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Summary

Functional data analysis is concerned with the analysis of data for which the observed re-
sponses for each subject are continuous curves. In practice, measurements are taken at
discrete time points but estimates are required over the entire time interval. Traditional
techniques for analysis of multiple curves, such as longitudinal data analysis or time series
methods, are unsuitable for this type of data, since there are generally more measurements
per subject than subjects and stationarity assumptions do not necessarily hold. With a
technology induced growth in data of this kind, research into techniques for functional data

analysis has become an emerging area in recent years.

This thesis aims to develop new techniques for functional data analysis, focusing on three
problems: logistic regression with a functional regressor, linear and logistic regression for
a repeatedly stimulated functional regressor, and a functional mixed-effects type model for

joint mean and covariance modelling.

For each of the problems, we develop solutions using a basis function approach, that is, ex-
pressing the data for each subject as a linear combination of known basis functions. Using this
approach we are able to overcome singularity problems associated with having more measure-
ments than subjects. As well as calculating maximum likelihood or least squares parameter

estimates, model diagnostic and smoothing parameter selection issues are addressed.

The techniques developed in this thesis are applied to novel biostatistical data sets: electroen-
cephalographic data and fetal heart rate data. Of main interest is the fetal heart rate data,

which motivated the development of the regression techniques for a repeatedly stimulated
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functional parameter. It was found that the stimulated fetal heart rates could be used to

predict an infant’s risk category at birth and psychomotor development at 18 months of age.

Most of the material presented in the thesis is my own work. The exception is:

1. the work described in Section 6.3 is partly due to Victor Solo.
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