
HIGH-PERFORMANCE HARDWARE IMPLEMENTATION

OF ELLIPTIC CURVE CRYPTOGRAPHY

by

Md Selim Hossain

Dissertation submitted in fulfilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Engineering
Faculty of Science and Engineering

Macquarie University
Sydney, Australia

June 2017

Copyright © 2017 Md Selim Hossain

All Rights Reserved

ABSTRACT

Elliptic curve cryptography (ECC), a public-key cryptography (PKC) encryption

technique, has gained much interest among cryptography researchers because of

its advantages over other commonly used PKC algorithms, such as the Rivest,

Shamir and Adleman (RSA) cryptosystem. It offers equivalent security to RSA,

but with significantly shorter key lengths. This attractive feature makes ECC

very popular for resource-constrained applications such as smart cards, credit

cards, pagers, personal digital assistants (PDAs), and cellular phones. ECC is

considered to be more efficient in terms of speed, area, and power consumption.

This dissertation introduces several hardware implementations of an efficient

ECC cryptosystem both on a field-programmable gate array (FPGA) and on an

application-specific integrated circuit (ASIC) using VHDL. The first half of this

dissertation discusses the high-performance hardware implementation of an ECC

over the binary field F2
m and the second half describes an efficient implementa-

tion of an ECC over the prime field Fp. These are implemented both in affine and

Jacobian coordinates using the binary method (i.e. the double-and-add method)

and the National Institute of Standards and Technology (NIST) recommended

standard. The performance or efficiency of an ECC processor (ECP) is based on

elliptic curve scalar (or point) multiplication (ECSM or ECPM) which is the most

time and resource consuming operation in either a binary field or a prime field.

The aim of this dissertation is to implement an efficient ECPM with a trade-

off between speed, energy, and area complexities, required for modern security

vi

applications. Various techniques are introduced to improve the performance of

the ECPM, such as parallelisation, pre-computations, algorithm or architectural

optimisation, and improved finite-field (or modular) arithmetic architectures. Al-

though there is a substantial amount of work on separate point doubling (PD) and

point addition (PA) implementations to compute elliptic curve group operations,

essential for an ECPM, not much work is focused on a combined hardware archi-

tecture for group operations. In this research work, both modular arithmetic and

group operations are optimised to improve the performance of ECPM. A com-

bined PDPA architecture is designed which performs the PD and PA operations

together in each iteration. Consequently, a uniform power consumption profile

may be measured throughout the PDPA hardware, hence the point multiplication

computation. Therefore, the proposed ECPM hardware implementation is secure

against timing attacks and simple power analysis (SPA) attacks.

In this dissertation, the parallel ECPM architecture supports two Koblitz and

random curves for the key sizes 163 and 233 bits and the ECP using a bit-serial

multiplier supports all five NIST curves for the key sizes from 163 to 571 bits. The

delay of a 233-bit parallel point multiplication is only 3.05 µs in a Xilinx Virtex-7

FPGA and 0.81 µs in an ASIC 65-nm technology. In addition, an energy-efficient

ECP implementation over F2
m is achieved in which the Area×Time×Energy value

is lower in an ASIC platform than in all comparable work in the literature. On

the other hand, an ASIC-based implementation of an ECP over prime fields sup-

ports three prime fields of the five NIST-recommended primes p, with sizes 192,

224, and 256 bits. The delay for ASIC-based ECP over Fp is between 0.207 and

0.366 ms. To the best of the author’s knowledge, these are the fastest hardware

implementation result reported in the literature to date. Moreover, the energy

dissipation is only about 0.3% of that of other similar designs.

STATEMENT OF CANDIDATE

I certify that the work in this thesis entitled “High-Performance Hardware

Implementation of Elliptic Curve Cryptography” has not previously been

submitted for a higher degree nor has it been submitted as part of the require-

ments for a degree to any other university or institution other than Macquarie

University.

I also certify that the thesis is an original piece of research and it has been written

by me. Any help and assistance that I have received in my research work and the

preparation of the thesis itself have been appropriately acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

.

Md Selim Hossain

ACKNOWLEDGMENTS

I would like to thank my principal supervisor Dr Yinan Kong, director of the

VLSI Research Group, Macquarie University, for providing me with the oppor-

tunity to pursue my PhD research at Macquarie University, Australia. He has

provided me with many helpful suggestions and constant encouragement over the

last three and a half years. Dr Kong has been very supportive and given me a

proper direction for my research. I appreciate his contribution of invaluable time,

creative ideas, and effective discussion. This thesis would not have been possible

without his unconditional dedication, help and support, and guidance. I would

also like to thank my associate supervisor A/Professor Christophe Doche for his

initial direction, kind support, and inspiration.

I am grateful to Professor Joachim Rodrigues, Department of Electrical and

Information Technology, Lund University, Sweden, for providing me with the op-

portunity to work under his guidance for the ASIC-based designs. I am immensely

grateful to Dr Shahzad Asif, Dr Ehsan Saeedi, and Niras C. Vayalil for their con-

tinuous help and discussion on my research. I am thankful to the digital ASIC

research team at Lund University for their valuable discussions on my work. I am

also thankful to STMicroelectronics for use of their ASIC 65-nm CMOS technol-

ogy library. I am grateful to Dr Oskar Andersson and my VLSI Group Members

Dr Tariq M. Khan, Dr Azadeh Safari, Mr Abdullah-Al Nahid, and Mrs Naila

Mukhtar for their help and support. My special thanks to Dr Debabrata Kumar

Karmokar for his continuous help and advice during this research.

x

I am immensely grateful to Dr Keith Imrie, Honorary Associate, Department

of Engineering, Macquarie University, for his continuous help in proofreading my

research papers/thesis. I appreciate his corrections as these have helped con-

siderably in the preparation of my papers/dissertation. His valuable advice and

useful comments improved the quality of this dissertation. I am also grateful to

Mr Phillip Thomas for proofreading one of my research papers. I am thankful to

the admirable staff in the Department of Engineering, Macquarie University, to

all my teachers, and all anonymous reviewers for their wonderful support.

I gratefully acknowledge Macquarie University for awarding me the inter-

national Macquarie University Research Excellence Scholarship (iMQRES) for

providing financial support during three and a half years. I am thankful to

Macquarie University for providing me with the Macquarie University Postgrad-

uate Research Fund (MQ PGRF) for external collaboration and to attend an

international conference and Faculty of Science HDR Research and Conference

Funds to attend national conferences during this project. I am immensely grate-

ful to Khulna University of Engineering & Technology (KUET), Bangladesh for

allowing me to have study leave from my Assistant Professor position with the

Department of Electrical & Electronic Engineering to pursue the PhD degree.

This thesis might not exist at all without the love and support of my family.

Lastly but not least, thanks also goes to my brother-in-law Mr Hasanuzzaman,

my father-in-law and mother-in-law, and my friends and colleagues Dr Shahidul

Islam, Dr Raheel Hashmi, Mr Ariful Huq, Mr K. M. Morshed, Mr G. Nabi, Mr

Kallol K. Karmakar, Mr Shahzamal, Mr Khizir, Mrs Sudipta, and Mr Affan for

their endless help and support. Many more persons participated in various ways

to ensure that my research succeeded than those and I am thankful to them all.

Finally, to the Almighty Allah, for bestowing countless blessings on me.

Dedicated to

My loving wife, my cute daughter, my sisters, and my most amazing parents.

Contents

Table of Contents xiii

List of Publications xxiii

List of Contributors xxvii

List of Figures xxx

List of Tables xxxvii

1 Introduction 1

1.1 Overview . 1

1.2 Challenges and Objectives . 3

1.3 Main Contributions . 5

1.4 Dissertation Outline . 8

2 Background 15

2.1 Overview of Cryptography . 15

2.2 Private-key Cryptography . 16

2.3 Public-key Cryptography . 17

2.3.1 Discrete Logarithm Problem . 18

2.3.2 Integer Factoring Problem . 19

xiii

xiv Contents

2.3.3 Elliptic Curve Discrete Logarithm Problem 19

2.4 Finite Field Arithmetic . 20

2.4.1 Groups, Rings, and Fields . 20

2.4.2 Finite Field . 21

2.5 Binary Field F2
m Arithmetic Background 21

2.5.1 Normal Basis . 22

2.5.2 Polynomial Basis . 22

2.5.3 Addition in F2
m . 23

2.5.4 Multiplication in F2
m . 24

2.5.5 Squaring in F2
m . 27

2.5.6 Inversion in F2
m . 28

2.5.7 Complexity Analysis of Finite Field Arithmetic over F2
m 30

2.5.8 Reduction in F2
m . 30

2.5.9 NIST Reduction Polynomials over F2
m 30

2.6 Prime Field Fp Arithmetic Background . 31

2.6.1 Modular Adder and Subtractor over Fp 32

2.6.2 Modular Multiplier/Squarer over Fp 33

2.6.3 Modular Inversion over Fp . 35

2.6.4 Complexity Analysis of Modular Arithmetic over Fp 36

2.6.5 NIST Primes p over Fp . 37

2.7 Elliptic Curve Cryptography . 38

2.7.1 Overview of Elliptic Curves . 39

2.7.2 Elliptic Curve Point Arithmetic . 41

2.8 Point Representation . 43

2.8.1 Point doubling and point addition over F2
m in Jacobian Projective

Coordinates . 44

Contents xv

2.8.2 Point doubling and point addition over Fp in Jacobian Projective

Coordinates . 45

2.9 Elliptic Curve Point Multiplication . 47

2.9.1 Double-and-add point multiplication 48

2.9.2 Example of double-and-add point multiplication 49

2.10 Security Analysis . 49

2.11 Platforms for Hardware Implementation 50

2.12 Elliptic Curve Digital Signature Algorithm 52

2.13 Summary of Proposed Designs . 52

3 Efficient Hardware Implementation of Finite Field Arithmetic for Ellip-

tic Curve Cryptography 55

3.1 Abstract . 55

3.2 Introduction . 56

3.2.1 Related Work . 57

3.2.2 Our Contribution . 59

3.2.3 Structure of the Paper . 60

3.3 Preliminaries . 60

3.4 Hardware for Finite Field Arithmetic . 63

3.4.1 Finite Field Addition . 63

3.4.2 Finite Field Multiplication . 63

3.4.3 Finite Field Modular Reduction . 72

3.4.4 Finite Field Inversion . 73

3.5 Implementation Results and Comparison 75

3.5.1 FPGA Implementation Results . 76

3.5.2 ASIC Implementation Results and Comparison 83

3.6 Conclusion . 92

xvi Contents

4 High-Performance FPGA Implementation of Elliptic Curve Cryptogra-

phy Processor over Binary Field GF(2163) 93

4.1 Abstract . 93

4.2 Introduction . 94

4.3 Background . 96

4.3.1 Groups and Fields . 96

4.3.2 Elliptic Curve Cryptography (ECC) 97

4.4 Hardware Implementation for Finite Field 99

4.4.1 Polynomial Basis Representation 99

4.4.2 Addition in GF(2m) . 100

4.4.3 Multiplication in GF(2m) . 100

4.4.4 Squaring in GF(2m) . 102

4.4.5 Inversion in GF(2m) . 102

4.4.6 Proposed EC Group Operations . 103

4.5 Proposed ECPM . 105

4.6 FPGA Implementation Results and Performance Analysis 107

4.7 Conclusions . 110

5 High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields 111

5.1 Abstract . 111

5.2 Introduction . 112

5.3 Background . 114

5.3.1 Finite Field . 114

5.3.2 Coordinate Systems for Elliptic Curve Point Representation 115

5.3.3 Elliptic Curve Cryptography . 116

5.4 Implementation of Finite-Field Arithmetic 118

Contents xvii

5.4.1 Polynomial Basis Representation 118

5.4.2 Addition in GF(2m) . 120

5.4.3 Multiplication in GF(2m) . 120

5.4.4 Squaring in GF(2m) . 122

5.4.5 Inversion in GF(2m) . 123

5.4.6 Elliptic Curve Group Operations (ECPD and ECPA) 125

5.5 Elliptic Curve Scalar Multiplication (ECSM) 126

5.6 Results and Performance Analysis . 128

5.7 Conclusion . 131

6 Parallel Point-Multiplication Architecture using Combined Group Op-

erations for High-Speed Cryptographic Applications 133

6.1 Abstract . 133

6.2 Introduction . 134

6.3 ECC Background . 137

6.4 Proposed Point Multiplication in Projective Coordinates 140

6.4.1 Point Multiplication Algorithm . 140

6.4.2 Architecture for ECPM . 141

6.4.3 Security Analysis . 143

6.5 Proposed Group Operations . 143

6.6 Proposed Field Multiplication for F2
m . 145

6.7 Comparisons and Performance Analysis . 147

6.8 Conclusion . 158

7 Efficient Hardware Implementation of Elliptic Curve Cryptography Pro-

cessor Over NIST Binary Fields 159

7.1 Abstract . 159

xviii Contents

7.2 Introduction . 160

7.2.1 Related Work . 161

7.2.2 Our Contribution . 161

7.2.3 Organisation of the Chapter . 162

7.3 Mathematical Background of ECC . 163

7.4 Hardware for Finite Field Arithmetic . 164

7.4.1 Finite Field Modular Reduction . 166

7.4.2 Finite Field Multiplication . 166

7.4.3 Finite Field Inversion . 170

7.5 Proposed Group Operations for ECP . 172

7.6 Proposed ECC Processor . 175

7.6.1 Proposed Point Multiplication Architecture 176

7.6.2 Jacobian-to-Affine Coordinate Conversion 178

7.6.3 Main Controller of Point Multiplication 179

7.6.4 Overall Architecture of ECC Processor 181

7.6.5 Security Analysis . 182

7.7 Results and Performance Comparison . 182

7.7.1 Hardware Implementation Results 183

7.7.2 Performance Comparison . 194

7.8 Conclusion . 196

8 FPGA-Based Efficient Modular Multiplication for Elliptic Curve Cryp-

tography 199

8.1 Abstract . 199

8.2 Introduction . 200

8.3 Preliminaries . 202

8.3.1 Elliptic-Curve Cryptography . 202

Contents xix

8.3.2 Modular Multiplication over GF(p) 204

8.4 Hardware Architecture of Modular Multiplication over GF(p) for ECC . . 205

8.5 Hardware Implementation Results and Performance Analysis 208

8.6 Conclusion . 211

9 High-Performance FPGA Implementation of Modular Inversion over

F256 for Elliptic Curve Cryptography 213

9.1 Abstract . 213

9.2 Introduction . 214

9.3 Mathematical Background . 216

9.3.1 ECC . 216

9.3.2 Coordinate Systems for EC Point Representation 218

9.3.3 Modular Inversion over GF(p) . 218

9.4 Hardware Implementation of Modular Inverter over GF(p) 221

9.5 Results and Performance Analysis . 225

9.6 Conclusion . 228

10 High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields 229

10.1 Abstract . 229

10.2 Introduction . 230

10.2.1 Related Work . 231

10.2.2 Our Contribution . 232

10.3 Mathematical Background . 233

10.3.1 Elliptic Curve Cryptography . 233

10.4 Hardware Architecture over GF(p) for ECC 235

10.4.1 Modular Multiplier/Squarer over Fp 235

xx Contents

10.4.2 Modular Inversion over Fp . 237

10.4.3 Proposed EC Group Operations . 240

10.4.4 Proposed ECSM . 242

10.5 Implementation Results and Performance Analysis 247

10.6 Conclusion . 260

11 Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor 261

11.1 Abstract . 261

11.2 Introduction . 262

11.3 Preliminaries . 265

11.3.1 ECC . 265

11.3.2 Coordinate Systems for EC Point Representation 267

11.4 Hardware for FFMA over Fp . 268

11.4.1 Modular Adder and Subtractor . 268

11.4.2 Modular Multiplier . 269

11.4.3 Modular Inversion . 274

11.5 Proposed PDPA . 276

11.6 Proposed ECC Processor . 278

11.6.1 Proposed Architecture for ECPM 278

11.6.2 Jacobian to Affine Coordinates Conversion 280

11.6.3 Control Unit of ECPM . 281

11.6.4 Overall architecture . 283

11.6.5 ECDSA . 284

11.7 Implementation Results and Performance Comparison 286

11.8 Conclusion . 293

Contents xxi

12 Conclusions and Future Work 295

12.1 Conclusions . 295

12.1.1 Conclusions for Binary Field Elliptic Curve Cryptography 296

12.1.2 Conclusions for Prime Field Elliptic Curve Cryptography 299

12.2 Future Work . 301

A Simulation Waveforms and Results Sample 305

A.1 Simulation Results for Finite Field Arithmetic 305

A.1.1 Simulation waveform for Bit-Serial Multiplication 305

A.1.2 Simulation Results for Bit-Serial Multiplication 307

A.1.3 Simulation Waveform and Results for Traditional Digit-Serial Mul-

tiplication . 309

A.1.4 Simulation Waveform and Results for Modified Digit-Serial Multi-

plication . 310

A.1.5 Simulation Waveform and Results for Inversion 311

A.2 Simulation Waveform and Results for ECC Processor over NIST Binary

Fields . 312

A.3 Simulation Waveform and Results for ECC Processor over Prime Fields . . 313

B TCL Scripts Sample for Finite Field Arithmetic 315

B.1 Sample TCL scripts for bit-serial multiplier in Design Compiler 315

B.2 Sample TCL scripts for traditional digit-serial multiplier in Design Compiler317

B.3 Sample TCL scripts for modified digit-serial multiplier in Design Compiler 318

B.4 Sample TCL scripts for inverter in Design Compiler 320

C Sample TCL Scripts for Elliptic Curve Cryptography Processor Over

NIST Binary Fields 323

xxii Contents

C.1 Sample TCL scripts for ECC Processor over F2
571 using bit-serial multiplier

in Design Compiler . 323

C.2 Sample TCL scripts for ECC Processor over F2
233 using digit-serial multi-

plier in Design Compiler . 325

D Sample TCL Scripts for ASIC-Based Elliptic Curve Cryptography Pro-

cessor over Prime Fields 329

D.1 Sample TCL scripts for ECC Processor over F256 in Design Compiler . . . 329

D.2 Sample TCL scripts for ECC Processor over F256 in Prime Time 332

D.3 Sample TCL scripts to write a SDF file for ECC Processor over F256 332

D.4 Sample TCL scripts for ModelSim Simulation of ECC Processor over F256 . 333

E List of Acronyms 335

Bibliography 339

List of Publications

This thesis is based on the following original publications, which are referred to in the

text by Roman numbers. Original publications are reproduced with permission from their

copyright holders.

Discussed in Thesis

I M. S. Hossain, K. Ruangsantikorakul and Y. Kong, “Efficient Hardware Implementation

of Finite Field Arithmetic for Elliptic Curve Cryptography”, IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, in review.

II M. S. Hossain, E. Saeedi and Y. Kong, “High-Performance FPGA Implementation of

Elliptic Curve Cryptography Processor over Binary Field GF (2163)”, Proceedings

of the 2nd International Conference on Information Systems Security and Privacy

(ICISSP), Rome, Italy, pp. 415-422, 19-21 February, 2016, DOI:10.5220/0005741604

150422.

III M. S. Hossain, E. Saeedi and Y. Kong, “High-Speed, Area-Efficient, FPGA-Based El-

liptic Curve Cryptographic Processor over NIST Binary Fields”, 2015 IEEE Interna-

tional Conference on Data Science and Data Intensive Systems (DSDIS), UTS, Syd-

ney, Australia, pp. 175-181, 11-13 December, 2015, DOI: 10.1109/DSDIS.2015.44.

xxiii

xxiv Chapter 0. List of Publications

IV M. S. Hossain, E. Saeedi and Y. Kong, “Parallel Point-Multiplication Architecture

using Combined Group Operations for High-Speed Cryptographic Applications”,

PLOS ONE, vol. 12, pp. 1-18, May, 2017, DOI: 10.1371/journal.pone.0176214.

V M. S. Hossain, S. Asif and Y. Kong, “Efficient Hardware Implementation of Elliptic

Curve Cryptography Processor Over NIST Binary Fields”, IET Computers & Digital

Techniques, in review.

VI M. S. Hossain and Y. Kong,“FPGA-Based Efficient Modular Multiplication for Ellip-

tic Curve Cryptography”, International Telecommunication Networks and Applica-

tions Conference (lTNAC), UNSW, Sydney, Australia, pp. 191-195, 18-20 Novem-

ber, 2015, DOI: 10.1109/ATNAC.2015.7366811.

VII M. S. Hossain and Y. Kong, “High-Performance FPGA Implementation of Modu-

lar Inversion over F256 for Elliptic Curve Cryptography”, 2015 IEEE International

Conference on Data Science and Data Intensive Systems (DSDIS), UTS, Sydney,

Australia, pp. 169-174, 11-13 December, 2015, DOI: 10.1109/DSDIS.2015.47.

VIII M. S. Hossain, Y. Kong, E. Saeedi and N. C. Vayalil, “High-Performance Elliptic

Curve Cryptography Processor over NIST Prime Field”, IET Computers & Digital

Techniques, vol. 11, no. 1, pp. 33-42, 2016, DOI: 10.1049/iet-cdt.2016.0033.

IX M. S. Hossain, S. Asif, O. Andersson, J. N. Rodrigues and Y. Kong, “Energy-Efficient,

High-Speed, ASIC-Based Elliptic Curve Cryptography Processor”, IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, major revision submitted.

Other Publications

These publication are related to this thesis but are not discussed in the thesis.

xxv

1. Y. Kong and M. S. Hossain, “An RNS-based FPGA Implementation of a Modular

Multiplier for Public-Key Cryptography”, to be submitted in a conference.

2. S. Asif, M. S. Hossain and Y. Kong, “A Fully RNS based ECC Processor”, IEEE

Transaction on Computers, in review.

3. E. Saeedi, Y. Kong and M. S. Hossain, “Feed-Forward Back-Propagation Neural

Networks in Side-Channel Information Characterization”, Journal of Systems Engi-

neering and Electronics, in review.

4. S. Asif, M. S. Hossain and Y. Kong, “High-Throughput Multi-Key Elliptic Curve

Cryptosystem Based on Residue Number System”, IET Computers & Digital Tech-

niques, Accepted.

5. Y. Kong and M. S. Hossain, “FPGA Implementation of Modular Multiplier in Residue

Number System”, IEEE International Conference on Big data Analysis (IEEE ICBDA

2017), Accepted.

6. E. Saeedi, M. S. Hossain and Y. Kong, “Side Channel Information Characteriza-

tion based on Cascade Feed-Forward Back-Propagation Neural Network”, Journal

of Electronic Testing, Vol. 32, Issue 3, pp. 345-356, June, 2016, doi:10.1007/s10836-

016-5590-4.

7. E. Saeedi, Y. Kong and M. S. Hossain, “Side Channel Attacks and Learning Vec-

tor Quantization”, Frontiers of Information Technology and Electronic Engineering

(Accepted in February 2016). [Online]. Available: http://www.zju.edu.cn/jzus/ipa-

rticle.php?doi=10.1631/FITEE.1500460.

8. E. Saeedi, Y. Kong and M. S. Hossain, “Multi-class SVMs Analysis of Side-Channel

Information of Elliptic Curve Cryptosystem”, 2015 International Symposium on

xxvi Chapter 0. List of Publications

Performance Evaluation of Computer and Telecommunication Systems (SPECTS),

Chicago, IL, USA, pp. 1-6, 26-29 July, 2015, DOI: 10.1109/SPECTS.2015.7285297.

9. E. Saeedi, Y. Kong and M. S. Hossain, “Side Channel Analysis of an Elliptic Curve

Crypto-system Based on Multi-Class Classification”, The Sixth International Con-

ference on Computing, Communications and Networking Technologies (ICCCNT),

Denton, Texas, USA, pp. 1-7, 13-15 July, 2015, DOI: 10.1109/ICCCNT.2015.7395195.

List of Contributors

Supervisor Dr Yinan Kong, Department of Engineering, Macquarie University, Sydney,

Australia

VLSI research group members Dr Ehsan Saeedi, Dr Shahzad Asif, Niras Cheeckottu

Vayalil, and Kuntapong Ruangsantikorakul, Department of Engineering, Macquarie

University, Sydney, Australia

External Collaborator Dr Oskar Andersson, Department of Electrical and Information

Technology (EIT), Lund University, Lund, Sweden

External Collaborator A/Professor Joachim Neves Rodrigues, Associate Professor,

Department of Electrical and Information Technology (EIT), Lund University, Lund,

Sweden

In all the publications listed in this thesis, I have conducted the major investigations, de-

signs, measurements, data processing, and drafting. Dr Yinan Kong, who is my principal

supervisor, provided helpful suggestions, important advice and invaluable guidance at ev-

ery stage of this research. He also reviewed, proofread and corrected all the manuscripts.

Dr Saeedi provided suggestions regarding planning and data analysis as well as reviewed

and corrected manuscripts II, III, IV, and VIII. In addition, he performed a side-channel

analysis of my proposed ECC processors. The main focus of his dissertation was side-

channel attacks on elliptic curve cryptosystems based on machine learning techniques.

xxvii

xxviii Chapter 0. List of Contributors

My internal collaborator Dr Shahzad Asif provided initial support with the Xilinx ISE

simulation environment. He also helped me with the ASIC implementation platform and

provided support to prepare a script file for an ASIC-based ECC processor (ECP). He

implemented RNS-based elliptic curve point multiplication (ECPM) over the prime field

F256. On the other hand, I have implemented binary-based ECC processors both in the

binary field F2
m and the prime field Fp. Niras C. Vayalil, VLSI group member, helped

me in various ways to simulate my design of the high-performance ECP over NIST prime

fields. K. Ruangsantikorakul, my internal collaborator and undergraduate student, pro-

vided support with the hardware implementation of a finite field multiplier in GF(2m) (or

F2
m). My external collaborator, Dr Oskar Andersson from Lund University, Sweden, pro-

vided support for the ASIC 65-nm CMOS simulation and implementation environment.

For an ASIC-Based Elliptic Curve Cryptography Processor over prime fields, my external

collaborator A/Professor J. N. Rodrigues provided me invaluable guidance. He also re-

viewed, corrected, and proofread the last article in the list. A detailed list of contributors

is depicted in Table 1.

xxix

L
IS

T
 O

F
C

O
N

T
R

IB
U

T
O

R
S

D
IV

IS
IO

N
 O

F
L

A
B

O
U

R
 IN

 C
O

-A
U

T
H

O
R

E
D

 A
R

T
IC

L
E

S
M

SH
-M

d
Se

lim
 H

os
sa

in
; Y

K
-Y

in
an

 K
on

g;
 E

S-
Eh

sa
n

Sa
ee

di
; S

A
-S

ha
hz

ad
 A

si
f;

N
C

V
-N

ira
s C

he
ec

ko
ttu

 V
ay

al
il;

 K
R

-
K

un
ta

po
ng

 R
ua

ng
sa

nt
ik

or
ak

ul
; O

A
-O

sk
ar

 A
nd

er
ss

on
; J

N
R

-J
oa

ch
im

 N
ev

es
 R

od
rig

ue
s

I
II

II

I
IV

V

V

I
V

II
V

II
I

IX

C
on

ce
pt

io
n

&

de
si

gn

M
SH

M

SH
, Y

K

M
SH

M

SH
, Y

K

M
SH

M

SH
, Y

K

M
SH

M

SH
, Y

K

M
SH

Pl
an

ni
ng

 &

im
pl

em
en

ta
tio

n
M

SH
, K

R

M
SH

, E
S

M
SH

M

SH

M
SH

, Y
K

M

SH

M
SH

, Y
K

M

SH
,

N
C

V

M
SH

, S
A

D
at

a
co

lle
ct

io
n

M
SH

M

SH

M
SH

, E
S

M
SH

M

SH
, S

A

M
SH

M

SH

M
SH

M

SH
, O

A

A
na

ly
si

s &

in
te

rp
re

ta
tio

n
M

SH

M
SH

M

SH

M
SH

, E
S

M
SH

, S
A

M

SH

M
SH

M

SH
, E

S
M

SH
, S

A

W
rit

in
g

- o
rig

in
al

ar

tic
le

M

SH
, K

R

M
SH

M

SH

M
SH

M

SH

M
SH

M

SH

M
SH

M

SH

W
rit

in
g

- r
ev

ie
w

&

 e
di

tin
g

Y
K

ES

, Y
K

ES

, Y
K

ES

, Y
K

Y

K

Y
K

Y

K

Y
K

, E
S

Y
K

, J
N

R

O
ve

ra
ll

re
sp

on
sib

ili
ty

Y

K

Y
K

Y

K

Y
K

Y

K

Y
K

Y

K

Y
K

Y

K
, J

N
R

T
ab

le
1:

A
ut
ho
r’
s
C
on

tr
ib
ut
io
ns

List of Figures

1.1 Thesis outline . 9

2.1 Private-key cryptography (or Symmetric cryptography) [28] 17

2.2 Public-key cryptography (PKC) (or Asymmetric cryptography) [28] 18

2.3 Elliptic curves over real number R. 40

2.4 Geometric point addition and point doubling on elliptic curve. 41

3.1 Implementation hierarchy of the ECC operations over GF(2m). 62

3.2 Hardware Architecture of addition over GF(2m). 64

3.3 Proposed bit-serial finite field multiplication architecture in GF(2m). 66

3.4 Traditional digit-serial multiplication architecture over GF(2m): (a) origi-

nal) [43, 46] and (b) proposed. 68

3.5 Proposed modified digit-serial field multiplication architecture in GF(2m). . 69

3.6 Hardware for modular reduction in GF(2m). 72

3.7 Hardware Architecture for field inversion in F2
m. 73

3.8 Performance analysis of traditional digit-serial multiplication with various

digit sizes in Virtex-7 FPGA. 78

3.9 Performance analysis of traditional digit-serial multiplication with various

digit sizes in Virtex-6 FPGA. 79

xxxi

xxxii List of Figures

3.10 Performance analysis of modified digit-serial multiplication with various

digit sizes in Virtex-7 FPGA. 81

3.11 Performance analysis of modified digit-serial multiplication with various

digit sizes in Virtex-6 FPGA. 81

3.12 Area × time × energy (ATE) comparison of traditional digit-serial multi-

plication with digit sizes in F2
m. 91

3.13 Area × time × energy (ATE) comparison of modified digit-serial multipli-

cation with digit sizes in F2
m. 91

4.1 Squaring a binary polynomial U(x). 102

4.2 Hardware architecture of the elliptic curve point doubling (ECPD) operation.104

4.3 Hardware architecture of the elliptic curve point addition (ECPA) operation.105

4.4 Hardware architecture of Elliptic Curve Point Multiplication (ECPM) pro-

cessor. 106

5.1 Implementation hierarchy of the ECC operations over GF(2m). 115

5.2 Squaring a binary polynomial U(x). 122

5.3 Proposed hardware architecture of the elliptic curve (a) point doubling

(PD) and (b) point addition (PA). 126

5.4 Hardware architecture of elliptic curve scalar multiplier (ECSM). 127

6.1 Implementation hierarchy of the ECC operations over F2m 139

6.2 Hardware architecture of proposed ECPM in Jacobian coordinates. 142

6.3 Proposed data-flow architecture for parallel computation of elliptic curve:

(a) PD, (b) PA, and (c) PDPA. 144

6.4 Proposed parallel field multiplication architecture in GF(2m). 146

6.5 Comparison ((a) AT and (b) performance) of point multiplication over

GF(2233). 148

List of Figures xxxiii

a AT . 148

b Performance . 148

6.6 AT comparison of point multiplication ([a], [b], [c], [d], [e], and [f] represent

our work) over GF(2163). 154

6.7 Performance comparison of point multiplication ([a], [b], [c], [d], [e], and [f]

represent our work) over GF(2163). 154

6.8 AT comparison of point multiplication ([g], [h], [i], and [j] represent our

work) with references. 156

6.9 ATE comparison of point multiplication ([g], [h], [i], and [j] represent our

work) with related designs. 157

7.1 Implementation hierarchy of the ECC operations over F2m 165

7.2 Proposed bit-serial field multiplication architecture in GF(2m). 167

7.3 Proposed digit-serial field multiplication architecture in GF(2m). 170

7.4 Hardware Architecture for field inversion in F2
m. 171

7.5 Proposed PDPA architecture for Koblitz Curves (a) K-163 and (b) K-233–

K-571. 174

7.6 Proposed PDPA architecture (a) using bit-serial multiplication and (b)

using digit-serial multiplication, for random or binary curves. 175

7.7 Detailed hardware architecture of proposed ECPM in Jacobian coordinates. 178

7.8 Proposed hardware architecture of Jacobian to affine conversion (a) using

one inversion and (b) using two inversions. 179

7.9 Proposed main controller of ECPM in Jacobian coordinates. 180

7.10 Overall block diagram of ECP top module. 181

8.1 Implementation hierarchy of the ECC operations over GF(p). 204

8.2 A hardware architecture for a modular multiplier [80]. 208

xxxiv List of Figures

9.1 A hardware architecture for a modular inverter for finding (a)unew , (b)

vnew, (c) xnew, and (d) ynew [174]. 224

10.1 Hardware architecture for a modular multiplier/squarer using Montgomery

method [80,182] . 236

10.2 Proposed hardware architecture for a modular multiplier/squarer. 238

10.3 Proposed hardware architecture for EC (a) PDBL, (b) PADD, and (c) PDPA.241

10.4 Overall hardware architecture of proposed ECSM in affine coordinates for

prime field. 244

10.5 Overall hardware architecture of proposed ECSM in Jacobian coordinates. 245

10.6 Proposed hardware architecture of (a) Jacobian to affine conversion and

(b) top module of ECP. 246

10.7 Comparison of relative AT values between our ECC design ([b], [c], and

[d]) and similar work. 259

11.1 Hardware architecture of modular (a) adder (b) subtractor, and (c) com-

bined modular adder and subtractor. 269

11.2 Hardware architecture for the interleaved modular multiplier. 271

11.3 Proposed hardware architecture for (a) modular multiplier and (b) Radix-4

modular multiplier. 273

11.4 Proposed hardware architecture for PDPA. 277

11.5 Detailed hardware architecture of proposed ECPM in Jacobian coordinates. 280

11.6 Proposed hardware architecture of Jacobian to affine conversion (a) using

one inversion and (b) using two inversions. 281

11.7 Proposed main controller of ECPM in Jacobian coordinates. 283

11.8 Overall block diagram of ECP top module. 284

A.1 Simulation waveform for bit-serial multiplier over F2
163, F2

409, and F2
571. . 306

List of Figures xxxv

A.2 Implementation results for bit-serial multiplier over F2
163 in Virtex-7 FPGA.308

A.3 Simulation waveform and implementation results in Virtex-7 FPGA for

traditional digit-serial multiplier over F2
233 with digit size of 4 bits. 309

A.4 Simulation waveform and implementation results in Virtex-7 FPGA for

modified digit-serial multiplier over F2
283 with digit size of 32 bits. 310

A.5 Simulation waveform and implementation results in Virtex-7 FPGA for

finite field inversion over F2
571. 311

A.6 Simulation waveform and implementation results in Virtex-7 FPGA for

point multiplication over F2
233 with digit size of 64 bits. 312

A.7 Simulation waveform and implementation results in Virtex-5 FPGA for

point multiplication over F256 in Jacobian coordinates. 313

List of Tables

1 Author’s Contributions . xxix

2.1 NIST recommended irreducible polynomials over GF(2m) [22] 31

2.2 Complexity of GF (p) FFMA operations in terms of clock cycles 37

2.3 NIST recommended primes over Fp [22, 54] 38

2.4 Prime p for Koblitz curves over Fp [54] . 38

3.1 Elliptic curve point doubling (PD) and point addition (PA) in affine coor-

dinates over GF(2m) . 61

3.2 Elliptic curve point doubling (PD) and point addition (PA) in Jacobian

projective coordinates over GF(2m) . 61

3.3 Registers used for traditional digit-serial multiplication in GF (2m). 69

3.4 The scheduling of V inputs for each processing unit in GF (2233) when d = 8. 71

3.5 The number of processing units (PUs) and clock cycles for each digit size

implemented in GF (2163), GF (2233), GF (2283), GF (2407), and GF (2571). . . 71

3.6 Complexity of GF(2m) finite field arithmetic operations in terms of latency 75

3.7 Performance and comparison of FPGA-based implementation results of

finite field multiplication using bit-serial approach over GF(2m). 76

3.8 Performance and comparison of FPGA-based implementation results of

digit-serial finite field multiplication over GF(2m). 79

xxxvii

xxxviii List of Tables

3.9 FPGA-based implementation results of modified digit-serial finite field mul-

tiplication over GF(2m). 80

3.10 Performance and comparison of FPGA-based implementation results of

finite field inversion over GF (2m). 83

3.11 Performance and comparison of ASIC-based synthesis results of finite field

arithmetic over F2
m. 85

3.12 Performance and comparison of ASIC-based digit-serial finite field multi-

plication over F2
m. 86

3.13 Performance analysis of ASIC-based modified digit-serial finite field multi-

plication over F2
m. 89

4.1 comparison of Key length for equivalent security of Symmetric-key and

public-key Cryptography [2] . 98

4.2 NIST-recommended elliptic curves over F2
163 100

4.3 Synthesis Results of the finite-field arithmetic for GF(2163) in Kintex-7 . . 107

4.4 Elliptic curve Group Operation Results for GF(2m) in Kintex-7. 107

4.5 Synthesis results for elliptic curve point multiplication (ECPM) over F2163 . 108

4.6 Comparison between our ECC design and related work over GF(2163) . . . 109

5.1 comparison of Key length for equivalent security of Symmetric-key and

public-key Cryptography [2,33] . 117

5.2 NIST-recommended elliptic curves over F2
233 and F2

283 [22] 119

5.3 Example of Computing Multiplication in GF(24) Based on Algorithm 5.1

(f(x) = x4 + x + 1 = 10011, U(x) = x3 + x2 + x + 1 = 1111, V (x) =

x3 + x2 + x = 1110) . 121

5.4 Example of Computing Inversion in GF(24) Based on Algorithm 5.2 (f(x) =

x4 + x+ 1 = 10011, U(x) = x3 + x2 + x+ 1 = 1111) 124

List of Tables xxxix

5.5 Synthesis Results of the finite-field arithmetic for GF(2m) in Kintex-7 . . . 128

5.6 Elliptic Curve Group Operation Results for GF(2m) in Kintex-7 129

5.7 Elliptic Curve Scalar Multiplication Results for different GFs in Kintex-7

(XC7K325T-2FFG900) . 129

5.8 Comparison between our ECC design and related work over GF(2m) 130

6.1 Performance analysis of point multiplication on FPGA over GF(2233) . . . 149

6.2 Performance comparison of point multiplication on FPGA over GF(2163) . 150

6.3 Performance analysis of ASIC-based point multiplication over binary fields 155

7.1 Performance comparison of FPGA-based ECP using bit-serial field multi-

plication over NIST Binary Fields GF(2m) 184

7.2 Performance and comparison of FPGA-Based ECP using digit-serial mul-

tiplication over NIST Binary Field GF(2233) 189

7.3 Performance analysis and comparison of ASIC-based ECC processor (ECP)

over F2
m . 191

8.1 NIST-recommended elliptic curves over F256 [2, 22] 206

8.2 Performance of Modular Multiplication over F256 on Virtex-7 FPGA. . . . 209

8.3 Device Utilization Summary (Estimated Values) for Modular Multiplica-

tion over F256. 209

8.4 Performance comparison of modular multiplication between our imple-

mented design and other related work over F256. 210

9.1 comparison of Key length for equivalent security of Symmetric-key and

public-key Cryptography [2,33] . 217

9.2 NIST-recommended elliptic curves over F256 [2, 22] 221

xl List of Tables

9.3 Device Utilization Summary (Estimated Values) for Modular Inversion over

F256. 225

9.4 Performance Analysis of modular Inversion of our design and other related

designs over F256. 226

10.1 Performance analysis of FFMA for ECP in affine coordinates over Fp on

FPGA. 249

10.2 FPGA Implementation of modular multiplication for ECP in Jacobian co-

ordinates. 250

10.3 ASIC implementation of modular multiplication for ECP in Jacobian co-

ordinates over Fp. 252

10.4 EC Group Operation (PDBL and PADD) Results in affine coordinates for

GF(p) on Kintex-7 . 253

10.5 Comparison between our ECC design and similar work over GF(p) 254

11.1 ASIC implementation of modular multiplication over Fp. 287

11.2 ASIC implementation of modular inversion over Fp. 289

11.3 ASIC synthesis results for PDPA over Fp 289

11.4 Performance comparison between our ECC design and similar ASIC-based

designs over Fp . 290

Chapter 1

Introduction

1.1 Overview

With the increasing popularity of digital systems and the Internet the demand for secure

transactions over the network has increased rapidly in recent times, because communica-

tions between two parties are generally conducted in an accessible environment, such as

the Internet and wireless networks. Nowadays, applications of digital systems are appear-

ing everywhere. For example, banking transactions or online shopping using credit card,

safely signed important documents, protected confidential data (e.g. tax, medication,

images, etc.), and social security numbers are transmitted over the network (e.g. Inter-

net) during the transactions. Therefore, securing transactions over the network becomes

a very demanding issue, because potential hackers/attackers could hack the system, al-

ter transmitted data/information, eavesdrop communications, or attack the network with

unauthorised devices. To mitigate these risks, strong and efficient cryptography is neces-

sary to ensure authentication, authorisation, data confidentiality, and data integrity [1–4].

Private-key (or symmetric) cryptography and public-key (or asymmetric) cryptography

(PKC) are the two main families of cryptography that can be used to protect and se-

1

2 Chapter 1. Introduction

cure data [2, 5, 6]. Although private-key cryptography is computationally less expensive

than PKC, it has a key distribution problem because it requires pre-distribution of keys.

On the other hand, PKC has no issue regarding key management as it allows flexible

key management. However, PKC has a huge computational complexity to implement in

hardware. With development of new technologies, an efficient hardware implementation

of PKC should be designed that requires minimal hardware resources as well as less power

consumption with a high throughput rate.

Several public-key cryptosystems have been introduced in the literature, such as Diffie-

Hellman [7], Rivest-Shamir-Adleman (RSA) [8], ElGamal [9], and the elliptic curve cryp-

tosystem which was independently proposed by Miller [10] and Koblitz [11] in the mid-80s.

Within this, RSA and ECC are the most popular and powerful public-key cryptosystems

for practical cryptographic applications. RSA’s security is based on factoring of large

integers, called the factoring problem [12]. On the other hand, ECC’s security is based

on the elliptic curve discrete logarithm problem (ECDLP) over the integers modulo a

large prime, making it mathematically infeasible to determine ‘key’ for an intruder. Also,

ECC offers the same level of security as RSA systems, but with significantly shorter key

lengths and lower computational complexity than RSA [2,13–17]. For example, a 283-bit

ECC over a binary field or a 256-bit ECC over a prime field provides equivalent security

to a 3072-bit RSA cryptosystem [2, 18, 19]. This feature creates the possibility to imple-

ment a much more efficient cryptographic hardware solution. Consequently, less memory,

bandwidth, power and hardware resources are required to implement ECC. Nowadays,

ECC is one of the most widely used and popular public-key cryptosystems for practical

cryptographic applications. For example, ECC can be used for lightweight applications,

such as smart cards [20]. Also, with the swift growth of Internet of things (IoT) ap-

plications, there is an inevitable demand for communication security, such as near-field

communications (NFC), radio frequency identification (RFID), digital tags, and mobile

1.2. Challenges and Objectives 3

phones. To ensure ultimate security in communication networks, public-key cryptography

(PKC), especially ECC, is mandatory. ECC needs much smaller key sizes for an equiva-

lent security level, which means it can be developed with less area, power consumption,

and higher computation speed. In addition, it is a very challenging job to implement

high-performance cryptographic hardware for the IoT because, using limited resources,

faster computation is required without degrading the security level. Therefore we can

say that ECC requires low hardware resources to implement with high speed, which is

suitable for the IoT. For this reason, this is an interesting topic for many researchers

nowadays [21]. Different parameters can be selected for an elliptic curve cryptosystem to

optimise the performance of hardware implementations. However, if the parameters (e.g.

field bit length) are not selected carefully, they may lead to an insecure system. In this

regard, the National Institute of Standards and Technology (NIST) recommends, in FIPS

186-2, ten finite fields, five binary fields GF(2m) and five prime fields GF(p), for use in

the elliptic curve digital signature algorithm (ECDSA) [22]. The ECC parameters have

also been presented by IEEE [23] and ANSI [24]. Different bit lengths in each field can

be used for different security levels. For each field a specific curve has been selected care-

fully for both cryptographic strength and efficient implementation. Implementing various

bit-length elliptic curve cryptosystems in hardware makes ECC protocols more attractive.

1.2 Challenges and Objectives

PKC algorithms (e.g. ECC) have high computational complexity, which reduces their

throughput rate and makes them difficult to implement. However, a high-throughput

elliptic curve cryptosystem is mandatory for several practical applications like banking

and email servers. Also, energy efficiency during computation has emerged as a major de-

sign parameter in diverse portable applications, such as smartphones, tablets, notebooks

4 Chapter 1. Introduction

(or laptops), and personal digital assistants (PDAs). Cryptosystems can be implemented

with either a hardware or software approach. However, software implementations are

usually very slow or much too power hungry to fulfil the requirements for real-time and

embedded applications. In this dissertation, the hardware approach is considered because

considerably faster implementations can be achieved in hardware than with software im-

plementations. However, an efficient hardware implementation of an elliptic curve cryp-

tosystem for modern practical applications is a very demanding job.

A cryptosystem performs a huge number of encryption and decryption processes which

mostly rely on the efficiency of modular arithmetic, e.g. modular addition, subtraction,

multiplication, squaring, and inversion. In the literature, a substantial amount of work

is concentrated on algorithm optimisation of modular arithmetic [25]. This thesis also

optimises and implements efficient modular arithmetic in either a binary field or a prime

field, because a modular arithmetic unit is mandatory for elliptic curve group operations

and elliptic curve point multiplication (ECPM), where ECPM is the core operation of

an ECC processor (ECP). Note that point (or scalar) multiplication is the most time-

consuming operation in elliptic curve based cryptosystems in either a binary field or a

prime field. The existing literature is mostly focused on separate group operations to

implement ECPM, but not much work is focused on combined group operations for op-

timisation. In addition, only a few hardware implementations focused on energy-efficient

design, being mostly concentrated on reducing the computation time of ECPM. On the

other hand, a high-speed, low-area, and low-power-consumption ECP is suitable for prac-

tical cryptographic applications. Hence, a trade-off between time, area, and power is

required.

In this dissertation, the prime focus is to explore high-performance implementations

of ECP in hardware and evaluate their energy efficiency and performance. For doing this,

several hardware architectures of modular arithmetic, group operations and ECPM are

1.3. Main Contributions 5

designed and optimised. The hardware architectures of the proposed ECPM for an ECP

are implemented in both binary fields GF (2m) and prime fields GF (p). High-performance

(including high speed, low area, and low power consumption) hardware implementations

of ECP, on both a field-programmable gate array (FPGA) and an application-specific

integrated circuit (ASIC), are the focus of this thesis. An FPGA-based implementation

of an ECC processor offers higher flexibility or reprogrammable hardware design than

an application-specific integrated circuit (ASIC), and this means that the cryptographic

algorithm can easily be updated. In addition, FPGA implementations are suitable for

prototype design because they can drastically reduce the hardware development/test cost

and time since they do not incur any fabrication cost. However, high-volume production

of ASICs, after the first run, is much cheaper than the corresponding production based

on FPGA devices. Besides, an ASIC-based hardware implementation is necessary for

fast and low-power applications. Detailed performance analyses of the proposed ECPM

architectures based on both FPGA and ASIC are discussed thoroughly in this thesis.

1.3 Main Contributions

In this dissertation, various novel ECPMs have been designed and implemented for an

ECP to achieve high speed and low power consumption, which means low energy dissipa-

tion in hardware. The proposed designs are based on two finite (Galois) fields, a binary

field GF (2m) (or F2
m) and a prime field GF (p) (or Fp). The optimisation aim is generally

to reduce the latency of ECPM. For this, the hardware units are designed for finite field

modular arithmetic: addition, subtraction, multiplication, squaring, and inversion, and

elliptic curve group operations, either in a binary field or a prime field. These modu-

lar arithmetic units and group operations are then integrated to create an elliptic curve

cryptographic processor capable of computing point multiplication on elliptic curves, i.e.

6 Chapter 1. Introduction

ECPM. The proposed high-performance implementations of ECP are synthesised in both

FPGA and ASIC and results are discussed in detail. In this dissertation, the first half

discusses binary-field ECP implementations and the second half discusses prime-field ECP

implementations. Based on the implementation results, the performance of the proposed

designs, either in FPGA or ASIC, is competitive (almost 50% better efficiency (or per-

formance)) with existing hardware implementations. Moreover, the following are some of

the key scientific contributions:

• To design high-performance point multiplication over the binary field, a finite field

multiplier architecture is mandatory. This thesis proposes both bit-serial and bit-

parallel finite field multiplier architectures using a polynomial basis.

• A digit-serial multiplier over GF (2m) is implemented using a traditional digit-serial

approach, whose latency is dm/de. This significantly reduces the overall compu-

tation time of ECPM in the binary field. The proposed digit-serial architecture

supports all five NIST binary fields and provides low area × time (AT) complexity.

• This thesis also proposes a modified digit-serial multiplier architecture over GF (2m)

with a very low latency of 2 ∗ d
√
m/de, which is better for high-throughput ECP

over the binary field. The proposed design significantly improves the area × time

× energy (ATE) performance using ASIC 65-nm technology.

• To implement a point multiplication in affine coordinates, a bit-serial inverter ar-

chitecture over GF (2m) is proposed based on a modified Euclid’s algorithm. The

proposed architecture is computationally less expensive than state-of-the-art bit-

serial or digit-serial inversion.

• To compute elliptic curve point operations, separate point doubling (PD) and point

addition (PA) architectures over GF (2m) are designed. The PD and PA operations

are implemented using a bit-serial FFA unit.

1.3. Main Contributions 7

• 163-, 233-, and 283-bit ECC processors (ECPs) over GF (2m) are implemented on an

FPGA using separate group operations and a bit-serial multiplier and inverter. The

proposed ECPs are implemented in affine coordinates using NIST-recommended

elliptic curves.

• A novel combined point doubling and point addition (PDPA) operation in Jacobian

coordinates is developed for high-performance point multiplication. This combined

method manages to efficiently speed up ECPM and improve the resource utilisation

of the FPGA over the best existing FPGA hardware.

• For the practical realisation of a cryptosystem, an ECP in affine coordinates is

necessary. For this, a conversion unit for Jacobian coordinates to affine coordinates

is designed.

• A fast and novel parallel point multiplication architecture using combined PDPA

hardware is proposed, and is faster than any hardware implementation in the liter-

ature.

• An energy-efficient ECP over NIST binary fields is proposed, and can be used for

low-power devices. The proposed energy-efficient ECP using a bit-serial finite field

multiplier supports all five Koblitz and random curves for the key sizes between 163

and 571 bits recommended by NIST. To the best of the author’s knowledge, only a

few hardware solutions for ECC over NIST binary fields can handle all five NIST

curves.

• An efficient FPGA-based implementation of modular multiplication based on the

Montgomery method and a modular inversion over the prime field GF (p) are devel-

oped for an ECP. An ECP over GF (p) is implemented in affine coordinates using

the modular multiplier and inverter.

8 Chapter 1. Introduction

• A novel modular multiplier architecture is proposed based on an interleaved method.

In addition, a fast and novel radix-4 modular multiplier architecture is proposed,

which saves 50% on clock cycles.

• A separate (PD and PA) as well as a combined (PDPA) group operation unit are

designed for prime fields GF (p). The proposed PD and PA operations are imple-

mented in affine coordinates. On the other hand, the proposed combined PDPA

architecture is developed in Jacobian coordinates. As far as the author knows, no

other point multiplication architecture is based on the combined PDPA.

• A high-performance point multiplication architecture for an ECP is proposed using

a radix-4 modular multiplier and a combined PDPA hardware. This ASIC-based

implementation is faster than other related work in the literature over prime fields

GF (p). It achieved an energy dissipation of only 0.3% that of other similar designs.

1.4 Dissertation Outline

This dissertation follows the non-traditional “Thesis-by-Publication” format which has

been approved by the Macquarie University Higher Degree Research Office (HDRO). It

consists of a general introduction, background, and a list of the PhD candidate’s major

scientific publications. The thesis materials are the original texts and graphics of the

candidates, published or under review, that have been reformatted to improve readabil-

ity. Fig. 1.1 summarises the dissertation outline. There are two main components of the

proposed hardware implementation of elliptic curve cryptography (ECC). The first is the

high-performance hardware implementation of ECC based on Galois finite field arithmetic

GF (2m). The second is an ECC implementation based on modular arithmetic (e.g. mod-

ular addition, subtraction, multiplication, and inversion) in GF (p). Finally, both FPGA

and ASIC-based hardware implementations of ECP are achieved.

1.4. Dissertation Outline 9

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

233-, 283-bit

ECC Processors

Parallel Point

Multiplication

Optimised

ECC Processor

ASIC-Based

ECC Processor

ECC Processor

over NIST PFs

Binary Field

(BF)

Prime Field

(PF)

Proposed Elliptic

Curve Cryptography

(ECC) Processor

Finite Field

Arithmetic (FFA)

163-bit ECC

Processor

Modular

Multiplication

Modular

Inversion

Figure 1.1: Thesis outline

10 Chapter 1. Introduction

Chapter 2 gives a brief overview of the theory and basics of ECC for both the binary

field and the prime field, along with the elliptic curve group operations that have been

used for this thesis. The use of coordinate systems to implement group operations (PD

and PA) is also discussed, where group operations are mandatory to compute a point

multiplication. The theory of finite field modular arithmetic and the mathematical op-

erations are briefly discussed in this chapter. A comprehensive review of the literature

available on high-performance ECC processors is included in this chapter.

In Chapter 3, the design and use of FFA for a high-performance ECP over the binary

field GF (2m) is presented. It presents hardware implementations of finite field addition,

multiplication, squaring, and inversion, which are needed to develop a binary-field ECP.

Also, the overall performance of point multiplication mostly relies on the performance

of FFA because a large number of FFA operations are required to develop an ECPM.

There are four major implementations in this chapter: 1) a bit-serial multiplier, 2) a

traditional digit-serial multiplier with various digit sizes, 3) a modified digit-serial multi-

plier with various digit sizes, and 4) a bit-serial inverter. Multiplication over GF (2m) is

implemented in both bit-serial and digit-serial approaches. On the other hand, inversion

over GF (2m) is implemented only with a bit-serial approach; implementation results show

that it is computationally less expensive than the digit-serial approach. All four designs

are synthesised in both FPGA and ASIC platforms, which support all five NIST binary

fields between 163 and 571 bits, and their performance compared in terms of timing, area,

and power consumption with related work in the literature. For example, the proposed

inversion provides 2-3 times better performance in terms of area × time (AT) than related

work in the literature. The detailed implementation results are discussed in Chapter 3.

A high-performance hardware implementation of an ECC processor over GF (2163) is

presented in Chapter 4. It is implemented in a Kintex-7 FPGA with the Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language (VHDL). It is developed in

1.4. Dissertation Outline 11

affine coordinates using a bit-serial multiplier and inverter and separate PD and PA op-

erations. The design is area-efficient, needing only 2253 slices without any digital signal

processing (DSP) blocks. In this design, the proposed ECPM provides nearly 50% better

delay performance than related work in the literature.

Recall that the 163-bit ECC processor is not secure based on today’s security-level re-

quirements. For this reason, 233- and 283-bit FPGA-based ECC processors over GF (2m)

are implemented in Chapter 5. This chapter thoroughly explains the hardware designs

and implementations of finite field adder, multiplier, squarer, and inverter on a polyno-

mial basis. In this chapter, elliptic curve point doubling (ECPD) and elliptic curve point

addition (ECPA) are also implemented in affine coordinates, and then an ECC proces-

sor created capable of computing ECPM. The proposed design was simulated using both

Xilinx ISim and ModelSim PE and all results are checked using Maple software. The

implemented design in a Xilinx Kintex-7 FPGA is area-efficient, as it needs only 3016

and 4625 slices for the 233- and 283-bit ECP, respectively.

In Chapter 6, a novel parallel architecture for fast hardware implementation of point

multiplication over the binary fields GF (2163) and GF (2233) is proposed. The ECC pro-

cessor in affine coordinates presented in the previous two chapters takes many clock cycles,

which means that it is not very efficient in terms of speed. Therefore, a highly parallel

architecture for ECPM over the binary field GF (2m) is developed, which takes only m

clock cycles. In addition, this chapter proposes a novel combined PDPA architecture in

Jacobian coordinates to achieve high speed for ECPM. Moreover, a parallel architecture

for field multiplication on a polynomial basis is proposed for the combined PDPA. The

proposed ECPM supports two Koblitz and random curves for the key sizes 233 and 163

bits and is implemented on both FPGA and ASIC. Implementation results reveal that

the proposed design is faster than any other related work, but takes more area. For this

reason, the area × time (AT) and area × time × energy (ATE) products of the proposed

12 Chapter 1. Introduction

point multiplication are calculated. Based on the implementation results, the proposed

ECPM provides almost 50% better performance than recent implementations.

Chapter 7 reveals the optimisation techniques explored to improve the area, time, and

energy efficiency of the overall ECP hardware architecture over NIST binary fields. These

include the design and implementation of bit-serial and digit-serial multipliers, bit-serial

inverter for conversion from Jacobian to affine coordinates, the optimisation of combined

PDPA operations for both Koblitz and random elliptic curves, and the optimisation of

point multiplication to get a high-performance ECP. The proposed ECPs over NIST bi-

nary fields GF (2m) support all five Koblitz and random curves for the key size from 163

to 571 bits. This chapter also presents the FPGA energy dissipation from a proper power

analysis technique. For power analysis, an SAIF file is generated and shows a high con-

fidence level and more than 95% switching activity profile, which is enough to get the

accurate power consumption. Overall, nearly 50% of improvement is achieved over recent

FPGA implementations. In addition, the ASIC-based energy dissipation is also com-

puted for all designs from the power consumption and latency. Therefore, a high-speed,

low-area and low-power ECP hardware is designed for modern high-security applications

whose area × time × energy (ATE) value is lower in an ASIC platform than all compa-

rable work in the literature. The proposed ASIC-based ECP takes 3 to 100 times and 2

to 55 times less ATE value than the most significant work in the literature.

Chapters 3-7 discuss hardware implementations over the binary field GF(2m). The

second half (Chapters 8-11) of this dissertation presents hardware implementations over

the prime field Fp. In Chapter 8, a high-performance modular multiplier over F256 is

presented. This multiplier is based on the Montgomery multiplication method, and based

on the multiplier the prime field ECP is developed. The required area and time in a

Xilinx Virtex-7 FPGA are very low, namely 605 slices and 1.683 µs, respectively. The

FPGA-based implementation results show that the proposed design is faster and more

1.4. Dissertation Outline 13

area-efficient than recent hardware implementations.

In Chapter 9, an efficient modular inversion based on the efficient binary Inversion

algorithm (which is based on the extended Euclidean algorithm (EEA)) is implemented

for the prime field ECP. A modular inverter is mandatory for ECP in affine coordinates

or conversion from projective to affine coordinates. The inverter architecture over F256 is

implemented in a Xilinx Virtex-7 FPGA and takes a small amount of resources, only 1480

slices. The computation time per inversion is only 2.329 µs at the maximum frequency of

146.39 MHz. From the performance analysis, it uses a better area and time than available

hardware implementations in the literature.

Chapter 10 provides a description of an efficient hardware implementation of ECP

over NIST prime fields GF (p). Separate scalar (or point) multiplication architectures are

presented for both affine and Jacobian coordinates, and their relative performance is com-

pared. A scalar multiplication architecture in affine coordinates is proposed by designing

separate point doubling (PDBL) and point addition (PADD) operations. The proposed

ECP based on affine-coordinate scalar multiplication is implemented in Xilinx Kintex-7

and Virtex-5 FPGAs. On the other hand, the point multiplication architecture in Ja-

cobian coordinates is developed by designing a novel combined PDPA operation and a

proposed modular multiplier. The proposed ECP in Jacobian coordinates is implemented

both in FPGA and ASIC. The trade-off between area and time is then discussed, where

the most efficient design of elliptic curve scalar multiplication (ECSM) in both FPGA

and ASIC for F224 and F256 is proposed. To the best of the author’s knowledge, the ECP

over Fp proposed in this chapter provides around 20% better delay performance than all

comparable work in the literature.

The number of clock cycles required for an ECP over the prime field proposed in the

previous chapter is greater. Chapter 11 introduces a novel high-performance ASIC-based

ECC processor over Fp which saves almost 50% in clock cycles. This chapter discusses

14 Chapter 1. Introduction

the development of a novel radix-4 modular multiplier algorithm and a corresponding

hardware architecture. The proposed radix-4 modular multiplier is then used in the im-

plementation of the novel combined PDPA architecture in Jacobian coordinates. Finally,

a novel point-multiplication architecture over the prime field for ECP is proposed. In

this chapter, a control unit for point multiplication in Jacobian coordinates is explained

clearly. A separate unit for Jacobian-to-affine coordinate conversion is developed because

ECP in affine coordinates is required for the practical realisation of a cryptosystem. The

proposed ECP is synthesised on the ASIC 65-nm CMOS STMicroelectronics standard cell

library using Synopsys Design Compiler. The delay per point multiplication is between

0.21 and 0.37 ms for the key sizes from 192 to 256 bits recommended by NIST. To the best

of the author’s knowledge, these are the fastest hardware implementation results over the

prime field reported in the literature to date. The ASIC-based implementation results for

timing, area, and power consumption are discussed in detail to highlight the benefits of

the proposed ECP architecture.

Finally, in Chapter 12 concluding remarks are drawn and a non-exhaustive list of

future research directions is discussed.

Chapter 2

Background

This chapter provides background knowledge regarding cryptography, Galois (or finite)

field operations, and elliptic curve cryptography (ECC). Also, this chapter describes the

elliptic curve discrete logarithm problem (ECDLP) which assures the computational hard-

ness or security of ECC. This chapter also introduces a combined group operations, point

doubling and point addition (PDPA), for elliptic curve point multiplication (ECPM).

There are various coordinates to represent elliptic curve points, such as affine coordinates

and projective coordinates, which will be discussed in this chapter. Moreover, the math-

ematics and the hardware implementation procedure behind point multiplication will be

explained clearly, where point (or scalar) multiplication is the fundamental building block

of the elliptic curve digital signature algorithm (ECDSA). Finally, this chapter concludes

with a summary of designs proposed in this dissertation.

2.1 Overview of Cryptography

Cryptology is a more general term than Cryptography, defined as the science of secure

communication. The cryptology domain concerns mathematics as well as computer sci-

ence because modern cryptology combines digital data and digital systems. Therefore,

15

16 Chapter 2. Background

a secure mathematical algorithm and its efficient implementation in a digital system is

essential for cryptographic techniques. Cryptology consists of two main branches: cryp-

tography and cryptanalysis.

Cryptography is the science or study of techniques of secret writing with hiding in-

formation (message) from malicious adversaries. Also, it is the mathematical techniques

to encrypt and decrypt data and supporting information security, such as confidentiality,

integrity, non-repudiation, and authentication. In addition, it is handled with the design

and implementation of algorithms and facilitates cryptographic services. The crypto-

graphic algorithm for providing information security is classified in two groups: private-

key cryptography and public-key cryptography (PKC) [2,3, 12,26,27].

Cryptanalysis is the science of getting the plaintext of an information (message)

without knowing the key. It is also the study of methods to examine the security of a

cryptographic algorithm or to find the weakness of a cryptographic system. Successful

cryptanalysis may get the key or the plaintext. Modern cryptanalysis is about breaking

mathematical entities and the physical devices implementing them. An attempted crypt-

analysis is named an attack. Various attacks exist, such as analytical attacks and bruce-

force attacks. Moreover, there have been some hardware attacks, such as side-channel

attacks (SCA), electromagnetic attacks (EMA), fault attacks (FA), timing attacks, power

attacks [2, 3, 12, 26,27].

2.2 Private-key Cryptography

Private-key cryptography (or symmetric, or single-, or secret-key cryptography) is a cryp-

tosystem which has the capability to secure exchange of information (messages) between

the two ends. In symmetric cryptography, the same key is shared between the sender and

recipient to perform both encryption and decryption, where encryption is the process to

2.3. Public-key Cryptography 17

Figure 2.1: Private-key cryptography (or Symmetric cryptography) [28]

produce ciphertext from plaintext and decryption is the process to recover plaintext from

ciphertex. The process of encrypting and decrypting data with a shared key is illustrated

in Fig. 2.1. To perform encryption, private-key cryptography is commonly used. However,

it has a key distribution problem because for encryption and decryption the same key is

used. There are various symmetric algorithms currently in use, such as the advanced

encryption standard (AES) or Rijndael AES, Triple data encryption standard (3DES),

DES, Blowfish, Twofish, Serpent, CAST5, Kuznyechik, Rivest Cipher 4 (RC4), Skipjack,

and IDEA [26,28–30].

2.3 Public-key Cryptography

Public-key cryptography (PKC) is an asymmetric cryptosystem, and can be used for a

secure distribution of keys. The process of PKC is illustrated in Fig. 2.2. As shown in

Fig. 2.2, the sender encrypts plaintex (message or data) with one key and the recipient

employs a different key to decrypt ciphertex. Therefore, two different keys are used to

encrypt and decrypt information (message), and the problem of key distribution is solved

by PKC. The encryption and decryption keys are generally called public/private key

pairs [17, 26, 28]. The PKC was first introduced by Diffie and Hellman (DH) [7] in 1976

and later on proposed by Markle [31] in 1978. Numerous PKCs have been proposed in the

18 Chapter 2. Background

Figure 2.2: Public-key cryptography (PKC) (or Asymmetric cryptography) [28]

available literature. Based on the number theory, PKC algorithms can be classified into

three sub-groups: 1) discrete logarithm problem (DLP), 2) integer factorisation problem

(IFP), and 3) elliptic curve discrete logarithm problem (ECDLP).

2.3.1 Discrete Logarithm Problem

The key agreement protocol using the discrete logarithm system was first introduced in

1976 [7]. Later on, discrete logarithm public-key encryption and the signature scheme

were described by ElGamal [9] in 1984. The DLP depends on the difficulty of evaluating

logarithms in a large finite field, where the hardness increases with increasing field size.

Mathematically the discrete logarithm system is defined by: let g be a generator of an

abelian group G (or multiplicative cyclic group) of n elements, and given g, h ∈ G, find

x such that gx = h. The DLP is not always a hard problem because the hardness of

finding discrete logarithms depends upon groups, e.g, Z∗
p which is a choice of groups

for discrete logarithm cryptosystems, where p is a prime number. However, the Pohlig-

Hellman algorithm [32] can solve the DLP very efficiently when the multiplicative inverse

of p is a product of small primes. Based on discrete logarithm systems, numerous schemes

2.3. Public-key Cryptography 19

have been proposed in the literature, e.g. the digital signature algorithm (DSA), the

DH key agreement protocol, ElGamal public-key encryption scheme, and the Schnorr

signature scheme. Details of discrete logarithm schemes can be found in [2, 12, 27].

2.3.2 Integer Factoring Problem

Integer factorisation, in number theory, is the factoring of a composite number into a

product of smaller integers. For example, it can be produced by multiplying together

two smaller positive integers. The process is defined as prime factorisation if the factors

are prime numbers. To compute the prime factorisation of a given integer n, is the

hardness of an RSA cryptosystem. Therefore, the security of RSA public-key encryption

and signature schemes relies on the difficulty of the integer factorisation problem (IFP).

In RSA, the IFP is the product of p and q (large primes) which are factors of a composite

number n. However, when the factors of n are known, then the RSA problem can easily

be solved, as explained in [2,17]. The RSA cryptosystem generally consists of four major

steps: key generation, key distribution, encryption, and decryption. Details of the RSA

cryptosystem can be found in [8, 17,33].

2.3.3 Elliptic Curve Discrete Logarithm Problem

The last group of public-key algorithms relies on the discrete logarithm problem (DLP)

over an elliptic curve, simply called the elliptic curve discrete logarithm problem (ECDLP).

It is a difficult mathematical problem in which, if two elliptic curve points P and Q over

a finite field are given, then it is computationally infeasible to compute the positive inte-

ger [k] from the point multiplication Q = [k] · P because the size of k is large, e.g. 224

or 256 bits. This is the hardness of ECDLP [2, 17]. However, if k and P are known,

then it is easy to calculate Q, where Q = [k] · P is the ECPM over a finite field. On

the other hand, modular exponentiation is the most computationally intensive operation

20 Chapter 2. Background

for discrete logarithm systems, e.g. the RSA cryptosystem. Modular exponentiation op-

erations are accomplished using very long operands to meet the required size, whereas

the operands are smaller in the ECDLP [2, 17]. However, the smaller operands (field bit

length) of an elliptic curve cryptosystem can provide equivalent security to large operands

of the RSA cryptosystem. A comparison of equivalent cryptographic key sizes for various

cryptographic algorithms is discussed in Sections 4.3.2 and 9.3.1. Therefore, the main

focus in this dissertation is the high-performance hardware implementation of ECC. The

implementation hierarchy of the ECC operations is discussed in Sections 5.3, 6.3, 7.4,

and 8.3.1. In this chapter, the subsequent sections followed from the bottom level (e.g.

finite field arithmetic) to the top level (e.g. ECPM) of an ECC.

2.4 Finite Field Arithmetic

The bottom level in the hierarchy of elliptic curve cryptosystems consists of finite field

arithmetic (FFA). This section presents a brief introduction to the FFA which is the most

important for many public-key cryptosystems in use today, including ECC. It is noted

that a high-performance hardware implementation of FFA is vital for an ECC processor.

The group and field theorems are discussed first in the following section.

2.4.1 Groups, Rings, and Fields

In this section, the definitions of the group (G), ring (R), and field (F) are provided, and

their properties are discussed in Section 4.3.1.

A group (G, ∗) consists of a set of elements together with a binary operation ∗ which

satisfies some important properties, given in Section 4.3.1. The group is said to be finite

if G is a finite set; in this case the number of elements in G is called its order [12, 27].

A ring (R, +, ×) is a set R with two binary operations arbitrarily denoted + (addition)

2.5. Binary Field F2
m Arithmetic Background 21

and × (multiplication) which follow the field (F) properties.

A field is a ring (R) in which the non-zero elements form an abelian group under

× [2, 12, 27]. A field (F, +, ×) is a set of elements with two operations, denoted as +

(addition) and × (multiplication), satisfying some important properties, given in Section

4.3.1.

2.4.2 Finite Field

When the field consists of a finite number of elements, it is simply called a Galois field

(GF) or finite field. A finite cyclic group is needed for a cryptosystem in which the group

operations are efficiently calculable, but the DLP is difficult to solve. When the underlying

field is finite, then elliptic curve groups appear to fulfil the discrete logarithm problem

criteria [2,12,27]. A finite field is denoted as GF(q = pm) wherem is a positive integer and

p is a prime number called the characteristic of field F. Three types of finite field exist in

the literature: prime field, extension field, and binary field. The field is said to be a prime

field if m = 1 and an extension field [34] if m is greater than 2. A Galois field is said to be

characteristic-two finite field or a binary field if q = 2m. In this dissertation, the binary

field GF (2m) and the prime field GF (p) are considered for hardware implementations of

ECC [2,35].

2.5 Binary Field F2
m Arithmetic Background

The binary field F2
m or GF (2m) is a finite field, also called a characteristic-two finite

fields which contains 2m different elements and F2 has two elements 0 and 1 with respect

to a basis. A binary field is quite simple as well as efficient for hardware implementation

using more-efficient modulo-2 arithmetic because they provide carry-free operations. It

can be represented using a normal basis (NB), a dual basis (DB), a redundant basis, or a

22 Chapter 2. Background

polynomial basis (PB). However NB and PB are two common types of bases for hardware

implementations, whereas PB is beneficial from an implementation perspective because a

field element can be characterised by m binary bits [2, 35].

2.5.1 Normal Basis

A normal basis (NB) exists for all positive integer m in the binary field F2
m. In a NB,

field elements F2
m (or GF (2m)) are defined with a basis of the form {β, β2, β22 , ..., β2m−1},

where β is a root of a reduction polynomial of degree m. Suppose that U =
∑m−1

i=0 uiβ
2i

and V =
∑m−1

i=0 viβ
2i , where ui, vi ∈ F2. Then, addition can be computed by the bit-

wise XOR operation: U + V =
∑m−1

i=0 (ui + vi)β
2i , which is the same as polynomial-basis

addition. For an addition, the identity element is (0, 0, 0, ..., 0, 0) and for a multiplication,

the identity element is (1, 1, 1, ..., 1, 1) as 1 = β + β2+, ..., β2m−1 . One main advantage

of a NB is that squaring can be performed efficiently by using a simple shift operation,

where the squaring of U can be represented as U2 = (
∑m−1

i=0 uiβ
2i)2 =

∑m−1
i=0 uiβ

2i+1 and

one can get β = β2m which can be defined as Fermat’s Little Theorem [2, 13, 36]. There

are different types of NB available in the literature, such as Gaussian NB (GNB) and

optimal NB (ONB). Other operations in an NB, e.g. multiplication and inversion, may

have similar complexity to the polynomial-basis representation. Details of NB operations

for binary fields are given in [36–39].

2.5.2 Polynomial Basis

A polynomial basis (PB) is a well-known binary extension field used to represent field

elements. In this representation, the elements of F2
m are the binary polynomials of degree

at most m− 1, i.e.

F2
m = um−1.x

m−1 + um−2.x
m−2 + · · ·+ u1.x+ u0 =

m−1∑
i=0

uix
i : ui ∈ {0, 1},

2.5. Binary Field F2
m Arithmetic Background 23

where um−1 is denoted as the most significant bit (MSB) and u0 is denoted as the least

significant bit (LSB). The identity element of addition in PB can be represented as

(0, 0, ..., 0, 0) and multiplication’s identity element is (0, 0, ..., 0, 1).

In PB, x4 + x3 + x + 1 is a polynomial-basis representation for the 5-bit number

110112, or x3 + 1 is a polynomial-basis representation of the 4-bit number 10012. For

an irreducible polynomial, let (f(x) be an irreducible or reduction binary polynomial of

degree m), f(x) = xm + G(x) = xm +
∑m−1

i=0 gix
i where gi ∈ {0, 1} for i = 1, . . . ,m − 1

and g0 = 1 [2, 40]. For example, f(x) = x4 + x + 1 = (10011)2 is a reduction polynomial

of the finite field GF(24). This dissertation uses a PB for hardware implementations of

FFA, such as addition, multiplication, squaring, and inversion in binary fields F2
m.

2.5.3 Addition in F2
m

Addition in F2
m or finite field addition or modulo-2 addition is the simplest operation

over the binary field. In PB, it is called polynomial addition and is simply a bit-wise

XOR (or ⊕) for hardware implementation. Adding two elements U(x) and V (x) of size

m in GF(2m) can be achieved as depicted in (2.1) [41]:

Z(x) = U(x) + V (x) =
m−1∑
i=0

uix
i +

m−1∑
i=0

vix
i =

m−1∑
i=0

(ui + vi)x
i =

m−1∑
i=0

zix
i (2.1)

where zi = (ui + vi) mod 2 = ui ⊕ vi and ui, vi, zi ∈ F2. For example, if
U = 11002, and V = 01102 over the field GF(24), then

Z = (U + V) = (U ⊕ V) = (11002 ⊕ 01102) = 10102.

The hardware implementation algorithm of finite field addition and the corresponding

hardware architecture are explained in Section 3.4.1. Addition in F2
m is a carry-free

operation and it can be implemented in parallel, taking only one clock cycle.

Subtraction in F2
m is the same as finite field addition and is based on the definition

of the identity element, e.g. U(x) + U(x) = 0 or U(x) + (−U(x)) = 0.

