ELECTRIC VEHICLE REALTIME MONITORING SYSTEM USING
MACHINE TO MACHINE COMUNICATION

Johann Mathias

Bachelor of Engineering
Electronic Engineering

-
=

MACQUARIE

University

SYDMEY AUSTRALIA

Department of Electronic Engineering
Maequarie University

November 7, 2016

Supervisor: Professor Graham Town

ACKNOWLEDGMENTS
I would like fo acknowledge my girlfriend and family for all their support and
encouragement throughout this project. I would also like to acknowledge my
supervisor Professor Graham Town for his guidance and flexibility throughout

this thesis project at Macquarie University.

STATEMENT OF CANDIDATE

I, Johann, declare that this report, submitted as part of the requirement for
the award of Bachelor of Engineering in the Department of Electronic Engineer-
ing, Macquarie University, is entirely my own work unless otherwise referenced
or acknowledged. This document has not been submitted for qualification or

assessment at any other academic institution.

Student’s Name: Johann Mathias

Student’s Signature:

Mkt

Date: 07/11/2016

ABSTRACT

Vehicles are cemented in everyday life with most people relying on cars as a
means of transport on a daily basis. Even though cars are so vital in evervday
functioning their data neglects to be collected and utilised. Vehicle monitoring

ems provide access to a range of data that enables logistics to be run on the
collected data. This is even more prevalent for electronic vehicles as they possess a
greater number of metrics that can be monitored and analysed. Due to high costs
and increasingly outdated hardware, vehicle monitoring systems are not common
place in most vehicles. The monitoring system in this thesis was designed to
meet system requirements, the most crucial being that the system must be a
realtime system as well as a machine to machine communication system. This
thesis aims to design and develop a vehicle monitoring system prototype targeted
at electric vehicles. It also aims to develop a monitoring system that is more
technologically up to date and more cost effective than any vehicle monitoring

system commercially available.

Contents

Acknowledgments

Abstract

Table of Contents

List of Figures

List of Tables

Abbreviations

1 Introduction

1.1

Electronic Vehicle Monitoring System
1.1.1 Monitoring System Requirements
1.1.2 My Contribution

2 Background and Related Work

2.1
2.2
2.3
2.4
2.5

Machine to Machine Technology
Internet of things
Wireless data transfer
Collected Data Usages
Python Programming
2.5.1 PySerial

2.5.2 Networking Python

3 Monitoring System Design

3.1
3.2

Introduction
Related Work
321 ELM327
3.2.2 CANlogger2000
323 FleetCarma
J24 FLEX i ciisess s
3.2.5 Comparison of Existing Hardware

iii
vii
ix
xi
xiii

XV

CONTENTS

3.3 System Model
3.3.1 Mitsubishi iMiev

4 Results and Future Work

41 Development
4.1.1 Raspberry Pi 4G Internet Connection
4.1.2 Hardware Testing
4.1.3 Python Coding
4.1.4 Shell Seripting
42 Results. i i e e e
4.3 PFature Work oo Lo oL
A Consultation Form
Al Overview. o e e e e e e e
A2 Consultation Afttendance Form

B Client Python Code

B.1 Overview
B.2 Client Code,

C Server Python Code

Cl Overview. i e e e e e e e e

Bibliography

17

,,,,,,,,,,, 17
........... 17
........... 19
........... 20
,,,,,,,,,,, 22
,,,,,,,,,,, 23

25

31

........... 31
........... 32

33

,,,,,,,,,,, 33
........... 33

35

,,,,,,,,,,, 35

........... 35

36

List of Figures

2.1 loT Application in the form of a Smart City [11] 4
2.2 Amazon Web Service’s IoT Services [9] L. 5
3.1 Electronic Vehicle Monitoring System Design 15
4.1 The Electronic Vehicle Monitoring System 24
4.2 On Board Diagnostics Two Port, 24
4.3 Server data received by theclient, 26
4.4 Example of the iMiev’s CAN data 28

xi

List of Tables

2.1 Wireless Comparison o 0 v i e e e e e e e e e e 7
2.2 Socket Vocabulary oL 9
3.1 Pros and Cons of Existing Hardware 14
3.2 Mitsubishi iMiev OBDII Pinout 0oL 16
4.1 J1962 Cable Pinouto e 19
4.2 Reserved TCP/IP Ports and Protocols 21

xiii

Abbreviations

M2M
socC
CAN
SSH
GSM
loT
OBD
OBDII
AWS
SDK
PPP
APN
DNS
MQTT
HTTP
RTS
CTS
API

Machine to Machine
State of Charge
Controller Area Network
Secure SHell

Global System for Mobile communication

Internet of Things

On Board Diagnostics

On Board Diagnostics Two
Amazon Web Services

Software Development Kit
Point-to-Point Protocol

Access Point Name

Domain Name System

Message Quening Telemetry Transport
HyperText Transfer Protocol
Request To Send

Clear To Send

Application Programming Interface

XV

Chapter 1

Introduction

Modes of transportation have become a vital part of life as a human beings. From., cars,
buses and trains to planes and boats, all these vehicles require a form of propulsion.
At present the most popular version of this for cars is burning fossil fuels to generate a
form of energy that is then used to propel a car forward or backward. These fossil fuels
however are limited resources, in addition to this they pose additional threats like climate
change [17]. As time passes the impact of climate change will grow and become more
significant, in order to limit this an alternative to fossil fuel powered cars were developed,
in the form of the electric car.

Since it’s creation electric vehicles have become more technologically advanced and
have been enhanced significantly, this has in turn led to the increase in popularity of
electric vehicles, As this demand for electrical vehicles increases so does the demand for
energy and more accurate vehicle information. Infrastructure for the charging of these
vehicles will need to be put into place, this includes charging stations and means of de-
livering additional electricity to various locations. Adding to these physical requirements
is the user’s range anxiety, which is the user worrving about running out of power before
reaching their destination, finding parking, and monitoring and managing traffic flows.
To solve these issues an electric vehicle monitoring system will be developed.

1.1 Electronic Vehicle Monitoring System

Ideally such a monitoring system would monitor as many aspects of the vehicle as possible,
this would allow for tracking of parameters such as location, battery voltage, battery
current, battery temperature, speed, SOC, odometer, etc. This realtime monitoring of
the various vehicle parameters in addition to allowing the user to have extra information
about the vehicle, also allows for manufacturers or third parties to analyse this data and
more aceurately predict the vehicle’s range [13]. The vehicle’s range predictor doesn’t
take the user’s route into account, it for instance does not consider changes in elevation,
environmental conditions or the driver’s behaviour all of which will reduce the vehicle’s
range [16]. In utilising the additional data a more accurate range can be understood and
a prediction of short comings made available, allowing for change.

1

2 Chapter 1. Infroduction

1.1.1 Monitoring System Requirements

As a result of this the vehicle monitoring system needs to be a realtime systems in order to
allow for a timely determination of distance that an electric vehicle can travel at its current
SOC, where to find parking, predicting traffic flows and traffic congestion, plus many other
vehicle related predictions and analysis. This would also be able to provide data to warn
the user if driving the vehicle a certain route would exhaust the vehicle’s battery or fuel,
resulting in the driver needing to have the vehicle towed. Through the integration with
Google maps the system could provide data to display the nearest charging point or petrol
station and whether the vehicle will be able to reach it given its current state of charge
or available fuel. The benefits of the monitoring system is that it can be used for any
vehicle not just the intended electric vehicle purposes.

The monitoring system must be mounted in the vehicle in order to obtain the data
required for these calculations to be made. As a result of this, the monitoring system must
be wireless, to allow for the realtime data to be transferred from the vehicle wirelessly.
The data is intended to be read from a smartphone, making it possible to send the data
over both 4G and Bluetooth.

A major aspect of this monitoring system is that it must solely rely on machine to
machine communication, meaning that the system must be completely antomated with
no human intervention needed to run the system other than functioning of the vehicle.

