups text items with similar syntax and meaning, and

compresses them together. It separates structure, layout and data, and

distributes data elements into separate data streams (int, char, string,

base64, etc.). This distribution is user-definable. Simple text

compressions like GZip, BZip2 [Seward, 2005] compress these data

streams. The grouping of data increases the redundancy of the document,

and therefore in many cases, XMill can achieve a higher degree of

compression than simple GZip compression. XMLPPM is a compressor for

XML, based on the Prediction by Partial Match (PPM) [Cleary and

Teahan, 1997]. PPM predicts the upcoming character after certain

Chapter 3. Mobile Hosted Service Provisioning

- 71 -

strings, builds up a prediction table, and compresses the document

according to the probability of the contained strings. XMLPPM [Cheney,

2001] uses Multiplexed Hierarchical Modelling (MHM), i.e., several

compressors (multiplexed) based on the XML structure and a hierarchical

model of the document as context, rather than a sequence of characters.

MHM is based on Encoded SAX (Simple API for XML) algorithm (ESAX).

ESAX encodes the incoming SAX events into single bytes and stores the

original names in a symbol table for later decoding. While these kinds of

XML compressors achieve good results, but they are generally quite slow.

Apart from these compression strategies there are also some

attempts to optimize the XML, thus reducing the size of the message

[Rodriguez, 2002]. Some of these optimization principles include

flattening the structure pattern, removing the additional comments,

structuring node names and namespaces etc. These optimization

mechanisms still preserve structural equivalence of XML documents. Any

two XML documents within an application context are logically

equivalent, if they only vary in physical representations based on

syntactic changes permitted by XML and namespaces in XML. Two

structurally equivalent XML documents have a byte-for-byte identical

canonical XML document. Canonicalization of an XML document involves

only the information that an XML processor requires to execute the

application.

3.3.2 Binary XML

Apart from XML compression, there exits several attempts in creating a

standardized binary representation of XML data with equivalent

capabilities of expression, but more efficient in terms of storage/transfer

and parsing. Fast Web Services is an initiative at Sun Microsystems

aimed at the identification of performance problems in existing

implementations of web services standards. It attempted at defining

binary-based messages that consume less bandwidth and are faster and

Chapter 3. Mobile Hosted Service Provisioning

- 72 -

require less memory to be processed. Fast Web Services makes use of

Fast Infoset documents for carrying the content of a SOAP message. The

Fast Infoset standard draft specifies a binary format for XML infosets

that is an efficient alternative to XML.

Message Transmission Optimization Mechanism (MTOM)

specification from W3C describes an abstract feature for optimizing the

transmission of a SOAP message by selectively binary encoding portions

of the message, while still presenting an XML Infoset to the SOAP

application [Gudgin et al., 2005]. Similar to the Fast Web Services, WAP

Binary XML (WBXML) [Martin and Jano, 1999] is defined by the WAP

Forum and is a part of the WAP 2.0 specification. The main purpose of

WBXML is to create a compact representation of XML to reduce the

transmission size with no loss of structure or semantics. WBXML does

not include any support for compression of data. Millau [Girardot and

Sundaresan, 2000] is a version of WBXML with support for compression.

The AgileDelta’s Efficient XML provides a codec that encodes and

decodes XML in a binary format that dramatically reduces the size.

Similarly, BiM (Binary Format for Metadata) standard is defined for the

binary encoding of MPEG-7 Metadata [Heuer et al., 2002]. MPEG-7

focuses on an XML based metadata system for describing the content of

multimedia. There are two ways to transmit MPEG-7 information, either

in Textual Format (TeM) or in a Binary Format (BiM). Both provide

similar functionality since both are able to transmit the description trees

dynamically and incrementally. The benefit with BiM is that it

compresses the XML code. BiM is designed in a way that it allows fast

parsing and filtering of the XML data at the binary level, without having

to decompress again. But to make it work, both decoder and encoder of

BiM should be aware of XML schema in advance.

[Ericsson and Levenshteyn, 2003] gives a comparison of different

compression technologies for XML data (BiM is not considered) and

suggests BinXML as a good option to compress web service messages,

considering compression ratio, processing time and resource usage. Based

Chapter 3. Mobile Hosted Service Provisioning

- 73 -

on this analysis, the study has adapted BinXML in the scalability

analysis of the mobile host for compressing the mobile web service

messages. BinXML is explained in the next subsection. Even though

there are many benefits in using binary XML, but there is one serious

limitation. With the binary encoding, the messages lose their human

readable self-descriptive nature of XML, and therefore, any existing

standards and tools that rely on this mechanism will be seriously

impacted.