24 Chapter 2. Background

2.5.4 Multiplication in F2
m

Finite field F2
m multiplication or polynomial multiplication is the second-most expen-

sive operation at the arithmetic level of an ECC processor. Besides, this is the most

important arithmetic operation for ECPM in Jacobian coordinates. Therefore, it has

been necessary to expend substantial efforts in designing an efficient finite field multi-

plier. Numerous methods or algorithms have been proposed in the literature to perform

polynomial multiplication, including multiplication with an interleaved modular reduc-

tion algorithm, bit-serial multiplication, the Karatsuba-Ofman algorithm, Montgomery

multiplication, higher-radix multipliers, digit-serial multiplication, and digit-parallel mul-

tiplication [2, 42–45]. The basic example of polynomial multiplication over GF(24) is as

follows: Assume that

f(x) = x4 + x+ 1 = (10011)2, U(x) = x3 + x2 + x+ 1 = (1111)2,

and V(x) = x3 + x2 + x = (11102), then

Z(x) = U(x).V (x) = (x3 + x2 + x+ 1).(x3 + x2 + x)

= x6 + 2.x5 + 3.x4 + 3.x3 + 2.x2 + x

= x6 + x4 + x3 + x (applying mod− 2 operation)

= (x2 + 1)(x4 + x+ 1) + x2 + 1 = x2 + 1

= (0101)2 (after polynomial reduction).

The polynomial multiplication result must be reduced to a degree < 4 by the irreducible

polynomial f(x) = x4 + x + 1. In this dissertation, bit-serial, parallel, and digit-serial

methods have been emphasised for hardware implementation.

Bit-Serial Multiplication

Bit-serial polynomial multiplication using the interleaved method is a well-known algo-

rithm for hardware implementation. In this algorithm, instead of separate multiplication

2.5. Binary Field F2
m Arithmetic Background 25

and reduction operations, the two operations can be combined or interleaved [41]. Let

U(x) and V (x) be two inputs and Z(x) be their output, then multiplication in F2
m can

be achieved as depicted in (2.2):

Z(x) = U(x).V (x) = U(x).
m−1∑
i=0

vi.x
i =

m−1∑
i=0

(U(x).vi).x
i (2.2)

It computes the product of two polynomials and performs modular reduction with f(x)

concurrently, where f(x) is a constant reduction polynomial of degree m and its op-

eration is different from simple integer multiplication. The interleaved algorithm and

corresponding hardware architecture are discussed in Section 5.4.3. The detailed oper-

ations of a step-by-step solution for bit-serial polynomial multiplication are depicted in

Section 5.4.3, Table 5.3. In addition, a bit-serial polynomial multiplication algorithm

based on the modified interleaved method and a corresponding hardware architecture are

proposed in Section 3.4.2. The result of polynomial multiplication is achieved after m

clock cycles. The area complexity of bit-serial multiplication is only O(m). In addition,

bit-serial multiplication is better for low-power consumption design. However, it is not as

fast as bit-parallel or digit-serial/digit-parallel multiplication.

Parallel Multiplication

Recall that the bit-serial finite field multipliers in the previous section require fewer hard-

ware resources and less power consumption, but they are very slow because of the m

clock cycles required. On the other hand, parallel multipliers are very fast because they

take fewer clock cycles, which is required for a high-speed ECP. In this dissertation, two

parallel architectures have been developed for an ECP based on Algorithm 6.2, which is

presented in Section 6.6, then one multiplier architecture chosen based on their perfor-

mances. The proposed architecture is performed fully in parallel, which is well suited for

a high-speed ECP. The parallel multiplier area complexity is O(m2), which is far more

than a bit-serial multiplier, whose area complexity is O(m).

26 Chapter 2. Background

Digit-Serial Multiplication

Recalling the bit-serial and parallel multipliers in the previous two sections, the bit-serial

multiplier is better with the area and power, on the other hand, a parallel multiplier is

better with timing only. Therefore, a trade-off between area, time, and power is necessary

for well-designed ECP. The digit-serial multipliers fill the gap because these are well suited

to a high-performance ECP, hence these have been well studied. Digit-serial multiplication

using the traditional approach was introduced in [46] and [43].

Traditional digit-serial multiplier: Let U(x) and V (x) be two input elements in

F2
m and Z(x) be their output in F2

m. The final result Z(x) = U(x) ·V (x) mod f(x) over

F2
m is achieved by a reduction polynomial f(x). Suppose that q = dm/de, where m is the

field size and d is the digit size. A field element needs to be padded with qd−m bit zeros,

when m is not a multiple of dq. The input V over F2
m can be written as V =

∑q−1
i=0 vix

id,

where Vi = Vid + Vid+1x + ... + Vid+d−1x
d−1. The product Z can be rewritten based on

LSD-first multiplication,

Z(x) = U(x) · V (x)mod f(x) = U · (V0 + V1x
d + ...+ Vq−1x

d(q−1)) mod f(x)

= (Zv(0) + Zv(1) + ...+ Zv(q−1)) mod f(x)

(2.3)

where Zv(i) = U (i)Vi, Uv = Uv · xd mod f(x), and U0 = U . The detailed traditional

digit-serial multiplier algorithm and the corresponding hardware architecture is explained

in Section 3.4.2. Usually, a digit-serial multiplier using the traditional approach is better

for low area × time (AT) complexity. In addition, digit-serial multipliers speed up the

multiplication process significantly compared to the bit-serial multiplier, as multiple par-

tial products are generated and added per clock cycle, thus reducing the overall number of

clock cycles. Note that a latency of m clock cycles is required for the bit-serial multipliers,

whereas the basic digit-serial multiplier’s latency is dm/de which is very low, but with a

slightly higher area complexity. In this method, a separate multiplication and reduction

unit is needed.

2.5. Binary Field F2
m Arithmetic Background 27

Modified digit-serial multiplier: In this dissertation, a modified pipelined digit-

serial multiplier architecture over F2
m is proposed with a very low latency of 2∗d

√
m/de,

whereas the traditional digit-serial multiplier requires dm/de latency. For a modified

digit-serial multiplier, let U = (um−1, ..., u1, u0) =
∑m−1

i=0 uix
i, V = (vm−1, ..., v1, v0) =∑m−1

i=0 vix
i, and f(x) = xm + r(x). In this method, a pair of integers p and k is now used

such that kp = q and k =
√
q. Zeros also need to be padded to the multiplicand V so

that q = dm/de = kp can be satisfied. Now V can be presented as
∑kp−1

i=0 Vix
id, where

Vi =
∑d−1

j=0 v(id+j)x
j mod f(x). Then, the output Z can be rewritten as (2.4)

Z(x) = U(x) · V (x) mod f(x) =

kp−1∑
i=0

U · Vixid mod f(x) =

p−1∑
i=0

Zix
dki mod f(x) (2.4)

where Zi =
∑k−1

j=0 U · Vik+jxjd =
∑k−1

j=0 U
(jd) · Vik+j =

∑k−1
j=0 Zij, and Zij = Vik+jU

(jd). The

partial product of (2.4) needs to be simplified as, Zv(i) = Zxdki =
∑k−1

j=0 U ·Vik+jxjdxdki =∑k−1
j=0 U

(jd)
i Vik+j, where Ui = xdkiU mod f(x) = xkdU mod f(x). Finally, the output Z

can be written as Z =
∑p−1

i=0 Zv mod f(x).

In this approach, the top-level architecture requires k processing units (PUs), which is

the same approach as the systolic digit-serial multiplier. Note that the systolic multipliers

are better for high-throughput ECP implementations. The detailed modified (or systolic)

digit-serial multiplier hardware architecture is proposed and demonstrated in Section 3.4.2

based on Algorithm 3.4. The modified digit-serial multiplier significantly improves the

area × time × energy (ATE) performance in an ASIC platform. In this dissertation,

different digit sizes, e.g. 1, 2, 4, 8, 16, 32, and 64 bits in digit-serial multipliers are

implemented for all five NIST binary fields GF(2m), presented in the next chapter.

2.5.5 Squaring in F2
m

Finite field squaring or polynomial squaring is similar to polynomial multiplication be-

cause squaring over F2
m is the polynomial multiplication of two identical binary poly-

28 Chapter 2. Background

nomials. A squaring operation is often used since it can be more efficient than field

multiplication. This consideration depends on the performance of the field multiplication

utilised, since if multiplication becomes more efficient than squaring, then the squaring

method can be replaced. Therefore, it can be implemented by a multiplier and the per-

formance can be improved through the optimisation of the architecture. Squaring over

F2
m has less difficulty because U(x)2 mod f(x) is a linear operation. It can be computed

as shown in (2.5):

Z(x) = U(x)2 mod f(x) = (
m−1∑
i=0

Uixi)
2 mod f(x)

= um−1.x
2m−2 + · · ·+ u2.x

4 + u1.x
2 + u0 mod f(x) =

m−1∑
i=0

uix
2i mod f(x)

(2.5)

The squaring operation in GF(2m) of Z(x) = U(x)2 is achieved by setting a 0 bit

between consecutive bits of the binary representation of U(x). Hence, it can be imple-

mented efficiently using a fixed irreducible polynomial f(x) to get the result in one clock

cycle without huge hardware resources [47]. The hardware architecture of squaring over

F2
m is presented in Section 5.4.4.

2.5.6 Inversion in F2
m

Inversion over F2
m in a PB is the most expensive (or time-consuming) operation at the

arithmetic level of an ECC processor. Therefore, the inversion operation should be avoided

whenever possible because it slows down the whole cryptosystem [48]. However, it is

mandatory as well as an important operation for point multiplication in affine coordinates.

On the other hand, inversion for each group operation can be avoided by using projective

coordinates. In practice, inversion is required only once per point multiplication to convert

affine coordinates from Jacobian coordinates. Hence, it is essential to expend some effort

to design an efficient finite field inversion. Inversion of a non-zero field element U(x) ∈ F2
m

2.5. Binary Field F2
m Arithmetic Background 29

can be presented as Z(x) = 1/U(x) mod f(x), where it should satisfy the condition

UZ = 1 mod f(x) and 1 is the multiplicative identity element. There are mainly two kinds

of inversion algorithm available: (1) Extended Euclidean-based algorithms (EEA) and (2)

Fermat’s Little Theorem (FLT) based algorithms. Based on FLT, for any a in a finite field

with q elements aq = a or aq−2 = a−1. For the binary field GF(2m) q = 2m, hence a−1 =

a2
m−2. Therefore, the main difficulty for the FLT method is the large exponentiation,

which is a very expensive operation. On the other hand, EEA-based algorithms include

(a) the simplest EEA, (b) the almost inversion algorithm, and (c) the modified almost

inversion algorithm. Also, other inversion algorithms exist in the literature, such as

the Itoh-Tsujii inversion algorithm, which is based on FLT [49] and the Montgomery

inversion algorithm [50]. The basic inversion algorithm for GF(2m) was proposed in [51],

then implemented in [52] and [53]. In this dissertation, the modified almost inversion

algorithm is utilised, being the most commonly used as well as most efficient algorithm

for polynomial inversion [2, 52], presented in Section 5.4.5. The corresponding hardware

architecture is demonstrated and explained in Section 3.4.4. Based on this algorithm,

an efficient polynomial inversion architecture is achieved. In this method, the polynomial

reduction is performed by using the addition operation when the degree of the polynomial

is m or higher than m. The field inversion requires 2m + 1 clock cycles to complete. An

example of inversion is given below: Assume f(x) = x4 + x + 1 = (10011)2, U(x) =

x3 + x2 + x+ 1 = (1111)2, then{
Z(x) = Z(x) = 1/U(x) mod f(x) = 1/(1111)2 = 1/g12 = g−12 = g(15−12) = g3 = (1000)2.

To check that this is the multiplicative inverse of U(x) their multiplicative identity should

be one, e.g.
Z(x) = 1/U(x) mod f(x) = 1/(1111)2 = 1/g12 = g−12 = g(15−12)

= (x3 + x2 + x+ 1)x3 = x6 + x5 + x4 + x3 = (x4 + x+ 1)(x2 + x+ 1) + 1 = 1.

30 Chapter 2. Background

The division Z(x) = V (x)/U(x) mod f(x) over F2
m is performed by first finding the

inverse U−1(x) and then performing the multiplication, where V (x)·U−1(x) = V (x)/U(x).

2.5.7 Complexity Analysis of Finite Field Arithmetic over F2
m

Finite field addition, multiplication, and inversion operations have different latency (the

number of clock cycles). Complexity analysis of all operations in terms of clock cycles

is reported in Section 3.4, Table 3.6. As shown in Table 3.6, addition is the simplest

operation, needing only a single clock cycle, whereas inversion is the most time-consuming

and complex operation, taking 2m+ 1 clock cycles.

2.5.8 Reduction in F2
m

FFA for a binary field is performed modulo the corresponding reduction polynomial f(x)

of the binary field used. A modular reduction needs to be run on the result of the

multiplication, squaring, and inversion to ensure that it exists within the binary field F2
m

chosen. The reduction is performed by connecting all bit positions representing a binary

polynomial with a degree more than m to be selectors to each multiplexer. For reduction,

the NIST irreducible polynomial f(x) of the corresponding binary field is used, so that

a binary polynomial Zv(x) is reduced to Z(x), where Z(x) = Zv(x) mod f(x). The

reduction used in the architecture of traditional and systolic digit-serial multiplication to

perform mod f(x) is presented in Section 3.4.3, Fig. 3.6.

2.5.9 NIST Reduction Polynomials over F2
m

There are various elliptic curve domain parameters over F2
m including the field size m

and irreducible binary polynomial or field generator f(x) of degree m, which specifies the

PB representation of F2
m. The irreducible polynomials for either the random curves or

2.6. Prime Field Fp Arithmetic Background 31

Koblitz curves recommended by NIST in the FIPS 186-2 standard for 163, 233, 283, 409

and 571 bits are presented in Table 2.1. Certicom has also provided NIST-recommended

EC domain parameters, standard for efficient cryptography in SEC2 [54]. The details of

the fast reduction modulo algorithms for the NIST irreducible polynomial f(x) can be

found in [2].

Table 2.1: NIST recommended irreducible polynomials over GF(2m) [22]

Field size m Irreducible polynomial f(x)

163 f(x) = x163 + x7 + x6 + x3 + 1

233 f(x) = x233 + x74 + 1

283 f(x) = x283 + x12 + x7 + x5 + 1

409 f(x) = x409 + x87 + 1

571 f(x) = x571 + x10 + x5 + x2 + 1

2.6 Prime Field Fp Arithmetic Background

The most basic and lowest level of point multiplication is modular arithmetic over prime

fields Fp. All modular arithmetic operations over a prime field Fp (or GF (p)) are accom-

plished using modulo p, consisting of the integers between 0 and p − 1. For any integer

x, x mod p can be defined as the unique integer remainder q, 0 ≤ q ≤ p − 1, obtained

upon dividing x by p; this operation is called reduction modulo p, which is required for

cryptographic schemes. In cryptographic applications, e.g. an elliptic curve cryptosystem,

x and p are large integers, such as 224 or 256 bits, and p must be a prime number.

The computation of an elliptic curve cryptosystem over GF (p) consists of three levels:

modular arithmetic, group operations, and point multiplication. The detailed hierarchy

of ECC over the prime field GF (p) is presented graphically in Section 8.3.1. The finite

32 Chapter 2. Background

field modular arithmetic (FFMA) unit, such as the modular addition, subtraction, mul-

tiplication, squaring, and inversion operations, is mandatory to implement elliptic curve

group operations over GF (p). The group operations are then utilised to develop point

multiplication, where ECPM can be utilised for the elliptic curve digital signature al-

gorithm (ECDSA). In this chapter, the subsequent section discusses modular arithmetic

first, then followed by group operations and point multiplication.

2.6.1 Modular Adder and Subtractor over Fp

The modular adder and subtractor are the fundamental operations for an ECP. The basic

modular adder and subtractor operations are presented in (2.6).

Z = (x± y) (mod p), (2.6)

The output Z of the modular addition is obtained by adding x and y and then subtracting

the modulus p from the sum until the output is less than p. The modular reduction is

usually very simple for an adder because the inputs x and y are in the range between 0

and p− 1, hence the output Z must be ≤ 2p. Consequently, the output Z can be reduced

by simply subtracting p. Modular subtraction is very similar to modular addition. In

a modular subtractor, if x ≥ y then it can be computed easily by simple subtraction or

2’s-complement addition and the output Z will be in the range. Otherwise, if x ≤ y the

modulus p should be added to the input x before the subtraction starts [27]. A basic

example of modular addition is as follows; consider
x = 28, y = 20, and modulus p = 29, then

z = (x + y) (mod p) = (28 + 20) (mod 29) = (48− 29) = 19.

The basic modular subtraction example is as follows; consider
x = 20, y = 28, and modulus p = 29, then

z = (x + y) (mod p) = (20− 28) (mod 29) = (20 + 29− 28) (mod 29) = 21.

2.6. Prime Field Fp Arithmetic Background 33

The modular adder and subtractor can be implemented separately or in combination.

The adder or subtractor takes only one clock cycle to implement, whereas the combined

unit takes two clock cycles with a slightly higher area complexity. In this dissertation,

both separate and combined modular adders and subtractors are implemented; see in

Section 11.4.1.

2.6.2 Modular Multiplier/Squarer over Fp

Modular multiplication, including squaring, is expensive and the most important opera-

tion over the prime field Fp. To implement high-performance public-key cryptosystems,

e.g. RSA, Diffie-Hellman key exchange, and elliptic curve cryptosystems, efficient imple-

mentation of a modular multiplier is required. The basic modular multiplier operation of

two elements x, y ∈ Fp is presented as Z = (x×y) mod p. A basic modular multiplication

example is as follows: consider x = 28, y = 20, and p = 29, then{
z = (x× y) (mod p) = (28× 20) (mod 29) = (19× 29 + 9) (mod 29) = 9.

For a normal computation, the reduction operation can be performed by divisions,

but in a hardware implementation modular reduction using division is quite slow. Various

methods to perform modular multiplication are reported in [55–65]. Two efficient methods,

such as Montgomery modular reduction proposed in 1985 [66] and Barrett modular

reduction proposed in 1987 [67], are popular choices for hardware implementations. The

Barrett algorithm consists of division operations which are usually slow, but it can be

implemented efficiently by using right-shift operations. It has been shown in [68] that

Montgomery modular multiplication is slightly faster than the Barrett algorithm. For

this reason, the Montgomery modular multiplication method is used in this dissertation.

A detailed comparison of Montgomery and Barrett modular multiplication algorithms is

presented in [68].

34 Chapter 2. Background

The Montgomery modular product can be presented as R = Montgpro(x, y, p) =

x × y × 2−(m+2) mod p. In this method, the costly trial division by modulus p can be

avoided, keeping the intermediate result bounded to (m+ 2) bits all over the calculation.

This method calculates the Montgomery product using a series of simple additions and

right shifts. In this method, two Montgomery multiplications are required for one complete

modular multiplication [69]. The modular multiplier architecture corresponding to the

Montgomery algorithm is presented in Section 8.3.2, Fig. 8.2. Also, most of the other

modular multiplication algorithms follow the basic concept of the Montgomery method.

For example, [65] proposed a fast interleaved modular multiplier based on the Barrett

and Montgomery methods. In this dissertation, there are also two modular multiplication

algorithms, and their corresponding architectures are proposed based on an interleaved

method. The first one is the modified interleaved method and the second one is radix-4

modular multiplication.

In the first method, the multiplication and the calculation of the remainder of division

are interleaved. This is a very simple method as the first operand is multiplied bitwise

with the second operand, then added to the intermediate result. The benefit of the

interleaved method is that the intermediate result is only one or two bits larger than the

operands because the intermediate result is always reduced by taking the modulus [60,

61]. The detailed hardware architectures are explained in Section 10.4.1, Fig. 10.2 and

Section 11.4.2, Figs. 11.2 and 11.3(a). The latency (number of clock cycles) of this method

is m+ 1, where m is the bit length of the operands A,B or p. To reduce the cycle counts,

a higher radix, e.g. radix-4 modular multiplier, is required.

In the second method, a novel radix-4 modular multiplication algorithm is proposed.

It can be used for high-performance public-key cryptosystems, including ECP, because

of their lower cycle count than the bit-serial multiplier [55–57]. In a radix-4 multiplier,

it processes 2 bits at a time, which halves the total number of clock cycles. Usually,

2.6. Prime Field Fp Arithmetic Background 35

higher-radix modular multipliers are better with speed or timing, but the area increases

significantly [70]. For this reason even higher-radix modular multipliers, such as radix-

8, are not suitable for low-AT-complexity designs. The hardware architecture based on

the proposed radix-4 modular multiplication algorithm 11.3 is depicted in Section 11.4.2,

Fig. 11.3(b). The latency of this method is only m/2 + 1 clock cycles to complete the

modular multiplication. Therefore, a high-performance modular multiplier is designed

which is essential for ECP in Jacobian coordinates.

A modular squarer is similar to a modular multiplier except that only one input

is required for a modular squarer rather than the two inputs for a modular multiplier;

otherwise all other operations are the same as for modular multiplication.

2.6.3 Modular Inversion over Fp

The modular inversion (U−1 mod p) over a prime field is the most complex, most ex-

pensive, and the slowest among all other ECC arithmetic computations. Therefore, it is

impossible to avoid modular inversion for ECP over prime fields GF (p). However, in affine

coordinates inversion is mandatory for elliptic curve group operations, hence ECPM. On

the other hand, it can be avoided for group operations in Jacobian coordinates. However

to convert back to affine coordinates, still one modular inversion is required.

The inverse of an integer a modulo p is defined as an integer R such that a.R ≡

1 (mod p). The classical definition of the modular inversion operation can be presented

as

R = a−1 (mod p) (2.7)

where p is a prime and a is an integer. From (2.7), the inverse of a exists if and only if

a is relatively prime with p. Therefore, the Greatest Common Divisor (gcd) of a and p

36 Chapter 2. Background

must be 1 or gcd(a, p) = 1. A modular inversion example is as follows: consider
a = 12 and modulus p = 29, then

R = a−1 (mod p) = 12−1 (mod 29) = 17 because 12× 17 (mod 29) = 1.

To compute modular inversion, numerous methods have been presented in the litera-

ture [71–83]; two well-known methods are often used: the first is Fermat’s Little Theorem

(FLT) and the second is based on the Extended Euclidean gcd Algorithm (EEA). The

multiplicative inverse of the FLT method is obtained by modular exponentiation, which is

a very expensive operation for finding the inverse because it needs a series of complicated

multiplication and squaring operations. On the other hand, there are many variants of

EEA reported in the available literature [2,71]. For example, [71] proposed a Montgomery

modular inversion algorithm which is a variant of the EEA. However, the algorithm pro-

posed in [71] requires 3m + 2 clock cycles to complete the modular inversion. In this

dissertation, an efficient inversion algorithm has been used based on the binary method,

which is well known as the binary inversion algorithm, depicted in Section 9.4, Algorithm

9.1 [2]. Based on this algorithm, the modular inversion is accomplished using a series of

additions, subtractions, and shift operations [84]. The detailed architecture is explained

in Section 9.4, Fig. 9.1. The result of a modular inversion is achieved after 2m iterations.

2.6.4 Complexity Analysis of Modular Arithmetic over Fp

Modular addition, multiplication, and inversion operations take different number of clock

cycles. Their complexity analysis in terms of clock cycles is reported in Table 2.2. As

one can see from Table 2.2, addition takes only one clock cycle, whereas inversion takes a

huge number of clock cycles. In addition, three different types of modular multipliers are

implemented, where the radix-4 modular multiplier provides the best performance.

2.6. Prime Field Fp Arithmetic Background 37

Table 2.2: Complexity of GF (p) FFMA operations in terms of clock cycles

GF (p) operation Complexity of FFMA operations

(in terms of latency (clock cycles)

Addition/subtraction 1

Combined addition and subtraction 2

Montgomery multiplier m+ 1

Modified interleaved multiplier m+ 1

Radix-4 multiplier m/2 + 1

Inversion (bit-serial) 2m+ 1

2.6.5 NIST Primes p over Fp

There are numerous elliptic curve domain parameters over Fp including prime field moduli

bit sizes and their corresponding numerical values, which are required to implement ECP

over prime fields GF (p). The prime field for random curves recommended by NIST in

the FIPS 186-2 standard for 192, 224, 256, 384 and 521 bits are presented in Table 2.3.

Certicom has provided elliptic curve domain parameters for both random and Koblitz

curves, where Koblitz curve parameters are depicted in Table 2.4 [54]. The fast-reduction

modulo algorithms for the NIST random curves can be found in [2]. In this dissertation,

the proposed ECP over GF (p) supports three prime fields of the five NIST-recommended

primes p, with sizes 192, 224, and 256 bits.

38 Chapter 2. Background

Table 2.3: NIST recommended primes over Fp [22,54]

Prime Size (bits) m Numerical Value

p192 192 2192 − 264 − 1

p224 224 2224 − 296 + 1

p256 256 2256 − 2224 + 2192 + 2224 − 1

p384 384 2384 − 2128 − 296 + 232 − 1

p521 521 2521 − 1

Table 2.4: Prime p for Koblitz curves over Fp [54]

Prime Size (bits) m Numerical Value

p192 192 2192 − 232 − 212 − 28 − 27 − 26 − 23 − 1

p224 224 2224 − 232 − 212 − 211 − 29 − 27 − 24 − 2− 1

p256 256 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

2.7 Elliptic Curve Cryptography

The theory of elliptic curves is a deep branch of mathematics, and has been extensively

studied since the second half of the 20th century, initially, without any cryptographic

applications. In the mid-80s, the use of elliptic curves in PKC, named elliptic curve

cryptography (ECC), was first proposed independently by Koblitz [11] and Miller [10].

ECC has attractive features, such as that it provides equivalent security to RSA or discrete

logarithm systems (e.g. DH) with considerably shorter key lengths (approximately 160-

256 vs 1024-3072 bits) [2, 17, 85]. The following section presents a brief introduction to

elliptic curves and elliptic curve point arithmetic, e.g. point doubling (PD) and point

addition (PA), which are required to implement ECPM.

2.7. Elliptic Curve Cryptography 39

2.7.1 Overview of Elliptic Curves

An elliptic curve E over a field K, which is denoted E/K, is defined by the long form of

the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.8)

where the coefficients a1, a2, a3, a4 and a6 belong to the fieldK and the discriminant4 6= 0

which guarantees that there are no points at which the elliptic curve has more than one

tangent i.e. the elliptic curve is “smooth”. The discriminant 4 over elliptic curves E must

be −d22d8 − 8d34 − 27d26 + 9d2d4d6, where d2 = a21 + 4a2, d4 = 2a4 + a1a3, d6 = a23 + 4a6,

and d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

Now, if x and y are a pair of elliptic curve points, which is denoted by (x, y), and L is

any extension field of K, let the set of L-rational points on E be presented as

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0} ∪ {∞} (2.9)

where ∞ is the point at infinity. Equation (2.8) needs to be simplified by changing the

variables underlying the field K, because the short form of the Weierstrass equation can

be used for practical implementations of an elliptic curve cryptosystem. To get the short

form of the Weierstrass equation, there are two conditions: 1) if the underlying field K

has characteristic = 2 or 3 and 2) if the underlying field K has the characteristic 6= 2 and

6= 3.

Based on the first condition, when the underlying field K has characteristic 2 and a1 = 0,

the elliptic curve point

(x, y)→ (a21x+
a3
a1
, a31y +

a1a4 + a23
a31

) (2.10)

then the elliptic curve E becomes

y2 + xy = x3 + ax2 + b (2.11)

40 Chapter 2. Background

where a, b ∈ K and the elliptic curve is called the non-supersingular elliptic curve and

4 = b. Equation (2.11) is called the elliptic curve E over the binary field GF (2m).

Based on the second condition, the elliptic curve point becomes

(x, y)→ (
x− 3a21 − 12a2

36
,
y − 3a1x

216
− a31 + 4aaa2 − 12a3

24
) (2.12)

and the elliptic curve E becomes

y2 = x3 + ax+ b (2.13)

where a and b are the two coefficients belonging to the field K and the discriminant

4 = −16(4a3 + 27b2). Equation (2.13) is called the elliptic curve over GF (p).

–2

–1

0

1

2

2 x

y

(a) E1 : y2
= x3

− x

–4

–2

0

2

4

1 2 x

y

(b) E2 : y2
= x3

+
1
4

x +
5
4

Figure 2.3: Elliptic curves over real number R.

The elliptic curve defined over R, the field of real numbers, is depicted in Fig. 2.3. However,

an elliptic curve defined over a finite field is required for practical cryptographic applica-

tions. There have been some other equations based on the first condition. However, in

this dissertation the elliptic curve equations (2.11) and (2.13) are used to implement ECP

over the binary field and the prime field, respectively.

2.7. Elliptic Curve Cryptography 41

2.7.2 Elliptic Curve Point Arithmetic

The second level or mid level in the hierarchy of an elliptic curve cryptosystem consists

of elliptic curve point arithmetic (or group operations), point doubling (PD) and point

addition (PA). These group operations can be performed by the chord-and-tangent rule [2]

for doubling or adding two points to get the third point. The PA and PD on elliptic curves

in affine coordinates are displayed geometrically in Fig. 2.4. Given two distinct points

P = (x1, y1) and Q = x2, y2, then the PA of P and Q is the point R (R = P +Q) which

is the line that crosses the points P and Q on the elliptic curve E, also the point R is the

reflection of the point about the x-axis, as shown in Fig. 2.4(a). Similarly, the PD is the

results of adding a point P itself which can be defined as R = 2P . First draw the tangent

line to the elliptic curve at P then the projection over the x axis of the point is defined

as R, as shown in Fig. 2.4(b). The PD and PA can be computed both in the binary field

GF (2m) and the prime field GF (p); this dissertation emphasizes both.

R = (x3, y3)

x

y

P = (x1, y1)

Q = (x2, y2)

(a) Addition: P + Q = R.

R = (x3, y3)

x

y

P = (x1, y1)

(b) Doubling: P + P = R.

Figure 2.4: Geometric point addition and point doubling on elliptic curve.

42 Chapter 2. Background

Point Arithmetic over F2
m in Affine Coordinates: y2 + xy = x3 + ax2 + b

Point doubling over F2
m: Let P = (x1, y1) ∈ E(F2

m) in affine coordinates, then the PD

in affine coordinates R = 2P = (x3, y3) can be computed over GF (2m) as

x3 = λ2 + λ+ a,

y3 = x21 + λx3 + x3,

where λ = x1 + y1/x1.

(2.14)

Point addition over F2
m: Given two points P = (x1, y1) and Q = x2, y2 over the binary

field, where P 6= ±Q then the PA in affine coordinates R = P + Q = (x3, y3) can be

obtained over GF (2m) as follows:

x3 = λ21 + λ1 + x1 + x2 + a,

y3 = λ1(x1 + x3) + x3 + y1,

where λ1 = (y2 + y1)/(x2 + x1).

(2.15)

The implementation costs of PD and PA over GF (2m) in affine coordinates are 1I +

2M + 1S and 1I + 2M + 2S, respectively, where I, M , and S, are the costs of polynomial

inversion, multiplication, and squaring, respectively.

Point Arithmetic over Fp in Affine Coordinates: y2 = x3 + ax+ b, characteristic

(K) 6= 2, 3

Point doubling over Fp: Given a point P = (x1, y1) over the prime field, then PD in affine

coordinates R = 2P = (x3, y3) can be obtained over GF (p) as follows:

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

where λ = (3x21 + a)/2y1.

(2.16)

2.8. Point Representation 43

Point addition over Fp: Given two points P = (x1, y1) and Q = x2, y2 over GF (p), where

P 6= ±Q then the PA in affine coordinates R = P + Q = (x3, y3) can be computed over

GF (p) as follows:

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

where λ = (y2 − y1)/(x2 − x1).

(2.17)

The implementations of PD and PA in affine coordinates have costs of 1I + 2M + 2S

and 1I + 2M + 1S, respectively, where I, M , and S are the costs of modular inversion,

multiplication, and squaring, respectively.

In equations (2.14), (2.15), (2.16), and (2.17), some special cases must be considered.

For example, the PD and PA can be computed by applying the identity element, called

the point at infinity ∞ [2, 17, 85, 86]. For example, if the point P = (x1, y1) and its

negative identity −P = (x1,−y1), then the PD must be R = 2P = P + (−P) = (x1, y1) +

(x1,−y1) = ∞, or if P = (x1, y1) and Q = (x1, y1), then PA is given by: R = P +

Q = (x1, y1) + (x1,−y1) = ∞, where Q = (x1, y1) is the negative of P . Similarly,

P +∞ =∞+P = P for all P ∈ E(K) and −∞ =∞. In this dissertation, the equations

(2.14), (2.15), (2.16), and (2.17) are used to implement PD and PA operations in affine

coordinates.

2.8 Point Representation

Various coordinates can be used to represent elliptic curve points, such as affine and

projective representations. A point on the elliptic curve E(Fp or F2
m) for affine co-

ordinates can be presented by using two elements x, y ∈ Fp or F2
m, i.e. P(x, y). In

the previous section, the elliptic curve points have been presented in affine coordinates,

which requires a modular/finite field inversion, the most expensive and time-consuming

44 Chapter 2. Background

operation. The inversion for each group operation can be removed by using projective

coordinate systems. For this reason, the projective coordinate system is called inversion-

free coordinates. However, PD and PA operations in projective coordinates need more

modular/finite field multiplications. In projective coordinates, a point P on the elliptic

curve needs three elements X, Y, Z ∈ Fp or F2
m, i.e. P(X, Y, Z). In the literature, several

projective coordinates have been proposed to represent elliptic curve points. In the binary

field F2
m, the projective coordinates are 1) standard, 2) Jacobian, and 3) Lopez-Dahab

projective coordinates. In the prime field Fp, the available projective coordinates are: 1)

standard projective coordinates, 2) Jacobian projective coordinates, and 3) Chudnovsky

coordinates. In this dissertation, Jacobian projective coordinates have been used to im-

plement the PD and PA operations because it can be used for both fields. Further details

of projective coordinates can be found in [2].

2.8.1 Point doubling and point addition over F2
m in Jacobian Pro-

jective Coordinates

Let the affine point P = (x, y), then the projective coordinates P = (X, Y, Z) are given

by (2.18), where Z is simply set to 1 [87].

X = x; Y = y; Z = 1. (2.18)

The affine point P = P (x, y) can be converted back from the Jacobian projective point

P = (X, Y, Z), as is presented in (2.19)

x = X/Z2; y = Y/Z3. (2.19)

Using (2.11), (2.18), and (2.19), the Jacobian projective form of the Weierstrass equation

of the elliptic curve becomes

Y 2 +XY Z = X3 + aX2Z2 + bZ6 (2.20)

2.8. Point Representation 45

where the point at infinity is (1, 1, 0).

Point doubling over F2
m: Let P = (X1, Y1, Z1) be a projective point on the elliptic

curve, then the PD operation R = 2P = X3, Y3, Z3 over GF (2m) in Jacobian projective

coordinates can be computed as [87]:

Z3 = X1Z
2
1 ,

X3 = (X4
1 + bZ8

1)

Y3 = X4
1Z3 + (X2

1 + Y1Z1 + Z3)X3.

(2.21)

Point addition over F2
m: Given two projective points P = (X1, Y1, Z1) andQ = (X2, Y2, Z2)

on the elliptic curve, then the PA operation R = P + Q = (X3, Y3, Z3) over GF (2m) in

Jacobian projective coordinates can be computed as [87]:

Z3 = Z1Z2W,

X3 = aZ2
3 +R(R + Z3) +W 3,

Y3 = (R + Z3)X3 + Z2
1W

2(RX2 + Y2Z1W),

where W = (X1Z
2
2 +X2Z

2
1) and R = Y1Z

3
2 + Y2Z

3
1.

(2.22)

The implementation costs of PD and PA over GF (2m) in Jacobian projective coordi-

nates based on equations (2.21) and (2.22) are 5M+5S and 14M+4S, respectively, where

M is the cost of polynomial multiplication and S is the cost of polynomial squaring.

2.8.2 Point doubling and point addition over Fp in Jacobian Pro-

jective Coordinates

The Jacobian projective form of the Weierstrass equation for an elliptic curve over the

prime field Fp can be written as (2.23), where P = (X, Y, Z) is the point of projective

coordinates [2, 88,89] :

Y 2 = X3 + aXZ4 + bZ6. (2.23)

46 Chapter 2. Background

Point doubling over Fp: Given a point P = (X1, Y1, Z1) on the elliptic curve, then the PD

over GF (p) in Jacobian projective coordinates R = 2P = (X3, Y3, Z3) can be computed

as follows [89]:

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1 ,

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1 ,

Z3 = 2Y1Z1.

(2.24)

Equation (2.24) represents the PD operation for a random curve. The PD operation for

the Koblitz curve can be computed as (2.25), where the coefficient a = 0.

X3 = (3X2
1)2 − 8X1Y

2
1 ,

Y3 = 3X2
1 (4X1Y

2
1 −X3)− 8Y 4

1 ,

Z3 = 2Y1Z1.

(2.25)

Point addition over Fp: Given two points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) on the

elliptic curve, then the PA over GF (p) in Jacobian coordinates R = P +Q = (X3, Y3, Z3)

can be computed as follows [89]:

X3 = A2 −B3 − 2X1Z
2
2B

2,

Y3 = A(X1Z
2
2B

2 −X3)− Y1Z3
2B

3,

Z3 = Z1Z2B0

where A = Y2Z
3
1 − Y1Z3

2 and B = X2Z
2
1 − X1Z

2
2.

(2.26)

The implementations of PD and PA over GF (p) in Jacobian projective coordinates

have costs of 4M + 4S and 12M + 4S, respectively, where M and S are the costs of

modular multiplication and squaring, respectively.

Most of the ECPM implementations in the literature have used separate PD and

PA operations, and require more latency than the proposed combined PDPA. In this

dissertation, a novel combined hardware is introduced to compute PD and PA together

2.9. Elliptic Curve Point Multiplication 47

with lower latency. For example, the equations (2.21) and (2.22) are used to implement a

combined PD and PA, called PDPA, over the binary field GF (2m). Similarly, equations

(2.24) or (2.25) and (2.26) are used to implement a combined PD and PA over the prime

field GF (p). The details of the combined PDPA hardware over GF (2m) and GF (p) are

discussed in Section 7.5 and Section 11.5, respectively.

2.9 Elliptic Curve Point Multiplication

Elliptic curve point multiplication (ECPM), also known as elliptic curve scalar multipli-

cation (ECSM), is the highest level in the hierarchy of ECC operations and it dominates

the computation of cryptographic schemes, such as the elliptic curve digital signature al-

gorithm (ECDSA). ECPM is the core operation of an ECC processor (ECP), and is com-

putationally the most expensive operation, hence to improve the performance of ECPM

is a challenging task. The basic point multiplication can be defined as:

Q = kP = P + P + ...+ P︸ ︷︷ ︸
k times

(2.27)

where k is an integer (which is the private/secret key) in the range 1 ≤ k < order (P),

and P and Q are two points on the elliptic curve defined over a field GF (q) [2, 17, 85].

As shown in (2.27), the point multiplication kP represents the addition k − 1 times of

elliptic curve point P . When the point P on the elliptic curve is fixed, for example in

ECDSA signature generation, ECPM can be computed very efficiently because certain

fixed parameters can be exploited from pre-computed data. The performance of ECPM

relies on finding the minimum number of steps to compute kP from a given elliptic curve

point P . For doing this, there are various methods/algorithms to compute ECPM, such as

the double-and-add (or binary) method, window methods, the Non-adjacent form (NAF),

and the Montgomery method. In the following section, the most used algorithm known

as the double-and-add algorithm is discussed.

48 Chapter 2. Background

Algorithm 2.1: Double-and-add (left to right) point multiplication algorithm

Input: k = (km−1,...,k1,k0)2, P ∈ E(F2
m or Fp)

Output: Q = k · P , where Q ∈ E(F2
m or Fp)

1. Q = 0 ;

2. for i = m - 1 to 0 do Q = 2Q;

2.1 if k(i) = ’1’ then Q = Q+ P ; end if

2.2 end for

3. Return Q

2.9.1 Double-and-add point multiplication

The double-and-add (or binary) algorithm is used in this dissertation, and is one of the

simplest methods to compute point multiplication. Algorithm 2.1 depicts the double-and-

add method [2]. This algorithm can be used to implement point multiplication over either

binary fields or prime fields, also either in affine or Jacobian coordinates. As can be seen

from Algorithm 2.1, it iterates through each bit of k, where the scalar k =
∑m−1

i=0 ki2
i.

In this method, a point P is added k -1 times to itself to get the final point Q in affine

or Jacobian projective coordinates. ECPM can be computed using execution sequences

of PD and PA operations [2], i.e. it can be computed as multiple points on an elliptic

curve with the use of the repeated doubling and addition of points on an elliptic curve.

The execution schedules are directly related to the bit pattern of the scalar multiplier,

k = ‘key’. Generally, a PD operation performs on every iteration, and a PA operation

only performs when the particular bit of k is one. In this method, m − 1 iterations are

required to compute the point multiplication, where the latency of each iteration depends

on the latency of the PD and PA operations. This algorithm requires on average m PDs

and m/2 PAs, where m ≈ log2 m.

2.10. Security Analysis 49

2.9.2 Example of double-and-add point multiplication

An example of the binary point multiplication algorithm is given below [17]:

Example: Q = 27P = (110112)P = (d4d3d2d1d0)P

Step

#0 Q = 0 initial setting

#1a Q = 2Q = 02P

#1b Q = Q+ P = 0 + P = 12P Add (bit d4 = 1)

#2a Q = 2Q = 2(1P) = 2P = 102P Double (bit d3)

#2b Q = Q+ P = 2P + P = 3P = 112P Add (bit d3)

#3a Q = 2Q = 2(3P) = 6P = 1102P Double (bit d2)

#3b Q = Q = 6P No add (bit d2 = 0)

#4a Q = 2Q = 2(6P) = 12P = 11002P Double (bit d1)

#4b Q = Q+ P = 12P + P = 13P = 11012P Add (d1)

#5a Q = 2Q = 2(13P) = 26P = 110102P Double (bit d0)

#5b Q = Q+ P = 26P + P = 27P = 110112P Add (d0)

2.10 Security Analysis

The hardness or strength of elliptic curve cryptosystems based on ECPM or ECSM is

equal to kP , where it is very hard problem to recover k. This is the so-called ECDLP,

which is a harder mathematical problem than integer factorisation (e.g. RSA) and the

discrete logarithm problem (e.g. DH and ElGamal). Also, based on the literature survey

it is shown that ECDLP is considered to have fully exponential timing complexity, i.e.

it takes an exponential time to recover or solve for k (or key) [85]. Therefore, the entire

security of different protocols, e.g. elliptic curve Diffie-Hellman (ECDH) key exchange

50 Chapter 2. Background

and ECDSA, is based on the hardness of the ECDLP. Sometimes the double-and-add

algorithm for computing ECPM is not safe against many side-channel attacks (SCA), e.g.

simple power analysis (SPA) and differential power analysis (DPA), and an intruder can

get the ‘key’ by tracing the power consumption for the PD and PA operations in each

iteration. However, if the PD and PA operations have equal cost then it is difficult to

extract the ‘key’. In this dissertation, a combined PDPA hardware is designed for both

binary fields and prime fields, and computes the PD and PA operations concurrently,

as explained in Section 7.5 and 11.5. Therefore, the power consumption pattern for the

PDPA hardware will be symmetric in nature. As explained in Figs. 7.7 and 11.5, a scalar

multiplication hardware is developed using the combined PDPA hardware architecture.

Hence, a uniform power consumption profile may be measured throughout the point-

multiplication computation. From the hardware analysis, it can be observed that any

‘key’ leak information is difficult to extract. Besides, the double-and-add algorithm is

secure against timing and SPA attacks [90]. A detailed security analysis can be found

in [91–96].

2.11 Platforms for Hardware Implementation

There are various platforms for hardware implementation of cryptosystems currently

available. However, two well-known hardware implementation platforms are often used:

1) field-programmable gate array (FPGA) and 2) application-specific integrated circuit

(ASIC). Both platforms have their own advantages and disadvantages.

An FPGA is a reconfigurable device which is composed of lots of configurable logic

blocks (CLBs), including slices and registers, input/output blocks (IOBs), and programmable

interconnects. The FPGA has many features as well as multiple advantages. It is widely

used for hardware implementation as a prototype design. In addition, an FPGA has a

2.11. Platforms for Hardware Implementation 51

high level of flexibility or reprogrammability which means that a cryptographic algorithm

(e.g. elliptic curve cryptosystem) can easily be updated. Moreover, FPGAs assure lower

cost for prototype design or in small volumes since they do not incur any fabrication

cost. Furthermore, an FPGA provides better performance in a shorter design time. For

FPGA implementations, a bitstream (e.g. .bit or .bin extension) can be generated after

synthesis, mapping, place and route phases, then the bitstream can be loaded into an

FPGA for execution. In this dissertation, Xilinx Virtex-7 and Kintex-7 FPGAs are used

to implement elliptic curve cryptosystems over either binary fields or prime fields. Also,

Xilinx Virtex-6 and Virtex-5 FPGAs are used to synthesise the designs.

An ASIC provides better performance than an FPGA because the ASIC is optimised

for specific applications while FPGAs are optimised for generic implementations. For

bulk production or in high volumes, ASICs, after the first run, are much cheaper than

the corresponding production based on FPGA devices. However in prototype or in small

volumes, an ASIC is very expensive due to startup cost, e.g. costs of masks required in

manufacturing. Also, ASIC-based implementations may take a huge time to fabricate.

Apart from that, ASIC-based implementations are required where the performance is of

utmost importance. For example, it is mandatory for faster and low-power customised

applications.

These hardware implementation platforms can be programmed by two hardware descrip-

tion languages (HDLs): 1) Very high speed integrated circuit (VHSIC) HDL or simply

named VHDL and 2) Verilog. In this dissertation, all the hardware architectures are

implemented using VHDL. Both FPGA and ASIC technologies are used to implement

ECPs.

52 Chapter 2. Background

2.12 Elliptic Curve Digital Signature Algorithm

The elliptic curve digital signature algorithm (ECDSA) is the application of ECC to the

digital signature algorithm (DSA), and it is the most widely used elliptic curve based

signature scheme [2, 22–24, 27, 97]. The ECDSA protocol is made up of three main com-

ponents: 1) key generation, 2) signature generation, and 3) signature verification. The

ECDSA has been standardised by international standards bodies and appears in ANSI

X9.62 [24], NIST FIPS 186-2 [22], IEEE 1363-2000 [23], and ISO/IEC 15946-2 [2]. The

detailed algorithms of elliptic curve digital signature generation and verification are de-

scribed in Section 11.6.5, Algorithm 11.5 and Algorithm 11.6. As one can see from the

algorithms, the execution sequence of signature generation and signature verification rely

on the modular arithmetic operations and point multiplication. In this dissertation, all

the modular arithmetics and point multiplications are implemented which can be used

for the ECDSA.

2.13 Summary of Proposed Designs

The main focus of this dissertation is to implement high-performance (which includes high

speed, low area, and low energy dissipation) ECC processors (ECPs) both in the binary

field GF (2m) and the prime field GF (p). To achieve this, a finite field arithmetic (FFA)

unit is presented for binary-field ECPs. The FFA unit consists of finite field or polyno-

mial addition, multiplication, squaring, and inversion. In this dissertation, polynomial

multiplication is designed in both bit-serial and digit-serial approaches. The proposed

FFA unit is implemented on both FPGA and ASIC platforms and their performances in

terms of timing, area, energy, AT, and ATE are compared with the existing literature.

Based on the performance comparisons of different FFA designs in the literature, the

proposed FFA design performs better. In addition, a separate PD and PA (group oper-

2.13. Summary of Proposed Designs 53

ations) hardware and a combined hardware are designed for ECPs over GF (2m). Using

this high-performance FFA unit and group operations, efficient ECPs over the binary field

are achieved. Similarly, a finite field modular arithmetic (FFMA) unit is presented for

the prime-field ECPs. The FFMA consists of modular addition, subtraction, combined

addition and subtraction, multiplication, squaring, and inversion. The modular multipli-

cation is proposed and implemented in two different approaches: 1) modified interleaved

method and 2) radix-4 method. Also, a separate PD and PA hardware is designed for an

ECP over GF (p) in affine coordinates. Moreover, an optimised combined PDPA hard-

ware architecture is developed for an ECP over GF (p) in Jacobian projective coordinates.

Finally, both FPGA- and ASIC-based ECPs over GF (p) are implemented using the de-

signed FFMA unit and group operations. Numerous implementations of FFA, FFMA,

ECPM are presented for ECC in the literature, however, it is not easy to say which de-

signs are the best because the algorithms, platforms, and elliptic curve parameter sizes are

not always the same. Therefore, the overall performance for both binary-field ECPs and

prime-field ECPs is compared with the most relevant implementations in the literature.

The detailed performance comparisons of all designs are discussed in each chapter.

Chapter 3

Efficient Hardware Implementation of

Finite Field Arithmetic for Elliptic

Curve Cryptography1

3.1 Abstract

For practical use of an elliptic curve cryptography (ECC) processor, an ef-

ficient hardware implementation must be achieved in terms of time, area,

and power. For a high-performance ECC processor, a large number of fi-

nite field additions, multiplications, and inversions are required. In this pa-

per, we propose a high-performance hardware implementation of finite field

arithmetic (FFA) for an ECC processor over NIST binary fields. This paper

presents a bit-serial and digit-serial architecture using a polynomial basis to

compute a finite field multiplication. The latency for the bit-serial and digit-
1Submitted as: M. S. Hossain, K. Ruangsantikorakul and Y. Kong,“Efficient Hardware Implementation

of Finite Field Arithmetic for Elliptic Curve Cryptography,”IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, in review.

55

56
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

serial multipliers is m and dm/de, respectively. In addition, an improved

version of systolic digit-serial multiplication over GF(2m) is proposed whose

time complexity can be scaled down to 2 ∗ d
√
m/de clock cycles for the digit-

size d. Moreover, an inversion architecture over GF(2m) is proposed, which

involves a very low area complexity in either a field-programmable gate array

(FPGA) or an application-specific integrated circuit (ASIC). Based on the

overall performance analysis of different implementations, it is shown that

the proposed FFA is more area- and energy-efficient than all comparable work

in the literature. To the best of the authors’ knowledge, the FPGA-based de-

signs provide better efficiency (1/AT) and the ASIC-based designs deliver the

best Area×Time×Energy (ATE) performance.

3.2 Introduction

Elliptic curve cryptography (ECC), is currently the leading public-key cryptographic tech-

nique in terms of security, speed, area, and power consumption rather than the com-

monly used cryptosystem RSA [8]. It was first proposed in the mid-80s by Koblitz and

Miller [1, 10]. The National Institute of Standards and Technology (NIST) recommends

elliptic curves (ECs) over binary fields for the digital signature standard (DSS) [22].

IEEE P1363-2000 [23] also has standardized public-key cryptographic techniques, includ-

ing cryptographic schemes, using the ECC-based key agreement and digital signature

algorithm (DSA). Certicom has provided NIST-recommended EC domain parameters,

standard for efficient cryptography in SEC2 [54]. Various security protocols like identity-

based cryptography [98] and the short signature scheme [99], cryptographic pairing has

been used extensively. The Weil and Tate pairings protocols based on elliptic curve arith-

metic need huge numbers of multiplications and additions over large finite fields, and

3.2. Introduction 57

have gained great attention in this area [100, 101]. Finite field arithmetic (FFA) consists

of addition, multiplication, squaring, and inversion and is mandatory for all kinds of ECC

implementations over the binary field GF(2m). It is also widely used in error control

coding [43,102,103]. The practical realization of pairing-based cryptography in resource-

constrained environments is very demanding and challenging, hence a trade-off between

time, area, and power is necessary to get the best performance of FFA.

3.2.1 Related Work

Over the decades, numerous hardware implementations of finite field arithmetic for cryp-

tosystems (e.g. ECC processor) have been presented in the literature [2, 35,43–45,49,50,

52, 104–121]. For the practical applications of a cryptosystem, various types of inversion

and multiplication algorithms are proposed. For example, for a high-speed computation,

a bit-parallel field arithmetic is mandatory, but they need high power and area complexi-

ties, whereas a bit-serial inversion/multiplication is better for area-efficient and low-power

consumption design; but they are not fast as the bit-parallel or digit-serial/digit-parallel

approaches. Generally, digit-serial multiplication is better for low area × time (AT)

complexity and systolic multipliers over GF(2m) are better with high-throughput applica-

tions [43,104,105,122,123]. Note that m clock cycles latency is required for the bit-serial

multipliers, whereas basic digit-serial multipliers have the very low latency of dm/de with

a slightly higher area complexity, where m is the field size and d is the digit size. In

this paper, we have implemented both types of finite field multipliers to compare the

performance. Most of the paper discusses only multiplication or inversion, whereas we

have implemented and discussed all finite field arithmetics in detail. The previous work

in the available literature is classified into two categories: 1) field-programmable gate ar-

ray (FPGA)-based implementations and 2) application-specific integrated circuit (ASIC)-

based implementations. In the first part, FPGA-based implementations of multiplication

58
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

and inversion over GF(2m) are discussed, and the second part discusses ASIC-based im-

plementations of FFA.

Multiplication over GF(2m) using a polynomial basis was proposed in [108]. They im-

plemented, for all five NIST binary fields in a Xilinx Virtex-6 FPGA. In [109] and [118],

FPGA-based 163-bit finite field multiplication using a bit-serial approach was proposed

for an ECC processor. Both of their designs have higher area complexity than simi-

lar work. There are various implementations of digit-serial multipliers available in the

literature, however very few provide detailed implementation results. FPGA-based digit-

serial multipliers were proposed in [35, 115, 119] with high latency. In addition, we have

also implemented modified digit-serial multipliers with lower latency (e.g. 2 ∗ d
√
m/de).

Digit-serial finite field inversion was proposed in [107] and [35]. [124] proposed a modified

Itoh-Tsujii algorithm and implemented using a Xilinx Virtex-4 FPGA, and [35] imple-

mented inversion in a Virtex-5 FPGA using a polynomial basis. We have observed that

digit-serial inversion usually takes a huge area (or higher area complexity) to implement.

Inversion in GF(2m) using a bit-serial approach was implemented on Virtex-2 in [118] and

Virtex-4 in [115]. However, their designs take a high computation time as well as high

area complexity.

In [114] a combined finite field multiplication and inversion for all NIST fields hve been

introduced, but the area complexity is very high. This combined circuit was synthesized

in the 0.18-µm CMOS standard cell library, and used the modified extended Euclid’s

algorithm for inversion and the most-significant bit (MSB) first multiplication algorithm

for hardware implementations. [107] proposed a digit-serial based normal-basis ternary

Itoh-Tsujii inversion algorithm using hybrid-double multipliers. They implemented inver-

sion for four NIST fields of the five NIST-recommended binary fields using TSMC 65-nm

CMOS technology. We find that the digit-serial inverter is very efficient with timing

due to fewer clock cycles, but needs a huge area to implement, and the AT value is still

3.2. Introduction 59

higher than the bit-serial inverter. For this reason, a bit-serial inverter over GF(2m) is

implemented in which the latency (clock cycles) is 2m + 1. [106] proposed an ASIC-

based low-power versatile multiplier over GF(2m) using a polynomial basis. They also

implemented [108] and [112] using TSMC 65-nm CMOS technology library. A digit level

283-bit finite field multiplier was presented in [113], and implemented using 0.18-µm VLSI

technology. However, their proposed design consumes more power. For the trade-off be-

tween the timing, area and power complexities, bit-serial and digit-serial multipliers and

a bit-serial inverter have been implemented for this manuscript.

3.2.2 Our Contribution

In this paper, we present several efficient hardware implementations of multiplication and

inversion in GF(2m) (or F2
m) which includes high speed, low area, and low power con-

sumption both in FPGA and ASIC. The proposed finite field arithmetic (FFA) supports

all five NIST binary fields between 163 and 571 bits. To improve the performance of an

ECC processor, a high-performance FFA unit is mandatory. Besides, the low area and

time complexities of FFA operations are crucial for an ECC processor. In this research

work, a bit-serial finite field multiplication algorithm and corresponding architecture are

proposed; the low area and low power complexity hardware apply both in FPGA and

ASIC. However, bit-serial multiplications in GF(2m) are slow. Therefore, we propose

a structurally improved multiplication architecture in GF(2m) based on the traditional

digit-serial approach whose latency (clock cycles) is dm/de. It is implemented with a low

latency and low area complexity. In addition, a systolic digit-serial finite field multiplica-

tion is implemented both in FPGA and ASIC with a very low latency (2 ∗ d
√
m/de clock

cycles only). It is the fastest, high throughput, and low power consumption hardware

in ASIC. Moreover, a bit-serial finite field inversion architecture is proposed based on

modified Euclid’s algorithm, where an inverter is mandatory for the ECC processor in

60
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

affine coordinates. Overall, a high-performance FFA unit is proposed which can be used

for large binary field ECC processors, either in affine or projective coordinates.

3.2.3 Structure of the Paper

The paper is organized as follows. The preliminary background of ECC over F2
m is

presented in Section 3.3, where we show why finite field arithmetic (e.g. addition, multi-

plication, squaring, and inversion) is so important for an ECC processor. In Section 3.4,

the algorithms and the description of the hardware architecture for multiplication and

inversion over GF(2m) are presented. In this section, the proposed hardware implementa-

tion of bit-serial and digit-serial multipliers and a bit-serial inverter are explained in detail.

Section 3.5 discusses both FPGA and ASIC-based implementations, and comparisons of

the most significant work in the literature. Finally, Section 3.6 presents our concluding

remarks.

3.3 Preliminaries

An elliptic curve in affine coordinates over the binary field GF(2m) is the set of solutions

to the equation

y2 + xy = x3 + ax2 + b (3.1)

where x, y, a, b ∈ GF (2m), b 6= 0. The coefficients a, b ∈ F2
m are defined by the NIST [2,22].

ECC is performed in either prime fields GF(p) or binary fields GF(2m). However, the bi-

nary field is emphasized in this paper because it is very efficient for hardware implementa-

tion due to the use of modulo-2 arithmetic. The elliptic curve group operations (e.g. point

doubling (PD) and point addition (PA)) are required to implement an ECC processor.

Various coordinate systems exist in the literature to implement group operations such

3.3. Preliminaries 61

as affine, projective, Jacobian projective, Lopez-Dahab, and Chudnovsky coordinates; a

detailed coordinate system is discussed in [2]. However, affine and Jacobian projective

coordinates are often used for hardware implementation of PD and PA. Table 3.1 depicts

the computation procedure of PD and PA over the binary field in affine coordinates.

Table 3.1: Elliptic curve point doubling (PD) and point addition (PA) in affine coor-

dinates over GF(2m)

PD (P3 = 2P2) PA (P3 = P1 + P2)

λ = x1 + y1/x1 λ1 = (y2 + y1)/(x2 + x1)

x3 = λ2 + λ+ a x3 = λ21 + λ1 + x1 + x2 + a

y3 = x21 + λx3 + x3 y3 = λ1(x1 + x3) + x3 + y1

The Jacobian projective form of the Weierstrass equation of the elliptic curve is de-

fined in (3.2), where x = X/Z2 and y = Y/Z3. Table 3.2 presents the elliptic curve group

operations (e.g. PD and PA) in Jacobian projective coordinates.

Y 2 +XY Z = X3 + aX2Z2 + bZ6 (3.2)

Table 3.2: Elliptic curve point doubling (PD) and point addition (PA) in Jacobian

projective coordinates over GF(2m)

PD (P3 = 2P2) PA (P3 = P1 + P2)

A = X2
1 + Y1Z1 W = X1Z

2
2 +X2Z

2
1

B = A+ Z3 R = Y1Z
3
2 + Y2Z

3
1 , T = RX2 + Y2Z1W

X3 = (X4
1 + bZ8

1) X3 = aZ2
3 +R(R+ Z3) +W 3

Y3 = X4
1Z3 +BX3 Y3 = (R+ Z3)X3 + Z2

1W
2T

Z3 = X1Z
2
1 Z3 = Z1Z2W

62
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

ECC Protocols
(ECDSA,ECDH)

ECPM
(R=kP)

PDPA
(combined group operations)

Field
Multiplication

Field
Squaring

Field
Addition

Level 4

Level 3

Level 2

Level 1

Field
Multiplication

Field
Addition

Level 3

Level 2

Level 1

ECPM (R=kP)

Elliptic curve group operations

ECC Protocols (ECDSA,ECDH)

Level 4 Field
Squaring

Field
Inversion

Figure 3.1: Implementation hierarchy of the ECC operations over GF(2m).

The implementation hierarchy of the ECC operations over the binary field is depicted

in Fig. 3.1. From this, elliptic curve group operations, e.g. PD and PA, are a series

of finite-field arithmetic operations such as field addition, multiplication, squaring, and

inversion. The main focuses in this paper is: polynomial-basis modular addition or finite

field addition, multiplication, squaring, and field inversion, which are the most crucial

for the overall performance of an ECC processor. Generally, the PD operation in affine

coordinates requires five finite field additions, two multiplications, two squarings, and

one inversion. Similarly, the PA operation in affine coordinates requires eight additions,

two multiplications and one squaring, one inversion over GF(2m). Hence, the overall

computation of elliptic curve point multiplication (ECPM) in affine coordinates is slower

due to the inversion. On the other hand, the finite field inversion can be avoided for

elliptic curve operations in Jacobian projective coordinates. Note that only one inversion

is required per ECPM to convert Jacobian to affine coordinates, which is essential to

improve the functionality of an ECC processor. Consequently, the computation time for

ECPM in Jacobian coordinates is much less than in affine coordinates.

3.4. Hardware for Finite Field Arithmetic 63

3.4 Hardware for Finite Field Arithmetic

Galois Field (GF) arithmetic, also known as finite field arithmetic (FFA), is crucial in

the hardware implementation of an ECC processor, because the overall efficiency relies on

the performance of FFA. Three kinds of finite field, such as the prime field Fp, the binary

field F2
m, and an optimal extension field Fpm, exist for the hardware implementation of

ECC. However, modulo-2 (or binary field) arithmetic is the most efficient with hardware

implementation, and so a focus on the binary field will be discussed in this research.

3.4.1 Finite Field Addition

Addition in GF(2m) or modulo-2 addition is the simplest operation over the binary field.

Adding two elements in GF(2m) is done using a bit-wise exclusive-or (XOR), as shown in

(3) [41]:

Z(x) = U(x) + V (x) =
m−1∑
i=0

uix
i +

m−1∑
i=0

vix
i =

m−1∑
i=0

(ui + vi)x
i =

m−1∑
i=0

zix
i (3.3)

where zi = (ui + vi) mod 2 = ui⊕ vi. Algorithm 3.1 depicts the hardware implementation

of addition for F2
m and Figure 3.2 demonstrates the corresponding hardware architecture.

As can be seen from Fig. 3.2, it is a carry-free operation and each bit of the output depends

upon on the corresponding bits of the input. This operation can be computed in parallel.

Therefore, addition over GF(2m) takes only one clock cycle. The subtraction operation in

GF(2m) is the same as addition, because the additive inverse of an element is its identity:

U(x) + U(x) = 0.

3.4.2 Finite Field Multiplication

Finite field multiplication in a polynomial basis is the second-most expensive operation at

the arithmetic level of an ECC processor. Besides, this is the most important arithmetic

64
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

Algorithm 3.1: Hardware Implementation of addition over the binary field F2
m

Input: U(x) and V (x) ∈ E(F2
m)

Output: Z(x) = U(x)⊕ V (x)

1. Z(i) = U(i)⊕ V (i) ;

2. Return Z(x)

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

+

<<

+

Zv

U V

Z

Zv(m)

Zv

(b)

and-gate block Pv

Uv

P
...

and-gate
block

... V(i)

<< Left shift + Adder

+ + + + +

1mU 2mU 1U 0U2U1mV 2mV 2V 1V 0V

1mZ 2mZ 2Z 1Z 0Z

...

+

U UV V

Z Z

=

m m

m m

where

+

<<

10 1 0 10

V

0
f(x)

Z

U(x) V(x)

shift

0

left shift
Z=U(x).V(x) mod f(x)

m

mmm+1

Addition

+

01

f(x) U(x)

shift

mm+1

shiftQv

0
1

+

Pv

+V

Zv

1

0
1

0

m

Z(x)=1/U(x) mod f(x)

+ + + + +
...

Um-1 Vm-1 Um-2 Vm-2 U2 U1 U0V2 V1 V0

Zm-1 Zm-2 Z2 Z1 Z0
Z Z

+ =where

U V
m m

U V

Figure 3.2: Hardware Architecture of addition over GF(2m).

operation for ECPM, which is the core operation of an ECC processor. A variety of algo-

rithms have been proposed in the literature to perform finite field multiplication including

multiplication with an interleaved modular reduction algorithm, bit-serial multiplication,

the Karatsuba-Ofman algorithm, higher-radix multipliers, digit-serial multiplication, and

digit-parallel multiplication [2, 43–45]. In this paper, bit-serial and digit-serial methods

have been utilized. Finite field multiplier computes the product of two polynomials, then

applies modular reduction with f(x). Let U(x) and V (x) be two inputs and Z(x) be their

output, then

Z(x) = U(x).V (x) mod f(x), (3.4)

where f(x) is a constant irreducible polynomial of degree m.

Bit-serial Multiplication

Bit-serial multiplication in GF(2m) creates one partial product for each bit of the input

during multiplication. Algorithm 3.2 depicts the proposed bit-serial multiplication over

3.4. Hardware for Finite Field Arithmetic 65

Algorithm 3.2: Bit-serial finite field multiplication.

Input: U(x), V (x) ∈ GF(2m), irreducible polynomial f(x) of degree m

Output: Z(x) = U(x) · V (x) mod f(x)

1. Zv = 0 ; P = f(x) ;

2. for j = m - 1 to 0 do

2.1 Uv = ’0’ & U(x); Zv = Zv.x (left-shift operation) ;

2.2 for i = 0 to m - 1 do Uv(i) = Uv(i) and V (j); end for

2.3 Zv = Zv
⊕

Uv;

2.4 for l = 0 to m do Pv(l) = P (l) and Zv(m); end for

2.5 Zv = Zv
⊕

Pv;

3. end for

4. Return Z(x)

GF(2m). In this algorithm, one partial product is generated and accumulated in each

cycle in the product Z. The shift-and-add technique is used for this implementation

because a vector shift can be performed in one clock cycle. As Step 2 in Algorithm 3.2,

if Vj = 1 then U(x) is added to the register Zv and the product is left-shifted (Zv.x).

To obtain a result in GF(2m), the product Zv also undergoes a reduction in each clock

cycle. Therefore, a modular reduction is only needed when the result of Zv(m) = 1. This

demonstrates that reduction is achieved by checking each bit with a degree of m in the

dividend to see whether or not it is a ‘1’ or a ‘0’. If it is a ‘1’ then the left-most ‘1’ bit

of the dividend and the divisor are aligned and undergo bit-wise XOR. This process is

repeated until a remainder is determined.

The proposed hardware architecture based on Algorithm 3.2 is depicted in Fig. 3.3.

Note that Algorithm 3.2 performs from the most-significant bit (MSB) first to the least-

significant bit (LSB), where a multiplication over GF(2m) takes only m clock cycles. As

66
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

and-gate
block

<< Left shift + Adder

Reg

+

<<

+

Zv

U V

Zv(m)

Zv

and-gate block Pv

Uv

P
...

... V(i)

(b)

Reg

Bit-serial field multiplication

parallel field multiplication

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

+

Zv1 Zv2

MSB

+

<<

and-gate
block (Pv)

+

Zv

U V

Zv(m)

Pv

Zv

and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

Bit-serial field multiplication

Z
(a)

Reg

Z
(b)

Reg

Figure 3.3: Proposed bit-serial finite field multiplication architecture in GF(2m).

can be seen from Fig. 3.3(a), two field additions are performed concurrently. This method

requires one multiplexer which is more expensive than the and-gate (Pv) operation. On

the other hand, Fig. 3.3(b) needs only two field additions, one left-shift operation, and two

and-gate operations. Besides, the and-gate operation is the faster operation for hardware

implementation. Therefore, Fig. 3.3(b) is implemented as a bit-serial multiplier. The area

cost of bit-serial field multiplication is only O(m), which is more efficient with the area

than a parallel multiplier whose area cost is O(m2).

Traditional digit-serial Multiplication

Bit-serial finite field multiplication in the previous section has low area complexity, but

is slow. A motivation for improving the performance of multiplication over GF(2m) is

for the speed up of an ECC processor. By multiplying 2- bits at a time in digit-serial

multiplication, the clock cycles required to perform binary field multiplication will be

halved. Numerous techniques have been introduced in the literature [2, 43–45, 110, 111,

116, 117, 119–121] to achieve high-speed field multiplication. The digit-serial multiplier

is one of them, and speeds up the multiplication process significantly compared to the

bit-serial multiplier, as multiple partial products are generated and added per cycle, thus

3.4. Hardware for Finite Field Arithmetic 67

greatly reducing the number of clock cycles. However, the area increases with the digit

size. For this reason, different digit sizes were implemented so that their performance

(1
Area×T ime = 1

AT
) can be compared. In this paper, 1, 2, 4, 8, 16, 32, and 64-bit versions

of a digit-serial multiplier over GF(2m) are implemented to verify the performance. The

best multiplier can then be chosen for the later stages of this paper in order to achieve

the best area-time performance of the FFA unit.

Algorithm 3.3 depicts the basic (or traditional) digit-serial multiplier over GF(2m) and

the corresponding hardware architecture is demonstrated in Fig. 3.4, where Fig. 3.4(a)

represents the original digit-serial multiplier and Fig. 3.4(b) is the proposed multiplier.

The detailed explanation of the registers utilized for the traditional digit-serial multiplier is

shown in Table 3.3. In Fig. 3.4(b), the number of padding bits for register Vv is determined

by first calculating q = m/d. As can be seen from Table 3.3, register Uv is used to store

the new multiplier representing U from ‘shiftModU ’ for the next cycle. Similarly, the

product during each multiplication cycle is stored in the register Zv. This approach is very

efficient in hardware cost since it uses left-shift and add (xor) operations. In each cycle,

V (i) is multiplied by ‘tempU ’ which contains U.xdi mod f(x) of the current cycle. The

computation of U.xd(i+1) mod f(x) is performed in parallel during the multiplication of

V (i) and ‘tempU ’. ‘tempU ’ is left-shifted by d bits followed by reduction with polynomial

f(x). Register Zv contains Vq−1.(A.x
dq−1) mod f(x) at the final iteration, but with degree

greater than m. For this reason, reduction of Zv is also needed to obtain the final result

Z. Therefore, the latency of a digit-serial multiplier is O(m/d), where m is the field size

over GF(2m) and d is the digit size.

Modified digit-serial Multiplication

Recall that for the traditional digit-serial multipliers implemented in the previous section,

the number of clock cycles required to perform multiplication is defined by q = dm/de.

68
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

Algorithm 3.3: Traditional digit-serial multiplication in GF(2m)

Input: U(x), V (x) ∈ GF(2m), irreducible polynomial f(x) of degree m

Output: Z(x) = U(x) · V (x) mod f(x)

1. Zv = 0;

2. V = V0 + V1x
d + ...+ Vq−1x

d(q−1), where Vi =
∑d−1

j=0 vidx
j ;

3.1 for i = 0 to q - 1 do

3.2 Zv = Zv
⊕
ViU ; Uv = Uv.x

d mod f(x)

3.3 end for

4. Z = Zv mod f(x)

5. Return Z(x)

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

and-gate
block

<< Left shift + Adder

Reg

+

<<

+

Zv

U V

Zv(m)

Zv

and-gate block Pv

Uv

P
...

... V(i)

(b)

Reg

Bit-serial field multiplication

parallel field multiplication

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

+

Zv1 Zv2

MSB

+

<<

and-gate
block (Pv)

+

Zv

U V

Zv(m)

Pv

Zv

and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

Bit-serial field multiplication

Z
(a)

Reg

Z
(b)

Reg

Reg. Vv

m

+

Reg. Zv

m+d-1

m+d-1
Count=m-1

mod f(x)

C
ou

nt
=

1

m
V U

V0...Vq-1 Vq-2 V1

Vi

Z

tempU

<<

shiftModU

mod f(x)

tempU<<d
m+d

m+d

Reg. Uv

m

md
Mult. Logic
(Vi*tempU)

+

Uxd mod f(x)

multiplier core

< Zv >

< U >

Zv mod f(x)

(a)

Vq-1,…,V1,V0

Z

Reg. Vv

m

+
m+d-1

m+d-1

Count=m-1

V

V0...Vq-1 Vq-2 V1

Vi

Z

tempU<<d

md

Mult. Logic
(Vi*tempU)

C
ou

nt
=

1

m
U

<<
m+d

m+d

m

Reg. Uv

mod f(x)

shiftModU

tempU

0

Reg. Zv

(b)

mod f(x)

+

Uxd mod f(x)

multiplier core

< Zv >

< U >

Zv mod f(x)

(a)

Vq-1,…,V1,V0

Z

Reg. Vv

m

+
m+d-1

m+d-1

Count=m-1

V

V0...Vq-1 Vq-2 V1

Vi

Z

tempU<<d

md

Mult. Logic
(Vi*tempU)

C
ou

nt
=

1

m
U

<<
m+d

m+d

m

Reg. Uv

mod f(x)

shiftModU

tempU

0

Reg. Zv

(b)

mod f(x)

Figure 3.4: Traditional digit-serial multiplication architecture over GF(2m): (a) origi-

nal) [43,46] and (b) proposed.

In this modified (or systolic) multiplier, a pair of integers p and k are now used such that

kp = q and k =
√
q. Zeros also need to be padded to the multiplicand V so that q =

3.4. Hardware for Finite Field Arithmetic 69

Table 3.3: Registers used for traditional digit-serial multiplication in GF (2m).

Register Name Description Bit-size

Uv Used to store the new multiplier representing U from ‘shiftModU ’ for the next iteration m

f(x) Reduction polynomial m + 1

tempU Used to initialize and perform multiplication m

shiftModU Used to perform U · xd mod f(x) m + d

Vv Used for padding the V input by adding ‘0’ bits to the left of the MSB of V . m + (qd−m)

Zv Used to store the product during each multiplication iteration m + d-1

dm/de = kp can be satisfied. Fig. 3.5 illustrates the hardware architecture of the modified

digit-serial multiplier based on Algorithm 3.4 [43]. The top-level architecture design uses

k processing units (PUs) to perform the inner loop (lines 3.3 to 3.5) of Algorithm 3.4.

The detailed mathematical formulas are discussed in [43].

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

Bit-serial field multiplication

parallel field multiplication

Bit-serial field multiplication

Reg. Vv

m

+

Reg. Zv

m+d-1

m+d-1
Count=m-1

mod f(x)

C
ou

nt
=

1

m
V U

V0...Vq-1 Vq-2 V1

Vi

Z

tempU

<<

shiftModU

mod f(x)

tempU<<d
m+d

m+d

Reg. Uv

m

md
Mult. Logic
(Vi*tempU)

+

Uxd mod f(x)

multiplier core

< Zv >

< U >

Zv mod f(x)

(a)

Vq-1,…,V1,V0

Z

Reg. Vv

m

+
m+d-1

m+d-1

Count=m-1

V

V0...Vq-1 Vq-2 V1

Vi

Z

tempU<<d

md

Mult. Logic
(Vi*tempU)

C
ou

nt
=

1

m
U

<<
m+d

m+d

m

Reg. Uv

mod f(x)

shiftModU

tempU

0

Reg. Zv

(b)

mod f(x)

+

Uxd mod f(x)

multiplier core

< Zv >

< U >

Zv mod f(x)

(a)

Vq-1,…,V1,V0

Z

Reg. Vv

m

+
m+d-1

m+d-1

Count=m-1

V

V0...Vq-1 Vq-2 V1

Vi

Z

tempU<<d

md

Mult. Logic
(Vi*tempU)

C
ou

nt
=

1

m
U

<<
m+d

m+d

m

Reg. Uv

mod f(x)

shiftModU

tempU

0

Reg. Zv

(b)

mod f(x)

+

Reg. Zv

m+1

f(x)
0

m+1

Zv[Zvn:Zvn-m]

m+1

Zv[Zvn:Zvn-m]
m+1

+

0

+

m+1
0

m+1

m+1

m+1

Zv[Zvn-1:Zvn-1-m]

Zvn Zvn-1

Zv[Zvn-1:Zvn-1-m]

+

m+1
0

m+1

m+1

m+1

+

m+1
0

m+1

Zv[Zvm:0]

m+1

m+1

Zvm

Zv[Zvm:0]

...

