Biological Background and Introduction

1.1 Lymphoma

The aetiology of lymphoma and lymphoid leukaemia currently remains enigmatic.
Lymphoma diagnoses can be housed under the umbrella term of ‘haematological neo-
plasms’ - a broad definition that represents a complex hierarchy, containing an array
of classes with an increasing degree of homogeneity as the hierarchy is traversed down-
wards. Classification systems have evolved from the Lukes-Butler classification (Lukes
and Butler, 1966) to the 1982 Working Formulation (WHO, 1982) for non-Hodgkin
lymphoma, the Revised European-American Lymphoma (REAL) Classification, and
most recently, the World Health Organisation’s (WHO) classification system (WHO,
2008). Representing approximately 5.3% of all cancer cases (Horner et al., 2008) in the

United States, treatments range from radiotherapy and chemotherapy to bone-marrow
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transplants. Given the heterogeneous spread of lymphoma subtypes and cases, how-
ever, the generality of these treatments have highlighted their shortcomings. In recent
years haematologists and medical professionals have concluded that a suite of highly
discerning diagnostic methods is vital to delivering targeted treatments. Molecular
and statistical analysis is currently seen as an important aid of traditional pathological
methods in this diagnostic inventory. Techniques such as classification allow for better
delineation of lymphoma subtypes, which in turn allow treatments to be tailored more
specifically to patients, prolong their survival, reduce side-effects and help clinicians
develop new treatments. Since at least 7% (Kelley et al., 2005) of the human genome
is constituted of immune system genes (and at least 20% of these have known disease
association), a deep knowledge of the genetic basis for an immune system disorder such

as lymphoma proves invaluable.

1.2 Gene Expression Profiling

The process by which a gene, embedded in the DNA (deoxyribonucleic acid) of an
organism, is synthesised into a gene product, is called gene expression and constitutes
one of the central tenets of molecular biology (Crick, 1970). All gene products ex-
ist as RNA (ribonucleic acid) molecules at some point in their synthesis. Messenger
RNAs (mRNAs) are translated into proteins through a ribosome; others (non-coding
RNASs) assist with translation, gene splicing and regulation (Riddihough, 2005). The
interactions of a preinitiation complex of molecules precipitate the transcription of the
DNA genetic code into RNA molecules. An enzyme called RNA polymerase recog-
nises a particular short sequence called a promoter region and, with the help of other
regulating molecules, identifies a position downstream at which transcription can be-
gin. Another enzyme called DNA helicase breaks the hydrogen bonds between the two
strands of the double helix, ‘unzipping’ the DNA template strand from its complemen-
tary coding strand. RNA polymerase assembles the new RNA strand as a complement
of the template strand before terminating the transcript after a hairpin loop followed

by a weakly-bonded poly-A tail on the DNA renders its interaction with the RNA
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mechanically unstable. This results in a free RNA strand.

Gene expression profiling (NCBI, 2007) is a technique that simultaneously measures
the expression (in RNA output) of a large number of genes from multiple samples. The
goal of gene expression profiling is to build a comprehensive view of the gene expression
of a particular class of biological tissue, such as one that is diseased, or has undergone
a particular treatment. A major tool employed in this field is DNA microarray technol-
ogy. Physically, a microarray is a substrate (usually a glass plate, although it can be
made of silicon or nylon) onto which purified RNA from tissue samples are deposited.
The plate contains tens of thousands of individual pits. Attached to each pit is a unique

DNA probe: an oligonucleotide from a specific short region in the genome.

Most microarray protocols involve reverse-transcribing mRNAs from the sample of
interest into its complement: ¢cDNA. Microarrays exploit the ability of these cDNA
molecules to bind to the DNA probe with the intention of measuring the amount of
mRNA produced by a sample of diseased tissue in question, relative to an identical
amount of healthy tissue. Complementary sequences bind to each other in the famous
double-helix formation in vivo; on the microarray substrate in vitro the process is called
hybridization. Each probe is unique, and each pit functions as an individual northern
blot experiment: detecting and measuring the amount of RNA present in the sample
(Kevil et al., 1997). Thus a single microarray plate can perform tens of thousands of

gene expression measurements in parallel.

Traditional microarray technology is ‘two-channel’; it uses a relative measurement to
determine the degree of up or downregulation in each feature. DNA from both diseased
and healthy tissue samples are mixed in the same northern blot with a fluorescent label,
which, in the scanning stage, is excited by a laser. With the use of a microscope and
camera, a heat map is generated (Figure 1.1), where all features can be simultaneously
observed.

Such synoptic visualisation can be an important initial tool for biologists to identify
genes of interest for further research, in complement to the employment of the statistical
methods described in this thesis. Visualisation of high-dimensional data is a field in its

own right (Grinstein et al., 2001); tools such as Visumap(©) and GGobi contain a suite
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of resources that produce an intuitive display of selected features in a high-dimensional
dataset. As well as heat maps, visualisations such as 2D and 3D scatter plots (with
a feature plotted along each axis) help with drawing discriminants (when the data is
supervised) and identifying clusters. The colour and shape of the plotted observations
on a scatter plot can be used to denote class labels or—from phenotypic analysis—other

categorical descriptions.

More recent microarray technologies such as Affymetrix™and ChIP-chip (Chro-
matin Immunoprecipitation) are known as ‘one-channel’ arrays, where the tissue in
question is analysed individually, and not mixed with another. Hence, measurements

represent absolute amount of RNA present in the tissue, rather than relative amounts.

FIGURE 1.1: Subsection of a two-colour microarray heatmap. Each dot represents the
expression value of a single gene, based on its intensity. Red dots represent up-regulated
genes, and green dots down-regulated ones. Image obtained under Creative Commons licence
from Department of Biology at James Madison University.

A research group (often, but not always, connected to a hospital where patient
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tissue samples are available) will usually be able to present a statistician with a num-
ber of gene expression profiles for analysis, with the subsequent work published by a
group of affiliates from different research hubs. Some examples of such studies include
Alizadeh et al. (2000), Shipp et al. (2002) and Loi et al. (2011). The number of
samples n usually varies from around 30 to over 100, but the important distinguishing
factor of the resulting dataset is the number of variables P, which routinely stretches
into the thousands, and is often over 20000'. A mandatory pre-processing step (for
statistical analysis) is normalisation of the data collected from multiple arrays. Array
readings—even those performed by the same machine—may vary in overall intensity
between individual samples. Since statistical analysis requires standardised values,
ensuring inter-array uniformity is a vital step. This step is usually performed using
readily available public software (Gentleman et al., 2004), before the statistician begins
dimension reduction procedures.

The knowledge base of cancer aetiology is rapidly growing. However, it is far from
complete. The characterisation of lymphoma subtypes from multiple transcription
signatures heralds a greater specificity in both diagnosis and treatment. For example,
(Monti et al., 2005) identified three discrete subsets of Diffuse Large B-Cell Lymphoma
using a combination of ranking features by their differential expression values and a
biologically-informed method called Gene Set Enrichment Analysis (GSEA) (Subra-
manian et al., 2005). It is anticipated that the discovery of further subtypes via com-
putational methods may even subvert the current medical diagnostic paradigm, which
is reliant solely on phenotypic markers. Transcriptome screening may even become
commonplace as a pre-treatment step for patients, though obviously not rendering the
current orthodoxy obsolete.

This thesis concentrates on the statistical end of gene expression analysis, which,
in contrast to molecular biology, is the realm in which a standard protocol is pro-

foundly lacking. A sound statistical analysis provides buttresses on which scientists

'Recently, customized microarrays have been developed to analyse alternative splices of select
genes. This technology is called RNASeq, and is discussed further in Chapter 6. The bioinformatic
implication of the ability to analyse one gene with multiple probes is a potentially exponential increase
in the number of features in the dataset in question, thereby further increasing the number of features
in the dataset to be reduced.
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and clinicians can draw confidence to put forward putative bellwether genes for cancer
diagnosis. We do not intend to be dogmatic in our bid to convince statisticians to fol-
low our proposed methods; rather we aim to provide an exploration of the challenges
encountered when performing high-dimensional data analysis, and suggest workable
remedies to them.

The primary question that this thesis aims to answer is ‘What kind of protocols
must a bioinformatician be aware of when performing dimension reduction?’” Under

the auspices of this question are a number of important secondary questions:

e Which of the existing, available, state-of-the-art dimension reduction techniques

are the most likely to return pointers to biomarkers useful in medical diagnostics?

e What pitfalls, caveats and contexts need to be considered when applying these

techniques?
e What are their strengths and weaknesses?

e How much consideration, by way of analysis, needs to be extended to each feature

in order to be confident of its relative contribution to class demarcation?

e Of what worth is a concordance analysis (one that combines results from different

dimension-reduction techniques)?

Chapter 2 is an overview of the most widely-used machine learning techniques in
dimension reduction. It starts with traditional methods such as the t-statistic and
Principal Component Analysis (PCA), and moves on to describe techniques used when
data points are plotted explicitly in the feature space, such as Linear Discriminant
Analysis (LDA) and Support Vector Machines (SVMs). We then describe the need for
a broader algorithmic framework to attack the problems caused by high-dimensionality,
review various approaches and discuss their merits and drawbacks. Important concepts
such as regularisation and constraint relaxation are introduced and examples are given
of how they can be integrated into an algorithmic framework suitable for data mining.

An in-depth review of the stand-alone methods shrinkage regression and Decision Trees
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is also provided. Lastly, we explore how these techniques can be used for both feature
selection and classification, and suggest strategies for implementing both.

Chapters 3, 4 and 5 are presented in journal article format and all present origi-
nal work. Chapter 3 details a study that demonstrates gestalt discriminatory power
of features in consort, Chapter 4 details the need for consideration of regularisation
in applying machine learning techniques and Chapter 5 investigates the ability of an
ensemble learner to identify biomarkers. A more detailed preamble, separate to the
article, can be found at the beginning of each of these chapters. Chapter 6 discusses
some miscellaneous issues that arise in the practical application of the techniques dis-
cussed in previous chapters, analyses some results from the study in Chapter 5 with
a view to the further directions the research may take, and includes a summary and

conclusion.
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The Evolution of Dimension Reduction

Techniques

The dimension reduction problem is colloquially referred to as the P > n problem,
since the number of measurable features P on a microarray plate far exceeds the num-
ber of available patient samples n. Dimension-reduction aims to isolate a small set of
features, size ¢, that produces some surface with dimension ¢ — 1 that neatly separates
the data points, by their diagnostic class, in hyperspace. The methodology of quanti-
fying differences between classes has intuitively mirrored the development of statistics.
Statistical platforms for 21st century dimension reduction methods can be found in
the work of eminent statisticians such as Sir Francis Galton, Karl Pearson and Ronald
Fisher. This section attempts to describe the most commonly used techniques for sta-

tistical dimension reduction, from the most rudimentary methods to contemporary,
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state-of-the-art algorithms.

The archetypal framework most familiar to statisticians is a linear model, with X
as an input vector containing log,-transformed expression values for each feature, and
Y as a response vector representing (in a medical context) the diagnosis of the sample.

This can be represented as:

Y=XB+e¢ (2.1)

where X € RPY € {a,b} (or Y € {1, —1} if framed as a regression), B is the coefficient
vector of the features in X, and e is the residual vector from the fit. Log-transformed
values for X are preferable because their corresponding ‘raw’ values, derived from the
intensity of the coloured spots from the heat map, follow a long-tailed distribution, but
after log-transformation they are symmetrical about 0 (Parmigiani et al., 2003, p. 55).
For the purposes of this thesis, we assume Y only contains two values. These are
usually categorical (such as Y € {Hodgkin’s lymphoma, Non-Hodgkin’s lymphoma})
in a classification paradigm, although the same problem can be reframed simply as a
regression where Y € {1, -1}. Although it is mathematically possible for more than 2
classes to be compared simultaneously, given k classes, it is computationally faster to

k(k+1
calculate all individual class pairs (k+1)

, and assign a weighting system to resolve
the class demarcations (Pranckeviciene and Somorjai, 2006). On the issue of variable
dependence, it is well known that, given the nature of gene regulatory networks (GRNs),
there will indeed be dependencies that, to a certain degree, can be quantified. However,
the repository of information on GRNs is incomplete, and attempting to incorporate a
set of numerical models based on biological research that favour particular features over

others into the dimension reduction protocol does not necessarily guarantee a clearer

picture. Hence, in this thesis, we analyse gene expression data only.

2.1 Fold Change and t-tests

The simplest method to compare the expression difference between two classes a and b

for feature k is the fold change, which is simply the difference in their means (Tibshirani,
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2007):

XY = a) — p(XY = ) (2.2)

Note that this value is the same as the log-transformed ratio of the ‘raw’ expression

data (Lonnstedt and Speed, 2002):

pXEY = a)
p(XGEY =1b)

log, (2.3)

This measurement, however, does not take into account underlying noise in Xj.
A noisy feature Xj on its own tells us little about the expression pattern for a gene;
however if (Xy|Y = a) and (X;|Y = b) have low variances, they are more likely to
inhabit two tightly packed domains and be easily separable, and hence their biological
implication is likely to be significant.

Since a larger variance means less separable classes, dividing the difference in the
means of the classes by the standard error of the samples will give us a better indication

of the separability of the resulting predictor. This value is called the t-statistic:

XY = a) — p(X]Y = D)

e = s.e.(Xy) (2.4)

Sometimes the fold change is small, but the standard error also small enough to
make the t-statistic large enough to be considered alongside features with a large fold
change. As a compromise between the fold change and t-statistic values, a constant .S,
is added to the denominator to guard against this phenomenon. The resulting statistic

is called the modified ¢-statistic (Tusher et al., 2001; Tibshirani et al., 2002):

pXRY = a) — p(XeY = b)
8.6.(Xk) + So

t(modified), = (2.5)

The selection of the value S, should be such that it removes, from the top echelon
of a list of ranked features (by t-statistic), those with a small fold change.
More exotic variations on the t-statistic have been proposed in recent years, such

as the moderated ¢-statistic (Smyth, 2004), where a Bayesian posterior variance is
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substituted into the denominator in place of the usual sample variance. In this case,
the moderated t-statistic is able to ‘borrow’ information from the other features in
the dataset, thereby contextualising the predictive strength of the selected feature set.
Further examples involve computation of t-statistics informed by other features that
are correlated with the feature in question (Tibshirani and Wasserman, 2006; Zuber

and Strimmer, 2009).

At this juncture, it is crucial to understand that ‘no feature is an island’, and,
despite the need to tease out individual features as diagnostic candidates, robust class
differentiation and prediction relies on feature synergy in statistical analysis, as genes

do in biology. A lengthier discussion on this topic can be found in Chapter 3.

2.2 Principal Components of a High-Dimensional

Dataset

When features are considered as statistical agents in tandem, the earliest method of
determining the most informative aspects of high-dimensional data is through an or-
thogonal linear transformation called Principal Component Analysis (PCA), invented
in 1901 (Pearson, 1901). By ranking the magnitude of the eigenvectors of the data in-
put variable X, PCA rotates the coordinate system, so as to diagonalise its covariance
matrix C'.

Eigenvectors of C are selected to form a basis of explanatory variables for the
original data to be projected onto. This allows the data to be ‘seen’ from a viewpoint
where only the most informative dimensions are retained. An appropriate metaphor
would be a lower-dimensional ‘shadow’ of the original high-dimensional dataset.

The response variable is then introduced into the model via Principal Components
Regression (Jolliffe, 1982). This is most often done with an ordinary least squares
regression, wherein the factors most correlated with the response are selected.

In practice, PCA is computationally unwieldy, given that the covariance matrix

calculation needs nP? iterations. Two known methods avoid this step by estimating
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the principal components through an iterative algorithm. The first is the non-linear
iterative partial least squares (NIPALS) algorithm (Geladi, 1986), which, given that
dimension-reduction analyses frequently only require a handful of critical genes, only
calculates the first few principal components. The second method (Roweis, 1998) esti-
mates the first principal component, also by an iterative algorithm, and then calculates
the remaining principal components (Golub and Van Loan, 1996) via the Gram-Schmidt

process.

Despite both of these improvements drastically reducing the computational time
needed to determine the largest components in the predictor set X, PCA and PCR
have fallen out of favour with many computational statisticians in recent years. This
is because the rotation of the data space inherent in PCA is arbitrary to the biological
aims of feature selection. Instead of a subset of predictor features being regressed
against the response, the implicated components are regressed. These components
may still contain information from all of the features in the original dataset, and hence

solutions derived from PCA may be useful only from a purely statistical point of view.

2.3 Learning Explicitly in the Feature Space

One of the routines needed in carrying out feature selection is separation of differently-
labelled data, which is analogous to the demarcation of blood cancer phenotypes. The
explicit manifestation of this separation can be achieved in the n-dimensional space,
by plotting the log-transformed values of gene expression data into the feature space.
After these points are plotted, the goal is to draw a line (2 feature model), surface (3
features) or hyperplane (4 or more features), linear or nonlinear, that best separates
the two labelled groups. This line is called the decision boundary, or sometimes the

discriminant.
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2.3.1 Fisher’s Linear Discriminant and Linear Discriminant

Analysis

The linear classifier metaheuristic has its roots in Fisher’s linear discriminant, which
can be measured as the ratio of the variance between labelled classes to the variance
within them (Fisher, 1936). More formally, Fisher’s F-statistic can be written like this,

where:

_ O_l?etween _ (’LU ) (H(Xk,y - &) B M(Xk|Y = b)))2
FXY) = o2 wl - (Cov(Xi|Y = a) + Cov(X,|Y =b))-w (26)

where w is a vector of weights normal to the discriminant that maps X onto R. The
samples can then be projected along an axis ¥ = wX. The related Linear Discrim-
inant Analysis (LDA) attempts to simplify Fisher’s discriminant by introducing the
assumption that the covariances of classes a and b are equal. When this condition is
satisfied, the predictor function is simply whether the dot product w - X is greater or
less than some constant ¢, indicating the class (or in the context of the feature space,
the side of the decision boundary) the unknown sample belongs to (McLachlan, 1992;
Duda et al., 2001).

The probability density functions of the two classes can also be modelled by a
Naive Bayes classifier. Instead of being modelled explicitly in the function space,
parameter estimation takes place using the Maximum Likelihood method. The Naive
Bayes method also includes the assumption that any feature or pattern discovered in
the data is completely independent of any other. Naive Bayes and LDA are what
are called generative models, which are characterised by their reliance on conditional
density functions (Mitchell, 2010; Duda et al., 2001). Despite generative models, and
Naive Bayes in particular, performing better than would be intuitively expected (Hand
and Yu, 2001; Webb et al., 2005; Rennie et al., 2003), generative models are usually

outperformed by more recently developed classification methods (Caruana, 2006).

A different philosophy is used with discriminative models. These models seek to

maximise the separation power of the classifier by minimising the risk (usually defined
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by the observed rate of wrongly classified samples) on the training set by parameter-
isation. Such models include logistic regression (Hosmer and Lemeshow, 2000), the
perceptron (Rosenblatt, 1957) and the support vector machine (SVM) (Cortes and
Vapnik, 1995). The SVM represents, in our opinion, the most explicable and versatile
algorithm of the linear classifier epoch in 21st century machine learning, and will be a

major element of the research (see Chapters 4 and 5) contained in this thesis.

2.3.2 Regularisation and the Support Vector Machine

A classifier must not only separate the two classes on the training set, it must also do
so in a way that draws a compromise between the influences of the classes’ respective
clusters. The decision boundary is ideally one that is sensitive enough to be contoured
to the ‘no-man’s land’ between these clusters, but generalised to the point of being
easily described. However, in the case of ill-posed problems (which may manifest in the
feature space as overlapping clusters and unorthodox cluster shapes), there is a friction
between these two important goals which has not always been recognised. During the
1960s, many researchers believed that the minimisation of the training error was the
best way to construct the most accurate classifier (Vapnik, 2000, pp. 6-7). This was
subsequently proven to be wrong, as will be shown later, and has been usurped by a
theory more in line with the parsimony principle named Structural Risk Minimisation
(Vapnik and Chervonenkis, 1974). The main idea behind SRM can be described as a
trade-off between the quality of the approximation of the given data and the complexity
of the approximating function (Vapnik, 2000, p. 95). In the case of ill-posed problems,
a by-product of training error minimisation is an intricate approximating function. As
well as being more difficult to describe mathematically, approximating functions drawn
by minimising training error frequently become less accurate at predicting the classes
of unlabelled data points past a certain threshold.

By way of a real-world analogy, consider the case of a farmer whose property has a
rabbit infestation. A certain region of this property is rabbit-free, evidenced by the lack
of rabbit burrows, and he wants to build a fence to keep the rabbits from spreading to

this area. He also wants to salvage as much land as possible that has not been infested,
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so he builds curved fences tightly around the areas that he can see contain rabbit
holes. However, this fencing approach fails, since there are a few rabbit holes outside
the enclosed area that he has missed, through which the rabbits can escape. These
‘missed burrows’ can be thought of as a test set (See Section 2.8) of unlabelled data
points that have been misclassified as a result of the farmer trying to follow the contours
of the rabbit infestation too closely with his fences. Taking the goal of maximising non-
infested land to the logical extreme, one can see that the approach of building a circular
fence, the diameter of the hole, around each and every rabbit hole that the farmer finds
would result in a large amount of useless work. More formally, the farmer has drawn a
function that has overfit the data; a phenomenon where the training algorithm follows
the anomalies of the data so closely that the resulting predictor loses the ability to
generalise, resulting in decreased performance. To solve this problem the farmer needs
to build a fence that follows a smoother locus. Although, by doing this, the farmer
must compromise by sacrificing a broader area of land to be designated as infested, he
will have a better chance of isolating the infestation within this broad area than if a

smaller area was ‘trained harder’ towards the observed rabbit holes.