3.3.3 BinXML

BinXML is a very simple binary representation of XML data [Ericsson,

2003b]. The encoding replaces each tag and attribute with a unique byte

value and replaces each end tag with 0xFF. By using a state machine and

6 special byte values including 0xFF, any XML data with circa 245 tags

can be represented in this format. The reserved codes are 0x00-0x03,

0xFE, and 0xFF. The approach is specifically designed to target SOAP

messages across radio links.

BinXML uses a simple SAX parser and supports a variety of

compression algorithms like LZO and GZip. BinXML has no support for

schemas or DTDs, and encoding/decoding is done based on the message

itself. Each message contains enough information so that the receiving

end can decompress it without prior knowledge of the message schema.

The main version of BinXML is implemented in C. There is also an

available Java port which was adapted for the J2ME version. The J2ME

version uses the SAX parser provided by the Java ME Web services or

JSR-172. Listing 3.1 shows a SOAP response message and its equivalent

BinXML encoding is provided in Table 3.1.

Chapter 3. Mobile Hosted Service Provisioning

- 74 -

Listing 3.1: An example SOAP message.

<SOAP-ENV:Envelope xmlns:SOAP-ENV=

 "http://www.w3.org/2003/05/soap-envelope/">

 <SOAP-ENV:Body>

 <searchArticleResponse>

 <status xsi:type="xsd:string">

 The article was successfully received!

 </status>

 </searchArticleResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Table 3.1: BinXML encoding of the SOAP message in Listing 3.1.

<0x01> New tag

<0x10> The new tag is assigned code 0x10

SOAP-ENV:Envelope Name of the new tag

<0x00> End of string

<0x03> New attribute

<0x10> Code of the new attribute (attribute

code space), 0x10 is free

xmlns:SOAP-ENV<0x00> Name of attribute + End of string

http://www.w3.org/2003/05/

soap-envelope/<0x00>

Value of the attribute + End of string

<0xFE> Soft end of tag.

Represents the in XML

<0x01> New tag

<0x11> Code 0x11

SOAP-ENV:Body<0x00> Name of the new tag + End of string

<0xFE> Soft end of tag

<0x01> New tag

<0x12> Code 0x12

searchArticleResponse

<0x00>

Name of the new tag + End of string

Chapter 3. Mobile Hosted Service Provisioning

- 75 -

<0xFE> Soft end of tag

<0x01> New tag

<0x13> Code 0x13

status<0x00> Name of the new tag + End of string

<0x03> New attribute

<0x11> Code of the new attribute 0x11

xsi:type<0x00> Name of attribute + End of string

xsd:string<0x00> Value of the attribute + End of string

<0xFE> Soft end of tag

<0x02> String

The article was

successfully

received!<0x00>

Value of string + end of string

<0xFF> Hard end of tag (in XML)

<0xFF> Hard end of tag

<0xFF> Hard end of tag

<0xFF> Hard end of tag

The values, in the format <0xYZ>, shown in Table 3.1 indicate the

byte value of YZ in hexadecimal form. The size of the original SOAP

message is 249 bytes excluding the white spaces (271 bytes with white

spaces). The size of the encoded byte stream of the message is 195 bytes.

This is a significant reduction (approximately 30%) to the size of the XML

message. Using BinXML the compression ratio can be very significant

where the SOAP message has repeated tags and very deep structure.

3.4 Integration Aspects of Mobile Hosted Service

Provisioning

For the integration of mobile hosted services to the service networks,

intermediary nodes can be utilized in deployment scenarios. Enterprise

Service Bus (ESB) technology can be the ideal platform for realizing the

Chapter 3. Mobile Hosted Service Provisioning

- 76 -

intermediary nodes in the integration. This section explains the ESB

technology, the Java Business Integration (JBI) specification, and the

open source ServiceMix tool in realizing the integration framework.

3.4.1 Enterprise Service Bus (ESB)

Enterprise networks commonly deploy disparate applications, platforms,

and business processes that need to communicate or exchange data with

each other. The applications, platforms and processes generally have non-

compatible data formats and non-compatible communications protocols.