...

Reg. Uv

U << kd

Uin

Zin

Vin

Uout

PU1 Zout

Uin

Zin

Vin

Uout

PU2 Zout
m+d-1

...
Uin

Zin

Vin

Uout

PUk Zout
m+d-1

m m
...

m

m
0

Count<=√(m/d)

m

mod f(x)

m+d-1
mod f(x)

+

m

Reg. Z

mV0

Vk

V1

Vk+1

Vk-1

V2k-1...
m

m+kd

PU

Uout

Zout

Vi

Zin

Uin

m+d-1

mod f(x)<< d Reg.

Reg.

Mult. logic

+

m+d m
m+d-1

m+d-1
d

m

Processing Unit (PU)

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

and-gate
block

<< Left shift + Adder

Reg

+

<<

+

Zv

U V

Zv(m)

Zv

and-gate block Pv

Uv

P
...

... V(i)

(b)

Reg

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

+

Zv1 Zv2

MSB

+

<<

and-gate
block (Pv)

+

Zv

U V

Zv(m)

Pv

Zv

and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

Z
(a)

Reg

Z
(b)

Reg

Reg. Uv

U << kd

Uin

Zin

Vin

Uout

PU1 Zout

Uin

Zin

Vin

Uout

PU2 Zout
m+d-1

...
Uin

Zin

Vin

Uout

PUk Zout
m+d-1

m m
...

m

m
0

Count<=√(m/d)

m

mod f(x)

m+d-1
mod f(x)

+

m

Reg. Z

mV0

Vk

V1

Vk+1

Vk-1

V2k-1...

m

m+kd

PU

Uout

Zout

Vi

Zin

Uin

m+d-1

mod f(x)<< d Reg.

Reg.

Mult. logic

+

m+d m
m+d-1

m+d-1
d

m

Processing Unit (PU)

Figure 3.5: Proposed modified digit-serial field multiplication architecture in GF(2m).

The modified multiplier is composed of three main parts consisting of the updating

register Uv, the processing units (PUs), and the reduction & accumulation of the Zout

partial products. In each clock cycle, register Uv is updated with Uxkd mod f(x). The first

PU has the value of register Uv as an input for
√
m/d clock cycles followed by zeros until

the multiplication is complete. PU1 also has a constant Zin input of 0. The remaining PUs

70
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

Algorithm 3.4: Modified digit-serial multiplication in GF(2m)

Input: U = (um−1, ..., u1, u0), V = (vm−1, ..., v1, v0), f(x) = xm + r(x).

Output: Z = U · V mod f(x).

1. Zv = 0;

2. V =
∑kp−1

i=0 Vix
id, where Vi =

∑d−1
j=0 v(id+j)x

j

3.1 for i = 0 to p - 1 do

3.2 W = V ; U = xkdU mod f(x)

3.3 for j = 0 to k − 1

3.4 Zv = Zv ⊕ Vik+jW ; W =W · xd mod f(x);

3.5 end for

3.6 end for

4. Z = Zv mod f(x)

5. Return Z(x)

have the Uin and Zin inputs of the previous processing unit’s Uout and Zout, respectively.

Fig. 3.5 depicts the internal hardware architecture of each PU. Given the inputs Uin,

Vin, and Zin, the processing element computes the outputs Uout = Uin · xd mod f(x) and

Zout = Zin ⊕ (Uin · Vin). Finally, register Zv is used to add the partial products from the

last processing unit’s (PUk) Zout such that Zv =
∑2k

0 Zout.

The design for a systolic digit-serial multiplier in GF (2233) with the digit size of 8 (d

= 8) is described in Table 3.4. The number of PUs required is given by k =
√
dm/de =√

d233/8e = 6. The scheduling of Vin inputs for each processing unit is depicted in Table

3.4. The scheduling of Uin inputs for the first processing unit is also shown. The number

of PUs and clock cycles for each digit size in GF (2163), GF (2233), GF (2283), GF (2407),

and GF (2571) are depicted in Table 3.5. The number of clock cycles for 233-bit finite field

multiplication is given by 2k = 12 with the addition of one clock cycle for initalization,

3.4. Hardware for Finite Field Arithmetic 71

making a total of 13 clock cycles to complete a single multiplication.

Table 3.4: The scheduling of V inputs for each processing unit in GF (2233) when d = 8.

Cycle PU1_Uin PU1 PU2 PU3 PU4 PU5 PU6

0 U0 0 0 0 0 0 0

1 U1 V [7:0] 0 0 0 0 0

2 U2 V [55:48] V [15:8] 0 0 0 0

3 U3 V [103:96] V [63:56] V [23:16] 0 0 0

4 U4 V [151:144] V [111:104] V [71:64] V [31:24] 0 0

5 U5 V [199:192] V [159:152] V [119:112] V [79:72] V [39:32] 0

6 0 V [247:240] V [207:200] V [167:160] V [127:120] V [87:80] V [47:40]

7 0 0 V [255:248] V [215:208] V [175:168] V [135:128] V [95:88]

8 0 0 0 V [263:256] V [223-216] V [183:176] V [143:136]

9 0 0 0 0 V [271:264] V [231:224] V [191:184]

10 0 0 0 0 0 V [279:272] V [239:232]

11 0 0 0 0 0 0 V [287:280]

12 0 0 0 0 0 0 0

Table 3.5: The number of processing units (PUs) and clock cycles for each digit size

implemented in GF (2163), GF (2233), GF (2283), GF (2407), and GF (2571).

GF (2163) GF (2233) GF (2283) GF (2409) GF (2571)

Digit-size #PUs Clock cycles #PUs Clock cycles #PUs Clock cycles #PUs Clock cycles #PUs Clock cycles

1 13 27 16 33 17 35 21 43 24 49

2 10 21 11 23 12 25 15 31 16 35

4 7 15 8 17 9 19 11 23 12 25

8 5 11 6 13 6 13 8 17 9 19

16 4 9 4 9 5 11 6 13 6 13

32 4 7 3 7 3 7 4 9 5 11

64 2 5 2 5 3 7 3 7 3 7

Squaring in GF(2m) is the field multiplication of two identical binary polynomials. A

squaring operation is often used since it can be more efficient than field multiplication.

This consideration depends on the performance of field multiplication utilized, since if

multiplication becomes more efficient than squaring, then the squaring method can be

replaced.

72
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

3.4.3 Finite Field Modular Reduction

A modular reduction needs to be performed on the result of the multiplication, squaring,

and inversion to ensure that it exists within the binary field chosen. The reduction used

in the architecture of traditional and systolic digit-serial multiplication to perform mod

f(x) is depicted in Fig. 3.6. As can be seen from Fig. 3.6, the reduction is performed by

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

and-gate
block

<< Left shift + Adder

Reg

+

<<

+

Zv

U V

Zv(m)

Zv

and-gate block Pv

Uv

P
...

... V(i)

(b)

Reg

Bit-serial field multiplication

parallel field multiplication

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

+

Zv1 Zv2

MSB

+

<<

and-gate
block (Pv)

+

Zv

U V

Zv(m)

Pv

Zv

and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

Bit-serial field multiplication

Z
(a)

Reg

Z
(b)

Reg

Reg. Vv

m

+

Reg. Zv

m+d-1

m+d-1
Count=m-1

mod f(x)

C
ou

nt
=

1

m
V U

V0...Vq-1 Vq-2 V1

Vi

Z

tempU

<<

shiftModU

mod f(x)

tempU<<d
m+d

m+d

Reg. Uv

m

md
Mult. Logic
(Vi*tempU)

+

Uxd mod f(x)

multiplier core

< Zv >

< U >

Zv mod f(x)

(a)

Vq-1,…,V1,V0

Z

Reg. Vv

m

+
m+d-1

m+d-1

Count=m-1

V

V0...Vq-1 Vq-2 V1

Vi

Z

tempU<<d

md

Mult. Logic
(Vi*tempU)

C
ou

nt
=

1

m
U

<<
m+d

m+d

m

Reg. Uv

mod f(x)

shiftModU

tempU

0

Reg. Zv

(b)

mod f(x)

+

Uxd mod f(x)

multiplier core

< Zv >

< U >

Zv mod f(x)

(a)

Vq-1,…,V1,V0

Z

Reg. Vv

m

+
m+d-1

m+d-1

Count=m-1

V

V0...Vq-1 Vq-2 V1

Vi

Z

tempU<<d

md

Mult. Logic
(Vi*tempU)

C
ou

nt
=

1

m
U

<<
m+d

m+d

m

Reg. Uv

mod f(x)

shiftModU

tempU

0

Reg. Zv

(b)

mod f(x)

+

Reg. Zv

m+1

f(x)
0

m+1

Zv[Zvn:Zvn-m]

m+1

Zv[Zvn:Zvn-m]
m+1

+

0

+

m+1
0

m+1

m+1

m+1

Zv[Zvn-1:Zvn-1-m]

Zvn Zvn-1

Zv[Zvn-1:Zvn-1-m]

+

m+1
0

m+1

m+1

m+1

+

m+1
0

m+1

Zv[Zvm:0]

m+1

m+1

Zvm

Zv[Zvm:0]

...

...

Figure 3.6: Hardware for modular reduction in GF(2m).

connecting all bit positions representing a binary polynomial with a degree more than m

to be selectors to each multiplexer. For each ‘1’ bit of Zv greater than Zm−1, the contents

of Zv from Zv(Cn downto Cn−m) for the bit size of m will be added to the reduction

polynomial such that Zv(Zn downto Zn−m) = Zv(Zn downto Zn−m) xor f(x), where n > m.

Hence, it uses the reduction polynomial f(x) of the corresponding binary field so that a

binary polynomial Zv(x) is reduced to Z(x), where Z(x) = Zv(x) mod f(x). Modular

reduction in arbitrary polynomials can be done one bit at a time for bit-serial polynomial

multiplication. Note that the irreducible polynomials recommended by NIST in the FIPS

186-2 standard for 163, 233, 283, 409 and 571 bits are f(x) = x163 + x7 + x6 + x3 + 1,

f(x) = x233 + x74 + 1, f(x) = x283 + x12 + x7 + x5 + 1, f(x) = x409 + x87 + 1, and

f(x) = x571 + x10 + x5 + x2 + 1, respectively.

3.4. Hardware for Finite Field Arithmetic 73

3.4.4 Finite Field Inversion

Inversion in GF(2m) is the most expensive (or time consuming) operation for FFA. How-

ever, it is required only once per ECPM to convert affine coordinates from Jacobian

coordinates. There are mainly two kinds of algorithms available for inversion in GF(2m),

no

no

c3c1 c2

c4

c5

c6

c7

c8

c9

i1

yes

p

yes

p

p

A B

C

Reg Reg Reg

+

<< and-gate
block

>

Reg

>

p

Reg

(a)

c1

c2

c6

i1

Am-1 B

C

Reg

+

<< and-gate
block

(b)

sel

c3 p

>

p

c4 p

>

p

c5

Am-2
...

A0

Left shift Greater-than><<

+
Reg

>=

>>
>

and-gate
block

<<+

<<

+1 -1

+1 Count = 0

P(m) = 0

2
Reg Count

Q(m) = 0

Count = 0

P(m) = 0

Reg Pv

<<

m+1

m+1

m+1

P(m) = 0

m+1

m+1

m+1

Reg Qv

C
ou

nt
 =

 0

<<
m+1

+

Q(m) = 0

m+1

m+1
Reg V

P(m) = 0

C
ou

nt
 =

 0

<<

mod f(x)

m+1

m+1

Reg Zv

<< <<

mod f(x)

m+1

m+1

C
ou

nt
 =

 0

m+1

m+1

Loop controller 2m+1 iteration

P(m) = 0

done Z(x) = 1/U(x)

clk rst run U(x)

Figure 3.7: Hardware Architecture for field inversion in F2
m.

74
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

such as (1) Extended Euclidean-based algorithms (EEA) and (2) Fermat’s Little Theorem

(FLT) based algorithms. Based on FLT, for any a in a finite field with q elements aq = a

or aq−2 = a−1. For the binary field GF(2m) q = 2m, hence a−1 = a2
m−2. Therefore, a

large exponentiation is the main difficulty in this method. On the other hand, EEA-based

algorithms include: (a) the simplest EEA, (b) the almost inversion algorithm, and (c) the

modified almost inversion algorithm. Also, other inversion algorithms exist in the litera-

ture, such as the Itoh-Tsujii inversion algorithm based on FLT [49] and the Montgomery

inversion algorithm [50]. In this paper, we adopt the almost inversion algorithm which is

the most commonly used algorithm for field inversion. Inversion of a non-zero field ele-

ment U(x) ∈ F2
m is Z(x) ∈ F2

m, where UZ = 1 mod f(x). The basic inversion algorithm

for GF(2m) was proposed in [51], then implemented in [52] and [53]. The almost inversion

algorithm is depicted from [2,52] and the corresponding hardware architecture is demon-

strated in Fig. 3.7. A high-performance finite field inversion architecture is achieved using

this algorithm. As can be seen from Fig. 3.7, all internal signals such as V , Qv, Zv, and

Pv are m + 1 bits long because the reduction polynomial is also m + 1 bits long, and

‘Count’ has the size of 2 bits. Register Pv is initialized with U(x) padded with a ‘0’ bit.

Register Qv is initialized with the reduction polynomial of the binary field used. Register

Zv is initialized with the binary value of 1. Registers V and Count are initialized with the

value of zero. In this architecture, a series of finite field additions and shift operations are

required to complete an inversion over GF(2m). Note that addition and shift operations

are basic and faster operations for hardware implementation. The computation of division

like Zv/x or multiplication by x is performed by a shift operation. The modular reduction

is performed by using the addition operation when the degree of the polynomial is m or

higher than m. Finally, the field inversion Z(x) = 1/U(x) mod f(x) is achieved using the

modified EEA algorithm. The latency of this inversion over the binary field GF(2m) is

2m + 1 clock cycles. The division V (x)/U(x) mod f(x) is performed by first finding the

3.5. Implementation Results and Comparison 75

inverse U−1(x) and then performing the multiplication, where V (x)·U−1(x) = V (x)/U(x).

Table 3.6: Complexity of GF(2m) finite field arithmetic operations in terms of latency

Operation Complexity in terms of latency

Addition/subtraction 1

Bit-serial multiplier m+ 1

Traditional digit-serial multiplier dm/de

Modified digit-serial multiplier 2 ∗ d
√
m/de+ 1

Inversion (bit-serial) 2m+ 1

Table 3.6 illustrates the latency (clock cycles) for FFA. As shown in Table 3.6, addition

is the most efficient operation, whereas inversion is the most time-consuming operation

due to the large number of clock cycles required. As we can see in Table 3.6, addition

and inversion take 1 and 2m + 1 clock cycles, respectively. Also, three types of finite

field multiplication are implemented, where the modified digit-serial approach takes fewer

clock cycles than other finite field multiplication methods. Therefore, the latency for bit-

serial, traditional digit-serial, and modified systolic digit-serial multiplication is m + 1,

dm/de, and 2 ∗ d
√
m/de+ 1, respectively. The detailed clock cycles required for FFA are

tabulated in the next section.

3.5 Implementation Results and Comparison

This section presents the results and analysis of hardware implementations of FFA (e.g.

multiplication and inversion) over the binary field GF(2m). The main focus of this re-

search is to produce an efficient hardware implementation of finite field multiplication and

inversion, reducing the latency through the use of efficient algorithms and better hard-

76
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

ware architectures. The proposed binary field arithmetic is implemented on both FPGA

and ASIC platforms and the overall performance is compared to the most significant

implementations in the literature.

3.5.1 FPGA Implementation Results

The presented finite field arithmetic is coded in synthesizable VHDL and implemented

using Xilinx ISE 14.7 synthesis technologies. The target FPGAs selected are the Xilinx

Virtex-7 and Virtex-6 which contain sufficient resources. The FPGA implementations

were simulated using both ModelSim PE and Xilinx ISim. We first provide the results of

bit-serial multiplication, then compare with related implementations in the literature.

Table 3.7: Performance and comparison of FPGA-based implementation results of finite field

multiplication using bit-serial approach over GF(2m).

Work Tech. Field Latency CPb Frequency Time Area Area×Time Performance TRc

(Length) (CCs)a (ns) f (MHz) (ns) (slices) (slices × µs) (1/AT)×103 (Gbps)

Fig. 3.3(b)

Virtex-7

163 164 1.771 564.65 290.4 98 28.5 35.0 0.56

233 234 1.919 521.09 449.0 134 60.2 16.6 0.52

283 284 2.334 428.43 662.9 189 125.3 8.0 0.43

409 410 2.411 414.74 988.5 227 224.4 4.5 0.41

571 572 2.682 372.88 1534.1 409 627.4 1.6 0.37

Virtex-6

163 164 1.886 530.22 309.3 105 32.5 30.8 0.53

233 234 2.236 447.14 523.2 287 150.2 6.7 0.45

283 284 2.630 380.21 746.9 330 246.5 3.8 0.38

409 410 2.699 370.48 1106.6 368 407.2 2.5 0.37

571 572 2.973 336.38 1700.6 453 770.4 1.3 0.34

[108] Virtex-6

163 - 3.727 268.30 - 461 - - -

233 - 3.660 273.20 - 522 - - -

283 - 4.216 237.20 - 677 - - -

409 - 4.125 242.40 - 969 - - -

571 - 3.512 284.70 - 1249 - - -

[109] Virtex-6 163 - - - 9.1 8579∗ 78.1 12.8 17.91

[118] Virtex-2 163 163 5.621 177.90 916.0 225 206.1 4.9 0.18

a. CCs = clock cycles, b. CP = clock period. ∗LUTs, c. TR = Throughput Rate

Table 3.7 depicts the FPGA-based implementation results for the proposed architec-

3.5. Implementation Results and Comparison 77

ture in Fig. 3.3, and the existing multiplications over GF(2m). The proposed bit-serial

multiplication is implemented in a Xilinx Virtex-7 and Virtex-6 FPGA, which supports

all five NIST fields. As can be seen from Table 3.7, the latency and space complexities

increase with the increase of field size. The area/space complexity of the proposed mul-

tiplier in a Virtex-6 is compared with those in [108]. It can be seen that our proposed

design is area-efficient, takes nearly one-third the number of slices than those [108]. The

proposed hardware for multiplication in [109] is very efficient with timing, but requires

more area to implement. As we can see in Table 3.7, the multiplication structure of

[109] has the lowest latency among the other designs. However, the direct comparison is

difficult because they provide only LUTs where we have given implementation results in

terms of occupied slices. The proposed bit-serial structure of [118] is implemented in a

Xilinx Virtex-2 FPGA, and their design needs three times as much time and two times

as much area than those our design.

In this paper, digit-serial multipliers using a traditional approach (latency dm/de)

are implemented for all five NIST standards between 163-bit and 571-bit. Digit-serial

multipliers with digit sizes of 1, 2, 4, 8, 16, 32 and 64 bits are implemented in Virtex-7

and Virtex-6 FPGAs. The FPGA-based implementation results for GF (2163), GF (2233),

GF (2283), GF (2407), and GF (2571) using a traditional digit-serial multiplier is depicted

in Figs. 3.8 and 3.9. The results show that an increase in area from higher digit sizes for

a reduction of time is able to achieve much better area-time (AT) product than bit-serial

multiplication. As the digit size doubles, the number of clock cycles required to com-

plete a single multiplication are halved due to the fact that the number of clock cycles

is determined by dm/de) for traditional digit-serial multipliers. The trade-off for this

reduction is the number of clock cycles is the increase of the area. For this reason, the

performance (1/AT) for all implementations is analyzed thoroughly, as shown in Figs. 3.8

and 3.9, then we choose which design gives better performance. These results reveal that

78
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

area-time is less improved from digit sizes 1 to 32, which the trade-off for more area and

less time is better for the 64-bit digit-serial multiplier. As can be seen from the figure,

a higher digit-level (or 64-bit version) multiplication gives better performance than other

digit levels. Therefore, 64-bit digit-serial multiplication results are presented in Table 3.8,

and compared with related work in the literature.

1 2 4 8 16 32 64
0

10

20

30

40

50

60

P
er

fo
rm

an
ce

 (
1/

A
T

) ×
10

3

Digit−size (d)

163−bit
233−bit
283−bit
409−bit
571−bit

Figure 3.8: Performance analysis of traditional digit-serial multiplication with various

digit sizes in Virtex-7 FPGA.

In [119], 64-bit word-level (digit-serial) multiplication over GF (2m) using a polynomial

basis was proposed. 163-bit and 571-bit digit-serial finite field multiplications using differ-

ent digit sizes were implemented in [35], where 11-bit and 24-bit digit sizes, respectively,

provide a better results than their other implementations. Therefore, we have compared

their best implementation results with our best implementations. The results of [115]

shows implementation of 163-bit digit-serial multiplication only. As one can see from

Table 3.8, our proposed implementations for Fig. 3.4(b) provide better results in terms of

delay than [35], [115], and [119].

The modified digit-serial multiplier is implemented for GF (2163), GF (2233), GF (2283),

GF (2407), and GF (2571) with the digit sizes of 1, 2, 4, 8, 16, 32 and 64 bits. Note that a

3.5. Implementation Results and Comparison 79

1 2 4 8 16 32 64
0

10

20

30

40

50

P
er

fo
rm

an
ce

 (
1/

A
T

) ×
10

3

Digit−size (d)

163−bit
233−bit
283−bit
409−bit
571−bit

Figure 3.9: Performance analysis of traditional digit-serial multiplication with various

digit sizes in Virtex-6 FPGA.

Table 3.8: Performance and comparison of FPGA-based implementation results of digit-serial

finite field multiplication over GF(2m).

Work Tech. Field Latency CP Frequency Time Area Area×Time Performnace TR

(Length) (CCs) (ns) f (MHz) (ns) (slices) (slices × µs) (1/AT)×103 (Gbps)

Fig. 3.4(b)†

Virtex-7

163 3 3.202 312.3 9.6 1975 19.0 52.6 17.0

233 4 3.285 304.4 13.1 2218 28.8 34.7 17.9

283 5 3.425 292.0 17.1 3697 63.2 15.8 16.6

409 7 3.429 291.6 24.0 4335 104.0 9.6 17.0

571 9 3.437 290.9 30.9 7046 217.7 4.6 18.5

Virtex-6

163 3 3.541 282.4 10.6 2011 21.3 47.0 15.4

233 4 3.607 277.2 14.3 3040 43.4 23.0 16.3

283 5 3.717 269.0 18.6 3765 70.0 14.3 15.2

409 7 3.752 266.5 26.3 4732 124.4 8.0 15.6

571 9 3.788 263.9 34.0 7129 242.4 4.1 16.8

[35] Virtex-5
163 15a 2.360 423.7 35.0 1179c 41.7 24.0 4.7

571 24b 2.780 359.7 67.0 8051c 537.2 1.9 8.5

[115] Virtex-4 163 43 4.032 248.0 173.0 1475c 255 3.9 0.9

[119] Virtex-2

163 48d 6.667 150.0 320.0 3344c 1070.1 0.9 0.5

233 88d 6.667 150.0 586.7 3344c 1963.0 0.5 0.4

283 110d 6.667 150.0 733.4 3344c 2451.1 0.4 0.4

† Traditional digit-serial multiplication (Fig. 3.4) (latency = dm/de), 64-bit digit-serial multiplication results.
a11-bit digit-serial multiplication results, b24-bit digit-serial multiplication results, cArea = LUTs, d64-bit digit-serial multipli-

cation results.

80
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

T
ab

le
3.
9:

F
P
G
A
-b
as
ed

im
pl
em

en
ta
ti
on

re
su
lts

of
m
od
ifi
ed

di
gi
t-
se
ri
al

fin
it
e
fie

ld
m
ul
ti
pl
ic
at
io
n
ov
er

G
F
(2
m
).

W
or

k
T
ec

h.
F
ie

ld
di

gi
t

si
ze

L
at

en
cy

C
P

Fr
eq

ue
nc

y
T

im
e

A
re

a
A

re
a×

T
im

e
P
er

fo
rm

na
ce

T
hr

ou
gh

pu
t

(L
en

gt
h)

(b
it

s)
(C

C
s)

(n
s)

f
(M

H
z)

(n
s)

(s
lic

es
)

(s
lic

es
×
µ
s)

(1
/A

T
)×

1
0
3

ra
te

(G
bp

s)

F
ig

.
3.

5∗

V
ir

te
x-

7

16
3

8
11

1.
56

0
64

1.
0

17
.2

16
09

27
.7

36
.1

9.
5

23
3

16
9

1.
82

8
54

7.
2

16
.5

30
55

50
.4

19
.8

14
.1

28
3

8
13

1.
53

8
65

0.
1

20
.0

30
80

61
.6

16
.2

14
.2

40
9

32
9

1.
98

0
50

5.
0

17
.8

61
40

10
9.

3
9.

1
23

.0

57
1

16
13

1.
83

4
54

5.
4

23
.8

89
30

21
2.

5
4.

7
24

.0

V
ir

te
x-

6

16
3

8
11

1.
71

5
58

3.
1

18
.9

18
97

35
.9

27
.9

8.
6

23
3

16
9

1.
83

1
54

6.
2

16
.5

32
71

54
.0

18
.5

14
.1

28
3

8
13

1.
70

1
58

7.
9

22
.1

32
33

71
.4

14
.0

12
.8

40
9

32
9

2.
24

9
44

4.
7

20
.2

74
11

14
9.

7
6.

7
23

.0

57
1

16
13

2.
05

8
48

6.
0

26
.8

98
73

26
4.

6
3.

8
21

.5

∗
M
od

ifi
ed

di
gi
t-
se
ri
al

m
ul
ti
pl
ic
at
io
n
(F

ig
.
3.
5)

(l
at
en

cy
=

2
∗
d√ m

/
d
e
+

1
).

3.5. Implementation Results and Comparison 81

1 2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

P
er

fo
rm

an
ce

 (
1/

A
T

) ×
10

3

Digit−size (d)

163−bit
233−bit
283−bit
409−bit
571−bit

Figure 3.10: Performance analysis of modified digit-serial multiplication with various

digit sizes in Virtex-7 FPGA.

1 2 4 8 16 32 64
0

5

10

15

20

25

30

P
er

fo
rm

an
ce

 (
1/

A
T

) ×
10

3

Digit−size (d)

163−bit
233−bit
283−bit
409−bit
571−bit

Figure 3.11: Performance analysis of modified digit-serial multiplication with various

digit sizes in Virtex-6 FPGA.

digit size of 1 refers to the digit-serial multiplier and for the bit-serial multiplier a sepa-

rate module is implemented. The Virtex-7 and Virtex-6 implementation results of these

modified multipliers are demonstrated in Figs. 3.10 and 3.11, respectively. The number

of clock cycles required to complete a single multiplication using this method is given by

82
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

2∗d
√
m/de+1. The modified multiplication with the best performance is for the digit size

of 16 for the 163-bit, 233-bit, and 571-bit implementations, whereas the best performance

for the 283-bit and 409-bit is the digit size of 8 and 16, respectively. Both the modified

(or systolic) digit-serial multipliers and the traditional digit-serial multipliers have their

own benefits. The multiplier with the best area (slices) is achieved by the traditional

bit-serial multipliers, but this takes more computation time. For high-speed implementa-

tions, the modified digit-serial multiplier should be used for the best computation time at

the expense of few more slices. However, an ASIC-based implementation of the modified

digit-serial multiplier offers better performance than the traditional digit-serial multiplier.

In order to achieve a high-performance ECC processor, the multiplier with the most op-

timal area-time can be used to implement elliptic curve group operations.

In this part, the FPGA-based inversion implementation results are presented in

a bit-serial approach for the NIST recommended fields GF (2163), GF (2233), GF (2283),

GF (2407), and GF (2571). We have proposed an inverter architecture based on the modi-

fied Euclidean algorithm, and implemented it in Xilinx Virtex-7 and Virtex-6 FPGAs with

a speed grade of -2. Implementation results and performance comparisons are introduced

in Table 3.10. The performance for all FPGA implementations is computed because of

the clear representation of the trade-off between speed and area. Inversion over GF (2m)

based on the modified Itoh-Tsujii algorithm was proposed in [124]. They implemented

inversion for all NIST fields on a Xilinx Virtex-4 FPGA. As shown in Table 3.10, their

proposed design needs fewer clock cycles than our design, but has a longer critical path,

hence takes more computation time than our bit-serial inversion. Besides, their design

requires more area (LUTs) to implement. In [35], the inversion algorithm based on the

digit-serial (digit size between 1 and 9) approach was implemented in a Virtex-5 FPGA.

According to their recommendation, the digit sizes 1 and 5 provide better results. For

this reason, we have compared our implementation results with their 1-bit digit-serial

3.5. Implementation Results and Comparison 83

Table 3.10: Performance and comparison of FPGA-based implementation results of finite field

inversion over GF (2m).

Work Tech. Field Latency CPb Frequency Time Area Area×Time Performance Throughput

(Length) (CCs)b (ns) f (MHz) (ns) (slices) (slices × µs) (1/AT)×103 rate (Mbps)

Fig. 3.7

Virtex-7

163 327 3.338 299.54 1092 362 395 2.53 149

233 467 3.347 298.78 1563 597 933 1.07 149

283 567 3.347 298.78 1898 599 1137 0.88 149

409 819 3.726 268.38 3052 830 2533 0.40 134

571 1143 3.726 268.38 4259 963 4101 0.24 134

Virtex-6

163 327 3.709 269.64 1213 480 582 1.72 134

233 467 3.709 269.64 1732 542 939 1.07 134

283 567 3.718 268.96 2108 618 1303 0.77 134

409 819 3.726 268.38 3052 975 2976 0.34 134

571 1143 3.726 268.38 4259 1162 4949 0.20 134

[124] Virtex-4

163 154 8.030 124.53 1237 6104c 7550 0.13 132

233 181 8.623 115.97 1561 9076c 14165 0.07 149

283 232 10.878 91.93 2524 13526c 341360 0.34 112

409 474 10.216 97.89 4842 13608c 65894 0.02 85

571 599 11.823 84.58 7082 30509c 216062 0.005 81

[35] Virtex-5
163 163 1.730 578.03 282 836c 235 4.26 578

571 571 1.780 561.80 1016 2878c 2925 0.34 562

[118] Virtex-2 163 - 5.584 179.10 26000 1505 39130 0.03 6.3

[115] Virtex-4 163 327 6.803 147.00 2221 1169 2596 0.39 73

aCCs = clock cycles, bCP = clock period, cLUTS

inversion. In [118] and [115], 163-bit finite field inversion was presented. As can be seen

from Table 3.10, our proposed inversion architecture provides better performance (e.g.

time, area) than [118] and [115].

3.5.2 ASIC Implementation Results and Comparison

All FFAs are also synthesized on the ASIC 65-nm CMOS STMicroelectronics standard

cell library using Synopsys Design Compiler. The standard logic-cell library for normal

case analysis assumes 1.2 V and 25◦C for this implementation. ASIC implementations of

binary field arithmetic such as multiplication and inversion were simulated using Model-

Sim/Questa Sim. The proposed FFA implementations are also compared with the most

84
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

significant ASIC-based implementations in the literature.

Bit-serial multiplication and inversion are implemented in ASIC 65-nm CMOS technol-

ogy and related work compared with our implementations. Table 3.11 demonstrates the

proposed ASIC-based synthesis results of bit-serial multiplication and inversion. As shown

in Table 3.11, the time and area required for finite field arithmetic (e.g. multiplication or

inversion) increases with increasing field size. In[107], an ASIC-based implementation of

finite field inversion with normal basis was proposed. They used the same 65-nm CMOS

technology as we have used for this implementation. They implemented four NIST fields

except GF (2233) out of the five. According to their discussion, inversion for GF (2233) is

not suitable using their proposed hybrid-double multiplier method. Their design supports

a digit-size approach, which reduces the latency with increasing digit size. However, their

design requires a much larger area than our proposed design with the same technology.

For fair comparison, we have calculated area × time (AT) for both designs, then compared

their AT value with our AT. We find that our bit-serial inversion gives 2-3 times better

performance in terms of AT than their digit-level inversion. Both multiplication and in-

version over GF (2163) using the bit-serial approach for all NIST fields were implemented

in [114]. However, they need at least 50% more computation time and around 11 times

more area than our design. Besides, the power consumption is not given in [114], whereas

energy dissipation for both multiplication and inversion is computed for our designs from

the power consumption and latency. As can be seen from the implementation results in

Table 3.11, the proposed bit-serial multiplier and inverter consume very low power and

this means that they dissipate much less energy. Moreover, we have computed area ×

time × energy (ATE) values for all of our ASIC-based designs.

In this paper, both traditional and modified versions of digit-serial multiplication

are implemented on ASIC platforms and their performance compared. Table 3.12 demon-

strates the ASIC-based implementation results for all NIST fields with digit levels of 1,

3.5. Implementation Results and Comparison 85

T
ab

le
3.
11
:
P
er
fo
rm

an
ce

an
d
co
m
pa
ri
so
n
of

A
SI
C
-b
as
ed

sy
nt
he
si
s
re
su
lts

of
fin

it
e
fie

ld
ar
it
hm

et
ic

ov
er

F 2
m
.

W
or

k
/T

ec
h
n
ol

og
y

F
ie

ld
L
at

en
cy

C
P

F
re

q
u
en

cy
T

im
e

A
re

a
A

re
a×

T
im

e2
P
ow

er
E
n
er

gy
3

A
T

E
4

(L
en

gt
h
)

(C
y
cl

es
)

(n
s)

f
(M

H
z)

(n
s)

(µ
m

2
/K

G
s)

1
(A

T
)

(m
W

)
(n

J)

M
u
lt

ip
li
ca

ti
o
n

16
3

16
4

0.
83

12
05

13
6

90
98

.0
/4

.4
1.

24
/5

98
4.

67
0.

63
0.

78
/0

.3
8

23
3

23
4

0.
83

12
05

19
4

11
11

9.
7/

5.
3

2.
16

/1
02

8
6.

52
1.

26
2.

72
/1

.3
0

F
ig

.
3
.3

(b
)

28
3

28
4

0.
83

12
05

23
6

13
77

4.
3/

6.
6

3.
25

/1
55

7
7.

60
1.

79
5.

82
/2

.7
9

(6
5
-n

m
C

M
O

S
)

40
9

41
0

0.
84

11
90

34
4

23
10

4.
2/

11
.1

7.
95

/3
81

8
10

.9
1

3.
75

29
.8

1/
14

.3
2

57
1

57
2

0.
84

11
90

48
0

35
18

9.
1/

16
.9

2
16

.8
9/

81
12

15
.2

8
7.

34
12

3.
97

/5
9.

54

In
v
er

si
o
n

16
3

32
7

0.
83

12
05

27
1

22
77

9.
1/

11
.0

6.
17

/2
98

1
11

.6
6

3.
16

19
.5

0/
9.

42

23
3

46
7

0.
83

12
05

38
8

34
68

5.
6/

16
.7

13
.4

6/
64

80
17

.0
7

6.
62

89
.1

0/
42

.9

F
ig

.
3
.7

28
3

56
7

0.
83

12
05

47
1

38
14

5.
1/

18
.3

17
.9

7/
86

19
19

.5
2

9.
19

16
5.

14
/7

9.
2

(6
5
-n

m
C

M
O

S
)

40
9

81
9

0.
83

12
05

68
0

57
69

2.
4/

27
.7

39
.2

3/
18

83
6

28
.5

5
19

.4
1

76
1.

45
/3

65
.6

0

57
1

11
43

0.
83

12
05

94
9

75
60

0.
2/

36
.3

71
.7

4/
34

44
9

39
.3

1
37

.3
0

26
76

.0
/1

28
4.

90

In
ve

rs
io

n

16
3

38
3.

49
28

7
13

3
13

61
00

.0
/6

5.
4†

18
.0

5/
86

98
-

-
-/

-

28
3

10
1

2.
77

36
1

28
0

19
76

57
.0

/9
5.

0†
55

.3
0/

26
60

0
-

-
-/

-

[1
07

]
40

9
15

6
1.

65
60

6
25

8
15

28
20

.0
/7

3.
5†

39
.3

5/
18

96
3

-
-

-/
-

(6
5-

n
m

C
M

O
S
)

57
1

15
8

2.
33

42
9

36
8

40
70

86
.0

/1
95

.7
†

14
9.

89
/7

20
18

-
-

-/
-

M
u
lt

ip
li
ca

ti
on

16
3

16
4

1.
23

81
1

20
2

12
38

00
.0

/1
2.

4∗
25

.0
0/

25
01

-
-

-/
-

23
3

23
4

1.
27

78
5

29
8

17
10

00
.0

/1
7.

1∗
50

.9
6/

50
96

-
-

-/
-

[1
14

]
28

3
28

4
1.

29
77

4
36

7
20

92
00

.0
/2

0.
9∗

76
.7

7/
76

78
-

-
-/

-

(0
.1

8-
µ
m

C
M

O
S
)

40
9

41
0

1.
33

75
4

54
4

29
57

00
.0

/2
9.

6∗
16

0.
86

/1
60

86
-

-
-/

-

57
1

57
2

1.
32

75
8

75
5

41
69

00
.0

/4
1.

7∗
31

4.
76

/3
14

76
-

-
-/

-

In
ve

rs
io

n

16
3

32
5

1.
23

81
1

40
1

12
38

00
.0

/1
2.

4∗
49

.6
4/

49
64

-
-

-/
-

23
3

46
5

1.
27

78
5

59
2

17
10

00
.0

/1
7.

1∗
10

1.
23

/1
01

23
-

-
-/

-

[1
14

]
28

3
56

5
1.

29
77

4
73

0
20

92
00

.0
/2

0.
9∗

15
2.

72
/1

52
72

-
-

-/
-

(0
.1

8-
µ
m

C
M

O
S
)

40
9

81
7

1.
33

75
4

10
83

29
57

00
.0

/2
9.

6∗
32

0.
24

/3
20

24
-

-
-/

-

57
1

11
41

2.
32

75
8

15
06

41
69

00
.0

/4
1.

7∗
62

7.
85

/6
27

85
-

-
-/

-

1.
K
G
s
=

K
il
o-
G
at
es
,
2.

A
T

=
A
re
a×

T
im

e
=

(m
m

2
×
ns
)/
(K

il
o-
G
at
es
×
ns
),

3.
E
ne

rg
y

(n
J/

op
er
at
io
n)

=
p
ow

er
×
ti
m
e,

4.
A
T
E

=

A
re
a×

T
im

e×
E
ne

rg
y
(m

m
2
×
ns
×
nJ

)/
(K

G
s×

ns
×
µ
J)
.
T
he

ga
te

co
un

t
w
as

co
m
pu

te
d
fr
om

th
e
re
qu

ir
ed

ar
ea

di
vi
de

d
by

th
e
N
A
N
D

ga
te

ar
ea
.

†
N
A
N
D
2x

1
ga

te
ar
ea

=
2.
08

µ
m

2
fo
r
65

-n
m

C
M
O
S
T
ec
hn

ol
og

y.
∗
N
A
N
D
2x

1
ga

te
ar
ea

=
5x

2
=

10
µ
m

2
fo
r
0.
18

-µ
m

C
M
O
S
T
ec
hn

ol
og

y.

86
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

T
ab

le
3.
12
:
P
er
fo
rm

an
ce

an
d
co
m
pa
ri
so
n
of

A
SI
C
-b
as
ed

di
gi
t-
se
ri
al

fin
it
e
fie

ld
m
ul
ti
pl
ic
at
io
n
ov
er

F 2
m
.

W
or

k
T
ec

h.
F
ie

ld
D

ig
it

si
ze

L
at

en
cy

Fr
eq

ue
nc

y
T

im
e

(n
s)

A
re

a1
A

re
a×

T
im

e2
E

ne
rg

y3
A
T

E
4

(L
en

gt
h)

(b
it

s)
(C

yc
le

s)
f
(M

H
z)

(µ
m

2
/K

G
s)

(A
T

)
(n

J)

F
ig

.
3.

4(
b
)5

65
-n

m

16
3

1
16

3
54

9
29

7
10

42
1/

5.
0

3.
10

/1
48

5
0.

89
2.

76
/1

.3
2

2
82

54
9

14
9

13
04

7/
6.

3
1.

94
/9

39
0.

57
1.

11
/0

.5
3

4
41

54
9

75
18

75
8/

9.
0

1.
41

/6
75

0.
40

0.
56

/0
.2

7

8
21

54
9

38
31

75
6/

15
.3

1.
21

/5
81

0.
41

0.
50

/0
.2

4

16
11

54
9

20
99

57
4/

47
.9

1.
99

/9
58

0.
71

1.
41

/0
.6

8

32
6

50
0

12
20

36
47

/9
7.

9
2.

44
/1

17
5

0.
84

2.
05

/0
.9

9

64
3

19
6

15
33

31
33

/1
60

.2
5.

00
/2

40
3

2.
15

10
.7

5/
5.

17

23
3

1
23

3
54

9
42

4
14

75
8/

7.
1

6.
26

/3
01

0
2.

28
14

.2
7/

6.
86

2
11

7
54

9
21

3
18

62
2/

9.
0

3.
97

/1
91

6
1.

13
4.

49
/2

.1
7

4
59

54
9

10
7

26
44

2/
12

.7
2.

84
/1

36
4

0.
79

2.
24

/1
.0

8

8
30

54
9

55
44

51
6/

21
.4

2.
43

/1
16

8
0.

83
2.

02
/0

.9
7

16
15

54
9

27
10

22
06

/4
9.

1
2.

79
/1

34
0

0.
78

2.
18

/1
.0

5

32
8

49
8

16
26

71
15

/1
28

.4
4.

30
/2

06
4

1.
48

6.
36

/3
.0

5

64
4

18
3

22
47

58
15

/2
28

.8
10

.4
1/

50
06

3.
95

41
.1

2/
19

.7
7

28
3

1
28

3
54

6
51

8
17

87
7/

8.
6

9.
26

/4
45

3
2.

64
24

.4
5/

11
.7

6

2
14

2
54

6
26

0
22

61
8/

10
.9

5.
88

/2
83

2
1.

66
9.

76
/4

.7
0

4
71

54
6

13
0

32
61

8/
15

.7
4.

24
/2

03
9

1.
21

5.
13

/2
.4

8

8
36

54
6

66
57

95
3/

27
.9

3.
82

/1
83

8
1.

33
5.

08
/2

.4
4

16
18

54
6

33
18

28
11

/8
7.

9
6.

02
/2

89
5

2.
17

13
.0

6/
6.

28

32
9

46
3

19
44

03
76

/2
11

.7
8.

56
/4

11
5

2.
82

24
.1

4/
11

.6
0

64
5

16
8

30
52

64
32

/2
53

.1
15

.7
1/

75
55

6.
37

10
0.

00
/9

.4
8

1.
K
G
s
=

K
il
o-
G
at
es
,
2.

A
T

=
A
re
a×

T
im

e
=

(m
m

2
×
ns
)/
(K

il
o-
G
at
es
×
ns
)
3.

E
ne

rg
y
(n
J/

op
er
at
io
n)

=
p
ow

er
×
ti
m
e,

4.
A
T
E

=
A
re
a×

T
im

e×
E
ne

rg
y

(m
m

2
×
ns
×
nJ

)/
(K

G
s×

ns
×
µ
s)
.

5
T
ra
di
ti
on

al
di
gi
t-
se
ri
al
,
†
Im

pl
em

en
te
d
in

[1
06

]

3.5. Implementation Results and Comparison 87
T
ab

le
3.

12
:
P
er
fo
rm

an
ce

an
d
co
m
pa
ri
so
n
of

A
SI
C
-b
as
ed

di
gi
t-
se
ri
al

fin
it
e
fie
ld

m
ul
ti
pl
ic
at
io
n
ov
er

F 2
m

W
or

k
T
ec

h.
F
ie

ld
D

ig
it

si
ze

L
at

en
cy

Fr
eq

ue
nc

y
T

im
e

(n
s)

A
re

a1
A

re
a×

T
im

e2
E

ne
rg

y3
A
T

E
4

(L
en

gt
h)

(b
it

s)
(C

yc
le

s)
f
(M

H
z)

(µ
m

2
/K

G
s)

(A
T

)
(n

J)

40
9

1
40

9
54

6
74

8
25

68
5/

12
.3

19
.2

1/
92

00
5.

51
10

5.
85

/5
0.

69

2
20

5
54

6
37

5
32

41
5/

15
.6

12
.1

6/
58

50
3.

49
42

.4
4/

20
.4

2

4
10

3
54

6
18

8
48

23
9/

23
.2

9.
07

/4
36

2
3.

10
28

.1
2/

13
.5

2

8
52

54
6

95
82

49
2/

39
.7

7.
84

/3
77

1
3.

00
23

.5
2/

11
.3

1

16
26

54
6

48
24

24
85

/1
16

.6
11

.6
4/

55
97

4.
53

52
.7

3/
25

.3
5

32
13

46
3

28
46

74
47

/2
24

.7
13

.0
9/

62
92

4.
74

62
.0

5/
29

.8
2

64
7

13
1

53
72

17
93

/3
47

.0
38

.2
5/

18
39

1
17

.0
4

65
1.

78
/3

13
.3

8

57
1

1
57

1
54

6
10

45
35

99
6/

17
.3

37
.6

2/
18

07
8

10
.7

6
40

4.
79

/1
94

.5
2

2
28

6
54

6
52

3
45

26
3/

21
.8

23
.6

7/
11

40
1

6.
86

16
2.

38
/7

8.
21

4
14

3
54

6
26

2
65

52
4/

31
.5

17
.1

7/
82

53
6.

40
10

9.
88

/5
2.

82

8
72

54
6

13
2

11
89

46
/5

7.
2

15
.7

0/
75

50
6.

01
94

.3
6/

45
.3

8

16
36

50
0

72
35

88
84

/1
72

.5
25

.8
4/

12
42

0
9.

28
23

9.
79

/1
15

.2
6

32
18

44
4

41
65

55
89

/3
15

.2
26

.8
8/

12
92

3
9.

79
26

3.
15

/1
26

.5
1

64
9

11
8

76
85

37
41

/4
10

.4
64

.8
8/

31
19

0
33

.6
4

21
82

.5
6/

10
49

.2
3

[1
06

]
65

-n
m

16
3

4
43

14
0

30
7

-/
8.

5
-/

26
10

1.
2

-/
3.

13

23
3

4
61

14
0

43
6

-/
9.

5
-/

41
42

2.
7

-/
11

.1
8

28
3

4
81

14
0

57
8

-/
10

.4
-/

60
11

3.
9

-/
23

.4
4

[1
08

]†
65

-n
m

16
3

4
41

14
0

29
3

-/
10

.2
-/

29
89

1.
9

-/
5.

68

23
3

4
59

14
0

42
1

-/
14

.0
-/

58
94

4.
0

-/
23

.5
8

[1
12

]†
65

-n
m

16
3

4
16

3
14

0
11

64
-/

4.
9

-/
57

03
5.

0
-/

28
.5

23
3

4
23

3
14

0
16

64
-/

7.
0

-/
11

64
8

10
.5

-/
12

2.
3

[1
13

]
0.

18
-µ

m
28

3
-

-
-

-
19

57
12

/-
-/

-
5.

61
-/

-

1.
K
G
s
=

K
il
o-
G
at
es
,
2.

A
T

=
A
re
a×

T
im

e
=

(m
m

2
×
ns
)/
(K

il
o-
G
at
es
×
ns
)
3.

E
ne

rg
y
(n
J/

op
er
at
io
n)

=
p
ow

er
×
ti
m
e,

4.
A
T
E

=
A
re
a×

T
im

e×
E
ne

rg
y

(m
m

2
×
ns
×
nJ

)/
(K

G
s×

ns
×
µ
s)
.

5
T
ra
di
ti
on

al
di
gi
t-
se
ri
al
,
†
Im

pl
em

en
te
d
in

[1
06

]

88
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

2, 4, 8, 16, 32 and 64 bits. As can be seen from Table 3.12, as the digit size increases

between 1 and 32, the computation time decreases, however the area required increases

with the digit size. The energy dissipation also increases with the digit size. The area ×

time × energy (ATE) is the best indicator to say which digit-serial version provides better

performance. For better analysis of different digit-serial multipliers, ATE is computed for

all implementations and presented in Fig. 3.12. As we can see from Fig.3.12, an 8-bit

digit-serial multiplier gives better performance in terms of ATE than other digit-serial

versions. There only a few ASIC-based digit-serial multiplication results available in the

literature, most giving only analytical results. In [106], ASIC implementations for the

NIST fields GF (2163), GF (2233), and GF (2283) are presented using the 4-bit digit-serial

approach. They have synthesized their design using the 65-nm TSMC CMOS standard

cell library, whereas we have used 65-nm STMicroelectronics technology. ASIC-based

multiplications for [108] and [112] were introduced in [106]. Implementation results show

that our 4-bit version provides better performance than [106] in terms of timing, although

their design requires a similar number of clock cycles and area to our design. In addition,

we have achieved an energy-efficient design, which dissipates one-third energy than their

implementations. A 283-bit digit-level field multiplier was implemented in [113] using

0.18-µm technology. However, our design delivers better performance than their design in

terms of area and energy dissipation. Therefore, our design provides better performance

(ATE value) than related work in the literature.

Recall the ASIC-based multiplication results using the traditional digit-serial approach

in the previous section; the latency (clock cycles), hence the computation time required

for this method is far more than the systolic digit-serial approach. For both cases, the

computation time decreases and the area increases as the digit size increases. However,

the ATE value computed from the modified digit-serial approach is much less than for

the traditional digit-serial approach. The hardware implementation results of finite field

3.5. Implementation Results and Comparison 89
T
ab

le
3.
13
:
P
er
fo
rm

an
ce

an
al
ys
is

of
A
SI
C
-b
as
ed

m
od
ifi
ed

di
gi
t-
se
ri
al

fin
it
e
fie

ld
m
ul
ti
pl
ic
at
io
n
ov
er

F 2
m
.

W
or

k
T
ec

h.
F
ie

ld
D

ig
it

si
ze

L
at

en
cy

Fr
eq

ue
nc

y
T

im
e

(n
s)

A
re

a1
A

re
a×

T
im

e2
E

ne
rg

y3
A
T

E
4

(L
en

gt
h)

(b
it

s)
(C

yc
le

s)
f
(M

H
z)

(µ
m

2
/K

G
s)

(A
T

)
(n

J)

F
ig

.
3.

5†
65

-n
m

16
3

1
27

12
05

22
65

18
9/

31
.3

1.
46

/7
01

1.
66

2.
42

/1
.1

6

2
21

17
64

61
0/

31
.1

1.
13

/5
42

1.
10

1.
24

/0
.6

0

4
15

12
63

52
9/

30
.5

0.
79

/3
80

0.
64

0.
51

/0
.2

4

8
11

9
71

80
8/

34
.5

0.
66

/3
15

0.
39

0.
26

/0
.1

2

16
9

7
95

29
3/

45
.8

0.
71

/3
42

0.
29

0.
21

/0
.1

0

32
7

6
13

14
06

/6
3.

2
0.

76
/3

67
0.

25
0.

19
/0

.0
9

64
5

4
19

84
26

/9
5.

4
0.

82
/3

96
0.

24
0.

20
/0

.1
0

23
3

1
33

12
05

27
10

98
07

/5
2.

8
3.

00
/1

44
6

3.
43

10
.2

9/
4.

96

2
23

19
97

57
9/

46
.9

1.
86

/8
95

1.
38

2.
57

/1
.2

4

4
17

14
99

17
5/

47
.7

1.
40

/6
73

1.
15

1.
61

/0
.7

7

8
13

11
11

81
18

/5
6.

8
1.

27
/6

13
0.

73
0.

93
/0

.4
5

16
9

7
13

40
86

/6
4.

5
1.

00
/4

82
0.

43
0.

43
/0

.2
1

32
7

6
20

39
54

/9
8.

1
1.

18
/5

70
0.

34
0.

40
/0

.1
9

64
5

4
22

92
50

/1
10

.2
0.

95
/4

57
0.

30
0.

29
/0

.1
4

28
3

1
35

12
05

29
16

33
67

/7
8.

5
4.

75
/2

28
0

4.
86

23
.0

9/
11

.0
8

2
25

21
12

84
90

/6
1.

8
2.

67
/1

28
2

2.
66

7.
10

/3
.4

1

4
19

16
13

39
64

/6
4.

4
2.

11
/1

01
6

1.
75

3.
69

/1
.7

8

8
13

11
14

38
39

/6
9.

2
1.

55
/7

47
0.

91
1.

41
/0

.6
9

16
11

9
19

99
50

/9
6.

1
1.

83
/8

77
0.

73
1.

34
/0

.6
4

32
7

6
34

94
69

/1
68

.0
2.

03
/9

76
0.

48
0.

97
/0

.4
7

64
7

6
45

94
96

/2
20

.9
2.

67
/1

28
3

0.
47

1.
25

/0
.6

0

1.
K
G
s
=

K
il
o-
G
at
es
,
2.

A
T

=
A
re
a×

T
im

e
=

(m
m

2
×
ns
)/
(K

il
o-
G
at
es
×
ns
)
3.

E
ne

rg
y
(n
J/

op
er
at
io
n)

=
p
ow

er
×
ti
m
e,

4.
A
T
E

=
A
re
a×

T
im

e×
E
ne

rg
y

(m
m

2
×
ns
×
nJ

)/
(K

G
s×

ns
×
µ
s)
.
†
M
od

ifi
ed

di
gi
t-
se
ri
al
.

90
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

T
ab

le
3.

13
:
P
er
fo
rm

an
ce

an
al
ys
is

of
A
SI
C
-b
as
ed

m
od
ifi
ed

di
gi
t-
se
ri
al

fin
it
e
fie
ld

m
ul
ti
pl
ic
at
io
n
ov
er

F 2
m

W
or

k
T
ec

h.
F
ie

ld
D

ig
it

si
ze

L
at

en
cy

Fr
eq

ue
nc

y
T

im
e

(n
s)

A
re

a1
A

re
a×

T
im

e2
E

ne
rg

y3
A
T

E
4

(L
en

gt
h)

(b
it

s)
(C

yc
le

s)
f
(M

H
z)

(µ
m

2
/K

G
s)

(A
T

)
(n

J)

F
ig

.
3.

5†

40
9

1
43

12
05

36
24

08
54

/1
15

.8
8.

67
/4

16
9

9.
71

84
.1

9/
40

.4
8

2
31

26
22

26
74

/1
07

.1
5.

80
/2

78
5

5.
69

33
.0

0/
15

.8
5

4
23

19
22

46
30

/1
08

.0
4.

27
/2

05
4

3.
43

14
.6

5/
7.

05

8
17

14
26

04
00

/1
25

.2
3.

65
/1

75
3

2.
12

7.
74

/3
.7

2

16
13

11
33

19
50

/1
59

.6
3.

65
/1

75
6

1.
47

5.
37

/2
.5

8

32
9

7
46

43
16

/2
23

.2
3.

25
/1

56
2

0.
95

3.
09

/1
.4

8

64
7

6
60

28
18

/2
89

.8
3.

62
/1

73
9

0.
90

3.
26

/1
.5

7

57
1

1
49

12
05

41
38

39
58

/1
84

.6
15

.7
4/

75
69

17
.2

6
27

1.
67

/1
30

.6

2
35

29
34

75
14

/1
67

.1
10

.0
8/

48
46

9.
86

99
.3

9/
47

.7
8

4
25

21
34

50
25

/1
65

.9
7.

25
/3

48
4

5.
76

41
.7

6/
20

.0
7

8
19

16
40

99
45

/1
97

.1
6.

56
/3

15
4

3.
71

24
.3

4/
11

.7
0

16
13

11
47

08
52

/2
26

.4
5.

18
/2

49
0

2.
22

11
.5

0/
5.

53

32
11

9
56

86
98

/2
73

.4
5.

19
/2

47
0

1.
73

8.
85

/4
.2

7

64
7

6
82

76
12

/3
97

.9
4.

97
/2

38
7

1.
09

5.
42

/2
.6

0

1.
K
G
s
=

K
il
o-
G
at
es
,
2.

A
T

=
A
re
a×

T
im

e
=

(m
m

2
×
ns
)/
(K

il
o-
G
at
es
×
ns
)
3.

E
ne

rg
y
(n
J/

op
er
at
io
n)

=
p
ow

er
×
ti
m
e,

4.
A
T
E

=
A
re
a×

T
im

e×
E
ne

rg
y

(m
m

2
×
ns
×
nJ

)/
(K

G
s×

ns
×
µ
s)
.
†
M
od

ifi
ed

di
gi
t-
se
ri
al
.

3.5. Implementation Results and Comparison 91

1 2 4 8 16 32 64
0.1

0.2

0.4

0.8

1.6
3

6

12
20

40

80

160

320

640

A
re

a
×

T
im

e
×

E
ne

rg
y

(A
T

E
)

(K
G

at
es

 ×
ns

 ×
µJ

)

Digit−Size

163−bit
233−bit
283−bit
409−bit
571−bit

Figure 3.12: Area × time × energy (ATE) comparison of traditional digit-serial mul-

tiplication with digit sizes in F2
m.

1 2 4 8 16 32 64
0.1

0.2

0.4

0.8

1.6

3

6

12
20

40

80

160

A
re

a
×

T
im

e
×

E
ne

rg
y

(A
T

E
)

(K
G

at
es

 ×
ns

 ×
µJ

)

Digit−Size

163−bit
233−bit
283−bit
409−bit
571−bit

Figure 3.13: Area × time × energy (ATE) comparison of modified digit-serial multi-

plication with digit sizes in F2
m.

multiplication with digit sizes of 1, 2, 4, 8, 16, 32 and 64 bits is demonstrated in Ta-

ble 3.13. Fig. 3.13 illustrates the ATE performance for all NIST fields with the digit sizes.

As shown in Table 3.13, the energy dissipation decreases with increasing digit size. For

92
Chapter 3. Efficient Hardware Implementation of Finite Field Arithmetic for Elliptic

Curve Cryptography

this reason, higher digit size (e.g. 32-bit or 64-bit) gives better results in terms of ATE

performance, as depicted in Fig. 3.13. On the other hand, using the traditional approach

the 8-bit digit size delivers better performance. We have compared the performance in

terms of ATE for both ASIC-based implementations. We find that the modified version

provides 2 to 17 times better ATE performance than the traditional digit-serial approach.

3.6 Conclusion

In this paper, we have presented a fast, area- and energy-efficient FFA unit that can be

used for an ECC processor over the binary field GF (2m). The proposed FFA hardware

has been synthesized using Xilinx Virtex-7 and Virtex-6 FPGAs and the ASIC 65-nm

CMOS STMicroelectronics standard cell library. A low area complexity multiplication

and inversion architecture over GF (2m) was implemented using a bit-serial approach. In

addition, we have implemented a digit-serial multiplication over GF (2m) with a low area

complexity and high speed. Moreover, a structurally improved version of the systolic

digit-serial multiplier architecture was presented whose time complexity is much better

than basic digit-serial multiplication. Note that the presented multipliers and inverters

support all five binary fields GF (2163), GF (2233), GF (2283), GF (2407), and GF (2571),

recommended by NIST. The time and area was computed for all the designs. Furthermore,

the energy dissipation was also calculated from the power consumption and latency for

the ASIC-based FFA. We found that the bit-serial multiplication/inversion is better with

area, whereas the digit-serial version is better in terms of latency and energy. From

the comparison analysis of different finite field multiplications and inversions, we have

achieved a better performance, either in FPGA implementation or ASIC implementation,

than the most significant work in the literature. Finally, we can say that the proposed

FFA architecture is well suited for a high-performance ECC processor.

Chapter 4

High-Performance FPGA

Implementation of Elliptic Curve

Cryptography Processor over Binary

Field GF(2163)1

4.1 Abstract

Elliptic curve cryptography (ECC) plays a vital role in passing secure infor-

mation among different wireless devices. This paper presents a fast, high-

performance hardware implementation of an ECC processor over binary field

GF(2m) using a polynomial basis. A high-performance elliptic curve point

multiplier (ECPM) is designed using an efficient finite-field arithmetic unit
1Published as: Md Selim Hossain, Ehsan Saeedi and Yinan Kong,“High-Performance FPGA Imple-

mentation of Elliptic Curve Cryptography Processor over Binary Field GF(2163),”Proceedings of the 2nd

International Conference on Information Systems Security and Privacy (ICISSP), Rome, Italy, pp. 415-

422, 19-21 February, 2016, DOI:10.5220/0005741604150422.

93

94
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

in affine coordinates, where ECPM is the key operation of an ECC processor.

It has been implemented using the National Institute of Standards and Tech-

nology (NIST) recommended curves over the field GF(2163). The proposed

design is synthesized in field-programmable gate array (FPGA) technology

with the VHDL. The delay of ECPM in a modern Xilinx Kintex-7 (28-nm)

technology is 1.06 ms at 306.48 MHz. The proposed ECC processor takes a

small amount of resources on the FPGA and needs only 2253 slices without

using any DSP slices. The proposed design provides nearly 50% better delay

performance than recent implementations.

4.2 Introduction

With the swift growth of mobile devices and computer applications, cryptography has

become a vital tool to ensure the security of data communications and network services.

Secret-key cryptography and public-key cryptography (PKC) are two main families of

cryptography used for different data-security purposes. ECC [10, 11] and the RSA cryp-

tosystem [8] are the most popular PKCs. The elliptic curve system as applied to cryp-

tography was first proposed in the mid 80s by Koblitz and Miller. This cryptosystem

became popular because it offers equivalent security to the traditional RSA with signif-

icantly smaller keys. For instance, 163-bit ECC provides equivalent security to 1024-bit

RSA [1,54]. This feature makes ECC very popular for resource-constrained environments

such as pagers, PDAs, cellular phones, smart cards and so on [35]. The IEEE [23] and Na-

tional Institute of Standards and Technology (NIST) [22] have standardized elliptic curve

(EC) parameters for GF(p) and GF(2m). Certicom has provided NIST-recommended EC

domain parameters, standard for efficient cryptography in SEC2 [54].

Several FPGA-based efficient ECC hardware architectures and elliptic curve cryp-

4.2. Introduction 95

tographic processors have been presented in the literature [35, 118, 125–131]. In [128],

Ghanmy proposed ECC processor over GF(2163) on a FPGA platform for wireless sensor

networks (WSN). Reaz’s design [126] can perform ECC over GF(2131) and GF(2163) on

Altera FPGAs. Hasan and Benaissa [127] implemented their ECC processor using the

µ-coding technique on Xilinx Spartan-3 FPGAs over GF(2131), GF(2163), GF(2283) and

GF(2571). A coupled FPGA/ASIC implementation of an elliptic curve crypto-processor

over GF(2163) is presented in [118], and they used Xilinx Virtex Pro FPGAs and ASIC

CMOS 45 nm technology as a hardware platform. Shieh [129], Park et al. [131] also pro-

posed their ECC processor over a binary field using Xilinx FPGAs. An ASIC-based ECC

processor is presented over GF(2m) in [130].

The optimization aim is generally to reduce the latency of an ECPM in terms of the

number of required clock cycles. For this, we have concentrated on efficient algorithms

and mathematical reformulations for improving finite-field arithmetic operations which

are required for ECPM [35, 125, 132, 133]. The arithmetic includes operations defined in

finite (Galois) fields, namely GF(p) and GF(2m) [2]. To the best of the authors’ knowl-

edge, there have been few high-speed hardware implementations of an ECC processor in

the literature. Thus an efficient design of an ECC processor is still mandatory for modern

cryptographic applications.

In this paper an efficient ECC processor is developed in which ECPM operations are

achieved in a very low area (around 2.25K slices without using any DSP slices) and latency

(almost 50% less than recent implementations). For this, efficient algorithmic reformula-

tions underlying binary finite field and architectural optimization schemes are explored

to improve the operating speed. We propose a data-flow architecture of elliptic curve

point doubling (ECPD) and elliptic curve point addition (ECPA) that are required for

the ECC processor. An efficient field inversion and multiplication algorithms over GF(2m)

are employed to implement high-performance ECPD and ECPA. Finally, an FPGA-based

96
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

high-performance hardware implementation over GF(2163) is proposed, which is the fastest

implementation in an affine coordinate system.

The rest of this paper is organized as follows. Section 4.3 introduces a background

of groups and fields, Galois finite fields (GF(p) and GF(2m)), and ECC theories related

to this work. Section 4.4 describes an efficient finite-field algorithm over GF(2m), elliptic

curve group operations (PD and PA) and hardware architectures. An elliptic curve point

multiplication algorithm and cryptographic processor are given in Section 4.5. FPGA

implementation results and comparisons with related designs are given in Section 4.6.

Finally this paper is summarized in Section 4.7.

4.3 Background

In this section, a brief introduction to abstract algebra, field and group theories relevant

to ECC designs used in our hardware implementation is presented.

4.3.1 Groups and Fields

An abelian group (G, ∗) consists of a set of elements together with a binary operation ∗

which satisfies the following properties :

1. (Associativity) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

2. (Identity) There is an element e ∈ G such that a ∗ e = e ∗ a for all a ∈ G.

3. (Inverse) for each a ∈ G, there is an element b ∈ G, called the inverse of a, such that

a ∗ b = b ∗ a = e.

The group operation is generally called addition (+) or multiplication (.). The group is

finite if G is a finite set, in which case the number of elements in G is called the order of

G.

Fields are abstractions of familiar number systems and their essential properties. A field

4.3. Background 97

(F, +, ×) is a set of numbers F with two operations, addition and multiplication, satisfying

the following properties:

1. (F, +) is an abelian group with (additive) identity 0.

2. (F \{0}) is an abelian group with (mult.) identity 1.

Division of field elements is represented in terms of multiplication (mult.): for a, b ∈ F

with b 6= 0, a/b = a.b−1 where b.b−1 = 1. (b−1 is called the inverse of b) [2].

4.3.2 Elliptic Curve Cryptography (ECC)

ECC is the most popular public-key encryption technique. To encrypt data in ECC, it is

denoted as a point on an elliptic curve (EC) over a Galois field. A Galois field denoted

normally as GF(q = pm) is said to be a binary field or characteristic-two finite field if

q = 2m. A elliptic curve defined over a Galois field provides a group structure that is

used to implement cryptographic systems. The group operations are EC point addition

(ECPA) and EC point doubling (ECPD).

There are various coordinate systems to represent elliptic curve points. They vary in

the number and type of field operations required to implement PA/PD. In our work, we

implement all elliptic curve operations in an affine coordinate system. A non-supersingular

elliptic curve E over GF(2m) in affine coordinates is the set of solutions to the equation

y2 + xy = x3 + ax2 + b (4.1)

where x, y, a, b ∈ GF (2m), b 6= 0. The coefficients a, b ∈ F2
m specifying an elliptic curve

E(F2
m) are defined by the NIST standard and then the elliptic curve is defined by (4.1).

The number of points on an elliptic curve E is represented by #E(F2
m). It is defined

over F2
m as nh, where n is the prime order of the curve, and h is an integer called the

co-factor.

If P = (x1, y1) ∈ E and Q = (x2, y2) ∈ E (points on the EC), then summing PA and

98
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

PD can be respectively derived as

R(x3, y3) = P (x1, y1) +Q(x2, y2) ∈ E,

x3 = λ2 + λ+ x1 + x2 + a,

y3 = λ(x1 + x3) + x3 + y1,

where λ = (y2 + y1)/(x2 + x1) and P 6= Q;

(4.2)

R(x3, y3) = 2P (x1, y1) ∈ E,

x3 = λ2 + λ+ a = x21 + b/x21,

y3 = x21 + λx3 + x3,

where λ = x1 + y1/x1 and P = Q;

(4.3)

where R = 0 when x1 = x2 and y2 6= y1, or x1 = x2 = 0. Hence, when P 6= Q we have

the PA operation in (4.2) and when P = Q we have the PD operation in (4.3). Using

these operations, EC point multiplication kP will be implemented using an ECC- based

algorithm [2,10,11,35].

Table 4.1: comparison of Key length for equivalent security of Symmetric-key and

public-key Cryptography [2]

Symmetric key Example-algorithm RSA/DH ECC in GF(p) ECC in GF(2m)

80 SKIPJACK 1024 160 163

112 Triple-DES 2048 224 233

128 AES Small 3072 256 283

192 AES Medium 8192 384 409

256 AES Large 15360 521 571

In 2000, FIPS-2 was recommended with 10 finite fields: 5 prime fields, and 5 binary

fields. The binary fields are F2
163,F2

233,F2
283,F2

409 and F2
571[22]. Prime fields GF(p)

and binary fields GF(2m) of similar size are considered to provide almost the same level

4.4. Hardware Implementation for Finite Field 99

of security [1]. Table 4.1 compares symmetric cipher key length, and key lengths for

PKC such as RSA, Diffie-Hellman (DH), and ECC (both prime and binary fields). It

demonstrates that smaller field sizes can be used in ECC than in RSA and DH systems at a

given security level. ECC is many times more efficient than RSA and DH for either private-

key operations (such as signature generation and decryption) or public-key operations

(such as signature verification and encryption). This makes ECC a promising branch of

public-key cryptography [2].

4.4 Hardware Implementation for Finite Field

This section presents all arithmetic algorithms and operations for hardware implementa-

tion which are important for ECC. All parameters for NIST elliptic curves over GF(2163)

are listed in Table 4.2. The irreducible polynomial is f(x) = x163 + x7 + x6 + x3 + 1 given

for the field GF(2163). A modern Xilinx Kintex-7 (XC7K325T-2FFG900) FPGA with

VHDL (VHSIC Hardware Description Language) is used for this hardware implementa-

tion. The main components in this ECC design are: polynomial-basis modular addition or

field addition, field multiplication, field squaring, field inversion, and elliptic curve group

operations (PD and PA).

4.4.1 Polynomial Basis Representation

A polynomial basis (or standard basis) is an extension field used to represent field elements

and is very popular. PB is used in our hardware design for the representation of numbers.

For the PB representation, the elements F2
m are the binary polynomials of degree at most

m− 1, i.e.

F2
m = um−1.x

m−1 + um−2.x
m−2 + · · ·+ u1.x+ u0 =

m−1∑
i=0

uix
i : ui ∈ {0, 1}

100
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

For instance, x3+x+1 is a polynomial-basis representation for the 4-bit number 10112.

For a reduction polynomial or irreducible polynomial, (f(x) be an irreducible binary

polynomials of degree m), and f(x) = xm +G(x) = xm +
∑m−1

i=0 gix
i where gi ∈ {0, 1} for

i = 1, . . . ,m−1 and g0 = 1 [2]. For example, f(x) = x4 +x+ 1 = 100112 is an irreducible

polynomial of the finite field GF(24).

Table 4.2: NIST-recommended elliptic curves over F2
163

K-163: m = 163, f(x) = x163 + x7 + x6 + x3 + 1, a, b = 1, h = 2

n=0x 4 00000000 00000000 00020108 A2E0CC0D 99F8A5EF

x=0x 2 FE13C053 7BBC11AC AA07D793 DE4E6D5E 5C94EEE8

y=0x 2 89070FB0 5D38FF58 321F2E80 0536D538 CCDAA3D9

4.4.2 Addition in GF(2m)

Addition is the simplest operation in GF(2m). It is simply a bit-wise exclusive-or (xor (⊕))

in either hardware or software. Addition in F2
m can be achieved as shown in (4.4) [41]:

Z(x) = U(x) + V (x) =
m−1∑
i=0

uix
i +

m−1∑
i=0

vix
i =

m−1∑
i=0

(ui + vi)x
i =

m−1∑
i=0

zix
i (4.4)

where zi = (ui + vi) mod 2 = ui ⊕ vi. The subtraction operation in GF(2m) is the same

as addition because the additive inverse of an element is its identity : U(x) + U(x) = 0.

For example, if U = 11002 and V = 01102 over the finite field GF(24) then Z = U+V =

U ⊕ V = (11002 ⊕ 01102) = 10102.

4.4.3 Multiplication in GF(2m)

Polynomial multiplication or multiplication in GF(2m) with the interleaved modular re-

duction algorithm is a well-known algorithm for hardware implementation [41]. It com-

putes the product of two polynomials then applies modular reduction, and its operation

4.4. Hardware Implementation for Finite Field 101

is different from simple integer multiplication. Multiplication in F2
m can be achieved as

shown in (4.5):

Z(x) = U(x).V (x) = U(x).
m−1∑
i=0

vi.x
i =

m−1∑
i=0

(U(x).vi).x
i (4.5)

Multiplication by xi can easily be calculated by the binary left-shift operation. From

polynomial multiplication in algorithm 4.1, we check whether the result is an element of

GF(2m) with degree < m. A modular reduction step is only necessary if the polynomial

multiplication result Zv has degree m or higher. This condition is checked by the Zv(m) =

1 command. The result of polynomial multiplication Z(x) = U(x).V (x) mod f(x), is

Algorithm 4.1: Multiplication in GF(2m) with interleaved modular reduction

Input: U(x), V (x) ∈ GF(2m), irreducible polynomials of degree m

Output: Z(x) = U(x) . V (x) mod f(x)

Zv = 0 ; Uv = ’0’ & U(x) ;

for i = m - 1 to 0 do

if V (i) = ’1’ then Zv = Zv . x + Uv ; else Zv = Zv . x ; end if

if Zv(m) = ’1’ then Zv = Zv + f(x) ; end if

end for

Return (Z(x) = Zv(m-1 downto 0)) (At this instance,

Z(x) is the result of U(x) . V (x) mod f(x))

achieved after m iterations. Algorithm 4.1 [41], named multiplication (Mult.) in GF (2m)

with interleaved modular reduction, takes just four steps to find the solution of polynomial

multiplication over GF(24). The polynomial multiplication result should be reduced to a

degree < 4 by irreducible polynomial f(x) = x4 + x+ 1.

102
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

4.4.4 Squaring in GF(2m)

A PB squarer is simpler than and closely related to multiplication. But squaring in

GF(2m) has less difficulty than polynomial multiplication because U(x)2 mod f(x) is a

linear operation. It can be computed as shown in (4.6):

Z(x) = U(x)2 = um−1.x
2m−2 + · · ·+ u2.x

4 + u1.x
2 + u0 =

m−1∑
i=0

uix
2i (4.6)

The squaring operation in GF(2m) of Z(x) = U(x)2 is achieved by setting a 0 bit

between consecutive bits of the binary representation of U(x) as shown in Fig. 4.1 [2,41].

Um-1 Um-2 …. U1 U0

0 Um-1 0 Um-2 0 …. 0 U1 0 U0

U(x

U(x)2

Figure 4.1: Squaring a binary polynomial U(x).

4.4.5 Inversion in GF(2m)

Inversion in GF(2m) is the most expensive operation for implementing ECC over a binary

field. Algorithm 4.2 computes the field inversion of a non-zero field element U(x) ∈ F2
m

using the modified Euclidean algorithm [52]. We used this inversion algorithm for our

hardware implementation because it is easy to implement on a FPGA. The result of field

inversion Z(x) = 1/U(x) mod f(x) or multiplicative inversion of U(x) is achieved after

2m iterations (i = 1 to 2m) and the value of cnt is always equal to zero at the end of the

last iteration [52].