When separating data points in a function space, the generalisation or ‘smoothing’
of the decision boundary is known as regularisation. In the simplest terms, regularisa-
tion can be seen as a method of reducing model complexity. Adjusting the degree of
regularisation of a model can be seen as a trade-off between biasing the model towards
an easily described function, and being sensitive enough to describe the variance of the
data. An intermediate zone between these two extremes will likely represent a degree
of model complexity that best predicts unlabelled data points. Regularisation is a key

component of building a robust learning machine.

The support vector machine (SVM) is machine learning tool that attempts to per-
form regularisation explicitly in the feature space. Like LDA, SVMs draw a decision
boundary as an attempt to separate the two classes, but two parallel and equidistant
margins either side of this boundary are drawn as well. The SVM algorithm actually
draws the two margins first: for example, in R? (see Figure 2.1), one margin touching

two data points belonging to the same class is drawn first, a parallel margin through a



2.3 LEARNING EXPLICITLY IN THE FEATURE SPACE 17

data point from the opposite class is drawn second, and the decision boundary is then
drawn halfway between. For linearly separable classes, the maximisation of the dis-
tance between the two margins, represented by the normed vector ||V||, will confer the
hyperplane that minimises the risk of the problem, as defined in SRM tradition. The
proof for this is derived through Lagrangian multipliers under Karush-Kuhn-Tucker
complementarity conditions and can be found in Smola et al. (2000). The distances to
the decision boundary from the data points on the margin are called the support vec-

V]
2

tors, with lengths ——. However, when classes overlap, extra constraints must enter
the equation. The risk minimisation is then, in the support vector context, given by
the minimisation of:
1 .
L& 2.7)

— +
(17—

where &; are the i ‘slack variables’, representing the distances of data points inside their
corresponding margin, to that margin (See Figure 2.2). \ is a parameter that controls
the degree of regularisation. A large A will minimise the influence of the slack variables
and result in a model biased towards maximising the margin width. Shrinking the

value of A will result in a more sensitively drawn decision boundary.

2.3.3 Non-linear Decision Boundaries and the Kernel Trick

In some cases, when the data is not linearly separable, the data can be transformed into
a more tractable set. For example, the data may be transformed via a polynomial, or
other non-linear function into a set which confers a lower risk than the original set. This
method of data manipulation is called the kernel trick (Aizerman et al., 1964). It is
often used in lieu of addition of further information through other features, as a possible
solution to overfitting and density problems associated with a large feature subset.
However, given the abundance of features at hand in a high-dimensional dataset, as well
as the advent of coefficient shrinkage methods (see section 2.5), the kernel trick is not
frequently used in bioinformatics. The kernel trick itself can be seen as a contributor,

as well as a remedy, to overfitting, since it adds a degree of complexity to the model and
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FIGURE 2.1: A support vector machine in R? separating two (red and blue) classes. Note
the two red data points lying along one margin, and one blue along the opposite margin.
Image created using R package svmpath.

increases computational time for the model’s construction. In this thesis, no non-linear
SVMs have been used to train data, although they provide a powerful visual aid for
demonstrating regularisation. Figure 2.3 shows a two-dimensional data set with heavily
overlapping classes. The kernel trick uses a nonlinear projection of the data onto the
real line, and then draws classification boundaries and margins on the transformed line.
For instance, each data point X can be represented by a combination of radial basis

functions:

N

F(X) =) wG(X,c) (2.8)

i=1

where G(X, ¢;) is a fixed function radially symmetric around ¢; and N, w and ¢ define
the parameters of the transformation. These are sinuous and difficult to describe when

under-regularized and, in the case of the decision boundary, non-contiguous. However,
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FIGURE 2.2: A more regularized support vector machine using the same dataset in Figure
2.1. The parameter &; denotes the slack variables, whose sum is divided by A and added
to the norm inverse of V. Note that in the first case it is not clear that there will much
gain in widening the margin since the classes are linearly separable. Figure 2.3, however,
demonstrates the opposite and more common effect of regularisation. Image created using R
package svmpath.

they are smoother and more easily described when A is increased, and this decreases
the LOO error by over 25%.
Unfortunately, there is no single value of A that works best for all datasets, hence

the optimal value must be estimated from data samples.

2.4 Architecture for Dimension Reduction Algorithms

In the context of this thesis, we define the objective function as a function to be op-
timised from an input consisting of a set of feature sets. A well-constructed objective
function can inform the statistician about the properties of the input, such as how ef-

fectively labelled data points can be separated. Objective functions may be calculated
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FIGURE 2.3: Comparison of two SVMs drawn on two identical dataset scatterplots. The
decision boundary (thick green line) is heavily overfitted through an attempt to follow the
training data too closely. The more regularized SVM on the right has a higher training error
but a lower test error. Image created using R package svmpath.

by t-tests and the like, but they are only the bricks and mortar that constitute a sta-
tistical model; the model itself must have a contrived architecture which is constructed
algorithmically. The process by which a feature selection model is built may take a

number of forms.

Methods that select parameters to produce an objective function, such as SVMs,
need a computationally fast method of finding the feature subset that confers an ex-
tremum of that function. Brute force selection, though guaranteed to find the global
optimum, results in an unmanageable combinatorial explosion. For example, say we
want to find the optimal dimensionally-reduced feature set whose size is 10, from the

complete set of features whose size is 20000, subject to some objective function. This
20000

10
computed. Fortunately, a number of effective alternatives to exhaustive search are

means that approximately ( ) ~ 3 x 10%0 objective function calls need to be
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available.

We want to use our chosen objective function, built into an optimisation algorithm,
to select a small group of features that best predict unlabelled classes. Building a
classifier with all features present is likely to result in a horrendously overfit model,
large computational costs, and no guarantee of high prediction accuracy. The simplest
method of selecting a feature subset is forward selection, sometimes called forward
stepwise regression (Efroymson, 1960). This is where features are added, one by one, to
the model based on which feature confers the maximum (or minimum) criterion value.
This can be seen as a greedy or hill climbing method. While the most rudimentary
version of forward selection is a simple regression against the response variable, the
incorporation of a more sophisticated objective function (such as SVM or LDA) in lieu
of the regression is likely to yield better results. The cardinality (hereby defined as
the number of features in the predictor set) of the model will vary according to the
data set and hence must be estimated. This can be achieved by the construction of a
wrapper, whereby cardinality is regressed against test error and the model conferring
the lowest error is chosen, or by a stopping criterion such as Mallows’ Cp (Mallows,
1973). Further discussion on this subject can be found in Chapter 6.

Another way of obtaining a highly predictive feature set is through backward elim-
ination. As the name suggests, all features are present in the model at the start of the
learning process and most features—ideally all uninformative and redundant ones—are
eliminated from the feature set in a stepwise fashion. This has been done with SVMs

(Guyon et al., 2002) with promising results.

2.4.1 Filters, Wrappers and Embedded Algorithms

Filters are models where the objective function is assumed to provide an accurate indi-
cation of the separability of classes, and as such, filter out the features with individual
objective function (criterion) values that either do not pass a particular threshold,
such as the top or bottom quantile of a ranked list of correlation coefficients. Filtering
variables is often used as a data preprocessing step (Guyon, 2003) in order to create a

smaller, and thus more workable, subset of genes for further reduction. A filter routine
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will simply take the top individually-ranked features in a dataset by their criterion
value, with the assumption that they constitute a superlative predictor. In Chapter 3

we show this to be an inaccurate assumption.

Wrappers, however, are more sophisticated methods that can evaluate features as
components of a set, rather than individually. Wrappers, as considered here, assume
nothing about the way a feature set is initially selected, and treat the reduced feature
set as a black box (Guyon, 2003; Kohavi and John, 1997), where the models they build
are assessed on their posterior predictive power on unseen data. The defining character-
istic of the wrapper heuristic is that it contains a nested, or ‘wrapped’ structure, which
can be, for example, a cross-validation (see Section 2.8.2) within a cross-validation.
The posterior performances (given by a predictive algorithm) of the inner validation
routine is itself used as the training criterion to select a feature set for assessment by
the outer validation routine. Intuitively, a wrapper will produce more reliable classi-
fiers because of this inbuilt validation mechanism. Yet, since a classifier must be both
built and assessed for each feature subset (hence, the nested, or wrapped structure), it
is unsurprising that wrapper learning is, generally speaking, computationally burden-
some. As an additional drawback, wrappers are also prone to overfitting, since their
method of risk estimation is unregularised (Kohavi and Sommerfield, 1995; Guyon,

2003; Loughrey and Cunningham, 2004; Reunanen, 2003).

An embedded method is one that produces both a feature subset and a classifier
during the same process. The process is ‘active’ in the sense that the algorithm contains
iterations where information on the classifier’s current performance on iteration ¢, using
a user-defined objective function as a proxy, is fed back into the algorithm on iteration
i+ 1, in an attempt to improve on the performance until some stopping criterion is
reached. Unlike the filter method, the objective function is calculated as a measure
of the performance of the whole subset at the current point in the routine, instead of
each of its individual features. The method can then actively ratchet up the separation
and prediction power of the classifier, depending on the criterion value and algorithm
heuristics. Such methods are the choice of most statisticians, and include modern

methods such as the LASSO (Tibshirani, 1996a) and Random Forests (Breiman, 2001).
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2.4.2 Stochastic Methods

The problem of finding the most informative subset of features is one of combinatorial
optimisation: finding the combination of elements conferring the optimal result out
of a set of possible configurations. Forward selection and backward elimination find
the optimal subset via a deterministic technique, that is, there is only one solution for
each dataset the algorithm is applied to. The solution also has only one optimisation
route; each process will be identical every time the routine is run. Stochastic, or Monte
Carlo methods (Ripley, 1987) introduce an element of randomness into the selection
process, which means that a different feature set is possible with different runs with
identical parameterisations. The main advantage of stochastic methods as they apply
to feature selection is that they allow greater flexibility in exploring the space of possible
feature combinations. Stochastic methods allow, to a certain degree, the algorithm to
‘backtrack’ on a particular feature-finding path if another is found to render a deeper
criterion value. In contrast, forward selection and backward elimination do not allow
feature replacement; once a feature has been selected (or omitted) it remains that way.

Two stochastic optimisation methods will be discussed here.

Simulated Annealing

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a method which attempts to
circumvent the tendency of greedy methods to halt at local optima in the feature
space. The classic analogy is that found in metallurgy: heat allows atoms to become
unbound from their current energy state and find more stable energy states through
slow cooling. SA temporarily permits moderate deterioration in the current objective
function value while the routine is ‘hot’, but this permissiveness is gradually rescinded
during the cooling schedule. The computational equivalent involves substituting one
feature for another based on the gain or loss in the objective function value as a routine
within a nested iterative procedure. The number of substitutions allowed, and the size
of the subset of neighbour candidates at each substitution is at the discretion of the

programmer, but may be informed by the available computational power. SA subverts
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the ‘push-pop’ memory stack style of adding and subtracting features from the model
used by forward and backward selection algorithms, by allowing substitution at any
point in the stack. Despite the total number of features being large, the number
of available neighbours is limited by the small size of the target feature set, making

simulated annealing a viable option for feature subset search.

Constraint Relaxation: The Cross-Entropy Method

The nature of the data often presents problems for the statistician. A single feature
seems insignificant in an entire dataset, but as an n-sized vector contributing to a
small feature set, it can still contain redundant information and exhibit a high degree of
variance (Hastie et al., 2009, p. 61). Hence the dichotomy between including a feature in
a model, and not including it, is often unwieldy. Implicit in the architecture of the most
recent dimension-reduction methods is a recogition that assigning equal coefficients, or
‘weights’, to each feature present in a model is an arbitrary constraint. In essence, we
want to select only the useful pieces of data from X without being forced, necessarily,
to select whole rows or columns in the data frame, but also without compromising
the integrity of the data. The power of SVMs lies in their ability to be partial to
selected data points in the feature space when demarcating classes, but this is done
only when features have already been selected. The idea of using ‘partial’ features can
be implemented in a number of different ways, and represents a form of mathematical
relaxation (Goffin, 1980). By way of a linear programming (LP) analogy, the integrality
constraint is removed, and features are allowed to possess weights between the values
of 0 and 1. The statistician can then implement a method that iteratively updates
the weights of the candidate features by increments less than 1. Such an approach is
analogous to an interior point method (Wright, 2004), where a discrete constraint (for
example, setting the weights of all features to an equal value with some upper bound on
their sum) is set in the routine initialisation, and this constraint is gradually imposed
on the parameters of the problem in the continuous feature space. Returning to the LP
analogy, an interior point method (with relaxed parameters) provides an alternative

to the coarser approach of hopping between the extremes of the feasible region, as the
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simplex method (Cormen et al., 2001b, pp. 790-804) does.

The Cross-Entropy (CE) method (Rubinstein and Kroese, 2004) is a stochastic
method for combinatorial optimisation developed especially to aid rare-event prob-
ability estimation. Through parameter tuning, it can be used to display emergent
properties of a system through adaptive updating of an iterative procedure. The CE
algorithm has applicability for a large and diverse array of problems, so we will only
describe it in the context of feature selection here. Consider a vector V' size P, the tally
of all candidate features for our dimensionally reduced feature set (), and an integer ¢
(preferably a factor of P) the size of the set we want. All elements of V' are set to the
value (weight) %, such that the sum of the elements is ¢. V' can be seen as a vector of the
probabilities of some feature k being included in @, or V (k) = P[(‘k is included in Q’)].

More formally:

V(k)=PlkeQlk=1,...,P (2.9)

This paragraph will describe one whole iteration of the CE algorithm. Random
samples from the complete feature set based on V (k) are divided into L subsets, (or
such that each and every feature is given a reasonable chance to be asqsessed) size ¢
with replacement after the creation of each subset, and the performance of each subset
is rated by a given objective function. The best performing feature sets (given by a
user-defined percentile), are retained to influence the next generation: The vector of
probabilities V; is shifted towards the features’ sample frequencies in the retained sets.
The amount of shifting is controlled by a smoothing parameter «; if, in the current
generation, V' represents the vector of probabilities used and V* represents the retained

sets” sample frequencies, then the next generation’s vector of probabilities is given by:

Vigi=aV7+ (1 — )V, (2.10)

Iterations are performed until some stopping criterion is reached, usually defined
as when the values of all ¢ features in V' approach 1. The smoothing parameter « is

an important user-defined variable used to control how quickly the algorithm reaches
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convergence. Small values of o are seen as ‘fairer’ on all features since they allow
slower convergence, and hence more opportunities exist for features to gain a foothold
in the ratcheting process typical of feature behaviour in this algorithm (see Figure 2.4).
Large values of o run a higher risk of ) becoming stuck in a shallow local optimum,
since fewer features are considered overall. The CE method can be computationally
demanding, however, and hence minuscule values of « are inadvisable (for a discussion
on parameter selection and computational costs, see Chapter 6). The issue of complete
feature coverage will be discussed more fully in Chapter 3. Conferring a similar effect
on algorithm behaviour to «, albeit inversely, is the size of the percentile used to select
elite feature sets. Test runs are usually performed in order to estimate appropriate

values for both.
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Progression of V through one Cross-Entropy
run with a=0.02

1.07]
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Iterations

FIGURE 2.4: Paths of the top six feature weights in the probability vector V in the first
250 iterations of a CE method run where ¢ = 6, a = 0.02 and the top decile of feature
sets are extracted to create V*. This is a very small value of «, given that Rubinstein
and Kroese (2004) often use values upward of 0.7. Of particular importance is how the
features represented by the magenta and black series do not gain a significant foothold until
around iteration 150. This implies earlier iterations of V' contained other features not shown
here, whose weight values decreased as they were replaced. These other features may well
have ended up in Q if a larger value of a were used. Also of note is the sudden rise of
the red feature at iteration 30 as the most favoured feature, overtaking the green, and the
apprehensive behaviour of the blue feature, showing a slight decrease even near iteration 250.
It is likely in this scenario that feature competition is fierce, and the value of ¢ may need to
be revised upwards.
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2.5 Deterministic Feature Selection via Coefficient

Shrinkage

The CE method assesses features for their suitability for inclusion in the final fea-
ture set as probabilities based on their performance. An alternative strategy to this
is viewing these suitability scores as coefficients in a covariance matrix. An early im-
plementation of this strategy for the dimension-reduction problem can be found in
Forward Stagewise Regression (Weisberg, 1980). Beginning in the manner of forward
selection when choosing the first feature, the algorithm then selects subsequent fea-
tures most correlated with the current residual. Each feature’s coefficient is updated
at every step by the addition of the linear regression coefficient on the current residual
until no more features are correlated with the residuals. Forward Stagewise Regression
has been superseded in both computational time and accuracy by shrinkage regression

methods (Hastie et al., 2009, p. 73), which we will discuss now.

Consider a simple regression of the feature matrix X against the binary response
variable Y. In the case of stepwise selection using residual sum of squares (RSS) as
the objective function, the vector that contains the coefficients of all features will also
be binary, simply determining whether a feature is in or out of the dimensionally-
reduced feature set. Shrinkage methods apply the relaxation metaheuristic such that
the coefficient values can be intermediate of 0 and 1, providing a more continuous
solution than stepwise regression, and varying the degree of influence of each feature
by its corresponding coefficient as each feature is introduced into the model. Line
graphs may be helpful in visualising the coefficient paths of each feature as the model

is constructed, since their functions are piecewise continuous.

Shrinkage methods are usually presented in the form given by the least squares

error estimate:

F(B) =3 Vi~ By~ 3" X, B, (211)

i=1
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where By is the intercept. A constraint is then imposed on this function:
P
Y IBI" <q (2.12)
j=1

where 7 is a penalty parameter, and ¢ is an upper bound on the sum of the transformed
coefficient. The parameter ¢ acts in a similar fashion to ¢ in the CE method—providing
an upper limit on the amount of information in the model for the purposes of feature
selection—except that in shrinkage methods it does not necessarily imply the number of
non-zero features the model contains. The parameter v is perhaps the most influential
in determining the outcome of F'(B) (see Figure 2.5); it allows a non-Euclidean metric

for penalised residuals, and hence affects solution density and manifoldness. The con-
P

straint Z |B;|" < ¢ bounds the ¢7-norm of the parameter vector B. When v = 2, the
j=1
resulting method is called ridge regression (Hoerl and Kennard, 1970), where the Eu-

clidean penalty is used and feature coefficients are shrunk proportionally. When v =1
it is known as LASSO (Tibshirani, 1996a), where coefficients are shrunk by constant
factor and truncated at zero. LASSO is ‘least absolute shrinkage’ because it represents
the smallest value of v for which shrinkage can be performed while the constraints
remain convex (see Figure 2.5). The primary advantage of a convex constraint region
is its guarantee of conferring one, and only one, solution. Shrinkage using concave
constraint regions (where 0 < 7 < 1) runs the risk of obtaining multiple solutions,
which must be independently evaluated, increasing computational time. Conversely,

as 7y increases when it is greater than 1, the solutions become denser.

Other forms of penalisation can be found in algorithms such as include RLAD
(Wang et al., 2006), the Dantzig Selector (Candes and Tao, 2007) and MC+
(Zhang, 2007). Such methods are effective, but lack a flexibility that allows the pe-
nalisation form to be varied within the same framework. In terms of the shrinkage
framework the parameter v is clearly critical in determining the outcome of the model.
Similar to the way A regulates the trade-off between minimising model bias and min-

imising variance, vy can also be placed on a continuum regulating two desirable, yet
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opposed model characteristics, namely sparsity and convexity.

y = 2 (Ridge
Regression)

y =1 (Lasso)

y=0.5 ‘ﬂ y=>0

(Stepwise
Selection)

FIGURE 2.5: A selection of estimation pictures for |By|" + |Bz|” < ¢ for v = {2,1,0.5},
~ — 0. In each subfigure, the black area is the unit disc according to the norm defined by ~.
Our aim is to minimise the ordinary least squares error function, around which the ellipses
are centred, subject to the constraints shown. As the least squares error function touches the
constraints, we can see that we get a unique solution for v > 1, but an increased risk of a
dense solution (not touching at an axis) as v grows. A sparse solution is one that has a few
non-zero coefficients. In this 2D diagram, such a solution would be represented by a point
lying on one of the axes. However, if v < 1, the ellipse has a greater probability of touching
two points on the constraint circle simultaneously, resulting in multiple solutions, ¢ solutions,
in fact in R?, as v — 0. Figure is based on the Lasso paper by Tibshirani (1996).

The aforementioned point is of vital consequence when undertaking feature selec-
tion. Recall that our objective is to select a small subset of features, where the final
feature vector only has a handful of non-zero coefficients. Such a solution can be
described as sparse. Most scientists desire a concise, qualitative report; perhaps de-
scribing what the statistician sees as features with large coefficients as key biomarkers,
and those with lower ones as ancillary biomarkers. A long list of putative biomarkers
with differing coefficients is unhelpful to a scientist wishing to illuminate the governing

mechanisms of disease.
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There is also a statistical reason for tending towards a sparse model. When the
number of features with non-zero coefficients is equal to or exceeds the sample size, the
estimate of the covariance matrices becomes singular (Schéfer and Strimmer, 2005),
resulting in a trivial solution, since the sample space has as many dimensions as data
points themselves. Such a property provides a natural and elegant stopping criterion,
as well as a solution path for shrinkage methods such as Least-Angle Regression, which

we will discuss now.

2.5.1 Least Angle Regression

A few more recent variations on the regression shrinkage metaheuristic have been de-
veloped. Least Angle Regression (Efron et al., 2004) attempts to further alleviate the
cumbersome task of fitting an entire feature to the model by continuously moving the
value of its coefficient toward its least squares value, until another feature becomes
more correlated to the response variable, at which it is added to the model along with
the existing features. This is opposed to fitting the entire feature to the model as per
LASSO (albeit with a coefficient less than 1), and thus LARS is superior in terms of

both eliminating noise and ensuring ‘fairness’ to all competing candidate features.