This leads to serious integration problems within the networks. The

integration problem extends further if two or more of such enterprise

networks have to communicate among themselves.

Enterprise Application Integration (EAI) was the first technology

addressing these integration issues. EAI software follows the hub and

spoke model and the software acts as a hub that translates data and

messages between different applications. It uses adaptors that reformat

incoming data to a canonical format that is understood by both EAI and

outgoing adaptors. To implement the connection among the EAI

components and to achieve internal integration, the technology uses

asynchronous message broker like Java Message Service (JMS). EAI

products were large, inflexible, hard to manage, and were generally

expensive vendor solutions [IONA Technologies, 2005].

ESBs are the next developments in the enterprise integration and

a standards-based ESB solves the integration problem without the

drawbacks of the EAI solutions. ESB provides a set of infrastructure

capabilities, implemented by the middleware technology that enables the

integration of services in an SOA [Keen et al., 2004], [Chappell, 2004].

The enterprise service bus is not a product, but an architectural best

practice concept for implementing a SOA. Enterprise service bus is an

architecture that exploits service applications, messaging middleware,

intelligent routing, and transformation. ESBs act as a lightweight,

Chapter 3. Mobile Hosted Service Provisioning

- 77 -

ubiquitous integration backbone through which software services and

application components flow [Schulte, 2007].

ESB basically consists of a set of service containers that are

interconnected with a reliable messaging bus. Generally in point-to-point

integration solutions, each of the components requires interfaces

for full communication among them. But with the bus solution each

component requires only a single interface to the bus for global

communication. The ESB offers dedicated infrastructure providing the

capability to route and transport service requests to the correct service

providers.

The ESB supports multiple integration paradigms in order to fully

support the variety of interaction patterns that are required in a

comprehensive SOA between the service containers. Therefore, it has

support for service-oriented architectures in which applications

communicate through reusable services with well-defined interfaces,

support for message-driven architectures in which applications send

messages through the ESB to receiving applications, and support for

event-driven architectures in which applications generate and consume

messages independently of one another. Figure 3.7 shows a high-level

view of the ESB.

Figure 3.7: Enterprise service bus (based on [Schulte, 2007]).

Chapter 3. Mobile Hosted Service Provisioning

- 78 -

ESB Features

The ESB provides a number of functionalities and features to achieve

mobile hosted service integration [Thomas and Buckley, 2003],

[PolarLake, 2005]. These include:

 Transformation: The functionality provides the ability to map one

data format onto another in order to ensure inter-operability

between the various systems plugged into the ESB. The data

formats are generally based on XML. The transformation can be

performed by the ESB itself or delegated to external components.

 Routing: A key prerequisite of any integration platform is to

identify which data to process and where the data need to be sent.

ESB supports content based routing and filtering, typically using

XPATH (XML Path Language).

 Communication: The functionality supports the delivery of

messages throughout the organization using different

communication mechanisms like synchronous/asynchronous,

request/response, one-way, call-back etc.

 Support for highly distributed environments, through which the

ESB does not have to route all the messages through a central hub

in order to perform routing and transformation.

 Security: The functionality supports secure transfer of messages

among the participating service engines using mechanisms like

user authentication, access controls etc.

 Orchestration: Orchestration is the process of automated

coordination of composite application components that participate

in a business process. Generally ESBs achieve service composition,

choreography, and orchestration using BPEL (Business Process

Execution Language) engines [Plebani et al., 2011].

Chapter 3. Mobile Hosted Service Provisioning

- 79 -

 Fault avoidance and fault tolerance using intelligent routing and

exception handling. In ESBs a fault often does not roll back all the

work that has occurred at the time of a business exception. Rather

it will follow some rules and execute compensating transactions

and/or accept the state of the process as satisfactory at the time of

the exception.

 Transaction: The functionality supports the reliable end-to-end

delivery of messages among the ESB components.

 Support for pluggable services: Pluggable services can be provided

by third parties and can still interoperate reliably with the bus and

the remaining components.

 Breadth of connectivity: The functionality supports the ability to

connect to different types of systems like databases, enterprise

applications (e.g. SAP), and legacy systems using well established

standard mechanisms and tools.

ESB Products

Many ESB products exist like the Sonic Software, Artix, Cape Clear etc.,

which can be adapted for realizing the middleware framework. IONA

Technologies extends its legacy EAI architecture to achieve IONA Artix

ESB. PolarLake and FusionWare take a server-centric, connector-based

approach in their ESB product design. Only Cape Clear and Cordys ESB

systems use a truly open and distributed SOA.