4.4. Hardware Implementation for Finite Field 103

Algorithm 4.2: Inversion in GF(2m) with Modified Euclidean Algorithm

Input: U(x) ∈ GF(2m), irreducible polynomial of degree m

Output: Z(x) = 1/U(x) mod f(x)

Pv = ’0’ & U(x) ; Qv = f(x); Zv = 00001; V = 0 ; cnt = 0 ;

for i = 1 to 2m do

if Pv(m) = ’0’ then Pv = x . Pv ; Zv = x . Zv ;

if Zv(m) = ’1’ then Zv = Zv + f(x) ; end if

cnt = cnt+ 1 ;

else

if Qv(m) = ’1’ then Qv = Qv + Pv ; V = V + Zv mod f(x) ; end if

Qv = x . Qv ;

if cnt = 0 then

Pv = Qv ; Qv = Pv ; (Pv ↔ Qv)

Zv = V ; V = Zv ; (Zv ↔ V , exchange operations)

Zv = x . Zv mod f(x); cnt = cnt+ 1 ;

else

Zv = Zv/x mod f(x) ; cnt = cnt− 1 ;

end if

end if

end for

Return (Z(x) = Zv(m-1 downto 0)) (Z(x) is the result of 1/U(x) mod f(x))

4.4.6 Proposed EC Group Operations

The elliptic curve group operations in GF(2m) are the PD and PA operations. These are

the building blocks of finite-field arithmetic operations such as addition, multiplication,

squaring and inversion. Figs. 4.2 and 4.3 show the data-flow architecture of the proposed

ECPD and ECPA operations, corresponding to (4.2) and (4.3) respectively. The ECPD

104
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

operation in affine coordinates requires one field inversion, five field additions, two field

multiplications, and two field squarings. Similarly, the ECPA operation in affine coordi-

nates requires one field inversion, eight field additions, two field multiplications, and one

field squaring.

Inversion

a

2

3x1x 1y
1x

ax 2
3

33
2

13 . xxxy

 Squaring
Squaring

Multiplication

Multiplication

Figure 4.2: Hardware architecture of the elliptic curve point doubling (ECPD) opera-

tion.

4.5. Proposed ECPM 105

Multiplication

Inversion

Squaring

1x
1y

3x1x

2

a

1y

axxx 21
2

3

13313)(yxxxy

2x 2y

Multiplication

Figure 4.3: Hardware architecture of the elliptic curve point addition (ECPA) opera-

tion.

4.5 Proposed ECPM

Elliptic curve point multiplication (ECPM) is the main operation of an ECC processor;

it is computationally the most expensive. However, we have designed a high-performance

ECPM using efficient group operations and FFMA units. The building block of an elliptic

curve cryptosystem contains ECC protocols such as ECDH (elliptic curve Diffie-Hellman)

key exchange, ECDSA (EC digital signature algorithm) at the top level, point multiplica-

tion in the second level, group operations in the third level, and field arithmetic operations

in the bottom level. The basic operation of ECPM is defined as kP, where k is a positive

integer and P is a point on the elliptic curve E defined over a field F2
m. The proposed

ECPM architecture over GF(2m) is presented in Fig. 4.4. Various methods exist for im-

plementing ECPM: the binary method, the Non-adjacent form (NAF) method, and the

Montgomery method. The easiest way to implement ECPM is the binary method (left to

right) [2]. Finally, we present the ECPM Algorithm 4.3 using the binary method. It is

106
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

implemented using the “Double-and-Add” algorithm concept.

Inversion

Addition

Squaring

Multiplication

Finite Field Arithmetic

PA

Inversion

Addition

Squaring

Multiplication

Finite Field Arithmetic

PD

Control
Unit

k
xP
yP

xQ

yQ

Figure 4.4: Hardware architecture of Elliptic Curve Point Multiplication (ECPM) pro-

cessor.

Algorithm 4.3: Binary method (Left to right) for point multiplication

Input: k = (km−1,...,k1,k0)2, P (x, y) ∈ E(F2
m)

Output: Q(x, y) = k.P (x, y), where Q(x, y), P (x, y) ∈ E(F2
m)

Q = 0 ;

for i = m - 1 to 0 do

Q = 2Q;

if k(i) = ’1’ then Q = Q+ P ; end if

end for

Return (Q(x, y))

4.6. FPGA Implementation Results and Performance Analysis 107

4.6 FPGA Implementation Results and Performance

Analysis

This section presents the hardware implementation results of this design. We have imple-

mented and tested our design on a modern 28-nm Xilinx Kintex-7 (XC7K325T-2FFG900)

FPGA. All VHDL modules are extensively simulated using both Isim and ModelSim, and

synthesized using Xilinx ISE 14.7 synthesis technologies.

Table 4.3: Synthesis Results of the finite-field arithmetic for GF(2163) in Kintex-7

Arithmetic Opn FF LUTS LUT-FF Pairs CC Freq. (MHz) Time (µs)

Mult./SQ 335 385 335 163 388.83 0.419

Inversion 1479 2007 1315 327 431.71 0.757

Table 4.4: Elliptic curve Group Operation Results for GF(2m) in Kintex-7.

Group Opn FF LUTs LUT-FF Pairs CC Frequency (MHz) Time (µs)

PD 3484 4264 3037 1636 331.76 4.930

PA 6587 8347 5664 1636 331.58 4.934

Table 4.3 depicts the synthesis results of the finite-field arithmetic operations such as

field multiplication/squaring and field inversion over GF(2163). Multiplication or squar-

ing over GF(2163) takes the same area (FF and LUTS), the same number of clock cycles

and the same computation time. On the other hand, the clock cycles, flip-flops (FFs),

and LUTs (look-up tables) ratio of inversion to multiplications are about 2, 4.45, and

5.2 respectively. Only inversion consumes more clock cycles, area, and timing. The mul-

tiplication/squaring (SQ) over GF(2163) is performed in Xilinx Kintex-7 in 419 ns but

inversion takes 757 ns. From our implementation results, we notice that field inversion is

the most time-consuming operation over the binary field because an inversion takes the

108
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

same number of clock cycles as 2 multiplications.

The hardware implementation results of proposed elliptic curve group operations are

presented in Table 4.4. The major building block of the elliptic curve group operations

(PD and PA) contains addition, multiplication, squaring and inversion. These operations

were defined over the binary finite field GF(2m). The PA operation occupies almost dou-

ble the area of the PD operation, but the number of clock cycles and the computation

time are identical for both operations. The ECPM results for the NIST-recommended

field (GF(2163) is shown in Table 4.6. We achieve a point multiplication in 1.06 ms at a

frequency of 306.48 MHz in Xilinx Kintex-7 (XC7K325T-2FFG900) FPGA.

Table 4.5: Synthesis results for elliptic curve point multiplication (ECPM) over F2163.

Slice Logic Utilization Used Available Used (%)

Numbers of Slice Registers 6620 407600 1

Number of Slice LUTs 7963 203800 3

Numbers of Fully Used LUT-FF Pairs 5712 8871 66

Numbers of BUFG/BUFGCTRLs 2 32 6

Numbers of Bonded IOBs 330 500 66

Numbers of occupied Slices 2253 50950 4

Table 4.5 represents the summary of estimated values of device utilization. The imple-

mented design over the binary field F2163 takes a small amount of resources on the FPGA.

The synthesis report shows that our design is area-efficient as it contains only 2253 slices

(4% utilization of total available resources).

The hardware implementation results and performance comparisons with related cryp-

tographic processors are listed in Table 4.6, which tries to give all the frequencies, number

of clock cycles, and the computation time of the designs to make a fair comparison on the

performance between them. An ECC processor over GF(2163) for wireless sensor networks

4.6. FPGA Implementation Results and Performance Analysis 109

Table 4.6: Comparison between our ECC design and related work over GF(2163)

References Technology Frequency (MHz) Clock cycles Time (ms)

This work Kintex-7 306.48 325564 1.06

Ghanmy [128] Virtex-II 24 54138 2.26

Reaz [126] FLEX10KE 43 640700 14.9

Hasan [127] Spartan-3 76 205200 2.7

Machhout [118] Virtex-II 167.84 347425 2.07

Shieh [129] V1000E - - 2.55

Park [131] V1000E 44 134090 3.05

Smyth [130] 0.13µmASIC 166 526280 3.17

(WSN) is proposed in [128], and it requires 2.26 ms to achieve a point multiplication. The

ECC processor proposed by Reaz [126] provides a result for the field GF(2163), and their

design takes 14.9 ms to compute a point multiplication. Our implemented result is almost

14 times the speed of Reaz [126] but our presented result is not in the same platform.

Hasan [127], Machhout [118], and Sheih [129] implemented ECC processors over GF(2163),

and their designs require 2.7 ms, 2.07 ms, and 2.55 ms respectively. Our implemented

result is almost double the speed of that of Hasan, Maccout, and Sheih. Park [131] and

Smyth [130] developed ECC processors over GF(2163) in different platforms but their

cryptographic processors require more computation time than our design. Our ECC pro-

cessor over GF(2163) takes 1.06 ms to accomplish a point multiplication. We have also

achieved a higher frequency than other cryptographic processors. From the comparison

and performance analysis in Table 4.6, our ECC processor over GF(2163) provides better

performance than others.

110
Chapter 4. High-Performance FPGA Implementation of Elliptic Curve Cryptography

Processor over Binary Field GF(2163)

4.7 Conclusions

A high-performance ECC processor over GF(2163) has been implemented using FPGA

technology. The binary method (double-and-add) point-multiplication algorithm using

an affine coordinate system was used for this hardware implementation. An efficient

polynomial-basis multiplication and inversion algorithm was developed for performing

elliptic curve PD and PA operations and hence ECC processor. The implemented design

is optimized by using different optimization techniques such as balancing the PD and

PA architecture, parallelization in operations, and pre-computations for obtaining high

performance on an FPGA compared to other designs. In GF(2163), we can achieve a

point multiplication in 1.06 ms at 306.48 MHz in Kintex-7 (28-nm) devices, which is

the fastest hardware implementation result. The proposed design provides nearly 50%

better delay performance than recent implementations. Our implemented design is also

area-efficient as it contains only 2253 slices without using any DSP slices. Based on the

overall performance analysis and comparisons of different ECC processors over the binary

field F163, it can be concluded that this design provides better performance than others

in terms of the area and the timing.

Chapter 5

High-Speed, Area-Efficient,

FPGA-Based Elliptic Curve

Cryptographic Processor over NIST

Binary Fields1

5.1 Abstract

In this paper we propose a high-performance FPGA-based implementation of

an elliptic curve cryptographic (ECC) processor over binary field GF(2m) for

modern cryptographic applications. A high-speed elliptic curve scalar multi-

plier (ECSM) is designed using an efficient finite-field arithmetic unit, where

ECSM is the main operation of an ECC processor. It has been implemented
1Published as: Md Selim Hossain, Ehsan Saeedi and Yinan Kong,“High-Speed, Area-Efficient, FPGA-

Based Elliptic Curve Cryptographic Processor over NIST Binary Fields,”2015 IEEE Interna- tional Con-

ference on Data Science and Data Intensive Systems (DSDIS), UTS, Sydney, Australia, pp. 175-181,

11-13 December, 2015, DOI: 10.1109/DSDIS.2015.44.

111

112
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

in an affine coordinate system using a polynomial basis. The implemented de-

sign is synthesized in field-programmable gate array (FPGA) technology. The

ECSM time in a modern Xilinx Kintex-7 FPGA is 2.66 ms at 255.66 MHz

and 5.54 ms at 251.98 MHz for the field size of GF(2233) and GF(2283) respec-

tively. Simulation results show that the implemented design is area-efficient,

as it contains only 3016 slices for the field F2233 and 4625 slices for the field

F2283. To the best of the authors’ knowledge, the proposed ECC processor

shows better performance than the available hardware implementations.

5.2 Introduction

Public-key cryptography (PKC) and Private-key cryptography are two main families of

cryptography used for different wireless security purposes. With the rapid growth of

communication systems, the demand for data security in wireless communication and

associated appliances has increased rapidly in recent days. For these applications, PKC

plays a vital role to pass secured information among the different wireless devices. A

cryptographic algorithm such as elliptic curve cryptography should be designed in such a

way that it requires minimal available resources with the assurance of high security and

throughput. The Ron Rivest, Adi Shamir and Leonard Adleman cryptosystem called the

RSA cryptosystem [8] and the Elliptic Curve Cryptosystem (ECC) [10, 11] are the two

most popular public-key cryptosystems. ECC is a comparatively new cryptosystem, first

proposed in 1985 independently by Neal Koblitz and Victor S. Miller [10, 11]. However,

ECC can provide the highest security per bit compared to other traditional public-key

cryptosystems such as RSA, DH. ECC typically has a inferior throughput rate and most

complex computation. This attractive feature makes ECC very popular for resource-

constrained applications such as smart cards, credit cards, pagers, PDAs (Personal Digi-

5.2. Introduction 113

tal Assistants), and cellular phones [35]. The IEEE has standardized P1363-2000 [23] for

the use of ECC-based key-agreement and digital-signature algorithms (DSA). Certicom

has provided NIST-recommended elliptic curve domain parameters, standard for efficient

cryptography in SEC2 [54]. The U.S. Government organization called the National Insti-

tute of Standards and Technology (NIST) recommends elliptic curve parameters for GF(p)

and GF(2m) [22]. There are different security organizations such as ISO, NSA and ANSI

who also have been working for standardization of the use of ECC. Field-programmable

gate-array (FPGA) technology is used for this hardware implementation due to greater

flexibility and ability to update the cryptographic algorithm.

In [128], Ghanmy et al. implemented their ECC processor over GF(2163) on a Xilinx

Virtex-2 FPGA for wireless sensor networks (WSN). Hasan and Benaissa [127] imple-

mented their ECC processor over GF(2131), GF(2163), GF(2283) and GF(2571) using the

µ-coding technique on a Xilinx Spartan-3 FPGA. A coupled FPGA/ASIC implementa-

tion of an EC crypto-processor over GF(2163) is presented in [118], using both FPGA and

ASIC as a hardware platform. Wang [134], Smyth [130], Zeng [135], and Nguyen [136]

et al. also implemented their ECC processor over a binary field. The optimization aim

is generally to reduce the latency of an elliptic curve scalar multiplication. For this, we

have concentrated on efficient algorithms to improve finite-field arithmetic operations us-

ing repeating blocks [35]. A dedicated hardware implementation of an ECC processor is

required for real-time applications to speed up the overall computation of cryptosystems.

To the best of our knowledge, there have been few high-performance hardware imple-

mentations of an ECC processor in the literature. Thus a fast, high-performance imple-

mentation of an ECC processor is still needed for modern cryptographic applications. In

this paper, efficient algorithmic reformulations underlying binary finite field and architec-

tural optimization schemes are explored to improve the operating speed [132, 133]. An

FPGA-based hardware implementation for an ECC processor over GF(2233) and GF(2283)

114
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

is presented and is the fastest implementation in an affine coordinate system.

This paper is organized as follows. Section 5.3 describes a background of groups and

fields, Galois finite fields, and ECC theories related to this work. Section 5.4 presents

an efficient finite-field algorithm over GF(2m), EC group operations (PD and PA) and

hardware architectures. An ECSM algorithm and cryptographic processor are given in

Section 5.5. FPGA implementation results and comparisons with related designs are given

in Section 5.6. Finally, Section 5.7 summarizes our work.

5.3 Background

In this section, a brief introduction to the Galois field, mathematics and theories of ECC

used in this hardware implementation is presented. The implementation hierarchy of the

ECC operations over the binary field GF(2m) is presented in Fig. 5.1. From this figure,

elliptic curve cryptographic schemes such as ECDSA and ECDH are the building blocks

of ECSM and elliptic curve group operations (ECPA and ECPD). These are the series

of finite-field arithmetic operations such as field addition, subtraction, multiplication,

squaring, and inversion. Finite-field arithmetic units are most crucial for the overall

performance of an ECC processor.

5.3.1 Finite Field

If the field consists of a finite number of elements, it is called a finite field or Galois field

(GF). It is a set of elements denoted normally as GF(q = pm) where p is a prime number

called the characteristic of F, and m is a positive integer. The field is said to be a prime

field if m = 1 and an extension field [34] if m is greater than 2. A Galois field is said

to be a binary field or characteristic-two finite field if q = 2m. A binary field is quite

simple for hardware implementation using more-efficient modulo-2 arithmetic. This can

5.3. Background 115

ECC Protocols
(ECDH, ECDSA)

ECPD

field
addition

ECSM
(R=kP)

ECPA

field
subtraction

field
multiplication

field
squaring

field
inversion

Figure 5.1: Implementation hierarchy of the ECC operations over GF(2m).

be represented using an optimal normal basis (ONB) and a polynomial basis (PB). A PB

is beneficial for hardware implementation, as a field element can be characterized by m

binary bits. All hardware architecture for finite-field operations is implemented modulo

a degree m irreducible polynomial f(x). Irreducibility means f(x) cannot be factored as

a product of binary polynomials each of degree < m. In Section 5.4, all mathematical

operations, algorithms, and hardware architectures over GF(2m) will be discussed [2,35].

5.3.2 Coordinate Systems for Elliptic Curve Point Representa-

tion

There are various coordinate systems to represent elliptic curve points, either binary field

or prime field, but two well-known coordinate systems are often used for ECC: Affine

coordinate systems and projective coordinate systems. A point on the elliptic curve E

for affine coordinates can be represented by using two elements x, y ∈ F2
m, i.e. P(x, y).

In this coordinate system, the elliptic curve group operations like elliptic curve point

doubling and elliptic curve point addition require a field inversion, a time-consuming

operation. The field inversion over a binary field for each group operation can be reduced

116
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

by using projective coordinate systems. But we have implemented a high-performance

modular inversion that is well suited for an ECC processor. There is plenty on projective

coordinates in the available literature; a detailed coordinate system is discussed in [2].

5.3.3 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is performed in either prime fields GF(p) or binary

fields GF(2m). But EC over GF(2m) will be the emphasis of this work because it is very

efficient for hardware implementation due to the use of modulo-2 arithmetic. An elliptic

curve defined over a finite field provides a group structure that is used to implement the

cryptographic systems. The group operations are elliptic curve point addition (ECPA)

and elliptic curve point doubling (ECPD). There have been different coordinate systems

to represent elliptic curve points. They vary in the number and type of field operations

required to implement PA/PD. In our work, we implement all elliptic curve operations in

an affine coordinate system. A non-supersingular elliptic curve E over GF(2m) in affine

coordinates is the set of solutions to the equation

y2 + xy = x3 + ax2 + b (5.1)

where x, y, a, b ∈ GF (2m), b 6= 0. The coefficients a, b ∈ F2
m specifying an elliptic curve

E(F2
m) are defined by (5.1). The number of points on an elliptic curve E is represented

by #E(F2
m). It is defined over F2

m as nh, where n is the prime order of the curve and h

is an integer called the co-factor.

If P = (x1, y1) ∈ E and Q = (x2, y2) ∈ E (points on the EC), then summing PA and

PD can be respectively derived as

5.3. Background 117

R(x3, y3) = P (x1, y1) +Q(x2, y2) ∈ E,

x3 = λ21 + λ1 + x1 + x2 + a,

y3 = λ1(x1 + x3) + x3 + y1,

where λ1 = (y2 + y1)/(x2 + x1) and P 6= Q;

(5.2)

R(x3, y3) = 2P (x1, y1) ∈ E,

x3 = λ2 + λ+ a,

y3 = x21 + λx3 + x3,

where λ = x1 + y1/x1 and P = Q;

(5.3)

where R = 0 when x1 = x2 and y2 6= y1, or x1 = x2 = 0. Hence, when P 6= Q we have the

PA operation in (5.2) and when P = Q we have the PD operation in (5.3). Using these

operations, ECSM kP will be implemented using an ECC-based algorithm [2,10,11,35].

Table 5.1: comparison of Key length for equivalent security of Symmetric-key and

public-key Cryptography [2,33]

Symmetric key Example algorithm RSA/DH ECC in GF(2m)

80 SKIPJACK 1024 163

112 Triple-DES 2048 233

128 AES Small 3072 283

192 AES Medium 8192 409

256 AES Large 15360 571

In 2000, FIPS-2 was recommended with 10 finite fields: 5 prime fields, and 5 binary

fields. The binary fields are F2
163,F2

233,F2
283,F2

409 and F2
571[22]. Both prime fields GF(p)

and GF(2m) are considered to provide almost the same level of security [1]. Table 5.1

compares symmetric cipher key length, and key lengths for public-key cryptography like

118
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

RSA, Diffie-Hellman (DH), and ECC in a binary field. It demonstrates that smaller field

sizes can be used in ECC than in RSA and DH systems at a given security level. For

instance, 283-bit ECC gives equivalent security to 3072-bit RSA with significantly smaller

keys and area. This makes ECC a promising branch of public-key cryptography [2, 33].

5.4 Implementation of Finite-Field Arithmetic

Finite-field arithmetic units are most important for overall performance of an ECC pro-

cessor. The proposed hardware architecture, which is important for an ECC processor,

was implemented by using NIST-recommended binary fields GF(2233) and GF(2283). All

parameters for NIST-recommended elliptic curves over GF(2233) and GF(2283) are listed

in Table 5.2. A modern Xilinx Kintex-7 (XC7K325T-2FFG900) FPGA with VHDL as

hardware language is used for our hardware implementation. The main components in

this ECC design are: polynomial-basis (PB) modular addition or field addition, field

multiplication, field squaring, field inversion, and group operations.

5.4.1 Polynomial Basis Representation

A polynomial basis is a very popular extension field used to represent field elements. It is

used in our hardware design for the representation of numbers. For the PB representation,

the elements F2
m are binary polynomials of degree at most m− 1, i.e.

F2
m = um−1.x

m−1 + um−2.x
m−2 + · · ·+ u2.x

2 + u1.x+ u0

=
m−1∑
i=0

uix
i : ui ∈ {0, 1}

For instance, x3 + x + 1 is a polynomial-basis representation of the 4-bit number 10112.

For a reduction polynomial or irreducible polynomial, let f(x) be an irreducible binary

polynomial of degree m, and f(x) = xm + G(x) = xm +
∑m−1

i=0 gix
i where gi ∈ {0, 1} for

5.4. Implementation of Finite-Field Arithmetic 119

Table 5.2: NIST-recommended elliptic curves over F2
233 and F2

283 [22]

B-233: m = 233, f(x) = x233 + x74 + 1, a = 1, h = 2

S=0x 74D59FF0 7F6B413D 0EA14B34 4B20A2DB 049B50C3

b=0x 00000066 647EDE6C 332C7F8C 0923BB58 213B333B

20E9CE42 81FE115F 7D8F90AD

n=0x 00000100 00000000 00000000 00000000 0013E974

E72F8A69 22031D26 03CFE0D7

x=0x 000000FA C9DFCBAC 8313BB21 39F1BB75 5FEF65BC

391F8B36 F8F8EB73 71FD558B

y=0x 00000100 6A08A419 03350678 E58528BE BF8A0BEF

F867A7CA 36716F7E 01F81052

B-283: m = 283, f(x) = x283 + x12 + x7 + x5 + 1, a = 1, h = 2

S=0x 77E2B073 70EB0F83 2A6DD5B6 2DFC88CD 06BB84BE

b=0x 027B680A C8B8596D A5A4AF8A 19A0303F CA97FD76

45309FA2 A581485A F6263E31 3B79A2F5

n=0x 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFEF90

399660FC 938A9016 5B042A7C EFADB307

x=0x 05F93925 8DB7DD90 E1934F8C 70B0DFEC 2EED25B8

557EAC9C 80E2E198 F8CDBECD 86B12053

y=0x 03676854 FE24141C B98FE6D4 B20D02B4 516FF702

350EDDB0 826779C8 13F0DF45 BE8112F4

i = 1, . . . ,m− 1 and g0 = 1 [2, 40]. For example,{
f(x) = x4 + x+ 1 = (10011)2

is an irreducible polynomial of the finite field GF(24).

120
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

5.4.2 Addition in GF(2m)

Field addition is the simplest operation in binary field GF(2m). It is simply a bit-wise

exclusive-or (xor (⊕)) in either hardware or software. Addition in F2
m can be achieved

as shown in (5.4) [41]:

Z(x) = U(x) + V (x) =
m−1∑
i=0

uix
i +

m−1∑
i=0

vix
i =

m−1∑
i=0

(ui + vi)x
i =

m−1∑
i=0

zix
i (5.4)

where zi = (ui + vi) mod 2 = ui ⊕ vi. The subtraction operation in GF(2m) is the same

as addition because the additive inverse of an element is its identity : U(x) + U(x) = 0.

For example, if
U = 11002, and V = 01102 over the field GF(24)

then Z = (U + V) = (U⊕ V) = (11002 ⊕ 01102) = 10102.

5.4.3 Multiplication in GF(2m)

Polynomial multiplication or field multiplication in GF(2m) with the interleaved modular

reduction algorithm, which is a well-known algorithm for hardware implementation [41].

It computes the product of two polynomials then applies modular reduction, and its

operation is different from simple integer multiplication. Multiplication in F2
m can be

achieved as shown in (5.5):

Z(x) = U(x).V (x) = U(x).
m−1∑
i=0

vi.x
i =

m−1∑
i=0

(U(x).vi).x
i (5.5)

Multiplication by xi can easily be done with a binary left-shift operation. Polynomial

multiplication in algorithm 5.1, we check whether the result is an element of GF(2m) with

degree < m. A modular reduction step is only necessary if the polynomial multiplication

result Zv has degree m. This condition is checked by the Zv(m) = 1 command. The

result of polynomial multiplication, Z(x) = U(x).V (x) mod f(x), is achieved after m

iterations. Algorithm 5.1 [41], named multiplication (Mult.) in GF (2m) with interleaved

5.4. Implementation of Finite-Field Arithmetic 121

Algorithm 5.1: Multiplication in GF(2m) with interleaved modular reduction

Input: U(x), V (x) ∈ GF(2m), irreducible polynomials of degree m

Output: Z(x) = U(x) . V (x) mod f(x)

Zv = 0 ; Uv = ’0’ & U(x) ;

for i = m - 1 to 0 do

if V (i) = ’1’ then Zv = Zv . x + Uv ; else Zv = Zv . x ; end

if Zv(m) = ’1’ then Zv = Zv + f(x) ; else Zv = Zv ; end

end for

Return (Z(x) = Zv(m-1 downto 0)) (At this instant,

Z(x) is the result of U(x) . V (x) mod f(x))

Table 5.3: Example of Computing Multiplication in GF(24) Based on Algorithm 5.1

(f(x) = x4+x+1 = 10011, U(x) = x3+x2+x+1 = 1111, V (x) = x3+x2+x = 1110)

i Uv Zv Z

01111 00000 0000

3 01111 01111 1111

2 01111 00010 0010

1 01111 01011 1011

0 01111 00101 0101

modular reduction, takes just four steps to perform polynomial multiplication over GF(24).

The detailed operation of a step-by-step solution is shown in Table 5.3. As an example

of polynomial multiplication over GF(24), assume that f(x) = x4 + x + 1 = (10011)2,

122
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

U(x) = x3 + x2 + x+ 1 = (1111)2, and V (x) = x3 + x2 + x = (11102), then

Z(x) = U(x).V (x) = (x3 + x2 + x+ 1).(x3 + x2 + x)

= x6 + 2.x5 + 3.x4 + 3.x3 + 2.x2 + x

= x6 + x4 + x3 + x (applying mod 2 operation)

= (x2 + 1)(x4 + x+ 1) + x2 + 1 = x2 + 1 = (0101)2.

The polynomial multiplication result should be reduced to a degree < 4 by the irreducible

polynomial f(x) = x4 + x+ 1.

5.4.4 Squaring in GF(2m)

PB squaring is simpler than and closely related to multiplication. But squaring in GF(2m)

has less difficulty than polynomial multiplication because U2(x) mod f(x) is a linear

operation. It can be computed as shown in (5.6).

Z(x) = U2(x) = um−1.x
2m−2 + · · ·+ u2.x

4 + u1.x
2 + u0 =

m−1∑
i=0

uix
2i (5.6)

The squaring operation in GF(2m) of Z(x) = U2(x) is achieved by setting a 0 bit

between consecutive bits of the binary representation of U(x) as shown in Fig. 5.2 [2,40,41].

A basic example of polynomial squaring is as follows

Um-1 Um-2 …. U1 U0

0 Um-1 0 Um-2 0 …. 0 U1 0 U0

U(x

U(x)2

Figure 5.2: Squaring a binary polynomial U(x).

f(x) = x4 + x+ 1, U(x) = x3 + x2 + x+ 1, then

Z(x) = U2(x) mod f(x) = (x3 + x2 + x + 1).(x3 + x2 + x)

= (x3 + x2 + x+ 1).(x3 + x2 + x+ 1) = (x3 + x) = (1010)2.

5.4. Implementation of Finite-Field Arithmetic 123

5.4.5 Inversion in GF(2m)

Inversion in GF(2m) is the most expensive operation for implementing ECC over a binary

field. Algorithm 5.2 computes the field inversion of a non-zero field element U(x) ∈ F2
m

using the modified Euclidean algorithm [52]. We used this inversion algorithm for our

hardware implementation because it is easy to implement on a FPGA. The result of field

Algorithm 5.2: Inversion in GF(2m) with Modified Euclidean Algorithm

Input: U(x) ∈ GF(2m), irreducible polynomial of degree m

Output: Z(x) = 1/U(x) mod f(x)

Pv = ’0’ & U(x) ; Qv = f(x); Zv = 00001; V = 0 ; cnt = 0 ;

for i = 1 to 2m do

if Pv(m) = ’0’ then Pv = x . Pv ; Zv = x . Zv ;

if Zv(m) = ’1’ then Zv = Zv + f(x) ; end

cnt = cnt+ 1 ;

else

if Qv(m) = ’1’ then Qv = Qv + Pv ; V = V + Zv mod f(x) ; end

Qv = x . Qv ;

if cnt = 0 then

Pv = Qv ; Qv = Pv ; (Pv ↔ Qv)

Zv = V ; V = Zv ; (Zv ↔ V , exchange operations)

Zv = x . Zv mod f(x); cnt = cnt+ 1 ;

else

Zv = Zv/x mod f(x) ; cnt = cnt− 1 ;

end

end

end for

Return (Z(x) = Zv(m-1 downto 0)) (Z(x) is the result of 1/U(x) mod f(x))

124
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

Table 5.4: Example of Computing Inversion in GF(24) Based on Algorithm 5.2 (f(x) =

x4 + x+ 1 = 10011, U(x) = x3 + x2 + x+ 1 = 1111)

i cnt Pv Qv V Zv Z

0 01111 10011 00000 00001 0001

1 1 11110 10011 00000 00010 0010

2 0 11110 11010 00010 00001 0001

3 1 01000 11110 00001 00110 0110

4 2 10000 11110 00001 01100 1100

5 1 10000 11100 01101 00110 0110

6 0 10000 11000 01101 00011 0011

7 1 10000 10000 00011 00011 0011

8 0 10000 00000 00000 01000 1000

inversion Z(x) = 1/U(x) mod f(x) or multiplicative inversion of U(x) is achieved after

2m iterations (i = 1 to 2m) and the value of cnt is always equal to zero at the end of the

last iteration [52]. The detailed computation steps are shown in Table 5.4. For example,

assume

f(x) = x4 + x+ 1 = (10011)2,

U(x) = x3 + x2 + x+ 1 = (1111)2, for inversion over GF(24), then

Z(x) = Z(x) = 1/U(x) mod f(x)

= 1/(1111)2 = 1/g12 = g−12 = g(15−12) = g3 = x3 = (1000)2.

5.4. Implementation of Finite-Field Arithmetic 125

To check that this is the multiplicative inverse of U(x) their multiplicative identity should

be one, e.g.
Z(x) = 1/U(x) mod f(x)

= 1/(1111)2 = 1/g12 = g−12 = g(15−12)

= (x3 + x2 + x+ 1)x3 = x6 + x5 + x4 + x3 = (x4 + x+ 1)(x2 + x+ 1) + 1 = 1.

5.4.6 Elliptic Curve Group Operations (ECPD and ECPA)

The elliptic curve group operations in GF(2m) are the PD and PA operations. These are

the building blocks of finite-field arithmetic operations such as field addition, multiplica-

tion, squaring and inversion. Fig. 5.3 shows the data-flow architecture of the ECPD and

ECPA operations, corresponding to (5.2) and (5.3) respectively. The ECPD operation

in affine coordinates requires one inversion, five additions, two multiplications, and two

squarings. Similarly, the ECPA operation in affine coordinates requires one inversion,

eight additions, two multiplications, and one squaring.

126
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

Squaring (PB)

Addition (PB)

Multiplication (PB)

Inversion (PB)

+

×

)(b)(a
33

2
13 xxxy

1x 1y

+

×

+

×

+

+

+

+

+

+

1

2
1

axx

x

211
2

1

3

a

2

1x1y

×

+

+

+

×

+

+

a

x

2
3

133113)(yxxxy

a

PB=Polynomial Basis

2x 2y

Figure 5.3: Proposed hardware architecture of the elliptic curve (a) point doubling (PD)

and (b) point addition (PA).

5.5 Elliptic Curve Scalar Multiplication (ECSM)

ECSM is the main operation of an ECC processor; it is computationally the most ex-

pensive operation. The overall performance of an ECC processor rely on ECSM. The

detailed implementation hierarchy of the ECSM over the binary field GF(2m) is presented

in Fig. 5.1. The building block of an elliptic curve cryptosystem contains ECC protocols

like ECDH key exchange, ECDSA at the top level, point multiplication in the second level,

group operations in the third level, and field arithmetic operations in the bottom level.

The ECSM is the building block of ECPD and ECPA. These are the building blocks of

5.5. Elliptic Curve Scalar Multiplication (ECSM) 127

finite-field arithmetic such as field addition, field multiplication, field squaring, and field

inversion or division. The basic operation of ECSM is defined as kP, where k is a positive

integer and P is a point on the elliptic curve E defined over a field F2
m. An ECC processor

architecture over GF(2m) is presented in Fig. 5.4. A control unit is designed for intercon-

necting between point addition and point doubling units. There are different methods to

implement an elliptic curve scalar multiplication: the binary method, the Non-adjacent

form (NAF) method, and the Montgomery method. The easiest way to implement ECC

is the binary method (left to right). Finally, we present the EC point multiplication algo-

rithm using the binary method. It is implemented using the "Double-and-Add" algorithm

concept.

Inversion

Addition

Squaring

Multiplication

Finite‐Field Arithmetic

PA

Inversion

Addition

Squaring

Multiplication

Finite‐Field Arithmetic

PD

Control
Unit

k
xP

yP

xQ

yQ

Figure 5.4: Hardware architecture of elliptic curve scalar multiplier (ECSM).

128
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

Algorithm 5.3: Binary method (Left to right) for point multiplication

Input: k = (km−1,...,k1,k0)2, P (x, y) ∈ E(F2
m)

Output: Q(x, y) = k.P (x, y), where Q(x, y), P (x, y) ∈ E(F2
m)

Q = 0 ;

for i = m - 1 to 0 do

Q = 2Q;

if k(i) = ’1’ then Q = Q+ P ; end

end for

Return (Q(x, y))

5.6 Results and Performance Analysis

This section presents the hardware implementation results of this design. We have imple-

mented and tested our design on a Xilinx Kintex-7 (XC7K325T-2FFG900) FPGA device

using VHDL. All implemented modules are simulated using ModelSim, and synthesized

using Xilinx ISE 14.7 synthesis technologies. All the simulation results are verified using

high-level Maple software.

Table 5.5: Synthesis Results of the finite-field arithmetic for GF(2m) in Kintex-7

Arithmetic Opn GF(2m) Cycles FF LUTs Freq. (MHz) Time (µs)

Mult.
233-bit 233 474 540 353.09 0.659

283-bit 283 575 674 319.52 0.885

Squaring
233-bit 233 474 540 353.09 0.659

283-bit 283 575 674 319.52 0.886

Inversion
233-bit 467 2111 2856 429.87 1.086

283-bit 567 2562 3468 413.92 1.369

5.6. Results and Performance Analysis 129

Table 5.6: Elliptic Curve Group Operation Results for GF(2m) in Kintex-7

Group Opn GF(2m) FF LUTs LUT-FF Pairs Freq. (MHz) Time (µs)

PD
233-bit 4959 6052 4311 305.43 7.65

283-bit 6011 7491 5230 280.19 10.16

PA
233-bit 4484 5689 3957 340.25 7.65

283-bit 5436 6976 4746 279.42 10.15

Table 5.5 presents the synthesis results of the finite-field arithmetic operations such

as multiplication, squaring and inversion over GF(2233) and GF(2283). According to Ta-

ble 5.5, multiplication and squaring take almost identical area (FF and LUTs), the same

number of clock cycles and the same computation time. On the other hand, the clock

cycles, flip-flops (FFs), and LUTs (look-up tables) ratio of inversion to multiplications are

about 2, 4.45, and 5.2 respectively. Only inversion consumes more clock cycles, area, and

timing. The multiplication over GF(2233) and GF(2283) is performed in Xilinx Kintex-7

in 0.659 µs and 0.885 µs but inversion takes 1.086 µs and 1.369 µs respectively. From our

implementation results, we notice that field inversion is the most time-consuming opera-

tion over the binary field because an inversion takes the same number of clock cycles as

two multiplications.

Table 5.7: Elliptic Curve Scalar Multiplication Results for different GFs in Kintex-7

(XC7K325T-2FFG900)

GF(2m) FF (%) LUTs (%) LUT-FF Pairs (%) Slices (%) Freq. Time

233-bit 9407 (2%) 9151 (4%) 7022 (71%) 3016 (6%) 255.66 2.66

283-bit 11419 (2%) 14440 (7%) 10028 (62%) 4625 (9%) 251.98 5.54

The hardware implementation results of elliptic curve group operations are presented

130
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

Table 5.8: Comparison between our ECC design and related work over GF(2m)

Circuits Bit Length Technology Freq. (MHz) Cycles Time (ms)

This work
233 Kintex-7 255.66 679776 2.66

283 Kintex-7 251.98 1395312 5.54

Ghanmy [128] 163 Virtex-II 24 54138 2.26

Hasan [127]
163 Spartan-3 76 205200 2.7

283 Spartan-3 76 630800 8.3

Machhout [118] 163 Virtex-II 167.84 347425 2.07

Wang [134] 233 Spartan-3 80 183000 2.29

Smyth [130] 163 0.13µmASIC 166 526280 3.17

Zeng [135] 233 0.35µmASIC 100 466000 4.66

Nguyen [136] 233 Virtex-II 100 335000 3.35

in Table 5.6. The major building block of the elliptic curve group operations (ECPD and

ECPA) depends on finite-field arithmetic units. These operations were defined over the

binary finite field GF(2m). The ECPA operation occupies almost the same area as the

ECPD operation, but the number of clock cycles and the computation time are slightly

different for both operations. Jacobian coordinate systems can be considered for further

improvement because then we can avoid costly field inversions. But one field inversion is

still required for converting Jacobian coordinates to an affine coordinate system.

The ECSM results for NIST-recommended fields GF(2233) and GF(2283) are shown in

Table 5.7. We achieve a scalar multiplication in 2.66 ms and 5.528 ms respectively in a

Xilinx Kintex-7 FPGA over the mentioned fields.

The hardware implementation results and performance comparisons with related cryp-

tographic processors are listed in Table 5.8, which tries to give all the frequencies and

number of clock cycles of the designs to make a fair comparison on the performance be-

5.7. Conclusion 131

tween them. It is to be noted that the results provided in the available literature are

implemented on different FPGA and ASIC technologies from our implemented design.

In this case, a straightforward comparison is difficult. Ghanmy et al. [128] presented

an ECC processor over GF(2163) for WSN, and cryptographic processors require 2.255

ms on a Xilinx Virtex-II FPGA to achieve a ECSM. Hasan and Benaissa [127] imple-

mented an ECC processor over GF(2163) and GF(2283) on a Xilinx Spartan-3 FPGA, but

their cryptographic processor requires more computation time than our ECC processor.

Machhout [118], and Smyth [130] et al. present an ECC processor over the binary field

GF(2163), and the computation time of their 163-bit ECC processor is similar to that of

our 233-bit ECC processor. Wang [134], Zeng [135], and Nguyen [136] et al. employed a

reconfigurable ECC Co-processor for GF(2233), where they used different hardware plat-

forms for their implementation. We achieve a scalar multiplication over GF(2233) in 2.66

ms which is faster than the results provided in Zeng et al. [135] and Nguyen et al. [136]

but very similar to the results presented in Wang et al. [134]. For GF(2283), our imple-

mentation is almost 1.5 times the speed of that of Hasan [127] but our presented result

is not in the same platform. Our cryptographic processor does not support ECC over

GF(p) because the arithmetic operations are completely different. From the comparison

and performance analysis in Table 5.8, our ECC processor over GF(2m) provides better

performance than others.

5.7 Conclusion

In brief, a fast, high-performance ECC processor over F2m on a Xilinx Kintex-7 FPGA is

proposed. An efficient polynomial-basis multiplication, squaring, and inversion algorithm

was developed for performing elliptic curve group operations efficiently. In F2233 , we can

achieve a scalar multiplication in 2.66 ms at 255.66 MHz in Kintex-7 devices, which

132
Chapter 5. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic

Processor over NIST Binary Fields

is the fastest hardware implementation result. Additionally, this paper has provided

implementation results of scalar multiplication for F2283 in 5.54 ms, showing the good

performance of this hardware. This design on a Xilinx Kintex-7 FPGA can achieve a

maximum clock frequency of 251.98 MHz for the field F2283 . The design was extensively

simulated using ModelSim PE and all the results verified using high-level Maple software.

From the overall performance analysis and comparisons of different implementations over

the binary field F2m , our implemented design is faster than recent implementations.

Chapter 6

Parallel Point-Multiplication

Architecture using Combined Group

Operations for High-Speed

Cryptographic Applications1

6.1 Abstract

In this paper, we propose a novel parallel architecture for fast hardware im-

plementation of elliptic curve point multiplication (ECPM), which is the key

operation of an elliptic curve cryptography processor. The point multiplica-

tion over binary fields is synthesized on both FPGA and ASIC technology by

designing fast elliptic curve group operations in Jacobian projective coordi-
1In review as: Md Selim Hossain, Ehsan Saeedi and Yinan Kong,“Parallel Point-Multiplication Ar-

chitecture using Combined Group Operations for High-Speed Cryptographic Applications,” PLOS ONE,

vol. 12, pp. 1-18, May, 2017, DOI: 10.1371/journal.pone.0176214.

133

134
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

nates. A novel combined point doubling and point addition (PDPA) archi-

tecture is proposed for group operations to achieve high speed and low hard-

ware requirements for ECPM. It has been implemented over the binary field

which is recommended by the National Institute of Standards and Technol-

ogy (NIST). The proposed ECPM supports two Koblitz and random curves

for the key sizes 233 and 163 bits. For group operations, a finite-field arith-

metic operation, e.g. multiplication, is designed on a polynomial basis. The

delay of a 233-bit point multiplication is only 3.05 and 3.56 µs, in a Xilinx

Virtex-7 FPGA, for Koblitz and random curves, respectively, and 0.81 µs in

an ASIC 65-nm technology, which are the fastest hardware implementation

results reported in the literature to date. In addition, a 163-bit point multi-

plication is also implemented in FPGA and ASIC for fair comparison which

takes around 0.33 and 0.46 µs, respectively. The area-time product of the

proposed point multiplication is very low compared to similar designs. The

performance (1
Area×T ime = 1

AT
) and Area×Time×Energy (ATE) product of

the proposed design are far better than the most significant studies found in

the literature.

6.2 Introduction

With the swift growth of secure transactions over the network, the demand for cryptog-

raphy to ensure security has increased rapidly in recent times. Public-key cryptography

(PKC) and secret-key cryptography are the two main types of cryptography used for

different data-security purposes. Various PKC techniques exist in the literature; among

them elliptic curve cryptography (ECC) [10, 11] and the Rivest-Shamir-Adleman (RSA)

cryptosystem [8,137] are the most popular. However, ECC became popular for resource-

6.2. Introduction 135

constrained environments because it offers the same level of security as the traditional

RSA cryptosystem with a significantly shorter key. For example, a 233-bit ECC over a

binary field provides equivalent security to 2048-bit RSA [2,22,23]. The National Institute

of Standards and Technology (NIST) [22] and IEEE [23], have standardized elliptic curve

parameters for prime fields as well as binary fields. The proposed point multiplication

hardware is implemented using the NIST standard on an FPGA, which provides higher

flexibility of hardware design than an application-specific integrated circuit (ASIC), and

means that the cryptographic algorithm can easily be updated if using FPGAs as hard-

ware devices. Also, FPGAs are cheaper for prototype design or in small volumes since

they do not incur any fabrication cost. However, bulk production (e.g. in high volumes)

of ASICs, after the first run, is much cheaper than the corresponding production based on

FPGA devices. Besides, ASIC-based implementation is needed for faster and low-power

customized applications.

Elliptic curve point multiplication (ECPM), also called point multiplication, is defined

as Q = k.P , where the multiplication of an elliptic curve point P by a scalar k provides

the resultant point Q [2]. Numerous FPGA implementations of point multiplication over

a binary field GF(2m) have been proposed in the literature, e.g.[35, 45, 53, 110, 111, 115,

125,138–148]. In the literature, most of the implementations of ECPM over GF(2163) are

not secure based on today’s security level requirements. For this reason, a 233-bit point

multiplication is implemented both in FPGA and ASIC. In addition, a 163-bit ECPM

is implemented for a fair comparison purpose. In [110, 111, 138], a scalable elliptic curve

cryptosystem processor in GF(2m) is proposed which reduces the latency of ECPM by

improving finite-field arithmetic blocks. A Xilinx Virtex-5 FPGA is used in [138] and

a Xilinx Virtex-4 FPGA is used in [110, 111] as a hardware platform. However, they

have not focused on optimization of elliptic curve group operations in their design. An

FPGA implementation of ECPM based on the Montgomery ladder method over binary

136
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

fields is proposed in [139] and [146]. They designed the point multiplication using elliptic

curve point addition (PA) and point doubling (PD). An efficient FPGA implementation

of ECPM over binary finite fields is proposed in [35, 45, 140, 142, 143]. Among them [35]

produces better results using digit-serial binary field operations. In [140], a point mul-

tiplication was designed in GF(2163) for Koblitz curves only. In [141, 144] and [147], a

parallel architecture for scalar point multiplication was implemented on a Xilinx Virtex-4

FPGA using the Lopez-Dahab method and separate PA and PD. A practical hardware im-

plementation of point multiplication over GF(2163) is proposed using polynomial residue

arithmetic in [145]. Several ASIC-Based ECC processors have been proposed over the

binary fields in the literature [35, 73, 131, 144, 149–153]. ECC can be used for modern

practical applications like mobile services [154], authentication for identity protection for

smart grid, wireless sensor and mesh networks [155–157], biometric-based authentica-

tion [158], identity-based cryptography [159], and session initiation protocol [160].

Various techniques are introduced, using either FPGA or ASIC implementation, to

improve the performance of point multiplication, such as algorithm optimization and im-

proved finite-field arithmetic architectures. Besides, most point multiplication architec-

tures were implemented using separate group operations, which may increase the latency

of group operations, hence reduce the speed of point multiplication. Although a few high-

speed point-multiplication techniques for an ECC processor have been presented in the

literature, most are only area-efficient. Our proposed architecture has a trade-off between

speed and area which is suitable for modern faster cryptographic applications.

Contributions: This paper proposes a parallel hardware architecture for point multipli-

cation using combined point doubling and point addition (PDPA) in Jacobian projective

coordinates. The proposed point multiplication is synthesized both in FPGA and ASIC.

A novel optimized data-flow architecture of the PDPA is introduced to develop high-

performance point multiplication. The designed PDPA module is highly parallel, which

6.3. ECC Background 137

means that it takes only one clock cycle to complete. In addition, a parallel hardware

architecture using separate group operations (PD and PA) for the ECPM is designed

and implemented, and compared with the performance of point multiplication using our

combined PDPA. The point multiplication using the combined PDPA provides almost 13

times better performance than using separate group operations. To implement efficient

group operations, hence point multiplication, a parallel architecture for field multiplica-

tion on a polynomial basis is introduced. The proposed point multiplication requires less

time and a smaller area-time (AT) and area-time-energy (ATE) product, providing almost

50% better performance or efficiency than recent implementations.

This paper is organized as follows. Section 6.3 gives an introduction and the mathe-

matical background of ECC over the binary field F2
m. The proposed point multiplication

architecture is described in Section 6.4. Section 6.5 describes elliptic curve group oper-

ations, namely PD, PA, and PDPA. Finite-field arithmetic, e.g. field multiplication, for

F2
m is given in Section 6.6. Section 6.7 discusses the FPGA and ASIC implementation

results and compares our work to the state of the art. Section 6.8 summarizes our work.

6.3 ECC Background

ECC is a popular and powerful public-key encryption technique for cryptographic appli-

cations, and nowadays it is very popular due to the smaller field size, in either prime

fields or binary fields. An elliptic curve over a binary field will be the emphasis of this

work because it is very efficient for hardware implementation due to the use of modulo-2

arithmetic. An elliptic curve defined over a finite field provides a group structure that

is used to implement the cryptographic system. The group operations are PD and PA.

We have combined these two group operations into a compact hardware implementation

and called it PDPA. Two well-known coordinate systems are often used for elliptic curve

138
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

group operations: Affine coordinate systems and projective coordinate systems. A point

on the elliptic curve E for affine coordinates can be represented by using two elements x, y

∈ F2
m, i.e. P(x, y), whereas in projective coordinates, a point P on the EC needs three

elements X, Y, Z ∈ F2
m, i.e. P(X, Y, Z). In this work, we have implemented all elliptic

curve operations in a Jacobian projective coordinate system, avoiding costly modular in-

version.

An elliptic curve E over the binary field GF(2m) (or F2
m) in affine coordinates is the

set of solutions to the equation

y2 + xy = x3 + ax2 + b (6.1)

where x, y, a, b ∈ GF (2m), b 6= 0. The coefficients a, b ∈ F2
m are defined by the NIST

standard, which is listed in [2,22]. In our design, the value of m is 163 which means that

we have implemented a 163-bit ECC system.

Let P = (x, y) be a point in an affine coordinate system; the Jacobian projective

coordinates P = (X, Y, Z) are given by

X = x; Y = y; Z = 1. (6.2)

The Jacobian projective point P = (X, Y, Z), Z 6= 0 corresponding to the affine point

P = (x, y) is given by

x = X/Z2; y = Y/Z3. (6.3)

Using (6.1) and (6.3), the projective form of the Weierstrass equation of the elliptic curve

becomes

Y 2 +XY Z = X3 + aX2Z2 + bZ6 (6.4)

where the point at infinity is defined as (1, 1, 0). Let P = (X1, Y1, Z1) andQ = (X2, Y2, Z2)

be two points on the elliptic curve, then the PD and PA formulae in Jacobian projective

6.3. ECC Background 139

coordinates are given below, for doubling (6.5) and adding (6.6)

R(X3, Y3, Z3) = 2P (X1, Y1, Z1) ∈ E(F2
m),

Z3 = X1Z
2
1 ,

X3 = (X4
1 + bZ8

1), (6.5)

Y3 = X4
1Z3 + (X2

1 + Y1Z1 + Z3)X3;

R(X3, Y3, Z3) = P (X1, Y1, Z1) +Q(X2, Y2, Z2) ∈ E(F2
m),

Z3 = Z1Z2W,

X3 = aZ2
3 +R(R + Z3) +W 3, (6.6)

Y3 = (R + Z3)X3 + Z2
1W

2(RX2 + Y2Z1W),

where W = (X1Z
2
2 +X2Z

2
1) and R = (Y1Z

3
2 + Y2Z

3
1).

Hence when P = Q, then R = 2P is the PD operation corresponding to (6.5) and

when P 6= Q, then R = P + Q is the PA operation corresponding to (6.6) [87]. The

implementation hierarchy of the ECC system over the binary field GF(2m) is presented

in Fig. 6.1. From this figure, elliptic curve cryptographic schemes such as ECDSA and

<<

-

+

-

C1

> >

Reg

C4

A

I1C2

C5

C3

B

2pp

C6

C

and-gate
block

ECC Protocols
(ECDSA,ECDH)

ECPM
(R=kP)

PDPA
(Group operations)

Field
Multiplication

Field
Squaring

Field
Inversion

Field
Addition

Level 4

Level 3

Level 2

Level 1

Figure 6.1: Implementation hierarchy of the ECC operations over F2m .

140
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

ECDH are the building blocks of ECPM and elliptic curve group operations e.g., PDPA.

This is the series of finite-field arithmetic operations such as field addition, multiplication,

squaring, and inversion. The bottom level is finite-field arithmetic units, which are crucial

for the overall performance of an ECC processor. Details of the algorithm, and a hardware

architecture for ECPM, are discussed in Section 6.4.

6.4 Proposed Point Multiplication in Projective Coor-

dinates

Point multiplication is the core operation of an ECC processor. It is computationally the

most expensive operation throughout the entire processor. However, we have designed

a novel parallel architecture for ECPM using our developed PDPA and finite-field arith-

metic units. Details of group operations and finite-field arithmetic algorithms and the

corresponding architectures which are essential for ECC are discussed in Section 6.5 and

Section 6.6, respectively.

6.4.1 Point Multiplication Algorithm

The three most-used algorithms for implementing point multiplication are (1) double-and-

add, (2) non-adjacent form (NAF) addition-subtraction chain, and (3) Montgomery ladder

product. The easiest to implement is the double-and-add method, shown in Algorithm

6.1. In this approach, the scalar k (which is the private/secret key) is represented in

binary, and iterates through each bit. Generally, a PD operation performs on every

iteration, and a PA operation only performs when the particular bit of k is one. However,

we have implemented a combined PDPA operation which produces PD and PA results

simultaneously on each cycle. Then m iterations are required to compute the final result

of ECPM, but each iteration needs only one clock cycle (CC) (CC for PDPA).

6.4. Proposed Point Multiplication in Projective Coordinates 141

Algorithm 6.1: Double-and-add (Left to right) method for ECPM

Input: k = (km−1,...,k1,k0)2, P (X,Y, Z) ∈ E(F2
m)

Output: Q(X,Y, Z) = k.P (X,Y, Z), where Q(X,Y, Z) ∈ E(F2
m)

1. Q = 0 ;

2. for i = m - 1 to 0 do Q = 2Q;

2.1 if k(i) = ’1’ then Q = Q+ P ; end

2.2 end for

3. Return (Q(X,Y, Z))

6.4.2 Architecture for ECPM

A novel point multiplication architecture is proposed in Jacobian projective coordinates

using our designed PDPA architecture, which is highly parallel. Note that most ECC

implementations in the literature have used separate PD and PA modules, and require

more computation time. The proposed ECPM architecture using PDPA is shown in

Fig. 6.2. Our proposed ECPM consists of PDPA, counter, select logic, multiplexer, and

register modules. In Fig. 6.2, the PDPA architecture generates the PD and PA results

at the same time because it performs the group operations in parallel. For example,

when 1P (X1, Y 1, Z1) is an input, this architecture generates the 2P (2PX, 2PY, 2PZ)

and 3P (3PX, 3PY, 3PZ) results concurrently. In this architecture, the outputs of PDPA

are X3_PD, Y3_PD, Z3_PD, which stand for the outputs of PD, and X3_PA, Y3_PA,

and Z3_PA, which stand for the outputs of PA. In this approach, the PDPA module is

the main component to make a faster point multiplication. As can be seen from Fig. 6.2, a

two-bit ‘sel2s’ signal is generated from the select logic unit which is based on PD outputs.

When PD results are zero, ‘sel2s = 01’, when PD results are equal to 1P (X1, Y 1, Z1),

then ‘sel2s = 10’, otherwise ‘sel2s = 00’ is produced from the select logic unit. Thus,

‘sel2s’ is a control signal for the MUX1 module that decides which output passes to the

142
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

Select
logic

CounterPDPA
(Jacobian Coordinates)

Reg (1)

X
3_

P
D

X
3_

P
A

Y
3_

P
D

Z3
_P

D

Y3
_P

A

Z
3_

P
A

sX
3_

P
A

X
3_

P
D

s

Y
3_

P
D

s

Z
3_

P
D

s

sZ
3_

P
A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}1P }2P

Count

X
3_

P
A

s

Y3
_P

A
s

Z3
_P

A
s

Reg (2)

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k

Q
X

s

se
l2

s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

Startkey

Count_PDPA

Start_PDPA

MUX1

MUX2

1P(PX, PY, PZ)

(Pre-computed)
2P(2PX, 2PY, 2PZ)

Select
logic

CounterPDPA
(Jacobian Coordinates)

X
3_

P
D

X
3_

P
A

Y3
_P

D

Z
3_

P
D

Y
3_

P
A

Z
3_

P
A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}1P }2P

Count

Reg

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k

Q
X

s
se

l2
s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

Startkey

Count_PDPA

Start_PDPA

MUX1

MUX2

1P(PX, PY, PZ)

(Pre-computed)
2P(2PX, 2PY, 2PZ)

00 01 10

Figure 6.2: Hardware architecture of proposed ECPM in Jacobian coordinates.

MUX2 module. As one can see from MUX1 in Fig. 6.2, are of the 1P (X1, Y 1, Z1),

2P (2PX, 2PY, 2PZ), and PA results, based on the ‘sel2s’ signal, goes to the MUX2

module, which means that when ‘sel2s = 00’, then PA results, when ‘sel2s = 01’, then

1P (X1, Y 1, Z1), and when ‘sel2s = 10’, then 2P (2PX, 2PY, 2PZ) results are selected.

The PA result from the PDPA module goes to the output when the particular bit of ‘key’

is one. Similarly, the PD result goes to the output when ‘key’ is zero. Hence, the PD

and PA results are stored in the register bank to get the output. A counter module is

used to decide when the results will be passed to the next input of the PDPA module.

Note that, the combined PDPA module needs only one clock cycle to compute the PD

and PA results concurrently, although it looks to need many logic stages. In this method,

only 233 and 163 CCs are needed to compute a 233-bit and 163-bit point multiplication,

respectively in projective coordinates due to the highly parallel PDPA architecture, which

will be discussed in the next section.

6.5. Proposed Group Operations 143

6.4.3 Security Analysis

A combined PDPA architecture is designed and implemented which performs the PD

and PA operations concurrently, as demonstrated in Fig 6.3C. For this reason, the power

consumption pattern for the PDPA hardware will be symmetric in nature. As shown in

Fig 6.2, an ECPM hardware is developed using this combined PDPA architecture. A

uniform power consumption profile may be measured throughout the point multiplication

computation. From the analysis, we can say that any ‘key’ information is difficult to

observe from this hardware. Besides, the double-and-add algorithm is secure against

timing and simple power analysis (SPA) attacks [90].

6.5 Proposed Group Operations

A separate PD and PA architecture as well as a combined PDPA architecture have been

designed in Jacobian projective coordinates for point multiplication. To decrease the

latency of the group operations in Fig. 6.3, different techniques have been used such as

balancing the architecture, parallelization in operations, and pre-computations. In this

work, we have utilized Koblitz curve K-163 for implementing group operations. Also,

our proposed group operations are supports for a random curve. For doing this, the

coefficients a, b ∈ F2
m defined by NIST [22] have been changed. Fig. 6.3 depicts the

proposed architecture of group operations in projective coordinates, corresponding to (6.5)

and (6.6). From Fig. 6.3(a), the cost of PD is 4A + 5M + 5S, where A, M, and S are

the costs of field addition, multiplication, and squaring, respectively. Field addition is the

simplest operation in the binary field GF(2m), being simply a bit-wise exclusive-or (xor

(⊕)). Field multiplication is one of the most complex operations in GF(2m). However, we

have proposed an efficient architecture for field multiplication. A field squarer is similar to

a field multiplier. As can be seen from Fig. 6.3(a), only 7 levels are required to implement

144
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

the PD operation, and it is fully parallel. The hardware architecture for PA corresponding

to (6.6) is shown in Fig. 6.3(b). This architecture is also fully parallel, and the cost of

this architecture is 7A + 15M + 5S. Fig. 6.3(b) demonstrates that 11 levels are required

for computing PA. Fig. 6.3(c) illustrates the combined architecture for a group operation

in Jacobian projective coordinates named PDPA. There are 18 levels (7 for PD and 11

for PA) required for group operations using separate architectures, whereas the combined

architecture needs only 14 levels. Using this parallel combined architecture, the number

of levels in the data path is reduced, which means that the number of logic stages can be

minimized, and the overall performance is improved.

X1Y1Z1 b

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

X1_PA

Y1_PA

Level 8

Level 9

a

Level 10

Level 11

Level 12

Level 13

Level 14

Y3_PA X3_PA Z3_PAZ3_PDX3_PD Y3_PD

X1Y1 Z1

X3_PA Y3_PA Z3_PA

a

Z2 Y2 X2

Level 1

Level 11

Level 2

Level 10

Level 9

Level 8

Level 7

Level 6

Level 5

Level 4

Level 3

X1Y1Z1 b

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

X3_PDY3_PDZ3_PD

(a)

(b)

(c)

Field Squaring

Field Multiplication

Field Addition

Figure 6.3: Proposed data-flow architecture for parallel computation of elliptic curve:

(a) PD, (b) PA, and (c) PDPA.

6.6. Proposed Field Multiplication for F2
m 145

6.6 Proposed Field Multiplication for F2
m

This section presents a field multiplication algorithm and a corresponding hardware archi-

tecture using a polynomial basis. It is the most crucial operation in implementing point

multiplication, because the overall latency of ECPM in projective coordinates mostly de-

pends on the field multiplication. The irreducible polynomials f(x) = x163+x7+x6+x3+1

and f(x) = x233 +x74 + 1 have been used for the field GF(2m) (163-bit and 233-bit ECC).

Field multiplication computes the product of two polynomials then applies modular re-

duction, as shown in (6.7):

Z(x) = U(x).V (x) mod f(x) (6.7)

Algorithm 6.2 presents field multiplication over binary field F2
m. The proposed paral-

Algorithm 6.2: Field multiplication in GF(2m)

Input: U(x), V (x) ∈ GF(2m), an irreducible polynomial f(x) of degree m

Output: Z(x) = U(x) . V (x) mod f(x)

1. Zv = 0 ; P = f(x) ;

2. for j = m - 1 to 0 do

2.1 Uv = ’0’ & U(x); Zv = Zv.x (left-shift operation) ;

2.2 for i = 0 to m - 1 do Uv(i) = Uv(i) and V (j); end for

2.3 Zv = Zv xor Uv;

2.4 for l = 0 to m do Pv(l) = P (l) and Zv(m); end for

2.5 Zv = Zv xor Pv;

3. end for

4. Return Z(x)

lel architecture corresponding to Algorithm 6.2 is shown in Fig. 6.4. As can be seen from

Fig. 6.4(a), two field additions are performed at the same time. However, this method

146
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

+

<<

+

Zv

U V

Z

Zv(m)

Zv

(b)

and-gate block Pv

Uv

P
...

and-gate
block

... V(i)

<< Left shift + Adder

Figure 6.4: Proposed parallel field multiplication architecture in GF(2m).

requires one multiplexer module, is a more expensive operation than the and-gate block

(Pv). On the other hand, Fig. 6.4(b) (Algorithm 6.2) needs only two field additions, one

left-shift operation, and two and-gate blocks. Multiplication by x can easily be computed

by the binary left-shift operation. The and-gate operation is also straightforward as well

as time efficient both on FPGA and ASIC. From Algorithm 6.2, we check whether the

result is an element of GF(2m) with degree < m. Only when the multiplication result Zv

has degree m or higher is a modular reduction step necessary. This condition is checked

by Zv(m). When the particular bit of Zv(m) is zero, then Pv from the and-gate block

generates zero results. Otherwise, Pv generates some result which depends on the mod-

ulus f(x) (P = f(x)). The proposed polynomial-basis multiplication algorithm is better

for ASIC-based implementation due to the efficient and-gate block. This architecture

is performed fully in parallel. A parallel group operation has been designed using this

efficient field multiplication.

6.7. Comparisons and Performance Analysis 147

6.7 Comparisons and Performance Analysis

In this section, a performance comparison of various hardware implementations of point

multiplication is discussed. The proposed point multiplication has been implemented us-

ing synthesizable VHDL code, and synthesized, placed and routed using Xilinx ISE 14.7

with an optimized goal of ‘speed’. It was simulated using both ModelSim PE and ISim.

The target FPGA selected is the Xilinx Virtex-7 (XC7VX485T-2FFG1761). We have also

implemented our design on a Xilinx Virtex-6 FPGA. In addition, we have synthesized our

design using Synopsys Design Compiler with the 65-nm United Microelectronics (UMC)

standard logic-cell library. The synthesis results provide better performance in terms of

speed and energy than other similar designs in the literature.

In the literature, most of the point multiplications were implemented over GF(2163),

but it is of no practical interest to test the algorithm for GF(2163), since this curve is

no longer approved by NIST to generate digital signatures. For a fair comparison, we

have implemented 233-bit as well as 163-bit ECPM for both random and Koblitz curves.

Table 6.1 depicts the performance and a comparison of FPGA implementations of point

multiplication over GF(2233). The AT value and performance of this design is comparable

with other designs in the literature as shown in Fig. 6.5. As can be seen from Table 6.1

and Fig. 6.5, the point multiplication for a 233-bit random curves takes a little bit more

delay and area than with the Koblitz curve. The combined group operation (PDPA) is

used to implement ECPM instead of separate PD and PA operations, because the pro-

posed combined PDPA provides better performance than separate group operations. In

addition, 163-bit point multiplication is also implemented using both combined and sep-

arate group operations for fair comparison.

The proposed point multiplication over GF(2233) is synthesized using a Xilinx Virtex-7

(XC7V980T-2FFG1930) FPGA; results are demonstrated in Table 6.1. As we can see in

Table 6.1, the latency of 233-bit point multiplication is almost 3 µs for a Koblitz curve

148
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

and 3.56 µs for a random curve with the maximum frequency of 76.50 and 65.48 MHz, re-

spectively. Moreover, the proposed design takes very few clock cycles to implement, which

is much better than other comparable work in the literature, but it takes more than 100K

slices without using any DSP slices. From the results, we can say that the design pro-

vides high speed, but it takes a huge area to implement. However, we have a trade-off

between speed and area. Note that the proposed parallel architecture is not suitable for

lower versions of the FPGA due to resource (e.g. slices) limitations. On the other hand,

our proposed point multiplication over GF(2233) provides a higher throughput rate than

other related work. As one can see in Fig. 6.5, the AT and performance of our design is

similar to [138], but better than [110] and [111]. The point multiplication proposed in [35]

and [45] provides a little bit better performance than our proposed design. However, our

proposed design is almost six times as fast as [35] and almost four times as fast as [45],

making it suitable for cryptographic applications that a require high throughput rate.

[K-233][B-233][8(K)] [8(B)] [10] [11] [12] [16]
1

2
3

5

10

20

40

70
100

200

400

700

1400

3000

A
re

a
 x

 T
im

e
 (

A
T

)

Reference

(a) AT

[K-233][B-233][8(K)] [8(B)] [10] [11] [12] [16]
0

2

4

6

8

10

12

14

15

P
e
rf

o
rm

a
n
c
e
 (

1
/A

T
)

Reference

(b) Performance

Figure 6.5: Comparison ((a) AT and (b) performance) of point multiplication over

GF(2233).

Table 6.2 shows a performance comparison of point multiplication over the last few

6.7. Comparisons and Performance Analysis 149

T
ab

le
6.
1:

P
er
fo
rm

an
ce

an
al
ys
is

of
po
in
t
m
ul
ti
pl
ic
at
io
n
on

F
P
G
A

ov
er

G
F
(2

2
3
3
)

W
or
k

P
la
tf
or
m

F
ie
ld

R
ep

or
te
d

C
yc
le
s

T
im

e
(µ
s/
E
C
P
M
)

A
re
a×

T
im

e
(A

T
)

P
er
fo
rm

an
ce

T
R

2

Le
ng

th
A
re
a
(s
lic

es
)

@
f
(M

H
z)

(K
ilo

-s
lic
es
×
µ
s)

(1
/A

T
)

(M
bp

s)

T
h
is

w
or
k1

V
ir
te
x-
7

K
-2
33

13
4.
68

K
23

3
3.
05

@
76
.5
0

41
0.
78

2.
43

76
.3
9

B
-2
33

14
5.
42

K
23

3
3.
56

@
65

.4
8

51
7.
70

1.
93

65
.4
5

[1
38

]
Lo

i(
20

14
)

V
ir
te
x-
5

K
-2
33

7.
43

K
67

92
41

.9
1@

16
2.
07

31
1.
39

3.
21

5.
56

B
-2
33

7.
98

K
12

95
5

84
.1
9@

15
4.
35

67
1.
83

1.
49

2.
77

[3
5]

Su
tt
er

(2
01

3)
V
ir
te
x-
5

23
3

6.
49

K
38

25
19

.8
9@

19
2.
30

12
9.
10

7.
74

11
.7
1

[1
10

]
Lo

i(
20

13
)

V
ir
te
x-
4

23
3

2.
43

K
93

82
5

60
4@

15
5.
38

14
67

.7
2

0.
68

0.
39

[1
11

]
Lo

i(
20

13
)

V
ir
te
x-
4

23
3

2.
65

K
15
57

85
10

93
@
14

2.
53

28
94

.2
6

0.
35

0.
21

[4
5]

R
eb

ei
ro

(2
01

2)
V
ir
te
x-
5

23
3

5.
64

K
19

19
12

.3
@
15

6.
00

69
.4
2

14
.4
1

18
.9
4

1.
U
si
ng

V
ir
te
x-
7
(X

C
7V

X
98

0T
-2
F
F
G
19

30
)
an

d
2.

T
R

=
T
hr
ou

gh
pu

t
ra
te

150
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

T
ab

le
6.
2:

P
er
fo
rm

an
ce

co
m
pa
ri
so
n
of

po
in
t
m
ul
ti
pl
ic
at
io
n
on

F
P
G
A

ov
er

G
F
(2

1
6
3
)

W
or
k

P
la
tf
or
m

R
ep

or
te
d

C
yc
le
s

T
im

e
(µ
s/
E
C
P
M
)

A
re
a×

T
im

e
(A

T
)

P
er
fo
rm

an
ce

T
R

A
re
a
(s
lic

es
)

@
f
(M

H
z)

(K
sl
ic
es
×
µ
s)

(1
/A

T
)

(M
bp

s)

[a
]

T
h
is

w
or
k1

V
ir
te
x-
7∗

57
.3
9K

16
3

0.
31

@
52

8.
58

17
.7
0

56
.5
0

52
8.
58

[b
]

72
.4
3K

16
3

0.
31

@
52

8.
58

22
.4
5

44
.5
4

52
8.
58

[c
]

V
ir
te
x-
6∗

71
.9
6K

16
3

0.
33

@
50

0.
16

23
.4
5

42
.6
4

50
0.
16

[d
]

73
.4
7K

16
3

0.
33

@
50

0.
16

24
.2
5

41
.2
4

50
0.
16

[e
]
T
h
is

w
or
k2

V
ir
te
x-
7∗

64
.8
0K

16
3

3.
51

@
46

.4
1

22
7.
59

4.
39

46
.4
1

[f
]

V
ir
te
x-
6∗

77
.5
4K

16
3

3.
82

@
42

.7
1

29
6.
19

3.
40

42
.7
1

[1
38

]
Lo

i(
20

14
)

V
ir
te
x-
5

7.
43

K
8
a

47
45

29
.2
8@

16
2.
07

21
7.
46

4.
60

5.
57

7.
98

K
8
b

91
30

59
.1
5@

15
4.
35

47
1.
90

2.
12

2.
76

[1
39

]
Li
u
(2
01

4)
V
ir
te
x-
4

10
.4
2K

10
91

9.
00

@
12

1.
00

93
.7
5

10
.7
0

18
.1
1

[3
5]

Su
tt
er

(2
01

3)
V
ir
te
x-
5

6.
15

K
13

71
5.
50

@
24

9.
27

33
.8
3

29
.5
6

29
.6
4

[1
10

]
Lo

i(
20

13
)

V
ir
te
x-
4

2.
43

K
42

41
9

27
3@

15
5.
38

66
3.
39

1.
51

0.
60

[1
11

]
Lo

i(
20

13
)

V
ir
te
x-
4

2.
65

K
68

84
2

48
3@

14
2.
53

12
79

.9
5

0.
78

0.
34

[a
],
[c
],
[e
]
fo
r
K
ob

li
tz

cu
rv
e
an

d
[b
],
[d
],
[f
]
fo
r
ra
nd

om
cu

rv
e.

*u
si
ng

V
ir
te
x-
7
(X

C
7V

X
48

5T
-2
F
F
G
17

61
)
an

d
V
ir
te
x-
6
(X

C
6V

L
X
76

0-
2ff

17
60

).

1.
E
C
P
M

us
in
g
P
D
P
A
.
2.

E
C
P
M

us
in
g
se
pa

ra
te

P
D

an
d
P
A
.

6.7. Comparisons and Performance Analysis 151

T
ab

le
6.
2:

P
er
fo
rm

an
ce

co
m
pa
ri
so
n
of

po
in
t
m
ul
ti
pl
ic
at
io
n
on

F
P
G
A

ov
er

G
F
(2

1
6
3
)

W
or
k

P
la
tf
or
m

R
ep

or
te
d

C
yc
le
s

T
im

e
(µ
s/
E
C
P
M
)

A
re
a×

T
im

e
(A

T
)

P
er
fo
rm

an
ce

T
R

A
re
a
(s
lic

es
)

@
f
(M

H
z)

(K
sl
ic
es
×
µ
s)

(1
/A

T
)

(M
bp

s)

[1
40

]
R
ez
a
(2
01

3)
St
ra
ti
x
II

23
.0
8K

A
LM

s
17

21
9.
15

@
18

8.
71

-
-

17
.8
1

[1
41

]
M
ah

di
za
de
h
(2
01

3)
V
ir
te
x-
4

17
.9
3K

27
51

9.
60

@
25

0.
00

17
2.
12

5.
81

16
.9
7

[1
42

]
R
ez
a
(2
01

2)
V
ir
te
x-
5

5.
79

K
38

80
14

.5
0@

26
7.
10

83
.9
3

11
.9
2

11
.2
4

[4
5]

R
eb

ei
ro

(2
01

2)
V
ir
te
x-
5

3.
5K

14
36

8.
60

@
16
7.
00

29
.6
4

33
.7
4

18
.9
5

[1
43

]
R
oy

(2
01

2)
V
ir
te
x-
5

12
.4
3K

55
2

12
.1
0@

45
.6
2

15
0.
40

6.
65

13
.4
7

[1
44

]
Zh

an
g
(2
01

0)
V
ir
te
x-
4

20
.8
1K

14
28

7.
70

@
18
5.
00

16
0.
21

6.
24

21
.1
7

[1
45

]
D
im

it
ri
os

(2
00

9)
V
ir
te
x-
2

12
24

5
LU

T
s

91
07

39
.0
0@

23
3.
50

-
-

4.
18

[1
25

]
C
he
lt
on

(2
00

8)
V
ir
te
x-
4

16
.2
1K

30
10

19
.5
5@

15
3.
90

31
6.
89

3.
16

8.
33

[1
46

]
A
ns
ar
i(
20

08
)

V
ir
te
x-
2

3.
42

K
40

75
41

.0
0@

10
0.
00

14
0.
06

7.
14

3.
98

[1
47

]
K
im

(2
00

8)
V
ir
te
x-
4

24
.3
6K

14
46

10
.0
0@

14
3.
00

24
3.
63

4.
11

16
.3
0

[1
15

]
A
nt
ao

(2
00

8)
V
ir
te
x-
4

10
.4
9K

14
25

6
14

4.
00

@
99
.0
0

15
10

.2
7

0.
66

1.
13

[a
],
[c
],
[e
]
fo
r
K
ob

li
tz

cu
rv
e
an

d
[b
],
[d
],
[f
]
fo
r
ra
nd

om
cu

rv
e.

*u
si
ng

V
ir
te
x-
7
(X

C
7V

X
48

5T
-2
F
F
G
17

61
)
an

d
V
ir
te
x-
6
(X

C
6V

L
X
76

0-
2ff

17
60

).

1.
E
C
P
M

us
in
g
P
D
P
A
.
2.

E
C
P
M

us
in
g
se
pa

ra
te

P
D

an
d
P
A
.

152
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

years in FPGA technology as compared with our proposed parallel design over GF(2163).

In the available literature, most point multiplication architectures were implemented us-

ing separate PD and PA (group operations) modules. We have proposed a novel ECPM

hardware in Jacobian coordinates using PDPA (combined group operations). Our design

takes m clock cycles for m-bit point multiplication, which is much less than other designs.