1.1.2 My Contribution

This project had been started by a PhD student who had selected a Raspberry Pi as the
device to be used to process data in the car. He had also developed a local network seript
that could be run using two computers allowing them to communicate with each other on
a local network. In addition to this he had purchase a GSM module to be used to acquire
GPS coordinates and had written an associated Python script to handle the GSM module
and its coordinates. After taking over the project what was required to be done and has
been accomplished is:

e Connected the Raspberry Pi to the external Internet via a 4G connection.

e Extended and improved the Raspberry Pi system such that it can obtain data from
the vehicle,

e Wrote a client script in Python that reads serial data from the car in real time and
can effectively send it to any given IP public address or server.

e Set up a server and wrote a Python script to handle and receive the data being sent
from the Raspberry Pi.

e Began on trying to decrypt the data through understanding what the encrypted
data meant.

s Automated the entire monitoring system so that it is a machine to machine system.

Chapter 2

Background and Related Work

2.1 Machine to Machine Technology

The interconnection and interoperability of two separate systems, sub-systems and sub-
networks is referred to as machine to machine communication or M2M communication.
This means that various devices or technologies and communicating without the need
for human interference. This is usually implemented through programmed instructions
telling the devices what to do. These machines can communicate through wired or wire-
less methods, most M2M communications are moving to wireless communication leading
towards the IoT [7].

M2M communications are required for various parts of the monitoring system to com-
municate with each other without human interaction. This communication can be done
using different forms of wireless communications for example, Bluetooth, UWB, ZigBee
and 802.11 protocol (WiFi). These types of wireless communications are useful to know
and one of these will need to be incorporated into the monitoring system in order to send
the data.

2.2 Internet of things

The Internet of things is the idea of a version of the Internet where everyday objects have
a network connection allowing for the sending and receiving of data. ATM’s were the
first Internet of things objects all the way back in the 1970’s, since then more and more
machines have become IoT objects and in 2008 it was estimated that there were already
more objects connected to the Internet than people [15]. Due to the wide availability of
broadband Internet and the decreasing costs associated with connecting to the Internet,
more and more devices are being developed with sensors and WiFi connect-ability. This
means that an Infernet connection is become more common on a growing amount of
devices such as cars, watches, sound systems, phones, engine and machine parts, lights,
fridges, ovens and the list goes on.

The [oT things extends bevond small scale uses and can be applied to large scale ap-

4 Chapter 2. Background and Related Work

plications like smart power grids, smart roads, smart lighting, etc. These smart networks
would ideally all be able to communicate and form an entirely interconnected “smart
world”. Libelium is a leader in the field of smart sensors, and are making a significant
push to achieve this ideal goal of a smart world. Libeliim have a range of smart me-
ters and smart sensors in a wide variety of areas, that range from agriculture to water
to health [10]. These sensors are commercially available, and becoming more and more
popular as technology develops.

Libelium'’s goal is to achieve a smart world where everything is interconnected, a world
built on the idea of the Internet of things. A graphical description of this and be seen
in the image below, it shows various smart networks and sensor networks that are all
connected and send a variety of monitored data to a central hub or its associated data
access points.

Libelium Smart World

¥ o pooe sl caveredom 3
oo bakac e

Moritama ~wearin_ ondticrs
i i, bedges and urter eal Tt

Quality of Shipment Condit)
ME g 2 e £ e 3 H W oy Beens W
oz zhen e i Rl o LU 2 Vo P A e SRR

Figure 2.1: IoT Application in the form of a Smart City [11]

Libelinm provides the hardware, which is realistically the front end of all these smart
networks. The back end of the networks are servers, that handle all the data and communi-
cations from object to object and machine to machine. Without all the servers the Internet
of things would not be possible, these servers are usually international and controlled by

2.2 Internet of things 5

an external party. Currently the leader in the area of [oT servers is Amazon.com. Amazon
had the server and database infrastructure from their book sales website, Amazon then
expanded and started renting their servers and server space. Today many companies don’t
have their own servers or server hardware as they rent server space and server processing
power from Amazon.com, DropBox is just one of the companies that do this.

Amazon web services is the platform that allows for devices to connect and use a
range of services including, storage, computation, security, analytics and more. Amazon
is at the forefront in this aspect of IoT, they are about 10 times the size of their nearest
competitor and are continually expanding and becoming increasingly popular.

AWS loT / ™\ i V\
i @ V| wgssaces [FL (agafazon
(el | T..r:}-‘l."- %) km
s o
e — L ~— AWS SERVICES
F o —r, o : W RULES ENGINE Wit divese endpoints you con celier
MESSAGES messaces [| 09° Jl \ Trovedcrm device mesacges Erne AR
.‘] [“1 ¥ il e ks amd route o
\ \ 7 J AWS Senvices
e \LV v I
;:‘S laT DEVICE SDK AUTHENTICATION DEVICE GATEWAY 3
+ of el ent Iiries bo connact, & AUTHORIZATION Communicale with | Y
outhentiate ond Erhonge meLsos skt devices via M, — o =l
WebSackets, fardh =) uessases B0 == |
TR I / = B ==
L ‘\‘.---....-_-}- : - la
. £ APPLICATIONS
DEVICE SHADOWS Acations can coanect I
Flrararent devee shote dusen shadeus ot any time cing e AR

Itermitten! connechions.

REGISTRY B
Ason 2 unioue kantiy AWS IoT API |

sath daviees

Figure 2.2: Amazon Web Service’s IoT Services [9]

AWS IoT Device Software Development Kit

AWS [oT provides its own software development kit, this SDK enables a quick and easy
connection for any device or application needing to access to client libraries. The device
SDK supports, C, JavaSeript, and Arduino and also allows the use of an open source SDK
or a user developed SDK. This means that packages, modules and libraries don’t need to
installed on the device and can be called using MQTT, HTTP, or WebSockets protocols.

Device Gateway

The AWS ToT device gateway enable a secure and efficient connection allowing for strong
and safe communication between the device and AWS IoT. This gateway allows one-to-one

6 Chapter 2. Background and Related Work

communication and one-to-many communication, this gate way also makes it possible for
a device to distribute data to multiple devices or applications using this one-to-many com-
munication method. The Website states that “The Device Gateway scales antomatically
to support over a billion devices without provisioning infrastructure.” [9]

Device Shadows

AWS IoT allows for the creation of uninterrupted, virtual versions of the device to allow
applications or other devices to access the last state of the device. The device shadow
and also hold the desired future state of the device, even if the device is offline. The last
reported state can be easily accessed and retrieved using the rules engine, this feature is
highly useful as a means of a back up.

Rules Engine

Generated data from connected devices can be gathered, processed and analysed using the
rules engine, which allows for subsequent IoT applications to be built without the need
to manage any of the infrastructure. The rules engine takes incoming messages and data,
evaluates and transforms it, and then sends it to another device or cloud based service
or wherever the user defines it to go. The rules engine also allows to send to other AWS
services like, AWS Lambda, Amazon Machine Learning, Amazon DynamoDB, Amazon
Kinesis, Amazon 53, Amazon CloudWatch, and Amazon Elasticsearch Service.

The rule engine allows for the user to create and edit the rules, these rules can trigger
certain messages to be sent. For example if a pressure value reaches too high or low it
can trigger a rule to send a message or data to a device, this can also be modified to
take the average of multiple pressures and then send a message or data if it exceeds a set
threshold. The rules engine has inbuilt function that can transform data for analysis and
becomes even more powerful when combined with other AWS services like AWS Lamda.

AWS ToT is the future of data processing and analysis and Amazon is leading the way
through its cost effective products.

2.3 Wireless data transfer

Wireless data transfer is a major aspect of the monitoring system as the data needs to
be communicated to any smartphone in realtime. There are various local are networks
that can be easily implemented like ZigBee, Bluetooth and WiFi. A comparison of these
wireless connectivity techniques can be easily compared using freely available data [14] as
seen in table 2.1.