[Borck, 2005] provides a detailed survey of the ESB products and

their pros and cons focusing at the achieved interoperability,

management, scalability, security, supported features, and their value for

money. The survey recommends the Sonic SOA Suite among the

contemporary ESB products. ESB products like BEA AquaLogic Service

Bus [BEA AquaLogic, 2007] and IBM WebSphere Software [IBM

Chapter 3. Mobile Hosted Service Provisioning

- 80 -

Corporation, 2007b] were not considered in this survey. An analysis

provided by [MacVittie, 2006], recommends BEA AquaLogic Service Bus

considering the features provided by the product, without considering any

performance measurements. Sun Microsystems has defined JSR 208,

Java Business Integration (JBI) specification for enterprise application

integration. ESB products like ServiceMix and OpenESB [java.net, 2008]

are based on this specification.

Observing these different ESB tools, standards, and surveys, the

thesis considered JBI and ServiceMix for the realization of the ESB

middleware framework. The following subsections briefly introduce the

JBI specification and the open source ServiceMix tool.

3.4.2 Java Business Integration (JBI)

The Java Business Integration (JBI) specification (JSR 208) [Ten-Hove

and Walker, 2005] defines a platform for building enterprise-class ESBs

using a pluggable and service based design. The Java based standard

allows building enterprise integration systems by using plug-in

components which interoperate through mediated normalized message

exchanges.

Message normalization is the process of mapping context-specific

data to a context-neutral abstraction in a standard format. The

normalized message consists of the message content (also called payload),

message properties or metadata, and optional message attachments

referenced by the payload. JBI uses the normalized messages for

interaction between consumers and providers. The basic architecture of

JBI is shown in Figure 3.8. The Normalized Message Router (NMR)

receives messages from JBI components and routes them to the

appropriate components for processing. This decouples the service

providers from consumers. The NMR delivers messages with varying

QoS, depending on application needs and the nature of the messages

being delivered.

Chapter 3. Mobile Hosted Service Provisioning

- 81 -

Figure 3.8: Java business integration architecture (based on

[Ten-Hove and Walker, 2005]).

JBI Components

The JBI component framework provides a pluggable interface that allows

components to interact with the JBI environment. The framework

supports two types of components: service engines and binding

components. Service engines are components responsible for

implementing the business logic and they can be service

providers/consumers. Service engine components generally provide

support for content-based routing, orchestration, rules, data

transformations etc. Binding components are used to send and receive

messages across specific protocols and transports. The binding

components marshall and unmarshall messages to and from protocol-

specific data formats to normalized messages. Thus binding components

allow the JBI environment to process only normalized messages.

In JBI, component-specific artifacts like a BPEL process deployed

to a service engine or binding component are called service units. Service

units are grouped into an aggregate deployment file called a service

Chapter 3. Mobile Hosted Service Provisioning

- 82 -

assembly. The service assembly includes a deployment descriptor that

indicates the component, into which each service unit is to be deployed.

Binding components and service engines interact with the NMR via a

delivery channel. A delivery channel is a bidirectional asynchronous

communication pipe between a component and the NMR. Each

component is provided with a single delivery channel, so the same

channel can be used for both inbound and outbound communications. A

service consumer uses its delivery channel to initiate a service invocation,

while the provider uses its delivery channel to receive such invocations. A

single component can act both as a service consumer and a service

provider under different circumstances. The JBI environment provides

features for deployment, control, and monitoring the components through

JMX (Java Management Extensions) based administration tools.

Endpoint activation is the process by which a service provider

informs the NMR that it provides a service. After the endpoint activation,

NMR can route service invocations to that service. In brief, an endpoint

refers to a specific address, accessible by a particular protocol, used to

access a precise service. JBI supports two types of endpoints: Internal

endpoints and External endpoints. Internal endpoints are exposed by

service providers within the JBI environment, while external endpoints

are endpoints outside the JBI environment that are exposed by binding

components. The binding components act as service consumers and

expose an internal endpoint for the use of external service consumers. In

JBI, endpoints can be referred implicitly where the NMR selects the

endpoint based on the required service type, or explicitly where a

consumer component chooses the endpoint based on its own logic and

configuration, or dynamically where an endpoint reference is used to

provide a call-back address that the service provider should use to send

further messages [Apache ServiceMix, 2007], [Vinoski, 2005].