As can be seen from Table 6.2, the point multiplication for a 163-bit random curve takes

the same time as with the Koblitz curve, but it takes a little bit more area than the ran-

dom curve. The proposed ECPM using PDPA architecture takes less time than all other

similar designs on FPGA. We have achieved a point multiplication in 0.31 µs and 0.33 µs

in a Virtex-7 and Virtex-6 FPGA, respectively. In addition, an ECPM is designed and

implemented using separate group operations which take 3.51 µs for a Virtex-7 FPGA

and 3.82 µs for a Virtex-6 FPGA. As can be seen from Table 6.2, ECPM using a combined

PDPA architecture performs 13 times as fast as separate modules in either a Virtex-7 or

a Virtex-6 FPGA device.

In Table 6.2, the results of [35, 45, 138, 140, 142, 143, 145, 146] show FPGA implemen-

tations of point multiplication in GF(2163). They used trivial group operations (PD and

PA) for implementing ECPM. Their proposed designs require fewer slices than our de-

sign, but they need more clock cycles, hence more computation time, to complete. Point

multiplication schemes over the binary field GF(2163) are presented in [110, 111, 115, 125,

139, 141, 144, 147]. Their proposed point multiplication schemes were implemented in a

Virtex-4 FPGA device. Of them, the result provided in [139] shows the best result in

terms of performance as shown in Table 6.2. On the other hand, our proposed point

multiplication using the PDPA architecture delivers 5 times the performance (1/AT) of

those in [139]. Besides, the throughput rate of our design is far better than the others.

The AT and performance or efficiency metric are the best indicators to say which

design is better. The performance or efficiency of point multiplication is defined in (6.8),

6.7. Comparisons and Performance Analysis 153

in ECPM operations per sec per slice. The area-time (AT) comparison of point multi-

plication over GF(2163) with similar designs is shown in Fig. 6.6. As can be seen from

the graph, our design provides a lower AT value than all other designs. Fig. 6.7 com-

pares the performance of point multiplication with similar work in Table 6.2. Note that

[a], [b], [c], [d], [e], and [f] of Figs 6.6 and 6.7 represent our implementation results and

[35,45,110,111,115,125,138,139,141–144,146,147] illustrate reference FPGA implementa-

tions over GF(2163). The AT and performance metric demonstrates that we have achieved

a higher efficiency than most of the similar designs in the available literature. Note that,

of all the available designs, in terms of AT value the designs proposed in [35] and [45]

perform better. However, we have achieved a 50% better performance than their designs.

The point multiplication techniques proposed in the literature need fewer slices but re-

quire more computation time than our design. From the comparison of various ECPMs

over the binary field GF(2163) in Table 6.2, our novel parallel point multiplication using

combined PDPA in Jacobian coordinates is the fastest hardware implementation result

reported in the literature to date.

Performance = Efficiency =
1

Area× Time
=

1

AT
(6.8)

In the state of the art, few implementations are targeted on ASIC, being mostly FPGA

implementations. Both technologies (FPGA and ASIC) have been utilized for this pa-

per. Table 6.3 depicts the ASIC-based performance analysis and comparison of elliptic

curve point multiplication over GF(2233) and GF(2163). The proposed high-speed parallel

point-multiplication architecture is synthesized using 65-nm CMOS technology, a more

advanced version of ASIC technology than 0.13 µm, 0.18 µm, and 0.35 µm CMOS tech-

nology. Besides, we have optimized our design for Koblitz (K-233 and K-163) curves as

well as random (B-233 and B-163) curves to compare with those of other similar stud-

ies. We find that the NIST random curve takes more area than the NIST Koblitz curve

154
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

[a] [b] [c] [d] [e] [f] [8a][8b][9][10][11][12][14][15][16][17][18][20][21][22][23]

5

10

20

40

70

120

200

300

500

800

1200
1600

A
re

a
 x

 T
im

e
 (

A
T

)

Reference

Figure 6.6: AT comparison of point multiplication ([a], [b], [c], [d], [e], and [f] represent

our work) over GF(2163).

[a] [b] [c] [d] [e] [f] [8a][8b][9][10][11][12][14][15][16][17][18][20][21][22][23]
0

5

10

15

20

25

30

35

40

45

50

55

60

P
e
rf

o
rm

a
n

c
e
 (

1
/A

T
)

Reference

Figure 6.7: Performance comparison of point multiplication ([a], [b], [c], [d], [e], and

[f] represent our work) over GF(2163).

6.7. Comparisons and Performance Analysis 155

T
ab

le
6.
3:

P
er
fo
rm

an
ce

an
al
ys
is

of
A
SI
C
-b
as
ed

po
in
t
m
ul
ti
pl
ic
at
io
n
ov
er

bi
na

ry
fie

ld
s

T
ec

hn
ol

og
y

F
ie

ld
A

re
a1

K
C

yc
le

s
T

im
e

(µ
s)

A
T

2
E

ne
rg

y
A
T

E
3

T
R

4

@
f
(M

H
z)

(µ
J)

(M
bp

s)

[g
]

T
h
is

65
-n

m

K
-2

33
7.

56
/3

63
5

0.
23

3
0.

81
@

28
9

6.
12

/2
.9

4
0.

88
0.

00
54

/2
.5

9
28

8

[h
]

B
-2

33
8.

42
/4

04
8

0.
23

3
0.

81
@

28
9

6.
82

/3
.2

8
0.

98
0.

00
67

/3
.2

1
28

8

[i
]

w
or

k
K

-1
63

3.
43

/1
64

9
0.

16
3

0.
46

@
35

3
1.

58
/0

.7
6

0.
22

0.
00

03
5/

0.
17

35
4

[j
]

B
-1

63
3.

47
/1

66
8

0.
16

3
0.

46
@

35
3

1.
60

/0
.7

7
0.

24
0.

00
03

8/
0.

18
35

4

[7
3]

90
-n

m
B

-2
33

2
6
a

1.
12

/3
13

12
4.

3
52

0@
23

8
58

2/
16

2.
8

34
.0

19
.8

/5
53

4
0.

45

B
-1

63
2
6
b

0.
24

/6
5

62
.5

22
0@

27
7

53
/1

4.
3

8.
0

0.
43

/1
17

0.
74

[3
5]

18
0-

nm
B

-1
63

-/
13

8
1.

70
9.

5@
17

9
-/

1.
3

-
-/

-
17

[1
49

]
13

0-
nm

16
3

2.
34

/3
32

18
2.

6
44

0@
41

5
10

30
/1

46
.1

61
.0

63
/8

91
1

0.
37

[1
44

]
18

0-
nm

16
3

-/
21

8
1.

43
5.

4@
26

3
-/

1.
2

-
-/

-
30

[1
50

]
18

0-
nm

B
-1

63
2.

10
/6

9
22

8.
1

18
90

@
18

1
39

69
/1

30
.4

25
7.

0
10

20
/3

35
15

0.
09

[1
51

]
13

0-
nm

16
3

-/
12

.5
27

5.
8

24
40

00
@

0.
00

1
-/

30
50

9.
0

-/
27

45
0

0.
00

07

[1
52

]
13

0-
nm

16
3

-/
39

3
22

.0
70

@
29

2
-/

27
.5

-
-/

-
2.

33

[1
53

]
35

0-
nm

16
3

-/
16

37
6.

8
27

90
0@

14
-/

44
6.

4
-

-/
-

0.
00

6

[1
31

]
35

0-
nm

16
3

-/
46

13
4.

0
30

50
@

44
-/

14
0.

3
-

-/
-

0.
05

1.
A
re
a
=

(m
m

2
/K

il
o-
G
at
es

1
),

2.
A
T

=
A
re
a×

T
im

e
(m

m
2
×
µ
s)
/(
K
G
s×

m
s)
,
3.

A
T
E

=
A
re
a×

T
im

e×
E
ne

rg
y
(m

m
2
×
µ
s×

m
J)
/(
K
G
s×

m
s×
µ
J)
,

an
d
4.

T
hr
ou

gh
pu

t
ra
te
.

156
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

for ASIC-based point multiplication design. The proposed design needs only 0.81 µs for

233-bit ECPM and 0.46 µs for 163-bit ECPM, either Koblitz or random curve, to com-

plete. The point multiplication over GF(2233) takes 7.56 mm2 (for K-233) with 3635K gate

count and 8.42 mm2 (for B-233) area with 4048K gate count in UMC 65-nm technology.

Similarly, the results for 163-bit ECC (both in Koblitz and random curves) are depicted

in Table 6.3, which takes 3.43 mm2 (for K-163) with 1649K gate count and 3.47 mm2

(for B-163) area with 1668K gate count. The implemented design is also energy-efficient.

The energy is computed from the power consumption and point multiplication time. The

energy consumption per point multiplication over GF(2163) and GF(2233) is between 0.22

and 0.98 µJ which is far less than most recent designs. For example, the power consump-

tion of B-163 point multiplication is 487 mW, of which 178 mW is for cell internal power,

307 mW is for net switching power, and the rest is leakage power. Similarly, the power

consumption for 233-bit ECC is simulated from the Synopsys design compiler.

[g] [h] [i] [j] [26a][26b] [10] [27] [18] [28] [29] [30] [31] [32]
0.5

1

2

4

8

15

30

50

100

200

300

500

1000

2000

4000

A
T

 (
A

re
a

×
 T

im
e)

Reference

AT (mm
2
×µs)

AT (KGs × ms)

Figure 6.8: AT comparison of point multiplication ([g], [h], [i], and [j] represent our

work) with references.

6.7. Comparisons and Performance Analysis 157

[g] [h] [i] [j] [26a] [26b] [27] [28] [29]
0.0001

0.001

0.005

0.05

0.2

0.5

2

10

30

100

300

1000

3000

10000

34000

A
T

E
 (

A
re

a
×

 T
im

e
×

 E
n

er
g

y
)

Reference

ATE (mm
2
 × µs × mJ)

ATE (KGs × ms × µJ)

Figure 6.9: ATE comparison of point multiplication ([g], [h], [i], and [j] represent our

work) with related designs.

Table 6.3 shows our synthesis results and the most recent work using ASIC implemen-

tation. As can be seen from Table 6.3, our design is faster as well as more energy-efficient

than all other significant designs found in the available literature. However, our design

is not area-efficient due to the parallel architecture. This is a kind of design trade-off

between area, time, and energy. For a fair comparison, we have calculated area×time

(AT) and area×time×energy (ATE) products. Figs 6.8 and 6.9 show the area-delay and

area-delay-energy products for our proposed design and related circuits presented in Ta-

ble 6.3. It is crystal clear that we present more outstanding results than other designs in

terms of AT and ATE.

158
Chapter 6. Parallel Point-Multiplication Architecture using Combined Group

Operations for High-Speed Cryptographic Applications

6.8 Conclusion

A novel parallel architecture for point multiplication, the core operation of an ECC proces-

sor, has been proposed and implemented over GF(2233) and GF(2163). It is implemented

by the double-and-add method using Jacobian projective coordinates. To provide efficient

point multiplication, a novel combined group operation (PDPA) is designed which per-

forms the PD and PA operations in parallel, aimed at reducing the number of levels and

logic stages needed with separate PD and PA operations. A parallel field multiplication

using a polynomial basis is developed for group operations, hence point multiplication.

Using parallel architecture, the proposed 233-bit ECPM takes only 3.05 µs (for K-233)

and 3.56 µs (for B-233) in a Xilinx Virtex-7 FPGA. In addition, we have achieved a point

multiplication over GF(2163) in 0.31 µs and 0.33 µs in a Virtex-7 and Virtex-6 FPGA,

respectively. Regarding ASIC synthesis results, the proposed design takes a similar delay

to FPGA implementation. The core area of the proposed design is a little bit higher than

similar designs, namely 7.56 mm2 (for K-233) and is 3.43 mm2 (for K-163). The energy

consumption per point multiplication is only 0.88 and 0.22 µJ for K-233 and K-163, re-

spectively.

We can say that the proposed parallel architecture for point multiplication is energy-

efficient. However, in both technologies (FPGA and ASIC), we require more area for

implementation. According to our best knowledge, the proposed parallel point multipli-

cation architecture is the fastest hardware implementation result to date. Based on the

overall performance and comparisons, a 50% improvement is achieved over recent FPGA

implementations and significant improvement is gained over the most recent ASIC-based

designs. We conclude that our proposed design provides better performance which can

be used for modern high-speed cryptographic applications.

Chapter 7

Efficient Hardware Implementation of

Elliptic Curve Cryptography Processor

Over NIST Binary Fields1

7.1 Abstract

This paper presents a high-performance hardware architecture of an elliptic

curve cryptography processor (ECP) over NIST binary fields. A novel ellip-

tic curve point multiplication (ECPM) architecture is proposed for an ECP

using combined point doubling and point addition (PDPA) hardware in Jaco-

bian coordinates. Therefore, we have presented three versions of ECPs, two

for FPGA-based ECPs using bit-serial and digit-serial field multiplication,

and one for ASIC-based implementation. Our proposed ECP support all five

Koblitz and random curves for the key sizes from 163 to 571-bit recommended
1In review as: Md Selim Hossain, Shahzad Asif and Yinan Kong,“Efficient Hardware Implementation of

Elliptic Curve Cryptography Processor Over NIST Binary Fields,”IET Computers & Digital Techniques,

in review.

159

160
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

by NIST. For the ECP, elliptic curve group operations are optimized for both

Koblitz and random curves using a combined architecture. This paper also

proposes bit-serial and digit-serial field multiplication architectures. In addi-

tion, a field inversion is designed to convert from Jacobian to affine coordi-

nates. Using this PDPA and field arithmetic unit, the point multiplication,

hence the ECP, latency is reduced. Finally, the FPGA-based design provides

better efficiency for both bit-serial and digit-serial version ECP than other re-

lated work. Furthermore, we have achieved an energy-efficient ECP in which

the Area×Time×Energy (ATE) value is lower in an ASIC platform than all

comparable work in the literature.

7.2 Introduction

Elliptic curve cryptography (ECC), is currently the popular and leading public-key cryp-

tographic technique in terms of security, speed, area, and power consumption rather than

the commonly used cryptosystem RSA [8]. It was first proposed in the mid-80s by Koblitz

and Miller [1, 10]. ECC utilizes smaller binary field arithmetic that consumes minimum

hardware resources, which is the most favorable for portable devices to save data with

their limited resources. Furthermore, ECC contains a very attractive feature; compu-

tationally much more efficient than other cryptosystems, nearly ten times smaller key

size provides equivalent security to the RSA cryptosystem, making ECC very popular

for resource-constrained applications [35, 73]. Consequently, less memory and hardware

resources are needed to develop an ECC processor (ECP). Therefore, to implement an

efficient ECP, a high-performance finite-field arithmetic (FFA), for instance, finite field

addition, squaring, multiplication, and inversion, are mandatory. Also, efficient FFA op-

erations are enabling potentially higher data rates at a much lower implementation cost.

7.2. Introduction 161

Hence, we have proposed and implemented an efficient FFA which speeds up the overall

performance of the ECP. The NIST [22] and IEEE P1363-2000 [23] standards are utilized

for the ECP implementation.

7.2.1 Related Work

Numerous hardware implementations of ECPs over binary fields GF(2m) have been pre-

sented in the literature. Among them, [118, 126–129, 131, 134, 136, 161–167] proposed

FPGA-based ECPs using bit-serial multiplication, [110, 111, 116, 117, 119–121] presented

FPGA-based implementations of ECPs using digit-serial multiplication. However, only a

few hardware implementation of ECPs over binary fields GF(2m) target an ASIC plat-

form [73,131,149–153,168,169]. In the literature, most of the ECPs were implemented by

either FPGA or ASIC as a hardware platform, and some implementations are targeted to

both technologies [35,131,149]. Despite that, some hardware architectures of ECP in the

literature can support a maximum of four NIST binary fields, whereas our proposed ECP

supports all five NIST binary fields over GF(2m). In addition, the proposed designs were

synthesized for both FPGA and ASIC technologies in which we focus on both bit-serial

and digit-serial field multiplication. Besides, most of the literature focuses on algorithm

and corresponding hardware architecture optimization for FFA units only. Furthermore,

point doubling (PD) and point addition (PA) are the most used ways to compute elliptic

curve group operations in the available literature. In this paper, both FFA and group

operations are optimized to improve the performance of point multiplication, which is the

main operation of an ECP.

7.2.2 Our Contribution

In this paper, a novel ECP architecture over GF(2m) is proposed using a combined PDPA

architecture which improves the performance of point multiplication. The implemented

162
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

ECP hardware supports all NIST binary fields from 163 to 571 bits, which can be used

for higher-security (cryptographic) applications. The proposed ECP is synthesized using

FPGA technology, which allows lower cost and greater system flexibility (like updating

algorithms). Consequently, the FPGA-based ECP provides more than 50% better per-

formance than similar work. We also present FPGA energy consumption using a proper

power analysis technique. In addition, the proposed ECP is synthesized on an ASIC

platform which allows high speed and low energy consumption. We have achieved 3 to

100 times or 2 to 55 times less Area×Time×Energy (ATE) values using ASIC 65-nm

technology than the most significant work in the literature. For high-performance point

multiplication, an efficient combined architecture (PDPA) for group operations is devel-

oped which can compute the PD and PA operations concurrently. We optimize the PDPA

architecture for both Koblitz and random curves using proper data-flow, pre-computation,

and parallelization techniques. The proposed PDPA and ECPM is implemented in Ja-

cobian coordinates where we can avoid the costly field-inversion operation. The latency

of group operations, hence point multiplication, is reduced using the novel PDPA archi-

tecture. A Jacobian-to-affine coordinate conversion unit is developed for the ECP using

a field inversion, four field multiplications, and one field squaring unit. Hence, a high-

performance FFA unit is designed which contains finite field multiplication, squaring, and

inversion. Moreover, we have proposed a polynomial basis multiplication over GF(2m)

using both a bit-serial and digit-serial approach. Finally, the main focus of this paper is

to achieve a high-speed, low-area, and low-power ECP hardware which can be used for

modern high-security applications.

7.2.3 Organisation of the Chapter

Section 7.3 deals with preliminary background of ECC over the binary field F2
m. Section

7.4 describes algorithms and corresponding hardware architectures for finite field arith-

7.3. Mathematical Background of ECC 163

metic and Section 7.5 presents PDPA architecture. The description of the proposed ECP

hardware architecture is delivered in Section 7.6. Implementation results and comparisons

of the most significant work in the literature over binary fields are discussed in Section

7.7. Finally, summaries of the work are given at the end of this chapter.

7.3 Mathematical Background of ECC

An elliptic curve E for the binary field F2
m in affine coordinates is the set of solutions to

the equation

y2 + xy = x3 + ax2 + b (7.1)

where x, y, a, b ∈ GF (2m), b 6= 0. The coefficients a, b ∈ F2
m are defined by the NIST and

IEEE P1363-2000 standards. There are two NIST standards in the binary field: one is

for Koblitz curves and one is for random curves or binary curves are listed in [2, 22].

An elliptic curve for a finite or Galois field provides a group structure that is used

to implement the cryptographic system. The elliptic curve group operations are point

addition (PA) and point doubling (PD). A combined group operation has been developed

for a faster hardware implementation and called PDPA. Various coordinate systems exist

in the literature such as Jacobian, Lopez-Dahab, and Chudnovsky coordinates; a detailed

coordinate system is discussed in [2]. However, affine and Jacobian coordinate systems are

often used for ECC to represent elliptic curve points. In this paper, Jacobian projective

coordinates are utilized for PDPA. Then we convert to affine coordinates for a more

practical realization. In Jacobian coordinates, a point P needs three elements X, Y, Z ∈

F2
m, i.e. P(X, Y, Z) corresponding to the affine point P = (x, y). Then the Jacobian

coordinates P = (X, Y, Z) are given by

X = x; Y = y; Z = 1. (7.2)

164
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

The Jacobian point P = (X, Y, Z), Z 6= 0 corresponding to the affine point P = (x, y) is

given by

x = X/Z2; y = Y/Z3. (7.3)

Using (7.1), (7.2), and (7.3), the projective form of the Weierstrass equation of the elliptic

curve becomes

Y 2 +XY Z = X3 + aX2Z2 + bZ6 (7.4)

where the point at infinity is (1, 1, 0). If P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) are

two points on the elliptic curve, then the PD and PA formulae in Jacobian projective

coordinates are given below, for doubling (7.5) and adding (7.6) [87]:

R(X3, Y3, Z3) = 2P (X1, Y1, Z1) ∈ E(F2
m),

Z3 = X1Z
2
1 ,

X3 = (X4
1 + bZ8

1), (7.5)

Y3 = X4
1Z3 + (X2

1 + Y1Z1 + Z3)X3;

R(X3, Y3, Z3) = P (X1, Y1, Z1) +Q(X2, Y2, Z2) ∈ E(F2
m),

Z3 = Z1Z2W,

X3 = aZ2
3 +R(R + Z3) +W 3, (7.6)

Y3 = (R + Z3)X3 + Z2
1W

2(RX2 + Y2Z1W),

where W = (X1Z
2
2 +X2Z

2
1) and R = Y1Z

3
2 + Y2Z

3
1.

7.4 Hardware for Finite Field Arithmetic

Fig. 7.1 depicts the hardware implementation hierarchy of the ECC operations over the

binary field GF(2m). Each level of this hierarchy depends on the performance of the

7.4. Hardware for Finite Field Arithmetic 165

ECC Protocols
(ECDSA,ECDH)

ECPM
(R=kP)

PDPA
(combined group operations)

Field
Multiplication

Field
Squaring

Field
Addition

Level 4

Level 3

Level 2

Level 1

PDPA in Jacobian
(combined group operations)

Field
Multiplication

Field
Addition

Level 4

Level 5

Level 3

Level 2

Level 1

ECPM in Jacobian (R=kP)

ECPM in Affine (R=kP)

Jacobian-to-Affine Conversion

ECC Protocols (ECDSA,ECDH)

Level 6 Field
Squaring

Field
Inversion

Figure 7.1: Implementation hierarchy of the ECC operations over F2m .

underlying level of operations. As we can see in Fig. 7.1, elliptic curve digital signa-

ture algorithm (ECDSA) and elliptic curve Diffie-Hellman (ECDH), which called ECC

protocols, are the top level of the hierarchy. Consequently, in the second level called

ECPM in affine coordinates, is the main operation of an ECP, which depends upon a

Jacobian-to-affine coordinate conversion in the third level and point multiplication in

Jacobian coordinates in the fourth level, respectively. The conversion from Jacobian to

affine coordinates needs only one inversion operation. The field inversion operation in the

binary field can be avoided for point multiplication in Jacobian coordinates. Therefore,

ECPM in Jacobian coordinates (fourth level in the hierarchy) relies on the combined el-

liptic curve group operations (PDPA) (fifth level in the hierarchy), which depends on the

finite field arithmetic (FFA) units field addition, multiplication, and squaring. Lastly, the

FFA units make up the sixth level in the hierarchy, and these are the most crucial for

high-performance ECP. Note that, field addition is the cheapest operation over a binary

field; it is just a bit-wise exclusive-or (xor) operation. In this section, all algorithms and

corresponding hardware architectures related to FFA units are discussed.

166
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

7.4.1 Finite Field Modular Reduction

FFA for a binary field is performed modulo the corresponding reduction polynomial of

the binary field used. A modular reduction needs to be performed on the result of multi-

plication, squaring, and inversion to ensure that it exists within the binary field chosen.

Hence, it uses the reduction polynomial f(x) of the corresponding binary field so that a

binary polynomial Zv(x) is reduced to Z(x), where Z(x) = Zv(x) mod f(x). Modular

reduction in arbitrary polynomials can be done one bit at a time for bit-serial polyno-

mial multiplication. Therefore, the reduction or irreducible polynomials recommended by

NIST in the FIPS 186-2 standard f(x) = x163 + x7 + x6 + x3 + 1, f(x) = x233 + x74 + 1,

f(x) = x283 +x12 +x7 +x5 + 1, f(x) = x409 +x87 + 1, and f(x) = x571 +x10 +x5 +x2 + 1,

have been utilized for 163, 233, 283, 409 and 571-bit ECC, respectively.

7.4.2 Finite Field Multiplication

Field multiplication in a polynomial basis is the most important and an expensive op-

eration for point multiplication in Jacobian coordinates. The most popular methods to

perform field multiplication in a polynomial basis includes an interleaved modular reduc-

tion algorithm, the Karatsuba-Ofman Algorithm, bit-serial multiplication, higher-radix

multipliers, digit-serial multiplication, and digit-parallel multiplication [2, 43–45]. Field

multiplication computes the product of two polynomials, then applies modular reduction

with f(x). Let U(x) and V (x) be two inputs and Z(x) be their output, then

Z(x) = U(x).V (x) mod f(x), (7.7)

where f(x) is a constant irreducible polynomial of degree m.

Algorithm 7.1 shows the proposed bit-serial finite field multiplication. In this algo-

rithm, the shift-and-add technique is used for faster hardware implementation because a

7.4. Hardware for Finite Field Arithmetic 167

Algorithm 7.1: Bit-Serial Field multiplication in a polynomial basis over GF(2m)

Input: U(x), V (x) ∈ GF(2m), irreducible polynomials of degree m

Output: Z(x) = U(x) . V (x) mod f(x)

1. Zv = 0 ; P = f(x) ;

2. for j = m - 1 to 0 do

2.1 Uv = ’0’ & U(x); Zv = Zv.x (left-shift operation) ;

2.2 for i = 0 to m - 1 do Uv(i) = Uv(i) and V (j); end for

2.3 Zv = Zv
⊕

Uv;

2.4 for l = 0 to m do Pv(l) = P (l) and Zv(m); end for

2.5 Zv = Zv
⊕

Pv;

3. end for

4. Return Z(x)

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

and-gate
block

<< Left shift + Adder

Reg

+

<<

+

Zv

U V

Zv(m)

Zv

and-gate block Pv

Uv

P
...

... V(i)

(b)

Reg

Bit-serial field multiplication

parallel field multiplication

Bit-serial field multiplication

Reg. Vv

m

+

Reg. Zv

m+d-1

m+d-1
Count=m-1

mod f(x)

C
ou

nt
=

1

m
V U

V0...Vq-1 Vq-2 V1

Vi

Z

tempU

<<

shiftModU

mod f(x)

tempU<<d
m+d

m+d

Reg. Uv

m

md
Mult. Logic
(Vi*tempU)

and-gate
block (Uv)

P

+

and-gate
block (Uv)

Zv

U V

+

Zv1 Zv2

MSB

+

<<

and-gate
block (Pv)

+

Zv

U V

Zv(m)

Pv

Zv

and-gate block (Pv)

Zv(m)...
P

Pv

and-gate block (Uv)

+

Left shift

Adder

Z
(a)

Z
(b)

Reg

Reg

<<

<<

...
U

V(i)

Uv

Figure 7.2: Proposed bit-serial field multiplication architecture in GF(2m).

vector shift can be performed in one clock cycle (CC). As Step 2 in Algorithm 7.1, if Vj =

1, then U(x) is added to the register Zv and the product is left-shifted (Zv.x). Therefore,

168
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

a modular reduction is only needed when the result of Zv(m) = 1. This operation can be

easily calculated by the addition of irreducible polynomials, e.g. Zv = Zv
⊕

f(x) = Zv⊕
Pv. Fig. 7.2 depicts the proposed hardware architecture corresponding to Algorithm

7.1, which performs on left-to-right bits in the bit-serial approach. In Fig. 7.2(a), two field

additions are performed in parallel, so that this method requires one multiplexer which is

a more expensive than the and-gate (Pv) operation. On the other hand, Fig. 7.2(b) needs

only two field additions, one left-shift operation, and two and-gate operations. Besides,

the and-gate operation is the most basic and faster operation for hardware implementa-

tion. Fig. 7.2(b) is finally implemented, with only a single bit of the result produced at

every clock cycle. The area cost of bit-serial field multiplication is only O(m) which is

more efficient in terms of area than a parallel multiplier whose area cost is O(m2).

Though field multiplication using a bit-serial approach is area-efficient, it is not time-

efficient. Numerous techniques have been introduced in the literature [2,43–45,110,111,

116,117, 119–121] to achieve faster hardware implementation of field multiplication. The

digit-serial multiplier is one of them, which speeds up the multiplication process signifi-

cantly. The digit-serial multiplier over a binary field is depicted in Algorithm 7.2. Fig. 7.3

represents the proposed digit-serial multiplier over GF(2m) corresponding to Algorithm

7.2. In this method, multiple partial products are generated and added per cycle, thus

greatly reducing the number of clock cycles. We have implemented 16-bit, 32-bit, and

64-bit digit-serial multipliers so that their AT products can be compared with others. The

latency of a digit-serial multiplier is O(m/d), where m is the ECC field bit-length and d

is the digit size. As can be seen from Fig. 7.3, the number of padding bits for register

Vv is determined by first calculating q = m/d. In this architecture, register Uv is used to

store the new multiplier representing U from ‘shiftModU ’ for the next cycle. Similarly,

the product during each multiplication cycle is stored in the register Zv. This approach

is very efficient in hardware cost since it uses left-shift and add (xor) operations. In each

7.4. Hardware for Finite Field Arithmetic 169

cycle, V (i) is multiplied by ‘tempU ’ which contains U.xdi mod f(x) of the current cycle.

The computation of U.xd(i+1) mod f(x) is performed in parallel during the multiplication

of V (i) and ‘tempU ’. ‘tempU ’ is left-shifted by d bits followed by reduction with polyno-

mial f(x). Register Zv contains Vq−1.(A.x
dq−1) mod f(x) at the final iteration, but with

degree greater than m. For this reason, reduction of Zv is also needed to obtain the final

result Z. This method requires fewer clock cycles, which means faster computation. For

example, this method needs only 4 clock cycles using 64-bit digit serial for 233-bit field

multiplication. However, this technique needs more area to implement.

Algorithm 7.2: Digit-Serial field multiplication in GF(2m)

Input: U(x), V (x) ∈ GF(2m), irreducible polynomials of degree m

Output: Z(x) = U(x) . V (x) mod f(x)

1. Zv = 0 ;

2. V = V0 + V1x
d + ...+ Vq−1x

d(q−1), where Vi =
∑d−1

j=0 bidx
j ;

3.1 for i = 0 to q - 1 do

3.2 Zv = Zv
⊕
ViU ; Uv = Uv.x

d mod f(x)

3.3 end for

4. Z = Zv mod f(x)

5. Return Z(x)

Finite field squaring is the field multiplication of two identical binary polynomials. A

squaring operation is often used since it can be more efficient than field multiplication.

This consideration will depend on the performance of field multiplication utilized, since

if multiplication becomes more efficient than squaring, then the squaring method can be

replaced.

170
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

and-gate
block

<< Left shift + Adder

Reg

+

<<

+

Zv

U V

Zv(m)

Zv

and-gate block Pv

Uv

P
...

... V(i)

(b)

Reg

Bit-serial field multiplication

parallel field multiplication

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

+

Zv1 Zv2

MSB

+

<<

and-gate
block (Pv)

+

Zv

U V

Zv(m)

Pv

Zv

and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

Bit-serial field multiplication

Z
(a)

Reg

Z
(b)

Reg

Reg. Vv

m

+

Reg. Zv

m+d-1

m+d-1
Count=m-1

mod f(x)

C
ou

nt
=

1

m
V U

V0...Vq-1 Vq-2 V1

Vi

Z

tempU

<<

shiftModU

mod f(x)

tempU<<d
m+d

m+d

Reg. Uv

m

md
Mult. Logic
(Vi*tempU)

Reg. Vv

m

+

Reg. Zv

m+d-1

m+d-1
Count=m-1

mod f(x)

C
ou

nt
=

1

m
V U

V0...Vq-1 Vq-2 V1

Vi

Z

tempU

<<

shiftModU

mod f(x)

tempU<<d
m+d

m+d

Reg. Uv

m

md

Mult. Logic
(Vi*tempU)

Figure 7.3: Proposed digit-serial field multiplication architecture in GF(2m).

7.4.3 Finite Field Inversion

Inversion over the binary field is complex and the most expensive operation for FFA.

However, it is required only once per point multiplication operation for converting from

Jacobian to affine coordinates. Numerous field inversion algorithms exist in the litera-

ture, including Fermat’s Little theorem, Binary algorithm, the almost inversion algorithm,

Extended Euclidean algorithm (EEA), Itoh-Tsujii inversion algorithm, and Montgomery

inversion algorithm. In this paper, we adopt the modified Euclidean algorithm which is

the most commonly used algorithm for field inversion. Inversion of a non-zero field element

U(x) ∈ F2
m is Z(x) ∈ F2

m, where UZ = 1 mod f(x). Algorithm 7.3 depicts the mod-

ified Euclidean algorithm [2, 52]. Using this algorithm, we achieve a better performance

than other inversion architectures. Therefore, the hardware architecture for inversion over

7.4. Hardware for Finite Field Arithmetic 171

GF(2m) is described in Fig. 7.4. In this method, all internal signals are m + 1 bits long

because of the reduction polynomial is also m + 1 bits long. In this approach, the inver-

sion is accomplished using a series of additions and shift operations. The computation of

division like Zv/x or multiplication by x is performed by a shift operation. The modular

reduction is performed by using the addition operation when the degree of the polynomial

is m or higher than m. Using modified EEA, the field inversion Z(x) = 1/U(x) mod f(x)

is achieved after 2m+ 1 CCs.

and-gate
block (Uv)

P

+

<< and-gate
block (Uv)

Zv
U V

Z

+

Zv1 Zv2

MSB

(a)

+

<<

and-gate
block (Pv)

+

Zv

U V

Z

Zv(m)

Pv

Zv

(b) and-gate block (Pv)

Zv(m)...
P

Pv

...
U

V(i)

Uv
and-gate block (Uv)

<<

+

Left shift

Adder

and-gate
block

P

+

<<
Zv

U V

Z

+

Zv1 Zv2

MSB

(a)

... V(i)

+

<<

+

Zv

U V

Z

Zv(m)

Zv

(b)

and-gate block Pv

Uv

P
...

and-gate
block

... V(i)

<< Left shift + Adder

+ + + + +

1mU 2mU 1U 0U2U1mV 2mV 2V 1V 0V

1mZ 2mZ 2Z 1Z 0Z

...

+

U UV V

Z Z

=

m m

m m

where

+

<<

10 1 0 10

V

0
f(x)

Z

U(x) V(x)

shift

0

left shift
Z=U(x).V(x) mod f(x)

m

mmm+1

Addition

+

01

f(x) U(x)

shift

mm+1

shiftQv

0
1

+

Pv

+V

Zv

1

0
1

0

m

Z(x)=1/U(x) mod f(x)

Figure 7.4: Hardware Architecture for field inversion in F2
m.

172
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

Algorithm 7.3: Modified Euclidean Algorithm for Inversion in GF(2m)

Input: U(x) ∈ GF(2m), irreducible polynomial of degree m

Output: Z(x) = 1/U(x) mod f(x)

1. Pv = ’0’ & U(x) ; Qv = f(x); Zv = 00001; V = 0 ; cnt = 0 ;

2. for i = 1 to 2m do

2.1. if Pv(m) = ’0’ then

2.1.1. Pv = x . Pv ; Zv = x . Zv ;

2.1.2. if Zv(m) = ’1’ then Zv = Zv + f(x) ; end

2.1.3. cnt = cnt+ 1 ;

2.1.4. else

2.1.5. if Qv(m) = ’1’ then

2.1.6. Qv = Qv + Pv ; V = V + Zv mod f(x) ; end

2.1.7. Qv = x . Qv ;

2.1.8. if cnt = 0 then

2.1.9. Pv = Qv ; Qv = Pv ; (Pv ↔ Qv)

2.1.10. Zv = V ; V = Zv ; (Zv ↔ V , exchange operations)

2.1.11. Zv = x . Zv mod f(x); cnt = cnt+ 1 ;

2.1.12. else

2.1.13. Zv = Zv/x mod f(x) ; cnt = cnt− 1 ;

2.1.14. end

2.2. end

3. end for

4. Return Z(x)

7.5 Proposed Group Operations for ECP

This section focuses on the elliptic curve group operations (PD and PA) required to

perform point multiplication. We have proposed a combined PDPA architecture for group

7.5. Proposed Group Operations for ECP 173

operations in Jacobian projective coordinates. In this coordinate system, the costly field

inversion operation can be avoided. Note that field inversion in GF(2m) takes more time

and area than field multiplication. Hence the PDPA module consists of field addition,

multiplication, and squaring operations. Group operations can be implemented with

either NIST Koblitz curves or NIST random curves. Both curves have been implemented

in this paper. The data-flow graph of the proposed PDPA architecture for Koblitz curves is

illustrated in Fig. 7.5. The bit-serial field multiplication is only used for Koblitz curves (K-

163–K-571). Fig. 7.5 (a) is the optimized architecture for the Koblitz curve K-163 because

the coefficients a and b are equal to 1 as defined by the NIST standard. The latency (clock

cycles) of the PDPA for K-163 is 7m+ 16. Similarly, Fig. 7.5 (b) is optimized for Koblitz

curves between K-233 and K-571, because of the coefficients a = 0 and b = 1. Therefore,

the latency for Koblitz curves between K-233 and K-571 is 7m + 15 which includes one

extra clock cycle to store the results into their respective registers. As one can see at

level 1 and 2 of the PDPA architecture in Fig. 7.5, one field multiplication and two field

squaring operations can be performed concurrently. Consequently, the maximum four field

multiplication operations can be performed concurrently at level 10. Fig. 7.6 depicts the

proposed combined PDPA architecture for random curves, where Fig. 7.6(a) is the PDPA

architecture using bit-serial multiplication and Fig. 7.6(b) is the PDPA architecture using

our proposed digit-serial multiplication. Fig. 7.6 demonstrates that 15 levels are required

for computing PD and PA operations using this combined architecture. However, 20

levels (9 for PD and 11 for PA) are generally required for group operations using separate

architectures [53, 148]. The latency of the PDPA architecture using bit-serial and digit-

serial multiplication is 7m+ 17 and 7d+ 8, respectively. Finally, the overall latency of the

group operations is decreased by using this combined architecture. The outputs of PDPA

are X3_PD, Y3_PD, Z3_PD which stand for the outputs of PD and X3_PA, Y3_PA,

and Z3_PA which stand for the outputs of PA. In this architecture, PD and PA can be

174
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

a,b=1 used for kob or random curve 163 bits This is right a=0,b=1 used for kob curve 233-571 bits

Y1_PA

Y3_PA X3_PA Z3_PAZ3_PDX3_PD Y3_PD
(a)

X1Y1Z1

X1_PA

L7: 1

L8: 1

L9: 1

L10: m+1

L11: 1

L12: 1

L13: m+1

L14: 1

 1
7m+16

L1: m+1

L2: m+1

L3: m+1

L4: m+1

L5: 1

L6: m+1

L0: 1 X1Y1Z1

L1: m+1

L2: m+1

L3: m+1

L4: m+1

L5: 1

L6: m+1

X1_PA

Y1_PA

L7: 1

L8: 1

L9: 1

L10: m+1

L11: 1

L12: m+1

L13: 1

X3_PD

 1

7m+15

(b)

L0: 1

Y3_PA X3_PA Z3_PAZ3_PDY3_PD

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Squaring MultiplicationAddition

Figure 7.5: Proposed PDPA architecture for Koblitz Curves (a) K-163 and (b) K-233–

K-571.

computed concurrently. For example, when 1P (X1, Y 1, Z1) is an input, this architecture

generates the 2P (2PX, 2PY, 2PZ) and 3P (3PX, 3PY, 3PZ) values concurrently.

7.6. Proposed ECC Processor 175

X1Y1Z1 b

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

X1_PA

Y1_PA

Level 8

Level 9

a
Level 10

Level 11

Level 12

Level 13

Level 14

Reg

Reg

Level 15

Reg

Reg

Reg

Y3_PA X3_PA Z3_PAZ3_PDX3_PD Y3_PD

 1

m+1

8m+17

m+1

m+1

m+1

m+1

m+1

m+1

m+1

 1

 1

 1

 1

 1

 1

 1

 1

Squaring

Multiplication

Addition

a,b=value used for kob or random any bits a=1,b=value used for random any bits

X1Y1Z1 b

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

X1_PA

Y1_PA

Level 8

Level 9

Level 10

Level 11

Level 12

Level 13

Level 14

Reg

Reg

Level 15

Reg

Reg

Reg

Y3_PA X3_PA Z3_PAZ3_PDX3_PD Y3_PD

 1

m+1

7m+17

m+1

m+1

m+1

m+1

m+1

1

m+1

 1

 1

 1

 1

 1

 1

 1

 1

Squaring

Multiplication

Addition

Reg

a=1,b=value used for random any bits
a=1,b=value used for random any bits and digit-

serial mult

X1Y1Z1 b

L1: m+1

L2: m+1

L3: m+1

L4: m+1

L5: 1

L6: 1

L7: m+1

X1_PA

Y1_PA

L8: 1

L9: 1

L10: 1

L11: m+1

L12: 1

L13: 1

L14: m+1

Reg

L15: 1

Reg

Reg

Reg

 1

7m+17

Reg

(a)

L0: 1

Y3_PA X3_PA Z3_PAZ3_PDX3_PD Y3_PD

Squaring MultiplicationAddition

X1Y1Z1 b

L1: d

L2: d

L3: d

L4: d

L5: 1

L6: 1

L7: d

X1_PA

Y1_PA

L8: 1

L9: 1

L10: 1

L11: d

L12: 1

L13: 1

L14: d

Reg

L15: 1

Reg

Reg

Reg

7d+8

Reg

(b)

Y3_PA X3_PA Z3_PAZ3_PDX3_PD Y3_PD

Digit-Serial SQ Digit-Serial Mult.

Reg Reg

Figure 7.6: Proposed PDPA architecture (a) using bit-serial multiplication and (b)

using digit-serial multiplication, for random or binary curves.

7.6 Proposed ECC Processor

The point multiplication operation is Q = kP , where k is an integer (which is called the

private/secret key), and P and Q are points on the elliptic curve over the binary field. It

176
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

is the main operation of an ECC processor (ECP). In this method, a point P (X, Y, Z) is

added k -1 times itself to get the final point Q(X, Y, Z) in Jacobian projective coordinates.

Different methods/algorithms exist for computing ECPM [2], using execution sequences

of group (PD and PA) operations. The execution schedules are directly related to the bit

pattern of the scalar multiplier, k = ‘key’. In this paper, the double-and-add method is

used to implement point multiplication, which is depicted in Algorithm 7.4. Generally, a

PD operation performs on every iteration, and a PA operation only performs when the

particular bit of k is one. However, we have implemented a combined PDPA operation

which generates PD and PA results simultaneously on each cycle. Then m− 1 iterations

are required to compute the point multiplication, where each iteration requires 7m + 17

or 7d+ 8 clock cycles (CCs for PDPA). In this approach, we can save m clock cycles per

point multiplication.

Algorithm 7.4: Double-and-add (Left to right) point multiplication

Input: k = (km−1,...,k1,k0)2, P (X,Y, Z) ∈ E(F2
m)

Output: Q(X,Y, Z) = k.P (X,Y, Z), where Q(X,Y, Z) ∈ E(F2
m)

1. Q = 0 ;

2. for i = m - 1 to 0 do Q = 2Q;

2.1 if k(i) = ’1’ then Q = Q+ P ; end

2.2 end for

3. Return (Q(X,Y, Z))

7.6.1 Proposed Point Multiplication Architecture

Fig. 7.7 illustrates the proposed point multiplication architecture over GF(2m) in Jacobian

coordinates. The proposed point multiplication architecture consists of combined PDPA,

select logic, multiplexer, counter, and a few register sets. The counter unit generates

7.6. Proposed ECC Processor 177

the respective control signals that act as a control unit, which communicates with other

units to perform specific tasks. In this architecture, the PDPA hardware is the main unit,

and generates PD and PA results concurrently. Furthermore, the counter module sends

a start signal to run the PDPA module. It generates a ‘Count_PDPA’ signal when the

PDPA is done. A two-bit control signal named ‘sel2s’ is generated by the select logic

module. As can be seen from Fig. 7.7, the control signal ‘sel2s’ is needed as an input

for the MUX1 module. When ‘sel2s = 01’ then 1P (PX,PY, PZ) results, when ‘sel2s

= 10’ then 2P (2PX, 2PY, 2PZ) results, which is pre-computed, and when ‘sel2s = 00’

then PA results are generated from the MUX1 module. Hence, the inputs of the MUX2

module come from register 1 and the MUX1 module, which are basically PD and PA

results. The outputs of MUX2 depend on the bit pattern of ‘key’. Consequently, after

completion of the current cycle, it stores all intermediate results in the second register set

then loops back to the next cycle. The output of the point multiplication is in Jacobian

form, so conversion is required to acquire affine form. The number of point multiplication

clock cycles for a random curve in Jacobian coordinates using bit-serial and digit-serial

multiplication are defined by (7.8) and (7.9), respectively .

#clock cycles (CCs) = (m− 1)× PDPA CCs in Jacobian

= (m− 1)× (7m+ 17)

= (7m2 + 10m− 17) (7.8)

#clock cycles (CCs) = (m− 1)× PDPA CCs in Jacobian

= (m− 1)× (7d+ 8)

= (7md+ 8m− 7d− 8) (7.9)

178
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

Select
logic

CounterPDPA
(Jacobian Coordinates)

Reg (1)

X
3_

P
D

X
3_

P
A

Y
3_

P
D

Z3
_P

D

Y3
_P

A

Z
3_

P
A

sX
3_

P
A

X
3_

P
D

s

Y
3_

P
D

s

Z
3_

P
D

s

sZ
3_

P
A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}1P }2P

Count

X
3_

P
A

s

Y3
_P

A
s

Z3
_P

A
s

Reg (2)

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k

Q
X

s

se
l2

s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

Startkey

Count_PDPA

Start_PDPA

MUX1

MUX2

1P(PX, PY, PZ)

(Pre-computed)
2P(2PX, 2PY, 2PZ)

Select
logic

CounterPDPA
(Jacobian Coordinates)

X
3_

P
D

X
3_

P
A

Y3
_P

D

Z
3_

P
D

Y
3_

P
A

Z
3_

P
A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}1P }2P

Count

Reg

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k

Q
X

s
se

l2
s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

Startkey

Count_PDPA

Start_PDPA

MUX1

MUX2

1P(PX, PY, PZ)

(Pre-computed)
2P(2PX, 2PY, 2PZ)

00 01 10

Select
logic

CounterPDPA
(Jacobian Coordinates)

Reg (1)

X
3_

P
D

X
3_

P
A

Y
3_

P
D

Z
3_

P
D

Y3
_P

A

Z
3_

P
A

sX
3_

P
A

X
3_

P
D

s

Y
3_

P
D

s

Z
3_

P
D

s

sZ
3_

P
A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}1P }2P

Count

X
3_

P
A

s

Y
3_

P
A

s

Z
3_

P
A

s

Reg (2)

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k

Q
X

s

se
l2

s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

Startkey

Count_PDPA

Start_PDPA

MUX1

MUX2

(Pre-computed)
2P(2PX, 2PY, 2PZ)

1P(PX, PY, PZ)

Figure 7.7: Detailed hardware architecture of proposed ECPM in Jacobian coordinates.

7.6.2 Jacobian-to-Affine Coordinate Conversion

A separate module for the conversion between Jacobian and affine coordinates is desired

to improve the functionality of the proposed implementation. The Jacobian-to-affine

conversion is defined in (7.10)

qx = QX/QZ2; qy = QY/QZ3. (7.10)

In practice, to convert affine coordinates from projective, at least one field inversion is

needed for the elliptic curve point multiplication (ECPM) described earlier. The proposed

hardware architecture for this conversion is depicted in Fig. 7.8. It is observed that four

7.6. Proposed ECC Processor 179

field multiplications, one field squaring, and one field inversion are required for Fig. 7.8(a),

and three field multiplications, one field squaring, and two field inversions are required

for Fig. 7.8(b). The latency for Fig. 7.8(a) and (b) are 2m + 4d + 1 and 4m + 2d + 2,

respectively. Thus Fig. 7.8(a) gives better performance than Fig. 7.8(b) in terms of area

and latency. Our designed modular inversion is also very efficient, which speeds up the

computation of ECP.

QX QY QZ

m/2+1

1

m/2+1

2m

m/2+1

m/2+1

1
qx qy 4m+6

(a)

QX QY QZ

m/2+1

1

2m

m/2+1

1
qx qy 5m+4

2m

(b)

Modular
Inversion

Modular
Squaring

Modular
Multiplication

QX QY QZ

d

2m+1

d

qx qy 4m+2d+2

2m+1

(b)

Field
Inversion

Digit-Serial
Squaring

Digit-Serial
Multiplication

d

d

2m+1

d

d

2m+4d+1

QX QY QZ

qx qy
(a)

Figure 7.8: Proposed hardware architecture of Jacobian to affine conversion (a) using

one inversion and (b) using two inversions.

7.6.3 Main Controller of Point Multiplication

The control unit is a finite state machine (FSM) which is mandatory to maintain the

execution sequence of the PDPA unit with other units. Fig. 7.9 displays the control unit

for point multiplication in Jacobian projective coordinates over GF(2m). The controller

unit is initiated with the three basic signals ‘Start_PDPA’, ‘Count’, and ‘Count_PDPA’.

Firstly, the possible values of the ‘Start_PDPA’ signal are either zero or one, initialized

to zero. The other two signals ‘Count’ and ‘Count_PDPA’ are initialized with m− 2 and

zero, respectively. The ‘Count’ signal determines the bit position of the input (e.g. ‘key’ or

180
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

‘k’). When ‘Count’ is m−2 then the ‘Count_PDPA’ signal is checked; if this is zero then

the start signal is checked. When ‘start’ is one, which happens once per full cumulation

Count_PDPA=++
Start_PDPA=0

Count_PDPA=0
Start_PDPA=0

Count=k-2

Count_PDPA=0

Count = k-2

END

Count_PDPA=++
Start_PDPA=0

Start=1

Start_PDPA=0

Count_PDPA=
3m+13

Count_PDPA=0
Start_PDPA=1

Count_PDPA=
3m+13

Count=0

Count=k-2
Start_PDPA=0

Count=
Count-1

Count_PDPA=0
Start_PDPA=1

Count=k-3

Count_PDPA=++
Start_PDPA=1

Loop
Controller

Yes No

Yes No

No

Yes

Yes

No

NoYes

No

Yes

Count_PDPA=++
Start_PDPA=0

Count_PDPA=0
Start_PDPA=0

Count=k-2

END

Start=1

Start_PDPA=0

Count_PDPA=0
Start_PDPA=1

Count=k-2
Start_PDPA=0

Count=
Count-1

Count_PDPA=0
Start_PDPA=1

Count=k-3

Loop
Controller

Yes No

Yes No

No

Yes

Yes

No

No
Yes

No

Yes

Count
= k-2

Count_PDPA=++
Start_PDPA=0

Count_PDPA=++
Start_PDPA=1

Count_PDPA
=0

Count_PDPA
=3m+13

Count
=0

Count_PDPA
=3m+13

Count = k-2

CountPDPA = 0
StartPDPA = 0

Count = k-2

Start

CountPDPA = 0
CountPDPA ++
StartPDPA = 0

Start = 1

Yes No

No

Yes

StartPDPA =0

CountPDPA++
StartPDPA =1

CountPDPA+ +
StartPDPA = 0

Yes

No

CountPDPA
=3m+13

CountPDPA =0
StartPDPA =1
Count = k-3

Yes

Loop
Controller

CountPDPA
=3m+13

CountPDPA= 0
StartPDPA = 1

Yes

Count = 0
No

Count - -

END

No

Yes

CountPDPA= k-2

StartPDPA = 0

No

Count_PDPA=++
Start_PDPA=0

Count_PDPA=0
Start_PDPA=0

Count=m-2

END

Start=1

Start_PDPA=0

Count_PDPA=0
Start_PDPA=1

Count=
Count-1

Count_PDPA=0
Start_PDPA=1

Count=m-3

Loop
Controller

Yes No

Yes No

No

Yes

Yes

No

No
Yes

No

Yes

Count
= m-2

Count_PDPA=++
Start_PDPA=0

Count_PDPA=++
Start_PDPA=1

Count_PDPA
=0

Count_PDPA
=7d+7

Count
=0

Count_PDPA
=7d+7

Count=m-2
Start_PDPA=0

Count = m-2

Count_PDPA = 0
Start_PDPA = 0

Count = m-2

Start

Count_PDPA = 0
Count_PDPA ++
Start_PDPA = 0

Start = 1

Yes No

No

Yes

Start_PDPA =0

Yes

No

Count_PDPA =0
Start_PDPA =1

Count = m-3

Yes

Loop
Controller

Count_PDPA
=7d+7

Count_PDPA= 0
Start_PDPA = 1

Yes

Count = 0
No

Count - -

END

No

Yes

NoCount_PDPA
=7d+7

Count_PDPA+ +
Start_PDPA = 0

Count_PDPA+ +
Start_PDPA = 1

Count_PDPA= m-2

Start_PDPA = 0

Figure 7.9: Proposed main controller of ECPM in Jacobian coordinates.

of ECPM, then ‘Count_PDPA’ gives the increment value and the ‘Start_PDPA’ signal is

high in this situation. On the other hand, if ‘Count_PDPA’ is not zero, then this signal

counts till the maximum limit 7d+ 7, as shown in Fig. 7.9. At this condition, the ‘Count’

signal goes to m − 3, and it follows the next iteration of the operation. Consequently,

after this operation, the ‘Count’ signal is less than m− 2 and the ‘Count_PDPA’ signal

is incremented till 7d + 7. The condition for the ‘Count_PDPA’ signal is checked; it

will be triggered to zero when this signal reaches to 7d+ 7 and ‘Start_PDPA’ enables to

high. The computation of point multiplication is achieved after m − 1 iterations, where

7.6. Proposed ECC Processor 181

each iteration needs 7d+ 7 clock cycles. The whole operation is completed only when the

‘Count’ signal goes to zero.

7.6.4 Overall Architecture of ECC Processor

The block diagram for the ECP top module is presented in Fig.7.10. The top module

basically consists of two units: ECPM in Jacobian coordinates and Jacobian-to-affine

conversion. The point multiplication in Jacobian coordinates is the main unit and is the

building block of group operations (PDPA), plus the control unit, pre-computation, select

logic, multiplexer, and few register sets. The PDPA architecture in Jacobian coordinates

ECPM using PDPA
(Jacobian Coordinates)

SIPO

PISO

Key_in

192/224/256
Key Ready

Qxi Qyi Qzi done_pm

clk

Rx Ry done

SI

Start_in

Start

Rxi Ryi done_aff

clk

clk

clk

rst

rst

rst

rst

Jacobian to Affine

192/
224/256

192/224/256

Key Output

SIPO PISO

ECPM
(Jacobian Coordinates)

Jacobian-to-Affine

(Key) Output
PISOECPM

(Jac.)
Jac.-to-
Affine

SIPO
Input

Initialize

Count_PDPA=Count_PDPA + 1
Start_PDPA = 0

No

No

Count = k-2
Start_PDPA = 0

Count = k-2

End

No

Yes

Count_PDPA = 0
Start_PDPA = 1

End

Yes

Count = 0

Count = Count - 1

NoYes

Count_PDPA =
3m+13

End End

Count_PDPA = 0

Count_PDPA=Count_PDPA + 1
Start_PDPA = 0Start = 1

Count_PDPA =
3m+13

Yes

Count_PDPA = 0
Start_PDPA = 1

Count = k-3

End

No

NoYes

End

Start_PDPA = 0

Yes

Count_PDPA=Count_PDPA + 1
Start_PDPA = 1

End

Count = k-2
Count_PDPA=0
Start_PDPA = 0

Count = k-2

Count_PDPA=0

Start=1

Count_PDPA=
3m+13

Count_PDPA=
3m+13

Count=0

Yes
No

Yes

No

Yes

Yes

No

No

No

NoYes

Initialize

Yes

Count_PDPA = 0
Start_PDPA = 1

Start_PDPA=0

Count_PDPA + +
Start_PDPA = 0

Count = k-2
Start_PDPA = 0

Count = k-2
Count_PDPA=0
Start_PDPA = 0

Count_PDPA + +
Start_PDPA = 0

Count_PDPA + +
Start_PDPA = 1

Count_PDPA=0
Start_PDPA=1

Count = k-3

Count =
Count-1Loop Controller

END

SIPO PISO
Input
(Key)

Output

ECPM
(Jacobian Coordinates)

Jacobian-to-Affine

SIPO
ECPM

(Jacobian)
Jacobian-
to-affine

PISO
Input
(key) Output

SIPO
ECPM

(Jacobian)
Jacobian-
to-affine

PISO
Input
(key) Output

SIPO
ECPM

(Jacobian)
Jacobian-
to-affine

PISO
Input
(key) Output

SIPO
ECPM

(Jacobian)
PISO

Input
(key) Output

ECPM
(Jacobian)

Jacobian-
to-affine

Input
(key) Output

Output

PDPA

A
dd

iti
on

F
ie

ld
 M

ul
t.

F
ie

ld
 S

Q

E
C

P
M

 in
 J

ac
ob

ia
n

Pre-computed Select logic MUX Reg. set
m m m

m m

m
key clk rst start

Control Unit

doneqx qy

pmdone

Field Mult. Field SQ Field Inversion

Figure 7.10: Overall block diagram of ECP top module.

needs most of the area, consisting of field addition, multiplication, and squaring. In

addition, the PDPA hardware uses a digit-serial multiplier which as described earlier

takes 7d+8 clock cycles including one cycle for a register. Consequently, the bottom level

of Fig.7.10 is called a conversion unit and consists of field arithmetic units such as field

inversion, squaring, and multiplication. The Jacobian-to-affine coordinate conversion unit

is necessary because, for practical applications, affine coordinates are used. 2m + 4d + 1

182
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

clock cycles are required for conversion. The total number of clock cycles for an ECP

top module using digit-serial field multiplication is defined by (7.11). Thus the number

of clock cycles for the ECP is computed by

= PM in Jacobian + Jacobian− to− Affine conversion

= (m− 1)× PDPA CCs + (2m + 4d + 1)

= (7md+ 8m− 7d− 8) + (2m+ 4d+ 1)

= (7md+ 10m− 3d− 7) (7.11)

7.6.5 Security Analysis

We have designed a combined PDPA architecture which performs PD and PA operations

concurrently, as depicted in Figs 7.5 and 7.6. For this reason, the power consumption

pattern for the PDPA hardware will be symmetric in nature. As can be seen from Fig. 7.7,

a point multiplication hardware is developed using this combined PDPA architecture. A

uniform power consumption profile may be measured throughout the point multiplication

computation. From the analysis, we can say that any key value information is difficult

to observe from this hardware. Besides, the double-and-add algorithm is secure against

timing and simple power analysis (SPA) attacks [90].

7.7 Results and Performance Comparison

This section presents the hardware implementation results of ECPs for both NIST Koblitz

and random curves over GF(2m). The proposed ECP is implemented on both FPGA

and ASIC platforms and the overall performance ECPs is compared to most significant

implementations in the literature.

7.7. Results and Performance Comparison 183

7.7.1 Hardware Implementation Results

The presented ECP is coded in synthesizable VHDL and implemented using Xilinx ISE

14.7 synthesis technologies with an optimized goal of ‘Speed’. The target FPGAs selected

are the Xilinx Virtex-6 and Virtex-7 that contain sufficient resources. In addition, the

proposed design is synthesized on ASIC 65-nm CMOS technology using Synopsys Design

Compiler. The standard logic-cell library for typical process corner (1.2V, 25◦C) analysis

is utilized for this implementation. The FPGA implementations were simulated using

both ModelSim PE and Xilinx ISim. On the other hand, ASIC implementations were

simulated using ModelSim/Questa Sim. A sufficient number of samples were simulated

to check the correctness of our implementations.

Table 7.1 depicts the FPGA implementation of ECP for both Koblitz and random

curves using bit-serial multiplication. The results of area, clock cycles, time, maximum

frequency, area×time (AT), performance (1/AT), energy, and throughput are reported in

Table 7.1. The point multiplication time on a Xilinx Virtex-7 FPGA is between 0.66 and

9.36 ms for all five NIST Koblitz curves. The reported area is between 3065 and 13530

slices only, which shows that the proposed design is area-efficient. The energy consump-

tion was calculated for all of our FPGA-based implementations. It is the product of power

and time per ECP. For example, the power consumption per ECP over GF(2163) is 0.784

watts and the timing is 0.66 ms. Thus the energy consumption was computed as 0.52 mJ

for the 163-bit ECP. To measure power, first we have mapped our design using the Xilinx

ISE, then generated an SAIF file and simulated using ISim. Note that accurate power

consumption from an FPGA can be simulated using both VCD or SAIF file. We have

used an SAIF file instead of a VCD file because a VCD file is heavier than the SAIF file

format. As from the simulator, the switching activity profile was depicted over 95% and

the confidence level was shown to be high, which is good enough to get the actual energy

consumption for our design. As one can see in Table 7.1, the energy consumption on a

184
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields
T
ab

le
7.
1:

P
er
fo
rm

an
ce

co
m
pa
ri
so
n
of

F
P
G
A
-b
as
ed

E
C
P

us
in
g
bi
t-
se
ri
al

fie
ld

m
ul
ti
pl
ic
at
io
n
ov
er

N
IS
T

B
in
ar
y
F
ie
ld
s
G
F
(2
m
)

W
or
k

P
la
tf
or
m

F
ie
ld

R
ep

or
te
d

K
C
yc
le
s

T
im

e
(m

s/
E
C
P
)

A
T
1

P
er
fo
rm

an
ce

4
E
ne

rg
y2

T
R

3

(L
en

gt
h)

A
re
a
(s
lic

es
)

@
f
(M

H
z)

(1
/A

T
×
10

00
)

(m
J/

E
C
P
)

(k
bp

s)

T
h
is

w
or
k

V
ir
te
x-
7

16
3

30
65

18
7.
6

0.
66

@
28

4
2.
02

50
0.
0

0.
52

24
7

23
3

47
54

38
2.
3

1.
35

@
28

3
6.
42

15
5.
7

1.
24

17
3

28
3

55
67

56
3.
4

2.
22

@
25

3
12

.3
6

80
.9

1.
62

12
7

40
9

91
26

11
75

5.
23

@
22

5
47

.7
3

20
.9

5.
10

78

57
1

13
53

0
22

88
9.
36

@
24
4

12
6.
64

7.
9

11
.8
3

61

V
ir
te
x-
6

16
3

31
16

18
7.
6

0.
69

@
27

2
2.
15

46
5.
0

3.
50

23
6

(K
ob

lit
z

23
3

40
25

38
2.
3

1.
50

@
25

5
6.
04

16
5.
5

7.
81

15
5

C
ur
ve
s)

28
3

56
58

56
3.
4

2.
49
@
22

6
14

.0
9

71
.0

13
.4
7

11
4

40
9

88
53

11
75

5.
77

@
20

4
51

.0
8

19
.6

33
.4
5

71

57
1

11
67

3
22

88
10

.6
0@

21
5

12
3.
73

8.
1

66
.7
5

52

1.
A
T

=
A
re
a×

T
im

e
(S
li
ce
s×

s)
,
2.

E
ne

rg
y
=

p
ow

er
×
ti
m
e,

w
he

re
p
ow

er
m
ea
su
re
d
fr
om

X
il
in
x
X
p
ow

er
A
na

ly
ze
r,

3.
T
R

=
T
hr
ou

gh
pu

t
ra
te

=
1/

(t
im

e(
se
c)
×
F
ie
ld

L
en

gt
h,

4.

P
er
fo
rm

an
ce

=
E
ffi
ci
en

cy
=

1
A

r
e
a
×

T
i
m

e
=

1
A

T
=

op
er
at
io
n/

se
c/
sl
ic
e)

7.7. Results and Performance Comparison 185

T
ab

le
7.
1:

P
er
fo
rm

an
ce

co
m
pa
ri
so
n
of

F
P
G
A
-b
as
ed

E
C
P

us
in
g
bi
t-
se
ri
al

fie
ld

m
ul
ti
pl
ic
at
io
n
ov
er

N
IS
T

B
in
ar
y
F
ie
ld
s
G
F
(2
m
)

W
or
k

P
la
tf
or
m

F
ie
ld

R
ep

or
te
d

K
C
yc
le
s

T
im

e
(m

s/
E
C
P
)

A
T
1

P
er
fo
rm

an
ce

4
E
ne

rg
y2

T
R

3

(L
en

gt
h)

A
re
a
(s
lic

es
)

@
f
(M

H
z)

(1
/A

T
×
10

00
)

(m
J/

E
C
P
)

(k
bp

s)

T
h
is

w
or
k

V
ir
te
x-
7

16
3

34
54

18
7.
9

0.
65

@
29

1
2.
25

44
4.
0

0.
43

25
1

23
3

47
90

38
2.
8

1.
35

@
28

3
6.
67

15
0.
0

0.
99

17
3

28
3

65
34

56
4.
0

2.
24

@
25

2
14

.6
4

68
.0

1.
85

12
6

40
9

10
04

6
11

76
5.
05

@
23
3

50
.7
3

19
.7

5.
54

81

57
1

13
77

0
22

89
9.
27

@
24
7

12
7.
65

7.
8

12
.3
8

62

V
ir
te
x-
6

16
3

31
59

18
7.
3

0.
69

@
27

4
2.
18

45
8.
7

3.
52

23
6

(R
an

do
m

23
3

46
53

38
2.
3

1.
50

@
25
5

6.
98

14
3.
2

7.
98

15
5

C
ur
ve
s)

28
3

61
86

56
3.
4

2.
49
@
22

6
15

.4
0

64
.9

13
.6
2

11
4

40
9

91
00

11
75

5.
74

@
20

5
52

.2
3

19
.1

33
.6
6

71

57
1

12
54

0
22

88
10

.3
5@

22
1

12
9.
79

7.
7

65
.8
6

55

1.
A
T

=
A
re
a×

T
im

e
(S
li
ce
s×

s)
,
2.

E
ne

rg
y
=

p
ow

er
×
ti
m
e,

w
he

re
p
ow

er
m
ea
su
re
d
fr
om

X
il
in
x
X
p
ow

er
A
na

ly
ze
r,

3.
T
R

=
T
hr
ou

gh
pu

t
ra
te

=
1/

(t
im

e(
se
c)
×
F
ie
ld

L
en

gt
h,

4.

P
er
fo
rm

an
ce

=
E
ffi
ci
en

cy
=

1
A

r
e
a
×

T
i
m

e
=

1
A

T
=

op
er
at
io
n/

se
c/
sl
ic
e)

186
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields
T
ab

le
7.
1:

P
er
fo
rm

an
ce

co
m
pa
ri
so
n
of

F
P
G
A
-b
as
ed

E
C
P

us
in
g
bi
t-
se
ri
al

fie
ld

m
ul
ti
pl
ic
at
io
n
ov
er

N
IS
T

B
in
ar
y
F
ie
ld
s
G
F
(2
m
)

W
or
k

P
la
tf
or
m

F
ie
ld

R
ep

or
te
d

K
C
yc
le
s

T
im

e
(m

s/
E
C
P
)

A
T
1

P
er
fo
rm

an
ce

4
E
ne

rg
y2

T
R

3

(L
en
gt
h)

A
re
a
(s
lic

es
)

@
f
(M

H
z)

(1
/A

T
×
10

00
)

(m
J/

E
C
P
)

(k
bp

s)

[1
28

]
V
ir
te
x-
2

16
3

38
63

54
.1

2.
26

@
24

8.
73

11
4.
5

0.
74

72

[1
61

]
Sp

ar
ta
n-
3

16
3

10
77

30
0.
7

1.
94

@
15

5
2.
09

47
8.
5

–
84

[1
62

]
Q
ua

rt
us
-I
I

23
3

87
99

44
7.
5

1.
62

@
27

6
14

.2
5

70
.2

–
14

4

[1
26

]
F
LE

X
10

K
E

16
3

69
13

64
0.
7

14
.9
@
43

10
3.
00

9.
7

–
11

[1
27

]
Sp

ar
ta
n-
3

13
1

11
80

12
1.
3

1.
72

@
71

2.
03

49
2.
6

–
76

16
3

11
80

19
0.
4

2.
70

@
71

3.
19

31
3.
5

–
60

28
3

11
80

58
5.
2

8.
30

@
71

9.
79

10
2.
2

–
34

57
1

11
80

36
22

.3
51

.3
8@

71
60

.6
3

16
.5

–
11

[1
18

]
V
ir
te
x-
2

16
3

12
86
1

34
7.
4

2.
07

@
16

8
26

.6
2

37
.6

–
79

[1
63

]
Sp

ar
ta
n-
6

16
3

18
44

24
39

19
5.
1@

12
.5

35
9.
76

2.
8

–
0.
84

1.
A
T

=
A
re
a×

T
im

e
(S
li
ce
s×

s)
,
2.

E
ne

rg
y
=

p
ow

er
×
ti
m
e,

w
he

re
p
ow

er
m
ea
su
re
d
fr
om

X
il
in
x
X
p
ow

er
A
na

ly
ze
r,
3.

T
R

=
T
hr
ou

gh
pu

t
ra
te

=
1/

(t
im

e(
se
c)
×
F
ie
ld

L
en

gt
h,

4.
P
er
fo
rm

an
ce

=
E
ffi
ci
en

cy
=

1
A

r
e
a
×

T
i
m

e
=

1
A

T
=

op
er
at
io
n/

se
c/
sl
ic
e)

7.7. Results and Performance Comparison 187

T
ab

le
7.
1:

P
er
fo
rm

an
ce

co
m
pa
ri
so
n
of

F
P
G
A
-b
as
ed

E
C
P

us
in
g
bi
t-
se
ri
al

fie
ld

m
ul
ti
pl
ic
at
io
n
ov
er

N
IS
T

B
in
ar
y
F
ie
ld
s
G
F
(2
m
)

W
or
k

P
la
tf
or
m

F
ie
ld

R
ep

or
te
d

K
C
yc
le
s

T
im

e
(m

s/
E
C
P
)

A
T
1

P
er
fo
rm

an
ce

4
E
ne

rg
y2

T
R

3

(L
en
gt
h)

A
re
a
(s
lic

es
)

@
f
(M

H
z)

(1
/A

T
×
10

00
)

(m
J/

E
C
P
)

(k
bp

s)

[1
64

]
V
ir
te
x-
4

16
3

10
95

20
1.
8

1.
35

@
15

0
1.
48

67
5.
7

–
12

1

[1
29

]
V
ir
te
x-
E

16
3

24
90

–
2.
55

@
–

6.
35

15
7.
5

–
64

[1
65

]
Sp

ar
ta
n-
3

16
3

23
96

15
6.
3

1.
25

@
12

5
3.
0

33
3.
3

–
13
0

[1
66

]
V
ir
te
x-
2

16
1

11
39

5
14

5.
8

1.
10

@
13

3
12
.5
3

79
.8

–
14

6

[1
34

]
Sp

ar
ta
n-
3

23
3

–
18

3.
0

2.
28

@
80

–
–

–
10

2

[1
67

]
V
ir
te
x-
2

16
3

89
54

83
90

1
0.
84

@
10
0

7.
52

13
3.
0

–
19

4

25
7

10
84

7
21

06
72

2.
11

@
10

0
22

.8
9

43
.7

–
12
2

[1
31

]
V
ir
te
x-
E

16
3

36
00

13
4.
1

3.
05
@
44

10
.9
8

91
.1

–
53

[1
36

]
V
ir
te
x-
2

23
3

–
33

5.
0

3.
35

@
10

0
–

–
–

70

1.
A
T

=
A
re
a×

T
im

e
(S
li
ce
s×

s)
,
2.

E
ne

rg
y
=

p
ow

er
×
ti
m
e,

w
he

re
p
ow

er
m
ea
su
re
d
fr
om

X
il
in
x
X
p
ow

er
A
na

ly
ze
r,

3.
T
R

=
T
hr
ou

gh
pu

t
ra
te

=
1/

(t
im

e(
se
c)
×
F
ie
ld

L
en

gt
h,

4.
P
er
fo
rm

an
ce

=
E
ffi
ci
en

cy
=

1
A

r
e
a
×

T
i
m

e
=

1
A

T
=

op
er
at
io
n/

se
c/
sl
ic
e)

188
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

Xilinx Virtex-7 FPGA is between 0.52 and 11.83 mJ for Koblitz curves between K-163

and K-571. The proposed ECP for random curves takes a similar area, clock cycles, and

time. But, it takes a little bit more energy than Koblitz curves.

Our proposed digit-serial version ECP is implemented in FPGA, and the results are

displayed in Table 7.2. In this paper, 64, 32, and 16-bit digit sizes were selected for the

233-bit ECP. As can be seen from Table 7.2, the required clock cycles decrease with the

increasing digit size, on the other hand the area increases. For example, 64-bit digit-serial

multiplication needs only 4 clock cycles per 233-bit field multiplication, whereas 16-bit

digit-serial multiplication takes 15 clock cycles to implement. Hence, the ECP using the

64-bit digit version has less latency than other digit-serial versions. The performance,

which also called the efficiency metric, is the best indicator to say which design is better.

As shown in Table 7.2, the performance of different digit versions provides similar results.

We can say that ECP using the 64-bit digit version can be used for high-throughput ap-

plications and the 16-bit digit version can be used for low area applications. The proposed

ECP over GF(2233) using 64-bit, 32-bit, and 16-bit digit-serial field multiplication takes

between 37.52 and 111.92 µs on a Xilinx Virtex-7 FPGA and between 39.50 and 119.54

µs on a Xilinx Virtex-6 FPGA, respectively.