Depending on the use various types of wireless communications are preferred, smart-
grids use a form of M2M communication. Testing has been done on which protocol to
use for smart-grids and ZigBee, although slower appears to be the better option as its,
low power and has a much larger range than Bluetooth, Wifi uses too much power to be
considered for use [5].

2.4 Collected Data Usages 7

Table 2.1: Wireless Comparison

ZigBee Bluetooth | Wifi
Range 10-100m 10m 0-100m
Frequency 2.4 GHz 2.4 GHz 2.4 and 5 GHz
Power Consumption | Very low Low High
Data Rate 20, 40 and 250 kbps | 1Mbps 11 and 54 Mbps

2.4 Collected Data Usages

There are multiple other real world applications of the monitoring system, like the analysis
of data from a plug-in hybrid vehicle which has already been conducted [13]. The collected
data was gathered during a field test conducted by Volvo and Vattenfall and comparisons
were drawn between fhe electric mode and diesel mode. From this data guantitative
results were obtained in the form of various statistics like, average driving speed, driving
distance and battery performance in certain weather. This clearly demonstrates that the
collected data can be used to provide improved information on the vehicle and its SOC.
It furthers the importance of monitoring the vehicle as it allows for the regular collection
and analysis of data as it will allow for these statistics to be obtained and collated.

The collected data can be further used to predict traffic conditions and allow for
streamlining of traffic. This would be especially beneficial for highly populated areas
where traffic is an issue due to it being heavy on a daily basis.

2.5 Python Programming

Python is a popular free to use high-level and dynamic programming language. Its a
language recognised and understood by almost any operating system or device. The
benefit of this programming language is that it can be used for most purposes, Python
also allows for direct execution in the form of scripts and therefore doesn’t require a
computer to run. Python is also an open source programming language, meaning that
anyone can create modules that can be used by anybody provided they download and
install it, some of these modules are so frequently used they have been incorporated
into the language permanently. As a result of these modules, scripts can be written to
automate tasks, like creating clients or servers, connecting to various ports on the device
and even sending and receiving data.

2.5.1 PySerial

There are thousands of different modules for all different purposes and objectives, one
module in particular pySerial is particularly useful. PySerial allows for the realtime access
of serial data from the device’s serial port via a Python script. The Justification for this
Python script is to allow for the automated reading and handling of the incoming serial
data. PySerial has many unique features as shown in the list [12] below:

8 Chapter 2. Background and Related Work

e Access to the port settings through Python properties.

e Support for different byte sizes, stop bits, parity and flow control with RTS/CTS
and /or Xon/Xoff.

e Working with or without receive timeout.

e Same class based interface on all supported platforms.

e File like API with read and write (readline ete. also supported).
e The files in this package are 100% pure Python.

e The port is set up for binary transmission. No NULL byte stripping, CR-LF trans-
lation ete. This makes this module universally useful.

s Compatible with io library

e RFC 2217 client

PySerial requires Python 2.7 or later to be run as well as some sort of Java commu-
nication, it can be called and then used within a Python script simply by first importing
the module by calling import pyserial and then the module and all its components are
accessible.

2.5.2 Networking Python

Python also already includes networking capabilities, which can be accessed through the
importation of the socket module done by calling import socket. Python uses socket
programming as its type of network communication, these sockets are bidirectional com-
munication channels. Sockets allow for the communication between processes, different
local machines, and different machines in different countries. Sockets have a library which
contain specific classes for handling various communication, they also have their own vo-
cabulary as set out by table 2.2 [20].

2.5 Python Programming

Table 2.2: Socket Vocabulary

Term Description
domain The family of protocols, which are used as transport mechanisms,
AF_INET, PF_INET, PF_UNIX, PF_X25, etc.
type The type of communications between the two ends, SOCK_STREAM or
SOCK_DGRAM.
protocol Used to identify a variant of a protocol within a domain and type, usually
Zero.
hostname The identifier of the network interface, can be:
e A string, which can be a host name, a dotted-quad address. or an
IPVG address
e A string “<broadecast>", which specifies an IN-
ADDR_BROADCAST address.
o A zero-length string, which specifies INADDR_ANY
e An Integer, interpreted as a binary address in host byte order.
port The server listens for a client calling on the port number or service name.

10

Chapter 2. Background and Related Work

Chapter 3

Monitoring System Design

3.1 Introduction

This chapter discusses the existing monitoring systems and the similarities and differences
between the monitoring systems, it also overviews the new monitoring system designed
and developed for this thesis.

The monitoring system was required to be a realtime system that is universal, so that
it can be installed in any electric vehicle. The realtime monitoring allows for in depth
analysis of routes and vehicle parameters.

3.2 Related Work

There are pre-existing battery monitoring systems for electric vehicles, however they are
only monitoring the current and voltage. The existing design and accompanyving docu-
mentation contains the implementation and testing of the battery monitoring systems, as
well as its components and characteristics [21]. The existing battery monitoring system
design is similar to the one that the project intends to create, however it its just mon-
itoring the battery and not other characteristics of the electric vehicle like location and
temperature. The existing system is also a wired system that displays the measurements
on a screen built into the sun visor and not a wireless system. It is possible to incorporate
various aspects of this design into the new one as it is a very similar monitoring system.

3.2.1 ELM327

One of the most popular OBD CAN interface scanners is the ELM327. This scanner
plugs into the vehicle’s OBDII port and interfaces with a laptop or phone through one
of three ways, bluetooth, USB or WiFi. This data can be gathered and analysed by a
third party app on a laptop or mobile phone, this means that the device’s compatibility
becomes wholly reliable on the vehicle’s make and if the third party app is capable of
decoding the CAN data output by the vehicle.

11

12 Chapter 3. Monitoring System Design

The advantages is that its wireless and can communicate to various devices over a
range of distances, doing both reading of CAN data and the transfer of the data. Another
advantage of this logger is that it gives numerical values for various vehicle parameters,
but again this is entirely dependant on the third party app. For electric vehicles this
compatibility is very limited, unless the manufacturer has made the CAN information
readily available or the online community has developed ways to decode the encrypted
CAN data, as is the case with the Nissan Leaf. The device is also extremely inexpensive,
and would bring the overall cost of the system down.

This logger is however not compatible with the system requirements as it is not a
realtime scanner, this means that the data that is being read and displayed is not current
and only being updated periodically or manually after each of the vehicle’s trips. There
however is no possibility of modifying this system electronically or through software to
make it a realtime system that would fit the required system specifications.

3.2.2 CANIlogger2000

The CANlogger2000 is another existing data logger, this device is an off the shelf product
that from an European based company called CSS Electronics. Due to its overseas location
and three hundred and thirty dollar price tag, this device is not particularly popular or
mainstream. The CANlogger 2000 is a data logger that allows for realtime logging using
a serial interface, this means connecting to the device using a SSH handler like Python
or handling it directly using a script and the serial port of the user’s device.

This device possessed many advantages, one of them being that it’s universal and can
read and log the CAN data of absolutely any car that has an OBDII port. This device
has two modes, one logs to a file and can be read and accessed only after the logging is
done and the second more advantageous mode is the serial mode. This serial mode uses
the serial interface to allow for a realtime stream of CAN bus data from the car to the
logger and then to a device of the user’s choosing. An external client is required to read
the data in serial mode CSS Electronics recommends PuTTY as the client, however this
can be done multiple ways including using a script to establish the connect and read the
data.

The disadvantage of this device is that it has no wireless communication ability and
thus can only log the CAN data but cannot transmit the data to an external device like
a smart phone or server. However, this can be adapted into a system to allow for wireless
communication to a server or mobile phone, making it meet the system requirements.

3.2.3 FleetCarma

FleetCarma is an information and communications technology company that has designed
and implemented a monitoring system for electric vehicles. This company sells their
product fo multiple clients and have reached multiple countries all around the world.
FleetCarma has developed electric vehicle modelling technology and an electric vehicle

3.2 Related Work 13

monitoring system, their scope also extends to electric vehicle research and smart charging
systems [19].