2.5.2 Elastic Net and Generalised Path Seeking

There is a tension between the tendency of LASSO to make arbitrary choices among
groups of highly correlated features with high class-separation power for inclusion in
the active model, and the tendency of ridge regression to shrink the coefficients towards
each other. These events may produce undesirable results in both cases (Hastie et al.,
2009, p. 662). The dual objective of quickly isolating these features and determining

their coefficients via a nuanced analysis needs a compromise, and so the Elastic Net
P

penalty (Zou and Hastie, 2005) was developed, using Z(a |B,| + (1 —a)|B,|?) instead
j=1
P
of Z |B;|",v = {1,2}, where « acts as a tuning parameter (similar to the smoothing
j=1
parameter in the CE method) depending on the degree of sparsity the problem needs.
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However, there are circumstances, such as when features have a much lower degree of
correlation, where an even sparser solution than the LASSO produces superior results.

Generalized Path Seeking (Friedman, 2008) provides a broad framework by incorpo-
P

rating a penalty E(B) (such as Z |B;|”, but may also include the elastic net penalty
=1
’ n P
and others) into the least-squares loss function L(B) = Z(Yz — By — Z X,;B;)? such
i=1 j=1
that R(B) = L(B) + AE(B), with X functioning as a regularisation parameter. Note

how this form mirrors that of that of the SVM objective function (see Equation 2.7,
albeit with A\ acting inversely here), with the loss function L(B) analogous to the mar-
gin width and the penalty function E(B) comparable to calculating the sum of the
margin overlaps. Through linear programming with the use of Karush-Kuhn-Tucker
conditions (the formal procedure is shown in Friedman (2008)), GPS can approximate

the coefficient paths, as A is varied between 0 and oo, of all penalty functions satistying
O0E(B)
9|B;|
Net) for all samples, 0 < v < 2. Penalties that satisfy these conditions include Elastic

> 0 (which applies to both the classic penalisation method and the Elastic

Net, RLAD, MC+ and many others, for which GPS earns its ‘generalised’ epithet. It
is our opinion that, at the time of publication, GPS provides the most flexible im-
plementation of the coefficient shrinkage metaheuristic, and hence is ideally suited to

bioinformatic dimension reduction tasks.

2.6 Decision Trees

The final feature selection metaheuristic to be discussed in this chapter is decision
trees. As SVMs make the decision boundary explicit in the feature space, and shrink-
age methods use a coefficient model to quantify each feature’s relative contribution to
the final model, decision trees make explicit the criteria that separate the binary vari-
able Y. It is possible to map decision boundaries of trees in the feature space, but they
are frequently non-contiguous and too complicated to describe as a plotted function.
They are visualised as multiple rectangular hyperplanes of varying sizes in the feature

space, but are much more easily interpreted in tree form. Decision tree methods have



2.6 DECISION TREES 33

their genesis in a technique called Automatic Interaction Detection (AID) (Morgan and
Sonquist, 1963) and its extensions Theta AID (THAID) (Morgan and Messenger, 1973)
and Chi-squared AID (CHAID) (Kass, 1980), but their most well-known implementa-
tion is the Classification and Regression Tree method (Breiman et al., 1984). CART
dichotomously splits the samples in a recursive fashion (Figure 2.6), determining data
splits with simple relational operators (<,<,>,>), using only one feature for each node.
The standard tree is similar to that shown in Figure 2.7, except the splitting criteria

are mathematical and not qualitative.

Featu re #2462

0.2< nk< 0.8
Feature #875

Feature #11454 nk )

n,20.5

Feature #2462
n,<0.20r>0.8

Feature #875

ALL SAMPLES n nkz 1.5
(k=1,...,N) Feature #875

nk >0.01
Feature #11454
n,<0.5

Feature #875
= Hodgkin’s Lymphoma 0.2<n,<0.01
NHL = Non-Hodgkin’s Lymphoma HL

FIGURE 2.6: A simple decision tree distinguishing between Hodgkin’s and Non-Hodgkin’s
Lymphoma. Terminal nodes are in red and decision nodes are in green.

Just like SVMs, decision trees are prone to both under and overfitting and need to
be parameterised for optimal results. A tree with too few nodes may fail to capture
the governing structure of the model, so a lower bound on the depth of the tree is
usually set (Hastie et al., 2009, p. 308). More common, however, is construction of
trees with too many nodes which contain splits that provide little or no improvement

on the training accuracy (or equivalent measurement) of the tree. These trees should
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be recursively pruned by removing the node that incurs the least reduction in this
value (this is called weakest link pruning, Hastie et al. (2009, p. 308)), after assessing
all branches and their corresponding error rates along that path. The branch with the
error rate corresponding to a pre-defined threshold should then be selected. In practice,
most trees are grown then pruned in a trial-and-error phase before this threshold is

chosen.

Most modern implementations of CART do not use the training error per se in their
evaluation of which nodes to prune. Instead, they use the Gini index as a measure of
model risk, which can be calculated by simply multiplying the proportion P, of samples
from the majority class in the region defined by the node, by the minority proportion,
producing the term Py (1 — Py). Since the Gini index is a ratio analysis rather than an
absolute, it is more sensitive to node purity: a shorter term for how well the classes

are separated by the node split.

2.7 Random Forests, Bootstrapping and Stability

Selection

Despite its elegance and intuitive design, one of the disadvantages of the CART method
is its inherent instability. If a dataset is updated or changed, even a small adjustment
may result in a completely different model, since a change in a criterion near the root
can be propagated all the way down the tree (Hastie et al., 2009, p. 312). This problem
is solved by Random Forests (Breiman, 2001), an ensemble learning method that grows
multiple trees, and averages their prediction output through a process called bootstrap
aggregation, or bagging. Each tree acts as a predictor, and the classification is achieved
through a voting majority from this group of trees. As the name suggests, each tree in
the Random Forest stochastically picks a subset of features, typically size v/ P, where
P is the total number of features. Care is taken to ensure every variable is given a
chance to be evaluated. With a random selection of features, each tree is constructed

in a similar fashion to CART, but with one major difference: a proportion of samples
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are left out. These are called the out-of-bag (OOB) samples. Like a wrapper algorithm
with an internal cross-validation routine, the performance of each tree is evaluated by
testing on these OOB samples before voting takes place. Importantly in the context of
this thesis, Random Forests also calculate an importance index for each feature. This
is achieved by initially passing the OOB samples down the trees and recording the
prediction accuracy for each tree, followed by a random permutation of the values in
the feature vector and then passing these values down the trees again. The variable
importance is estimated by the degree by which the prediction accuracy drops on the

second pass.

Random Forests are viewed, along with SVMs and the latest shrinkage methods, as
state-of-the-art learning algorithms. This is because they are able to incorporate three
of the most desirable facets of statistical learning: an internal validation mechanism, a
stochastic element, and variance reduction via bootstrapping. The latter attribute is
of increasing importance to statisticians who are involved in bioinformatics, since the
stability of the results often has a bearing on the bona fides of the biomarkers found
(Meinshausen and Biithlmann, 2010). Cross-validation is established as the best way
to evaluate the performance of a learning method, but with feature selection the goals
are different. Ultimately, the validation of the meaningfulness of features selected in
a bioinformatics context takes place in the laboratory and in clinics, but there is a
further level of quality control that the statistician is able to implement before his or
her results are reported to a team of scientists. A single training estimate—especially
a deterministic one—on a dataset may seem sufficient to determine the appropriate
coefficients of its feature set. However, variable dependencies and noise will inevitably
interfere with this estimation, and give a result that is a distortion of the true signif-
icance of the features chosen. A remedy called Stability Selection (Meinshausen and
Bithlmann, 2010) has recently been proposed which suggests taking multiple bootstrap
samples from the dataset of size g, applying a dimension-reduction routine separately
for each one, and aggregating the results. By way of example, using a motif dataset,
Stability Selection in conjunction with the LASSO has been used to successfully iso-

late two genes—one governing and one ancillary—implicated in transcription binding
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sites, whereas a single run of the LASSO yields 26 genes whose coefficients are much
less discernible (Meinshausen and Bithlmann, 2010). One of the most important mes-
sages to come from this example is that, especially in the case of the ancillary gene,
the value of the aggregated LASSO coefficient of the genes is less important than the
frequency with which the genes appear in the dimensionally-reduced sets. Stability se-
lection highlights the need for consistency of feature performance across all, or nearly

all, bootstrap samples before consideration as a truly influential biomarker.

2.8 Machine Learning and Classification

The development of dimension-reduction algorithms has its genesis in the intuition of
their architects, but such creativity has little worth if it fails to produce real-world
results. In software engineering, the ability of a method to produce meaningful results
is primarily assessed by its performance in validation procedures. In the context of
bioinformatic diagnosis, the appropriate procedures are supervised machine learning
and classification. Machine learning encompasses a broad range of methods designed
to ‘learn’ the contours of a dataset, thereby generating a model that incorporates, at
the very least, its most distinguishing features. The learning algorithm is said to be su-
pervised if the class of the samples is already known (in other words, it is accompanied
by a response variable), and unsupervised if it is not. A typical microarray-generated
dataset will already have its samples diagnosed by a pathologist based on their pheno-
type, and thus a model can be generated using a bipartite response variable Y € {a, b}
that finds features that best separate the two classes. Often, a class hierarchy with
dichotomous splits is used to represent multiple levels of relevant sample classes (such
as in Figure 2.7), and an analysis is performed on each split, each characterised by a
different set of features.

Unsupervised learning algorithms tend to favour clustering methods, so that gen-
eralised class demarcations can be drawn (Duda et al., 2001). In supervised learning
the goals are very different: the learning technique needs to be validated through the

prediction of unlabelled data. A model is generated by a given learning technique
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FIGURE 2.7: A non-exhaustive dichotomous taxonomy of well-known two-dimensional
shapes.

using a set of samples called the training set, where the response variable is known.
Subsequently, a separate, usually smaller test set of samples, whose response value is
unknown to the model, is classified by the model. The outcomes of these predictions
can then be checked against the actual response values to evaluate its performance,

which can be expressed in a number of ways.

A sample with a response value of a that has been classified as a is labelled a
True Positive (TP); if it is classified as b it is a False Positive (FP or Type I error).
Similarly a sample with response value b classified as b is a True Negative (TN) and a

a False Negative (FN or Type II error). Accuracy can be expressed as a single value
TP + TN

TP+FP+TN+FN:F

however, a more nuanced and informative approach is usually

P d ificit N dt t t ]
——  and SPecCliicl —  are use O construct a recelver-
TP + FN P YFP + TN

operating characteristic (ROC, see Figure 2.8), which, instead of indicating the test

taken. Sensitivity

accuracy, evaluates how well a classifier can separate the two data classes. One ROC
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curve can represent a family of classifiers that differ only in their decision threshold;
this threshold can be plotted at various points along the curve as a way of ‘tuning’ the

classifier.

The construction of a ROC in the case of bipartite sample classification is usually
calculated by ranking the scores, predicted by the classifier, given to each of the tested
samples. The two axes represent, from 0 to 1, the TP rate and 1 — the FP rate as the

classifier traverses this ranked list.

The following example is illustrated by the ROC in Figure 2.8(a). A test set of
samples ki, ko, k3 and k4 may have response values 1, —1, 1 and —1 respectively, but
the classifier predicts their scores as 0.3, 0.1, —0.1 and —0.3 respectively. The path
traced from (0,0) to (1,1) represents the traversal of these ranked scores from largest
to smallest. When encountering a sample whose actual response is Y = 1, the ROC

curve moves upwards a measure of and when encountering a sample whose

1
TP + FP’

actual response is Y = —1, the curve moves a measure of to the right. Thus,

1
TN + FN
a perfect ROC will move upwards and pass through (0, 1) before moving to the right.
It will also have an Area Under Curve (AUC) of 1. The shape of a ROC and its
AUC do not necessarily inform the accuracy of a classifier; they instead inform the
separability of the two classes. Measuring the ¢! distance from the decision threshold
point (which represents a predicted score of 0 when Y € {1,—1}) to (0,1) provides

a reliable indication of the accuracy of a classifier when performing comparative tests

(see Figure 2.8(b)).

2.8.1 Nearest-neighbour Classification

The k-Nearest neighbour (KNN) method is a common classification algorithm used in
supervised learning that explicitly uses the feature space to determine the class of an
unknown sample (Dasarathy, 2002). Given one of these samples, its classification is
determined by a ‘majority voting’ system, where the k nearest training samples, from
the sample in question, are identified in the feature space. When there are g samples

from each class, the sum of the Euclidean distances from the sample in question to the
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FIGURE 2.8: (a) A Receiver Operating Characteristic (ROC). (b) ROC with a dot repre-
senting the decision boundary.
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training samples for each class is taken, and the tested sample is awarded to the smaller
of these sums. Given that the classification only depends on the local structure of the
data, the computational time can be limited by smaller values of k. However, KNN
classification is sensitive to noise, and should never be used as a classifier on P > n
datasets without performing dimension reduction first (Duda et al., 2001; Parvin et al.,
2008). Care must also be taken when class numbers are unbalanced; a weighting system
should be employed in this case (see Section 6.1).

Although KNN has been superseded by other methods with respect to classification,
it has a practical use for statisticians as an imputation tool for missing values in a
high-dimensional dataset (Troyanskaya et al., 2001). If there is enough real data for a
particular feature (say, a minimum of g samples have actual gene expression values),
then the remaining values can be ‘filled in’ using the KNN algorithm, relying on more

complete feature vectors with similar profiles to the one in question.

2.8.2 Cross Validation

The performance of one learning algorithm relative to another cannot be evaluated
analytically. Only through repeated exposure to real-world datasets can a statistician
be confident of the training technique he or she puts into practice will yield meaningful
results. As mentioned before, assessing the performance of a training algorithm involves
the partitioning of the data into a training set and validation (test) set. Similar to
bootstrap estimation (Efron, 1979), a more accurate estimate of the predictive power
of a model is achieved with a resampling technique. In the context of machine learning,
this method is called cross validation (Lachenbruch and Mickey, 1968; Geisser, 1993;
Kohavi, 1995; Devijver and Kittler, 1982).

A finite amount of available data demands its repeated partitioning into training
and validation samples, which are recycled as either training or test points for each

new round of validation. There are a number of ways to do this:

e k-fold cross validation splits the total number of samples n into k subsamples,

where each subsample is used as the test set for each of the k£ validation iterations,
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and the remaining n — g samples are used for training. The results are then
averaged across all subsamples. The default for most routines is usually £ = 5
or k = 10 (Fushiki, 2009). Each sample is resampled an equal number of times;
however, this method is susceptible to outliers clustering in one subsample group.
Care must be taken to ensure that each subsample is stratified, that is, they

contain equal proportions of samples labelled a and b.

e Leave-one-out cross validation (LOOCV) is where a single sample is used as the
validation set for each iteration, and the training set constitutes the remaining
n — 1 samples. LOOCYV is more thorough in that it removes the problem of
potential outlier clustering, but is always computationally expensive due to its n

iterations.

e Random resampling cross validation (RRCV) randomly selects the samples used
in the training and test sets with replacement, with a user-defined test/train ratio
(Tibshirani, 1996b). Although it is able to overcome outlier clustering and is able
to be evaluated in reasonable computational time, some samples are likely to be
over-represented, and others under-represented. Hence, the number of resampling

rounds should be suitably high.

Cross-validation has another role in classification: the testing of hypotheses sug-
gested by the data. All data sets, when trained, usually contain some artifacts that
are by-products of the training process, which may suggest a biological trend or phe-
nomenon where none actually exists. When performing cross-validation, a statistician
must also possess the healthy scepticism of a scientist, and run a large number of tests
over a range of parameter values before accepting that an observed statistical phe-
nomenon is genuine, and not apophenic. As an additional level of validation, liaison

with wet-lab scientists during this process is also advisable.

2.8.3 Machine Learning ‘Hygiene’

One very important caveat that seems obvious, but is nonetheless commonly overlooked

by machine learning novices, is to keep the training and test samples separate at all
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times during the learning process. Using training samples to test the model positively
biases the performance of the model (Ambroise and McLachlan, 2002), and thus any

validation procedures must be tested out on data unseen by the classifier.

2.9 Closing Remark

Dimension reduction is an exciting statistical field that has gained a significant amount
of traction in the last decade or so. This is a result of the acceleration in development
of large-scale gene expression profiling technology, which has subsequently demanded
the employment of high-throughput data analysis. However, this explosion of activity
seems to suffer from a decentralised bailiwick. Many high-performing and robust al-
gorithms are being proposed, but the lack of a unifying protocol or pedagogy to guide
novice statisticians in their first forays into this field is apparent. This chapter has
attempted to highlight some of the phenomena that high-dimensional datasets possess,
the corresponding caveats that need to be taken into account when analysing them,
and remedial techniques that should be focal in the mind of any statistician serious
about performing dimension reduction, academically or professionally. The following
chapters will attempt to show how important the application of such techniques can
be, and provide guidance towards the development of protocols that ensure meaningful

biological output.
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3.1 Introduction

This chapter describes a study in which we present evidence for the danger of discarding
features based on a filtering process, as described in Chapter 2. Through implementa-
tion of a Cross-Entropy method, we show that many features which might otherwise be
discarded through rankings based on individually-derived statistics may nevertheless

be worthy enough for consideration in dimensionally-reduced feature subsets.

The motivation behind this article was a discomfort with the way some dimension
reduction routines were taking place in the field of transcriptomics. Appreciative of
the enormous volumes of data involved in such routines, we were nevertheless surprised
at the lack of detail in many studies of the nature of the preprocessing steps that were
involved. After reading many feature selection articles we found that a large number
of studies discarded the vast majority of features based on a calculation performed in
isolation from other features, such as the classic or modified t-statistic and F-statistic
(for example, in Xu and Li (2003)). Advances such as the moderated ¢-statistic (Smyth,
2004) and Significance Analysis of Microarrays (Tusher et al., 2001) have attempted,
with some success, to contextualise the indices of ranked features while retaining the
dimension-reduction strategy of a filter (selecting the top percentile of features from a
ranked list). However, we wanted to uncover a deeper structure in high-dimensional
datasets than filters would allow, and suspected that any filtering process would be too
coarse, and a finer, more gradual process—such as an iterative algorithm that revealed
emergent interaction effects between features—would be superior. This suspicion was
strengthened by the finding that features that are seemingly redundant and possess
little or no separation power on their own, in fact produce remarkable separation in
tandem with other features (Guyon, 2003), and hence a more sophisticated dimension
reduction method is needed to reflect this. Guyon used synthetic data to prove her
point, but we wanted to use real data from transcriptomes to suggest, perhaps in an
iconoclastic way, that discarding any features without assessing them in their proper
context has the potential to limit accurate analysis and skew results, both statistically

and biologically. It should be noted that the choice of smoothing parameter used
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in this paper is relatively arbitrary, and its chosen value may not be optimal. It is
important that a be small enough so as the algorithm does not overshoot a local
optimum, but employment of a very small « is very costly in computational terms.
After an exploratory analysis with differing values of a;, we decided on 0.1 as a value
that made an appropriate trade-off between these two conflicting issues. Therefore, we

believe that the value chosen confers a fair implementation of the algorithm.
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Abstract

Current feature selection methods for supervised classification of tissue samples from
microarray data generally fail to exploit complementary discriminatory power that
can be found in sets of features (Guyon, 2003). Using a feature selection method
with the computational architecture of the Cross-Entropy method (Rubinstein and
Kroese, 2004), including an additional preliminary step ensuring a lower bound on the
number of times any feature is considered, we show when testing on a human lymph
node dataset that there are a significant number of genes that perform well when
their complementary power is assessed, but ‘pass under the radar’ of popular feature
selection methods that only assess genes individually on a given classification tool. We
also show that this phenomenon becomes more apparent as diagnostic specificity of the

tissue samples analysed increases.

Background

The interdependence of attributes in a high-dimensional dataset, such as a collection
of microarray samples where P (number of features) > n (number of samples), has the
potential to yield new insights, both computationally and biologically. The sparseness

of a dataset can be estimated by its sample/feature ratio; this figure is often 1:200
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or smaller (Somorjai et al., 2003): For statistical insights to be gleaned from these
datasets, dimensionality reduction, also known as feature selection, must be conducted.
A useful application of feature selection is to identify biologically significant genes or
sets of genes with a view to building diagnostic tools (Tibshirani et al., 2002; Dettling,
2004). However, this has proven difficult, due in no small part to the large amount of
biological and technical noise in the datasets in question (Aris et al., 2004; Li et al.,
2004). A variety of feature selection methods has been employed with the aim of
circumventing this noise and creating classifiers which are robust and insensitive to
outliers (Somorjai et al., 2003). The success of these feature selection algorithms has

been varied—no ‘gold standard’ has currently been accepted.

The literature on this subject is large and growing. Decentralised studies are not
held to a common standard; they use differing datasets and training algorithms, and

are consequently optimistically biased (Berrar et al., 2006).

Comparisons between types of cancer (represented by leaves on the classification
tree in Figure 3.1) are more reliable when done in a pairwise fashion (Somorjai et al.,
2003; Li et al., 2004) and in fact decrease in accuracy as the number of classes to be
compared increases (Li et al., 2004). Somorjai et al. (2003) argues that classifiers need
to have two properties: firstly, they need to be robust, that is, insensitive to outlying
data and generalised enough to classify unknown (that is, not used in the training set)
samples correctly; secondly, they need to have some biological significance, where the
set of features in the classifier has a degree of similarity with an established molecular
phenomenon, such as a pathway or cascade. Ideally, the classifier should be derived
from the smallest possible number of discriminatory features, whilst maintaining ro-
bustness. Most classifiers do not satisfy either of these two ideals; this is mostly due to
noise in the dataset. Noise reduction takes place in the feature selection step, where the
aim is to produce a small subset of genes that possesses both high generalisation abil-
ity and insensitivity to outliers. A comparative overview of the variety of approaches
to feature selection can be found in Dash and Liu (1997). Feature selection can be
described as either forward (where features are added one at a time on the basis of

their performance until the desired number is reached), backward (where features are



BACKGROUND 49

removed from the entire group one at a time until a desired number is reached) (Sewell,
2007), or a multi-step method combining both. Seeking the optimal gene set for use

by a given classification tool will involve some sort of optimisation algorithm.