Table 7.3 illustrates the proposed ASIC-based implementation of ECP using both bit-

serial and digit-serial field multiplication. For the bit-serial version ECP, ASIC results

gives better performance than FPGA results in terms of time and energy. On the other

hand, a digit-serial version ECP provides similar results to an FPGA, but provides bet-

ter energy performance. As we can see in Table 7.3, an ASIC-based implementation of

ECP using the 16-bit digit-serial version provides better results than all other digit-serial

version ECPs. It can compute an ECP over GF(2233) within 41 µs with a gate count

326.9K. Similarly, the time and area for ECP over GF(2233) is 317 µs and 115.5 Kgates,

respectively. Note that the gate count was computed from the required ECP area divided

7.7. Results and Performance Comparison 189

T
ab

le
7.
2:

P
er
fo
rm

an
ce

an
d
co
m
pa
ri
so
n
of

F
P
G
A
-B

as
ed

E
C
P

us
in
g
di
gi
t-
se
ri
al

m
ul
ti
pl
ic
at
io
n
ov
er

N
IS
T

B
in
ar
y
F
ie
ld

G
F
(2

2
3
3
)

W
or
k

D
ig
it

si
ze

(d
)

P
la
tf
or
m

A
re
a

K
C
yc
le
s

T
im

e
(µ
s/
E
C
P
)

A
re
a×

T
im

e
(A

T
)

P
er
fo
rm

an
ce

T
R

(s
lic

es
)

@
f
(M

H
z)

(s
lic

es
×
s)

(1
/A

T
)

(K
bp

s)

64
V
ir
te
x-
7

72
93

7
8.
8

37
.5
2@

23
6

2.
74

0.
36

62
10

64
V
ir
te
x-
6

84
89

4
8.
8

39
.5
0@

22
4

3.
35

0.
30

58
99

T
h
is

w
or
k

32
V
ir
te
x-
7

48
65

2
15

.3
65

.1
6@

23
6

3.
17

0.
32

35
76

32
V
ir
te
x-
6

47
06

2
15

.3
68

.6
0@

22
4

3.
22

0.
31

33
96

16
V
ir
te
x-
7

25
42

4
26

.7
11

1.
92

@
23

9
2.
84

0.
35

20
82

16
V
ir
te
x-
6

26
28

6
26

.7
11

9.
54

@
22

4
3.
14

0.
32

19
49

190
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields
T
ab

le
7.
2:

P
er
fo
rm

an
ce

an
d
co
m
pa
ri
so
n
of

F
P
G
A
-B

as
ed

E
C
P

us
in
g
di
gi
t-
se
ri
al

m
ul
ti
pl
ic
at
io
n
ov
er

N
IS
T

B
in
ar
y
F
ie
ld

G
F
(2

2
3
3
)

W
or
k

D
ig
it
si
ze

(d
)

P
la
tf
or
m

A
re
a

K
C
yc
le
s

T
im

e
(µ
s/
E
C
P
)

A
re
a×

T
im

e
(A

T
)

P
er
fo
rm

an
ce

T
R

(s
lic

es
)

@
f
(M

H
z)

(s
lic

es
×
s)

(1
/A

T
)

(K
bp

s)

[1
10

]
32

V
ir
te
x-
4

24
31

93
.8

60
4@

15
5

1.
47

0.
68

38
6

[1
11

]
32

V
ir
te
x-
4

26
48

15
5.
9

10
93

@
14

3
2.
89

0.
34

21
3

[1
16

]
32

V
ir
te
x-
4

48
34

21
1.
2

21
10

@
10

0
10

.2
0

0.
09

8
11

0

[1
17

]

32
11

27
50

13
.2

73
40

0@
68

82
.7
2

0.
01

2
3

16
Sp

ar
ta
n-
3

11
27

10
26

5.
5

15
03

00
@
68

16
9.
39

0.
00

6
1.
55

8
11

27
35

51
6.
0

52
00

00
@
68

58
6.
04

0.
00

17
0.
45

[1
19

]
64

V
ir
te
x-
2

–
40

0.
5

26
70

@
15

0
–

–
87

32
–

90
0.
0

60
00

@
15

0
–

–
39

[1
20

]
32

V
ir
te
x-
E

35
80

0
6.
0

89
@
67

.9
3.
19

0.
31

26
18

[1
21

]
64

V
ir
te
x-
E

–
15

.0
22
5@

66
.5

–
–

10
35

7.7. Results and Performance Comparison 191
T
ab

le
7.
3:

P
er
fo
rm

an
ce

an
al
ys
is

an
d
co
m
pa
ri
so
n
of

A
SI
C
-b
as
ed

E
C
C

pr
oc
es
so
r
(E

C
P
)
ov
er

F 2
m

T
ec
hn

ol
og

y
F
ie
ld

R
ep

or
te
d
A
re
a

K
C
yc
le
s

T
im

e
A
re
a×

T
im

e
E
ne

rg
y3

A
T
E
4

T
R

5

(L
en
gt
h)

(m
m

2
/K

G
s1
)

(µ
s)

(A
T
2
)

(µ
J)

(k
bp

s)

T
h
is

w
or
k6

65
-n
m

16
3

0.
23

9/
11

5.
5

18
7.
6

15
6

37
.2
/1

8.
0

19
.0

0.
7/

0.
3

10
47

23
3

0.
32

4/
15

6.
1

38
2.
3

31
7

10
2.
8/

49
.5

52
.2

5.
3/

2.
6

73
4

28
3

0.
39

6/
19

0.
6

56
3.
4

46
8

18
5.
1/

89
.2

93
.4

17
.3
/8

.3
60
5

40
9

0.
58

7/
28

2.
1

11
75
.0

97
5

57
2.
5/

27
5.
2

30
7.
1

17
5.
8/

84
.5

41
9

57
1

0.
82

5/
39

6.
9

22
88
.0

18
99

15
67

.0
/7

53
.8

76
0.
8

11
92

/5
73
.6

30
0

T
h
is

w
or
k7

65
-n
m

16
3

0.
24

7/
11

9.
0

18
7.
9

15
6

38
.5
/1

8.
6

19
.8

0.
8/

0.
4

10
45

23
3

0.
35

2/
16

9.
5

38
2.
8

31
8

11
1.
9/

53
.9

57
.7

6.
5/

3.
1

73
3

28
3

0.
43

4/
20

8.
7

56
4.
0

46
8

20
3.
1/

97
.7

10
2.
3

20
.8
/1

0.
0

60
5

40
9

0.
63

8/
30

6.
5

11
76
.0

97
6

62
2.
7/

29
9.
1

37
6.
4

23
4.
3/

11
2.
5

41
9

57
1

0.
90

5/
43

5.
0

22
89
.1

19
00

17
19

.0
/8

26
.5

83
4.
3

14
34

/6
89
.5

30
0

T
h
is

w
or
k8

65
-n
m

23
3(
d6

4∗
)

1.
83

/8
79

.8
8.
8

69
12

6.
9/
61

.0
48

.8
6.
2/

3.
0

33
77

23
3(
d3

2∗
)

1.
16

/5
57

.7
15

.3
52

60
.7
/2

9.
2

33
.3

2.
0/

1.
0

44
80

23
3(
d1

6∗
)

0.
68

/3
26

.9
26

.7
41

27
.8
/1

3.
4

7.
1

0.
2/

0.
1

56
83

1.
K
G
s
=

K
il
o-
G
at
es
,2

.
A
T
=

(m
m

2
×
µ
s)
/(
K
G
s×

m
s)
,
3.

E
ne

rg
y
(µ

J/
E
C
C
pr
oc
es
so
r)

=
p
ow

er
×
ti
m
e,
4.

A
T
E
=

A
re
a×

T
im

e×
E
ne

rg
y
=

(m
m

2
×
µ
s×

m
J)
/(
K
G
s×

m
s×

m
J)
,5

.

T
R

=
T
hr
ou

gh
pu

t
ra
te
,
6.

F
or

K
ob

li
tz

C
ur
ve
s,

7.
F
or

R
an

do
m

C
ur
ve
s,

8.
U
si
ng

di
gi
t-
se
ri
al

p
ol
yn

om
ia
l
m
ul
ti
pl
ic
at
io
n,
∗
d6

4,
d3

2,
an

d
d1

6
m
ea
n
di
gi
t
si
ze

64
-b
it
,
32

-b
it
,

an
d
16

-b
it
,
re
sp
ec
ti
ve
ly

192
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields
T
ab

le
7.
3:

P
er
fo
rm

an
ce

an
al
ys
is

an
d
co
m
pa
ri
so
n
of

A
SI
C
-b
as
ed

E
C
C

pr
oc
es
so
r
(E

C
P
)
ov
er

F 2
m

T
ec
hn

ol
og

y
F
ie
ld

R
ep

or
te
d
A
re
a

K
C
yc
le
s

T
im

e
A
re
a×

T
im

e
E
ne

rg
y3

A
T
E
4

T
R

5

(L
en
gt
h)

(m
m

2
/K

G
s1
)

(µ
s)

(A
T
2
)

(µ
J)

(k
bp

s)

[7
3]

90
-n
m

16
3

1.
12

/3
13

.0
62

.5
26
0

29
1.
2/

81
.4

14
.0

4.
1/

1.
1

62
7

23
3

1.
12

/3
13

.0
12

4.
3

52
0

38
2.
4/
16

2.
8

34
.0

19
.8
/5

.5
44

8

28
3

1.
12

/3
13

.0
18

1.
3

76
0

85
1.
2/
23

7.
9

55
.0

46
.8
/1

3.
1

37
2

40
9

1.
12

/3
13

.0
37

2.
5

15
80

17
69

.6
/4

94
.5

14
1.
0

24
9.
5/

69
.7

25
9

[1
68

]
0.
13

-µ
m

16
0

1.
35

/1
79

.0
15

4.
8

10
00

13
50

.0
/1

79
.0

32
.8

44
.3
/5

.9
16

0

[1
49

]
0.
13

-µ
m

16
3

2.
34

/3
32

18
2.
6

44
0

10
30

/1
46

.1
61

.0
62

.8
/8

.9
37

1

28
3

2.
34

/3
32

51
8.
8

12
50

29
25

.0
/4

15
.0

22
1.
0

64
6.
4/

91
.7

22
6

40
9

2.
34

/3
32

93
7.
9

22
60

52
88

.4
/7

50
.3

56
6.
0

29
93

/4
24

.7
18

1

57
1

2.
34

/3
32

20
33

.5
49

00
11

46
6/

16
26

.8
13

60
.0

15
59

4/
22

12
.5

11
6

1.
K
G
s

=
K
il
o-
G
at
es
,

2.
A
T

=
(m

m
2
×
µ
s)
/(
K
G
s×

m
s)
,

3.
E
ne

rg
y

(µ
J/

E
C
C

pr
oc
es
so
r)

=
p
ow

er
×
ti
m
e,

4.
A
T
E

=
A
re
a×

T
im

e×
E
ne

rg
y

=

(m
m

2
×
µ
s×

m
J)
/(
K
G
s×

m
s×

m
J)
,
5.

T
R

=
T
hr
ou

gh
pu

t
ra
te
,
6.

F
or

K
ob

li
tz

C
ur
ve
s,

7.
F
or

R
an

do
m

C
ur
ve
s,

8.
U
si
ng

di
gi
t-
se
ri
al

p
ol
yn

om
ia
l
m
ul
ti
pl
ic
at
io
n,
∗

d6
4,

d3
2,

an
d
d1

6
m
ea
n
di
gi
t
si
ze

64
-b
it
,
32

-b
it
,
an

d
16

-b
it
,
re
sp
ec
ti
ve
ly

7.7. Results and Performance Comparison 193

T
ab

le
7.
3:

P
er
fo
rm

an
ce

an
al
ys
is

an
d
co
m
pa
ri
so
n
of

A
SI
C
-b
as
ed

E
C
C

pr
oc
es
so
r
(E

C
P
)
ov
er

F 2
m

T
ec
hn

ol
og

y
F
ie
ld

R
ep

or
te
d
A
re
a

K
C
yc
le
s

T
im

e
A
re
a×

T
im

e
E
ne

rg
y3

A
T
E
4

T
R

5

(L
en
gt
h)

(m
m

2
/K

G
s1
)

(µ
s)

(A
T
2
)

(µ
J)

(k
bp

s)

[1
69

]
0.
13

-µ
m

16
0

1.
44
/1

69
.4

54
.3

37
2

53
5.
7/

63
.0

30
.5

16
.3
/1

.9
43

0

[1
50

]
0.
18

-µ
m

16
3

2.
10

/6
9

22
8.
1

18
90

39
69

/1
30

.4
25

7.
0

10
20

/3
3.
5

86

[1
51

]
0.
13

-µ
m

16
3

-/
12

.5
27

5.
8

24
40

00
-/
30

50
9.
0

-/
27

.5
0.
65

[1
52

]
0.
13

-µ
m

16
3

-/
39

3
22

.0
70

-/
27

.5
-

-/
-

23
29

28
3

-/
39

3
59

.0
18

7
-/
73

.5
-

-/
-

15
13

57
1

-/
39

3
45

0.
3

13
94

-/
54

7.
8

-
-/
-

40
9

[1
53

]
0.
35

-µ
m

16
3

-/
16

37
6.
8

27
90

0
-/
44

6.
4

-
-/
-

6

[1
31

]
0.
35

-µ
m

16
3

-/
46

13
4.
0

30
50

-/
14

0.
3

-
-/
-

53

1.
K
G
s

=
K
il
o-
G
at
es
,
2.

A
T

=
(m

m
2
×
µ
s)
/(
K
G
s×

m
s)
,

3.
E
ne

rg
y

(µ
J/

E
C
C

pr
oc
es
so
r)

=
p
ow

er
×
ti
m
e,

4.
A
T
E

=
A
re
a×

T
im

e×
E
ne

rg
y

=

(m
m

2
×
µ
s×

m
J)
/(
K
G
s×

m
s×

m
J)
,
5.

T
R

=
T
hr
ou

gh
pu

t
ra
te
,
6.

F
or

K
ob

li
tz

C
ur
ve
s,

7.
F
or

R
an

do
m

C
ur
ve
s,

8.
U
si
ng

di
gi
t-
se
ri
al

p
ol
yn

om
ia
l
m
ul
ti
pl
ic
a-

ti
on

,
∗
d6

4,
d3

2,
an

d
d1

6
m
ea
n
di
gi
t
si
ze

64
-b
it
,
32

-b
it
,
an

d
16

-b
it
,
re
sp
ec
ti
ve
ly

194
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

by the NAND gate area, where the NAND gate area for 65-nm technology is 2.08 µm2.

For example, the gate count of a 233-bit ECP (K-233) using bit-serial multiplication is

0.324 mm2/2.08 µm2 = 324000 µm2/2.08 µm2 gates = 156.1 Kgates. As one can see in

Table 7.3, the bit-serial version ECP needs less area to implement, but would require

more time than the digit-serial version ECP. Therefore, the energy consumption of ECP

using a bit-serial version is between 19 and 760.8 µJ for Koblitz curves (K-163 to K-571)

and between 19.8 and 834.3 µJ for random curves (B-163 to B-571). On the other hand,

the energy consumption for 64, 32, and 16-bit digit-serial version ECPs is 48.8, 33.3 and

7.1 µJ, respectively. As can be seen from Table 7.3, some are better in terms of time and

energy, some are better in terms of area. For this reason, the area×time×energy (ATE)

product was calculated to easily compare with other similar work. We can see that ECP

using digit-serial field multiplication provides better results in terms of ATE value.

7.7.2 Performance Comparison

We compare our proposed ECP implementations with the most significant work in the lit-

erature. Both bit-serial and digit-serial versions of ECP are implemented using combined

PDPA hardware on both FPGA and ASIC platforms and their performance compared.

The performance comparison of the proposed ECP with related bit-serial version ECPs are

presented in Table 7.1. In [128], the authors provide the energy consumption of their pro-

posed ECP over GF(2163). The result shows that they achieved a similar energy-efficient

design to our similar 163-bit ECP. Most of the implementations in the literature were

implemented for 163-bit ECP only [118, 128, 129, 131, 161, 163–165]. On the other hand,

we have reported ECP results for all five NIST binary fields. Our target FPGA is selected

as the Xilinx Virtex-7 and Virtex-6 FPGA, whereas in the literature most of the authors

were using a lower version of FPGAs. For this reason, a fair comparison is difficult to

make. However, we have provided all of our implementation results. The AT and perfor-

7.7. Results and Performance Comparison 195

mance is computed for our design and compared with related work. The ECP proposed

in [127] supports four binary fields over GF(2m) including three NIST curves. As can be

seen from Table 7.1, our design using a combined PDPA architecture provides more than

50% better performance than those in [127]. Moreover, the FPGA energy consumption of

the proposed bit-serial version ECPs are presented in Table 7.1. Furthermore, the results

of [118, 126, 127, 129, 131, 134, 136, 161–166] depict the FPGA-based implementations of

ECPs, but FPGA energy consumption results are not given.

Table 7.2 demonstrates ECP implementation results using digit-serial polynomial mul-

tiplication and compares the performance with related work. The proposed ECP is im-

plemented using a combined PDPA architecture, whereas the available designs in the

literature [110,111,116,117,119–121] were implemented using separate PD and PA oper-

ations. Of them, the ECP proposed in [110] presented better performance than others.

The results of the ECP in [111, 120] provide similar performance to our design. Though

our design needs more area to implement, it is faster than all other similar work. The

performance metric shows that higher-digit-based ECP gives better timing, but would

require more area. Consequently, the performance or efficiency of ECP using 64, 32, and

16-bit digit serial polynomial multiplication delivers similar results.

ASIC-based implementations and the significant work in the literature for ECP are

shown in Table 7.3. We have focused on both FPGA and ASIC technologies, also pro-

vide results for both bit-serial and digit-serial ECPs. As can be seen from Table 7.3, the

ECPs proposed in [73] and [149] support a maximum of four NIST binary curves. On the

other hand, our ASIC-based ECP using bit-serial multiplication supports all five NIST

Koblitz and random curves. Besides, our serial version ECP is very efficient in area and

energy. The proposed ECC processor using digit-serial polynomial multiplication would

require more area to implement, but is faster than all other similar work in the literature.

The ATE value for ECP is the best indicator for comparison between two designs, and

196
Chapter 7. Efficient Hardware Implementation of Elliptic Curve Cryptography

Processor Over NIST Binary Fields

is calculated for our design and compared with related work. The Area×Time×Energy

(ATE) (mm2×µs×mJ)/(KGs×ms×mJ) value is computed for all the designs which are

demonstrated in the second last column in Table 7.3. The ATE value is calculated for

ECPs in [73, 149–151, 168, 169]. Of them, the design proposed in [73] provides a lower

ATE value than others. However, our proposed digit-serial ECP provides 3 to 100 times

(mm2×µs×mJ) or 2 to 55 times (KGs×ms×mJ) smaller ATE value than those in [73].

We can say that an energy-efficient ECP is achieved for both bit-serial and digit-serial

versions. We have a trade-off in our proposed ECP design between area, time, and energy,

which is suitable for high-speed as well as low-energy cryptographic applications.

7.8 Conclusion

In this paper, an ECP hardware architecture is presented that computes the point mul-

tiplication operation with low latency. The proposed design supports all five Koblitz and

random curves over binary fields GF(2m) as recommended by NIST. In addition, a novel

combined PDPA architecture is proposed for the ECP using both bit-serial and digit-

serial multiplication. Moreover, a Jacobian-to-affine conversion unit is designed for the

practical realization of the cryptosystem. For this conversion unit, a field inversion archi-

tecture is designed using a polynomial basis and bit-serial approach. We have synthesized

our design in both FPGA and ASIC technologies. The area and time is computed for

all the designs. Furthermore, the energy consumption is also calculated from the power

and time for both FPGA and ASIC-based ECPs. The proposed ECP using a bit-serial

approach takes between 0.66 and 9.36 ms for Koblitz curves and 0.69 and 10.60 ms for

random curves from 163 to 571 bits in a Virtex-7 FPGA. The digit-serial ECP can com-

pute the full operation in between 37.52 and 111.92 µs on a Xilinx Virtex-7 FPGA using

64, 32, and 16-bit digit serial field multiplication. In addition, we have implemented our

7.8. Conclusion 197

design on a Virtex-6 FPGA. The ECP on a Virtex-6 FPGA takes 39.50 µs using 64-bit

digit-serial multiplication. Similarly, an ECP using a 16-bit digit size takes 119.54 µs in

a Virtex-6 FPGA. Furthermore, we propose an ASIC-based ECP using both bit-serial

and digit-serial field multiplication. The bit-serial ECP takes energy between 19 and

760 µJ on 65-nm technology for Koblitz curves. Thus, the ASIC performance analysis

shows that the higher-digit version reduces the latency of ECP, but needs more area. The

digit-size 16-bit provides better performance than the other two digit-serial versions. The

ATE comparison shows that our design provides 3 to 100 times (mm2×µs×mJ) or 2 to 55

times (KGs×ms×mJ) better performance than the most significant work in the literature.

Hence, the bit-serial approach is better in terms of area, whereas the digit-serial version

is better in terms of latency and energy. Finally, we can conclude that our proposed ECP

offers better performance than the other significant designs in the binary field.

Chapter 8

FPGA-Based Efficient Modular

Multiplication for Elliptic Curve

Cryptography1

8.1 Abstract

Modular multiplication is the backbone for the whole asymmetric cryptographic

process. In this paper, we have focused on a high-speed hardware implemen-

tation of modular multiplication for public-key cryptography, specially for a

high-performance Elliptic Curve Crypto-processor (ECC). The proposed de-

sign has been implemented over a prime finite field of size p using the Na-

tional Institute of Standards and Technology (NIST) recommended standards.

Field-Programmable Gate-Array (FPGA) technology with the VHDL language
1Published as: Md Selim Hossain and Yinan Kong,“FPGA-Based Efficient Modular Multi-

plication for Elliptic Curve Cryptography,”International Telecommunication Networks and Applica-

tions Conference (lTNAC), UNSW, Sydney, Australia, pp. 191-195, 18-20 November, 2015, DOI:

10.1109/ATNAC.2015.7366811.

199

200
Chapter 8. FPGA-Based Efficient Modular Multiplication for Elliptic Curve

Cryptography

has been used for this hardware implementation. The computational time of a

256-bit modular multiplication in a modern Xilinx Virtex-7 FPGA is 1.683 µs

at frequency 152.709 MHz; in this technology we have implemented an area-

efficient hardware design technique which takes only 605 slices for a 256-bit

modular multiplication. The required area and time are also very low com-

pared with all other recent designs. The product of area and time (AT) of

our design is also nearly 9-98 times better than the related designs. To our

knowledge, our implemented modular multiplication over GF(p) provides a

better performance than the recent hardware implementations.

8.2 Introduction

Asymmetric or public-key cryptography plays a vital role to pass secured information be-

tween different wireless devices. The algorithm associated with public-key cryptography

(PKC) should be designed in such a way that it requires a small area with the assur-

ance of high security and throughput. Modular arithmetic operations such as modular

addition, subtraction, squaring, multiplication, and inversion or division are vital in data

communication systems, coding, mobile appliances, and cryptography, specially public-

key cryptography (PKC). A dedicated high-speed modular multiplier is mandatory to

speed up the calculation of an elliptic-curve crypto-processor for practical applications.

This can also be used for other popular and secure public-key encryption techniques like

the Rivest-Shamir-Adleman (RSA) cryptosystem [8].

Elliptic Curve Cryptography (ECC) [10,11] is a popular and powerful PKC, and was

first proposed in 1985 independently by N. Koblitz and V. Miller. This cryptosystem

can provide equivalent security to the traditional RSA cryptosystem with a significantly

shorter key length. For example, a 256-bit ECC over a prime field provides the same

8.2. Introduction 201

level of security as 3072-bit RSA [1, 22]. This smart feature makes ECC very popular

for resource-constrained environments. IEEE P1363-2000 [23] has standardized the use

of ECC-based key-agreement and the Digital-Signature Algorithm (DSA). Elliptic Curve

(EC) domain parameters and standards for GF(p) are recommended by the U.S. Govern-

ment organization called the National Institute of Standards and Technology (NIST) [22].

Field-Programmable Gate-Array (FPGA) technology has been used for a hardware imple-

mentation of modular multiplication which assures low cost, better performance, shorter

design time, greater flexibility of the system. It also give the flexibility to update the

algorithms.

To date, several modular multiplication methods have been presented in the available

literature such as Montgomery modular multiplication [66], Radix-4 Montgomery modu-

lar multiplication [73], Bipartite Modular multiplication [170], Sum of Residues modular

multiplication [133,171], modular multiplication using the core function [137], and so on.

Among them, Montgomery modular multiplication is very popular for hardware imple-

mentation due to its simplicity. The basic operation of modular multiplication is defined

as Z = (x × y) (mod p), where p is a prime. The hardware implementation of modular

multiplication is designed for the NIST prime field denoted by GF(p). A 256-bit modular

multiplication over the prime finite field for ECC was developed by Ghosh [75], Duan [172],

Fan [173], and Daly [80]. Most researchers use the Montgomery modular multiplication

method for hardware implementation. A Radix-4 Montgomery modular multiplication

method over the prime field was proposed and implemented by Lee [73]. Plenty of mod-

ular multiplication methods for hardware implementation are available, but Montgomery

modular multiplication is the easiest and is also area-efficient from a hardware implemen-

tation perspective. However an area-efficient, high-speed design of modular multiplication

is still needed for faster implementation of Elliptic Curve Cryptosystems (ECC).

Our main target is to implement a high-performance modular multiplier which will

202
Chapter 8. FPGA-Based Efficient Modular Multiplication for Elliptic Curve

Cryptography

perform ECC operations with a very low area and latency. For this, most of our effort has

been concentrated on improving the modular multiplication operations which are suited

for an ECC processor. Efficient algorithmic reformulations underlying the prime field and

architectural optimization schemes are explored to improve the operational speed [132].

In this work, a high-speed FPGA-based design is presented using an efficient Mont-

gomery modular multiplication algorithm with hardware architecture, and it is the fastest

hardware implementation over the NIST prime field. The rest of the paper is organized as

follows. The mathematical background related to ECC and modular multiplication over

the prime field are described in Section 8.3. The algorithm with hardware architecture

is presented in Section 8.4. FPGA-based implementation results and a comparison with

related designs are given in Section 8.5. Finally, a summary of our work is given in Section

8.6.

8.3 Preliminaries

In this section, a brief introduction to the prime field elements and abstract algebra

relevant to modular multiplication and ECC which have been used in our hardware im-

plementation are presented. The prime field GF(p) is the finite field whose elements x, y ∈

GF(p) are all the integers between 0 and (p− 1) inclusive, where p is the prime.

8.3.1 Elliptic-Curve Cryptography

Elliptic-Curve Cryptography (ECC) is a powerful Public-Key Cryptography algorithm,

and nowadays it is very popular due to the smaller field size. ECC can be implemented in

either prime fields GF(p) or binary fields GF(2m). But a prime field will be the emphasis

of this work due to the use of efficient finite-field modular multiplication. An elliptic curve

8.3. Preliminaries 203

E over GF(p) in affine coordinates is the set of solutions for an equation such as

y2 = x3 + ax+ b (8.1)

where x, y, a, b ∈ GF(p) with

4a3 + 27b2 6= 0.

The coefficients a, b ∈ Fp specifying an elliptic curve E(Fp) are defined by (8.1). The

number of points on the elliptic curve E is represented by #E(Fp). It is defined over Fp

as nh, where n is the prime order of the curve, and the integer h is a co-factor such as h

= #E(Fp)/n [2, 10, 11].

In 2000, FIPS-2 was recommended with 10 finite fields: 5 prime fields (Fp), and 5

binary fields (F2m). The prime fields are F192,F224,F256,F384 and F521[2]. According to

NIST, smaller field sizes can be used in ECC than in RSA and Diffie-Hellman (DH) sys-

tems at equivalent security levels. This makes ECC a promising branch of public-key

cryptography [2,33].

The implementation hierarchy of the ECC operations over a prime finite field is pre-

sented in Figure 8.1. ECC protocols are the building blocks of EC scalar or point multi-

plication (ECSM), EC group operations and finite-field modular arithmetic. The top level

of the ECC cryptosystem contains ECC protocols like EC-DH (EC-Diffie-Hellman) key

exchange, EC-DSA (EC-Digital Signature Algorithm). The second level contains ECSM,

which is the series of EC group operations like elliptic curve point addition (ECPADD)

and elliptic curve point doubling (ECPDBL). The third level comprises ECPADD and

ECPDBL, which are called elliptic-curve group operations. These are the series of the

finite-field modular arithmetic operations such as modular addition, subtraction, multipli-

cation, squaring, and inversion. The finite-field modular arithmetic units are the bottom

or fourth level in the hierarchy. For this finite-field modular arithmetic, modular multi-

204
Chapter 8. FPGA-Based Efficient Modular Multiplication for Elliptic Curve

Cryptography

ECC Protocols
(ECDH, ECDSA)

ECPDBL

Modular
addition

ECSM
(R=kP)

ECPADD

Modular
subtraction

Modular
multiplication

Modular
squaring

Modular
inversion

Figure 8.1: Implementation hierarchy of the ECC operations over GF(p).

plication is the most crucial for the overall performance of the ECC processor because

most of the clock latency depends upon the operation of this modular multiplication.

8.3.2 Modular Multiplication over GF(p)

All modular arithmetic operations over the prime field GF(p) are accomplished by integers

modulo p consisting of the integers between 0 and p− 1, where p is a prime number. Let,

m ' d log2 p e be the bit length of p. The bit length of our desaign is 256 because our aim

is to implement 256-bit modular multiplication for the ECC. Besides, in practice a 256-bit

ECC system over a prime field is very useful for modern security purposes. In order to

execute the ECSM, modular multiplication is mandatory because this is the fundamental

and most crucial operation for ECC over the prime field. We denote this finite field by

Fp and call p the modulus of Fp. The basic modular multiplication operation can be

presented as

Z = (x× y) (mod p) (8.2)

8.4. Hardware Architecture of Modular Multiplication over GF(p) for ECC 205

where p is a prime. A basic example of modular multiplication is as follows, consider

x = 28, y = 20, and modulus p = 29, then
z = (x× y) (mod p)

= (28× 20) (mod 29) = (19× 29 + 9) (mod 29) = 9.

There are different methods for hardware implementation of modular multiplication

presently available. But we have used the Montgomery modular multiplication method,

through which we can avoid the costly trial division by the modulus p and, due to the

use of this efficient algorithm, modular multiplication can be performed with a high

degree of efficiency. Besides using this method we will design an area-efficient hardware

implementation that is mandatory for modern applications of public-key cryptosystems.

8.4 Hardware Architecture of Modular Multiplication

over GF(p) for ECC

This section presents the NIST standards for F256, Montgomery modular multiplication

algorithms along with the hardware architecture for our implementation. All the param-

eters for NIST elliptic curves over F256 are listed in Table 8.1 [2, 22]. According to the

NIST standards, the prime number used for 256-bit modular multiplication is

p = 2256 − 2224 + 2192 + 296 − 1

= 115792089210356248762697446949407573530086143415290314195533631308867

097853951.

There have been plenty of methods for modular multiplication but most of these

algorithms follow the basic concept of the Montgomery method. In 1985, the well-known

Montgomery modular multiplication algorithm [66] was shown to be an efficient method

206
Chapter 8. FPGA-Based Efficient Modular Multiplication for Elliptic Curve

Cryptography

Table 8.1: NIST-recommended elliptic curves over F256 [2, 22]

P-256: p = 2256 − 2224 + 2192 + 296 − 1, a = −3, h = 1

p=0x FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFF

S=0x C49D3608 86E70493 6A6678E1 139D26B7 819F7E90

r=0x 7EFBA166 2985BE94 03CB055C 75D4F7E0 CE8D84A9 C5114ABC AF317768 0104FA0D

b=0x 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E 27D2604B

n=0x FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC632551

x=0x 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945 D898C296

y=0x 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE CBB64068 37BF51F5

Algorithm 8.1: Radix-4 Montgomery modular multiplication [73]

Input: X ≡ xr (mod p), Y ≡ yr (mod p), p and m

Output: Z = MM(X,Y) ≡ XY r−1 (mod p) ≡ xyr (mod p)

Let V = X, Z = 0, S = Y ;

for i = 0 to (m/2− 1) do

If m (mod 2) = 1 and i = m/2− 1 then

Z ≡ (Z + V0 ∗ S)/2 (mod p),

V = V/2;

else

Z ≡ (Z + V0 ∗ S + V1 ∗ 2S)/2 (mod p),

V = V/4;

Return Z

for computing modular multiplication without using any trial division. Radix-4 Mont-

gomery modular multiplication is shown in Algorithm 8.1 and was presented by Lee [73].

Algorithm 8.1 gives 50% better performance than Algorithm 8.2 in terms of clock cycles,

whereas Algorithm 8.1 requires more area (slices).

8.4. Hardware Architecture of Modular Multiplication over GF(p) for ECC 207

Algorithm 8.2 represents the simple or radix-2 Montgomery modular multiplication

method. This method calculates the Montgomery product using a series of simple addi-

tions and right shifts. A hardware architecture of the Montgomery modular multiplier is

presented in Figure 8.2. This method avoids the need for costly trial division by mod-

ulus p, and keeps the intermediate result bounded within (m + 2) bits over the whole

calculation. The Montgomery modular product is given by equation (8.3):

R = Montgpro(x, y, p)

= x× y × 2−(m+2)(mod p).

(8.3)

Algorithm 8.2: Montgomery modular multiplication in Fp [66]

Montgpro(x, y, p)

Input: x, y ∈ [0, p - 1] and p

Output: Z where Z = x.y.2−m (mod p) and Z ∈ [0, 2p-1]

Z0 = 0 ;

for i = 0 to (m - 1) do

qi = (Zi + yi.x) (mod 2);

Zi+1 = (Zi + yi.x+ qi.p)/2;

end for

Return Z

The output of a Montgomery modular multiplier is 2−(m+2) times the expected result,

where m represents the field size in bits. In order to get the exact result, the output must

be multiplied by (2(2m+2)) to remove the 2−(m+2) which is the extra factor of the output.

The size of the adders used for this case must be equal to (m + 2) bits to handle the

intermediate result at each step of the iteration. There (m + 2) iterations are required

to obtain an output in the range between 0 and 2m - 1 for multiplicands up to twice m.

208
Chapter 8. FPGA-Based Efficient Modular Multiplication for Elliptic Curve

Cryptography

iz

+

+

x y p

0

1iz

shiftM L

shift

iqLSB

0

Figure 8.2: A hardware architecture for a modular multiplier [80].

One modular correction is then mandatory to assure that the output is in the range from

0 through m - 1, requiring only one extra clock cycle [80].

8.5 Hardware Implementation Results and Performance

Analysis

This section presents a hardware implementation of modular multiplication over a prime

finite field of size 256. We have implemented our design on a modern 28-nm Xilinx

Virtex-7 (XC7V485T-2FFG1761) FPGA device. The implemented design has been sim-

ulated using both Modelsim and Isim. The design is synthesized using Xilinx ISE 14.7

synthesis technologies with an optimized goal of ’Speed’. We have also compared the per-

formance of the modular multiplier with related hardware designs. All simulation results

are verified using high-level Maple software.

Table 8.2 shows the number of clock cycles required for implementing the proposed

modular multiplication over the prime field GF(256). Our 256-bit modular multiplication

8.5. Hardware Implementation Results and Performance Analysis 209

Table 8.2: Performance of Modular Multiplication over F256 on

Virtex-7 FPGA.

Arithmetic Operation # Clock Clock Period (ns) Time (µs)

Modular Multiplication 1m+1 6.548 1.683

1m ' d log2 p e

Table 8.3: Device Utilization Summary (Estimated Values) for Modular Multiplication

over F256.

Logic Utilization Used Available Utilization

Numbers of Slice Registers 773 607200 0.12 %

Number of Slice LUTs 2361 303600 0.78 %

Number of LUT-FF Pairs 772 2362 32 %

Number of BUFG/BUFGCTRLs 1 32 3 %

Number of Slices 605 75900 0.80 %

takes m + 1 clock cycles for a m-bit modular multiplication, but our design requires less

area than the other designs.

Table 8.3 represents a summary of the estimated values of device utilization. From

this table we can see that our implemented modular multiplication over the prime field

F256 takes a small amount of resources on the FPGA. The synthesis report shows that

our design is area-efficient as it contains only 605 slices.

Table 8.4 represents the 256-bit modular multiplication results and performance com-

parisons with related designs over the prime field F256. In this table we have presented

information about the frequency (MHz), area (slices), computational time (µs), product

of area and time, and technology. All these parameters have been used for our design and

210
Chapter 8. FPGA-Based Efficient Modular Multiplication for Elliptic Curve

Cryptography

Table 8.4: Performance comparison of modular multiplication between our implemented

design and other related work over F256.

Ref. Technology Area (Slices) Freq. (MHz) Time (µs) Area×Time (1AT)

Ours Virtex-7 605 152.71 1.683 1

Lee [73] Virtex-II 4843 37 3.46 16.46

Ghosh [75] Virtex-II 5379 34 7.53 39.78

Duan [172] Virtex-II 2607 194.56 4.06 10.40

Fan [173] Virtex-II 3873 93 2.3 8.75

Daly [80] Virtex-II 5477 14 18.28 98.35

1The normalization factor for A×T is 1/0.001018= 982.3183, where A is area (slices) and T is time (s). Virtex-II FPGA is

obsolete now

for related designs to make a fair comparison of the performance between them. We have

used Virtex-7 FPGA for our hardware platform because Virtex-II FPGA is obsolete now.

Radix-4 Montgomery modular multiplication for a dual-field Elliptic Curve Cryptographic

processor was given by Lee [73]. All the available results for Lee’s method have been pre-

sented in the second row of Table 8.4. The available result shows that Lee’s method

can save 50% on clock cycles because they have used a high-radix modular multiplier,

but their design takes more area (slices) than our radix-2 or simple Montgomery modu-

lar multiplication. For this case, the area (slices) and computational time for a 256-bit

modular multiplication are 4843 and 3.46 µs respectively. For their implementation, they

have used a Virtex-II FPGA device. A modular multiplication over the prime field for an

elliptic curve scalar multiplier is implemented by Ghosh [75]. The hardware resources of

their design contain 5379 slices and the computation time is 7.53 µs to achieve a 256-bit

modular multiplication. Their modular multiplication takes k clock cycles for k-bit mod-

ular multiplication, which is almost the same as our design, but we have achieved a more

8.6. Conclusion 211

area-efficient design. A 256-bit modular multiplication on a Virtex-II FPGA over the field

F256 is presented by [172], [173], and [80], and their implemented modular multiplication

requires 4.06 µs, 2.30 µs, and 18.28 µs respectively. However, our implemented modular

multiplier over F256 on a Xilinx Virtex-7 FPGA takes only 605 slices and 1.683 µs time.

To the best of our knowledge, the best indicator for efficient design is the product of

area and time (AT). For this reason, we have calculated the product of area and time (AT)

for all the available designs, and make a comparison of their AT with our own design. All

these results have been presented in column six of Table 8.4. This column shows that the

Daly method gives the worst performance of all the available methods. Of the Ghosh,

Duan, Fan, and Daly methods, the method proposed by Fan gives the best performance

in terms of AT. However Fan’s method has 8.75 times the AT of our design. This result

shows that, in terms of the AT parameter, our design gives a far better result than the

other available designs presented in Table 8.4.

The required hardware resources of their design are also very high compared to our

implementation. We have also achieved a higher clock frequency and less computation

time than all the other designs. Our FPGA-based efficient modular multiplication is well

suited for a 256-bit ECC processor due to its small area (slices).

8.6 Conclusion

In brief, we have implemented a high-performance modular multiplier over F256 which

can be used for efficient operations of elliptic curve scalar multiplication (ECSM), which

is the key operation of an ECC processor. The Montgomery modular multiplication

method was used for our efficient hardware implementation along with the NIST primes.

The implemented hardware is optimized by using different optimization techniques for

getting high performance on an FPGA compared to all the related designs. Our design

212
Chapter 8. FPGA-Based Efficient Modular Multiplication for Elliptic Curve

Cryptography

on a Xilinx Virtex-7 FPGA takes only 1.683 µs to perform 256-bit modular multiplication,

currently the fastest available hardware implementation. Our implemented design is also

area-efficient as it contains only 605 slices. The product of area and time (AT) is also

nearly 10-100 times as good as the referenced 256-bit modular multiplication methods.

The design was simulated using Modelsim PE and all the results verified using high-

level Maple software. From the overall performance analysis and comparisons of different

methods for modular multiplication over the prime field F256, we can conclude that our

256-bit modular multiplier provides better performance than all the other designs in terms

of the area and the timing.

Chapter 9

High-Performance FPGA

Implementation of Modular Inversion

over F256 for Elliptic Curve

Cryptography1

9.1 Abstract

Modular Inversion over a prime field is an important operation for public-key

cryptographic applications. It is the most crucial operation to speed up the

calculation of an elliptic curve crypto-processor (ECC), when affine coordi-

nates are used. In this work, the main goal is to implement a fast, high-

performance modular inversion for ECC using field-programmable gate array
1Published as: Md Selim Hossain and Yinan Kong,“High-Performance FPGA Implementation of Mod-

ular Inversion over F256 for Elliptic Curve Cryptography,”2015 IEEE International Conference on Data

Science and Data Intensive Systems (DSDIS), UTS, Sydney, Australia, pp. 169-174, 11-13 December,

2015, DOI: 10.1109/DSDIS.2015.47.

213

214
Chapter 9. High-Performance FPGA Implementation of Modular Inversion over F256

for Elliptic Curve Cryptography

(FPGA) technology. A binary inversion algorithm with the VHDL has been

used for this efficient implementation. Timing simulation shows that the de-

lay for one modular inversion operation in a modern Xilinx Virtex-7 FPGA

takes only 2.329 µs at the maximum frequency of 146.389 MHz. We have im-

plemented an area-efficient design which takes a small amount of resources on

the FPGA and needs only 1480 slices. To the best of the author’s knowledge,

the proposed modular inversion over F256 provides a better performance than

the available hardware implementations in terms of the area and the timing.

9.2 Introduction

Public-key cryptography (PKC) plays a vital role to pass the secured information among

the different wireless devices. Modular arithmetic operations such as modular addition,

subtraction, squaring, multiplication, inversion, and division are vital in data communica-

tion systems, coding, mobile appliances, and cryptography specially public-key cryptogra-

phy (PKC) such as ECC. A high-performance hardware implementation is mandatory for

PKC to fulfil the requirements while conserving a good computing performance. Specially

a dedicated high-speed modular inverter is mandatory to speed up the calculation of an

elliptic curve crypto-processor when affine coordinate systems are used [73,75,132,137].

The ECC [10,11] and the Rivest-Shamir-Adleman (RSA) cryptosystem [8] are the two

most popular and powerful public-key encryption methods for cryptographic applications.

However, ECC can provide similar security to the traditional RSA cryptosystem with a

significantly shorter key length. This attractive feature makes ECC very popular for

different applications such as smart cards, credit cards, pagers, PDAs (Personal Digital

Assistants), cellular phones, and web servers [75]. IEEE P1363-2000 [23] has standardized

public-key cryptographic techniques, including cryptographic schemes, the use of ECC-

9.2. Introduction 215

based key-agreement and digital-signature algorithms (DSA). Elliptic curve (EC) domain

parameters for ECC are recommended by the U.S. Government organization called the

National Institute of Standards and Technology (NIST) [22]. FPGA technology has been

used for this implementation due to the greater flexibility of the system.

Numerous methods for computing modular inversion have been presented in the avail-

able literature. Two well-known methods are often used: Fermat’s Little Theorem (FLT)

and some variant of the Extended Euclidean Algorithm (EEA) such as the Binary In-

version Algorithm, Montgomery Inversion Algorithm, and the Unified Inverse Algorithm.

We have extensively studied of modular inversion for hardware implementations, but not

many FPGA implementations have been found in the available literature. A modular in-

version for ECC over Fp was developed by Lee [73], Ghosh [75], Vliegen [76], McIvor [79],

and Daly [80], but the Binary Inversion Algorithm is the easiest and is also faster and

more area-efficient from a hardware implementation perspective. A Xilinx Virtex-7 FPGA

is used for this implementation; this is an advanced version of FPGA, and is remarkable

for its integration of an embedded hardware multiplier [133,171]

Our main target is to implement an efficient modular inverter for ECC. For this, we

have concentrated on improving the operational speed of modular inversion using algo-

rithmic reformulations and architectural optimization schemes. However an area-efficient

and high-speed feature of modular inversion is still needed for faster implementation of

elliptic curve cryptosystems (ECC) in affine coordinate systems. In this work, a high-

performance FPGA-based design has been proposed using an efficient Binary Inversion

Algorithm with hardware architecture, and is the fastest hardware implementation.

The outline of this paper is organized as follows. Section 9.3 describes the mathemati-

cal background behind ECC and modular inversion. Section 9.4 presents the architecture

of modular inversion and its components. Implementation results and a comparison with

the available designs are given in Section 9.5. Finally, Section 9.6 summarizes our work.

216
Chapter 9. High-Performance FPGA Implementation of Modular Inversion over F256

for Elliptic Curve Cryptography

9.3 Mathematical Background

In this section, a brief introduction to the prime field elements and all mathematics rele-

vant to modular inversion and ECC which have been used in this hardware implementation

is presented.

9.3.1 ECC

ECC is one of the powerful public-key cryptography algorithm and nowadays it is very

popular due to the smaller field size. ECC can be implemented in either prime fields

GF(p) or binary fields GF(2m). An elliptic curve E over GF(p) in affine coordinates is

the set of solutions for an equation such as

y2 = x3 + ax+ b (9.1)

where x, y, a, b ∈ GF (p) with

4a3 + 27b2 6= 0.

The coefficients a, b ∈ Fp specifying an elliptic curve E(Fp) are defined by (9.1). The

number of points on the elliptic curve E is represented by #E(Fp). It is defined over Fp

as nh, where n is the prime order of the curve, and the integer h is a co-factor such as h

= #E(Fp)/n [2, 10,11].

Let, P = (x1, y1) and Q = (x2, y2) are two points on the EC, then point addition (PADD)

and point doubling (PDBL) formulae in affine coordinates are given below.

R(x3, y3) = P (x1, y1) +Q(x2, y2) ∈ E,

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

where λ = (y2 − y1)/(x2 − x1) and P 6= Q;

(9.2)

9.3. Mathematical Background 217

R(x3, y3) = 2P (x1, y1) ∈ E,

x3 = λ2 − 2x1,

y3 = λ(x1 − x3)− y1,

where λ = (3x21 + a)/2y1 and P = Q;

(9.3)

where R = 0 when x1 = x2 and y2 6= y1, or x1 = x2 = 0. Hence, when P 6= Q we have the

PADD operation in (9.2) and when P = Q we have the PDBL operation in (9.3) [2,10,11].

From (9.2), the PDBL operation in affine coordinates requires one modular inversion,

one modular addition, three modular subtractions, five modular multiplications, and two

modular squarings. Similarly, from (9.3), the PADD operation in affine coordinates re-

quires one modular inversion, six modular subtractions, two modular multiplications, and

one modular squaring. However, modular inversion is the most crucial operation among

all these modular arithmetic operations in terms of area, complexity and execution time

for point operations on an EC in affine coordinates.

Table 9.1: comparison of Key length for equivalent security of Symmetric-key and

public-key Cryptography [2,33]

Symmetric-key Example-Algorithm RSA/DH ECC in GF(p)

80 SKIPJACK 1024 192

112 Triple-DES 2048 224

128 AES Small 3072 256

192 AES Medium 8192 384

256 AES Large 15360 521

In 2000, FIPS-2 was recommended with 10 finite fields as standard: 5 prime fields and

5 binary fields[2]. The comparison between symmetric cipher key length and key lengths

for public-key cryptography like RSA, Diffie-Hellman (DH), and ECC over prime field

218
Chapter 9. High-Performance FPGA Implementation of Modular Inversion over F256

for Elliptic Curve Cryptography

GF(p) are given in Table 9.1. It demonstrates that smaller field sizes can be used in ECC

than in RSA and DH systems at an equivalent security level. For instance, 256-bit ECC

gives equivalent security to 3072-bit RSA with significantly smaller keys and area. ECC

is many times more efficient than RSA and DH for either public-key operations (such as

signature generation and decryption) or private-key operations (such as signature verifi-

cation and encryption). This makes ECC a promising branch of PKC [2,33].

9.3.2 Coordinate Systems for EC Point Representation

There are various coordinate systems to represent elliptic curve points but two well-known

coordinate systems are often used for ECC: Affine coordinate systems and projective

coordinate systems. A point on the EC E(GF (p)) for affine coordinates can be represented

by using two elements x, y ∈ Fp, i.e. P(x, y). In this coordinate system, the EC group

operations such as PDBL and PADD require a modular inversion, a time-consuming

operation. The modular inversion over a prime field for each group operation can be

reduced by using projective coordinate systems. In projective coordinates, a point P

on the EC needs three elements X, Y, Z ∈ Fp, i.e. P(X, Y, Z). In practice, to convert

projective to affine coordinates, one modular inversion is still needed for an elliptic curve

point multiplication (ECPM) [79]. However, EC group operation need more modular

multiplication in projective coordinates which is also a very costly operation for ECC.

But we have proposed a high-performance modular inversion that is well suited for ECC

operation. There are plenty of projective coordinates in the available literature; a detailed

coordinate system is discussed in [2].

9.3.3 Modular Inversion over GF(p)

Modular inversion over the prime field is an expensive operation in ECC hardware. All

modular arithmetic operations over prime field GF(p) are accomplished using integers

9.3. Mathematical Background 219

modulo p, where p is a prime number consisting of the integers between 0 and p - 1.

Let, m ' d log2 p e be the bit length of p. The bit length of this design is 256 because

our main target is to implement a 256-bit modular inversion for applications of ECC.

Besides, in practice a 256-bit ECC system over a prime field is very useful for modern

security applications. In order to execute ECPM in affine coordinates, modular inversion

is mandatory. This modular inversion operation is performed modulo p, in a finite field

of order p. For any integer x, x mod p shall denote the unique integer remainder q, 0

≤ q ≤ p− 1, obtained upon dividing x by p; this operation is called reduction modulo p.

We denote this finite field by Fp and call p the modulus of Fp. The inverse of an integer a

modulo p is defined as an integer R such that a.R ≡ 1 (mod p). This classical definition

of the modular inversion operation can be presented as

R = a−1 (mod p) (9.4)

where p is a prime and a is an integer. From equation (4), the inverse of a exists if and

only if a is relatively prime with p. Therefore, the Greatest Common Divisor (GCD) of

a and p must be 1 or gcd(a, p) = 1. A basic example of a modular inverter is as follows:

consider
a = 12 and modulus p = 29,

then R = a−1 (mod p)

= 12−1 (mod 29) = 17 because 12× 17 (mod 29) = 1.

There are different methods for computing modular inversion but two well-known methods

are often used. The first one is Fermat’s Little Theorem (FLT) and the second is based

on the extended Euclidean (GCD) algorithm (EEA).

220
Chapter 9. High-Performance FPGA Implementation of Modular Inversion over F256

for Elliptic Curve Cryptography

Fermat’s Little Theorem (FLT)

This states that

ap−1(mod p) = 1

Hence,

R = ap−2(mod p) = a−1(mod p).

From this method, we can say that the inverse of any integer a over F p is ap−2. Using the

FLT method, the multiplicative inverse is obtained by modular exponentiation. However,

modular exponentiation is a very expensive operation for finding the inverse [174].

Extended Euclidean (GCD) algorithm (EEA)

The second method for the finding inverse is based on the extended Euclidean (GCD)

algorithm. This method computes the multiplicative inverse of a integer number a ∈ F p

by finding two variables R, q that fulfill the following relation:

aR + pq = gcd(a, p) = 1. (9.5)

From (9.5), the term pq drops due to the modulus p on both sides of the equation,

and the inverse of a or the multiplicative inverse is finally obtained as R. There are

many variants of EEA reported in the available literature [2]; one efficient algorithm for

inversion is based on the binary method, which is well-known as the Binary Inversion

Algorithm [2]. The inversion operation may be calculated using the Montgomery Inverse

based on Montgomery multiplication and the Unified Inverse Algorithm [73,79].

9.4. Hardware Implementation of Modular Inverter over GF(p) 221

9.4 Hardware Implementation of Modular Inverter over

GF(p)

This section presents the modular inversion algorithm along with a hardware architecture

for this implementation. All the parameters for NIST elliptic curves over F256 are listed

in Table 9.2 [2,22]. According to the NIST standards, the prime number used for 256-bit

modular inversion is

p = 2256 − 2224 + 2192 + 296 − 1

= 115792089210356248762697446949407573530086143415290314195533631308867

097853951.

Table 9.2: NIST-recommended elliptic curves over F256 [2, 22]

P-256: p = 2256 − 2224 + 2192 + 296 − 1, a = −3, h = 1

p=0x FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFF

S=0x C49D3608 86E70493 6A6678E1 139D26B7 819F7E90

r=0x 7EFBA166 2985BE94 03CB055C 75D4F7E0 CE8D84A9 C5114ABC AF317768 0104FA0D

b=0x 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E 27D2604B

n=0x FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC632551

x=0x 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945 D898C296

y=0x 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE CBB64068 37BF51F5

A Xilinx Virtex-7 (XC7V485T-2FFG1761) FPGA with VHDL (VHSIC Hardware De-

scription Language) has been used for this hardware implementation. Finite-field modular

arithmetic such as modular addition, subtraction, multiplication, squaring, and inversion

are the most crucial operations for the overall performance of the ECC processor. In affine

222
Chapter 9. High-Performance FPGA Implementation of Modular Inversion over F256

for Elliptic Curve Cryptography

coordinate systems, the PDBL and PADD require a modular inversion, a time-consuming

operation. However, we have implemented a very efficient design that may speed up the

overall calculation of an ECC. We have used an efficient algorithm for inversion based

on the binary method, which is well-known as the Binary Inversion Algorithm shown as

Algorithm 9.1 [2]. The modular multiplicative inverse a−1 mod p or modular inversion

over the prime field is accomplished using a series of additions, subtractions, and shifting

operations. This algorithm works iteratively, and at every step either u or v decreases by

at least one bit length. The result of modular inversion R = a−1 mod p is achieved after

2m iterations, where m is the maximum bit length of p and a.

From Algorithm 9.1, we can see that four registers u, v, x, and y are essential to imple-

ment a hardware architecture of inversion over a prime field. These hardware architectures

are shown in Figure 9.1. From this algorithm, the calculation of division like u/2, v/2,

x/2, y/2 and so on depends upon the parity and magnitude comparisons of the m-bit

registers named u, v, x, and y. Two multiplexers are used to select u and v and sev-

eral multiplexers are used to select x and y as appropriate. The Least Significant Bit

(LSB) determines (1 indicates odd, 0 indicates even) the parity of any number. But

exact comparisons can be attained through full m-bit subtractions, and this contributes

a major delay before decisions regarding the next calculation can be made. We have

used m-bit carry-propagation adders to execute the additions or subtractions. The imple-

mented designs compute all possible values like x, x/2, (x+ p)/2, (x− y)/2, (x+ p− y)/2

or y, y/2, (y+ p)/2, (y−x)/2, (y+ p−x)/2 simultaneously to save time, and multiplexers

are used for selecting the new value of x and y. How to find the new value of u, v, x, and

y at each iteration of the main while loop in algorithm 9.1, is shown in Figure 9.1 [174].

9.4. Hardware Implementation of Modular Inverter over GF(p) 223

Algorithm 9.1: Binary algorithm for inversion in GF(p) [2]

Input: Prime p and a ∈ [1, p - 1]

Output: R = a−1 mod p

u = a; v = p; x = 1; y = 0 ;

while u 6= 0 do

while u is even do u = u/2;

if x is even then x = x/2; else x = (x+ p)/2; end

end

while v is even do v = v/2;

if y is even then y = y/2; else y = (y + p)/2; end

end

if u ≥ v then

u = u− v ; if x > y then x = x− y;

else x = (x+ p− y);

else

v = v − u ; if y > x then y = y − x;

else y = (y + p− x); end

end

end

if u = 1 then R = x mod p; elseif v = 1 then R = y mod p;

end

Return R (At this instance, R = a−1 mod p)

224
Chapter 9. High-Performance FPGA Implementation of Modular Inversion over F256

for Elliptic Curve Cryptography

uv

+ 1

0 1

/2

newv

0v

)(a

+ 1

0 1

u v

/2

newu

0u

+

0

0 1

x y

+ +

0 1 0 1

/2

newx

0 1

p

p2

1

0

0u

)(c

LSB

)(b

LSB

xyp

)(d

0v

+

0

0 1

+ +

0 1 0 1

0 1

p2

1

0

LSB

LSB

/2

newy

Figure 9.1: A hardware architecture for a modular inverter for finding (a)unew , (b)

vnew, (c) xnew, and (d) ynew [174].

9.5. Results and Performance Analysis 225

9.5 Results and Performance Analysis

The FPGA implementation results of modular inversion over a prime field Fp of field size

256 is presented in this section. We have implemented this design on a modern 28-nm

Xilinx Virtex-7 (XC7V485T-2FFG1761) FPGA device. The proposed design has been

extensively simulated using Modelsim PE. The design is synthesized using Xilinx ISE

14.7 synthesis technologies with an optimized goal of ’Speed’. We have also compared the

overall performance of the modular inverter with those in the available literature.

Table 9.3: Device Utilization Summary (Estimated Values) for Modular Inversion over

F256.

Logic Utilization Used Available Utilization

Numbers of Slice Registers 1551 607200 0 %

Number of Slice LUTs 5868 303600 1 %

Numbers of Fully Used LUT-FF Pairs 1291 6128 21 %

Numbers of BUFG/BUFGCTRLs 1 32 3 %

Numbers of Bonded IOBs 516 700 73 %

Numbers of occupied Slices 1480 75900 1 %

Table 9.3 represents the summary of estimated values of device utilization. From this

table we can see that our implemented modular inversion over the prime field F256 takes

a small amount of resources on the FPGA. All the simulation results verified using high-

level Maple software.

All simulated results and performance comparisons of 256-bit modular inversion over a

prime field are given in Table 9.4. It is to be noted that the results provided in the available

literature are implemented on different FPGA technologies from our implemented design.

In this case, a straightforward comparison is difficult. However, we tried to give all the

226
Chapter 9. High-Performance FPGA Implementation of Modular Inversion over F256

for Elliptic Curve Cryptography

Table 9.4: Performance Analysis of modular Inversion of our design and other related

designs over F256.

Ref. Technology Area (Slices) Freq. (MHz) Time (µs) Area×Time (AT)

Ours Virtex-7 1480 146.38 2.329 1

Lee [73] Virtex-II 9213 37 4.98 13.31

Ghosh [75] Virtex-II 9146 34 14.60 38.73

Vliegen [76] Virtex-II 2085 68.17 1160 701.66

McIvor [79] Virtex-II 14844 40.68 15.22 65.34

Daly [80] Virtex-II 5477 50 6.4 10.17

† The normalization factor for A×T is 1/0.00344692= 290.114, where A is area (slices) and

T is time (s). Virtex-II FPGA is obsolete now

information about the frequency (MHz), area (slices), computational time (µs), product

of area and time (AT), and technology for fair comparison. A Virtex-7 FPGA has been

used for this work as the hardware platform because Virtex-II FPGA is obsolete now. The

design proposed by Lee in [73] takes fewer clock cycles than all other available designs,

but their design consumes more area (slices) in FPGA than this proposed design. The

computational time and area for their design takes 4.98 µs and 9213 slices respectively on

Xilinx Virtex-II FPGA. In [75], the authors proposed a modular inversion for ECC that

shows the comparable area (slices) and frequency with Lee’s design. However, Lee’s design

is three times more efficient than Ghosh’s design in terms of timing. Ghosh’s design takes

2m clock-cycles and 14.6 µs time for m-bit modular inversion. All the available results for

Lee’s and Ghosh’s designs have been presented in the second and third rows respectively

of Table 9.4. However, our design provides better performance than their designs in terms

of the area and the timing.

A 256-bit modular inversion on a Virtex-II FPGA over the field F256 is presented

9.5. Results and Performance Analysis 227

by [76], [79], and [80], and their implemented modular inversion requires 1160 µs, 15.22

µs, and 6.4 µs respectively. In [76, 79, 80], their designs consume 2085, 14844, and 5477

slices respectively on a Virtex-II FPGA. Among them, the McIvor design consumes more

area than all other available designs and Vliegen’s design takes more time than all other

available designs. However, this proposed modular inversion over F256 on a Xilinx Virtex-

7 FPGA takes only 1480 slices and 2.329 µs time. It may be observed that our design is

far better than both designs in terms of the area and the timing.

To the best of our knowledge, the best indicator for efficient design is the product

of area and time (AT). For this reason, we have calculated the product of area and

time (AT) for all the available designs, and make a comparison of the AT with our own

design. All these calculated AT values have been presented in column six of Table 9.4.

This column shows that the Vliegen design gives the worst performance among all the

available methods. Their design consumes less area but takes more time than all other

designs. The AT value of their design is almost 701 times our AT. Of the Lee, Ghosh,

and Daly methods, the method proposed by Daly gives the best performance in terms of

AT. However, Daly’s design takes 10.17 times the AT of our design. This result shows

that, in terms of the AT parameter, our design gives a far better result than the other

available designs which have been presented in Table 9.4.

The required hardware resources of their designs are also very high compared to our

implementation. However, our implemented design efficiently optimizes the area×time

(AT) per bit value for modular inversion. Our design takes an average 1.33m clock-

cycles for m-bit modular inversion. We have also achieved a higher clock frequency and

less computation time than all the other available designs. Thus, our designed modular

inversion is well suited for a 256-bit ECC processor due to its small area (slices).

228
Chapter 9. High-Performance FPGA Implementation of Modular Inversion over F256

for Elliptic Curve Cryptography

9.6 Conclusion

This paper presents a fast, high-performance modular inversion over F256 which can be

used for targeted elliptic curve cryptographic applications. The Binary Inversion Algo-

rithm along with the NIST prime has been used for this efficient hardware implementation.

The implemented hardware is optimized by using different optimization techniques such as

algorithmic reformulations and architectural optimization for getting high performance on

an FPGA compared to all the related designs. Our design on a Xilinx Virtex-7 FPGA can

achieve a maximum clock frequency of 146.38 MHz and it takes only 2.329 µs to perform

256-bit modular inversion. So far this is the fastest available hardware implementation.

The product of the area and time (AT) of our design is also nearly 10-700 times better

than the related designs. The hardware architecture delivers a high-performance inversion

operation with low resource usage and contains only 1480 slices. The design was simu-

lated using Modelsim PE and all the results verified using high-level Maple software. From

the overall performance analysis and comparisons of different modular inverters over the

prime field F256, it can be concludes that this proposed 256-bit modular inverter provides

better performance than all the other designs in terms of the area and the timing.

Chapter 10

High-Performance Elliptic Curve

Cryptography Processor Over NIST

Prime Fields1

10.1 Abstract

This paper presents a description of an efficient hardware implementation

of an elliptic curve cryptography processor (ECP) for modern security ap-

plications. A high-performance elliptic curve scalar multiplication (ECSM),

which is the key operation of an ECP, is developed both in affine and Jaco-

bian coordinates over a prime field of size p using the NIST standard. A novel

combined point doubling and point addition (PDPA) architecture is proposed

using efficient modular arithmetic to achieve high speed and low hardware uti-

lization of the ECP in Jacobian coordinates. This new architecture has been
1Published as: Md Selim Hossain, Yinan Kong, Ehsan Saeedi and Niras C. Vayalil,“High-Performance

Elliptic Curve Cryptography Processor Over NIST Prime Fields,”IET Computers & Digital Techniques,

Vol. 11, Iss. 1, pp. 33-42, 2017, DOI: 10.1049/iet-cdt.2016.0033.

229

230
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

synthesized both in ASIC and FPGA. A 65nm CMOS ASIC implementation

of the proposed ECP in Jacobian coordinates takes between 0.56 ms and 0.73

ms for 224-bit and 256-bit ECC respectively. The ECSM is also implemented

in an FPGA and provides a better delay performance than previous designs.

The implemented design is area-efficient and this means that it requires not

many resources, without any digital signal processing (DSP) slices, on an

FPGA. Moreover, the area-delay product of this design is very low compared

to similar designs. To the best of the authors’ knowledge, the ECP proposed

in this paper over Fp performs better than available hardware in terms of area

and timing.

10.2 Introduction

The demand for secure transactions over the network and associated appliances has in-

creased rapidly in recent times. Advanced communication systems require secure infor-

mation transmission in different areas such as health care, confidential systems, storage,

and financial services. For these applications, asymmetric cryptography, or public-key

cryptography (PKC), plays a vital role in passing secured information among different

devices. PKC offers an important type of technology for key agreement, encryption/de-

cryption, and digital signatures. The algorithm associated with PKC (e.g. elliptic curve

cryptography (ECC)) should be designed so that it requires minimal resources with the

assurance of high security and throughput. A high-performance hardware implementation

is vital for ECC, especially to speed up the calculations in an ECP [75,175].

10.2. Introduction 231

10.2.1 Related Work

ECC was first proposed in the mid 1980s by N. Koblitz [11] and V. Miller [10]. The

ECC and Rivest-Shamir-Adleman (RSA) [8] cryptosystems are the two most popular and

powerful public-key encryption methods for cryptographic applications. However, ECC

can provide the same level of security as the traditional RSA cryptosystem with a sig-

nificantly shorter key. For example, a 256-bit ECC over a prime field provides the same

level of security as a 3072-bit RSA. In addition, less memory and hardware resources are

required to implement elliptic curve cryptosystems [22, 54, 79, 176]. This smart and at-

tractive feature makes ECC very popular for resource-constrained devices such as smart

cards, credit cards, pagers, personal digital assistants (PDAs), and cellular phones. The

IEEE [23] and National Institute of Standards and Technology (NIST) [22] have stan-

dardized elliptic curve (EC) parameters over GF(p) and GF(2m) for PKC. Moreover,

Certicom has provided NIST-recommended EC domain parameters, which are standard

for efficient cryptography in SEC2 (Standards for Efficient Cryptography) [54]. FPGA

technology has been used for hardware implementation of an ECP; it assures low cost,

better performance, shorter design time, and greater system flexibility, for instance up-

dating algorithms.

To date, several FPGA-based hardware implementations of ECPs over a prime field

have been proposed [44, 75, 76, 79, 90, 169, 175–181]. The core operation, of elliptic curve

scalar/point multiplication (ECSM/ECPM), is defined as R = k.P , where the multiplica-

tion of an EC point P by a scalar k provides the resultant point R [2]. Scalable/flexible

FPGA-based ECPs were proposed by Kung et al. [175] and Ananyi et al. [177], respec-

tively. Both these ECPs support all five prime-field elliptic curves recommended by NIST.

ECPs over GF(p) on an FPGA were proposed in [75,90], and a parallel architecture unit

is used for ECC. In [90], they also synthesized their ECSM architecture on a 130nm

CMOS ASIC. They used the double-and-add always algorithm for implementing ECSM.

232
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

In [169], Lai et al. proposed a dual-field ECP, implemented on a TSMC 130nm CMOS

ASIC. Marzouqi et al. [176] and Vliegen et al. [76] proposed an FPGA-based ECP over

an NIST prime field F256 on a Xilinx Virtex-5 and Virtex-II FPGA, respectively. A pro-

grammable PKC coprocessor was proposed by Mentens et al. [180] and a reconfigurable

modular arithmetic logic unit for PKC was developed by Sakiyama [181]. These ECPs

were implemented over prime field F256 on a Xilinx Spartan-3 FPGA. Ahmadi et al. [178]

and Fan et al. [179] proposed ECPs over a prime field F192 on 0.13 µm CMOS and Xilinx

Virtex-II FPGA, respectively. Although a few high-speed ECPs have been reported over

Fp, most are only area-efficient or are superior only in terms of speed. To have a trade-off

between speed and area complexities, a well-designed and efficient ECP is a better option

for modern cryptographic applications.

10.2.2 Our Contribution

In this paper, we present a new ECSM with a focus on a system-level description of an

efficient FFMA for implementing area-efficient and faster ECP hardware over prime field

Fp. The major contributions of the paper are as follows:

1. We have proposed a novel elliptic curve scalar multiplication (ECSM) architecture

using PDPA hardware in Jacobian coordinates; it is the fastest hardware implemen-

tation both in ASIC and FPGA.

2. We have developed an architecture for Jacobian-to-affine coordinate conversion,

serial-in parallel-out (SIPO), and parallel-in serial-out (PISO) at the top level in

order to interface the I/O ports of the ECC processor (ECP) due to the limited

number of pins on the FPGA.

3. We have also proposed an efficient ECP in affine coordinates in which ECSM op-

erations are achieved in a very low area (around 9K slices without using any DSP

10.3. Mathematical Background 233

slices) and latency (20% less than recent implementations).

4. We have proposed a new hardware for a combined EC group operation named

point doubling and point addition (PDPA) to develop a high-performance ECP in

Jacobian coordinates.

5. We have designed an optimized data-flow architecture for EC group operations

such as point doubling (PDBL) and point addition (PADD) for the ECP in affine

coordinates.

6. We have proposed and developed high-performance finite-field modular arithmetic

(FFMA), for example modular addition, subtraction, multiplication, and inversion

algorithms, with hardware architectures over GF(p) (Fp). To improve these FFMAs

and hence the EC group operations, efficient algorithmic reformulations underlying

the NIST prime field and architectural optimization schemes are proposed.

10.3 Mathematical Background

In this section, a brief introduction to abstract algebra, field and group theories relevant

to the ECP used in this hardware implementation are presented.

10.3.1 Elliptic Curve Cryptography

ECC can be implemented in either prime fields (Fp) or binary fields (GF(2m)); both

provide almost the same level of security. To design an efficient FFMA, use of an EC over

a prime field has been intensively investigated. An EC defined over Fp provides a group

structure that is used to implement cryptographic systems. The group operations are

PDBL and PADD. We have implemented all EC operations in both affine and Jacobian

coordinates. An elliptic curve E over GF(p) in affine coordinates is the set of solutions

234
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

for an equation such as

y2 = x3 + ax+ b (10.1)

where x, y, a, b ∈ GF(p) with

4a3 + 27b2 6= 0.

The coefficients a, b ∈ Fp specifying an elliptic curve E(Fp) are defined by (10.1). The

number of points on elliptic curve E is represented by #E(Fp). It is defined over Fp

as nh, where n is the prime order of the curve and the integer h is a co-factor such as

h = #E(Fp)/n. A detailed elliptic curve group operation in affine coordinates is found

in [2, 10,11], and described in Section 10.4.3.

Let P = (x, y) be a point in an affine coordinate system; the projective coordinates

P = (X, Y, Z) are given by the following:

X = x; Y = y; Z = 1. (10.2)

The projective point P = (X, Y, Z), Z 6= 0 corresponding to the affine point (P = (x, y))

is given by

x = X/Z2; y = Y/Z3. (10.3)

Using (10.1), (10.2), and (10.3), the projective form of the Weierstrass equation of the

elliptic curve becomes

Y 2 = X3 + aXZ4 + bZ6. (10.4)

EC group operations formulae in Jacobian coordinates are given in [2, 89]; the ECSM

R = kP which is the most important operation in ECC has been implemented in Jaco-

bian coordinates.

10.4. Hardware Architecture over GF(p) for ECC 235

10.4 Hardware Architecture over GF(p) for ECC

This section presents all algorithms and hardware architectures related to FFMA and

ECC which are important for the ECP. All parameters and standards for NIST elliptic

curves over F224 and F256 are listed in [2].

10.4.1 Modular Multiplier/Squarer over Fp

In order to implement the ECSM, modular multiplication is mandatory because this is

the most crucial operation for the ECP over the prime field, presented as

Z = (x× y) (mod p). (10.5)

The Montgomery modular multiplication (MMM) method has been used to implement

the ECP in affine coordinates also, because modular multiplication can be performed very

efficiently. In 1985 the well-known Montgomery multiplication algorithm [66] was shown

to be an efficient method for performing modular multiplication. This method calculates

the Montgomery product using a series of simple additions and right shifts. A hardware

architecture of the MMM/squarer is presented in Fig. 10.1. This method avoids the need

for costly trial division by modulus p, and keeps the intermediate result bounded to (m+2)

bits throughout the calculation. The Montgomery modular product is given by

R = Montgpro(x, y, p)

= x× y × 2−(m+2)(mod p).

(10.6)

The output of a MMM is a factor 2−(m+2) times the expected result, where m is the

field size in bits. In order to obtain the exact result, the output must be multiplied by

2(m+2) to remove the 2−(m+2) which is the extra factor of the output. The size of the adders

used for this must be (m + 2) bits to handle the intermediate result at each iteration;

(m+ 2) iterations are required to obtain an output in the range between 0 and 2m−1 for

236
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

+

+

0

shiftM L

shift

0

x y p

iZ

1iZ

iqLSB

Figure 10.1: Hardware architecture for a modular multiplier/squarer using Montgomery

method [80,182]

.

multiplicands up to twice m. One modular correction is then required to ensure that the

output is in the range between 0 and m - 1 inclusive, taking only one extra clock cycle

(CC) [69,80,182].

An efficient algorithm also proposed for modular multiplication is shown in Algorithm

10.1, and based on interleaved modular multiplication [60]. Fig. 10.2 shows the proposed

architecture for modular multiplication over prime field Fp. In this method, the multiply-

by-two operation is performed by a simple left-shift operation. The and-gate operation is:

one bit A[i] of the first operand A is multiplied by the whole second operand B bitwise, and

then added to the intermediate result. The intermediate result C3 is then reduced with

respect to the modulus p by two subtractions operating in parallel until the values C4 and

C5 are smaller than the modulus. For doing this, two subtractions and two comparisons

are required per iteration. These operations (for C4 and C5) are running in parallel

where p2 is pre-computed. Then we need a two-bit multiplexer to select which result is

correct. In this architecture, parallelization in operations and pre-computations (to get

10.4. Hardware Architecture over GF(p) for ECC 237

Algorithm 10.1: Proposed algorithm for modular multiplication in GF(p)

Input: Prime p and A, B ∈ [1, p - 1]

Output: C = (A ∗B) mod p

1: C = 0; p2 = 2 ∗ p (pre-computed) ;

2: for i = m− 1 downto 0 do

3: C1 = C; C2 = 2 ∗ C1 (left-shift operation);

4: I1 = A[i] ∗B (and-gate operation);

5: C3 = C2 + I1s; C4 = C3 - p; C5 = C3 - p2 (p2 = 2p);

6: if C3 ≥ p then C6 = C4;

7: elsif C3 ≥ p2 then C6 = C5; else C6 = C3; end if C = C6;

8: end for

9: Return C

p2) are used to calculate all intermediate results. The latency of this method is mostly

and-gate, addition, and subtraction. This method requires m + 1 cycles to compute the

final result of modular multiplication, where m is the maximum bit length of the operands

A,B or p and m ' d log2 p e. Therefore, we have designed a high-performance modular

multiplier for an ECP in Jacobian coordinates. A modular squarer is similar to a modular

multiplier except that only one input is required for a modular squarer rather than the

two inputs for a modular multiplier; otherwise all other operations are the same as for

modular multiplication.

10.4.2 Modular Inversion over Fp

Modular inversion over a prime field is the most expensive operation in ECC hardware,

and it is mandatory for ECSM in affine coordinates. An efficient algorithm has been used

for inversion based on the binary method, which is well known as the binary inversion

238
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

Adder

Register C

I1 = A(i)*BC2 = 2*C1

C1

C2

C3

C6

C3>p C4 = C3 - p

MUX
00 10

p

AB

I1s

01

C5 = C3 – p2 C3>p2

C4 C5

p2

C

+…

B(m-1) B(m-2) B(1) B(0) A(i)

I1(m-1) I1(m-2) I1(1) I1(0)

}

Figure 10.2: Proposed hardware architecture for a modular multiplier/squarer.

algorithm shown in Algorithm 10.2 [2].

The modular inversion over the prime field is accomplished using a series of additions,

subtractions, and shift operations [84]. This algorithm works iteratively, and at every step

either u or v decreases by at least one in bit length. The result of modular inversion is

achieved after 2m iterations, where m is the maximum bit length of p and a. The inverse

of an integer a modulo p is defined as an integer R such that a.R ≡ 1 (mod p). This

classical definition of the modular inversion operation can be presented as

R = a−1 (mod p) (10.7)

where a is an integer. From (11.8), the inverse of a exists if and only if a is relatively

prime with p. Therefore, the Greatest Common Divisor (GCD) of a and p must be 1,

or gcd(a, p) = 1. From Algorithm 10.2, four registers - u, v, x, and y - are essential to

10.4. Hardware Architecture over GF(p) for ECC 239

Algorithm 10.2: Binary algorithm for inversion in GF(p) [2]

Input: Prime p and a ∈ [1, p - 1]

Output: R = a−1 mod p

1: u = a; v = p; x = 1; y = 0 ;

2: while u 6= 1 and v 6= 1 do

3: while u is even do u = u/2;

4: if x is even then x = x/2; else x = (x+ p)/2; end

5: end

6: while v is even do v = v/2;

7: if y is even then y = y/2; else y = (y + p)/2; end

8: end

9: if u ≥ v then

10: u = u− v ; if x > y then x = x− y;

11: else x = (x+ p− y);

12: else

13: v = v − u ; if y > x then y = y − x;

14: else y = (y + p− x); end

15: end

16: end

17: if u = 1 then R = x mod p; elseif v = 1 then R = y mod p;

18: end

19: Return R (At this instant, R = a−1 mod p)

implement a hardware architecture for inversion over a prime field. The calculation of

divisions such as u/2, v/2, x/2, and y/2 depends upon parity and magnitude comparisons

of the m-bit registers named u, v, x, and y. Two multiplexers are used to select u or v and

several multiplexers are used to select x or y as appropriate. The Least Significant Bit

240
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

(LSB) determines (1 indicates odd, 0 indicates even) the parity of any number. But exact

comparisons can be attained only through full m-bit subtraction, and this contributes a

major delay before decisions regarding the next calculation can be made. We have usedm-

bit carry-propagation adders to execute the additions or subtractions. The implemented

designs compute all possible values like x, x/2, (x + p)/2, (x − y)/2, (x + p − y)/2 or

y, y/2, (y+p)/2, (y−x)/2, (y+p−x)/2 simultaneously to save time, and multiplexers are

used for selecting the new values of x and y. Using this algorithm, one modular inversion

over prime field Fp takes an average 1.33m CCs for an m-bit modular inversion.

10.4.3 Proposed EC Group Operations

The EC group operations (PDBL and PADD) are the building blocks of FFMA. There are

different techniques for a data-flow architecture such as balancing the architecture, which

minimizes the power consumption and reduces the longest path for better performance.