FleetCarma opens up its products for a range of purposes, these include research,
leasing companies, fleets and electric utilities. The parameters monitored include, elec-
tricity usage, battery state of charge, location, temperature and many more parameters,
all obtained from a device connected to the vehicle’s OBDII port. This company however
charges on a subscription basis for the services and products it provides, this price is con-
siderably high and can reach as high as thousands per month depending on the service
usage. The service is also dependent on the 3G mobile network. which is already outdated
and as time passes will become more and more so. Due to the cost and outdated network
with would be more cost effective to build a monitoring system to use than purchase this
system from FleetCarma.

3.2.4 FLEX

The FLEX Vehicle Service is a product of Connexion, who have designed and developed a
clond based vehicle monitoring system [1]. This system has been designed and developed
to monitor and analyse data from Heets of trucks and cars. Much like FleetCarma the
FLEX system can monitor various realtime parameters through the OBDII port, from
location to speed and fuel. However unlike FleetCarma, FLEX is not optimised for electric
vehicles but rather for fossil fuel vehicles, but the system can still be implemented on
electric vehicles.

The FLEX system allows the acecess of the data through a web-based portal, this allows
for graphical and illustrative manipulation of the vehicle’s data, meaning it can be easily
read, accessed and understood. This system is also requires purchase on a subseription
basis, with the hardware included in the first subscription payment. This system is not
configured for electric vehicles, this includes both the software and hardware configuration,
this means that adaption to electric vehicles would result in additional costs. It would
therefore be more efficient and cost effective to design and develop a monitoring system.

3.2.5 Comparison of Existing Hardware

The hest choice for the monitoring system needs to be chosen based on the system's merits
and its ability to achieve the required specifications. There is also a budget that needs

to be taken into account when the monitoring system is being chosen, if the existing
monitoring svstems can be modified within the budget it is then a viable option. A
comparison of these existing monitoring systems has been done and the key points for
each of the existing moniforing systems can be seen in table 3.1. The clear choice is the
CANlogger2000 as it is reasonably priced and can also log data in realtime, however it will
need a communication module in order to communicate the data externally as it doesn’t
come with inbuilt communications.

14 Chapter 3. Monitoring System Design

Table 3.1: Pros and Cons of Existing Hardware

Hardware Pros Cons
ELM327
e Inexpensive e Not realtime logging
e Universal e Can’t be modified
s Wireless s Wiki or bluetooth not 4G
CANlogger2000
* Realtime logging available e Expensive
e Can be integrafed into a e Not wireless communica-
system tions
e Universal e Only logs data
FleetCarma
e Universal * Very Expensive
¢ Wireless communication s Only 3G
e Realtime logging
FLEX
e Realtiime logging e No electric vehicle optimi-
; sation
& Web-based access
e Expensive

3.3 System Model

The design that was chosen uses existing and off-the-self components, that have been inte-
grated together to work as one system. The system mainly centres around the Raspberry
Pi 2 module, this is mounted in the car and is powered through the cigarette lighter. This
Raspberry Pi module is a single board computer running Debian Linux which is around
the size of a credit card, therefore it boots like a computer would with username and
password. Due to the constraint that the system must be fully automated, the creation
of a script is required, that boots and logs in to the Raspberry Pi module. This script
will also start the monitoring programs, this involves running the Python scripts that
handle the sending of data to the server and the serial interface that handles the realtime

3.3 System Model 15

reading of the CAN data. The Raspberry Pi 2 doesn’t have a GSM module, therefore it
requires a GSM module to be atfached to it in order to obtain the vehicle’s location. The
Raspberry Pi also has no way of wirelessly connecting to the internet or server, therefore
a 4G modem is attached to it allowing it to access the Internet and communicate with
the server.

The second major component is the CANlogger2000 [3] it is an off the shelf product
that reads the vehicle’s CAN data and using a SSH client or handler, the data is displayved
throngh the command line as a serial interface. This serial interface is then accessed
using a Python seript, this seript reads the CAN bus data in realtime via the Raspberry
Pi's serial port and then sends it to a dedicated server via a TCP/IP connection. This
connection is established through the 4G modem connected to the Raspberry Pi. The
modem connection and the Python script to collect and send the CAN bus data are both
automatically run when the Raspberry Pi starts up, this is initiated by a shell script that
is set to run before login at boot time.

This system model aims to be the most cost effective system, the Raspberry Pi is
an inexpensive piece of equipment that can be easily obtained from various places. This
means that if the Raspberry Pi has any problem or faults it can easily be fixed or replaced
for a relatively low cost. The 4G component is important to the system as there is
no system on the market that uses a 4G connection to send or receive any data. The
CANlogger2000 can be integrated with the Raspberry Pi through a Python seript thus
making it a good option to log and read the data. For these reasons the system design
had been decided.

Figure 3.1 shows the system broken down into its components so as to visualise the
system and its flow.

Raspbarry
Pi2
J1962 CAMIogger2000
to DES CAN
Cable data
SBonds:
« GPS cordinatos
» CAN data
Smartphone ﬁ
Stores
Sends
App ums data recioved oe
ino readable data
metrics Server with
dedicatad IP
acdress

Figure 3.1: Electronic Vehicle Monitoring System Design

16 Chapter 3. Monitoring System Design

3.3.1 Mitsubishi iMiev

The vehicle purchased for the project and alongside projects is a Mitsubishi iMiev, this is
a five door electronic vehicle that is produced and sold by Mitsubishi Motors. The iMiev
is the world’s first modern mass production electronic vehicle that is highway capable,
and thus more practical. The monitoring system will need to connect to the CAN bus of
this electric vehicle, this means that the pinouts of this OBDII port must be known in
order to suceessfully connect and read the data. This was done by means of the service
and user mamuals of the vehicle. the pinout of the vehicle can be seen in table 3.2.

Table 3.2: Mitsubishi iMiev OBDII Pinout

Signal Pin Number
CAN High 6

CAN Low 14

Signal Ground 5

Chassis Ground

Power 16

Chapter 4

Results and Future Work

4.1 Development

The development stage involved taking the design and making it into a physical prototype,
testing each individual component to make sure no errors arose, and then completing a
system test on the prototype to ensure that the correct and expected results were obtained
and no errors arise when all the components are integrated. These various stages are
explained in detail throughout this chapter.

4.1.1 Raspberry Pi 4G Internet Connection

The development stage began with connecting the Raspberry Pi to the Internet. The
Raspberry Pi machine runs Debian Linux as its operating svstem, which is an older and
simpler version of Linux. The reason for running this operating system is that it requires
less processing power than the likes of Ubuntu, and other Linux systems. In Debian Linux
and some other Linux operating systems when USB modems are physically connected they
are detected by the operating not as modems but as mass storage devices. This needs to
be rectified before the modem can be connected, this has to be done using a Linux open
source program called usb_modeswitch.

The package needs to be installed from the Internet, so an ethernet connection needed
to be established and the command sudo apt-get install usb-modeswitch usb-modeswitch-—(
used to download all the necessary packages and libraries. Usb_modeswitch is a program
that switches the USB modem from mass storage mode to modem mode, this is done by
first locating the configuration file usb_modeswitch.conf located in the /etc directory
and adding the correct configuration, which is set by the modem type and model [4].
Finding the correct modem type and model was significant problem that arose, although
it seems like trivial task, the target vendor and product vendor identification numbers
needed to exactly match that of the model or the USB wouldn’t switch modes. This
problem was eventually resolved and the correct configuration file was established and
the machine was restarted, which causes usb_modeswitch to run antomatically and put
the USB modem into modem mode.