Tissue Sample

Reactive Cancer
]
( )
Blood Cancers| |Other Cancers
g J
I
) 4 )
Hodgkin's Non-Hodgkin's
J \_ J
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T-cell B-cell
J J

Diffuse large

B-cell Others
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FI1GURE 3.1: Diagnostic tree for lymphoma or suspected lymphoma samples. Even though
one node may have more than two children, classification accuracy degrades rapidly once 3 or
more classes are considered simultaneously (Somorjai et al., 2003). The two bivariate splits
used in this study are Cancer vs. Reactive (Level 1) and Follicular vs. Diffuse Large B-cell
Lymphoma (Level 5). Note ‘Reactive’ describes non-cancerous lymph nodes that react to
some external irritant.

Exhaustive (or brute-force) optimisation, which has a Landau notation of O(const™),

where n is the number of features (or genes), is infeasible due to the unreasonable
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amount of computational time needed to evaluate the optimal set, since n is on the
order of 20000. A problem such as this is relatively computationally intractable (Garey
and Johnson, 1979). Hence, a heuristic method will need to be employed to seek an

optimal set.

One frequently overlooked property of microarray datasets is the interdependence
of the gene expression values. For example, Xing et al. (2001) (Xing and Karp, 2001)
and Ng (1998) (Ng, 1998) use feature selection algorithms where the discriminatory
power for each gene is computed individually. Though unacceptably superficial, anal-
ysis frequently entails the ranking individual genes instead of gene sets. With the
establishment in recent years that cancer aetiology comprises a complex interdepen-
dence of gene products, a feature selection strategy that reflects the contextual nature
of the expression levels of each gene is therefore indispensable. Although published
studies infrequently report the details of preprocessing in feature selection, our prac-
tical experience is that the feature set is usually dramatically reduced on the basis
of individual F-statistics before any interactions are considered. Guyon (2003) proves
that features that appear redundant when considered individually, can in fact be useful
for noise reduction and class separation when they are considered in complement to one
another. Exploitation of this property can be found in the study of unsupervised clas-
sification of multivariate time-series (Yoon et al., 2005), however the field of supervised
microarray classification appears largely unexplored in this context. An exception is
the Random Forest method (Breiman, 2001), however, in general, linear discriminant
analyses (the classification method we have employed in this study) outperform classi-
fication trees when the sample size is small (Dudoit et al., 2002). In this paper we have
implemented a feature selection algorithm based on the Cross-Entropy (CE) method
(Rubinstein and Kroese, 2004). With each feature given an initial equal weighting, the
algorithm simulates a competitive environment which, in this case, allows sets of genes
that show a consistent ability to separate classes in the training set to be drawn out
as emergent properties over a number of iterations. This ‘snowballing’ effect provides

the basis upon which the contextual performance of each feature can be evaluated.
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We aim to show that discarding features from a microarray dataset based on individ-
ual discriminatory power is a poor method of dimensionality reduction, due to many

features’ being valuable in a complementary context.

Data and Methodology

Patient samples, Microarray and Pre-processing

Lymph node biopsies and mobilised normal peripheral blood stem cells (reference sam-
ples) were collected following written informed consent. The use of these specimens
was approved by the Human Ethics and Research Committee of St Vincent’s Hospi-
tal, Sydney. The diagnosis of each biopsy was made based on standard histological,
immunological and cytogenetic analysis. RNA was isolated using TRIzol reagent (In-
vitrogen, Victoria, Australia) followed by RNeasy micro column purification (Qiagen,

Victoria, Australia).

Labelled cDNA of lymph node and reference RNA were synthesised, labelled with
either Cy3 or Cyb fluorophores and hybridised onto human 19K Compugen 70mer
oligonucleotide microarrays (Adelaide Microarray Facility, Australia) using the 3DNA
Array 900MPX labelling kit (Genisphere, Hatfield, PA) according to the manufacturer’s
protocol. Arrays were scanned using a GenePix 4000A scanner and fluorescent signals
quantified using GenePix Pro 3.0 image analysis software (Molecular devices, Sunnyvale
CA). Data from GenePix results files were pre-processed without background subtrac-
tion followed by within-array print-tip loess normalization using algorithms from the
Bioconductor packages (Gentleman et al., 2004). Missing values were imputed using
the GEPAS online preprocessing tool at http://gepas.bioinfo.cipf.es/cgi-bin/
preprocess using k-nearest neighbour imputation with £k=10. A final count P of

18 664 features were used in this study.
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Analysis

All machine learning in this study was supervised, meaning that the samples were
already classified (diagnosed). We implemented a 210-iteration CE method over 82
training sets, and aggregated the number of iterations (out of 82 x 210) in which each
feature was used. This serves as a rough estimate of each gene’s discriminatory utility

in a complementary context. The process was as follows:

1. Devise a diagnostic ‘tree’ (see Figure 3.1) that defines grouping of the tissues to

be classified.

2. Choose a two group split and assign each tissue sample to the corresponding
group. Even though one node may have more than two children, classification
accuracy degrades rapidly once three or more classes are considered simultane-

ously (Somorjai et al., 2003).
3. Designate a subset of the data as a training set.

4. Apply a feature selection algorithm that chooses the discriminatory features based

on the training data set.

5. Repeat Steps 3—4 for several training sets.

We ranked each gene by the number of inclusion events, and compared these ranks
with the genes’ F'-value ranks.

This procedure was performed on two pairwise splits: the Cancer/Reactive (Level
1) (see Figure 3.1) and the Follicular Lymphoma (FL)/Diffuse Large B-cell Lymphoma
(DLBCL) (Level 5), representing endpoints of specificity. The Level 5 split was chosen
amongst other classes of B-cell lymphoma because the two classes had the largest
available sample sizes. It was repeated 19 times within each split for 19 values of the
gene set size parameter 2 < ¢ < 20. 82 tissue samples were classified at Level 1 (66
cancerous, 16 reactive) and 36 were classified at Level 5 (24 follicular and 12 diffuse
large B-cell).

All computational analysis was implemented in R Version 2.5 (R Development Core

Team, 2010). Our novel feature selection method is an implementation based on the
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Cross-Entropy (CE) method (Rubinstein and Kroese, 2004). This is a robust iterative

method ideal for feature set reduction.

Preliminary Forward-selection Phase

The CE optimization process can be seen as a backward selection process, where can-
didate genes are discarded until the final set of size ¢ is obtained. However, preliminary
trial runs showed that a straightforward implementation of the CE method, with pa-
rameters chosen to give convergence within a reasonable timeframe, discarded the ma-
jority of features without ever sampling them. To solve this problem, we implemented
a preliminary forward selection process to ensure each gene is given sufficient consid-
eration for inclusion in the main CE phase. The implementation of this preliminary

process can be summarized as follows:
1. Set v (individual weighting) of all genes to 0.

2. Assign all genes to P/q gene sets with no repeats randomly.

3. Quantify the discriminatory power of each gene set. In this study we have used

Fisher’s F-statistic (Fisher, 1936).
4. Rank all sets by this discriminatory power and identify the top 10% of these sets.

5. Increase v by the value of (¢/P)/10 for each representation that a particular gene

in this top 10%.

6. Repeat steps 2-5 nine more times.

This forward selection procedure produces a shortlist of genes with varying vs which
will be used on the next, backward selection process. This preliminary forward-selection
step provides as many individual opportunities for genes to enter the shortlist as there
are genes in the complete list. However, higher-performing genes take more opportu-
nities, and the v values of all genes in the resulting shortlist are proportional to their

performance in the forward-selection step.
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Main Backward-Selection CE Phase

The preliminary forward-selection step serves to initialise v° (superscripts counting
loop iterations) for the CE method, which then proceeds iteratively as follows. At each

=1 (normalised

iteration t, a random sample of N gene sets is drawn according to v
to a probability distribution by dividing by the required gene set size ¢). The genes
within each gene set are drawn without replacement, but the gene sets are drawn
independently and so may intersect. Each gene set is evaluated, and the best decile

G4, ...,G, are retained.

The update rule for v*, based on the CE (Kullback-Leibler distance) between v'~!
and the unknown optimal value, reduces to a simple form here: without smoothing, for
each gene k, v'(k) is updated to equal #{G; : k € G;}/n, the proportion of retained

gene sets containing k.

Without smoothing, a feature not appearing in the retained genesets in one iteration
obtains a v value of 0, and can never by sampled again. The large number of genes

makes this too strict. The update rule can be smoothed by setting
v'=(1-a)x v +ax #{G; ke G}/n,

where « is a smoothing parameter. No smoothing occurs if o = 1, whereas if a = 0,

the vector v is not updated at all.

The parameters we used are: sample size N = 100 and gene set retention proportion
p = 0.1 (i.e., at each iteration we drew 100 gene sets and retained the best ten), number
of iterations 7' = 200, and smoothing parameter o = 0.1 for a fairly conservative update

rule.

The ideal final value of v would take the value 1 at each of the ¢ genes in the
optimal gene set, and 0 everywhere else. Our algorithm always approached this ideal

very closely, with all ¢ features holding a v in excess of 0.997 at the end of 200 iterations.
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Results and Discussion

When the relative performance of each gene in the two-step method is compared to
its individual F-value, a band of genes with modest F-values can be seen to have
superior performance when analysed with the contextual method. This band is clearer
to the naked eye when the analysis is performed at the Level 1 split (Figure 3.2a),
however the phenomenon of genes performing under a complementary comparison is
more pronounced numerically in the Level 5 split (Figure 3.2b). Roughly a third (304
of 933) of the top 5% performing genes in Level 1 appear in the bottom 85% of genes

ranked by F-value individually. The corresponding proportion in Level 5 is well over

a half (573 of 933).

(a) Level 1: Ind. F-value vs. CE (b) Level 5: Ind F-value vs. CE
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FIGURE 3.2: Scatter plots comparing CE performance rank with individual F-value rank
for Level 1 (a) and Level 5 (b). Each spot represents a microarray feature. The vertical
axis represents all features ranked by an aggregate of the performance of each gene in all 19
CE phases performed (¢ = 2,3,...,20). Both plots show many genes ranking very poorly
by F-value but performing very well in multi-gene classifiers. Also interesting is the starker
bimodality of the distribution of CE rank conditioned on F-value rank in Level 1 (a) than in
Level 5 (b).

Given these results, it is clear that genetic interdependence cannot be ignored when
applying feature selection. Some studies (Subramanian et al., 2005; Liu et al., 2006)
have approached the feature selection problem from the biological end, finding gene

sets with constituents that share common biological function, chromosomal location,
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or regulation, although this method is self-limiting since the premises for this method
are restricted to current knowledge in this field. Further work on the complementary
discriminatory power that two or more high-performing genes possess, and their bi-
ological parallels, is an obvious direction that this study points to. A disadvantage
of this algorithm is that cumulation of v(k) after a certain number of iterations for a
given feature k is difficult for other features to compete with, although prudent choice
of the smoothing parameter o can ensure the most deserving features are included.
This disadvantage is evidenced in the poor performance of the two-step CE method
(using v = 0.1) as a training algorithm for class prediction, in comparison to a forward
selection control method in which features were added according to their independent
F-values. Using leave-one-out cross-validation on the Level 1 split, the CE method
yielded a maximum 66 out of 82 samples predicted correctly, using 5 features, whereas
the control method correctly predicted 73 out of 82, using 9 features. Similar anal-
ysis on the Level 5 split yielded 33 out of 36 samples predicted correctly by the CE
method using 2 features, whereas the control method predicted the class of all 36 sam-
ples correctly using 5 features. For this reason we do not recommend the use of the
CE method for feature selection without thorough tuning of a. It is likely that our
arbitrary selection of a = 0.1 is too large, resulting in an over-regularized model and
subpar predictive performance. Using an algorithm with an immediate (as opposed to
an aggregated) reward for superior contextual performance, such as simulated anneal-
ing, may be more beneficial. We recommend the use of the Two-Step Cross-Entropy
feature selection method in tandem with established feature selection methods such
as Random Forest (Breiman, 2001) and the Lasso (Tibshirani, 1996), with subsequent
meta-analysis. The most important insight from the above results is that feature selec-
tion methods that consider genes where the discriminatory power or information gain
of a gene is indexed individually are of limited use in classification and subsequent bi-
ological analysis. These feature selection methods are ‘throwing the baby out with the
bathwater’ in that they discard potentially valuable information on the nature of the
samples that produced the dataset. Furthermore, the greater complementary power

a gene set has (as seen in the more specific pairwise split of Level 5), the more dire
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the consequences of superficial gene analysis. It may be suggested that the comple-
mentarity phenomenon in the dataset analysed may be coincidental rather than the
result of biological interdependence, but its greater pronunciation at the more specific
level (Figure 3.2b) supports the intuition that this interdependence can be more easily
identified at such levels.

For both CE analysis on gene sets and individual gene evaluation, we used linear
discriminant analysis, because it was a simple statistical method for assessing discrim-
inatory power. However, other classification tools have been shown to provide higher
classification accuracy than LDA, in particular support vector machines (SVMs) (Li
et al., 2004; Statnikov et al., 2004). One study has also suggested that a linear dis-
criminator feature selection method combined with a SVM to train classifiers produces
superior results (Guyon, 2003). It is our aim in further research to find the most ef-
fective combination of an objective function for class discrimination, and optimization

algorithm, for use in the construction of robust classifiers for diagnostic use.
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4.1 Introduction

As discussed in Chapter 3, we realised that, despite the implementation of a sophisti-
cated architecture ensuring all features were given a reasonable chance at being included
in the final feature set, our chosen objective function (the F-statistic) was inferior to
others. This is because the F-statistic is neither regularised, nor gives an accurate in-
dication of how well classes are separated when the class distribution is non-Gaussian
(Box, 1953). After extensive reading, we took three statistical learning methods that
had both favourable reviews and frequent application in the field of transcriptomic
data mining as candidates for the next phase of research: SVM (Cortes and Vapnik,
1995), Random Forests (Breiman, 2001) and Least Angle Regression (Efron et al.,
2004). All have outstanding predictive ability and an intuitive approach to separat-
ing data samples, such that there is no consensus in the existing literature about a
definitively superior dimension reduction method. Each has a substantially different
approach to regularisation. SVMs regularise explicitly through a user-defined param-
eter, LAR relaxes model constraints by including only partial features, and Random
Forest prunes trees that overfit after evaluating out-of-bag error, similar to the way a

wrapper operates.

We implemented a standard cross-validation procedure on the training data, as well
as an additional validation routine on unseen samples separate from those trained, to
determine whether one of these candidate methods had a competitive advantage over
the others. Three publicly available and well known transcriptomic data sets were used
in addition to the in-house dataset used in Chapter 3. Given that the SVM does not
have an inbuilt feature selection phase, we used a forward stepwise-style algorithm,
similar to that of Zhu et al. (2004) to build a model path. We originally intended
to use the Cross-Entropy method for feature selection for using SVMs, but were dis-
suaded by the poor convergence rates. We used receiver operating characteristics to
assess our results, plotting true positive rate against false positive rate. In addition to
evaluating the area-under-curve, we also plotted the model-defined decision boundary

at the corresponding position on each curve, and measured the ¢! distance from it to
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(0,1). The latter was done to assess the natural ability of each algorithm to classify
unlabelled samples using its naturally generated decision boundary, as opposed to the
one that corresponds to the position on the curve closest to (0, 1).

The training set for the St Vincent’s dataset is identical to the one used in the
‘Level 17 analysis in Chapter 3. We found that our SVM algorithm performed better
on this dataset than the other methods, and that all regularised methods improved on

the F-statistic stepwise regression.
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Abstract

Microarray dataset dimensionality reduction is a prerequisite for avoiding overfitting,
and hence developing diagnostic tools. Some previous work has selected features based,
for example, on their individual Fisher discriminants (F-values), or ‘path-based’ train-
ing algorithms optimising the power of the resulting classifier. We show that a generic
method, using a simple stepwise regression with the linear support vector machine
penalised margin width as the objective function, subject to regularisation parameter
grid-search, gives superior performance to three other feature-selection methods (least-
angle regression, Random Forest, and stepwise regression on Fisher discriminants). We
use a hierarchical validation method, applying leave-one-out cross-validation within the
training subset, and applying the trained classifier to a separate test subset, on each
of four two-class gene expression cancer datasets. The generic method shows supe-
rior results when classifying unseen samples, compared to three other feature selection

methods, and a fixed regularisation value appears nearly optimal for all four datasets.

Keywords: feature selection, microarrays, support vector machines, path-based algo-

rithms, regularisation.
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Background

Feature selection for supervised tissue classification from microarray data has become
a field of considerable scrutiny over the past decade or so. Microarray datasets are
afflicted by a large feature/sample ratio: only a small number of tissue samples (usually
less than 100), but a feature set size in the tens of thousands, which makes the selection
of significant gene groups both theoretically and computationally daunting (Somorjai
et al., 2003). The evolution of feature selection algorithms in this field has been guided
by a desire to find biologically significant genes or sets of genes with a view to building
diagnostic tools (Tibshirani, 1996; Dettling, 2004). This has proven difficult, due in no
small part to the large amount of biological and technical noise present in the datasets
in question (Aris et al., 2004; Li et al., 2004), and features that appear redundant
when considered individually are in fact useful for noise reduction and class separation
when they are considered in complement (Guyon, 2003). The latter point is of critical
significance, since the number of features needed for optimal discrimination varies from
dataset to dataset, and is hence unknown when encountering a new dataset, rendering

the problem of finding the optimal feature subset ill-posed.

A variety of feature selection methods has been employed with the aim of circum-
venting this noise and creating classifiers which are robust and insensitive to outliers
(Somorjai et al., 2003). These selection methods can involve clustering algorithms
(such as k-nearest neighbour, Dasarathy (2002), and PAMR, Tibshirani et al. (2002)),
stochastic methods (such as simulated annealing (Kirkpatrick et al., 1983), genetic al-
gorithms and Markov chain algorithms), and greedy hill-climbing methods. The success
of these feature selection algorithms has been varied: no ‘gold standard’ has currently

been accepted.

One of the most popular metaheuristics in the field of feature selection is the greedy
hill climbing method (Cormen et al., 2001), also called ‘forward selection’ or ‘stepwise
regression’. The first step of the process involves finding the most optimal feature
by ranking all P features on the value of some objective function that informs its

discriminatory power. This feature now constitutes the selected subset. The next
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feature is selected based on the combined two-dimensional discriminatory power of the
feature already within the subset, and one of the P — 1 other features. Each of the
P — 1 two-feature models has its objective function calculated and ranked, before the
gene most recently added to the most optimal model is then added permanently to the
selected feature subset. The P — 2 remaining features are then trialed one-by-one for

the third addition, and so on.

Sets optimized by the greedy method can often find the global optimum, but this
is not always guaranteed; sometimes only a local optimum is found. This is because
the algorithm, in advancing an iteration, may overlook a set of features whose interac-
tions confer a powerful discriminatory effect. Often a situation may occur where the
algorithm has already advanced to an unrecoverable depth in another direction with
a different feature subset, whose interactions with the overlooked set confer an unre-
markable discriminatory power. Greedy feature selection therefore has a propensity to
act too grossly in its quest for the optimal dataset. In terms of feature selection and
subsequent sample classification, two recently developed algorithms have adapted the
greedy algorithm architecture to advance iterations more cautiously when choosing the

next feature to be added to the feature subset.

Least-angle regression (LARS) (Efron et al., 2004) is an improvement on the original
LASSO algorithm, first described by Tibshirani (1996). The algorithm begins with a
vector of regression coefficients size P, all set to zero. Firstly, the coefficient of the
predictor (or feature) most correlated with the response variable is increased in the
direction of the sign of this correlation, recalculating residuals along the way. This
is done until some other feature is correlated with the residuals to the same degree
as the original predictor is. The model is then shifted in the direction of the joint
least-squares direction of these two predictors until its correlation with the residuals is
equal to that of a third predictor, and so on. For microarray studies where the number
of features P greatly exceeds the number of samples n, models typically contain up to
n — 1 variables, since any model can have no more than n — 1 (mean centred) variables
with non-zero co-efficients. LARS produces a continuous path of models, rather than

a discrete sequence. Advantageously, the fit can produce a greater choice of models,
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since they can be evaluated at any point along the path, even at fractions between

feature-adding events.

Random Forest (Breiman, 2001), as its name suggests, contains a stochastic element
to its training algorithm. Using a bootstrap aggregation method on randomly selected
training and test sets with replacement, the algorithm also selects a random subset
of features to train the model, and uses the best features to ‘split’ the node of each
tree in the forest. The trees ‘vote’ on the predicted class for each test sample based
on the computed proximities of each test case (that is, how often two samples occupy
the same node), and are grown without pruning. Although disputed (Segal, 2004),

Random Forest claims to avoid overfitting.

Both algorithms attempt to overcome the trap of classic forward selection becom-
ing ‘too greedy’; least-angle regression by incorporating a continuous element into its
architecture, and Random Forest by using the wrapper method of guarding against ad-
vancing the model in the direction of a classifier with a higher error rate at step k + 1
than at step k. These are architectural modifications to the classic forward selection
prototype, and have shown to be superior to the original (Efron et al., 2004; Breiman,

2001).

Feature selection can be seen as optimising an objective function defined on the set
of feature subsets. Methods such as LARS and the Dantzig selector (Candes and Tao,
2007) incorporate regularisation into the optimisation method. However, there has
been little discussion of incorporating regularisation into the objective function only,
leaving a free choice of optimisation procedure. Traditionally, the objective function
when performing stepwise regression is Fisher’s F-statistic (Fisher, 1936), but others
such as Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC) or
Mallows” Cp are frequently used. These functions, with the exception of Mallow’s
Cp, have no inbuilt regularisation. We propose combining the support vector machine
(Cortes and Vapnik, 1995); a highly robust and well-respected training algorithm used
in classification, and more recently, feature selection, with a greedy optimisation process

(Zhang et al., 2006; Guyon et al., 2002). The penalised margin-width in SVMs can be
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expressed in the form:

minL + L& (4.1)

Vi A

where ||V is the distance between the two hyperplane margins, &; the sum of 7 slack
variables determined by the soft margin, and A a regularisation trade-off parameter.
Using the classic greedy forward selection model, we take the minimum value of the
objective function for each feature in each successive ranking step, and add this value
to the model. This is not a particularly original method; it is simply a combination of
a heuristic and an objective function that are both well known. However, we propose
that this approach confers a competitive, if not superior regularisation strategy for

accurate class discrimination.