Parallelization in operations and pre-computations can be used for further improvement,

and we have used all these techniques to increase the throughput rate of EC group oper-

ations for a high-performance ECP. As one can see in level 2 in Fig. 10.3a, one inversion,

one squaring, and one addition module are operating in parallel. The 2P (2Px, 2Py)

value of PDBL is pre-computed, and used for the PADD module in Fig. 10.3b if x1 = y1

and x2 = y2. Using this parallel operation and the pre-computation technique, the data

path is reduced for the PDBL and PADD operations. In Fig. 10.3a and b, the latencies of

PDBL and PADD are 5m + 12 and 5m + 10 respectively, in affine coordinates. Hence, we

have designed a high-performance ECSM in affine coordinates for an FPGA. In addition,

we propose a novel PDPA technique for computing EC group operations together, shown

in Fig. 10.3c. As can be seen from Fig. 10.3a and b, 11 steps are needed to perform

the PDBL operation and 9 steps are needed to perform the PADD operation whereas a

combined PDPA module needs only 12 steps/levels. Parallelization in operations is used

10.4. Hardware Architecture over GF(p) for ECC 241

Addition Multiplication Squaring

1X 1Y 1ZLevel 0

6m+14

Level 1

Level 2

PX

Level 3

‐
Level 4 ‐

‐ Level 5

PY

‐

Level 6 ‐

Level 7

‐

‐

‐

Level 8

Level 9

Level 10

Level 11

Level 12 ‐

m+1

1

1

1

1

1

1

m+1

m+1

m+1

m+1

m+1

1

1

(c)

Latency
(clock cycles)

Latency
(clock cycles)

‐

×

‐

×

1313)(yxxy

2

1
2

3 2xx

+

+

a

+

+

‐

+

1

1

1

1

1

1

1

1

1

×
0_Con

1

1

1

1

‐

‐

×

2

‐

‐

×

‐ ‐

21
2

3 xxx

1313)(yxxy

2x 1x 2y 1y

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

pm 2log

(a) (b)

m+1

m+1

m+1

5m+12

m+1

2m2m

m+1

m+1

5m+10

1x1y

multiplication
1

1

1

Y3_PA X3_PA Z3_PA X3_PD Y3_PD Z3_PD

squaring

addition

subtraction

inversion

+

×

‐

Figure 10.3: Proposed hardware architecture for EC (a) PDBL, (b) PADD, and (c)

PDPA.

to increase the latency and throughput of EC group operations. As we can see in level

1 in Fig. 10.3c, two squarings and one multiplication module are operating in parallel.

Similarly in level 6, three multiplications and one squaring module are running in parallel.

Therefore the number of levels in the data path is reduced, and the overall latency of the

PDPA module is reduced to 6m + 14 in Jacobian coordinates. Using this efficient PDPA

hardware, we have designed a high-performance ECP in Jacobian coordinates. Fig. 10.3a,

b, and c depicts the proposed architecture of the PDBL, PADD, and PDPA operations

242
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

respectively. The costs of PDBL, PADD and PDPA over Fp are 3MUL + 2SQ + 1INV +

5ADD + 3SUB, 2MUL + 1SQ + 1INV + 6SUB, and 11MUL + 7SQ+ 10ADD + 9SUB re-

spectively, where MUL, SQ, INV, ADD, and SUB are the costs of modular multiplication,

squaring, inversion, addition, and subtraction respectively.

10.4.4 Proposed ECSM

ECSM over Fp is the key operation of an ECP; it is computationally the most expensive.

However we have designed a high-performance ECSM using efficient group operations and

FFMA units. The basic operation of ECSM is defined as kP , where k is a positive integer

and P is a point on the elliptic curve E defined over a prime field Fp. Various methods

exist for implementing ECSM: the binary method, the Non-adjacent form (NAF) method,

and the Montgomery method. The easiest way to implement ECC is the binary method

(left to right) [2], shown in Algorithm 10.3. Using this algorithm, on average m PDBL

and m/2 PADD operations are required for an ECSM in affine coordinates. An ECSM

architecture in affine coordinates over Fp using separate PDBL and PADD is presented

in Fig. 10.4. In this ECSM architecture, the PDBL module computes 2Q (Q2x,Q2y) and

the PADD module computes P + 2Q (Q2px,Q2py). The comparator module is used for

comparison between the output of the PDBL module and the input of the PADD module.

When the two inputs of PADD are equal (e.g. Px = Q2x and Py = Q2y) then the output

of MUX2 is the same as 2P (2Px, 2Py) if key = 1. This result occurs when key = n+1; in

this case if the input of the PDBL module is (n+ 1)/2 then the output of this module is

(n+ 1)P = 1P (Px, Py) which is the same as the other input of the PADD module. The

pre-computed value of 2P (2Px, 2Py) from the PDBL module is used in MUX1 for this

comparison. The output of MUX2 always depends upon the bit pattern of the input key.

For a bit pattern of key = 0, the output of PDBL goes directly to the input of MUX2, this

appears at the output of MUX2. When key = 1 the output of PDBL goes to the input of

10.4. Hardware Architecture over GF(p) for ECC 243

PADD and the output of MUX2 is the same as the output of PADD. In this architecture,

5m + 12 and 5m + 10 CCs are required for computing PDBL and PADD respectively in

affine coordinates. The total number of CC for computing ECSM in affine coordinates is

defined by (10.8). Total average CCs for ECP in affine coordinates

= m× (PDBL CC) + (m/2)× (PADD CC)

= (m(5m+ 12) + (m/2)(5m+ 10))

= (7.5m2 + 17m)

(10.8)

Algorithm 10.3: Binary method (Left to right) for point multiplication

Input: k = (km−1,...,k1,k0)2, P (x, y) ∈ E(Fp

Output: Q(x, y) = k.P (x, y), where Q(x, y), P (x, y) ∈ E(Fp

1: Q = 0 ;

2: for i = m - 1 to 0 do

3: Q = 2Q;

4: if k(i) = ’1’ then

5: Q = P +Q ;

6: end

7: end for

8: Return (Q(x, y))

To have a high-performance ECP in Jacobian coordinates, we have proposed a novel

ECSM architecture using our proposed PDPA module. Most ECC hardware implemen-

tations in the literature have used separate PDBL and PADD modules, and require more

CCs than our design. Also, most of the ECC hardware has been implemented in FPGA

form. We have found a few hardware implementations targeting an ASIC. The proposed

hardware is implemented in both FPGA and ASIC. Fig. 10.5 shows our proposed hardware

244
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

Qx

Qy

Point Addition
(PADD)
(Affine

Coordinates)

Point Doubling
(PDBL)
(Affine

Coordinates)

Comparator
=

Q2x
Q2y

key
Px
Py

pr
ec

om
pu

te
d

Px
Py

2Px
2Py

Q2px

Q2py

M
U
X
2

1

0

M
U
X
1

}

Figure 10.4: Overall hardware architecture of proposed ECSM in affine coordinates for

prime field.

architecture of ECSM in Jacobian coordinates over the prime field Fp. In this architec-

ture, 6m + 14 CCs are needed for the PDPA module including 2 cycles are needed for

the two registers to store all intermediate results. Equation (10.9) represents the total

number of CCs for ECP in Jacobian coordinates. As we can see in Fig. 10.5, the PDPA

module performs the EC group operations (PDBL and PADD) together, and these results

are stored in the register module Register_PDPA. The select logic module generates a

’sel2s’ signal for the MUX_1_NEW module. In the MUX_1_NEW module of Fig. 10.5,

when ’sel2s = 00’ then PADD results from the Register_PDPA module go to the output,

which is the same as the input of the MUX_2_NEW module. Similarly, when ’sel2s =

01’ then 1P (Px, Py, Pz) results, and when ’sel2s = 10’ then 2P (2Px, 2Py, 2Pz) results,

which are pre-computed, go to the input of MUX_2_NEW. Hence, the inputs of the

MUX_2_NEW module are the PDBL and PADD results and the output of this module

is either PDBL or PADD, depending upon the bit pattern of input key. When the bit

pattern of key is high then the output is the PADD result otherwise the PDBL result,

10.4. Hardware Architecture over GF(p) for ECC 245

Qx Qy

Px Py Pz

Qz

precomputed

2Px 2Py 2Pz

1

2

R
eg

is
te

r B
an

k

256 256 256

done

Key(count)

key
256

clk rst start

sX3_PD

sX
3_

PA

Y
3_

PA

sZ
3_

PA

X
3_

PD
s

Y
3_

PD
s

Z3
_P

D
s

X
3_

PA
s

Z3
_P

A
s

Y3_PA

ss
X

3_
PA

ss
Z3

_P
A

ss
Y

3_
PA

sel2s
sQ

X
s

sQ
Y

s

sQ
Zs

clkstart rst

Counter

Start_PDPA Count_PDPA
Count

QXouts

QZouts
QYouts

sY
3_

PD

sZ
3_

PD }

MUX_1_NEW
00 01 10

0 MUX_2_NEW

Combined point doubling and point addition (PDPA)
(Jacobian Coordinates)

Register_PDPA

select logic

Register_Count_PDPA

Figure 10.5: Overall hardware architecture of proposed ECSM in Jacobian coordinates.

which is stored in register Register_Count_PDPA. The counter module of this architec-

ture act as a control unit, and decides when the results of this register will be passed to

the next input of the PDPA module. There m − 1 cycles are required to compute the

final result of this ECSM module, where each cycle needs 6m+ 14 CCs (CCs for PDPA).

The final results of this ECSM module are in Jacobian coordinates, and need conversion

to verify the result in affine coordinates. Fig. 10.6a shows the hardware architecture for

246
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

conversion from Jacobian to affine coordinates. As can be seen from this figure, 6m + 6

cycles are required to get the result in affine coordinates. The complexity of this module

is 4MUL + 1SQ + 1INV, where INV is the cost of modular inversion which is the most

expensive operation in the prime field. However, to get the result in affine coordinates,

only one modular inversion is needed. We have also designed serial-in parallel-out (SIPO)

1

6m+6

QX QY QZ

xq yq

m+1

2m

1

m+1

m+1

m+1

(a)

SQInversion Multiplication

ECPM using PDPA
(Jacobian Coordinates)

PISO

Key_in

224/256

224/256

Key Ready

Qxi Qyi Qzi done_pm

clk

Rx Ry done

SI

Start_in

Start

Rxi Ryi done_aff
224/256

clk

clk

clk

rst

rst

rst

rst

Jacobian to Affine

(b)

SIPO

Figure 10.6: Proposed hardware architecture of (a) Jacobian to affine conversion and

(b) top module of ECP.

and parallel-in serial-out (PISO) modules to reduce the pin numbers of the top module.

The top module of the final ECP is shown in Fig. 10.6b and are the building blocks of

four modules, namely SIPO, ECSM, Jacobian to affine, and PISO. The upper module

is SIPO which is required to send data serially and receive data in parallel. The second

module contains ECSM, which is the main operation of the ECP. The Jacobian to affine

conversion module is the third level, and is needed to get the result in affine coordinates.

The bottom level is PISO, which sends the final results serially. The top module of ECP

10.5. Implementation Results and Performance Analysis 247

needs only five pins, two for input and three for output. Total CCs for ECP in Jacobian

coordinates

= (m− 1)× PDPA + Jacobian to Affine + SIPO + PISO

= (m− 1)× (6m+ 14) + (6m+ 6) + (m+ 2) + (m+ 1)

= (6m2 + 16m− 5)

(10.9)

10.5 Implementation Results and Performance Analy-

sis

This section presents the implementation results for our proposed design. The design has

been extensively simulated using both ModelSim PE and ISim, and synthesized using

Xilinx ISE 14.7 synthesis technologies with an optimized goal of ‘Speed’. All simula-

tion results are verified using high-level Maple software. The proposed ECP hardware

in Jacobian coordinates is also synthesized using Synopsys Design Compiler with United

Microelectronics (UMC) standard logic-cell library (65nm, 1.2V, 25◦C) for normal case

analysis. In our experiment, the Synopsys Design Compiler gives better results using our

new proposed hardware. We have compared the overall performance of the ECSM with

those in the available literature. The detailed results are given in Table 10.5.

Modular addition and subtraction are implemented very efficiently; both operations

take only one clock cycle. The computation time of modular addition and subtrac-

tion is only 1.13 ns in Kintex-7 (XC7K325T-2FFG900) FPGA and 3.51 ns in Virtex-5

(XC5VLX330-2FF1760) FPGA for a prime field of either F224 or F256. Both designs were

also synthesized using 65nm CMOS technology with a target clock of 1 ns. Thus, the area

of modular addition, subtraction, and combined addition and subtraction consumes only

7.96 Kgates (0.01655 mm2), 16.17 Kgates (0.0336 mm2), and 18.38 Kgates (0.038 mm2)

respectively.

248
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

Table 10.1 presents modular multiplication and inversion results and performance over

the prime field Fp. A Kintex-7 FPGA has been used as the hardware platform for the

ECP in affine coordinates because the Virtex-II FPGA is now obsolete. A new modular

multiplication algorithm and architecture has been designed, and implemented in both

Kintex-7 and Virtex-5 FPGA, and the results are shown in Table 10.2. We have imple-

mented this new architecture on a Virtex-5 FPGA also, and its performance is slightly

worse than with a Kintex-7 FPGA. As can be seen from Table 10.2, this new design on a

Kintex-7 FPGA shows better performance than our Montgomery modular multiplication

method. Using this new modular multiplication, we have designed a high-performance

ECP in Jacobian coordinates. A modular multiplication over the prime field for an ECSM

is implemented by Ghosh et al. [75]. They have also used the interleaved modular multi-

plication method. The hardware resources of their design are 4657 and 5379 slices, and

the computation times are 6.00 µs and 7.30 µs respectively to achieve 224-bit and 256-bit

modular multiplication. Their design takes k clock cycles for k-bit modular multiplica-

tion, which is almost the same as our design, but we have achieved a more area-efficient

design. A 256-bit modular multiplication using the Montgomery method on a Virtex-II

FPGA over the field F256 is presented in [172] and [80], and their implemented modular

multiplications require 18.28 and 4.06 µs, respectively. However, our designed modular

multiplier using the Montgomery method over F256 on a Xilinx Kintex-7 FPGA takes only

605 slices and 1.68 µs. The throughput rate of our design is also higher than the other

available designs.

We have also designed a modular inversion for ECP in both affine and Jacobian coor-

dinates. In [75], the authors propose a modular inversion for ECC over the NIST prime

fields F192, F224, and F256. Their design takes 2m clock cycles for an m-bit modular

inversion. A 256-bit modular inversion on a Virtex-II FPGA is proposed in [79], [76],

and [80], and their implemented modular inversion requires 15.22 µs, 1160 µs, and 6.4

10.5. Implementation Results and Performance Analysis 249

T
ab

le
10
.1
:
P
er
fo
rm

an
ce

an
al
ys
is

of
F
F
M
A

fo
r
E
C
P

in
affi

ne
co
or
di
na

te
s
ov
er

F p
on

F
P
G
A
.

F
F
M
A

P
la
tf
or
m

F
ie
ld
,

A
re
a

Fr
eq
ue
nc

y
T
im

e
(µ
s)

A
T

T
hr
ou

gh
pu

t

O
pe

ra
ti
on

(T
ec
hn

ol
og

y)
B
it

Le
ng

th
(S
lic

es
)

(M
H
z)

R
at
e
(M

bp
s)

M
od

ul
ar

M
ul
ti
pl
ic
at
io
n

K
in
te
x-
7

F p
22

4
50

6
16

3.
76

1.
37

0.
68

16
3.
50

F p
25

6
60

5
15

2.
71

1.
68

1
a

15
2.
38

M
od

ul
ar

In
ve
rs
io
n

K
in
te
x-
7

F p
22

4
12

63
15

6.
27

1.
90

0.
70

11
7.
90

F p
25

6
14

80
14

6.
38

2.
33

1b
10

9.
87

a
T
he

no
rm

al
iz
at
io
n
fa
ct
or

of
A
×
T

fo
r
m
od

ul
ar

m
ul
ti
pl
ic
at
io
n
is

1/
0.
00

10
18

=
98

2.
31

83
,
w
he

re
A

is
ar
ea

(s
li
ce
s)

an
d
T

is
ti
m
e
(s
)

b
T
he

no
rm

al
iz
at
io
n
fa
ct
or

of
A
×
T

fo
r
m
od

ul
ar

in
ve
rs
io
n
is

1/
0.
00

34
46

92
=

29
0.
11

4,
w
he

re
A

is
ar
ea

(s
li
ce
s)

an
d
T

is
ti
m
e
(s
)

250
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

T
ab

le
10
.2
:
F
P
G
A

Im
pl
em

en
ta
ti
on

of
m
od
ul
ar

m
ul
ti
pl
ic
at
io
n
fo
r
E
C
P

in
Ja

co
bi
an

co
or
di
na

te
s.

C
ir
cu
it

P
la
tf
or
m

F
ie
ld
,

A
re
a

Fr
eq
ue

nc
y

T
im

e
(µ
s)

A
T
a

T
hr
ou

gh
pu

t

(T
ec
hn

ol
og

y)
B
it

Le
ng

th
(S
lic

es
)

(M
H
z)

R
at
e
(M

bp
s)

M
od

ul
ar

M
ul
ti
pl
ic
at
io
n

K
in
te
x-
7

F p
22

4
36

5
13

0.
49

1.
71

0.
63

13
0.
99

F p
25

6
39

7
13

5.
89

1.
88

0.
76

13
6.
17

V
ir
te
x-
5

F p
22

4
36

2
82

.3
9

2.
72

1
82

.3
9

F p
25

6
42

0
78

.2
2

3.
27

1.
40

78
.2
9

a
T
he

no
rm

al
iz
at
io
n
fa
ct
or

fo
r
A
×
T

is
1/

0.
00

10
18

=
98

2.
31

83
,
w
he

re
A

is
ar
ea

(s
li
ce
s)

an
d
T

is
ti
m
e
(s
)

10.5. Implementation Results and Performance Analysis 251

µs respectively. In [76,79,80], their designs consume 14844, 2085, and 5477 slices respec-

tively. Of them, the McIvor design consumes more area than all other available designs

and Vliegen’s design takes more time than all other designs. We have a trade-off between

area and speed, and take only 1480 slices and 2.33 µs for a 256-bit modular inversion.

Our design takes an average 1.33m CCs for an m-bit modular inversion. We have also

achieved a higher clock frequency and less delay than all the other designs.

Most of the modular multiplication architecture was implemented on an FPGA. We

have also synthesized our new modular multiplication (Algorithm 10.1, Fig. 10.2) using

UMC 65nm CMOS technology; results are shown in Table 10.3. This indicates that the

proposed design is very fast as well as area-efficient. It takes only 468 ns with an area of

0.0275 mm2 (13.26 Kgates) for 256-bit modular multiplication. The throughput rate of

our design is 547 Mbps, which is very high for a prime field of either F224 or F256.

Hardware implementation results for PDBL and PADD are presented in Table 10.4.

PBDL over the prime fields F224 and F256 is performed in Xilinx Kintex-7 in 6.20 µs and

7.65 µs respectively. Similarly, PADD needs computation times of 6.09 µs and 7.57 µs

with lower hardware resources. Based on our implementation results, we note that the

computation times for both operations are much less due to the efficient implementation

of FFMA. We have achieved a high throughput rate of almost 34 Mbps for both opera-

tions. In addition, a novel PDPA architecture has been designed (shown in Fig. 10.3c)

with the latency of 6m + 14, which is very small compared to other available designs in

the literature.

Table 10.5 represents the ECSM results and performance comparisons with sim-

ilar designs over the NIST prime field Fp. Xilinx Kintex-7 and Virtex-5 FPGAs have

been used for this work as the hardware implementation platforms because the Virtex-II

FPGA is now obsolete. In affine coordinates, we achieve a scalar multiplication in 3.05

ms at the frequency of 140.7 MHz and 4.70 ms at the frequency of 119.2 MHz in a Xilinx

252
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

T
ab

le
10
.3
:
A
SI
C

im
pl
em

en
ta
ti
on

of
m
od
ul
ar

m
ul
ti
pl
ic
at
io
n
fo
r
E
C
P

in
Ja

co
bi
an

co
or
di
na

te
s
ov
er

F p
.

C
ir
cu
it

P
la
tf
or
m

F
ie
ld
,

A
re
a

C
yc
le
s

Fr
eq
ue

nc
y

T
im

e
T
hr
ou

gh
pu

t

(T
ec
hn

ol
og

y)
B
it

Le
ng

th
(M

H
z)

(µ
s)

R
at
e
(M

bp
s)

M
od

ul
ar

65
nm

C
M
O
Sa

F p
22

4
0.
02

66
m
m

2
/1

2.
79

K
ga

te
s

22
5

54
9.
45

0.
40

9
54

7.
00

M
ul
ti
pl
ic
at
io
n

F p
25

6
0.
02

75
m
m

2
/1

3.
26

K
ga

te
s

25
7

54
9.
45

0.
46

8
54

7.
00

a
U
se
d
U
M
C

st
an

da
rd

lo
gi
c
ce
ll
li
br
ar
y
(6
5n

m
,
1.
2V

,
25
◦
C
)
fo
r
no

rm
al

ca
se

an
al
ys
is

10.5. Implementation Results and Performance Analysis 253

T
ab

le
10
.4
:
E
C

G
ro
up

O
pe
ra
ti
on

(P
D
B
L
an

d
PA

D
D
)
R
es
ul
ts

in
affi

ne
co
or
di
na

te
s
fo
r
G
F
(p
)
on

K
in
te
x-
7

G
ro
up

O
pn

|p
|,
(b
it
s)

A
re
a
(S
lic

es
)

La
te
nc

y
(C

C
s)

A
ve
ra
ge

T
im

e
(µ
s)
@
f
(M

H
z)

T
hr
ou

gh
pu

t
R
at
e
(M

bp
s)

P
D
B
L

22
4

41
30

5m
+
12

6.
20

@
15

6.
56

36
.1
3

25
6

45
97

5m
+
12

7.
65

@
14

6.
40

33
.4
6

PA
D
D

22
4

34
59

5m
+
10

6.
09

@
15

6.
56

36
.7
8

25
6

38
61

5m
+
10

7.
57

@
14

6.
40

33
.8
2

m
'
d
lo
g
2
p
e
an

d
C
C
=
nu

m
b
er

of
cl
oc
k
cy
cl
e

254
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

T
ab

le
10
.5
:
C
om

pa
ri
so
n
be
tw
ee
n
ou

r
E
C
C

de
si
gn

an
d
si
m
ila

r
w
or
k
ov
er

G
F
(p
)

C
ir
cu
it

P
la
tf
or
m

F
ie
ld

/
R
ep

or
te
d

K
C
yc
le
s

T
im

e
(m

s/
E
C
SM

)
A
re
a×

T
im

e
R
el
at
iv
e

T
hr
ou

gh
pu

t

B
it

Le
ng

th
A
re
a
(s
lic

es
)

@
f
(M

H
z)

(A
T
)

A
T

ra
te

(k
bp

s)

T
h
is

w
or
k
[a
]

65
nm

C
M
O
S

F p
22

4
0.
81

m
m

2
/

30
4.
6

0.
56

@
54

6.
5

-
-

40
0

(J
ac
ob

ia
n
)

39
3K

ga
te
s

F p
25

6
0.
93

m
m

2
/

39
7.
3

0.
73

@
54
6.
5

-
-

35
0

44
7K

ga
te
s

T
h
is

w
or
k
[b
]

K
in
te
x-
7

F p
22

4
9.
7K

30
4.
6

2.
36

@
12

8.
9

22
.8
9

0.
52

94
.9
1

(J
ac
ob

ia
n
)

F p
25

6
11

.3
K

39
7.
3

3.
27

@
12

1.
5

36
.9
5

0.
84

78
.2
8

T
h
is

w
or
k
[c
]

K
in
te
x-
7

F p
22

4
8.
4K

42
9.
7

3.
05

@
14

0.
7

25
.6
2

0.
59

73
.4
4

(A
ffi
n
e)

F p
25

6
9.
3K

56
0.
7

4.
70

@
11

9.
2

43
.7
1

1
54

.4
1

T
h
is

w
or
k
[d
]

V
ir
te
x-
5

F p
22

4
10

.7
K

30
4.
6

3.
64

@
83

.6
5

38
.9
5

0.
89

61
.5
4

(J
ac
ob

ia
n
)

F p
25

6
12

.3
K

39
7.
3

5.
26

@
75

.4
3

64
.7
0

1.
48

48
.6
7

Lo
ia

nd
K
o
[1
75

]
V
ir
te
x-
4

F p
19

2
42

9.
7

2.
36

@
18

2.
0

16
.5
7

0.
38

81
.3
2

F p
22

4
7.
02

K
66

6.
7

3.
66

@
18

2.
0

25
.7
0

0.
59

61
.2

F p
25

6
+

99
3.
2

5.
46

@
18

2.
0

38
.3
0

0.
88

46
.9
1

F p
38

4
8D

SP
s

29
68

.4
16

.3
1@

18
2.
0

11
4.
50

2.
62

23
.5
4

F p
52

1
70

48
.9

38
.7
3@

18
2.
0

27
1.
88

6.
22

13
.4
5

T
he

no
rm

al
iz
at
io
n
fa
ct
or

fo
r
re
la
ti
ve

A
×
T

is
43

.7
1,

w
he

re
A

is
ar
ea

(s
li
ce
s)

an
d
T

is
ti
m
e
(s
).

10.5. Implementation Results and Performance Analysis 255

T
ab

le
10
.5
:
C
om

pa
ri
so
n
be
tw
ee
n
ou

r
E
C
C

de
si
gn

an
d
si
m
ila

r
w
or
k
ov
er

G
F
(p
)

C
ir
cu
it

P
la
tf
or
m

F
ie
ld

/
R
ep

or
te
d

K
C
yc
le
s

T
im

e
(m

s/
E
C
SM

)
A
T
a

R
el
at
iv
e

T
R
b

B
it
Le

ng
th

A
re
a
(s
lic

es
)

@
f
(M

H
z)

A
T

(k
bp

s)

Le
e
et

al
.[
44

]
90

nm
C
M
O
S

F p
22

4
1.
12

m
m

2
/

12
7.
2

0.
59

@
21

7.
0

-
-

37
9.
66

F p
25

6
31

3K
ga

te
s

16
5.
1

0.
76

@
21

7.
0

-
-

33
6.
84

M
ar
zo
uq

ie
t
al
.[
17

6]
V
ir
te
x-
5

F p
25

6
10

.2
K

44
2.
2

6.
63

@
66

.7
67

.6
3

1.
55

38
.6
1

G
ho

sh
et

al
.[
75

]
V
ir
te
x-
II

P
ro

F p
19

2
9.
0K

19
2.
2

4.
47
@
43

.0
40

.1
1

0.
92

42
.9
5

F p
22

4
10

.4
K

26
0.
0

6.
50

@
40

.0
67

.5
1

1.
54

34
.4
6

F p
25

6
12

.0
K

33
8.
0

9.
38

@
36

.0
11

2.
12

2.
57

27
.2
9

V
lie

ge
n
et

al
.[
76

]
V
ir
te
x-
II

F p
25

6
2.
1K

+
7D

SP
s

10
74

.8
3

15
.7
6@

68
.2

32
.8
6

0.
75

16
.2
4

A
na

ny
ie

t
al
.[
17

7]
V
ir
te
x-
II

P
ro

F p
19

2
28

8.
0

4.
80

@
60

.0
99

.8
4

2.
28

40
.0
0

F p
22

4
20

.8
K

34
8.
0

5.
80

@
60

.0
12

0.
64

2.
76

38
.6
2

F p
25

6
+

41
4.
0

6.
90

@
60

.0
14

3.
52

3.
28

37
.1
0

F p
38

4
32
D
SP

s
11

94
.0

19
.9
0@

60
.0

41
3.
92

9.
47

19
.3
0

F p
52

1
27

36
.0

45
.6
0@

60
.0

94
8.
48

21
.7
0

11
.4
3

a
A
T

=
A
re
a×

T
im

e
an

d
b
T
R

=
T
hr
ou

gh
pu

t
ra
te
.

256
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

T
ab

le
10
.5
:
C
om

pa
ri
so
n
be
tw
ee
n
ou

r
E
C
C

de
si
gn

an
d
si
m
ila

r
w
or
k
ov
er

G
F
(p
)

C
ir
cu
it

P
la
tf
or
m

F
ie
ld

/
R
ep

or
te
d

K
C
yc
le
s

T
im

e
(m

s/
E
C
SM

)
A
T
a

R
el
at
iv
e

T
R
b

B
it

Le
ng

th
A
re
a
(s
lic

es
)

@
f
(M

H
z)

A
T

(k
bp

s)

G
ho

sh
et

al
.[
90

]
V
ir
te
x-
4

F p
19

2
14

.9
K

22
7.
9

4.
30

@
53

.0
63

.8
9

1.
46

44
.6
5

F p
22

4
17

.3
K

30
5.
5

6.
50

@
47

.0
11

2.
65

2.
58

34
.4
6

F p
25

6
20

.1
K

39
5.
6

9.
20

@
43

.0
18

5.
13

4.
24

27
.8
3

G
ho

sh
et

al
.[
90

]
13

0n
m

C
M
O
S

F p
19

2
-/
12

3.
1K

G
at
es

18
7.
68

1.
36

@
13

8
-

-
14

1.
17

F p
22

4
-/
14

3.
9K

ga
te
s

25
3.
5

1.
95

@
13

0
-

-
11

4.
87

F p
25

6
-/
16

7.
5K

ga
te
s

33
1.
1

3.
01

@
11

0.
0

-
-

85
.0
5

La
ia

nd
H
ua

ng
[1
69

]
13

0n
m

C
M
O
S

F p
16

0
-/
16

9.
4K

G
at
es

74
.0
2

0.
36

@
20

8
-

-
44

4.
44

F p
25

6
-/
19

7.
0K

ga
te
s

25
2.
1

1.
21

@
20

8.
0

-
-

21
1.
57

A
hm

ad
ie

t
al
.[
17

8]
13

0n
m

C
M
O
S

F p
19

2
–

97
12

.5
52

5@
18
.5

–
–

0.
37

Fa
n
et

al
.[
17

9]
V
ir
te
x-
II

P
ro

F p
19

2
3.
2K

+
16

D
SP

s
92

0.
7

9.
90

@
93

.0
31

.4
1

0.
72

19
.3
9

M
en
te
ns

et
al
.[
18

0]
Sp

ar
ta
n-
3

F p
25

6
4.
8K

+
66

D
SP

s
17

68
.8

26
.8
0@

66
.0

12
9.
33

2.
96

9.
55

M
cI
vo
r
et

al
.[
79

]
V
ir
te
x-
II

P
ro

F p
25

6
15

.8
K
+
25

6D
SP

s
15

2.
3

3.
86

@
39

.5
60

.8
1

1.
39

66
.3
2

Sa
ki
ya
m
a
et

al
.[
18
1]

Sp
ar
ta
n-
3

F p
25

6
27

.6
K

70
8.
0

17
.7
@
40

.0
48

8.
47

11
.1
8

14
.4
6

a
A
T

=
A
re
a
×

T
im

e,
b
T
R

=
T
hr
ou

gh
pu

t
R
at
e.

10.5. Implementation Results and Performance Analysis 257

Kintex-7 FPGA over the prime fields F224 and F256, respectively. Our proposed ECSM

provides around 20% better delay performance than previous designs, and is also area-

efficient: it takes only 8.4K slices and 9.3K slices respectively without using any DSP

slices. Most ECC architectures in the available literature have used separate PBDL and

PADD modules. We have proposed a new ECSM hardware in Jacobian coordinates using

PDPA (combined PDBL and PADD module). There are few hardware implementations

on ASIC, most being implemented in FPGA. Our proposed ECP was also synthesized

using UMC 65nm CMOS technology. To make a fair comparison with other ASIC im-

plementations, we used post-synthesis results of our new design. Our designed ECP in

Jacobian coordinates takes 0.56 ms and 0.73 ms over the prime fields F224 and F256, re-

spectively, with a clock frequency of 546.5 MHz. We have also achieved an area-efficient

design which requires less than 1 mm2 area on 65nm CMOS ASIC. The proposed new

ECP in Jacobian coordinates takes less time than previous designs on FPGA. It takes 2.36

ms for the prime field F224 and 3.27 ms for the prime field F256 in a Kintex-7 FPGA. This

new ECP architecture was also implemented in a Virtex-5 FPGA. All the available results

for our new designs are presented in the first, second, and fourth rows of Table 10.5.

The ECP proposed by Kung [175] provides the fastest ECPs, highest frequency, and

a better area and time (AT) product. Their design requires fewer slices than our design,

however they need 8 DSP slices and more CCs for implementation, whereas we have no

need for any DSP slices for our proposed design. A new architecture of ECSM using PDBL

and PADD modules was implemented in 90nm CMOS technology by Lee [44]. Their pro-

posed design requires more than 1 mm2 of area, whereas our proposed design requires less

than 1 mm2 of area. Besides, our design is faster and has a higher throughput rate than

their proposed ECSM. A 256-bit ECP presented in [176] takes a similar number of CCs

but needs more area and time to compute a scalar multiplication than our design, and the

AT value of their design is almost twice our AT. An ECSM is presented by Ghosh [75],

258
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

and their ECP requires 6.50 ms and 9.38 ms over the fields F224 and F256 respectively to

achieve a scalar multiplication. However, our ECP requires only one-third the computa-

tion time of their design. Our two implementations show a similar performance to their

design in terms of area and CCs. ECPs over the field F256 are presented by Vliegen [76],

Mentens [180], and Sakiyama [181], and their proposed crypto-processors require 15.76

ms, 26.80 ms, 3.86 ms, and 17.70 ms, respectively, for a typical scalar/point multiplica-

tion. We can see in Table 10.5 that their design has more delay than our proposed design.

Besides, the throughput rate of our design is better than the others. The ECP proposed

by Ananyi [177] provides results for all five NIST-recommended prime curves, and their

design takes between 4.80 ms (192-bit ECC) and 45.60 ms (521-bit ECC) to compute a

scalar multiplication. Their proposed ECP requires 20.8K slices and 32 DSP slices on a

Virtex-II Pro FPGA, which is more than our designs. A parallel ECP for Fp is presented

by Ghosh [90]; their design takes almost double the area and time of our design. In [90]

and [169], they implemented their design on TSMC 130nm CMOS technology using sep-

arate PDBL and PADD modules, however we have synthesized our new ECP using a

PDPA module on 65nm CMOS. Their design takes more computation time than ours.

Ahmadi [178] and Fan [179] also implemented ECPs over the prime field F192 on different

platforms, and their cryptographic processors are slower than our processor. Although the

McIvor [79] design provides a better result in terms of time, area-time (AT) product, and

throughput rate, it requires an additional 256 DSP slices for hardware implementation.

On the other hand, we have implemented the ECP with almost the same AT product

without any DSP slices on the FPGA.

It can be noted that the ECPs are implemented on different platforms and employ dif-

ferent hardware resources, so it is difficult to state which design is the best. However, the

best indicator for efficient design is the product of area and time (AT), and throughput

rate. For this reason, we have calculated the AT and throughput rate for all the available

10.5. Implementation Results and Performance Analysis 259

[b] [c] [d] [1] [6] [2] [12] [13] [14] [18] [7]
0

0.5

1

1.5

2

2.5

3

3.5

4

R
e
la

ti
v

e
 A

T

224-bit ECP

256-bit ECP

Figure 10.7: Comparison of relative AT values between our ECC design ([b], [c], and

[d]) and similar work.

designs, and make a comparison of these AT and throughput rates with our design. All

these calculated AT values, relative AT values, and throughput rates have been presented

in columns seven to nine of Table 10.5. The relative AT product comparison of similar

work is shown in Fig. A.1. In Fig. A.1, [b], [c], and [d] represent our implementation

results (both 224-bit and 256-bit ECC) and [76, 176, 180], and [79] illustrate reference

implementations for 256-bit ECC only. This figure also demonstrates that our proposed

designs require lower AT than most of the similar designs in the available literature. Note

that, of all the available designs, in terms of AT value the Kung [175] and Vliegen [76]

designs perform the best. However we have achieved a high throughput rate compared

to the designs in [175] and [76]. Besides, their designs require additional DSP slices for

hardware implementation. The ECP designs in [75,79,90,177] need fewer CCs for a scalar

multiplication, but would require more slices than our design. We require less hardware

resources for our design compared to other previous designs. Beside, our new ECP in

Jacobian coordinates is not only area-efficient but also faster than all other designs, even

260
Chapter 10. High-Performance Elliptic Curve Cryptography Processor Over NIST

Prime Fields

better than our previous design. From the performance analysis and comparison of dif-

ferent ECPs over the prime field in Table 10.5, some are only area-efficient or some are

better in terms of only speed; it can be concluded that our ECP performs better than

other comparable designs.

10.6 Conclusion

A fast, high-performance ECP over prime field GF(p) is developed using efficient FFMA,

EC group operations, and ECSM. Our design supports two NIST prime fields of the five

NIST-recommended primes p, with sizes 224 and 256 bits. A novel PDPA technique is

proposed to perform EC group operations in parallel, aimed at reducing the number of

steps in the PDBL and PADD operations and decreasing the overall latency of the ECP.

Thus, we have designed a faster ECP in Jacobian coordinates which takes 0.56 ms for

F224 and 0.73 ms for F256 in ASIC 65nm CMOS. We also present the ECSM results of

our new proposed design in Xilinx Kintex-7 and Virtex-5 FPGAs. The proposed ECP

in Jacobian coordinates takes between 2.36 ms and 3.27 ms on a Xilinx Kintex-7 FPGA

and between 3.64 ms and 5.26 ms on a Xilinx Virtex-5 FPGA. In addition, our proposed

ECP in affine coordinates on a Xilinx Kintex-7 FPGA takes between 3.05 and 4.70 ms

to execute a typical scalar/point multiplication, which represents the fastest hardware

implementation result in an affine coordinate system. The hardware architecture delivers

a high-performance operation with fewer hardware resources. The implemented design

is optimized by using different techniques such as balancing the PDBL and PADD ar-

chitecture, parallelization in operations, and pre-computations, for obtaining higher per-

formance. Based on the overall performance analysis and comparisons of different ECPs

over the prime field Fp, it can be concluded that this design provides better performance

than others in terms of the area, delay, AT, and throughput rate.

Chapter 11

Energy-Efficient, High-Speed,

ASIC-Based Elliptic Curve

Cryptography Processor1

11.1 Abstract

In this paper, we propose a high-performance ASIC-based implementation of

an elliptic curve cryptography processor (ECP) over NIST prime fields Fp.

Our design supports three prime fields of the five NIST-recommended primes

p, with sizes 192, 224, and 256 bits. An energy-efficient elliptic curve point

multiplication (ECPM), which is the core operation of an ECP, is developed

in Jacobian coordinates, then converted to affine coordinates for the practical

realization of the cryptosystem. The ECPM is synthesized in ASIC 65-nm

technology by designing a novel combined point doubling and point addition
1Submitted as: Md Selim Hossain, Shahzad Asif, Oskar Andersson, Joachim Neves Rodrigues and

Yinan Kong,“Energy-Efficient, High-Speed, ASIC-Based Elliptic Curve Cryptography Processor,”IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, major revision submitted.

261

262 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

(PDPA) architecture. This PDPA is designed using efficient modular arith-

metic to achieve high speed and low hardware utilization for ECP. The pro-

posed ECPM has been implemented by developing radix-4 modular multiplica-

tion, which saves 50% in clock cycles. The delay per ECPM is between 0.21

and 0.37 ms, which is the fastest hardware implementation result reported in

the literature to date. Implementation results show that the proposed design

is energy-efficient, and the energy dissipation is only 0.3% of that of other

similar designs. Based on the overall performance, the proposed ECP over

Fp provides better performance which can be used for modern IoT security

applications.

11.2 Introduction

With the fast growth of secure transactions over the network and associated appliances,

the demand for data security has increased rapidly in recent days. For these applications,

public-key cryptography (PKC) such as elliptic curve cryptography (ECC) [10, 11] and

Rivest-Shamir-Adleman (RSA) [8] cryptography play a vital role to transmit the secured

information among different wireless devices. PKC is widely used for key-agreement pro-

tocols, encryption/decryption, and digital signatures. The Internet-of-Things (IoT) is

an interconnected system over a network in which different objects are connected with

unique identifiers and the ability to transfer data without requiring human-to-human or

human-to-computer interaction. The crypto-algorithms (e.g. ECC) designs should con-

sume minimum hardware resources as well as less energy with high throughput to provide

efficient security in IoT applications [183]. Therefore a high-performance hardware im-

plementation is mandatory for ECC, especially to speed up the calculations in an ECC

processor (ECP).

11.2. Introduction 263

The RSA and ECC cryptosystems are the most popular, powerful, and widely used

PKC for cryptographic applications. ECC was first proposed by N. Koblitz and V. Miller

in the mid-80s. It is gradually becoming a more attractive alternative in the past few

years to RSA cryptosystems because ECC can provide the same level of security as the

conventional RSA cryptosystem with a significantly shorter key. Besides, less memory

and hardware resources are required to implement ECC [5,22,54]. This attractive feature

makes ECC very popular for IoT hardware security. The National Institute of Standards

and Technology (NIST) recommends elliptic curves (ECs) over prime fields for the digital

signature standard (DSS) [22]. IEEE P1363-2000 [23] also has standardized public-key

cryptographic techniques, including cryptographic schemes, use of ECC-based key agree-

ment and digital signature algorithm (DSA).

Over the decades, numerous implementations of ECPs over a prime field Fp have

been proposed in the literature. We find that most of the implementations are tar-

geted to FPGA [79,90,175–177], whereas only a few hardware implementations target an

ASIC [19,21,44,90,168,169,178,184–186]. A flexible dual-field ECP using the hardware-

software approach was proposed in [21], but needs more computation time to implement

on 55-nm CMOS technology. A heterogeneous dual-processing element architecture for a

dual-field ECP was proposed and implemented using ASIC 90-nm CMOS technology [44].

In [168], an energy-efficient 160-bit ECP over a dual field was introduced, capable of paral-

lel and serial operation modes of the cryptosystem. In [90], ECP over GF(p) was proposed

and synthesized in ASIC 0.13-µm technology, and a parallel architecture unit is used for

their design. Two efficient ASIC-based high-throughput dual-field ECPs were proposed

in [169] and [185]. Efficient hardware implementations of an elliptic curve cryptosys-

tem over the prime field have been proposed in [19], and synthesized using ASIC 0.18-µm

CMOS technology. In [178,184–186], ECPs over the prime field Fp have been implemented

using ASIC 0.13-µm CMOS technology. Only a few high-speed and low-power ECPs have

264 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

been reported over Fp in the literature. Most are only area-efficient or energy-efficient or

are superior only regarding speed. To have a trade-off between power, speed, and area

complexities, a well-designed and efficient ECP is necessary for the security requirements

of modern IoT applications.

Contribution: In this paper, a high-performance ASIC-based ECP is proposed and

implemented in which ECPM operations are performed with a very low area and latency.

We propose a novel combined algorithm to compute point doubling (PD) and point addi-

tion (PA) (EC group operations) together with low latency (3m + 14 clock cycles only).

Architectures for Jacobian-to-affine coordinate conversion, serial-in parallel-out (SIPO),

and parallel-in serial-out (PISO) are developed at the top level to interface the I/O ports

of the ECP. A radix-4 modular multiplication is proposed which provides a low latency

(saves 50% of clock cycles) and low area complexity. A high-speed, low-power finite-field

modular arithmetic (FFMA) unit is implemented that performs modular multiplication,

inversion, addition, and subtraction. This FFMA unit is used in the construction of an

effective ECP. Thus, our proposed ASIC-based ECP requires less time and energy than all

comparable work in the literature, which is appropriate for high-throughput and resource-

constrained applications.

The rest of the paper is organized as follows. Section 11.3 gives a brief introduction

of the mathematical background of ECC over the prime field Fp. All finite-field modular

arithmetic units over Fp are described in Section 11.4. Section 11.5 describes a combined

EC group operation, namely PDPA. The proposed ECPM, ECP, and their hardware ar-

chitectures are given in Section 11.6. ASIC implementation results, and comparisons with

related designs, are discussed in Section 11.7. Finally, Section 11.8 summarizes our work.

11.3. Preliminaries 265

11.3 Preliminaries

11.3.1 ECC

ECC is the most popular and influential public-key encryption technique nowadays, due

to the smaller field size. The hardware implementations of ECC can be employed in either

the NIST prime fields denoted by GF(p) (where p is a ‘large‘ prime), or in a binary field

denoted by GF(2m) (where m is a positive integer). But FFMA over GF(p) or Fp will

be the emphasis of this work. Besides, the most widely used PKC is RSA, which uses

modular arithmetic over a prime field Fp. Furthermore, ECC over the prime field can be

utilized for an elliptic curve digital signature algorithm. According to IEEE P1363 [23],

an elliptic curve E over GF(p) is the set of solutions for an equation such as

y2 = x3 + ax+ b (mod p) (11.1)

where x, y, a, b ∈ GF (p) with

4a3 + 27b2 6= 0 (mod p),

together with a special point called the point at infinity. The coefficients a, b ∈ Fp speci-

fying an elliptic curve E(Fp) are defined by (11.1). The number of points on elliptic curve

E is represented by #E(Fp). It is defined over Fp as nh, where n is the prime order of

the curve and the integer h is a co-factor such as h = #E(Fp)/n [2, 10,11].

Let P = (x, y) be a point in an affine coordinate systems; the projective coordinate

systems P = (X, Y, Z) are given by the following equation [88]:

X = x; Y = y; Z = 1. (11.2)

The projective point P = (X, Y, Z), Z 6= 0 corresponding to the affine point P = P (x, y)

is given by

x = X/Z2; y = Y/Z3. (11.3)

266 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

Using (11.1), (11.2), and (11.3), the projective form of the Weierstrass equation of the

elliptic curve becomes

Y 2 = X3 + aXZ4 + bZ6. (11.4)

Let P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) be two points on the elliptic curve, then the

point doubling (PD) and point addition (PA) formulae in Jacobian coordinates are given

below.

R(X3, Y3, Z3) = 2P (X1, Y1, Z1) ∈ E(Fp),

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1 ,

or X3 = (3X2
1)2 − 8X1Y

2
1 ,

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1 ,

or Y3 = 3X2
1 (4X1Y

2
1 −X3)− 8Y 4

1 ,

Z3 = 2Y1Z1; (a = 0 for Koblitz Curve)

(11.5)

R(X3, Y3, Z3) = P (X1, Y1, Z1) +Q(X2, Y2, Z2) ∈ E(Fp),

X3 = A2 −B3 − 2X1Z
2
2B

2,

Y3 = A(X1Z
2
2B

2 −X3)− Y1Z3
2B

3, (11.6)

Z3 = Z1Z2B0,

where A = Y2Z
3
1 − Y1Z3

2 and B = X2Z
2
1 − X1Z

2
2.

Hence when P = Q we have the PD operation in (11.5) and when P 6= Q we have the

PA operation in (11.6) [89]. We have combined these two EC group equations for com-

pact hardware implementation and called it combined point doubling and point addition

(PDPA). Besides, we have used the Koblitz curve where a = 0, then we can reduce the

area and latency of the data path. Using these group operations, the ECPM R = kP ,

which is the most important operation in ECC, is implemented in Jacobian coordinates.

11.3. Preliminaries 267

In 2000, FIPS-2 was recommended with 10 finite fields: 5 prime fields and 5 binary fields.

The prime fields are F192,F224,F256,F384 and F521. Our design supports three of the five

NIST-recommended primes p, with sizes 192, 224, and 256 bits. All the parameters for

the NIST elliptic curve over the prime fields F192, F224, and F256 are listed in [54].

11.3.2 Coordinate Systems for EC Point Representation

An EC defined over a Galois field provides a group structure that is used to implement

cryptographic systems. The group operations are PD and PA. We propose PDPA for

group operations in Jacobian coordinates. There are various coordinate systems to repre-

sent elliptic curve points, but two well-known coordinate systems are often used for ECC:

affine coordinate systems and projective coordinate systems. A point on the EC E(Fp)

for affine coordinates can be represented by using two elements x, y ∈ Fp, i.e. P(x, y). In

this coordinate system, the elliptic curve group operations require a modular inversion,

the most expensive operation. In projective coordinates, a point P on the EC needs three

elements X, Y, Z ∈ Fp, i.e. P(X, Y, Z). In this paper, we have used Jacobian projective

coordinate systems for the EC points; thereby avoiding modular inversion. However, EC

group operations need more modular multiplication in projective coordinates, which is

also a very costly operation for ECC. To get a high-performance ECP, Radix-4 modular

multiplication is proposed that is well suited for faster ECC operation. In practice, to con-

vert projective to affine coordinates, one modular inversion is still needed for an ECPM.

There are plenty of projective coordinates in the available literature such as Jacobian,

Lopez-Dahab, and Chudnovsky coordinates; a detailed coordinate system is discussed

in [2].

268 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

11.4 Hardware for FFMA over Fp

This section presents all algorithms and hardware architectures related to FFMA, which

is necessary for the PDPA and ECPM. FFMA and EC group operations are the building

blocks of ECPM and ECC protocols. The FFMA units are the bottom level in the

hierarchy, and these are the most crucial for the overall performance of the ECP.

11.4.1 Modular Adder and Subtractor

Fig. 11.1 depicts the hardware architecture of a modular adder and subtractor to perform

the basic and simplest operations of FFMA over a prime field. The modular adder and

subtractor are improved versions of [80, 182]. From Fig. 11.1(a), modular addition adds

two inputs, x, y, and subtracts the modulus p from the sum until the sum is less than

the modulus p. The intermediate result (x+ y) of modular addition must be at least (m

+ 1) bits long and could be greater than the modulus. To subtract the modulus p from

the intermediate result, an adder is used that adds the intermediate result to the bit-

wise inverted modulus p with the carry-in set to 1, thus performing a two’s-complement

subtraction. The carry-out of the second adder checks whether the intermediate result is

in the proper range or not. If the sum (x + y) is in the proper range, the result of the

first adder is correct; otherwise, the second adder is right. The condition is checked by

using a multiplexer to select whether (x + y) is greater than or equal to the modulus p.

Modular subtraction over the prime field is performed similarly to modular addition. From

Fig. 11.1(b), for modular subtraction, y is bitwise inverted and added to x with a carry-in

set to 1. If the result is negative or the carry-out of this adder is low, then the modulus p

must be added to produce an output in the correct range between 0 and p - 1 inclusive. A

modular addition or subtraction operation takes only one clock cycle, and can speed up the

overall calculation of PDPA and hence the ECP. A hardware architecture is proposed and

11.4. Hardware for FFMA over Fp 269

+ Adder Inverter
x

(b)

+ +

Reg

Z

yx

Za Zb

p

x>=y

(a)

+

+

Reg

Z

yx

Za

Zb

p

MSB

+

...

...

+

}

}

y

p

sel

Zb

Za

Reg

selsel

Z
(c)

sel

+

Reg

Zb

x

Zb

(a)
Z

y

Za

p

+

Reg

+

yx

Za

p

+ +

(b)
Z

Reg

>=
comp

x y p sel

ZbZa

Z
(c)

sel

...

}

+

...

}

+

sel

Reg

sel

zb zb

yx p

+ +

(b)

Reg

>=
za

z

>= comparator

x

(a)
z

y

za

p

+

Reg

+

x y p sel

(c)

sel

...

}

+

...

}

+

sel

Reg

sel
za zb

z

1 1

Figure 11.1: Hardware architecture of modular (a) adder (b) subtractor, and (c) com-

bined modular adder and subtractor.

implemented for combined modular addition and subtraction, as shown in Fig. 11.1(c).

A (m + 1)-bit adder/subtractor has been used in this architecture. Modular addition or

subtraction is performed depending on the ‘sel’ bit using this combined method. When

the ‘sel’ bit is one, then modular subtraction is performed, otherwise the circuit performs

modular addition. Parallelization in operations is used to increase the throughput rate

of EC group operations. However, the combined module takes two clock cycles to get

the final output, and requires more area than separate modular addition and subtraction

modules.

11.4.2 Modular Multiplier

In order to implement point multiplication, efficient modular multiplication is mandatory

because this is the most crucial operation for the ECP over the prime field, presented as

Z = (x× y) (mod p). (11.7)

270 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

Algorithm 11.1: Standard Interleaved modular multiplication

Input: Prime p and A, B ∈ [1, p - 1]

Output: C = (A ∗B) mod p

1. C = 0;

2. for i = m− 1 downto 0 do

2.1 c1 = C; c2 = A; c3 = B;

2.2 c4 = 2 ∗ c1 (Left-shift operation);

2.3 i1 = A[i] ∗ c3 or i1 = A[i] ∗B (and-gate operation);

2.4 c5 = c4 + i1; c6 = c5;

2.5 if c6 ≥ p then c7 = c6 - p; end if c8 = c7;

2.6 if c8 ≥ p then c9 = c8 - p; end if C = c9;

2.7 end for

3. Return C

Many methods for performing modular multiplication are available, but most of these

algorithms follow the basic concept of the Montgomery method which needs two Mont-

gomery multiplications for one complete modular multiplication [69]. We propose a new

modular multiplication based on an interleaved method. The benefit of the interleaved

method is that the intermediate result is only one or two bits larger than the operands

because the intermediate result is always reduced by taking the modulus. Algorithm 11.1

presents the standard interleaved modular multiplication method, and Fig. 11.2(a) illus-

trates the architecture of Algorithm 11.1 [60]. The latency/clock period of this approach

is very low because the critical path mostly relies on an adder and a subtractor. However,

this method needs 3m + 1 clock cycles due to the three-stage register for the data path.

The modified architecture of interleaved modular multiplication is shown in Fig. 11.2(b).

As we can see from this hardware, this method needs only a single-stage register; we need

11.4. Hardware for FFMA over Fp 271

+Reg <<MUX1

MUX2

MUX3

<<
0

+

A B

As

I1
C2

C1
sel

- - - - - ->=

p p2 p3 p4 p5 p6p-p6

C4

C3

sel3

C5 C6 C7 C8 C9

C10

C

<<

>=

-

Left shift

Comparator

Subtractor

+ Adder

A(i)

+

...

I1

Reg

<<
C1

C2
C3

--> >
C4 C5

p p2

C6

A B

<<

+

-

Left shift

Adder

subtractor

Greater than>

and-gate block

...

C

A(i)

+
I1

Reg

<<
C1

C2
C3

--> >
C4 C5

p p2

C6

A B

<<

+

-

Left shift

Adder

subtractor

Greater than>

and-gate block

...

C

and-gate
block

No

No

Reg

<< and-gate
block

C1

C2

C3

C6

I1

p

+

A B

> -

> -

A(i)

C4

C5

p

C

<<

+

-

Left shift

Adder

subtractor

Greater than>

and-gate block

...

Reg Reg Reg

<< and-gate
block

C1 C2 C3

C4
C5

C6

C7

C8

C9

I1

Yes

p

+

-

Reg

>

Yes

p

-

Reg

>

p

p

A B

C

+

Reg

>=

>>
>

and-gate
block

<<

no

no

c3c1 c2

c4

c5

c6

c7

c8

c9

i1

yes

p

yes

p

p

A B

C

Reg Reg Reg

+

<< and-gate
block

>

Reg

>

p

Reg

(a)

c1

c2

c6

i1

Am-1 B

C

Reg

+

<< and-gate
block

(b)

sel

c3 p

>

p

c4 p

>

p

c5

Am-2
...

A0

Left shift Greater-than><<

Figure 11.2: Hardware architecture for the interleaved modular multiplier.

only one third the number of clock cycles. Both architectures require two subtractions

and two comparisons per iteration. These operations are run sequentially. The size of

the adders used for this must be equal to (m + 2) bits to handle the intermediate result

at each iteration; (m + 1) iterations are required for the modified method as depicted in

Fig. 11.2(b).

An efficient algorithm is also proposed for modular multiplication/squaring, as shown

in Algorithm 11.2, based on interleaved multiplication. Fig. 11.3(a) depicts the proposed

architecture based on Algorithm 11.2 for modular multiplication over prime field Fp. The

proposed modular multiplication algorithm is very efficient because the critical path con-

sists of only and gates, adder, and subtractors. However, this approach requires m + 1

272 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

Algorithm 11.2: Proposed algorithm for modular multiplication in GF(p)

Input: Prime p and A, B ∈ [1, p - 1]

Output: C = (A ∗B) mod p

1. C = 0; p2 = 2 ∗ p (pre-computed) ;

2. for i = m− 1 downto 0 do

2.1 c1 = C; c2 = 2 ∗ c1 (left-shift operation);

2.2 i1 = A[i] ∗B (and-gate operation);

2.3 c3 = c2 + i1s; c4 = c3 - p; c5 = c3 - p2 (p2 = 2p);

2.4 if c3 ≥ p then c6 = c4;

2.5 elsif c3 ≥ p2 then c6 = c5; else c6 = c3; end if C = c6;

2.6 end for

3. Return C

cycles to compute the final result of modular multiplication where m is the bit length

of operands A,B or p. Therefore, a higher-radix modular multiplication is required to

reduce the cycle counts.

A radix-4 modular multiplication method, shown in Algorithm 11.3, is proposed to

improve the overall performance by halving the number of clock cycles. Fig. 11.3(b) de-

picts the proposed hardware architecture of radix-4 modular multiplication. This method

relies on iterative addition and reduction of partial products and performs reduction si-

multaneously [55–57]. As can be seen from Algorithm 11.3 or Fig. 11.3(b), this approach

needs two left-shift operations, two simple additions, one comparator, six subtractions,

and three multiplexer operations. In this method, multiplication by two or four is per-

formed by a simple left-shift operation. The first multiplexer is used to select two bits

of the first operand A such as As = A[2i+1]A[2i] which are used as a select signal for the

second multiplexer. In the second multiplexer of Fig. 11.3(b), when ‘As = 01’ then the

11.4. Hardware for FFMA over Fp 273

+Reg <<MUX1

MUX2

MUX3

<<
0

+

A B

As

I1
C2

C1
sel

- - - - - ->=

p p2 p3 p4 p5 p6p-p6

C4

C3

sel3

C5 C6 C7 C8 C9

C10

C

<<

>=

-

Left shift

Comparator

Subtractor

+ Adder

A(i)

+

...

I1

Reg

<<
C1

C2
C3

--> >
C4 C5

p p2

C6

A B

<<

+

-

Left shift

Adder

subtractor

Greater than>

and-gate block

...

C

A(i)

+
I1

Reg

<<
C1

C2
C3

--> >
C4 C5

p p2

C6

A B

<<

+

-

Left shift

Adder

subtractor

Greater than>

and-gate block

...

C

and-gate
block

+

Reg

>=

>>
>

and-gate
block

<<

+Reg <<MUX1

MUX2

MUX3

<<
0

+

A B

As

I1
C2

C1
sel

- - - - - ->=

p p2 p3 p4 p5 p6p-p6

C4

C3

sel3

C5 C6 C7 C8 C9

C10

C

<<

>=

-

Left shift

Comparator

Subtractor

+ Adder

Am-1

and-gate
block

sel

Am-2
...

A0

C1
A(i)

I1

A B

Reg

+

<< and-gate
block

i

> >

C2

p

p2

p

C3

C4 C5

C6

C

c1

i1

Reg

+

<<

> >

c2

p

p2

p
c3

c4 c5

c6
C

Am-1

and-gate
block

sel

Am-2
...

A0 B

c1

i1

Reg

+

<<

> >

c2

p
p2

p
c3

c4 c5

c6
C

Am-1

and-gate
block

sel

Am-2
...

A0 B

(a)

p6

c1

i1

Reg

+

<<
c2

p p2c3

c4 c5

C10

C

>=

0

B

<< +

As

Am-1

sel

Am-2
...

A0

p3 p4 p5p-p6

c6 c7 c8 c9

(b)

Figure 11.3: Proposed hardware architecture for (a) modular multiplier and (b) Radix-4

modular multiplier.

input value of B goes to the output of second multiplexer, which is the same as the input

of the adder module. Similarly, when ‘As = 10’ then 2B results, and when ‘As = 11’ then

3B results, otherwise 0 results go to the input of the adder module. The second input c2 of

the adder comes from the left-shift module which is a left-shift by 2- operation. The inter-

mediate result c3, which is the output of the adder, is then reduced with the modulus p by

subtracting until the values are smaller than the modulus. For doing this, six subtractions

and one three-bit comparator are required per iteration. These operations run in parallel,

where the p2, p3, p4, p5 and p6 values are pre-computed, which reduces the processing time.

Then a multiplexer is needed to select which result is correct. In this architecture, paral-

lel operations and pre-computations are used to speed up the computation. This method

requires m/2 + 1 cycles to compute the final result of modular multiplication, where m

is the bit length of operands A,B or p. Therefore, we have designed a high-performance

modular multiplier which is essential for ECP in Jacobian coordinates.

274 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

Algorithm 11.3: Proposed algorithm for radix-4 modular multiplication

Input: Prime p and A, B ∈ [1, p - 1]

Output: C = (A ∗B) mod p

1. C = 0; p2 = 2 ∗ p; p3 = 3 ∗ p; p4 = 4 ∗ p; (pre-computed)

1.1 p5 = 5 ∗ p; p6 = 6 ∗ p (pre-computed) ;

2. for i = m/2− 1 downto 0 do

2.1 c1 = C; As = A2i+1.A2i;

2.2 c2 = 4 ∗ c1 (left-shift operation); i1 = As ∗B;

2.3 c3 = c2 + i1;

2.4 c4 = c3 - p; c5 = c3 - p2; c6 = c3 - p3;

2.5 c7 = c3 - p4; c8 = c3 - p5; c9 = c3 - p6;

2.6 if c3 ≥ p6 then c10 = c9; elsif c3 ≥ p5 then

2.7 c10 = c8; elsif c3 ≥ p4 then c10 = c7;

2.8 elsif c3 ≥ p3 then c10 = c6; elsif c3 ≥ p2 then

2.9 c10 = c5; elsif c3 ≥ p then c10 = c4;

2.10 else c10 = c3; end if c = c10;

2.11 end for

3. Return C

11.4.3 Modular Inversion

Modular inversion over the prime field is the most expensive operation in ECP, and it

is mandatory for converting Jacobian to affine coordinates. There are different methods

for performing modular inversion, but two well-known methods are regularly employed.

The first is Fermat’s Little Theorem (FLT); the multiplicative inverse of this method is

obtained by modular exponentiation. However, this modular exponentiation is a very

expensive operation for finding the inverse. The second method is based on the Extended

11.4. Hardware for FFMA over Fp 275

Euclidean GCD Algorithm (EEA). There are many variants of EEA reported in the

available literature [2]. An efficient algorithm has been used for inversion which is well-

known as the Binary Inversion Algorithm. The detailed steps of this algorithm, named

Algorithm 2.22, is given in [2]. The hardware architecture based on this algorithm is

explained in [84]. The modular inversion over the prime field is accomplished using a

series of additions, subtractions, and shift operations. This algorithm works iteratively,

and at every step either u or v decreases by at least one in bit length. The inverse of an

integer a modulo p is defined as an integer R such that a.R ≡ 1 (mod p). This classical

definition of the modular inversion operation can be presented as

R = a−1 (mod p) (11.8)

where a is an integer. From (11.8), the inverse of a exists if and only if a is relatively

prime with p. Therefore, the GCD of a and p must be 1 or gcd(a, p) = 1. From that

Algorithm 2.22 [2], four registers - u, v, x, and y - are essential to implement a hardware

architecture for inversion over a prime field. The calculation of divisions such as u/2,

v/2, x/2, and y/2 depends upon parity and magnitude comparisons of the m-bit registers

named u, v, x, and y. Two multiplexers are used to select u or v, and several multiplexers

are used to select x or y as appropriate. The LSB determines (1 indicates odd, 0 indicates

even) the parity of any number. But exact comparisons can be attained only through

full m-bit subtraction, and this contributes a major delay before decisions regarding the

next calculation can be made. We have used m-bit carry-propagation adders to execute

the additions or subtractions. The implemented designs compute all possible values like

x, x/2, (x + p)/2, (x − y)/2, (x + p − y)/2 or y, y/2, (y + p)/2, (y − x)/2, (y + p − x)/2

simultaneously to save time, and multiplexers are used for selecting the new values of x

and y. This method takes 2m cycles for an m-bit modular inversion.

276 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

11.5 Proposed PDPA

The EC group operations in either a prime field or a binary field are point doubling (PD)

and point addition (PA). We have designed a novel combined group operation for an ECP

in Jacobian coordinates named PDPA, which performs the two group operations together.

The building blocks of PDPA are modular addition, subtraction, multiplication, squaring,

and inversion. Therefore, this module should be developed so that it requires minimal

resources with the assurance of high throughput.

Fig. 11.4 depicts the proposed architecture of the PDPA operation in Jacobian

coordinates, corresponding to (5) and (6) respectively. The PDPA operation requires

ten additions, nine subtractions, eleven multiplications, and seven squarings. Note that

modular squaring is the modular multiplication of two identical inputs, hence the same

modular multiplication algorithm is used for squaring. For implementing PDPA, sepa-

rate modular addition and subtraction modules are used because the combined module

takes more area than a separate module. The proposed radix-4 modular multiplication

is therefore utilized for the PDPA; we need almost half the number of clock cycles. In

PDPA, parallel operations and pre-computations are used to increase the throughput

rate of EC group operations. As can be seen from level 1 in Fig. 11.4, two squaring and

one multiplication modules are operating in parallel. Similarly in level 6, a maximum

of four modules such as three multiplications and one squaring module are running in

parallel. Normally, 11 levels are required to perform the point doubling operation, and

nine levels are needed to perform the point addition operation, whereas our proposed

combined PDPA module requires only 12 levels. Using this parallel process and combined

module, the data path is reduced by reducing the number of levels, and decreasing the

latency and throughput of the EC group operations. The overall latency of the proposed

PDPA architecture is only 3m + 14, where m is the latency of modular multiplication

in Jacobian coordinates. X3PD, Y 3PD, and Z3PD denote the output of PD whereas

11.5. Proposed PDPA 277

Squaring

Multiplication

Addition

X1Y1Z1 b

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

X1_PA

Y1_PA

Level 8

Level 9

a

Level 10

Level 11

Level 12

Level 13

Level 14

Y3_PA X3_PA Z3_PAZ3_PDX3_PD Y3_PD

PDPA_BF_new

Y1

Level 1

Y3_PA X3_PA Z3_PAZ3_PDX3_PD Y3_PD

X1 Z1

Reg

Reg

Reg

Reg

Reg

Reg

PX

PY

Reg

Reg

Reg

1

Level 0

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

Level 12

m/2+1

1

m/2+1

1

m/2+1

m/2+1

m/2+1

1

1

1

1

1

m/2+1

3m+14

Addition Squaring Multiplication

Y1

Level 1

Y3_PD X3_PD Z3_PDZ3_PAX3_PA Y3_PA

X1 Z1

Reg

Reg

Reg

Reg

Reg

Reg

PX

PY

Reg

Reg

Reg

1

Level 0

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

Level 12

m/2+1

1

m/2+1

1

m/2+1

m/2+1

m/2+1

1

1

1

1

1

m/2+1

3m+14

Modular
Addition

Modular
Subtraction

Modular
Squaring

Modular
Multiplication

Reg

>=

>>
>

<<

L0: 1 Y1

Y3PD X3PD Z3PDZ3PAX3PA Y3PA

X1 Z1

PX

PY

L11: m/2+1

L12: 1

3m+14

+ +Reg

+

+ +

+ +

Reg + +

Reg

Reg

Reg

Reg+

Reg

RegL10: 1

L9: 1

L8: 1

L7: m/2+1

L6: m/2+1

L5: 1

L4: m/2+1

L3: 1

L2: m/2+1

L1: m/2+1

1

modular multiplication modular squaring

 modular addition modular subtraction+

L0: 1 Y1

Y3PD X3PD Z3PDZ3PAX3PA Y3PA

X1 Z1

PX

PY

L11: m/2+1

L12: 1

+ +Reg

+

+ +

+ +

Reg + +

Reg

Reg

Reg

Reg+

Reg

RegL10: 1

L9: 1

L8: 1

L7: m/2+1

L6: m/2+1

L5: 1

L4: m/2+1

L3: 1

L2: m/2+1

L1: m/2+1

1

Latency

modular multiplication modular squaring

 modular addition modular subtraction+

Figure 11.4: Proposed hardware architecture for PDPA.

278 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

X3PA, Y 3PA, and Z3PA represent the PA output in projective coordinates. This module

computes point doubling and point addition simultaneously. For example, if we provide

1P (X1, Y1, Z1) in Jacobian coordinates, then this module produce the 2P (2PX , 2PY , 2PZ)

and 3P (3PX , 3PY , 3PZ) values at the same time. Using this compact PDPA hardware,

we have designed a high-performance ECP in Jacobian coordinates which is discussed in

the next section.

11.6 Proposed ECC Processor

The key operation of an ECC processor (ECP) is ECPM, which is computationally the

most expensive operation. However, we have designed a high-performance ECPM using

our developed PDPA and FFMA units. The basic operation of ECPM is defined as kP ,

where k is a positive integer and is the private/secret key and P is a point on the elliptic

curve E defined over a prime field Fp. Various methods exist for implementing ECPM:

the double-and-add method, the Non-adjacent form (NAF) method, and the Montgomery

method. The simplest way to implement ECC is the double-and-add method [2], shown

in Algorithm 11.4. As can be seen from Algorithm 11.4, it iterates through each bit

of k. Using this algorithm, we have implemented ECPM in Jacobian coordinates then

converted to affine coordinates.

11.6.1 Proposed Architecture for ECPM

To implement a high-performance ECP in Jacobian coordinates, we have proposed a novel

ECPM architecture, using our proposed PDPA unit, depicted in Fig. 11.5. Note that most

ECC hardware implementations in the literature have used separate PD and PA mod-

ules, and require more clock cycles for EC group operations (PD and PA). Also, most

ECC hardware has been implemented on FPGAs with only a few hardware implementa-

11.6. Proposed ECC Processor 279

Algorithm 11.4: Double and add method (Left to right) for ECPM

Input: k = (km−1,...,k1,k0)2, P (X,Y, Z) ∈ E(Fp)

Output: Q(X,Y, Z) = k.P (X,Y, Z), where Q(X,Y, Z) ∈ E(Fp)

1. Q = 0 ;

2. for i = m - 1 to 0 do Q = 2Q;

2.2 if k(i) = ’1’ then Q = Q+ P ; end

2.3 end for

3. Return (Q(X,Y, Z))

tions targeting an ASIC. The proposed hardware is synthesized using ASIC 65-nm CMOS

technology. As shown in Fig. 11.5, the PDPA module performs the EC group operations

together, and these results are stored in the first register. The Select logic module gener-

ates a two-bit ‘sel2s’ signal for the MUX1 module. In the MUX1 module, when ‘sel2s =

00’ then PA results from the register 1 are forwarded to the output, which is the same as

the input of the MUX2 module. Similarly, when ‘sel2s = 01’ then 1P (PX , PY , PZ) results,

and when ‘sel2s = 10’ then 2P (2PX , 2PY , 2PZ) results, which are pre-computed, go to

the input of MUX2. Hence the inputs of the MUX2 module are the PD and PA results,

and the output of this module is either PD or PA, depending upon the bit pattern of

input ‘key’. When the particular bit of ‘key’ is one, then the PA result, otherwise the PD

result, is stored in register 2. The counter module of this architecture acts as a control

unit and decides when the results of this register will be passed to the next input of the

PDPA module. There m − 1 iterations are required to compute the final result of this

ECPM module, where each iteration needs 3m + 14 clock cycles (for PDPA). The total

number of clock cycles for computing ECPM in Jacobian coordinates is defined by (11.9).

The final results of this ECPM module are in Jacobian coordinates and need conversion

to obtain the result in affine coordinates.

280 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

Reg (1)

X
3_

P
D

Y
3_

P
D

Z
3_

P
D

Z
3_

P
A

X
3_

P
A

Y3
_P

A

sX
3_

P
A

sZ
3_

P
A

P
X

P
Y

P
Z

{1P

2P
Z

2P
Y

2P
X

2P{Pre-computed

Select
logic

MUX2

MUX1

X
3_

P
D

s

Y
3_

P
D

s

Z3
_P

D
s

sel2s

X
3_

P
A

s

Z
3_

P
A

s

Y
3_

P
A

s

Reg (2)

Counter

R
eg

is
te

r
B

an
k

Q
X

s

Q
Y

s

Q
Z

s

Count
Start_PDPA

Count_PDPA

Key(Count)

Key Start

QX QY QZ done

PDPA
(Jacobian projective Coordinates)

Select
logic

CounterPDPA
(Jacobian Coordinates)

Reg (1)

X
3_

P
D

X
3_

P
A

Y
3_

P
D

Z
3_

P
D

Y3
_P

A

Z
3_

P
A

sX
3_

P
A

X
3_

P
D

s

Y
3_

P
D

s

Z
3_

P
D

s

sZ
3_

P
A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}1P }2P

Count

X
3_

P
A

s

Y
3_

P
A

s

Z
3_

P
A

s

Reg (2)

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k

Q
X

s

se
l2

s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

Startkey

Count_PDPA

Start_PDPA

MUX1

MUX2

1P(PX, PY, PZ)

(Pre-computed)
2P(2PX, 2PY, 2PZ)

Select
logic

CounterPDPA
(Jacobian Coordinates)

Reg (1)

X
3_

P
D

X
3_

P
A

Y3
_P

D

Z
3_

P
D

Y
3_

P
A

Z3
_P

A
sX

3_
P

A

X
3_

P
D

s

Y3
_P

D
s

Z3
_P

D
s

sZ
3_

P
A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}1P }2P

Count
X

3_
P

A
s

Y
3_

P
A

s

Z
3_

P
A

s

Reg (2)

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k

Q
X

s

se
l2

s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

Startkey

Count_PDPA

Start_PDPA

MUX1

MUX2

1P(PX, PY, PZ)

(Pre-computed)
2P(2PX, 2PY, 2PZ) Select

logic

CounterPDPA
(Jacobian Coordinates)

Reg (1)

X
3_

P
D

X
3_

P
A

Y
3_

P
D

Z
3_

P
D

Y3
_P

A

Z
3_

P
A

sX
3_

P
A

X
3_

P
D

s

Y
3_

P
D

s

Z
3_

P
D

s

sZ
3_

P
A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}

1P }2P

Count

X
3_

P
A

s

Y
3_

P
A

s

Z
3_

P
A

s

Reg (2)

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k

Q
X

s

se
l2

s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

startkey

Count_PDPA

Start_PDPA

pre-computed

1

2

Select
logic

CounterPDPA
(Jacobian Coordinates)

Reg (1)

X
3 P

D

X
3 P

A

Y
3 P

D

Z
3 P

D

Y
3 P

A

Z
3 P

A

sX
3 P

A

X
3 P

D
s

Y
3 P

D
s

Z
3 P

D
s

sZ
3 P

A

2P
X

2P
Y

2P
Z

P
X

P
Y

P
Z

}

1P

}

2P

Count

X
3 P

A
s

Y
3 P

A
s

Z
3 P

A
s

Reg (2)

Q
Y

s

Q
Z

s

R
eg

is
te

r
B

an
k Q
X

s

se
l2

s

R
eg

R
eg

R
eg

Key(Count)

QYQX QZ done

startkey

CountPDPA

StartPDPA

pre-computed

1

2

Figure 11.5: Detailed hardware architecture of proposed ECPM in Jacobian coordinates.