17

18 Chapter 4. Results and Future Work

From this point two more packages are need to be installed, WvDial and PPP Dae-
mon, this is done using the command line and the command sudo apt-get install ppp
wvdial. The PPP interface needs to be enabled and configured, editing the /etc/network
/interfaces file and modifying it to read:

aunto gprs
iface gprs inet ppp
provider gprs

The corresponding peer configuration, located in /etc/ppp/peers file needs to be edited
to include:

user ‘‘pi’’

connect ‘‘/usr/sbin/chat —v =f Jetc/chatscripts/gprs =T
preconnect '’

Jdev /ttyUSBO
noipdefault
defaultroute
replacedefaultroute
hide—password

noauth

persist

nsepeerdns

The final configuration to be done to connect the Raspberry Pi to the Internet is the
configuration of WvDial. WvDial is a PPP dialer that dials the modem and starts PPP
daemon that then establishes an Internet connection. The dialer’s configuration file is
located in /etc/wvdial.conf. this file then needs fo be edited to include the following;:

[Dialer Default]

Initl = ATZ

Init2 ATQO V1 E1 S0=0
Init3d = ATHOGDCONT=1,*IP " ", * *connect * '
Stupid Mode = 1

Modem Type = Analog Modem
ISDN = 0

Phone = =994

Modem = /dev /ttyUSB0O
Username = ¢ "7

Password =

Baud = 460800

The contents of this configuration file, vary from service provider to service provider.
Optus was the provider used, Optus has certain set access point names for mobile broad-
bands that depend on the SIM’s service type and the plan it is on. The SIM used was
a prepaid mobile broadband plan and using the guide provided by Optus [18] the appro-
priate access point name can be found. Optus’ phone is always the standard *99 and it

4.1 Development 19

doesn’t require username or password. The init strings change according to the service
provider and the tvpe of network connection, which is 4G in this case. The dialer is called
using the command sude wvdial in the command line and it dials out obtaining a local
and public IP address as well a primary and secondary DNS addresses.

4.1.2 Hardware Testing

After receiving the logger and being able to get access to the electronic vehicle, the CAN
logger needed to be tested to see if it had any faults so that they could be rectified or
fixed. Before the testing of the logger was even possible a problem arose, the electric
vehicle was dead and needed to be charged. Normally a simple problem to be solved,
however the charging cable required 15 amps from the wall socket which only provided 10
amps. As a result of this an adaptor was required to be purchased to charge the vehicle,
once the adaptor arrived and the vehicle could be charged and the testing of the logger
could then begin. During the test however, a fault was detected in which the logger was
disrupting the car’s electronic dashboard. The lights on the logger showed that it wasn’t
a fault of the logger as it powered on and automatically configured itself and was waiting
to receive data from the vehicle. This meant it would either be a fault in the cable or the
disastrous possibility that it was incompatible with electric vehicle.

The first thing that was tested was the cable, this was done by belling out the cable
or continuity testing it. This simply just tests which pins are connected on either end of
the cable, this was done on the J1962 cable which had the OBDII connector one end and
a DBY plug on the other end. To do these tests a multimeter was connected to the pins
on the OBDII end and the pin that it was connected to on the DB9 end was located when
the multimeter gave a reading. On the completion of this test it revealed that the pinout
diagram for the J1962 cable was incorrect as the continuity test revealed that pinouts of
the actual cable were not the same as the cable described. The cable was then spliced
open and the correct wires were found by continuity festing the spliced cable and then
re-soldering it correctly to a new a DB9 connector. The cable was belled out again to
check that the soldering connected properly, the cable was then retested on the vehicle
and it worked as it was initially intfended. The pinout of the new cable seen in table 4.1.

Table 4.1: J1962 Cable Pinout

Signal OBDII Pin | CAN Logger | Cable Colour
Number Pin Number

CAN High 6 T Violet

CAN Low 14 2 Grey

Signal Ground 5 3 Black

Chassis Ground : 3 Black

Power 16 9 Red

20 Chapter 4. Results and Future Work

4.1.3 Python Coding

The core of the system revolves around the Python code, this python code has been written
to enable the Raspberry Pi to read the CAN data from the electric vehicle and then an
associated client script to send the obtained data from the Raspberry Pi to an external
server. The client script is the seript that is on the Raspberry Pi which is located in the
vehicle, When the code was written, the code to read the device was written separate
to the networking Python code and then later combined, this was done so as to make it
easier to debug any problems that came up when writing the Python script. The reader
script was written first, but however couldn’t be tested until it was connected to the logger
which needed to be connected to the car in order to read data.

The reader uses the pySerial package as the logger connects to Raspberry Pi as a
serial device, it sends one bit at a time so the reader needed to be able to handle this type
of communication. The original idea was to use the SSH handler PuTTY to deal with
the serial communications as that’s what the recommended handler for the CAN logger
was. However due to the script being written in Python there needed to be an additional
package installed to enable Python and PuTTY fo communicate with each other, this
package is called Paramiko [G]. As a result of the limitation of not having a serial device
to test with, the code had to be run line by line to make sure that the code and its syntax
was correct and bug free.

During the programming process it was found that paramiko was not necessary as
Python allows for direct access to the device’s serial ports, through another open source
package, pyvSerial. This meant that instead of the script connecting via a SSH client the
script will now connect directly to the Raspberry Pi's serial port. This mean’t finding
the device's physical hardware address, this can be done though plugging in the device
and detecting changes in /dev, it can vary from device to device but for the Raspberry
Pi it was ttyACMO. The serial port connection requires a baud rate or bit rate, which
determines how much information is transferred per second. For this system the baud
rate is set to 115200 bifs per second, which is the same baud rate that the CAN logger
sends the data, this is done so that none of the messages are missed and not sent or
received.

The client and server seripts were next to be created, however due to the additional
knowledge required online tutorials were used to assist the creation of these Python scripts
[20]. The seript requires a host address and a port number, the host is either a public IP
address or a URL and the port number can be any number other than the ones in table
4.2 [22].

These ports are all reserved for the own assigned functions, any other port can be
chosen the number has no significant baring on it. Initially the client script was written
and sent a simple line of text on a local network, this was done to check that the code
had no bugs. If bugs were present this made it possible to debug the code and correct
it. When both the server and client code were written and running correct they needed
to be tested externally and modified such that they could run externally. For this to be
accomplished a public IP address is needed as the host address, the reason for this is when

4.1 Development

21

Table 4.2: Reserved TCP/IP Ports and Protocols

Protocol Port Number
File Transfer Protocol (FTP) 20/21
Secure Shell (SSH) 22

Telnet 23

Simple Mail Transfer Protocol (SMTP) 25

Domain Name System (DNS) 53

Dynamic Host Configuration Protocol | 67/68
(DHCP)

Trivial File Transfer Protocol (TFTP) 69
Hypertext Transfer Protocol (HTTP) 80

Post Office Protocol (POP) 110
Network Time Protocol (NTP) 123
NetBIOS 137/138/139

Internet Message Access Protocol (IMAP) 143
Simple Network Management Protocol | 161/162

(SNMP)

Border Gateway Protocol (BGP) 179
Lightweight Directory Access Protocol | 389
(LDAP)

Hypertext Transfer Protocol over SSL/TLS | 443
(HTTPS)

Lightweight Directorv Access Protocol over | 636
TLS/SSL (LDAPS)
FTP over TLS/SSL

989,/990

on a network the IP address given to a computer or device is dictated by a router and
is not the IP address used to receive the incoming data. For this reason the server end
needed to be set up such that the public IP address displayed is the one directly from the
service provider. When connecting to the internet using a 4G modem the device’s public
IP address is direct from the service provider, thus attempts were made to start a server
on this IP address.

Starting a server on the 4G modem’s 1P address wouldn't work despite many attempts
with different modems and service providers, however none proved fruitful as the server
was denied the ability to start on the modem’s IP address. This was due to the service
providers not allowing access to this [P address as they own the IP addresses and don’t
allow any other incoming connections. This meant that a server had to be purchased or
acquired so that a dedicated IP address can be obtained, this is exactly what is required
as the host address. With this dedicated [P address the server can be started on the
dedicated address using the developed Python seript. This would mean the client would
then seek a connection from the dedicated IP address and call on the port number, the
server would in turn be listening on its port number and in turn accept the connection

22 Chapter 4. Results and Future Work

from the client. After acquiring a dedicated IP address from Nectar [2] the code was
tested, debugged and modified to work externally.