Data and Methodology

Four cancer-related bipartite datasets were used in this study. One was generated
in-house by the Department of Haematology and Bone Marrow Transplant Unit, St
Vincent’s Hospital, Darlinghurst, Sydney, Australia, and Golub et al. (1999), Alizadeh
et al. (2000) and Armstrong et al. (2002) were downloaded from the Kent Ridge
Biomedical Dataset Repository (Kent Ridge Biomedical Data Set Repository, 2008).
These three datasets were chosen since all samples were from patients diagnosed with
a form of haematological cancer, however they are all more homogeneous than our
in-house dataset. An outline of the samples contained in each dataset can be found in
Table 4.1.

For the dataset from St Vincent’s Hospital, lymph node biopsies and mobilised
normal peripheral blood stem cells (reference samples) were collected following written
informed consent. The use of these specimens was approved by the Human Ethics and
Research Committee of St Vincent’s Hospital. The diagnosis of each biopsy was made
based on standard histological, immunological and cytogenetic analysis. RNA was iso-
lated using TRIzol reagent (Invitrogen, Victoria, Australia) followed by RNeasy micro
column purification (Qiagen, Victoria, Australia). Labelled cDNA of lymph node and
reference RNA were synthesised, labelled with either Cy3 or Cy5 fluorophores and
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hybridised onto human 19K Compugen 70mer oligonucleotide microarrays (Adelaide
Microarray Facility, Australia) using the 3DNA Array 900MPX labelling kit (Geni-
sphere, Hatfield, PA) according to the manufacturer’s protocol. Arrays were scanned
using a GenePix 4000A scanner and fluorescent signals quantified using GenePix Pro
3.0 image analysis software (Molecular Devices, Sunnyvale CA). Data from GenePix re-
sults files were pre-processed without background subtraction followed by within-array
print-tip loess normalization using algorithms from the Bioconductor packages (Gen-
tleman et al., 2004). For all datasets, missing values were imputed using the GEPAS
online preprocessing tool at http://gepas.bioinfo.cipf.es/cgi-bin/preprocess

using k-nearest neighbour imputation with £=10.

St.  Vincent’s | Golub (1999) Alizadeh Armstrong
Hospital (2000) (2002)*
Sample Classes || Cancer vs Re- | Acute myeloid | Activated Dif- | Acute myeloid
(Note: true || active leukemia fuse Large | leukemia
positives listed (AML) vs | B-Cell  Lym- | (AML) VS
first) Acute lym- | phoma  (DL- | Acute lym-
phoblastic BCL) vs | phoblastic
leukemia Germinal leukemia
(ALL) DLBCL (ALL)
Positives 66 11 23 20
(Training set)
Negatives 16 27 24 20
(Training set)
Positives 30 14 N/A 8
(Testing set)
Negatives 8 20 N/A 4
(Testing set)
Total number 18664 7129 4026 12582
of features

TABLE 4.1: Attributes of the four datasets used in this study.
*A third class, MLL, was removed from this dataset, since we are only working with bipartite

splits.

Near-perfect discrimination between lower levels of lymphoma classes, such as fol-

licular lymphoma vs. diffuse large B-cell lymphoma, was achieved in the St Vincent’s
dataset with rudimentary methods such as LDA, so we made the decision to analyse

the top split: Cancer vs. Reactive.
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Each dataset except (Alizadeh et al., 2000) contains a training set and a test set. For
each training set, we trained the data using Linear SVM stepwise regression (SVMSR)
with A = 10, Least-Angle Regression (LARS), Random Forest (RF) and F-value step-
wise regression (FSR). First, leave-one-out cross-validation (LOOCV) was performed
on all four datasets’ training sets using all four methods. A new subset of variables
was selected for each of the n validation trials, and the error rate was calculated as
the proportion of trials that conferred a false prediction. With the exception of the
non-overfitting Random Forest, the model with the lowest error rate, taking the first
reached in the event of ties, was selected for prediction of the unseen observation. For
each method on each dataset, the accuracy, receiver operating characteristic (ROC),
and the point along the algorithm path where the optimal model occurs were calcu-
lated. The crossover threshold that represents the decision boundary between classes
(posterior probability = 0.5 for both stepwise regressions and Random Forest, and
threshold = 0 for least-angle regression) was mapped onto each ROC.

We include pseudocode below (see next page) to clarify the aforementioned simu-
lation experiment. The process shown was repeated for each of the four datasets in
order to evaluate the behaviour of the SVMSR method. A similar procedure was used

to evaluate each of the other three methods.

for A € {100,10,1,0.1,0.01} do
for each sample n of the training set do
for ¢ (the number of genes in the model) =1 to 20 do
train SVMSR classifier on {training set}\{n} using ¢ and A
classify left out sample n and record success or failure
end for
end for
end for
calculate sample classification accuracy for each ¢ and A
(Gbest> Abest) < (g, A) with best sample classification accuracy
train SVMSR classifier on whole training set using qpest and Apest
classify test set and report accuracy

In the case of SVMSR, a grid search was performed using the values

A ={0.01,0.1,1,10,100} for SVMSR for all four LOOCYV runs on the training samples,
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and a parameter value of A = 10 was found to have not been bettered on classifica-
tion performance from the resulting models. SVMSR used the soft-margin objective
function (4.1) to advance the algorithm, and the FSR used the F-value (Fisher, 1936)
as the objective function. Care was taken for each implementation, to ensure each
classifier trained had the weights of each (unbalanced) class taken into account. An
upper bound of 20 features was used for the stepwise regression approaches, since the
classification accuracy for both validation procedures did not seem to improve above
this value, and also to keep the chosen model reasonably sparse. The software default
of 500 trees was used for Random Forest, and the default number of features used to
split each node of each tree: v/ P = total number of features. Since, for P > n, LARS
has a deterministic stopping criterion of Pr4rs > n, for standardization purposes the
model was evaluated at 20 equally spaced points along the path length 1, at interval
length 0.05. Following this, we trained each training set except (Alizadeh et al., 2000)
using all four methods with the standards described above, and validated the trained
model on the test set, calculating accuracies, ROCs, decision boundaries and optimal
path locations. All analysis was carried out using R scripts, incorporating the following

platforms: kernlab, lars, randomForest and MASS.

Results and Discussion

SVMSR outperforms all other methods on the St. Vincent’s dataset on both discrim-
ination and classification, and it remains competitive on the other datasets analysed
(Table 4.2). Least-angle regression performs well on both validation procedures on
the Golub dataset, but does not gain an advantage over the other methods in other
datasets, and noticeably struggles with the St. Vincent’s dataset. As expected, the
LARS and Random Forest algorithms outperformed the control: F-value stepwise re-
gression, which has no regularisation.

With respect to class discrimination, Random Forest is able to outperform, or at
least match, the other methods (Table 4.3). Considering, however, that software with

an ability to classify unseen samples is needed for the development of diagnostic tools
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FIGURE 4.1: Receiver operating characteristics depicting the accuracy of each method on
the optimized models from (a) the St. Vincent’s training set and (b) St. Vincent’s validation
set. For this and Figures 4.2, 4.3 and 4.4, coloured dots represent the class decision bound-
ary, i.e. class-weight adjusted posterior probability = 0.5 for both stepwise regressions and
Random Forest, and response = 0 for least-angle regression. Fach dataset represents the
best performing model (with respect to classifier accuracy) from the regression path, with
the exception of Random Forest, where the default of 500 trees was used. Index for colours
used shown in (a). Exactly plotted curves will hide each other, so the curves in all figures
have been slightly offset.

for use in medical practice, a heuristically-determined threshold alone is insufficient.
For Random Forest, the user must perform trial-and-error runs to calibrate a suitable
objective threshold for use in class prediction. This was certainly needed in the St Vin-
cent’s validation runs, where the trained forest classified incurred the maximum false
positive rate using the default heuristic, hence rendering the prediction performance
no better than random guessing (Figure 4.1 and Table 4.4). A comparison of this with
the performance of SVMSR, (Figure 4.1 and Tables 4.2 and 4.4) shows that SVMSR
has a superior ability to draw a decision boundary that generates a minimal test error;
this is shown by the fact that the threshold representing the decision boundary on the
corresponding receiver operating characteristic (coloured large dots in Figure 4.1) is

generally located at the point where the curve is most proximal to (0,1). This shows
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FIGURE 4.2: ROCs for (a) Golub training set and (b) Golub validation set.

that support vector machines are able to calibrate a more objective decision bound-
ary through training than Random Forest, as well as being able to separate classes
well. We also notice that the advantage gained from SVMSR, especially in terms of
classification, is most pronounced when the class sizes are unbalanced. The danger in
training a classifier based on unbalanced classes is that the decision boundary may be
drawn too close to the centroid of the larger class, heightening the risk of an increased
test error. SVMs avert this problem by calculating the objective function using only
a subset of observations (Cortes and Vapnik, 1995) within the vicinity of the decision

boundary. The result is a more robust classifier.

LARS and LDA use all observations in model construction, and Random Forest
uses iterative random sets which do not wittingly incorporate class weights into the
algorithm; it needs user calibration. It is here that we see the fundamental difference
between the regularisation approaches of SVMSR, and Random Forest and LARS. The
latter two incorporate regularisation into the algorithm architecture, by either making
the model path continuous (LARS) or by eliminating stochastically generated paths

that overfit too soon (Random Forest). These are valid and effective methods; however,
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FIGURE 4.3: ROCs for (a) Armstrong training set and (b) Armstrong validation set.

SVMSR incorporates its regularisation through judicious selection of the most critical
observations in the dataset, rather than changing the algorithm architecture. It is true
that manual parameterization must be used with SVMs as well: a simple grid search
is needed to find the regularisation parameter value that confers the most accurate

classifier.

When training a SVM classifier, two distinct overfitting dangers need to be averted.
The first concerns the number of dimensions present in the classification model, which,
in the case of SVMSR, equals the number of features added. The more features are
added, the less sparse the model becomes, which impairs the process of selecting im-
portant sets of genes for cancer diagnosis. Computational costs may also become
prohibitive with a large number of features in the model. The second danger involves
an inappropriate value of the regularisation parameter. In the case of too little regu-
larisation, i.e. A is too small, the model overfits to the misclassified training samples,
shrinking the size of the margin, and compromising the robustness of the model. This
can be seen in the fact that as ||V increases, the objective function, which we want

to minimise, shrinks. This grid search was performed, and it was found that a value of
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FIGURE 4.4: ROC for Alizadeh training set. Note that this study used a customized array,
and the samples have a much greater homogeneity, since they are diagnosed as subclassifica-
tions from a single form of lymphoma.

A = 10 within the set of A = {0.01,0.1, 1, 10,100} could not be bettered with respect to
class prediction when training across all datasets. As an afterthought, all values of A,
besides the calculated optimal value, were also used on the external validation sets, to
check for bias. None performed better than the value chosen by cross-validation train-
ing. This promising consistency also supports the caveat that under-regularisation (i.e.

A < 1) usually incurs a higher error rate on unseen samples (Hastie et al., 2004).

The sets of genes selected by all four methods generally overlapped heavily, in all
four dataset cases. It is difficult to quantify the magnitude of overlap since the models
are aggregated differently (and fractionally in the case of LARS), however, the overlap
was noticeably less to the casual observer in the case of SVMSR. Whether the genes
selected by SVMSR are more biologically meaningful than those selected by the other

three methods is unclear; a weighted meta-analysis may be helpful.

In terms of SVMs, the circumvention of overfitting has been attempted using re-
cursive backward feature selection, or SVM-RFE (Guyon et al., 2002). However, since

we are interested in a small set of bellwether predictive genes for cancer diagnosis, this
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% explained St. Vincent’s Golub Alizadeh Armstrong
correctly

LOOCV Test Set | LOOCV Test Set | LOOCV | LOOCV  Test Set
SVM linear | 93.90 84.21 97.37 94.12 97.87 97.50 100.00
stepwise regres-
sion
Least-angle re- | 71.95 71.05 94.74 94.12 95.74 97.50 100.00
gression
Random forest 80.49 78.95 92.11 70.59 95.74 97.50 100.00
F-value step- | 76.83 78.95 92.11 79.41 93.62 97.50 66.67
wise regression

TABLE 4.2: Classification accuracies for all models.

The figure represents the highest

accuracy achieved along each path for the regression algorithms, and the accuracy at 500 trees
for Random Forest. Prediction is calculated from posterior probabilities for both stepwise
regressions and Random Forest, and from signed responses for least-angle regression.

Area Under St. Vincent’s Golub Alizadeh Armstrong
ROC Curve

LOOCV Test Set | LOOCV Test Set | LOOCV | LOOCV  Test Set
SVM linear | 0.953598 0.758333 | 1.000000 0.967857 | 0.996377 | 0.997500 1.000000
stepwise regres-
sion
Least-angle re- | 0.818182 0.808333 | 0.983165 0.978571 | 0.998188 | 0.970000 1.000000
gression
Random forest | 0.877841 0.870833 | 1.000000 0.985714 | 0.990942 | 1.000000 1.000000
F-value step- | 0.758523 0.729167 | 0.919192 0.575000 | 0.994565 | 1.000000 0.875000
wise regression

TABLE 4.3: Area under receiver operating characteristics shown in Figure 4.1

method is likely to only be of use in discarding non-informative features. Some stud-
ies (Subramanian et al., 2005; Liu et al., 2006) have approached the feature selection
problem from the biological end, finding gene sets with constituents that share com-
mon biological function, chromosomal location, or regulation, although this method
is self-limiting since its premises are restricted to current knowledge in the field of
oncogenetics.

Furthermore, and perhaps most importantly, SVMSR is a simpler algorithm, with
simpler classification rules, than LARS or Random Forest. Application of the Oc-

cam’s Razor principle in machine learning and class prediction is highly valued and

recommended (Pranckeviciene and Somorjai, 2006), and simpler decision rules should



CANCER MICROARRAY FEATURE SELECTION USING SUPPORT VECTOR

78 MACHINES: COMPARING REGULARISATION TECHNIQUES

¢! norm St. Vincent’s Golub Alizadeh Armstrong
LOOCV Test Set | LOOCV Test Set | LOOCV | LOOCV  Test Set

SVM linear | 0.217803 0.350000 | 0.090909 0.335714 | 0.041667 | 0.050000 0
stepwise regres-
sion
Least-angle re- | 0.395833 0.458333 | 0.074074 0.142857 | 0.083333 0.05 0
gression
Random forest | 1.000000 1.000000 | 0.272727 0.714286 | 0.083333 | 0.050000 0
F-value step- | 0.666667 0.666667 | 0.272727 0.800000 | 0.125000 | 0.050000 1.000000
wise regression

TABLE 4.4: (!-norm from decision boundary (coloured dots shown on ROC curves in
Figures 4.1 - 4.4) to (0,1). This represents the sum of the false positive and false negative
rates.

be considered before more complex ones that may incur overfitting.

The advantages of SVMSR over other forms of regularisation are clear, but come at
a higher computational cost. The computation of an entire path (20 steps) of SVMSR
incurs a time cost approximately 20 times that of a full Random Forest path, and
100 times that of LARS. However, for the purposes of identifying gene sets that can
be relied upon to provide accurate cancer class prediction in a diagnostic context, we

opine that this is a worthwhile investment.
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Relieving Feature Selection AECS and
Pains; a Consensus Approach to Identifying

Biomarkers

This chapter constitutes an article in preparation for submission to a journal at the

time of thesis submission.

This chapter forms the capstone of this thesis. The previous chapter tested three
state-of-the-art learning algorithms against each other on their ability to find feature
sets that correctly predict the class of unlabelled samples in a supervised setting. We
chose improved versions of two of them in this paper: implementing a simulated an-
nealing component to the SVM optimisation procedure to find deeper local minima,

and substituting Generalised Path Seeking for Least Angle Regression. LAR is a very
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good algorithm, but we decided that GPS provided a broader flexibility in terms of its
constraints, and reflected the shrinkage metaheuristic more accurately.

However, despite both being closely linked, our focus in this paper is bioinformatic
feature selection, not choosing the best classification algorithm. The validation pro-
cedure of the latter is straightforward, but how do we know that the features that
comprise a classifier are truly a reflection of the biological phenomena they imply, or
are just a statistical artifact? All algorithms used to find these genes are able to pro-
duce robust statistical models. Although SVMSR was shown to have an advantage over
the others overall, this advantage was not clear in all datasets tested. We suspected
that the use of only one data mining method would give unstable results, even with
bootstrapping, and hence we wanted to ‘spread the net more widely’ in gathering our
analyses. A review by Stolovitzky (2003) uses the well-known analogy of ‘the blind men
and the elephant’ to argue that each feature selection algorithm only illuminates the
data from a particular aspect, and that a synoptic view can only be obtained by mul-
tilateral sourcing of genetic significance; in other words, a meta-analysis. This inspired
our desire to develop a feature selection method that selected features by concordance
between ranked lists, where each list was generated by a different data mining algo-
rithm. There is no clear favoured method of pooling the results from multiple ranked
lists, and there are plenty to choose from (Boulesteix and Slawski, 2009), so we chose a
method that was both simple and empirical: Zipf’s Law (Zipf, 1999). In keeping with
the theme of biological significance, we validated our results on the degree to which
they dovetailed with the current corpus of biological knowledge.

Note that the in-house dataset used in this study used the same 82 samples as the
study in Chapter 3, plus the 34 used as the test set in Chapter 4, combined to produce
a 116-sample dataset. This is because the extra 34 samples were not available at the
time that the analyses for the study in Chapter 3 were performed. Further discussion
on some aspects of the results in this chapter (such as the varying number of features
common to all 3 dimension reduction methods among the different datasets) can be

found in Chapter 6.
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Abstract

We consider a consensus approach to feature selection, based on the concordance of
features between ranked lists, that includes a diverse group of robust data mining meth-
ods. We implement a suite of supervised learning techniques including Support Vector
Machine, Random Forest and Generalised Path Seeking, and isolate key features from
several transcriptomic datasets through a process of weighting, aggregation, ranking
and concordance. We name this process Algorithm Ensemble Concordance Selection
(AECS). Using AECS we give, through carefully observed dimension-reduction pro-
tocols and the avoidance of common feature selection pitfalls, further weight to the
statistical and biological work conducted on well-known gene expression datasets for
human lymphoma. AECS also demonstrates a high probability of identifying genes
that act as bellwethers—genes that act as consistent and reliable biomarkers—for lym-

phoma subtypes, without the need for enrichment from biological data.

Background

Interest in data mining has grown considerably in recent years, accompanied by an
increase in the application of methods within this ambit to high-dimensional datasets.
The development of finely-tuned methods, such as support vector machines (SVMs)

and decision trees, has allowed statisticians to aid researchers in gleaning insights into
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the latter’s subjects of interest. Though also applicable to time-series and econometric
datasets, the archetypal field where high-dimensional data-mining is found is gene

expression profiling, of which cancer diagnostics is a large subset.

The genetic basis for lymphoma is understood to be undeniable (Skibola et al.,
2007; Staudt and Dave, 2005), but its governing biological mechanisms remain enig-
matic to the medical research community. Explication of these mechanisms has been
found to show promise through bioinformatic approaches. Recently, the employment
of computational statistics to analyse the transcriptomes of patients of diseases with
underlying genetic components has been extensive. Most work is concerned with over-
coming the curse of dimensionality (Somorjai et al., 2003), a phenomenon frequently
found in gene expression datasets with few samples (often less than 100) but many
variables (often exceeding 20000). Including all variables in the model frequently gives
rise to the Hughes Effect (Hughes, 1968; Oommen et al., 2008), where the large num-
ber of variables causes the model to overfit, hence reducing its predictive power. This
problem can be overcome by many approaches, but the preservation of core genetic
components as a tool for elucidating disease aetiology remains elusive. Statistically
speaking, the process can be thought of as dimension reduction, but in a bioinformatic
context the term feature selection is more often used. The objective of feature selec-
tion is to identify a small subset of features that best differentiate between two or more
labelled classes. The value of the application of feature selection is potentially enor-
mous, since its biological implications herald promise of the identification of biomarkers
which, although they may not reveal the complete dynamic behind the dysfunction,
act as bellwethers for the benefit of diagnostic clinicians. Our definition of a bellwether
gene set is one whose expression pattern typifies a larger and more complex biological
phenomenon. Identification of these genes is crucial in developing diagnostic tools from
gene expression data. Just as a small subset of selected features can predict a class
label through training and validation, so can the expression pattern of a group of these

features (genes) allow clinicians to make confident diagnoses.

A dimensionally-reduced dataset may not contain the complete set of features that

allows one sample to be distinguished from another, but if the process is carried out
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correctly then the remaining features have a high chance of being bellwethers for the
disease class a given sample belongs to. A suite of quality control mechanisms must
be implemented during the feature selection process in order to identify a subset of

biologically meaningful genetic components. These include:

e Ensuring the risk (that is, the likelihood of an unseen sample being misclassi-
fied by the model) is minimised on each model built. Methodology used should
be consistent with the principles of Structural Risk Minimization (Vapnik and
Chervonenkis, 1974), where the risk is estimated from the data. An appropriate
regularization parameter value must be chosen in order to avoid both underfitting

and overfitting.
e Choosing an appropriate vector space norm to penalise model residuals.
e Making sure each gene or feature is considered in a setwise context.
e Ensuring the results are stable by bootstrapping.