Chapter 3. Mobile Hosted Service Provisioning

- 83 -

JBI Message Exchange Patterns

Service invocation in JBI refers to an instance of an end-to-end

interaction between a service consumer and a service provider, involving

the swapping of message exchanges between the components and the

NMR. The message exchange is the container for the normalized message

and the state of the service invocation. A consumer component initiates

the exchanges by creating a new message exchange instance. Each

operation that a service provider makes available has a particular

message exchange pattern (MEP) associated with it.

JBI supports four types of MEPs described below.

(1) In-Only MEP: This is a one-way messaging pattern. In this the

consumer component initiates the request by creating a new message

exchange instance and sending it to the NMR. The NMR queues the

message exchange instance for delivery to the respective provider. The

provider component accepts the instance from the NMR, processes the

request in the message exchange, and completes the MEP by setting the

status of the instance to done, and sending the instance to the NMR. The

NMR routes the instance back to the consumer component, which accepts

the notification.

(2) Robust In-Only MEP: This is almost the same as In-Only MEP,

with one extension. In this MEP, the provider may respond with a fault if

it fails to process the request. Here the done status for the message

exchange is assigned by the consumer.

(3) In-Out MEP: The consumer issues the request to provider, with

the expectation of a response. The Provider may respond with a valid

response or with a fault if it fails to process the request. In any case the

done status for the message exchange is assigned by the consumer

component.

(4) In-Optional-Out MEP: The consumer issues a request to

provider, which may result in a response (the provider may set done

Chapter 3. Mobile Hosted Service Provisioning

- 84 -

status without responding to the consumer). This is an extension of In-

Out MEP with both consumer and provider having the option of

generating a fault during the interaction [Ten-Hove, 2006].

3.4.3 ServiceMix

ServiceMix is an ESB, based on JBI specification and it combines the

functionalities of both the SOA and the Event Driven Architecture (EDA)

to achieve an agile, enterprise ESB. Released under the Apache license,

ServiceMix is an open source ESB and SOA toolkit built on JBI semantics

and API [Apache Software Foundation, 2007c]. The open source and open

standards-based features of ServiceMix allow for low entry cost,

maximum flexibility, reuse, and investment protection. The tool supports

any number of third party vendor supplied components and protocol

bindings that conform to the JBI open standard specification. These

components and bindings not only interoperate among each other via the

ServiceMix ESB, but can easily be replaced with alternate components

that provide the same or enhanced services, without affecting the final

deployment scenarios of the applications.

As mentioned already, ServiceMix allows services to operate in an

event driven architecture as well (i.e. the services are decoupled and the

providers listen for service requests on the bus). It supports such

architecture for events occurring both internal and external to the bus. In

other words, JMS binding components can listen for the arrival of

messages that are external to the bus, while the other components can

listen for the messages on the normalized message bus itself. The bus is

also responsible for quality of service (QoS) features such as message

persistence, guaranteed delivery, failure handling, and transaction

support.

ServiceMix is lightweight and easily embeddable in the enterprise

network. Lightweight design patterns let the coupling between objects to

be loose and integrate services without forcing code into the business logic

Chapter 3. Mobile Hosted Service Provisioning

- 85 -

[Tate, 2005]. ServiceMix is lightweight with integrated Spring support

[Johnson, 2005] and it can be run at the edge of the network (inside a

client or server), as a standalone ESB provider, or as a service within

another ESB.

ServiceMix can also be used in a Java Standard Edition or in a

Java Enterprise Edition application server. It is completely integrated

with JBoss [JBoss, 2007] and Apache Geronimo [Apache Geronimo, 2007]

and lets the applications deploy JBI components and services directly into

Geronimo. Some of the service components included with ServiceMix

comprise rules-based routing via the Drools rule engine, timer integration

via the Quartz library, transformation using Extensible Stylesheet

Language Transformations (XSLT) etc. [Apache ServiceMix, 2007],

[Hanson, 2005].

3.5 Summary

This chapter introduced the mobile hosted service provisioning concept

and explained the details of the mobile service provider with its thorough

performance and application analysis. The chapter later discussed the

scalability related standards and specifications for mobile hosted services.

Then the chapter discussed the integration issues for mobile hosted

services and introduced the ESB technology. The JBI specification and

open source ServiceMix tool in realizing the integration framework are

also explained in detail.