The two separate scripts, the reader and the client seripts both had to be combined,
in order for the system to send the data being read. This involved embedding the reader
script inside the client script such that the data being sent was not a simple line of text
but instead the serial data being read from the serial port of the Raspberry Pi.

4.1.4 Shell Scripting

Shell scripts are scripts designed to be run by Unix shell in the command line. They're
usually used to print text or execute files, the shell seript written was written to firstly
connect to the Raspberry Pi to the Internet and to run the Python client script. The
shell script was written in the bash shell and looks as follows:

#!/bin /bash
sleep 15s
sudo wvdial &
sleep 15s

python3 /home/pi/Desktop/client .py &

The reason for this shell script is there needs to be an Internet connection established
before the Python client script is run. Internet connection is done by the sudo wvdial
command, however when creating the script this command wouldn’t exit by itself and
this resulted in the following commands in the shell script not being able to run. To
try and prevent this the & was added as it pushes the command to the background to
run, however this didn’t work as the connection command requires more time to fully
complete its execution process. To hold the execution of the Python script and stop
it from executing before the Internet connection is established, a delay was added. This
delay sleep 15s was added after the Internet connection command to prevent the Python
client file from running before the Internet connection has been established, this delay of
15 seconds was tested multiple times and found to be an acceptable duration. The shell
script was later appended to include a delay before the Internet connection command as
when the shell script was set to run automatically, the USB modem needed to initialise
before the Internet connection command is executed.

Due to the machine to machine system requirement, the Raspberry Pi needs to auto-
matically connect the Internet and run the client Python script, this means setting the
shell seript to run automatically. The shell script needs to be given the permissions to
run automatically, this is done through the command chmod 7565 my_script which gives
the file read, write and execute permissions or 700 will give read and execute permissions.
To then run the file automatically, changes have to be made to the root files of the Rasp-

4.2 Results 23

berry Pi. The file that needs to be modified is in /etc/init.d/rc.local, this rc.local
file contains a section in which files can be set to boot before login. In the re.local file,
the path and location of the shell seript needs to be added in the start section in order
for it to run on start up as seen in the code below.

case ‘‘$1'° in
start)
do_start

#shell seript goes here
Jhome/ pi/Desktop/3g.sh

restart | reload | force —reload)
echo ‘‘Error: argument ‘$1° not supported ' >&2
exit 3

stop)

*
)
echo ‘*Usage: 50 start|stop’ ' >&2
exit 3
esac
In order for this shell script to run automatically the Raspberry Pi needs to be logged
in, there were two options to do this, write a script to run in boot time to log in auto-
matically or just disable the log in altogether. Disabling the login was the most efficient
approach, this was done by first editing the /etc/inittab. Disabling the getty login pro-
gram can be done by commenting out the line 1:2345:respawn:/sbin/getty 115200
ttyl in /etc/inittab with a and then replacing it with 1:2345:respawn:/bin/login
-f pi ttyl </dev/ttyl >/dev/ttyl 2>1, saving the file and the Raspberry Pi boots
without requiring a login.
The Raspberry Pi will now start up and automatically, connect to the Internet and
run the client Python file, which will automatically read the data, connect to the server
and send the data to the server making it a machine to machine communication.

4.2 Results

The final designed system produced the results that were expected. The below diagram
shows the system on its own, the OBDII plug end of the cable needs to be then plugged
into the OBDII port of the vehicle and the USB into the cigarette lighter USB adaptor
to power the Raspberry Pi.

The OBDII port for each car is located in a different place, the user manual or service
manual will usually have the location of the OBDII port along with a diagram. For the

24 Chapter 4. Results and Future Work

i
g T

Figure 4.1: The Electronic Vehicle Monitoring System

Mitsubishi iNGEV the OBDII port is located on the driver’s side, under the panel below
the steering wheel and to the left hand side of that panel.

Figure 4.2: On Board Diagnostics Two Port

To receive and read the data the server needed to be set up, this server was set up
using the nectar website. This site allows for the creation of a virtual server, that has a
dedicated IP address and can be accessed at any point of fime. During the creation of
the server the first thing that needed to be done was select the server’s image, a Ubuntu
server was chosen as the image, the server also needed to allow SSH connections in its

4.3 Future Work 25

security and authentication settings. A key pair then needed to be created in order to
access the server at a later point in time, the command to do this is ssh-keygen -t rsa
-f cloud.key and a password was also set to allow for access to the server. The keygen
command generates both a public key and a private key however only the private key is
required to log in to the server along with the password.

Once the server had been set up new security and authentication settings needed to be
added in order to allow incoming connections to the server on the designated port. This
was done through adding a new security group that accepted the incoming connections
on the specified port from the client seript. As the server now accepts connections on
the designated port then it is possible to log on and read the data. The login process
requires, the key pair, password and using SSH, the command ssh -i cloud.key -1
ubuntu 115.146.86.77 needs to be executed through the command line. Once the com-
mand has been executed the password set for the server will be requested, once this has
been entered it and accepted the server will log on and the server Python script can be
run and the data can be received.

Figure 4.3 shows the data sent from the monitoring system in the vehicle to the server,
the data is being received by the server and displayed.

4.3 Future Work

Improvements and further developments can be made to the system to enhance both
its performance and usability. Due to time constrains several things were unable to be
undertaken as a result the future work to be done on the system include things like
developing a mobile app to improve usability, decrypting the CAN data, and a server
alternative to improve the functionality.

The current server has certain limitations, the server is a viable option for research
purposes but not for commercial uses. The current server has the benefit of being free
to use for researchers, students and professors, however it wouldn’t be a viable option for
important task like tracking ambulances for example. The server host states that they
allow constant anvtime access to the server, however due to its large client base it requires
constant upkeep and the server could potentially go down at any point in time. There is
one bug that resides on the server end that has already been detected. The bug results in
the connection being refused when the client tries to connect, this means that the server
can not be found by the client as the server has not started correctly. The only fix for this
is to restart the server connection, run the Python server script again and then reconnect
by means of the client.

This is problematic as the only possible way too tell the connection has been refused is
through the time it takes to connect, too long and the connection has been refused. This
is due to the fact that the system in the car has no screen therefore there is no way to see
that the connection fo the client has been refused, the other option is to try and connect
to the server via a compufer thus testing the connection. For practical and commercial
applications a improved and more reliable server should be obtained, this will come at a

26 Chapter 4. Results and Future Work

| ® 060 @jﬂhmnma‘thia‘s— ubuntu@logger: ~ — ssh — 90x53 |
==

Lazt logim: Thu Dot 27 19:14:42 on ttysool

Johanns=HacBock=Proz~ johannmathics} ssh =i cloud.key =1 vbuntu 115 145.86.77

Saving passvord to kewchain failed

Enter possphrose for key 'cloud.key':

NelTAR Ubuntu 15.84.1 LTS =86 64
Inoge detoils and infornetion is ovoiloble ot
Fttpe:/laupoort nectar .org.aw/supoort/eolut ions/art o lec /E@08186265 - inage-cotalog

¥ Documentation: hETps i/ ARE|p.ubuntl . con

Honogement.: https:/¢ londzcope . canonico | .com

* Supoort: hittps :/ Auountu.conydadvantags
Last login: Thu Ost 27 083:15:26 2816 from 114.75.194.163
To run o commond oz odninistrotor {user “root®), wse “sudo .commancs” .
Ses “"mon sudo_root” for details.

ubuntud logger i~ python3 server.py
Socket created.

Starting up Server on 115.145.85.77 port 5568
Socket. bind conlets.