A given feature selection method may be computationally more economical and
elegant than others, but may also fail to confer results that are any less arbitrary.
Comparison of feature selection methods has been performed (Caruana, 2006; Jeffery
et al., 2006; Statnikov et al., 2008), and no single algorithm has emerged as a clear
frontrunner. Caruana (2006) found Random Forests to be superior to Support Vector
Machines, whilst Statnikov (2008) found the reverse was true. This study works on
the premise that there is ‘no silver bullet’ in terms of a singular superior method. We
propose an ensemble approach where a suite of state-of-the-art algorithms—one from
each of three major statistical learning ‘strains’—is applied with all aforementioned
quality control mechanisms.

The first strain of feature selection involves finding the feature set which best sep-
arates the supervised classes by plotting log-transformed gene expression values and
hence explicitly resolving the decision boundary in the feature space. Beginning with
discriminant analysis (Fisher, 1936), this method’s most widely recognised vanguard is

the support vector machine (SVM, Cortes and Vapnik (1995)). The advantage of the
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SVM lies in its ability to effectively ‘navigate’ the decision boundary through the re-
gions where data points from different classes are proximal, as the equation parameters
are tuned. Two hyperplane margins are drawn equidistant and parallel to the decision
boundary. In the context of feature selection, the aim is to find a group of features that
maximises the distance between them. However, when there is no hyperplane that can
perfectly separate the samples, any samples found on the opposing side of its class’s
hyperplane margin are penalised for that model. More formally, the value we want to

find is reached by:

1 i
min M + Zi\f (5.1)
||V]| is the distance between the two hyperplane margins, &; are the i slack variables
determined by the soft margin, and A is a regularization trade-off parameter. The trade
off is between that of minimizing approximation error via a more generalized model
(large \) and drawing a more precise decision boundary that may help in correctly
classifying borderline samples (small A). The selection of the value of A is critical in
determining the minimal value of the criterion (Hastie et al., 2004), and its optimal
value may change depending on the dataset. Although the value of the criterion can be
seen as a proxy for the true risk of the model, there is no analytical method of finding
an appropriate value of A , and hence it must be estimated empirically (Vapnik, 2000,
p. 155). The most rigorous metaheuristic available is via gradient descent methods
(Chapelle et al., 2002; Platt, 2000; Bengio, 2000). This process, whilst superior in
estimating the true risk of the model, is NP-hard when there is no hyperplane that can
perfectly separate the samples (Feldman et al., 2009). In many cases a grid-search using
pre-defined range of values of A (Meinicke et al., 2003) will suffice. We propose that
for the purposes of this study, a grid search is satisfactory given that we want to find a
group of features whose separability is apparent from even coarse parameter selection,
and hence fine-tuning is not likely to be needed. Nevertheless, a ‘ball-park’ value of \ is
needed to select even the most obvious candidates. Note that additional optimization

architecture (such as forward selection or Monte Carlo-style method) needs to be built
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surrounding the SVM criterion value.

The second strain of machine learning is the Decision Tree family of algorithms,
where the data (z,Y") is recursively partitioned into subsets (z1,zs,x3...x) until a
subset is generated which confers an optimum predictive ability. Decision Tree learning
dates from a method known as Automatic Interaction Detection (Morgan and Sonquist,
1963), and its formal extensions (Morgan and Messenger, 1973; Kass, 1980). The
Decision Tree metaheuristic was formalised as a Classification and Regression Tree
(CART, Breiman et al. (1984)) for both classification and regression models. Later,
entropy minimisation was formally incorporated into this metaheuristic via the ID3
and C4.5 algorithms (Quinlan, 1986, 1993), and more interpretable regression models
were also developed, such as MARS (Friedman, 1991). The most recent development in
this area is the Random Forest algorithm (Breiman, 2001), whose main advantage is an
inbuilt smoothing component achieved by bootstrap aggregation (Breiman, 1996), in
order to prevent overfitting. This functionality combines with a stochastic element that
randomly chooses subsets of features for each node, and then calculates the best split
on this set based on an ‘out-of-bag’ error estimate. ‘Importance’ coefficients for each
feature are calculated using the relative decreases in Gini impurity (Breiman, 2001)
from a parent to child node. We have selected Random Forests as the representative

from the decision tree family to use in this study.

The third and final strain concerns the algorithms derived from LASSO (Least
Absolute Shrinkage and Selection Operator, Tibshirani (1996)). LASSO is itself derived
from the least squares method, where the best model fit corresponds to the minimum
sum of squared residuals. However, instead of calculating the sum of residuals, an upper
bound is placed on the £*-norm coefficient vector. This has the effect of shrinking some
of the feature coefficients to exactly zero, hence giving a dimensionally reduced, or
sparser, result. The value of this upper bound acts as a regularization parameter by
which the risk on the model can be minimized, often by gradient descent (Kim and
Kim, 2004; Meier et al., 2008; Friedman et al., 2010). LASSO was improved upon with
the Least-Angle Regression (LARS) algorithm (Efron et al., 2004), which mimics a

stepwise regression but for the coefficients increasing in a joint least squares direction



RELIEVING FEATURE SELECTION AECS AND PAINS; A CONSENSUS APPROACH
90 TO IDENTIFYING BIOMARKERS

contingent upon their correlation with the residual. Although this improvement results
in a more ‘democratic’ algorithm, it has been argued that the LASSO is limited by
the fact that the maximum number of variables that it can hold in one model cannot
exceed the sample size n (Zou and Hastie, 2005). In gene expression profiling, where
sample sizes rarely exceed 100, and more often are in the vicinity of 50, it is likely that
LASSO and LARS produce solutions which are often too sparse. In response to this
Zou and Hastie (2005) developed the Elastic Net, which allows for an ‘interpolation’
of the ¢7-norm coefficient vector where 1 < v < 2. Although the Elastic Net uses a
slightly different penalty function from LASSO, the method allows for the creation of a
model with a mixture of LASSO-style (¢!-norm) and ridge regression (¢*-norm, Hoerl
and Kennard (1970)) penalties, where an optimal value of v can be found via a grid

search.

On the other hand, there are problems that are better solved by an extension of
LASSO into non-convex constraints, such as when features are highly independent.
In these instances, the need for a sparse solution outweighs the advantages retain-
ing the potential information gain from ancillary features (in other words, shrinking
them to non-zero value), although the risk of multiple solutions is always present with
non-convexity. We can see an analogy between the roles of v and the regularization
parameter \, where A calibrates the trade-off between bias and variance, v allows for
a trade-off between the desirable yet somewhat contradictory attributes of convexity
and sparsity. Friedman (2008) extends Zou and Hastie (2005) to produce continuous
path solutions for 0 < < 2. This Generalized Path Seeking (GPS) algorithm serves

as the representative from the LASSO family for this study.

Although each metaheuristic is powerful in its own way, each must be calibrated
correctly in order to eliminate hidden biases. As mentioned before, support vector
machines need an appropriate regularization parameter value for optimal results, and
co-efficient shrinkage methods (LASSO, GPS) need both regularization and, in the case
of GPS, the degree of shrinkage calibrated by the user. Random forests use a random
subset of features at each node to provide a split; the size of the subset relative to the

complete list is somewhat important (Breiman, 2001).
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Two other important caveats will now briefly be discussed. It is important that
the methods chosen analyse features contextually, that is, assessed in sets. Ranking
features individually on their criterion value and then selecting an extreme percentile
(called filtering) is a poor method of feature selection, since certain features on their
own may have only a modest ability to separate two classes, but show a gestalt ability
to achieve this in higher dimensions as members of a set (Guyon, 2003), (See Chapter
3). Embedded methods (Guyon, 2003), where the power and robustness of the learner
are ratcheted up using a statistical criterion, and subsequent validation, as features are
added (or removed) from the working feature set, are preferable to filtering. A gradient
descent with an SVM margin width as the criterion, and GPS, are both embedded
algorithms. The Random Forest method can be considered a ‘meta-wrapper’, a black
box learner with an extra layer of validation, and although not strictly an embedded
method, exploits the separation power of feature sets. The implementation of a robust

embedded learning machine is effective at exploiting the setwise separation power of

genes (Guyon, 2003; Saeys et al., 2007).

Finally, it is important for the final feature set to be stable. This means that
each feature in the final set must have a high probability of being selected over a
set of bootstrapped selection runs (Meinshausen and Biithlmann, 2010). Related to
the previous point on feature context, a feature’s coefficient is not necessarily the
best indicator of its worth as a biological bellwether, even for those features that
have been selected contextually. The probability of a feature occurring in the final
set (estimated from bootstrapping) is often a more reliable indicator (Meinshausen
and Bithlmann, 2010). To reduce outlier sensitivity, implementing a bootstrapping

mechanism is recommended.

The notion of a unified framework for feature selection—one that draws on varying
methods contributing to a consensus model and produces end results using a scoring
system—is not new to the field (Shaik and Yeasin, 2007; Yu et al., 2007). Other groups
have attempted to extract biological insights by using a pre-defined set of genes, such
as with Gene Set Enrichment Analysis (Subramanian et al., 2005). Our philosophy is

to attack the problem purely from the statistical end, with a twofold justification:
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1. It allows independent verification of shortlisted features that are associated with
genes whose implication in the diseases studied have been proven in a laboratory

environment.

2. It provides scope for novel bellwether gene detection, since all features are con-

sidered.

We have chosen three state-of-the-art algorithms to use, but welcome variations and
embellishments on the group of algorithms chosen and in order to make the process
even more rigorous. We call our method Algorithm Ensemble Concordance Selection
(AECS). Our aim, using this ensemble approach on a number of well-studied publicly
available datasets, and an in-house dataset, is to detect a subset of biologically sig-
nificant genes using statistical methods only, and validate our findings in the existing

biological literature.

Data and Methodology

Four cancer-related datasets were used in this study. Alizadeh (2000) was downloaded
from (Broad Institute of Medicine, 2009b), Golub (1999) and Shipp (2002) from (Broad
Institute of Medicine, 2009a), and one was provided privately by the Department of
Haematology and Bone Marrow Transplant Unit, St Vincent’s Hospital, Darlinghurst,
Sydney, Australia. The publicly available datasets are perhaps the most analysed
publicly available transcriptome datasets from lymphoma patients. Alizadeh contrasts
subtypes of diffuse large B-cell lymphoma: one expressing genes characteristic of germi-
nal centre B cells (GC B-like) and the other expressing genes normally induced during
in vitro activation of peripheral blood B cells (activated B-like). Golub compared acute
myeloid (AML) and acute lymphoblastic leukaemia (ALL), and Shipp compared follic-
ular (FL) and diffuse large B-cell lymphoma (DLBCL), a split we have also performed
with our own samples.

The lymph node biopsies, RNA and microarray assays and the resulting data from

St Vincent’s Hospital (our in-house dataset) are identical to those described in (Loi
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et al., 2011). Where applicable, missing values were imputed using the GEPAS online

preprocessing tool at http://gepas.bioinfo.cipf.es/cgi-bin/preprocess using k-

nearest neighbour imputation with k£ = 10.

Our 116-sample in-house dataset was split into seven subgroups, each with a binary

response variable. An outline of the samples contained in each dataset can be found

in Table 1. The term ‘Reactive’ refers to tissue samples that were initially suspected

to have malignancy, but in fact were found to have inflammatory changes with no

evidence of cancer. Lower subgroups were paired with the reactive in order to find

characterising genes for these particular lymphoma subtypes.

Dataset | Biological Response | Array Number of | Number
Source Variable Type samples (n) of features
(P)
Alizadeh | DLBCL subtypes: GC 42 (21 Ac- | 4029
et al. | B-like vs. Activated B- Two-colour tivated, 21
(2000) like Germinal)
Golub et | ALL vs. AML 38 (27 ALL, 11
al. (1999) AML) 7129
Shipp et | DLBCL vs. FL Affymetrix | 77 (58 DLBCL,
al. (2002) 19 FL)
Hodgkin’'s  Lymphoma 93 (19 HL, 74
(HL) vs. Non-Hodgkin’s NHL)
Lymphoma (NHL)
In House FlLvs. DLBCL Two-colour 54 (35 FL, 19 18661

HL vs. Reactive

NHL vs. Reactive

DLBCL)

42 (19 HL, 23

Reactive)

97 (74 NHL, 23

Reactive)
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FL vs. Reactive 58 (35 FL, 23
Reactive)
DLBCL vs. Reactive 42 (19 DLBCL,
23 Reactive)

TABLE 5.1: Summary of the datasets used in this study. The structure of the response

variable splits from the in-house dataset is described in Figure 5.1.

FIGURE 5.1: Hierarchical chart showing the biological classification of the response vari-
ables used in this study. ‘Reactive’ denotes a class of samples that were suspected to belong
to patients with neoplasms, but received a negative diagnosis. Twenty remaining samples
diagnosed as NHL were diagnosed as other lymphoma subclasses, and were left out of the
lowest level split.
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For all 10 data splits, we applied a triumvirate of dimension reduction methods
(SVM forward selection with simulated annealing, Random Forest and Generalized
Path Seeking). We bootstrapped all applications 150 times, with a randomised selec-
tion of n/2 samples for each bootstrap. Odd totals were rounded up and class ratios
were preserved. For each bootstrap, we ranked the final reduced group of features ac-
cording to the degree of importance each feature had in contributing to the model; this
depended on the method used and will be explained below for each method. We scored
and aggregated features using Zipf’s Law (Zipf, 1999), an empirical observation which
states that, for ranked data, the frequency with which an event occurs (for example,
words in a corpus of text) is often approximately inversely proportional to the ranking
it is given by that frequency. Hence for each of the 150 ranked lists of dimensionally
reduced features, we gave the most important feature a score of 1, the second most
important 1/2, the third 1/3 and so on. We aggregated all totals for each feature, and
a ‘master rank’ list for each data split was creates based on these aggregates. This

created thirty such lists.

To represent the SVM method of dimension reduction, we implemented a forward
stepwise regression with an embedded simulating annealing (SA) routine. We used the
penalised SVM soft-margin width, as described earlier, as the objective function. For
each data split, an appropriate value of the regularisation parameter A was obtained
by way of a grid search; a leave-one-out (LOO) cross validation classification procedure
was performed for A = {0.01,0.1,1,10,100} and the value associated with the lowest
LOO error was chosen for the selection runs proper. Features were added one by one to
the model based on the feature whose addition conferred the greatest decrease in the
objective function, with the SA step run after each added feature g for 2 < g < 20. The
SA routine ran through the entire current subset multiple times, one feature at a time,
exhaustively substituting features that conferred a lower objective function (if found)
for the existing members of the feature set until convergence was reached. Convergence
was defined as a complete cycle of the current subset for which no feature substitutions
occurred. To rank the importance of the 20 reduced features, the differences between

the objective functions for the sets of 19 features with the feature in question removed
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and the original objective function were calculated. Not surprisingly, this method
was highly computationally intensive and was achieved in the order of weeks, but was

performed for the sake of exhaustive search.

We implemented 150 Random Forest runs representing the decision tree meta-
heuristic. Although bootstrapping occurs within a single Random Forest application,
we added another layer in the interests of standardisation. Random Forest estimates
feature importance internally; the method is described in (Breiman, 2001). Impor-
tances for all features were ranked for each bootstrap and aggregated as described

above.

We implemented 150 GPS runs representing the LASSO-style metaheuristic. As
recommended by (Friedman, 2009a), we chose an appropriate penalty function, de-
noted by 7, by performing a validation grid search over v = 0,0.1,0.2,0.5,1,1.5,2
and choosing the value of v associated with the lowest test error. Feature importance
was determined by order of entry of each feature into the model, which, although not

completely reliable, acts as a rule of thumb for predictor significance in LASSO-style

results (Wu et al., 2009).

Both Random Forest and GPS had fast computational times; the entire bootstrap-
ping run for each was completed in the order of minutes. All computations were
performed using R Version 2.5 with additional packages kernlab and randomForest,

and software from (Friedman, 2009b).

For each of our 10 bipartite splits, we produced 3 master lists of aggregated perfor-
mance scores for each algorithm used. Using an arbitrary cutoff of the top 20 features
in each ranked list, we selected the features that were common to all 3 master lists
as components of our AECS-generated bellwether set. Features that were common to
2 of the 3 master lists were also earmarked as potential bellwethers. The sign of the
t-statistic of each feature was used to determine whether the corresponding gene was

up-regulated or down-regulated in terms of the response variable.
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Results and Discussion

The following table lists the genes corresponding to the features we isolated, using

AECS, for all 10 data splits. The caption is at the end of the table.

Alizadeh et al. (2000)

GC B-like

Clone=825217, UG Hs.169565 ESTs, Moderately similar to ALU SUBFAMILY SB
[H.sapiens]

Clone=1353041, linked to elongation factor 1-beta in humans AT5G19510
Clone=1334260, UG Hs.120716 ESTs, linked to Serpin peptidase inhibitor, clade A
(alpha-1 antiproteinase, antitrypsin), member 9 or SERPINA9

Clone=815539, JAW1=lymphoid-restricted membrane protein, linked to Lymphoid-
restricted membrane protein LRMP

Clone=1353015, linked to LRMP

Clone=746300, UG Hs.136345 ESTs

Clone=1338448, UG Hs.224323 ESTs, Moderately similar to alternatively spliced
product using exon 13A [H.sapiens|

Clone=417502, JAW1=lymphoid-restricted membrane protein, linked to LRMP
Clone=2005

Clone=1268870, UG Hs.120245 Homo sapiens mRNA for KIAA1039 protein, partial
cds, linked to RAP1 GTPase activating protein 2 RAP1GAP2

Clone=825199

Clone=1358244, UG Hs.124922 ESTs, linked to LRMP

Clone=1337653, UG Hs.124922 ESTs, linked to LRMP

Activated B-like

Clone=1355435, UG Hs.169081 ets variant gene 6 (TEL oncogene)

Golub et al. (1999)

AML
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Leukotriene C4 synthase LTC4S

Leptin receptor overlapping transcript LEPROT
Zyxin ZYX

CD33 molecule CD33

Fumarylacetoacetate FAH

Cholinergic receptor, nicotinic, alpha 7 CHRNAT
Complement factor properdin CFP

Shipp et al. (2002)

FL

POU class 6 homeobox 1 POU6F1
DLBCL

lactate dehydrogenase A LDHA
enolase 1, (alpha) ENO1

Lymphoma vs. Reactive (in house)

Reactive

Immunoglobulin lambda variable 6-57 IGLV6-57
Chemokine (C-C motif) ligand 21 CCL21

Isolate RSV34L immunoglobulin light chain variable region
IgG lambda light chain V-J-C region (clone Tgl11)
Immunoglobulin kappa variable 3-20 IGKV3-20

LUCT-like 3 (S. cerevisiae) LUCT7L3

Homo sapiens mRNA fragment, [Genbank:L.10148]

HL vs. NHL (in house)

HL

Chemokine (C-C motif) ligand 22 CCL22

Killer cell lectin-like receptor subfamily B, member 1 KLRB1
LENG10 mRNA, partial sequence [Genbank:AF211977]

CD7 molecule CD7

Chemokine (C-C motif) ligand 17 CCL17
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FL vs. DLBCL (in house)

FL

Transmembrane protein 150C TMEM150C

DLBCL

CD163 molecule CD163

Phosphogluconate dehydrogenase PGD

ATP-binding cassette, sub-family A (ABC1), member 1 ABCAL1
Cell division cycle 25 homolog A (S. pombe) CDC25A

GARI1 ribonucleoprotein homolog (yeast) GAR1

HL vs. Reactive (in house)

HL

Chemokine (C-C motif) ligand 17 CCL17
Major vault protein MVP

Glycerol kinase GK

NHL vs. Reactive (in house)

Reactive

Isolate RSV34L immunoglobulin light chain variable region
Immunoglobulin lambda variable 6-57 IGLV6-57

IgG lambda light chain V-J-C region (clone Tgl11)

Homo sapiens mRNA fragment [Genbank:L10148]
Oxidative stress induced growth inhibitor 1 OSGIN1
Similar to hCG2042717 [Genbank:AF035799]
Immunoglobulin heavy variable 3-48 IGHV3-48
Cytoskeleton associated protein 2 CKAP2

Similar to hCG1642538 [Genbank: AF026929]

FL vs. Reactive (in house)

Reactive
CD163 molecule CD163
X-box binding protein 1 XBP1
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Immunoglobulin lambda variable 6-57 IGLV6-57

Ig gamma-1 chain C region-like

Ig rearranged gamma-chain mRNA, subgroup VH2, V-D-J region
Isolate RSV34L immunoglobulin light chain variable region

IgG lambda light chain V-J-C region (clone Tgl11)
Immunoglobulin lambda constant 1 (Mcg marker) IGLC1
Accession NM_018395

DLBCL vs. Reactive (in house)

DLBCL

Glycerol kinase GK

RAD23 homolog B (S. cerevisiac) RAD23B
Reactive

Immunoglobulin lambda variable 6-57 IGLV6-57
Chemokine (C-C motif) receptor 6 CCR6 (Reactive)
Ubiquitin specific peptidase 53 USP53
Placenta-specific 8 PLACS

Chromosome X open reading frame 48 CXorf48

TABLE 5.2: Fully dimensionally-reduced feature lists from each of the 10 data splits anal-
ysed, using AECS. Known links to genes from expressed sequence tags (ESTs) are given.

Features are grouped according to the class in which they show a higher degree of expression.

Features selected using AECS from all 3 of the publicly available datasets include
genes that have an implication in these datasets’ diagnostic purview. Thirteen features
were selected from Alizadeh (2000) and three of the five associated genes have an
acknowledged lymphoma association. The presence of SERPINA9 is considered to
be a defining molecular signature of DLBCL lymphomas with a germinal (GC B-
like) centre phenotype (Paterson et al., 2008; Pan et al., 2003). LRMP/Jawl is also
considered to be an associated marker of GC B-like DLBCL (Tedoldi et al., 2006).
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Cytogenetic abnormalities on chromosome 12 involving TEL/ETV6 gene have been
found in DLBCL tissue samples (Sevilla et al., 2009; Berger et al., 1997). TEL was
the only gene identified to have up-regulation associated with activated B-like DLBCL;
one sample described as having a complex karyotype in Sevilla et al. 2009 was found
to have cytogenetic rearrangement on the TEL locus. Additionally, RAP1GAP2 plays
an important role in platelet aggregation (Schultess et al., 2005).