The Server is listening for a client

Cornected to: 459.183.138.166:48406

1;8;8;36;3

27TA42213399;8, 356,538,010 66,1
27TO4ZE13400 ;9 ;660;8;21;8;1;119;
27TR4Z213903;0;57;0;12;
27TR42713406 30 ;229;

27TR42213906,381312;8:8:0
2TTR4ZELI407;8; 31485

27TB4Z213967 38 344§
2TTR42213410;5;4929;A;:0;0;
27T04221341039426;127 ;255
27T042213416;8;432;

2TTe4Z213414 ;8,57
27TA4221341630;229;
27TR4221341739 ;318303030303
27T04221394758;314;

27TE4ZE13417 ;0;380;8;
LTTOAZE13416;0,392;0;0;
27TB4Z213918:8 ;149127864 :6;8:0:938:25
2TTR4ZZ13419;8 ;B84 ;74 ;96;0519;0;0 342 ;
LTTOAZ213428;0:887; i
27TA4ZE215420,;0,665;7;
2TTR4Z213428 ;0 ;1029830 ;36 ;0364 ;03053
271092213920 39,105¢ 3030783111942 ;1535
2TTR4Z215420;8, 2258, s

Figure 4.3: Server data received by the client

monetary cost. The alternative to just dealing with the server issue is to obtain a server
from Amazon.com. Amazon rent out their hardware and charge per hour of usage or
per gigabyte processed, prices vary depending on the location of the server, American

4.3 Future Work 97

servers being the cheapest and the servers get more expensive for less popular countries
like Anstralia and the Asia Pacific region.

For this system Amazon VPC is the most suitable of the Amazon Web Services avail-
able as it allows for both storage and computation. Amazon has a proven computing
environment and networking capabilities, Amazon VPC also allows for quick scaling that
enables the server to be scaled up of down depending on the user’s needs while only
requiring the user to pay for what has been used [3]. The pricing for Amazon VPC is
approximately $0.06 per hour or $0.06 per gigabyte. The advantage of using a Ama-
zon.com server is that it can easy be integrated with other Amazon products like Amazon
DynamoDB which is a database that can store the data or AWS loT which is the future
of data management and a central hub for data collection and analysis. AWS IoT how-
ever slightly more expensive at $6 per million messages, although as loT becomes more
common the price will decline. After the server receives the data it needs to be decrypted,
this can be done using an Amazon computational service or via an external application,
an Internet application or even a mobile application.

A mobile application to convert the data seems like the most efficient and cost effective
method, however if the data required to be processed is too much for a smart phone then
alternatives are available thanks to Amazon Web Services. The data needs to be viewed
by a user in realtime therefore a mobile application will be need regardless, therefore
it makes sense that the computation and decryption of the CAN data is done by the
smartphone application. The computation can be limited such that it only updates every
10 or 30 seconds, or even longer depending on the parameter that needs to be displayed.
Parameters like temperature, change a considerably slower than other parameter thus
then can be computed with longer time intervals, this can be programmed to be done by
the mobile application itself. however if the data needs to be computed as fast as it is
being ontput then Amazon EC2 or AWS Lambda would be an appropriate choice.

Amazon EC2 and AWS Lambda are computational engines that make cloud computing
easier for developers to use. AWS Lambda is overall the more expensive option of the two
but it is also the more functional of the two, it allows the running of the code without
the need to manage servers to access it. AWS Lambda also has its own code that runs in
parallel with the user's code to enable the smooth operation of the required functions set
out by the user. The user’s code can be uploaded to AWS Lambda and can be triggered
to run by other AWS services, websites or even smart phone application activity. AWS
Lambda runs the code using only the required resources and charges the user for the
computational time used, which is on a subsecond metering basis,

A major advantage of using AWS Lambda is that it can call any other Amazon service,
this includes the Amazon DynamoDB database, Amazon EC2 computation or Amazon
VPC networking services. This allows a dynamic handling of the data as AWS Lambda
already has inbuilt integration for various backends like web applications, mobile appli-
cations and IoT. This means the data can be easily extracted, transformed and displayed
throngh graphical analytics. The data can the be read and analysed relatively easily, it
also allows for logistics to be run on the data both externally and within Amazon Web
Services. When a substantial amount of data has been collected through a substantial

28 Chapter 4. Results and Future Work

amount of cars being monitored, the data can then be used for its intended purposes of
managing congestion, finding parking and the additional monitoring of electric vehicles in
order to build and implement charging infrastructure. However before this can be done
the data needs to be decrypted so that the data can be read quickly and easily.

The CAN bus data is enerypted by the manufacturer so as to ensure that its private and
not being misused by anyone. For the Mitsubishi iMiev the data is encoded hexadecimal
or decimal, an example of this can be seen in figure 4.4,

800 [LOGO001.TXT |
Timestanp ;5(0)/E(L) 1D {Data};

10TBBZ245852 ;0;648;7;288;39;16;176,;6;1;16;
1ATAAZP45853 ;031882 ;3;232;3;232,;1A0 ;180 ;61 ;61 ;
1ATOAZ245653 3031883 361 361 361 62 74;13; 135 a;
1ATOAZ24E855 ;0645732885200 5141 ;264 12-16-
107805245856 3831765 ;1:70;70; 051,124 515124
18TBO52456856 ;831764 ;1;0;0;0;1;124;1;129;
10TBBZ245858 ;051686 ;3,233 51323765 ,16;0,8;
1ATBA3245858 ;93883190 ;1908;127;, 9631331920522,
1ATOAS245659 3051746 ;66305051631 ;1;208;0;
10TBAZZ45650 ;0350800 183480574 174 383
10TBBZ24585039;175039:9;0;0;0;9;0;0;

¥
10TBRZ245852 3051048 ;50 ;8; 8;038;030;
1ATARZZ4REAZ 3731830 32 164 35303
10TRB3245852 10645752083 39416,
10TBRZ245853 103836139116 75;3.2;
10THBI245853 ;031068 ;67 ;
10TBRZ245854 3057761959
107003245855 1016451 712683203051
LOTBHZ245856 303561 1430 ;
10TBAZ245856 3035331030 3

;
38 ;B:B=B=
10TBAZ245856 37352039332 5111 ; 265192 193192383
10TBNZ245856 303512933 7192;0;192 ;0,255 255;
10703245858 ;831687 ;8:9;0;1;114;8;1;9;

10TBA3245855;0,8583;190;196,;127;96;13;192;0;22;
10TBAZ245659;0;1747;0,0;0,;8;0;9;0;64;
10TBAZ245870;08;1754 ;8,0;0:89;0;9;8;8;

LOTBHZZ58TZ 1064517206559 165176 8311163
10TB0I245075;0;045;7;200;20;0;141,;254;12;16;
10T8A3245875 ;8:853 ;100 :106:127:96,13 ;192822

Figure 4.4: Example of the iMiev's CAN data

The figure shows a the data as output by the CAN logger, each of the values are
separated by a semicolon, this can be seen in the figure. The logger outputs the time
stamp first, then the base data of the log file, which is set to decimal, following that is
the CAN data identification usually followed by eight data bits. The identification value
is key in the decryption process as it identifies what data is encoded in the following
eight bits, to decrypt the data it must be known what data is stored in the eight bits for
this to be known the identification key must be known. Once the identification key is
known then an equation can be reverse engineered using the 8 data bits and the known

4.3 Future Work 29

value being sought out. This can be quite time consuming and difficult due to this fact,
Mitsubishi had been contacted and the ability to decrypt the data had been requested
however Mitsubishi are vet to comeback with a response. This decryption can be done
on multiple platforms but would be most efficiently it is done on a mobile app or AWS

Lambda or a combination of the two.

30

Chapter 4. Results and Future Work

Appendix A

Consultation Form

A.1 Overview

This section contains the supervisor consultation attendance form as required by the
department.

31

32 Chapter A. Consultation Form

A.2 Consultation Attendance Form

Consultation Meetings Attendance Form

[Week Date | Comments | Swdent’'s | Supervisor's |
__ (il applicable) Signature | Signature |
] ﬁl
an-nﬁ—-.g .\.«'.:'ﬁ' ‘-‘1’1(——"
e s t 0
\ a8 4
2 ;
oL S >

3 |\6los | : | s |
o =2 I Y =
woled| |
[\2/0 Blas
26(69 . I_"_.fﬁ.:\\,!_.{k'liv' +
1\ jz‘sjj\o : .H\,{ﬁm_
e M| T .

. H

| {

o> [N

o

Appendix B
Client Python Code

B.1 Overview

This section contains the Python code for the client communication end of the system.

B.2 Client Code

import socket
import serial
import time
import sys
import select
import csv

import http.client
import json
from urllib.parse import guote_plus

base = ‘/maps/api/geocode/json’

PORT_NAME = ‘/dev/ttyACMO’ #port address of the serial device
BAUDRATE = 115200

def refresh_serial_port(serial_port):
#clears the serial port to avoid any errors
serial_port.setDTR(False)
time.sleep(1)
serial_port.flushInput()
serial_port.setDTR(True)

33

34 Chapter B. Client Python Code

def Main():
host = “115.146.86.77*
port = 5560

s = socket.socket()
s.connect ((host, port))

print (‘‘Connected to the Server’’)
print(‘‘Opening serial port °° + PORT_NAME + ‘¢ at "
+ str(BAUDRATE) + ‘¢ baudrate...’?)

ser = serial.Serial(port=PORT_NAME, baudrate=BAUDRATE, timeout=1)
refresh_serial_port(ser)

print(‘ ‘CAN data is being transmitted’’)

while True:
f = open(’dataFile.txt’, ‘a’)
data = ser.readline().decode(‘utf-8°)
s.send(data.encode(’utf-8?))
f.write(str(ser.readline().decode(‘utf-8°)))
f.close()
f = open(‘dataFile.txt’,’a’)
geocode(‘Macquarie University, Sydney, NSW’)

H H B

print(‘ ‘Closing serial port...’’)
ser.close()
s.close()

def geocode(address):
#taken from previous work done by PhD student
path = ‘{}?address={}&sensor=false’.format(base, quote_plus(address))
connection = http.client.HTTPConnection(‘maps.google.com’)
connection.request(‘GET’, path)
rawreply = connection.getresponse().read()
reply = json.loads(rawreply.decode(‘utf-8"))
print (*‘\n \n \t The longitude and lattitude is:’’)
print (* \t")
print (reply[‘results’] [0] [‘geometry’] [‘location’])

if __name__ == ‘__main__’:
Main()

Appendix C

Server Python Code

C.1 Overview

This section contains the Python code for the communication at server end of the system.

C.2 Server Code

import socket

“115.146.86.77° # server IP address
5560

host
port

server_address = (host,port)

def Connect():
s.listen(2) # 2 connections
print(‘‘The Server is listening for a client’’)
¢, address = s.accept() # accepts x
print(‘ ‘Connected to: ’’ + address([0] + ‘‘:’’ + str(address[1]))
return c

def Transfer(c):
while True:

f = open(‘dataFile.txt’, ‘a’)
data = c.recv(1500) # receive the data
print(data.decode(‘utf-8))
f.urite(str(ser.readline().decode(‘utf-8°)))
f.close()
f = open(‘dataFile.txt’,’a’)

36 Chapter C. Server Python Code

s = socket.socket(socket . AF_INET, socket.SOCK_STREAM)
print (¢ ‘Socket created.’’)
s.setblocking(1)
s.settimeout (10000)
print (‘ ‘Starting up Server on %s port %s '’ % server_address)
try:
s.bind((host, port))
except socket.error as msg:
print (* ‘Socket failed to bind’’)
print (‘ ‘Socket bind comlete.’’)

while True:
try:
¢ = Connect ()
Transfer(c)
except:
break

Bibliography

[1] Connexion. (2016, October) Flex wvehicle system. [Online]. Awvailable: http:
/[www flexvs.com/

[2] N. Directorate. (2016, October) Nectar server. [Online]. Available: http:
/ [nectar.org.au/

[3] C. Electronics. (2016, Angust) Canlogger2000. [Online]. Available: http:
/ [www esselectronics.com/screen /product /can-bus-logger-canlogger2000

[4] emr. (2015, June) Guide how to use raspberry pi with
3z ush stick. [Online]. Awvailable: http://copyndone.com/2015/06/27/
guide-how-to-use-raspberry-pi-with-3g-usb-stick /

[5] Z. M. Fadlullah, M. Fouda, and N. Kato., “Toward intelligent machine-to-machine
communications in smart grid,” IEEE Communications Magazine, vol. 49(4), no.
53-58, 2011.

[6] J. Forcier. (2016, August) Paramiko. [Online]. Available: http://www.paramiko.org

[71 I. GENERAL. (2013, May) What is the difference between
m2m and iot? [Online]. Available: https:/ /iot.telefonica.com/blog/
what-is-the-difference-between-m2m-and-iot

8] A. W. S. Ine. (2016, October) Amazon virtual private cloud (vpe). [Online].
Available: https://aws.amazon.com/vpe/7nc2=h_ml

[9] - . (2016, November) Aws iot features. [Online]. Available: https://aws.amazon.
com /iot/how-it-works /

[10] Libelinm. (2016, October) 50 sensor applications for a smarter world. [Online]. Avail-
able: http://www libelium.com /resources/top_50_iot_sensor_applications_ranking /
#show _infographic

11] —. (2016, October) Smart world image. [Online]. Avwail-
able: http:/ /www.libelium.com /wp-content /themes /libelium/images /content,/
applications/libelinm_smart_world _infographic_big.png

37

38

BIBLIOGRAPHY

12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

21]

22]

C. Liechti. (2001-2015) Pyserial. [Online]. Available: https://pythonhosted.org/
pyserial /pyserial.html#overview

F. Lin, “Statistical analysis of lithinm-ion battery data collected on-board electric
vehicles,” Master's thesis, Royal Institute of Technology, Stockholm Sweden, 2013.

A, Lowne and H. Doughty, “Bluetooth moves beyond the earpiece to rule
other applications,” June 2010. [Online]. Available: http://mobiledevdesign.com/
learning-resources/bluetooth-moves-beyond-earpiece-rule-other-applications

J. Morgan. (2014, May) A simple explanation of ‘the internet of
things’. [Online]. Available: http://www.forbes.com/sites/jacobmorgan/2014/05/
13/simple-explanation-internet-things-that-anyone-can-understand / #7815359{6828

K. M. Muttaqi, A. D. T. Le, J. Aghaei, E. Mahboubi-Moghaddam, M. Negnevitsky,
and G. Ledwich, “Optimizing distributed generation parameters through economic
feasibility assessment,” Applied Energy. vol. 165, pp. 893-903,, 2016.

U. of Concerned Scientists. (2016, September) Cars and global
warming. [Online]. Available: http://www.nesusa.org/clean-vehicles/
car-emissions-and-global-warming# WB78FWR94y4

Optus. (2016, September) Our mobile broadband /home
wireless broadband apns & technical settings. [On-
line]. Available: http:/ /www.optus.com.au/business /support /answer /

our-mobile-broadband-or-home- wireless-broadband-apns-technical-settings?
request Type=NormalRequest&id=1370& typeld=5

C. Technologies. (2016, October) Fleetcarma. [Online]. Awailable: https:
[/www fleetcarma.com/

Tutorialspoint. (2016, August) Python network programming. [Online|. Available:
https://www.tntorialspoint.com/python /python_networking. htm

J. L Vial and J. W. Dixon, “Monitoring battery system for electric vehicle, based on
“one wire.”

S. Wilkins. (2012, April) Tep/ip ports and protocols. [Online]l. Available:
http:/ /www.pearsonitcertification.com/articles/article.aspx ?p=1868080

	Final Report
	by Johann Mathias