In the Golub (1999) dataset, four of the seven features selected have implications in
leukaemogenesis. CD33 has long been established as central to AML aetiology (Griffin
et al., 1984; Dinndorf et al., 1986) and is the target of drugs used for AML treatment
(Walter et al., 2007). Implications in AML have also been found for leptin (Hamed
et al., 2003; Nakao et al., 1998) and zyxin (Wang et al., 2005), and a difference in bone

marrow and peripheral blood expression was found for LCT4S (Sakhinia et al., 2006).

In the Shipp (2002) dataset, both features found to be up-regulated in DLBCL have
literature supporting their involvement. Though implicated in FL, LDHA expression
is variable within this phenotype, as compared to a more consistent presence of LDHA
in DLBCL (Giatromanolaki et al., 2008), and its inhibition is found to slow tumour
progression (Le et al., 2010). Enolase has also been suggested as playing a role in
lymphoma differentiation (Mohammad et al., 1994). Peripherally, POU6F1 is found
to have an important role in ovarian clear-cell carcinoma (Suzuki et al., 2010), but no

role in FLL has yet been published.

The studies that produced all 3 publicly available datasets performed their own
feature selection analysis, ranking genes that best distinguished between their respec-
tive diagnostic classes. Both Shipp and Golub used an original supervised weighted
class-voting method, and Alizadeh used a method identical to Golub. Of the 100 fea-
tures selected as posessing the most significant class distinctions (50 for each class), all
thirteen features selected by AECS were also in this list, including the top seven most
significantly up-regulated in the GC B-like group and the most up-regulated feature
in the activated B-like group. From the top 100 genes from the Shipp dataset, AECS
selected the top ranked gene from FL with the top 2 from DLBCL as its bellwether

set. Six of the seven genes found by AECS from the Golub dataset were found in the
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top 50 of their own analysis, including the top 3 ranked in AML by Golub et al.

There is clearly a high degree of overlap of AECS-selected features with the most
differentiated genes, as found by the publishers’ own statistical analyses, in the 3
publicly available datasets we have studied. This, in addition to the success we have
had in matching publicly available transcriptomes with supporting literature on their
phenotypes, buttresses our belief that AECS is a discerning method that can not
only convey valuable and potentially critical information to clinicians investigating
lymphoma differentiation, but can be applied to any discipline that produces high-
dimensional data. Particular areas of interest may include econometrics and other

biological disciplines such as ecology.

Encouragingly, the expression patterns of the features selected by AECS from anal-
ysis of our in-house dataset support existing hypotheses about the nature of lymphoma.
Firstly, and most strikingly, the group of features extracted by AECS when a broad
spectrum of lymphoma samples was compared to reactive samples contained a large per-
centage of relatively down-regulated (in lymphoma) immunoglobulin (Ig) constituents.
Four of the seven features from the lymphoma vs. reactive split and four of the nine
from the NHL vs. reactive split were from Ig loci. Without exception, all were rel-
atively down-regulated in the lymphoma tissues. This may be due to one or both
of the following hypotheses. Firstly, the down-regulation may be the result of a pre-
ponderance of undifferentiated B-cells in the lymphoma samples, since Ig production
does not occur until later in the maturation of B-cells (Alberts et al., 2008). Secondly,
the up-regulation in the reactive samples may be explained by an immune response to
an antigenic challenge, such as a foreign irritant, accelerating the production of ma-
ture B-cells. In addition, the mature B-cell marker chemokine receptor 6 (CCR6) was
heavily down-regulated in DLBCL vs. Reactive, and is conspicuously absent in medi-
astinal large B-cell lymphoma (Rehm et al., 2009). Also, Xbox1 protein (XBP1), a
master regulator of the secretory mechanism of plasma cells (Shaffer et al., 2004), and
a likely driver of their immunoglobulin secretion (Staudt and Dave, 2005), is heavily

down-regulated in FL vs. Reactive.
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Other feature patterns also dovetailed with existing research, especially in Hodgkin’s
lymphoma. Chemokine ligand 17 (CCL17) showed significant up-regulation in HL,
which, along with CCL22 (Niens et al., 2008; Maggio et al., 2002) and CD7 molecule
(Seegmiller et al., 2009), are biomarkers for that lymphoma subtype. Major vault
protein (MVP), a gene selected when HL was split with the reactive samples, has been
found to inhibit apoptosis in some instances (Ryu et al., 2008; Lloret et al., 2009),
although no link has yet been published relating MVP to HL.

Comparing FL and DLBCL also yielded interesting feature patterns. Cell divi-
sion cycle 25 homolog A (CDC25A) was relatively up-regulated in DLBCL, which is
a marker of histologically agressive B-cell NHLs (Moreira Junior et al., 2003). Para-
doxically, CD163 molecule, which was heavily down-regulated in FL in comparison to
both reactive and DLBCL samples, is a biomarker for FL.. However, its expression is
complex, not observed in the lymphoma itself but restricted to the macrophage lin-
eage (Nguyen et al., 2005) and the immediate sprouting environment (Clear et al.,
2010). Further research on the nature of the relationship between CD163 and follicular

lymphoma is advisable.

It has been our intention to create a feature selection tool that preserves the most
critical features of a high-dimensional dataset while eliminating the incidental ones.
While computation is no substitute for the judgement of the skeptical clinician or
molecular biologist, reducing the feature set to a handful of key features is needed for
clear direction in future cancer research. We have demonstrated the twofold objective
of this project: to validate existing clinical research and to provide new directions for
further study, the latter evidenced by our findings on the MVP/HL and CD163/FL

relationships.

While we believe that we have used the most recent, state-of-the-art algorithms in
this study, we welcome the substitution or addition of other machine learning meth-
ods into the AECS paradigm. A minimum of 3 algorithms is advisable for finding
concordance between dimensionally-reduced lists, but an extensive application of het-
erogenous algorithms may reduce the degree of concordance between them. An increase

in the size of the top quantile of score-aggregated and ranked features may remedy this.
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Ranking features by differential expression using the ¢-test may be useful for an
extra level of quality control, but we recommend that ¢-test rankings should not be
used as a selection method proper alongside the more robust decision tree and co-
efficient shrinkage methods. For example, our results evinced a feature that appeared
in two of the three aggregated ‘master’ lists, up-regulated in HL (vs. Reactive), that
was found to be ranked outside the top decile of up-regulated genes using the t-test.
This re-enforces the need to always consider features as acting in consort with others
statistically, as they do biologically, and to choose algorithms that exploit this statistical
phenomenon. Attention to this caveat, along with careful implementation and tuning
of regularisation, shrinkage and bootstrapping parameters described in this paper, is

likely to ensure meaningful and valuable results.
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Practical Considerations, Conclusions and

Future Directions

In this chapter we detail some of the more important practical considerations a statis-
tician must take into account when undertaking dimension reduction. Most of these
issues can be solved by simple software engineering; they do not involve statistical
learning theory. We will also present results that hint at future directions in the field,

and summarise our findings.

6.1 Class Imbalance

In practice, when analysing two-class splits, there will usually be an unequal number

of samples from each class. When comparing diseased tissue samples to healthy ones,
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it is likely that there will be more of the former, since the clinician will not order a
sample to be taken unless there is high suspicion of disease.

In statistical circles, the class imbalance problem is not trivial, and has generated
a significant amount of discussion (Guo et al., 2008; Japkowicz and Stephen, 2002;
Zheng et al., 2004). When the accuracy of the classification model is evaluated with
unbalanced classes, it will be optimistically biased. For instance, if one class is more
common than the other, even a simple classifier always choosing the majority class will
clearly show more than 50% accuracy. It is our experience that a classifier built on
poorly selected features will choose the more prolific class. One way to remedy this is
to plot the performance of the classifier on a ROC and measure both the AUC and the
distance from the plotted decision boundary to the point (0, 1), representing perfect
classification, instead of reporting the combined accuracy.

When performing feature selection, however, the influence of class imbalance can-
not be so easily corrected. One solution is to oversample the minority class when
bootstrapping so its frequency matches the majority class. This is an unsatisfactory
method for two reasons: more frequent sampling of the minority class increases the risk
of overfitting (Chawla et al., 2002), and it also increases the computational time needed
to run the feature selection routine. Undersampling the majority class is also unsatis-
factory since it means discarding a large amount of potentially useful data, which, as
we have argued in Chapter 3, is antithetical to feature selection.

A third option for alleviation of this problem is cost modification. Unlike oversam-
pling or undersampling, which takes place before a feature selection routine is run, the
adjustment calculations are embedded within the routine. The calculations of the risk
of the model are performed in such a way that each penalisation (such as the out-of-bag
error in Random Forests, or residuals in shrinkage methods) is given a weight, depend-
ing on its mislabelled class. For example, a cost matrix may be set by the programmer
such that each weight is proportional to the inverse of the class ratios (Guo et al.,
2008). Cost modification does not discard data and, at the time of publication, we

could not find any literature that raised concerns about overfitting with this technique.

We ought to finish this section with a remark about support vector machines. SVMs
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do not need any cost modification routine built into them since the calculation of the
objective function is done independently of any class ratios. The risk on an SVM model
is calculated via the summation of sample overlaps within the soft margin only. This
selectivity renders SVM models robust to the class imbalance problem, which has been

shown empirically (Japkowicz and Stephen, 2002).

6.2 Computational Costs

All calculations were performed on a cluster server containing six Intel®) Xeon®) E5335
2 gigahertz CPUs, running GNU/Linux x86_64. The computational time needed to
complete one bootstrap selection varied greatly depending on the algorithm used. Gen-
erally speaking, methods with an incorporated stochastic element took much longer
than deterministic methods. Building an SVM with 100 samples and only a handful of
features takes only a fraction of a second, but a run of the stepwise regression feature
selection with simulated annealing, complete with bootstrapping, took approximately
six weeks for a complete set of results to be evaluated. This is because an SVM was
created for each of the number of features P, which was over 18000 in the St. Vincent’s
datasets, every time a feature was either added or evaluated for replacement. So, for
each of the 150 bootstraps, there were, at the very least (assuming no replacements),
the 20th triangular number of sets of SVMs size P evaluated, which resulted in ap-
proximately 108 SVMs being created. Similarly, the Cross Entropy method was very
slow to deliver satisfactory results. Depending on the dataset used, a single iteration
took between 30 and 120 minutes to complete. The time needed to reach convergence
was foremost dependent on, and inversely proportional to, the smoothing parameter
«. For example, using 81 samples and 18661 features, and a value of o = 0.02, conver-
gence (all values in V' > 0.997) took upwards of 300 iterations to occur, whereas using
a = 0.1, convergence usually occurred between 60 and 80 iterations.

Computational times for Random Forest, GPS and LAR were much better. Using
58 samples and 18661 features, where the subset of features taken for one tree was set

at v/P, one bootstrap run takes approximately 20 to 30 seconds. GPS and LAR were
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even faster: as per the data dimensions used for Random Forests, one bootstrap took
approximately 10 to 15 seconds, even when, in the case of GPS, 7 different penalty

functions are considered.

When computational power or time is at a premium, we recommend Random Forest
and shrinkage methods over SVM for feature selection. Other SVM feature selection
methods, such as Recursive Feature Elimination (Guyon et al., 2002), have proven to
be expensive, and methods to improve on them have been suggested (Ding and Wilkins,
2006; Zhou and Tuck, 2007). Computational speed was not our primary motivation
to include an SVM feature selection, rather we aimed to find deep local optima that
a faster algorithm may not have been able to find. In Chapter 5, however, the pooled
master lists for our SVM algorithm were very similar to the GPS lists on almost all
datasets studied, more so than Random Forest was to either, indicating that GPS may
be the current choice algorithm for both fast and meaningful feature selection. In any
case, any feature selection algorithm that allows feature rankings may be used on the

AECS template at the discretion of the statistician.

6.3 What is the Optimal Number of Features a
Dataset Should Be Reduced To?

Tuning parameters for optimal output in data mining is often an art, rather than a
science. Each dataset has its own idiosyncrasies, and the statistician must often obtain
a ‘feel’ for the data, by running a few experimental analyses. Often, he or she will
stumble across the most significant aspect of the data by trial-and-error from intuition
and natural curiosity, rather than systematically running an exhaustive suite of tests.
An ad hoc approach may be used out of necessity when there is not enough time or

computational power.

The regularisation parameter A in a SVM and the feature cardinality (or dimen-

sionality) of a model are both parameters whose global optimal value is difficult to
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ascertain. There is evidence that very small numbers of features are able to form ac-
curate classifiers (Grate, 2005), and hence it is worthwhile exploring how sparse we
can make our final feature subset. The SVM framework makes an effort to account
for training error by including soft margins, but it becomes a powerful tool for char-
acterising datasets when it can (linearly or otherwise) separate labelled data. In this
section, we show that it needs a certain lower bound on the number of features to do
this effectively and recommend selecting a feature cardinality that is at or near this

lower bound.

We used a fairly coarse method of A optimisation in Chapters 4 and 5—a grid search,
which we deemed satisfactory for our objectives—but we also, by way of exploratory
analysis, performed a finer tuning of \ using software that is able to calculate the
entire SVM regularisation path (Hastie et al., 2004). We performed a feature selection
using a stepwise regression with simulated annealing with the SVM penalised margin
width as the objective function to be minimised, identical to the algorithm we used in
Chapter 5, and measured the optimal value of A (that is, the one that conferred the
minimum criterion value) at the end of each optimisation on a feature cardinality of ¢,
where 1 > ¢ > 20. For comparison, we used the most regularised value of A\ for which
the training error was a minimum on the same path, and discovered a curious result
when we compared the two. All seven of the in-house data splits used in Chapter
5 (the results from three of them are in Figure 6.1) showed the optimal value of A
preferring a high-variance model until it reaches the region of 7 < ¢ < 12, where
optimal A increases sharply, often (but not always) overtaking the most regularised
path. Optimal A then plateaus from approximately ¢ = 15 upwards; its value closely
following the most regularised path. This trend, apparent over a number of different

datasets, suggests a complex phenomenon.

At first glance, the separation power gained by adding further features to the SVM
above ¢ = 15 is minimal, hence the model may be overfitting past this point. This
hypothesis is further strengthened by the fact that the objective function (that is, the
penalised margin width), in each case, decreased precipitously in the region correspond-

ing to the jump in optimal A when plotted against ¢, for each of the 7 datasets, and
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FIGURE 6.1: Plots of optimal value of A against the most regularised value of A conferring
minimum training error along the same regularisation path, using SVM stepwise regression
with simulated annealing, on three different datasets.

then also plateaued past ¢ = 15. Since we have already optimised A, then it is safe to
assume that any further overfitting trend observed is due to some other parameterisa-
tion, such as the value of ¢. If we assume the differences in penalised margin width for
differing values of ¢ can act as a proxy for information gain as features are added to
the model, then we may speculate that any features added to the model after ¢ ~ 15
may be superfluous in terms of the informative value they bring. Also supporting this
hypothesis is the fact that the optimum models with ¢ < 7 display a high degree of
variance. This suggests that the margin width of the SVMs in this region is forced
to be kept very small, and optimising A in this region essentially means minimising

the residual. However, when we increase ¢ past about 8, the SVM begins to function
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as intended; the margin widens and A increases sharply. It is therefore possible that
the optimum number of features to include in the model is somewhere in the region
of the A ‘jump’. Whether this is a quirk of the SVM heuristic itself, or an underlying
property of high-dimensional data remains to be seen, but it certainly warrants further
investigation.

Sparsity is a highly desirable characteristic of a putatively informative model, and
if the aforementioned trend is repeatable across a variety of synthetic and real datasets,
and indeed other data mining algorithms, then it may serve as a valuable rule of thumb
for the statistician tasked with producing a small but informative list of genes.

Also noteworthy is the existence of the regions in which the optimal A is repre-
sented by a model along the path that has a training error greater than the minimum,
reinforcing the point made in Chapter 2 that the minimisation of training error is a

poor method of evaluating model robustness.

6.4 Differing Characteristics of Transcriptomic Datasets

The results from Chapter 5 can be further contextualised in a number of ways. Figure
6.2 shows how confident we can be about the results garnered from GPS. GPS performs
an internal cross-validation procedure on the data, and calculates the explainable risk
(or explained risk, ER), which is the proportional decrease in risk obtained by using a
given subset of features, compared to the risk calculated on a null model. The risk of
the latter is that on the expected distribution of the response variable if we randomly
sample from the population (Korn and Simon, 1991). ER can be measured by mean
squared error, or even just training error, but in this case it is the loss on the training
data calculated by the shrinkage estimator. We can use the explained risk value as
an indicator of how much confidence we can have in the biomarkers we selected being
truly biologically influential.

When we average the ER of each optimised model across 150 bootstraps of the
10 different datasets in Chapter 5, we see that the degree of explication achieved by
each dataset differs. This is likely explained by the biological homogeneity of each
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comparison performed (see Figure 5.1). All three publicly available datasets have an
ER of 95% or above, and the FL vs. DLBCL (the same biological diagnoses that Shipp
used) from our in-house dataset shows an ER of 92%. The samples used by Golub
are of a comparable level of homogeneity, since they compare different types of NHL,
and the samples of Alizadeh are even more homogeneous, since they compare DLBCL
subtypes. These splits are likely to have less biological noise than those that compare
more heterogeneous samples, such as HL vs. NHL and the splits with non-cancerous

samples.
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FIGURE 6.2: Explained risk (ER) for all datasets used in Chapter 5. Datasets with
homogeneous samples tend to have a higher ER.

GPS chooses the best mode of residual shrinkage from a list of penalty functions
that includes the LASSO (y = 1), ridge regression (y = 2) and all-subsets regression
(v = 0), as well as other intermediate values of . It does this by creating shrinkage
paths for each of several values of v and selects the corresponding model that confers
the maximum explained risk. As mentioned in Section 2.5.2, ridge regression tends to
preserve groups of highly correlated features by shrinking their coefficients towards one
another, but LASSO, with its tendency to produce sparser models, is more likely to
shrink some of them to zero in a fashion that may be construed as arbitrary. Given

the natural tension between wanting a sparse model and one that preserves enough
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information to make biological inferences, we monitored the proportion of bootstraps
chosen for which each of the available values of v was optimal (Figure 6.3). Inter-
estingly, the datasets with the fewest common features between the three ranked lists
from each AECS algorithm (Shipp and HL vs. Reactive) had the highest proportion of
bootstraps for which ridge regression was the optimal shrinkage method. Conversely,
a dataset with a high number of common features, FL. vs. Reactive, had the highest
proportion of bootstraps for which the maximum sparsity penalty option (v = 0) was
optimal. (The Alizadeh dataset, however, did not follow this trend.) This suggests
that GPS attempts to compensate for the degree of correlation found in a dataset.
Where there is low correlation, GPS feature selection will promote a penalty function
that allows the coefficients of somewhat correlated features to be shrunk towards each
other more easily, in order to create a ‘critical mass’ of predictor variables. On the
other hand, when features are highly correlated, GPS will promote penalties which
produce a sparser feature subset to guard against large number of highly correlated,
but possibly artifactual predictors overwhelming the model. This powerful yet nuanced
way of analysing microarray data allows the statistician to explore its properties more

deeply.
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FIGURE 6.3: Proportions of bootstraps for which v is optimal for all data splits used in
Chapter 5. 150 bootstraps were used.
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6.5 Future Directions and Conclusion

New microarray technologies are changing the nature of transcriptomics, and hence
there are large ramifications for the statisticians who are involved in this field. The
development most likely to influence the way gene expression profiles are analysed
is the emergence of Whole Transcriptome Shotgun Sequencing (Wang et al., 2009;
Morin et al., 2008), or more informally RNASeq, a next-generation high-throughput
sequencing technique. RNASeq provides a deeper reading of transcriptomes than the
tools used to read the data described in this thesis. This is because RNASeq can detect
and measure the presence of many transcript isoforms from a single gene. Such isoforms
may include allelic polymorphisms, post-transcriptional modifications and gene fusion
events (Maher et al., 2009). The consequence for statisticians is a multifold increase in
the number of features in a standard RNASeq gene expression profile from the more
traditional two-colour and Affymetrix arrays, resulting in more noise and possible red
herring features. The likely solution requires a redoubled effort to employ algorithms

that value sparsity while maintaining adequate feature assessment coverage.

While an increase in the number of features in a standard expression profiling
dataset is inevitable, sadly the same cannot be said for its sample size. One of the
chronic problems in the field of gene expression profiling is the decentralisation of the
work undertaken. Differing laboratory procedures, conditions and protocols lead to an
inevitable non-standardisation of the worldwide corpus of samples obtained (Irizarry
et al., 2005). Nevertheless, attempts have been made to overcome these problems,
with varying success (Campain and Yang, 2010). What is considered a state-of-the-
art sequencing technology one year may be obsolete the next, so it is difficult for a
statistician to ‘hit a moving target’: establish a set of statistical protocols without
them being superseded quickly. Nevertheless, (Fan et al., 2010) has demonstrated
that features chosen from one platform can be exported to another platform with
common transcripts to build a classifier, and that classifiers built on one platform
can correctly predict samples prepared on another, with a 80 — 90% cross-platform

prediction consistency in both cases, regardless of the learning method and common
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features involved. Such consistency is helpful in building a collegial approach to solving
large scale biomarker identification challenges, but if progress in the field is to be truly
streamlined, the creation of a global umbrella network of transcriptomic analysts is
needed. Such a network would include personnel responsible for microarray quality
control and standardisation, as well as statisticians who ensure that the published
work of the group maintains a high standard. Moves towards this ambitious goal have
been initiated in the last decade (Brazma et al., 2001; Shi et al., 2010).

Central to the objectives of an integrated group of transcriptome analysts and
affiliates is a set of statistical protocols and yardsticks which contributed work can
both be informed by and measured against. Assuming the integrity of the microarray
generation, normalisation and preprocessing steps, a rigorous set of data mining quality
controls should be implemented by the bioinformatics team. Although by no means
exhaustive, this thesis details what such a protocol list may contain. In summary,

combining existing wisdom with that found in this thesis:

e The aim of most feature selection tasks is to find a small handful of discriminative
features that define the differentially expressed classes. This means that any

technique employed should be geared towards sparse results.

e When choosing an appropriate feature selection algorithm, or ensemble of algo-
rithms, the user must take care to ensure each feature is assessed as fairly as the

next.
e The procedure must be robust, and have high generalising capability.

e The procedure should have an inbuilt regularising function that is able to be

tuned by the user.

e If shrinkage methods are used, a suite of penalty functions should be tested by

the user in order to choose the most appropriate one.

e The parameter tuning for the previous two points must be executed in a super-

vised fashion, keeping test samples apart from training samples.
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e When assessing the best model parameters, the risk on each model should be

assessed by an appropriate loss function.

e If iterative continuous techniques are used, the smoothing parameter must also

be tuned, and appropriate stopping criteria defined.
e Class imbalances must be addressed.

e Results must be stable; this can be achieved by aggregating the results of boot-

strap resampling of the feature selection routines.

e When reporting the results to scientists, the direction in which features are reg-

ulated relative to the diagnostic class should be included.

While this list is not complete, it is our opinion that an implementation and mind-
fulness of these recommendations and caveats will yield meaningful results for both
statisticians and clinicians alike. Bioinformatics is a discipline that requires a mea-
sure of insight and technical nous, in addition to a broad array of required knowledge.
Clear-cut solutions to problems like feature selection are not readily obtainable, and
progress is often made serendipitously. What this thesis cannot impart is the wit, per-
severance and lateral thinking that come as welcome gifts to the talented researcher.
Nonetheless, a marriage of these innate abilities and the necessary applied discipline

described herein maximises the chances for success in this field.



Appendix

A.1 Cross-Entropy Code Example

Below is an example of a piece of R code used in Chapter 3. A separate script was
written for each value of ¢, 2 < ¢ < 20, and results from these were aggregated. This

is the script where ¢ = 10

library (MASS)

gpdata <— as.matrix(read. delim ( ‘numeric’, header=FALSE)) #

4

numeric with °‘numeric” data, not factors
preamblecols <— 9
preamblerows <— 1

genenames <— gpdata[,1]
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groupA <— gpdata[,gpdata[2,]==‘Reactive’]
groupB <— gpdata[,gpdata[2,]==‘Cancer’|
gpdata <— cbind (groupA, groupB)

qAs <— ncol(groupA)

qBs <— ncol(groupB)

tissuenames <— gpdata[l, —1]

gpdata <— gpdata|—c(1:preamblecols) ,]
genenames <— genenames|[—c (1:preamblecols) |

class <— factor(c(rep(‘‘Reactive”, qAs), rep(‘‘Cancer”, qBs)))

allgenes <— nrow(gpdata)

qgenes <— 10

alpha <— 0.1

weights <— vector (length = allgenes)

top <— as.integer (10)

popsize <— 100

alltally <— array (0, dim=c(1l, allgenes))
toptally <— array (0, dim=c(1l, allgenes))
iterations <— 10

results <— matrix (nrow=0, ncol=2xqgenes + 4)

transnum <— function (listinput){
charmatrix <— t(listinput)
numatrix <— array (as.numeric(charmatrix), c(nrow(
charmatrix) ,ncol (charmatrix)))

return (numatrix)

for (u in 1:ncol(gpdata)){
vhat <— array(qgenes/allgenes , dim=c(1, allgenes))
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leftout <— gpdata[,—u]
genesets <— array (0, dim=c(popsize, allgenes+1))
for (x in 1:200){

for (w in 1:popsize){ #N = 100
rand <— runif(allgenes)
while (sum(as.numeric(rand < vhat))!=qgenes){rand
<— runif(allgenes)}
fitness <— lda(transnum(leftout [rand < vhat,])
class[—u])8svd #Calculate F—value
genesets [w,] <— cbind(fitness , t(as.numeric(rand

< vhat)))

ordered = order(genesets|[,1], decreasing=IRUE)
best = genesets [ordered [1:top], —1]

alltally <— alltally + colSums(genesets[,—1])
toptally <— toptally + colSums(best)

vtilda <— colMeans(best)

vhat <— alphaxvtilda + (1—alpha)*xvhat #smoothing

}

save(alltally , file=‘‘F1l0alltally.results”)
save(toptally , file=‘‘F10toptally.results”)
optset <— sort (vhat, decreasing=TRUE, index.return=IRUE)$ix [1:

qgenes ]

classifier <— lda(transnum (leftout [optset ,]), class[—u])
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aprob <— predict(classifier , as.numeric(gpdata|optset ,u]))$
posterior [, ‘‘Reactive”]

bprob <— predict(classifier , as.numeric(gpdataoptset ,u]))$
posterior [, ‘‘Cancer”|

tissueresult <— c(tissuenames|[u], levels(class)[class[u]],
aprob, bprob, t(optset), t(sort(vhat, decreasing=IRUE))[1:
qgenes |)

results <— rbind(results , tissueresult)

save (results , file=‘‘Fl0output.results”)

}

save(results , file=‘‘Fl0output.results”)
save(alltally , file=‘‘F1l0alltally.results”)

save(toptally , file=‘‘F10toptally.results”)

A.2 AECS Code Example

This code was an attempt to combine all sections of AECS into one script, complete
with PubMed access for datasets appended with GenBank Accession Numbers. How-
ever, due to the SVMSR section requiring weeks of computation, this script was broken
up into parts which were run separately, and then combined, to produce the results
found in Chapter 5. Requires R packages kernlab and randomForest as well as Jerry
Friedman’s GPS package, which can be found at http://www-stat.stanford.edu/

~jhf/r-gps/.

#arglist: inputfile , algotype, sitmann, regparam , numgenes,

penalty , resamp, database
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# Run in batch mode, for example <command> R CMD BATCH —no—
save —mno—restore —args inputfile=""garvan.csv” algotype
="“RF” simann=TRUE regparam=0.1 numgenes=20 resamp==20
database=‘path > Miner.R test.out & </command>

#Don’t forget to put the inputfile and algotype arguments in
inverted commas, they will read as nonexistent objects
instead of strings otherwise

##args 1s now a list of character vectors

## First check to see if arguments are passed.

## Then cycle through each element of the list and evaluate

the expressions.

args=(commandArgs(TRUE) )
if (length (args)==0){
print (‘ ‘No arguments supplied.”)
telse
for (i in 1:length(args)){
eval (parse (text=args [[i]]))

}
library (kernlab)

library (randomForest)

# Data entry file must have samples in rows and features in
columns. Data begins on [2,2]

# with row 1 a binary vector of class names, and column 1 a
vector of Genbank accession numbers. Cell (1,1) should be
blank

# There should be no missing values, they can be imputed at

http://gepas. bioinfo.cipf.es/cgi—bin/preprocess
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# Preprocessing
gpdata <— as.matrix(read.csv(inputfile , header=FALSE)) #

4

numeric with ‘‘numeric” data, not factors

genenames <— gpdata|—1,1]

groupA <— gpdata[,gpdata[l,]J==unique(gpdata[l,—1])[1]]
groupB <— gpdata|[,gpdata[l,]J==unique(gpdata[l,—1])[2]]
gpdata <— cbind (groupA, groupB)

qAs <— ncol(groupA)
qBs <— ncol(groupB)

class <~ factor (c(rep(unique(gpdata[l,—1])[1], qAs), rep(
unique (gpdata|[l,—1])[2], gBs)))

gpdata <— gpdata[—1,]

gpdata2 <— matrix(as.numeric(gpdata), nrow=nrow(gpdata), ncol=
ncol (gpdata))

b <— modt.stat (t(gpdata2)  class)

allgenes <— nrow(gpdata)

transnum <— function (listinput){
charmatrix <— t(listinput)
numatrix <— array (as.numeric(charmatrix), c(nrow(
charmatrix) ,ncol(charmatrix)))

return (numatrix)



A .2 AECS CoDpE EXAMPLE 131

noreplace <— function (samplenum, genesadded, minoflist){
count <— 1

while (count >= 0){

if (sum(samplenum = genesadded) = 0){count <— —1}else{count

<— count + 1; samplenum = minoflist$ix [count]}

}

return (samplenum )

}

most .common <— function(x) {
count <— sapply (unique(x), function(i) sum(x=—i, na.rm=TRUE)

)

return (unique (x) [which (count—max(count) ) |)

getcounts <— function(x, resultlist) {
counts <— c()
for (y in 1:length(x)){
counts <— c(counts, sum(x[y] = resultlist))

}

return (counts)

if (algotype =— “‘SVM” && as.logical (simann) ){#SVMSR with

simulated annealing and resamp

genesadded <— array (0, c(as.numeric(resamp),as.numeric(

numgenes) ) )
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objfuns <— array (0, c(as.numeric(resamp) ,as.numeric(numgenes))
)

testresponse <— matrix (nrow=ncol (gpdata), ncol=as.numeric(
numgenes ) )

testprobs <— array (0, c(ncol(gpdata), 2+%as.numeric(numgenes)))

asweight <— qBs/(qAs + ¢Bs)

bsweight <— —(qAs/(qAs + qBs))

classweights <— c¢(gBs, qAs)

names (classweights) <— c(levels(class)[1], levels(class)[2])

weights <— c(rep (1, qAs), rep(—1, gBs))

count <— 0

resultlist <— matrix(nrow=as.numeric(resamp), ncol=as.numeric (
numgenes ) )

resultobjfuns <— matrix (nrow=as.numeric (resamp), ncol=as.
numeric (numgenes) )

geneweights <— array (0, c(allgenes, 1))

for (x in 1:as.numeric(resamp)){

if (as.numeric(resamp)!=1){sampchoose <— c(sample(1:qAs,
ceiling (qAs/2)), sample((qAs+1):ncol(gpdata), floor (gBs/2))

) }else{sampchoose=1:ncol (gpdata)}

sampdata <— gpdata[,sampchoose]
geneset <— array (0, c(ncol(sampdata), 0))

for (qgenes in 1:as.numeric(numgenes)){

currentobjfuns <— array (0, c(allgenes, 1))
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for (w in 1:allgenes){

currentset <— cbind (geneset , as.numeric(
sampdata [w,]) )

classifier <— ksvm(currentset , class]|
sampchoose|, kernel=‘‘vanilladot”, class.
weights=classweights , C=as.numeric(regparam
))

currentobjfuns [w] <— attributes(classifier)$

obj

minoflist <— sort(currentobjfuns, decreasing=TRUE,
index . return=TRUE)

genesadded [x, qgenes] <— noreplace(minoflist$ix|[1],
genesadded [x,], minoflist)

objfuns [x, qgenes| <— minoflist$x[which(minoflist$ix
— genesadded [x, qgenes])]

geneset <— cbind(geneset , as.numeric(sampdata |
genesadded [x, qgenes] ,]))

oldgeneset <— array (0, c(1,as.numeric(numgenes)))

while (sum( ( genesadded [x,] —oldgeneset ) !=0)!=0) { #test
for reaching local minimum
if (qgenes==1){break}
oldgeneset <— genesadded[x,]
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for (repl in 1:qgenes){

currentobjfuns <— array (0, c(allgenes,

1))

for (y in 1:allgenes){
#replace (a, ((index—1)xnrow(a)
+ 1): (indexxnrow(a)), b)
currentset <— replace(geneset ,
((repl —1)*nrow( geneset) +
1):(repl«nrow(geneset)), as
.numeric(sampdata|y,]))
classifier <— ksvm(currentset ,
class [sampchoose], kernel
=‘‘vanilladot”, class.
weights=classweights , C=as.
numeric (regparam) )
currentobjfuns[y]| <—
attributes (classifier )$obj

}

minoflist <— sort(currentobjfuns,
decreasing=TRUE, index.return=ITRUE)

genesadded [x, repl] <— noreplace (
minoflist$ix[1], genesadded[x,—repl

|, minoflist)
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objfuns[x, qgenes] <— minoflist$x]
which(minoflist$ix = genesadded [x,
repl]) ]

geneset <— replace (geneset , ((repl—1)*
nrow (geneset) + 1):(replsnrow(
geneset)), as.numeric(sampdata|

genesadded [x,repl],]))

}

write.csv(cbind (genesadded [x,], objfuns[x,]|), file="

svmoutput.csv )

}

resultlist [x,] <— genesadded[x,]
resultobjfuns[x,] <— objfuns[x,]

proporder <— rbind(resultlist [x,], resultobjfuns[x,])

for (z in 1: numgenes){

weightedorder <— proporder |1 ,][sort(proporder[2,], decreasing=
FALSE, index.return=TRUE)$ix) |

for (y in 1:numgenes){

geneweights[as.numeric(weightedorder[y])] <— geneweights[as.

numeric (weightedorder[y])] + 1/y

}
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}

finallist <— sort(geneweights ,index.return=IRUE, decreasing=
TRUE)$ix [1:numgenes |

if (algotype = ‘‘SVM” && !(as.logical(simann))){#normal SVMSR

resamp

genesadded <— array (0, c(as.numeric(resamp),as.numeric(
numgenes) ) )

objfuns <— array (0, c(as.numeric(resamp) ,as.numeric(numgenes))
)

testresponse <— matrix (nrow=ncol(gpdata), ncol=as.numeric(
numgenes ) )

testprobs <— array (0, c(ncol(gpdata), 2+%as.numeric(numgenes)))

asweight <— qBs/(qAs + ¢Bs)

bsweight <— —(qAs/(qAs + qBs))

classweights <— c¢(gBs, qAs)

names( classweights) <— c(levels(class)[1], levels(class)[2])

weights <— c(rep(1, qAs), rep(—1, gBs))

count <— 0

resultlist <— matrix(nrow=as.numeric(resamp), ncol=as.numeric(
numgenes ) )

resultobjfuns <— matrix(nrow=as.numeric(resamp), ncol=as.
numeric (numgenes) )

geneweights <— array (0, c(allgenes, 1))

for (x in 1:as.numeric(resamp)){
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genesadded <— array (0, c(as.numeric(resamp) ,as.numeric(

numgenes) ) )

if (as.numeric(resamp)!=1){sampchoose <— c(sample(1:qAs,
ceiling (qAs/2)), sample((qAs+1):ncol(gpdata), floor(gBs/2))
) }else{sampchoose=1:ncol(gpdata)}

sampdata <— gpdata|[,sampchoose]
geneset <— array (0, c(ncol(sampdata), 0))

for (qgenes in 1:as.numeric(numgenes)){

currentobjfuns <— array (0, c(allgenes, 1))

for (w in 1:allgenes){

currentset <— cbind(geneset , as.numeric(
sampdata [w,]) )

classifier <— ksvm(currentset , class]|
sampchoose|, kernel=‘‘vanilladot”, class.
weights=classweights [sampchoose], C=as.
numeric (regparam ) )

currentobjfuns [w] <— attributes(classifier)$

obj
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minoflist <— sort(currentobjfuns, decreasing=TRUE,
index . return=IRUE)
genesadded [x, qgenes] <— noreplace(minoflist$ix[1],
genesadded [x,], minoflist)
objfuns [x, qgenes| <— minoflist$x[which(minoflist$ix
= genesadded [x, qgenes])]
geneset <— cbind (geneset , as.numeric(sampdata |
genesadded [x, qgenes] ,]))
write.csv(cbind (genesadded [x,], objfuns|x,]), file=‘svmoutput.
csv )
}
resultlist [x,] <— genesadded[x,]
resultobjfuns [x,] <— objfuns|[x,]
for (y in 1l:numgenes){
geneweights[as.numeric(resultlist [x,y])] <— geneweights[as.

numeric(resultlist [x,y])] + 1/y

}

}

finallist <— sort(geneweights ,index.return=TRUE, decreasing=
TRUE)$ix [1:numgenes|

print (t(genenames|[ finallist]))

if (algotype = “‘RF”){# Random Forest
gpdata <— t(gpdata)
genesadded <— array (0, c(as.numeric(resamp) ,as.numeric(

numgenes) ) )
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count <— 0

resultlist <— matrix(nrow=as.numeric(resamp), ncol=as.numeric(
numegenes ) )

importancelist <— matrix (nrow=as.numeric(resamp), ncol=as.
numeric (numgenes ) )

geneweights <— array (0, c(allgenes, 1))

classweights <— c(gBs, qAs)

names( classweights) <— c(levels(class)[1], levels(class)[2])

for (x in 1:as.numeric(resamp)){
genesadded <— array (0, c(as.numeric(resamp) ,as.numeric(

numgenes) ) )

if (as.numeric(resamp ) !=1){sampchoose <— c(sample(1:qAs,
ceiling (qAs/2)), sample((qAs+1):nrow(gpdata), floor(gBs/2))
) }else{sampchoose=1:nrow(gpdata)}

sampdata <— gpdata[sampchoose , |
geneset <— array (0, c(ncol(sampdata), 0))

forest <— randomForest (sampdata, class[sampchoose], classwt=
classweights)

resultlist [x,] <— sort(forest$importance, decreasing=TRUE,
index.return=TRUE)$ix [1: numgenes |

geneweights <— geneweights + forest$importance

print (sum( forest$importance))

}
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finallist <— sort(geneweights ,index.return=TRUE, decreasing=

TRUE)$ix [1:numgenes |

if (algotype = ‘‘GPS” ){#GPS resamp

platform = ¢ ‘PLATFORM”

gpshome = getwd ()

source (‘‘GPS.1”7)

gpdata <— t(gpdata)

genesadded <— array (0, c(as.numeric(resamp),as.numeric (

numgenes) ) )

count <— 0
resultlist <— matrix(nrow=as.numeric(resamp), ncol=as.numeric(
numgenes ) )

weights <— c(rep (1, qAs), rep(—1, gBs))

penalties <— array (0, c(1, numgeneskresamp))

penaltyindex <—0

for (x in 1:as.numeric(resamp)){

if (as.numeric (resamp)!=1){sampchoose <— c(sample (1:qAs,
ceiling (qAs/2)), sample ((qAs+1):nrow(gpdata), floor (qBs/2))
)} else{sampchoose=1:nrow (gpdata)}

sampdata <— gpdata[sampchoose , ]
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sampdata <— array (as.numeric(sampdata), c(nrow(sampdata), ncol
(sampdata)))

geneset <— array (0, c(ncol(gpdata), 0))

model <— gpsbridge (x=sampdata, y=weights[sampchoose], pens=c
(0,0.1,0.2,0.5,1.0,1.5,2.0))

soln <— gpssoln (model, vars=1:as.numeric(numgenes), ord=‘entry

)

resultlist [x,] <— soln$order
}
finallist <— array (0, c(1, as.numeric(numgenes)))
for (a in 1:as.numeric(numgenes)){
athgene <— most.common(resultlist|,a])
if (length (athgene)!=1){athgene <— athgene |[which (
getcounts (athgene, resultlist) =— max(getcounts (
athgene , resultlist)))]}
athgene <— athgene[1]
finallist [a] <— athgene

unique <— genenames |[unique (as.numeric(finallist))]

lengthunique <— length (genenames|[unique (as.numeric(finallist))
D)

print (paste(lengthunique , ‘unique genes found.’))

for (b in 1:lengthunique){

print (paste(b, ‘:’, genenames|[unique (as.numeric(

finallist))][b]))
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}
exit <— FALSE

while (exit=FALSE) {

print ( ‘How many of these genes would you like to search the
database for? Note: Searching smaller gene sets, or genes
individually , will more likely yield a positive result.’)

searchquant <— scan(‘’, n=1)

print ( ‘Please enter, one by one, the indices of the genes you
want to search for.’)

[

generequest <— scan(‘’, n=searchquant)

searchlist <— unique|[generequest |

#termlist <— paste(searchlist ;sep="*," collapse="")

termlist<—paste(searchlist ,sep=‘",collapse="*")

print (paste (‘http://www.genome. jp/dbget—bin /www_bfind _sub?
dbkey=refseq&keywords=",termlist , ‘&max_hit =1000&mode=bget ’ ,
sep=""))

print (‘Would you like to do another search? (y/n)’)

renew=readline ()

if (renew==n") { exit=ITRUE}
}
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Ly

List of Symbols

Total number of samples in a high-dimensional dataset
Total number of features in a high-dimensional dataset
Data matrix containing gene expression values from all features

Binary response variable. Can be used for classification (categori-

cal) or regression (numerical)

Vector of feature coefficients in a linear model

The intercept of B

General variable describing residuals on fitting X to Y
Coefficient vector for all features in X

Population mean

Standard Error

t-statistic for a given feature k

Constant in the denominator of the modified ¢-statistic, guarding
against ks with a small fold change being included in the top echelon

of a ranked feature list

C' Covariance matrix, used in PCA

143
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LIST OF SYMBOLS

Cov

V]

&i

When not subscripted, the number of folds in a k-fold cross valida-

tion. When subscripted, usually a symbol for a generic feature.
Variance

Covariance

(superscripted) Transpose (of a matrix or vector)

The vector space with dimension ¢, usually describing a model with

q features

Normed vector V' representing the distance between margins in a

SVM

Slack variables representing distances by which trained data points

overlap the margin in a SVM

Regularisation parameter that regulates a trade-off between the
importance a model gives to how biased its function is, and its

variance by way of residuals
The dimensionally-reduced feature set

User-defined constant representing an upper bound on the amount
of information present in ). In the Cross-Entropy Method, the

user-defined size (in features) of Q)

Penalty parameter 0 < v < 2, where the £” norm is used to penalise

residuals in shrinkage regression.

(not normed) The vector of probabilities for inclusion in Q. >V =

q

User-defined parameter controlling the degree of smoothing as the

CE Method updates
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p User-defined parameter controlling the proportion of top feature
sets retained after random sampling and evaluation in the Cross-

Entropy Method
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