#clock cycles (CCs) = (m− 1)× PDPA CCs

= (m− 1)× (3m+ 14)

= (3m2 + 11m− 14)

(11.9)

11.6.2 Jacobian to Affine Coordinates Conversion

For practical cryptography applications, affine coordinates are needed. We have designed

a separate module for the Jacobian-to-affine coordinate conversion to increase the func-

tionality of our proposed ECP. Fig. 11.6 shows proposed architectures for conversion from

Jacobian to affine coordinates. As can be seen, 4m+ 6 cycles are required for Fig. 11.6(a)

to get the result in affine coordinates, whereas Fig. 11.6(b) takes 5m + 4 cycles due to

11.6. Proposed ECC Processor 281

the two inversion modules. In this design, we have used our proposed radix-4 modular

multiplication which takes only m/2 clock cycles while modular inversion is achieved in

2m clock cycles. For this reason, Fig. 11.6(a) is used for the proposed ECP. Also, we have

implemented a very efficient inversion that may speed up the overall calculation of an

ECP. Fig. 11.6(a) is a faster configuration than Fig. 11.6(b) due to the radix-4 modular

multiplier; otherwise they have the same complexities. The cost of Fig. 11.6(a) is 4MUL,

1SQ, and 1INV, where MUL, SQ, and INV are the complexities of modular multiplication,

squaring, and inversion respectively. Thus, to get the result in affine coordinates, only

one modular inversion is needed for an ECPM.

QX QY QZ

m/2+1

1

m/2+1

2m

m/2+1

m/2+1

1
qx qy 4m+6

(a)

QX QY QZ

m/2+1

1

2m

m/2+1

1
qx qy 5m+4

2m

(b)

Modular
Inversion

Modular
Squaring

Modular
Multiplication

L0: 1 Y1

Y3PD X3PD Z3PDZ3PAX3PA Y3PA

X1 Z1

PX

PY

L11: m/2+1

L12: 1

3m+14

+ +Reg

+

+ +

+ +

Reg + +

Reg

Reg

Reg

Reg+

Reg

RegL10: 1

L9: 1

L8: 1

L7: m/2+1

L6: m/2+1

L5: 1

L4: m/2+1

L3: 1

L2: m/2+1

L1: m/2+1

1

modular multiplication modular squaring

 modular addition modular subtraction+

L1: m/2+1

modular inversionQX QY QZ

qx qy4m+6
(a)

L1: m/2+1

L0: 1

1

L2: m/2+1

L4: m/2+1

L5: m/2+1

L3: 2m

QX QY QZ

qx qy5m+4
(b)

L1: m/2+1

L4: m/2+1

L0: 1

1

L2: 2m

L3: 2m

modular inversionQX QY QZ

qx qy

(a)

L1: m/2+1

L0: 1

1

L2: m/2+1

L4: m/2+1

L5: m/2+1

L3: 2m

QX QY QZ

qx qy

(b)

L1: m/2+1

L4: m/2+1

L0: 1

1

L2: 2m

L3: 2m

Figure 11.6: Proposed hardware architecture of Jacobian to affine conversion (a) using

one inversion and (b) using two inversions.

11.6.3 Control Unit of ECPM

A control unit is the brain of any processor, that handles all control signals and processes

all input and output flows. The control unit works by receiving input information, and

generates control signals for different processing units. The detailed flow chart of the

282 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

control unit of ECPM in Jacobian coordinates is depicted in Fig. 11.7. The proposed

controller is very simple and is for one computation of point multiplication. The control

unit generates three primary control signals ‘CountPDPA’, ‘StartPDPA’, and ‘Count’. The

‘Count’ signal is initialized as m − 2 where m is the prime field bit length, e.g., for the

prime field F256, m = 256. The ‘Count’ signal acts as a bit position of the input (i.e.,

key) which is a private key. The other two control signals are initialized with a zero value.

Firstly, the controller checks whether ‘Count’ is m − 2, which is the maximum limit of

this counter. If the condition is true, then the PDPA counter ‘CountPDPA’ is checked. A

zero value of ‘CountPDPA’ indicates that the processor is in the idle state and waiting for

the ‘Start’ signal for the next computation. The controller increments ‘CountPDPA’ and

set a ‘StartPDPA’ to ‘1’ when a high pulse is detected at the ‘Start’ signal.

‘CountPDPA’ is checked in every clock cycle and incremented by one until it reaches

the maximum limit of 3m + 13. When ‘CountPDPA’ reaches the maximum limit then

it is again set to ‘0’, ‘StartPDPA’ to ‘1’, and ‘Count’ to m − 3. In the next cycle, the

main counter signal ‘Count’ is not m− 2 because this signal is already set to m− 3. The

‘CountPDPA’ is again incremented in each clock cycle till it reaches the maximum limit

of 3m+ 13. When ‘CountPDPA’ reaches 3m+ 13 then it is again set to ‘0’, ‘StartPDPA’ is

set high, and ‘Count’ is decremented. The counter ‘Count’ keeps decrementing in every

iteration until it reaches zero, which indicates the completion of one point multiplication.

Hence, the total number of clock cycles of one point multiplication are calculated as

(m− 1)× (3m+ 13) = 3m2 + 11m− 14.

After the completion of one point multiplication, the ‘CountPDPA’, ‘StartPDPA’, and

‘Count’ signals are set to ‘0’, ‘0’, and m − 2, respectively. The controller then waits for

the ‘Start’ signal to perform the next computation.

11.6. Proposed ECC Processor 283

Count_PDPA=++
Start_PDPA=0

Count_PDPA=0
Start_PDPA=0

Count=k-2

Count_PDPA=0

Count = k-2

END

Count_PDPA=++
Start_PDPA=0

Start=1

Start_PDPA=0

Count_PDPA=
3m+13

Count_PDPA=0
Start_PDPA=1

Count_PDPA=
3m+13

Count=0

Count=k-2
Start_PDPA=0

Count=
Count-1

Count_PDPA=0
Start_PDPA=1

Count=k-3

Count_PDPA=++
Start_PDPA=1

Loop
Controller

Yes No

Yes No

No

Yes

Yes

No

NoYes

No

Yes

Count_PDPA=++
Start_PDPA=0

Count_PDPA=0
Start_PDPA=0

Count=k-2

END

Start=1

Start_PDPA=0

Count_PDPA=0
Start_PDPA=1

Count=k-2
Start_PDPA=0

Count=
Count-1

Count_PDPA=0
Start_PDPA=1

Count=k-3

Loop
Controller

Yes No

Yes No

No

Yes

Yes

No

No
Yes

No

Yes

Count
= k-2

Count_PDPA=++
Start_PDPA=0

Count_PDPA=++
Start_PDPA=1

Count_PDPA
=0

Count_PDPA
=3m+13

Count
=0

Count_PDPA
=3m+13

Count = k-2

CountPDPA = 0
StartPDPA = 0

Count = k-2

CountPDPA = 0
CountPDPA ++
StartPDPA = 0

Start = 1

Yes No

No

Yes

StartPDPA =0

CountPDPA++
StartPDPA =1

CountPDPA+ +
StartPDPA = 0

Yes

No

CountPDPA
=3m+13

Yes

Loop
Controller

CountPDPA
=3m+13

CountPDPA= 0
StartPDPA = 1

Yes

Count = 0
No

Count - -

END

No

Yes

CountPDPA= k-2

StartPDPA = 0

No

CountPDPA =0
StartPDPA =1
Count = k-3

Start

Count = m-2

CountPDPA = 0
StartPDPA = 0
Count = m-2

Start

CountPDPA ++
StartPDPA = 0

Start = 1

Yes No

No

Yes

StartPDPA =0

CountPDPA++
StartPDPA =1

CountPDPA+ +
StartPDPA = 0

Yes

No

CountPDPA
=3m+13

CountPDPA =0
StartPDPA =1
Count = m-3

Yes

Loop
Controller

CountPDPA
=3m+13

CountPDPA= 0
StartPDPA = 1

Yes

Count = 0
No

Count - -

END

No

Yes

Count = m-2

StartPDPA = 0

No

CountPDPA=
0

Figure 11.7: Proposed main controller of ECPM in Jacobian coordinates.

11.6.4 Overall architecture

Fig. 11.8 depicts the block diagram of the final ECP which is a building block of four

modules, namely serial-in parallel-out (SIPO), ECPM in Jacobian coordinates, Jacobian

to affine conversion, and parallel-in serial-out (PISO). The pin count of the top module

is reduced by designing with SIPO and PISO, hence increasing the functionality of our

proposed ECP. The first module is SIPO, which is required to send data serially and receive

data in parallel. The output of the SIPO module is from 192 to 256 bits, depending on the

prime field length. There only m+ 2 clock cycles are required for the SIPO module. The

284 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

ECPM using PDPA
(Jacobian Coordinates)

SIPO

PISO

Key_in

192/224/256
Key Ready

Qxi Qyi Qzi done_pm

clk

Rx Ry done

SI

Start_in

Start

Rxi Ryi done_aff

clk

clk

clk

rst

rst

rst

rst

Jacobian to Affine

192/
224/256

192/224/256

Key Output

SIPO PISO

ECPM
(Jacobian Coordinates)

Jacobian-to-Affine

(Key) Output
PISOECPM

(Jac.)
Jac.-to-
Affine

SIPO
Input

Initialize

Count_PDPA=Count_PDPA + 1
Start_PDPA = 0

No

No

Count = k-2
Start_PDPA = 0

Count = k-2

End

No

Yes

Count_PDPA = 0
Start_PDPA = 1

End

Yes

Count = 0

Count = Count - 1

NoYes

Count_PDPA =
3m+13

End End

Count_PDPA = 0

Count_PDPA=Count_PDPA + 1
Start_PDPA = 0Start = 1

Count_PDPA =
3m+13

Yes

Count_PDPA = 0
Start_PDPA = 1

Count = k-3

End

No

NoYes

End

Start_PDPA = 0

Yes

Count_PDPA=Count_PDPA + 1
Start_PDPA = 1

End

Count = k-2
Count_PDPA=0
Start_PDPA = 0

Count = k-2

Count_PDPA=0

Start=1

Count_PDPA=
3m+13

Count_PDPA=
3m+13

Count=0

Yes
No

Yes

No

Yes

Yes

No

No

No

NoYes

Initialize

Yes

Count_PDPA = 0
Start_PDPA = 1

Start_PDPA=0

Count_PDPA + +
Start_PDPA = 0

Count = k-2
Start_PDPA = 0

Count = k-2
Count_PDPA=0
Start_PDPA = 0

Count_PDPA + +
Start_PDPA = 0

Count_PDPA + +
Start_PDPA = 1

Count_PDPA=0
Start_PDPA=1

Count = k-3

Count =
Count-1Loop Controller

END

SIPO PISO
Input
(Key)

Output

ECPM
(Jacobian Coordinates)

Jacobian-to-Affine

SIPO
ECPM

(Jacobian)
Jacobian-
to-affine

PISO
Input
(key) Output

SIPO
ECPM

(Jacobian)
Jacobian-to-

affine
PISOInput (key) Output

Figure 11.8: Overall block diagram of ECP top module.

second module is ECPM, which is the key operation of the ECP. The ECPM module in

Jacobian coordinates needs only 3m2+11m−14 cycles. The Jacobian to affine conversion

module is the third module and is required to get the result in affine coordinates. To

convert affine coordinates from Jacobian, only 4m + 6 cycles are required. The final

module is PISO, which sends the final results serially. This module takes only m+1 clock

cycles. Finally, the top module of ECP needs only five pins, two for input and three for

output. Total number of cycles for ECP top module

= SIPO + ECPM in Jac.+ Jacobian to Affine + PISO

= (m+ 1) + (3m2 + 11m− 14) + (4m+ 6) + (m+ 2)

= (3m2 + 17m− 5) (11.10)

11.6.5 ECDSA

The elliptic curve digital signature algorithm (ECDSA) is the most widely standardized

elliptic curve based signature scheme. The execution time of ECDSA mostly relies on

ECPM. Algorithm 11.5 shows the EC digital signature generation process on a message

hash, where the EC domain parameters are given in [2, 22, 23]. In steps 1 and 2 of

Algorithm 11.5, P is fixed, and the number k is secret (generated as random) due to

ECPM in step2, where R = kP is easy to compute, and the reverse way, which is called

the elliptic curve discrete logarithm problem, is responsible for the hardness of ECC. When

R = 0, called the point at infinity, then another key needs to be generated and return to

step 1. In this algorithm, the pair (r, s) is the signature, where r is the x-coordinate of

11.6. Proposed ECC Processor 285

Algorithm 11.5: Elliptic curve (EC) digital signature generation

Input: EC domain parameters, private key d, message hash z

Output: Signature (r, s)

1. Select k ∈ [1, n - 1], random number generation

2. Compute R = k.P (Px, Py) mod p = (Rx,Ry) = ECPM,

where P (Px, Py) is the base point on EC

3. Compute r = Rx mod n, where Rx is the x-coordinate of R

{if r = 0 then choose another key and start from step 1}

4. Calculate s = k−1(z + rd) mod n, where d is the private key

{k−1 is the multiplicative inverse of k modulo n}

{if s = 0 then return to step 1}

5. Return (r, s), the signature is generated at this instant

Algorithm 11.6: Elliptic curve digital signature verification

Input: EC domain parameters, public key Q, message hash z

Output: Acceptance or rejection of the signature

1. Compute w = s−1 mod n

2. Compute u1 = zw mod n, and u2 = rw mod n

3. Calculate X = u1P + u2Q mod p = (Xx, Xy)

4. if X =∞ then return to step 1 ("Reject the signature")

5 Compute v = Xx mod n, Xx is the x-coordinate of X

6 Signature is valid only if v = r else "Reject the signature"

R which is computed from ECPM, and if r = 0 then return to step 1. For the signature

generation, we need to calculate s, shown in step 4 in Algorithm 11.5. For doing this,

we can compute the multiplicative inverse modulo n with our modular inversion module,

where n is the order of the base point P of EC. We have also implemented modular

286 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

multiplication and modular addition which can be used for signature generation.

The method for elliptic curve signature verification is illustrated in Algorithm 11.6.

To verify a signature, we need to compute two point multiplications in step 3 such as

X = u1P +u2Q, and the signature (r, s), where P and Q are points on EC and P is fixed,

but Q is not fixed. For doing this, modular inversion and modular multiplication are

essential, as shown in steps 1 and 2 of Algorithm 11.6. In step 3 of this algorithm, ECPM

and modular addition are required to compute the valid signature. When the value of

X reaches infinity, i.e. Xx = 0, then the signature is invalid, and return to step 1. The

signature is valid when v = r, where v is computed from the x-coordinate of X. We can

say that our proposed ECP can be used for ECDSA because our ECP supports FFMA

and point multiplication.

11.7 Implementation Results and Performance Com-

parison

Our proposed ECP is synthesized in ASIC 65-nm CMOS technology with 1.2V, 25◦C.

We have chosen 65-nm CMOS process technology for the proposed ECP, provided by

STMicroelectronics. It was chosen because, after all layout verification, the chip can be

manufactured using this process technology by a foundry. Usually, new technologies offer

faster computation and lower power consumption with increased design possibilities. We

believe that if we use 55-nm CMOS technology for our ECP, then it is possible to achieve

faster computation as well as a more energy-efficient design. The design has been exten-

sively simulated using ModelSim/Questa Sim. All simulation results are verified using

Maple software. It can compute the ECPM between 0.207 ms (192-bit ECC) and 0.366

ms (256-bit ECC) with an area between 1.10 mm2 and 1.52 mm2. We have achieved

an energy-efficient design which consumes an energy of between 0.08 and 0.14 µJ at the

11.7. Implementation Results and Performance Comparison 287

frequency of 549.45 MHz. The overall performance of the ECPM is compared with those

in the available literature.

Table 11.1: ASIC implementation of modular multiplication over Fp.

Field Area Time (ns) Throughput Rate Energy

(Bit Length) (mm2/Kilo-Gates) @f (MHz) (Mbps) (pJ/MM)

Fp 192 0.043/20.67 176@549 1090 5.03

Fp 224 0.050/24.18 206@549 1087 6.96

Fp 256 0.059/28.40 216@549 1185 7.65

Used UMC standard logic cell library (65nm, 1.2V, 25◦C), Kgs = kilo-gates

Modular addition and subtraction are implemented very efficiently; both operations

take only one clock cycle. We have also implemented a combined modular addition and

subtraction module. The combined module takes less area at the arithmetic level than

separate addition and subtraction modules. However, the proposed PDPA employs ded-

icated adders and subtractors, therefore the combined modular addition/subtraction is

not suitable. For this reason, we have utilized separate modular addition and subtraction

modules for our proposed ECP. Both designs are synthesized using ASIC 65-nm CMOS

technology with a target clock period of 1 ns. Thus the areas required by modular ad-

dition, subtraction, and combined addition and subtraction is only 0.01655 mm2 (7.96

KGates), 0.0336 mm2 (16.17 KGates), and 0.038 mm2 (18.38 KGates) respectively. The

gate count of this design is calculated as the total area divided by the NAND gate area

of ST 65-nm technology, which is 2.08 µm2.

Most of the modular multiplication architectures were implemented on FPGAs. How-

ever, we have synthesized our proposed radix-4 modular multiplication (MM) (Algorithm

11.3, Fig. 11.3(b)) using STMicroelectronics 65-nm CMOS technology; results are shown

in Table 11.1. It can compute modular multiplication in between 176 and 216 ns with an

288 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

area of 0.043 mm2 to 0.059 mm2. The throughput rate of our design is more than 1 Gbps,

which is very high for a prime field of F192 or F224 or F256. In [75], a modular multiplica-

tion over the prime field was implemented for an ECPM. They also used the interleaved

modular multiplication method. However, their design takes m clock cycles for m-bit

modular multiplication, which is almost double that of our design. Table 11.1 indicates

that the proposed design is very fast, and area-efficient as well as energy-efficient.

We have also calculated the energy dissipation of all our designs, which is calculated

from the power consumption and latency. The power consumption is simulated from Syn-

opsys PrimeTime (PT). The Questa (ModelSim) simulator is used for the post-synthesis

netlist with a sufficient amount of input data. From ModelSim, a vcd file is generated that

captures all signal activities including net switching activity derived from a netlist and the

time of every event on each net. Our generated vcd file gives a 99.7 % switching activity

profile which is enough to get the accurate power consumption. Besides, the vcd-based

power analysis is assumed extremely accurate because most of the factors considered to

measure power consumption are supported in an exact form [187]. Our proposed radix-4

modular multiplication consumes less power than others. For example, the total power

consumption for a 192-bit modular multiplication is 0.0286 mW@549.45 MHz, of which

0.0156 mW is for nets, 0.0130 mW is for cells, and 0.0346 µW is for leakage. The energy

dissipation is between 5.03 and 7.65 pJ per modular multiplication, which is very small.

A high-performance ECPM is developed using this efficient modular multiplication.

Table 11.2 depicts the implementation results of modular inversion over Fp. It can

compute a modular inversion between 699 and 932 ns with the area between 0.071 mm2

(33.91 KGates) and 0.096 mm2 (46.13 KGates). Our designed modular inversion is very

fast as well as area- and energy-efficient. The energy dissipation of modular inversion

is between 15.34 and 27.20 pJ, almost 3 times as great as for modular multiplication,

however only one modular inversion is required to complete ECPM.

11.7. Implementation Results and Performance Comparison 289

Table 11.2: ASIC implementation of modular inversion over Fp.

Field Area Time (ns) Throughput Rate Energy

(Bit Length) (mm2/Kilo-Gates) @f (MHz) (Mbps) (pJ/MM)

Fp 192 0.071/33.91 699@549 275 15.34

Fp 224 0.082/39.49 815@549 275 17.02

Fp 256 0.096/46.13 932@549 275 27.20

Table 11.3: ASIC synthesis results for PDPA over Fp

|p| Area Clock Time Throughput Rate Energy

(bits) (mm2/Kilo-Gates) Cycles (µs) (Mbps) (nJ/PDPA)

192 1.083/520.67 3m+14 1.07 179.44 0.33

224 1.310/629.81 3m+14 1.25 179.20 0.45

256 1.466/704.81 3m+14 1.42 180.28 0.49

m ' d log2 p e and Frequency = 549 MHz

Table 11.3 presents the ASIC implementation results of PDPA, which is the most area-

consuming operation of ECP; it consumes almost 97% of the area of the ECP. As shown

in Table 11.3, the number of clock cycles for computing PDPA is only 3m + 14, which

is smaller than other available designs in the literature. For example, the design in [90]

needs 5m+ 13 clock cycles for a point-addition operation. Based on our implementation

results, we observe that the computation time for PDPA is much less due to the efficient

implementation of FFMA. We have achieved a high throughput rate of almost 180 Mbps

per PDPA operation. The power consumption is simulated from Synopsys PT, then the

energy dissipation of PDPA calculated, is between 0.33 nJ and 0.49 nJ@549.45 MHz.

Table 11.4 shows the ECPM results and performance comparisons with similar de-

signs over the NIST prime field Fp. There are only a few hardware implementations on

290 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor
T
ab

le
11
.4
:
P
er
fo
rm

an
ce

co
m
pa
ri
so
n
be
tw
ee
n
ou

r
E
C
C

de
si
gn

an
d
si
m
ila

r
A
SI
C
-b
as
ed

de
si
gn

s
ov
er

F p

T
ec
hn

ol
og

y
F
ie
ld

R
ep

or
te
d
A
re
a

K
C
yc
le
s

T
im

e
(m

s/
E
C
P
M
)

A
T
1

E
ne

rg
y2

T
R

3

(L
en
gt
h)

(m
m

2
/K

G
at
es
)

@
f
(M

H
z)

(µ
J/

E
C
P
M
)

(k
bp

s)

T
h
is

w
or
k

65
-n
m

19
2

1.
10

/5
27

.9
11

3.
9

0.
21
@
54

9
22

7.
5/

10
9.
4

0.
08

92
6.
6

22
4

1.
34

/6
44

.2
15

4.
3

0.
28
@
54

9
37

6.
4/

18
1.
0

0.
11

79
7.
4

25
6

1.
52

/7
31

.7
20

1.
0

0.
37
@
54

9
55

6.
8/

26
7.
7

0.
14

69
9.
9

Li
u
[2
1]

55
-n
m

25
6

0.
35

/1
89

.0
45

8.
2

1.
45

@
31

6
50

7.
5/
27

4.
1

49
.7

17
6.
6

Le
e
[4
4]

90
-n
m

19
2

1.
12

/3
13

.0
94

.2
0.
43

@
22

0
48

1.
6/

13
4.
6

26
.0

44
6.
5

22
4

1.
12

/3
13

.0
12

7.
2

0.
59
@
21

7
66

0.
8/

18
4.
7

39
.0

37
9.
7

25
6

1.
12

/3
13

.0
16

5.
1

0.
76
@
21

7
85

1.
2/

23
7.
9

54
.0

33
6.
8

La
i[
16

8]
0.
13

-µ
m

16
0

1.
35

/1
79

.0
54

.4
0.
38

@
14

1
51

3.
0/

68
.0

31
.0

42
1.
1

G
ho

sh
[9
0]

19
2

—
/1

23
.1

18
7.
7

1.
36

@
13

8
—
/1

67
.4

—
14

1.
2

0.
13

-µ
m

22
4

—
/1
43

.9
25

3.
5

1.
95

@
13

0
—
/2

80
.6

—
11

4.
9

25
6

—
/1
67

.5
33

1.
1

3.
01

@
11

0
—
/5

04
.2

—
85

.1

1.
A
T

=
A
re
a×

T
im

e
=

(m
m

2
×
µ
s)
/(
K
G
at
es
×
m
s)
,
2.

E
ne

rg
y
=

p
ow

er
×
ti
m
e,

w
he

re
p
ow

er
m
ea
su
re
d
fr
om

Sy
no

ps
ys

P
ri
m
e
T
im

e
(P

T
),

an
d
3.

T
R

=
T
hr
ou

gh
pu

t
R
at
e
=

(1
/t
im

e(
se
c)
)×

F
ie
ld

L
en

gt
h

11.7. Implementation Results and Performance Comparison 291

T
ab

le
11
.4
:
P
er
fo
rm

an
ce

co
m
pa
ri
so
n
be
tw
ee
n
ou

r
E
C
C

de
si
gn

an
d
si
m
ila

r
A
SI
C
-b
as
ed

de
si
gn

s
ov
er

F p

T
ec
hn

ol
og

y
F
ie
ld

R
ep

or
te
d
A
re
a

K
C
yc
le
s

T
im

e
(m

s/
E
C
P
M
)

A
T
1

E
ne

rg
y2

T
R

3

(L
en
gt
h)

(m
m

2
/K

G
at
es
)

@
f
(M

H
z)

(µ
J/

E
C
P
M
)

(k
bp

s)

La
i[
16

9]
0.
13

-µ
m

16
0

1.
44

/1
69

.4
74

.0
0.
36

@
20

8
51

1.
2/

60
.1

25
.2

45
0.
7

25
6

—
/1

97
.0

25
2.
1

1.
21

@
20

8
—
/2

38
.4

—
21

1.
6

K
ar
ak
oy

un
lu

[1
9]

0.
18

-µ
m

16
0

—
/8

6.
0

26
4.
6

1.
80

@
14

7
—
/1

54
.8

—
88

.9

19
2

—
/9

2.
0

39
3.
3

1.
18

@
33

3
—
/1

08
.6

—
16

2.
7

A
hm

ad
i[
17

8]
0.
13

-µ
m

19
2

0.
17

/—
97

12
.5

52
5@

18
.5

89
.3
/—

20
.6

0.
4

La
i[
18

5]
0.
13

-µ
m

16
0

—
/1

50
.6

74
.0

0.
34

@
21

7
—
/5

1.
2

—
47

0.
6

C
he
n
[1
84

]
0.
13

-µ
m

25
6

—
/1

22
.0

56
2.
0

1.
01

@
55

6
—
/1

23
.2

—
25

3.
5

Sa
to
h
[1
86

]
0.
13

-µ
m

16
0

—
/1

17
.5

96
.3

0.
19

@
51

0
—
/2

2.
3

—
84

2.
1

19
2

—
/1

18
.0

19
8.
3

1.
44

@
13

8
—
/1

69
.9

—
13

3.
3

25
6

—
/1

17
.5

34
0.
0

2.
68

@
13

8
—
/3

14
.9

—
95

.5

1.
A
T

=
A
re
a×

T
im

e
=

(m
m

2
×
µ
s)
/(
K
G
at
es
×
m
s)
,
2.

E
ne

rg
y
=

p
ow

er
×
ti
m
e,

w
he

re
p
ow

er
m
ea
su
re
d

fr
om

Sy
no

ps
ys

P
ri
m
e
T
im

e
(P

T
),

an
d

3.
T
R

=
T
hr
ou

gh
pu

t
R
at
e
=

(1
/t
im

e(
se
c)
)×

F
ie
ld

L
en

gt
h

292 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

ASIC, most being implemented in FPGA. However, for a fair comparison, we tried to

give all the ASIC implementation results over the prime field. The post-synthesis results

are used to compare with other related ASIC-based implementations. Our designed ECP

takes 0.207 ms, 0.281 ms, and 0.366 ms over the prime fields F224, F256, and F256, respec-

tively, with a clock frequency of 549.45 MHz. As we can see from Table 11.4, we have

achieved a higher clock frequency of 549 MHz because the proposed architectures are

designed in such a way that the critical path is shorter, so they can run with a high clock

frequency. Our proposed design requires comparable area (in mm2) with recent ASIC-

based implementations. Only a few designs calculated energy dissipation. The energy

dissipation of the proposed ECPM for the prime field Fp is between 0.08 and 0.14 µJ,

which is 300 times better than other similar designs in the available literature.

An efficient dual-field ECP using a radix-4 modular arithmetic was implemented in

ASIC 55-nm CMOS technology [21]. The gate count of our proposed ECC processor

(ECP) is slightly larger than [21]. However, we have achieved high computation speed,

hence the area × time (AT) is comparable. Although our proposed ECP needs more

area to implement, which may not suitable for extremely lightweight applications, it is

better for applications that require high throughput. Therefore, we have a tradeoff be-

tween area and computation time. Moreover, we have achieved an energy dissipation of

only 0.35% that of their design. Therefore, the time-complexity and energy dissipation

of our proposed design are much lower than [21]. An ECP using a heterogeneous dual-

processing-element architecture was proposed in [44]. They used a double-and-add-always

algorithm with separate PD and PA modules. They implemented in ASIC 90-nm CMOS

technology. However, we have used PDPA and synthesized our design in ASIC 65-nm

CMOS technology. Their design requires less area and logic gates than our design; on

the other hand, we have achieved a faster and more energy-efficient design than [44]. The

energy dissipation of their design is almost 350 times than our similar design.

11.8. Conclusion 293

[168] and [185] implemented a 160-bit ECPMs in ASIC 0.13-µm CMOS technology.

Their proposed ECP requires similar resources to our ECP with a more bits, as shown

in Table 11.4. A parallel ECP over Fp is presented in [90]; their design takes more clock

cycles hence more computation time than ours. They synthesized their design on TSMC

0.13-µm CMOS technology using separate PD and PA modules. An efficient cipher pro-

cessor for a dual-field ECP was proposed in [169]. They implemented their design in

TSMC 0.13-µm CMOS technology and their design requires three times as much com-

putation time as our design. The energy dissipation of our design is far better than for

their design. [19] proposed efficient implementations of ECP over prime fields F160 and

F192. The gate count of their design in ASIC 0.18-µm CMOS technology is far less than

for our design, but our design is faster than is given by their synthesized results. Ahmadi

and Ali [178] proposed a low-power low-energy ECP over the prime field F192 and syn-

thesized it on 0.13-µm technology, and their cryptographic processor is much slower than

our proposed ECP. Also, our design is 184 times better regarding energy dissipation. A

high-performance 256-bit ECP for general curves over GF(p) is proposed by Chen [184].

Their synthesized results show that they require more clock cycles and timing than our

proposed design; however, their design requires fewer logic gates. Satoh et al. [186] pro-

posed a scalable dual-field ECP for ASIC-based implementation. Their 256-bit ECP needs

more clock cycles than our design; hence their design is slower than our design. Thus the

throughput of our design is far better than their design. Besides, our proposed ECP is

not only energy-efficient but also faster than all other designs.

11.8 Conclusion

A fast, area- and energy-efficient ECP over the prime field GF(p) is proposed and syn-

thesized using ASIC 65-nm CMOS technology. The double-and-add scalar multiplication

294 Chapter 11. Energy-Efficient ASIC-Based Elliptic Curve Cryptography Processor

algorithm using a Jacobian coordinate is utilized for this implementation. The proposed

architecture delivers a high-performance operation with less area. The proposed ECP ar-

chitecture using combined group operation (PDPA) hardware supports three NIST curves

with sizes 192, 224, and 256 bits, which are good enough for current security levels, even

high-security applications. The same architecture can be used for the remaining two NIST

curves whose prime sizes are 384 and 521 bits. However, the higher bit length takes more

area, time, and power consumption compared to the lower field length. As can be seen

from Table 11.4, 256-bit ECP needs more resources than 224-bit ECP. The required area

is between 1.098 mm2 (192-bit ECC) and 1.522 mm2 (256-bit ECC) at the frequency of

549.45 MHz. Our proposed ECP takes between 0.207 and 0.366 ms to execute a typical

point multiplication, which represents the fastest hardware implementation. We have

also calculated the energy dissipation from Synopsys PT using the signal activity file;

it is between 0.08 and 0.14 µJ for the mentioned prime fields. The design is simulated

using Modelsim PE and verified using Maple software. From the performance analysis

and comparison of different ECPs over the prime field in Table 11.4, some are only area-

efficient, or some are better regarding only speed; however, we have a trade-off between

area, speed, and energy. It can be concluded that our ECP performs better than other

comparable designs.

Chapter 12

Conclusions and Future Work

12.1 Conclusions

This dissertation presented research on hardware implementations of an elliptic curve

cryptography processor (ECP) both in binary fields and prime fields. Several high-

performance designs were proposed with their performances investigated to achieve high

speed, low area, and low power consumption hardware of ECPs. The proposed efficient

ECPs can be used for different resource-constrained devices and portable applications,

such as smart cards, credit cards, smartphones, tablets, notebooks, and PDAs. In addi-

tion, the proposed ECPs were developed with minimum hardware resources as well as low

energy dissipation with a high throughput rate, are suitable for IoT hardware security. In

this dissertation, numerous hardware implementations of modular arithmetic operations,

elliptic curve group operations, and elliptic curve point multiplications (ECPMs) were

designed and implemented on different platforms. Based on the different implementation

results with different platforms, it can be concluded that it is not easy to say which design

is better. Therefore, the performance analyses of all designs were carefully investigated

for fair comparisons.

295

296 Chapter 12. Conclusions and Future Work

12.1.1 Conclusions for Binary Field Elliptic Curve Cryptography

The first half of this dissertation is based on binary-field GF (2m) hardware implemen-

tations. In Sections 5.3, 6.3, and 7.4, the detailed hardware implementation hierarchy

of the ECC operations over the binary field was presented. As can be seen from that,

the bottom level in the hierarchy of ECC operations is the finite field arithmetic (FFA)

unit, consisting of finite field addition, multiplication, squaring, and inversion, which is

the most important operation to speed up the whole computation of ECP. In this dis-

sertation, a high-performance hardware implementation of a finite field arithmetic (FFA)

unit was designed to implement efficient ECPs over NIST binary fields GF (2m). The

proposed FFA unit was designed to support all five binary fields GF (2163), GF (2233),

GF (2283), GF (2409), and GF (2571) recommended by NIST. In this FFA unit, three dif-

ferent types of finite field multiplier architectures were designed to achieve low-latency

ECPM over the binary field: (1) bit-serial, (2) traditional digit-serial, and (3) modified

digit-serial; whose computational complexity in terms of number of clock cycles are m,

dm/de, and 2 ∗ d
√
m/de, respectively. In addition, a bit-serial finite field inversion archi-

tecture was designed for an ECP in affine coordinates or with conversion from Jacobian

projective coordinates to affine coordinates, whose latency (clock cycles) is 2m + 1. All

finite field operations were implemented on both FPGA and ASIC (65-nm CMOS) plat-

forms. Implementation results demonstrated that the bit-serial finite field multiplication

needs only 98 to 409 slices and 105 to 453 slices in Virtex-7 FPGA and Virtex-6 FPGA,

respectively. On the other hand, it was illustrated that the traditional digit-serial multi-

plication takes between 1975 and 7046 slices and between 2011 and 7129 slices in Virtex-7

and Virtex-6 FPGAs, respectively. It was noticed that the proposed modified digit-serial

multiplications need a similar area to the traditional digit-serial multiplications but take

less computation time. Note that the digit sizes 1, 2, 4, 8, 16, 32, and 64 bits were

chosen for the finite field multiplication. It can be noted that the best way to compare

12.1. Conclusions 297

the performance of different designs is the area × time (AT) or the reciprocal of AT,

which is called efficiency (or performance). The implementation results revealed that

digit-serial multiplications provide better efficiency than bit-serial multiplications, and

the efficiency of traditional digit-serial multiplication is similar to modified digit-serial

multiplication on an FPGA. However, the ASIC-based implementation results showed

that the modified digit-serial multiplications provide far better performance (e.g. area ×

time × energy (ATE)) than the modified digit-serial multiplications. On the other hand,

it was demonstrated that inversion takes more computation time, hence lower efficiency,

than multiplication. Hence, inversion should be avoided as much as possible. It can be

avoided for point multiplication in projective coordinates. All finite field arithmetic op-

erations implemented in this research were compared with related work in the literature.

To the best of the author’s knowledge, the proposed FFA unit gives better performance

in terms of AT and ATE than all other comparable work in the literature.

All the designed ECPs using bit-serial finite field arithmetic operations contained very

low area and timing on an FPGA. The proposed ECPs were optimised by using dif-

ferent optimisation techniques, such as parallelisation on operations, pre-computations,

balancing the elliptic curve group operations (i.e. PD and PA), and an efficient ECPM

algorithm. Implementation results revealed that the ECPs in affine coordinates need only

2253, 3016, and 4625 slices without using any DSP blocks in a Xilinx Kintex-7 FPGA for

the binary field GF (2163), GF (2233), and GF (2283), respectively. It was shown that the

computation time for 163, 233, and 283 bit binary-field ECPs are 1.06, 2.66, and 5.54 ms

at the frequency of 306.48, 255.66, and 251.98 MHz, respectively. It was found that the

proposed designs perform nearly 50% better than other than those in comparable work

in the literature. On the other hand, it was noticed that the ECPM in affine coordinates

with bit-serial arithmetic usually take a huge number of clock cycles, hence more com-

putation time. Besides, it was demonstrated that the performance of ECP in projective

298 Chapter 12. Conclusions and Future Work

coordinates is better than ECP in affine coordinates.

In this dissertation, ECPM over binary fields GF (2163) and GF (2233) was implemented

using a parallel architecture and in Jacobian projective coordinates. A novel combined

group operation, point doubling and point addition (PDPA), was designed using the pro-

posed parallel finite field multiplication in a polynomial basis. The point multiplication

was designed and implemented on both FPGA and ASIC platforms using the combined

PDPA and parallel multiplier. The FPGA or ASIC implementation results demonstrated

that the proposed parallel point multiplication is the fastest hardware implementation

result reported in the literature to date. Implementation results reported that the point

multiplication computation time is between 0.33 and 3.56 µs in both a Xilinx Virtex-7

FPGA and in 65-nm CMOS technology. However, it was noticed that the proposed design

takes more area (slices) than other work. Hence, the area-delay product was compared

with related work and it was found that the proposed design provides almost 50% better

efficiency than other work in the literature. In addition, it was also found that the ATE

value of this design is far better than for recent implementations.

The implementation results of the parallel point-multiplication architecture were in-

vestigated and it was found that it was not suitable for an area-efficient design. Therefore,

an efficient ECP was designed using both bit-serial and digit-serial finite field multipli-

ers. The presented ECP using the bit-serial multiplier and the combined PDPA hardware

supports all five NIST binary curves including both random and Koblitz curves. It was

shown that the bit-serial approach ECP takes between 0.66 and 9.36 ms and between 156

and 1899 µs in a Virtex-7 FPGA and in 65-nm CMOS platforms, respectively for Koblitz

curves from 163 to 571 bits. Similarly, it was demonstrated that the implemented designs

need only 3056 to 13530 slices in a Virtex-7 FPGA and 115.5 to 396.9 kilo-gates in an

ASIC 65-nm platform. Based on the performance analysis, the designed ECP in Jacobian

projective coordinates with the bit serial multiplier is area efficient but not timing efficient.

12.1. Conclusions 299

Therefore, a high-performance ECP was implemented using the designed combined PDPA

hardware and digit-serial multiplication hardware. Implementation results displayed that

the FPGA-based design takes 37.52, 65.16, and 111.92 µs with 72937, 48652, and 25424

slices for digit sizes of 64, 32, and 16 bits, respectively over GF (2233). Similarly, ASIC-

based results showed that it takes only 69, 52, and 41 µs with 879.8, 557.7, and 326.9 kilo

gate counts. It was noted that the ASIC-based ECP using a digit-serial multiplier gives

better ATE performance than the ECP using a bit-serial multiplier. Finally, all designs

were compared with related implementations in the literature, and it was found that the

proposed designs deliver far better performance than recent implementations.

12.1.2 Conclusions for Prime Field Elliptic Curve Cryptography

The second half of this dissertation is based on prime-field GF (p) hardware implementa-

tions. In this dissertation, a modular multiplier based on the Montgomery method and

a modular inverter based on the extended Euclidean algorithm (EEA) (i.e. the binary

method) were designed and implemented for an ECP over GF (p). It was explained that

modular multiplication is the most important arithmetic operation to implement ECP

over prime fields. On the other hand, it was also noted that modular inversion is the most

expensive operation over the prime field. For example, implementation results demon-

strated that a 256-bit modular inversion needs 1480 slices with the computation time of

2.329 µs in a Virtex-7 FPGA, whereas a 256-bit modular multiplication contains only 605

slices with the delay of 1.683 µs in the same platform. However, it was explained that

both designs are mandatory for an ECP over Fp. Finally, their relative performances were

described and compared in terms of area and timing with related work in the literature.

It was demonstrated that the implemented designs are faster as well as more area-efficient

than all other comparable work in the literature.

A high-performance hardware implementation of ECP over NIST prime fields F192 and

300 Chapter 12. Conclusions and Future Work

F256 was implemented in both affine coordinates and Jacobian projective coordinates. The

point-multiplication architecture in affine coordinates using separate point doubling and

point addition operations was explained clearly, and it was implemented in Kintex-7 and

Virtex-5 FPGAs. It was shown that the computation time of ECP in a Kintex-7 FPGA

is 3.05 and 4.70 ms with the area of 8.4 and 9.3 kilo-slices for prime fields F224 and F256,

respectively. Based on the implementation results, it was observed that the design in

affine coordinates needs more clock cycles to implement, hence is a bit slow due to the

modular inversion required for group operations. For this reason, the ECP was imple-

mented in Jacobian projective coordinates, where inversion can be removed, but the ECP

then needs more modular multiplication. Hence, an efficient modular multiplier architec-

ture was proposed based on the interleaved method to get better performance. Also, a

novel combined PDPA hardware was designed using the efficient modular multiplier. The

new ECP was implemented in a Kintex-7 FPGA and ASIC 65-nm CMOS technology. It

was reported that the ECP in Jacobian coordinates takes 2.36 and 3.27 ms with the area

of 9.7 and 11.3 kilo-slices in a Kintex-7 FPGA for 224 and 256 bit ECPs, respectively.

In addition, the ASIC-based results showed that the ASIC-based ECP offers far better

delay performance than FPGA-based implementations. Also, the performance analyses

were investigated carefully for both designs and it was found that the ECP in Jacobian

coordinates provides better performance than the ECP in affine coordinates. Finally, the

performance comparison was made with the related work in the literature, and it was

found that the proposed designs in the prime field take at least 20% less computation

time than the most significant work.

The final chapter of this dissertation discussed the fully ASIC-based ECP in Jacobian

coordinates. It was presented that the latency of modular multiplication based on the

interleaved method is m+1, however, it is possible to save 50% on clock cycles by design-

ing a novel radix-4 modular multiplier. The novel combined PDPA architecture, which

12.2. Future Work 301

performs PD and PA operations together, was designed in Jacobian projective coordinates

using the radix-4 multiplier. It was already explained that the performance of the ECP

in Jacobian coordinates is better than the ECP in affine coordinates, hence the ECP in

Jacobian coordinates only was considered for implementations. For this, a control unit for

ECPM in Jacobian coordinates was designed and the working principle explained clearly.

In addition, a separate conversion unit to convert from Jacobian to affine coordinates was

designed to improve the functionality of the ECP over the prime field. It was recorded

that the proposed ECP in ASIC 65-nm CMOS technology takes only 0.21, 0.28, and

0.37 ms with cycle counts of 113.9, 154.3, and 201.0, respectively for prime fields F192,

F224, and F256, respectively. To the author’s knowledge, the proposed ECP is the fastest

hardware implementation over the prime field reported in the literature to date. It was

also demonstrated that the proposed design is energy-efficient, taking between 0.08 and

0.14 µJ only per point multiplication, which is only 0.3% that of other similar designs.

Therefore, the proposed ECP can be used in modern cryptographic hardware security

applications.

12.2 Future Work

In future the following aspects of ECPs can be considered for further research and devel-

opment:

• The finite field arithmetics, e.g. finite field addition, multiplication, squaring, and

inversions, were implemented based on the polynomial basis. In future, all finite

field operations will be designed using a normal basis or/and dual basis, then the

performances of all arithmetic operations can easily be compared. In addition, all

arithmetic operations can also be further optimised to get the best performance of

ECP.

302 Chapter 12. Conclusions and Future Work

• In this dissertation, the ECP over the binary field was implemented using the tradi-

tional digit-serial multiplication. The implementation results obtained were limited

to the binary field GF (2233) with digit sizes of 16, 32, and 64 bits. This dissertation

implemented both the traditional and the modified digit-serial multiplications with

digit sizes of 1, 2, 4, 8, 16, 32, and 64 bits for all NIST binary curves GF (2163),

GF (2233), GF (2283), GF (2409), and GF (2571). In future, all digit-serial multiplica-

tions will be utilised to implement the ECP for all five Koblitz and random curves

recommended by NIST.

• In this dissertation, digit-serial finite field multiplication with various digit sizes were

implemented for all NIST binary curves. This dissertation implemented 233-bit ECP

with digit sizes 16, 32, and 64 bits. In future, the same digit-serial multiplication

will be utilised to implement the ECP for the remaining four NIST curves without

degrading performance. However, it is noted that a higher field size requires more

area and computation time. For example, a 571-bit ECP implementation needs

more hardware resources than a 233-bit ECP implementation.

• The ECPs have been implemented using elliptic curve group operations of Koblitz

and random curves only. The ECP using other curves including Edwards curves [188,

189] and the Hessian form of an elliptic curve [190] will be investigated in the future.

• The elliptic curve group operations were implemented in affine and Jacobian projec-

tive coordinates. In future, other forms of projective coordinates, including standard

projective coordinates, the Lopez-Dahab projective coordinates, and Chudnovsky

coordinates will be analysed.

• Inversion is the most complex arithmetic operation in either a binary field or a

prime field. In this dissertation, it is implemented in a bit-serial approach. The

12.2. Future Work 303

future research in this field will be focused on a higher radix inversion implemen-

tation. For example, higher-radix inversion based on the Itoh-Tsujii algorithm may

be investigated for implementation.

• The ECPs over prime fields support three NIST prime curves of the five NIST-

recommended primes p, with sizes 192, 224, and 256 bits. To obtain complete

solutions of prime-field ECPs, hardware implementations of ECPM in the remaining

NIST prime curves will be conducted.

• This dissertation implemented point multiplication based on the double-and-add

algorithm (i.e. binary method). In addition, point multiplication using the Non-

adjacent form (NAF) and the Montgomery method may be investigated in the fu-

ture.

• In future, a complete architecture for elliptic curve digital signature algorithm

(ECDSA) will be designed to support the execution of digital signature generation

and verification.

Appendix A

Simulation Waveforms and Results

Sample

A.1 Simulation Results for Finite Field Arithmetic

A.1.1 Simulation waveform for Bit-Serial Multiplication

305

306 Appendix A. Simulation Waveforms and Results Sample

F
ig
u
re

A
.1
:
Si
m
ul
at
io
n
w
av
ef
or
m

fo
r
bi
t-
se
ri
al

m
ul
ti
pl
ie
r
ov
er

F 2
1
6
3
,
F 2

4
0
9
,
an

d
F 2

5
7
1
.

A.1. Simulation Results for Finite Field Arithmetic 307

A.1.2 Simulation Results for Bit-Serial Multiplication

308 Appendix A. Simulation Waveforms and Results Sample

F
ig
u
re

A
.2
:
Im

pl
em

en
ta
ti
on

re
su
lts

fo
r
bi
t-
se
ri
al

m
ul
ti
pl
ie
r
ov
er

F 2
1
6
3
in

V
ir
te
x-
7
F
P
G
A
.

A.1. Simulation Results for Finite Field Arithmetic 309

A.1.3 Simulation Waveform and Results for Traditional Digit-

Serial Multiplication

Figure A.3: Simulation waveform and implementation results in Virtex-7 FPGA for

traditional digit-serial multiplier over F2
233 with digit size of 4 bits.

310 Appendix A. Simulation Waveforms and Results Sample

A.1.4 Simulation Waveform and Results for Modified Digit-Serial

Multiplication

Figure A.4: Simulation waveform and implementation results in Virtex-7 FPGA for

modified digit-serial multiplier over F2
283 with digit size of 32 bits.

A.1. Simulation Results for Finite Field Arithmetic 311

A.1.5 Simulation Waveform and Results for Inversion

Figure A.5: Simulation waveform and implementation results in Virtex-7 FPGA for

finite field inversion over F2
571.

312 Appendix A. Simulation Waveforms and Results Sample

A.2 Simulation Waveform and Results for ECC Pro-

cessor over NIST Binary Fields

Figure A.6: Simulation waveform and implementation results in Virtex-7 FPGA for

point multiplication over F2
233 with digit size of 64 bits.

A.3. Simulation Waveform and Results for ECC Processor over Prime Fields 313

A.3 Simulation Waveform and Results for ECC Pro-

cessor over Prime Fields

Figure A.7: Simulation waveform and implementation results in Virtex-5 FPGA for

point multiplication over F256 in Jacobian coordinates.

Appendix B

TCL Scripts Sample for Finite Field

Arithmetic

B.1 Sample TCL scripts for bit-serial multiplier in De-

sign Compiler

1 remove_design −al l

2 ana lyze −format vhdl − l ib work {/home/ p i r a t en /md2823ho/T_Mult_571_ASIC/syn/

s r c /ECC_package_BF.vhd \

3 /home/ p i r a t en /md2823ho/T_Mult_571_ASIC/syn/ s r c /pol_mult_clk.vhd}

4

5 e l abo ra t e pol_mult_clk −arch i t ec ture arch_pol_mult_clk − l ib rary DEFAULT

−update

6

7 ###################

8 #Star t o f Compile

9 ###################

10 create_c lock " c l k " −name " c l k " −period 1

11 set_clock_uncerta inty 0 . 1 c l k

315

316 Appendix B. TCL Scripts Sample for Finite Field Arithmetic

12 set_f ix_hold c l k

13 set_propagated_clock c l k

14 set_input_delay 0 −clock c l k [remove_from_col lect ion [a l l_input] c l k]

15 set_output_delay 0 −clock c l k [a l l_outputs]

16 set_max_area 0

17 set_max_dynamic_power 0

18 set_max_leakage_power 0

19 set_load 1 . 5 [a l l_outputs]

20

21 compi le −map_effort high

22 ###################

23 #End o f Compile

24 ###################

25

26 report_timing > /home/ p i r a t en /md2823ho/T_Mult_571_ASIC/syn/ r epo r t s /

T_Mult_571_1_bit_serial_timing_DC.rpt

27 report_area −hierarchy > /home/ p i r a t en /md2823ho/T_Mult_571_ASIC/syn/ r epo r t s

/T_Mult_571_1_bit_serial_area_DC.rpt

28 report_power > /home/ p i r a t en /md2823ho/T_Mult_571_ASIC/syn/ r epo r t s /

T_Mult_571_1_bit_serial_power_DC.rpt

29

30 change_names −rules v e r i l o g −hierarchy > /dev/ nu l l

31 wr i t e −format v e r i l o g −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/T_Mult_571_ASIC/syn/ n e t l i s t /pol_mult_clk.v

32 write_sdf / net /cas−11/ export /home/ p i r a t en /md2823ho/T_Mult_571_ASIC/syn/

n e t l i s t / pol_mult_clk.sdf

33 write_sdc /net /cas−11/ export /home/ p i r a t en /md2823ho/T_Mult_571_ASIC/syn/

n e t l i s t / pol_mult_clk.sdc

34 wr i t e −format ddc −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/T_Mult_571_ASIC/syn/ n e t l i s t /pol_mult_clk.ddc

B.2. Sample TCL scripts for traditional digit-serial multiplier in Design Compiler 317

B.2 Sample TCL scripts for traditional digit-serial mul-

tiplier in Design Compiler

1 remove_design −al l

2 ana lyze −format vhdl − l ib work {/home/ p i r a t en /md2823ho/

Traditional_Multipl iers_233_ASIC/syn/ s r c /ECC_package_BF.vhd \

3 /home/ p i r a t en /md2823ho/Traditional_Multipl iers_233_ASIC/syn/ s r c /

Mu l t i p l i c a t i on_8B i tSe r i a l . vhd }

4

5 e l abo ra t e Mu l t i p l i c a t i on_8B i tS e r i a l −arch i t ec ture

a rch_Mul t ip l i ca t i on_8Bi tSe r i a l − l ib rary DEFAULT −update

6 ###################

7 #Star t o f Compile

8 ###################

9 create_c lock " c l k " −name " c l k " −period 2

10 set_clock_uncerta inty 0 . 1 c l k

11 set_f ix_hold c l k

12 #set_propagated_clock c l k

13 set_input_delay 0 −clock c l k [remove_from_col lect ion [a l l_input] c l k]

14 set_output_delay 0 −clock c l k [a l l_outputs]

15 set_max_area 0

16 set_max_dynamic_power 0

17 set_max_leakage_power 0

18 set_load 1 . 5 [a l l_outputs]

19

20 compi le −map_effort high

21 ###################

22 #End o f Compile

23 ###################

24 report_timing > /home/ p i r a t en /md2823ho/Traditional_Multipl iers_233_ASIC/syn

/ r epo r t s /T_Mult_233_8_timing_DC.rpt

318 Appendix B. TCL Scripts Sample for Finite Field Arithmetic

25 report_area −hierarchy > /home/ p i r a t en /md2823ho/

Traditional_Multipl iers_233_ASIC/syn/ r epo r t s /T_Mult_233_8_area_DC.rpt

26 report_power > /home/ p i r a t en /md2823ho/Traditional_Multipl iers_233_ASIC/syn/

r epo r t s /T_Mult_233_8_power_DC.rpt

27

28 change_names −rules v e r i l o g −hierarchy > /dev/ nu l l

29 wr i t e −format v e r i l o g −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/Traditional_Multipl iers_233_ASIC/syn/ n e t l i s t /

Mu l t i p l i c a t i on_8B i t S e r i a l . v

30 write_sdf / net /cas−11/ export /home/ p i r a t en /md2823ho/

Traditional_Multipl iers_233_ASIC/syn/ n e t l i s t /

Mu l t i p l i c a t i o n_8B i t S e r i a l . s d f

31 write_sdc /net /cas−11/ export /home/ p i r a t en /md2823ho/

Traditional_Multipl iers_233_ASIC/syn/ n e t l i s t /

Mu l t i p l i c a t i o n_8B i t S e r i a l . s d c

32 wr i t e −format ddc −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/Traditional_Multipl iers_233_ASIC/syn/ n e t l i s t /

Mu l t i p l i c a t i on_8B i tS e r i a l . dd c

B.3 Sample TCL scripts for modified digit-serial mul-

tiplier in Design Compiler

1 remove_design −al l

2 ana lyze −format vhdl − l ib work {/home/ p i r a t en /md2823ho/M_Mult_409_ASIC/syn/

s r c /ECC_package_BF.vhd \

3 /home/ p i r a t en /md2823ho/M_Mult_409_ASIC/syn/ s r c /PE_32BitSerial .vhd \

4 /home/ p i r a t en /md2823ho/M_Mult_409_ASIC/syn/ s r c /

Modi f i ed_Mult ip l i ca t ion_32Bi tSer ia l . vhd }

5

6 e l abo ra t e Modi f i ed_Mult ip l i ca t i on_32Bi tSer i a l −arch i t ec ture Behav iora l

− l ib rary DEFAULT −update

B.3. Sample TCL scripts for modified digit-serial multiplier in Design Compiler 319

7 ###################

8 #Star t o f Compile

9 ###################

10 create_c lock " c l k " −name " c l k " −period 1

11 set_clock_uncerta inty 0 . 1 c l k

12 set_f ix_hold c l k

13 #set_propagated_clock c l k

14 set_input_delay 0 −clock c l k [remove_from_col lect ion [a l l_input] c l k]

15 set_output_delay 0 −clock c l k [a l l_outputs]

16 set_max_area 0

17 set_max_dynamic_power 0

18 set_max_leakage_power 0

19 set_load 1 . 5 [a l l_outputs]

20

21 compi le −map_effort high

22 ###################

23 #End o f Compile

24 ###################

25 report_timing > /home/ p i r a t en /md2823ho/M_Mult_409_ASIC/syn/ r epo r t s /

M_Mult_409_32_timing_DC.rpt

26 report_area −hierarchy > /home/ p i ra t en /md2823ho/M_Mult_409_ASIC/syn/ r epo r t s

/M_Mult_409_32_area_DC.rpt

27 report_power > /home/ p i r a t en /md2823ho/M_Mult_409_ASIC/syn/ r epo r t s /

M_Mult_409_32_power_DC.rpt

28

29 change_names −rules v e r i l o g −hierarchy > /dev/ nu l l

30 wr i t e −format v e r i l o g −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/M_Mult_409_ASIC/syn/ n e t l i s t /

Mod i f i ed_Mul t ip l i ca t i on_32Bi tSe r i a l . v

31 write_sdf / net /cas−11/ export /home/ p i r a t en /md2823ho/M_Mult_409_ASIC/syn/

n e t l i s t /Mod i f i ed_Mul t i p l i c a t i on_32B i tSe r i a l . sd f

320 Appendix B. TCL Scripts Sample for Finite Field Arithmetic

32 write_sdc /net /cas−11/ export /home/ p i r a t en /md2823ho/M_Mult_409_ASIC/syn/

n e t l i s t /Mod i f i ed_Mul t ip l i c a t i on_32Bi tSe r i a l . sdc

33 wr i t e −format ddc −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/M_Mult_409_ASIC/syn/ n e t l i s t /

Mod i f i ed_Mul t ip l i ca t i on_32Bi tSe r i a l .ddc

B.4 Sample TCL scripts for inverter in Design Com-

piler

1 remove_design −al l

2 ana lyze −format vhdl − l ib work {/home/ p i r a t en /md2823ho/

Inversion_283_BF_ASIC/syn/ s r c /ECC_package_BF.vhd \

3 /home/ p i r a t en /md2823ho/Inversion_283_BF_ASIC/syn/ s r c / Inversion_283_BF.vhd}

4

5 e l abo ra t e Inversion_283_BF −arch i t ec ture Arch_Inversion_283_BF − l ib rary

DEFAULT −update

6

7 ###################

8 #Star t o f Compile

9 ###################

10 create_c lock " c l k " −name " c l k " −period 1

11 set_clock_uncerta inty 0 . 1 c l k

12 set_f ix_hold c l k

13 ##set_propagated_clock c l k

14 set_input_delay 0 −clock c l k [remove_from_col lect ion [a l l_input] c l k]

15 set_output_delay 0 −clock c l k [a l l_outputs]

16 set_max_area 0

17 set_max_dynamic_power 0

18 set_max_leakage_power 0

19 set_load 1 . 5 [a l l_outputs]

20

B.4. Sample TCL scripts for inverter in Design Compiler 321

21 compi le −map_effort high

22

23 ###################

24 #End o f Compile

25 ###################

26

27 report_timing > /home/ p i r a t en /md2823ho/Inversion_283_BF_ASIC/syn/ r epo r t s /

Inversion_283_BF_timing_DC.rpt

28 report_area −hierarchy > /home/ p i ra t en /md2823ho/Inversion_283_BF_ASIC/syn/

r epo r t s /Inversion_283_BF_area_DC.rpt

29 report_power > /home/ p i r a t en /md2823ho/Inversion_283_BF_ASIC/syn/ r epo r t s /

Inversion_283_BF_power_DC.rpt

30

31

32 change_names −rules v e r i l o g −hierarchy > /dev/ nu l l

33 wr i t e −format v e r i l o g −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/Inversion_283_BF_ASIC/syn/ n e t l i s t / Inversion_283_BF.v

34 write_sdf / net /cas−11/ export /home/ p i r a t en /md2823ho/Inversion_283_BF_ASIC/

syn/ n e t l i s t / Inversion_283_BF.sdf

35 write_sdc /net /cas−11/ export /home/ p i r a t en /md2823ho/Inversion_283_BF_ASIC/

syn/ n e t l i s t / Inversion_283_BF.sdc

36 wr i t e −format ddc −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/Inversion_283_BF_ASIC/syn/ n e t l i s t / Inversion_283_BF.ddc

Appendix C

Sample TCL Scripts for Elliptic Curve

Cryptography Processor Over NIST

Binary Fields

C.1 Sample TCL scripts for ECC Processor over F2
571

using bit-serial multiplier in Design Compiler

1 remove_design −al l

2 ana lyze −format vhdl − l ib work {/home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/

syn/ s r c /ECC_package_BF.vhd \

3 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /pol_add_clk.vhd \

4 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /pol_SQ_clk.vhd \

5 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /pol_mult_clk.vhd \

6 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /Reg_PDPA_new.vhd \

7 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /pol_PDPA_BF.vhd \

8 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c / s e l e c t_ l o g i c . vhd \

9 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /MUX_1_new.vhd \

323

324
Appendix C. Sample TCL Scripts for Elliptic Curve Cryptography Processor Over

NIST Binary Fields

10 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /MUX_2_new.vhd \

11 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /Reg_MUX_3.vhd \

12 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /ECC_PM_PDPA.vhd \

13 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /SIPO_571_TOP.vhd \

14 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /PISO_571.vhd \

15 /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ s r c /top_new_571.vhd}

16

17 e l abo ra t e top_new_571 −arch i t ec ture arch_top_new_571 − l ib rary DEFAULT

−update

18

19 ###################

20 #Star t o f Compile

21 ###################

22 create_c lock " c l k " −name " c l k " −period 1

23 set_clock_uncerta inty 0 . 1 c l k

24 set_f ix_hold c l k

25 set_input_delay 0 −clock c l k [remove_from_col lect ion [a l l_input] c l k]

26 set_output_delay 0 −clock c l k [a l l_outputs]

27 set_max_area 0

28 set_max_dynamic_power 0

29 set_max_leakage_power 0

30 set_load 1 . 5 [a l l_outputs]

31

32 compi le −map_effort high

33 ###################

34 #End o f Compile

35 ###################

36 report_timing > /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ r epo r t s /

top_new_571_timing_B571_DC.rpt

37 report_area −hierarchy > /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/

r epo r t s /top_new_571_area_B571_DC.rpt

C.2. Sample TCL scripts for ECC Processor over F2
233 using digit-serial multiplier in

Design Compiler 325

38 report_power > /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/ r epo r t s /

top_new_571_power_B571_DC.rpt

39

40 change_names −rules v e r i l o g −hierarchy > /dev/ nu l l

41 wr i t e −format v e r i l o g −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/ECC_B_571_clk_opt/syn/ n e t l i s t /top_new_571.v

42 write_sdf / net /cas−11/ export /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/

n e t l i s t / top_new_571.sdf

43 write_sdc /net /cas−11/ export /home/ p i r a t en /md2823ho/ECC_B_571_clk_opt/syn/

n e t l i s t /top_new_571.sdc

44 wr i t e −format ddc −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/ECC_B_571_clk_opt/syn/ n e t l i s t /top_new_571.ddc

C.2 Sample TCL scripts for ECC Processor over F2
233

using digit-serial multiplier in Design Compiler

1 remove_design −al l

2 ana lyze −format vhdl − l ib work {/home/ p i r a t en /md2823ho/

PM_PDPA_233_bit_BF_64/syn/ s r c /ECC_package_BF.vhd \

3 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c /Addit ion.vhd \

4 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c / Inve r s i on .vhd \

5 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c /

Mu l t i p l i c a t i on_64B i tSe r i a l . vhd \

6 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c /

Jacobian_PointDoubling_233_64.vhd \

7 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c /

Jacobian_PointAddition_233_64.vhd \

8 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c /

Jacobian_PDPA_MINE_233_64.vhd \

9 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c /

Jacobian_PDPA_controller_233_64.vhd \

326
Appendix C. Sample TCL Scripts for Elliptic Curve Cryptography Processor Over

NIST Binary Fields

10 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c /

Jacobian_conversion_233_64.vhd \

11 /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ s r c /

Jacobian_PMwithPDPA_233_64.vhd}

12

13 e l abo ra t e Jacobian_PMwithPDPA_233_64 −arch i t ec ture

arch_Jacobian_PMwithPDPA_233_64 − l ib rary DEFAULT −update

14

15 ###################

16 #Star t o f Compile

17 ###################

18 create_c lock " c l k " −name " c l k " −period 1

19 set_clock_uncerta inty 0 . 1 c l k

20 set_f ix_hold c l k

21 set_input_delay 0 −clock c l k [remove_from_col lect ion [a l l_input] c l k]

22 set_output_delay 0 −clock c l k [a l l_outputs]

23 set_max_area 0

24 set_max_dynamic_power 0

25 set_max_leakage_power 0

26 set_load 1 . 5 [a l l_outputs]

27

28 compi le −map_effort high

29 ###################

30 #End o f Compile

31 ###################

32

33 report_timing > /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ r epo r t s /

Jacobian_PMwithPDPA_B233_64_timing_DC.rpt

34 report_area −hierarchy > /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/

r epo r t s /Jacobian_PMwithPDPA_B233_64_area_DC.rpt

35 report_power > /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/syn/ r epo r t s /

C.2. Sample TCL scripts for ECC Processor over F2
233 using digit-serial multiplier in

Design Compiler 327

Jacobian_PMwithPDPA_B233_64_power_DC.rpt

36

37 change_names −rules v e r i l o g −hierarchy > /dev/ nu l l

38 wr i t e −format v e r i l o g −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/PM_PDPA_233_bit_BF_64/syn/ n e t l i s t /Jacobian_PMwithPDPA_233_64.v

39 write_sdf / net /cas−11/ export /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/

syn/ n e t l i s t /Jacobian_PMwithPDPA_233_64.sdf

40 write_sdc /net /cas−11/ export /home/ p i r a t en /md2823ho/PM_PDPA_233_bit_BF_64/

syn/ n e t l i s t /Jacobian_PMwithPDPA_233_64.sdc

41 wr i t e −format ddc −hierarchy −output /net /cas−11/ export /home/ p i r a t en /

md2823ho/PM_PDPA_233_bit_BF_64/syn/ n e t l i s t /

Jacobian_PMwithPDPA_233_64.ddc

Appendix D

Sample TCL Scripts for ASIC-Based

Elliptic Curve Cryptography Processor

over Prime Fields

D.1 Sample TCL scripts for ECC Processor over F256

in Design Compiler

1 remove_design −al l

2 ana lyze −format vhdl − l ib work {/home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/

syn/ s r c /SIPO_256_TOP.vhd \

3 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /ECC_package_PF.vhd \

4 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /add_PF_256_bit_new1.vhd

\

5 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /sub_PF_256_bit_new1.vhd

\

6 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /Reg_MM_new.vhd \

7 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /MUX.vhd \

329

330
Appendix D. Sample TCL Scripts for ASIC-Based Elliptic Curve Cryptography

Processor over Prime Fields

8 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /and_mult.vhd \

9 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /mult_by_4.vhd \

10 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c / adder.vhd \

11 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c / sub1.vhd \

12 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c / sub2.vhd \

13 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c / sub3.vhd \

14 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c / sub4.vhd \

15 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c / sub5.vhd \

16 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c / sub6.vhd \

17 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /comp.vhd \

18 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /MUX_comp.vhd \

19 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /MM_Radix_4.vhd \

20 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /MSQ_Radix_4.vhd \

21 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /Reg_PDPA_new.vhd \

22 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /PF_PDPA_256_Jac_new2.vhd

\

23 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c / s e l e c t_ l o g i c . vhd \

24 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /MUX_1_new.vhd \

25 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /MUX_2_new.vhd \

26 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /Reg_MUX_3.vhd \

27 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /ECC_PM_PDPA.vhd \

28 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /PISO_256.vhd \

29 /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ s r c /top_new.vhd}

30 e l abo ra t e top_new −arch i t ec ture arch_top_new − l ib rary DEFAULT −update

31 ###################

32 #Star t o f Compile

33 ###################

34 set_dont_touch uut/BUF_∗ t rue

35 set_dont_touch BUF1_∗ t rue

36 set_dont_touch BUF2_∗ t rue

37 set_dont_touch uut_∗_buf1 true

D.1. Sample TCL scripts for ECC Processor over F256 in Design Compiler 331

38 set_dont_touch uut_∗_buf2 true

39 set_dont_use {CORE65LPSVT/HS65_LS∗}

40 set_dont_use {LVT_BUFX568_RECHAR/LVT∗}

41 create_c lock " c l k " −name " c l k " −period 1 . 5

42 set_clock_uncerta inty 0 . 1 c l k

43 set_f ix_hold c l k

44 #set_propagated_clock c l k

45 set_input_delay 0 −clock c l k [remove_from_col lect ion [a l l_input] c l k]

46 set_output_delay 0 −clock c l k [a l l_outputs]

47 set_max_area 0

48 set_max_dynamic_power 0

49 set_max_leakage_power 0

50 set_load 1 . 5 [a l l_outputs]

51 s e t_c r i t i c a l_range 0 . 5 top_new

52 s e t_cos t_pr io r i ty −default

53 compi le −map_effort high

54 ###################

55 #End o f Compile

56 ###################

57 report_timing > /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ r epo r t s /

top_new_Radix_4_MM_timing_DC.rpt

58 report_area −hierarchy > /home/ p i ra t en /md2823ho/ECC_new2_Radix_4_MM/syn/

r epo r t s /top_new_Radix_4_MM_area_DC.rpt

59 report_power > /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ r epo r t s /

top_new_power_Radix_4_MM_DC.rpt

60 change_names −rules v e r i l o g −hierarchy > /dev/ nu l l

61 wr i t e −format v e r i l o g −hierarchy −output /net /cas−11/ export /home/md2823ho/

ECC_new2_Radix_4_MM/syn/ n e t l i s t /top_new.v

62 write_sdf / net /cas−11/ export /home/md2823ho/ECC_new2_Radix_4_MM/syn/ n e t l i s t /

top_new.sdf

63 write_sdc /net /cas−11/ export /home/md2823ho/ECC_new2_Radix_4_MM/syn/ n e t l i s t /

332
Appendix D. Sample TCL Scripts for ASIC-Based Elliptic Curve Cryptography

Processor over Prime Fields

top_new.sdc

64 wr i t e −format ddc −hierarchy −output /net /cas−11/ export /home/md2823ho/

ECC_new2_Radix_4_MM/syn/ n e t l i s t /top_new.ddc

D.2 Sample TCL scripts for ECC Processor over F256

in Prime Time

1 remove_design −al l

2 read_ver i l og /net /cas−11/ export /home/md2823ho/ECC_new2_Radix_4_MM/syn/

n e t l i s t /top_new.v

3 current_des ign top_new

4 create_c lock " c l k " −name " c l k " −period 2

5 report_vcd_hierarchy /net /cas−11/ export /home/md2823ho/ECC_new2_Radix_4_MM/

syn/ n e t l i s t /top_new.vcd

6 s e t power_analysis_mode "time_based"

7 read_vcd −strip_path TB_top_new/uut/ /net /cas−11/ export /home/md2823ho/

ECC_new2_Radix_4_MM/syn/ n e t l i s t /top_new.vcd

8 update_power

9 report_power > /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ r epo r t s /

top_new_R_4_Power_PT.rpt

10 report_timing > /home/ p i r a t en /md2823ho/ECC_new2_Radix_4_MM/syn/ r epo r t s /

top_new_R_4_timing_PT.rpt

D.3 Sample TCL scripts to write a SDF file for ECC

Processor over F256

1 ## Star t PT s h e l l with " pt_she l l −64"

2 read_ddc /net /cas−11/ export /home/md2823ho/ECC_new2_Radix_4_MM/syn/ n e t l i s t /

top_new.ddc

3 write_sdf −map /usr / l o c a l− e i t /cad2/cmpstm/stm065v536/CORE65LPLVT_5.1/

D.4. Sample TCL scripts for ModelSim Simulation of ECC Processor over F256 333

behaviour / v e r i l o g /CORE65LPLVT.verilog.map /net /cas−11/ export /home/

md2823ho/ECC_new2_Radix_4_MM/syn/ n e t l i s t /top_new_PT.sdf

D.4 Sample TCL scripts for ModelSim Simulation of

ECC Processor over F256

1 ##Sc r i p t s f o r Modelsim

2 vlog / export /home/md2823ho/ECC_new2_Radix_4_MM/syn/ n e t l i s t /top_new.v

3 vcom −93 /home/ p i ra t en /md2823ho/ECC_new2_Radix_4_MM/sim/ s r c /TB_top_new.vhd

4 vsim −L CORE65LPLVT −L CLOCK65LPLVT −L BUFX568 −L /net /cas−13/ export / space /

eit−oae /msim_libs/PADS_Jun2013 −t ps work.TB_top_new −sdfmax TB_top_new/

uut=/ export /home/md2823ho/ECC_new2_Radix_4_MM/syn/ n e t l i s t /top_new_PT.sdf

5 ###

6 #ADD SIGNALS

7 ###

8 vcd f i l e /tmp/ se l im /PM_PDPA_new19/vcd/top_new.vcd

9 vcd add −r TB_top_new/uut_top_new/∗

10 ##commnads f o r vsim ##run 1 us

11 source /tmp/ se l im /PM_PDPA_new19/sim/ s c r i p t s / top_post synthes i s .do

12 do /tmp/ se l im /PM_PDPA_new19/sim/ s c r i p t s / top_post synthes i s .do

Appendix E

List of Acronyms

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

ANSI American National Standards Institute

ASIC Application-Specific Integrated Circuit

AT Area × Time

ATE Area × Time × Energy

BF Binary Field

CC Clock Cycle

CHES Cryptographic Hardware and Embedded Systems

CMOS Complementary Metal-Oxide-Semiconductor

DB Dual Basis

DC Design Compiler

DES Data Encryption Standard

3DES Triple Data Encryption Standard

DH Diffie-Hellman

DLP Discrete Logarithm Problem

335

336 Appendix E. List of Acronyms

DPA Differential Power Analysis

DRC Design Rule Check

DSA Digital Signature Algorithm

DSP Digital Signal Processing

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECP ECC Processor

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

ECPA Elliptic Curve Point Addition

ECPADD Elliptic Curve Point Addition

ECPD Elliptic Curve Point Doubling

ECPDBL Elliptic Curve Point Doubling

ECPM Elliptic Curve Point Multiplication

ECSM Elliptic Curve Scalar Multiplication

EEA Extended Euclidean Algorithm

FA Fault Analysis

FFA Finite Field Arithmetic

FIPS Federal Information Processing Standard

FPGA Field-Programmable Gated Array

FSM Finite State Machine

gcd Greatest Common Divisor

GF Galois Field

GNB Gaussian Normal Basis

HDL Hardware Description Language

IEEE Institute of Electrical and Electronic Engineers

337

I/O Input/Output

ISO International Organization for Standardization

IFP Integer Factoring Problem

LSB Least-Significant Bit

LSD Least-Significant Digit

LUT Look-Up Table

MM Modular Multiplication

MR Modular Reduction

MSB Most-Significant Bit

MUX Multiplexer

NAF Non-Adjacent Form

NB Normal Basis

NIST National Institute of Standards and Technology

NSA National Security Agency

ONB Optimal Normal Basis

PA Point Addition

PB Polynomial Basis

PD Point doubling

PDA Personal Digital Assistant

PDPA point doubling and point addition

PDP Power-Delay Product

PF Prime Field

PKC Public-Key Cryptography

RC4 Rivest Cipher 4

RTL Register Transfer Level

ROM Read-Only Memory

338 Appendix E. List of Acronyms

RNS Residue Number System

RSA Rivest, Shamir, and Adleman PKC Algorithm

SAIF Switching Activity Interchange Format

SCA Side Channel Attacks

SDC Synopsys Design Constraints

SDF Standard Delay Format

SEC Standards for Efficient Cryptography

SHA Secure Hash Algorithm

SPA Simple Power Analysis

ST STMicroelectronics

TCL Tool Command Language

VCD Voltage Change Dump

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

Bibliography

[1] N. Koblitz, A. Menezes, and S. Vanstone, “The state of elliptic curve cryptography,”

Des. Codes Cryptography, vol. 19, no. 2, pp. 173–193, Mar. 2000.

[2] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptogra-

phy. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2003.

[3] D. Pamula, “Arithmetic operators on GF (2m) for cryptographic applications: per-

formance - power consumption - security tradeoffs,” Theses, Université Rennes 1,

Dec. 2012.

[4] M. F. F. Khan and K. Sakamura, “Context-aware access control for clinical infor-

mation systems,” in Proc. IEEE IIT, Mar. 2012, pp. 123–128.

[5] M. S. Hossain, Y. Kong, E. Saeedi, and N. C. Vayalil, “High-performance elliptic

curve cryptography processor over nist prime fields,” IET Computers & Digital

Techniques, vol. 11, no. 1, pp. 33–42, Dec. 2016.

[6] J. H. Kong, L.-M. Ang, and K. P. Seng, “A comprehensive survey of modern sym-

metric cryptographic solutions for resource constrained environments,” Journal of

Network and Computer Applications, vol. 49, pp. 15 – 50, 2015.

[7] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. Inf.

Theor., vol. 22, no. 6, pp. 644–654, Sep. 2006.

339

340 Bibliography

[8] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb.

1978.

[9] T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 10–18.

[10] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. CRYPTO 1985, 1986,

pp. 417–426.

[11] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48, pp. 203–209,

1987.

[12] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren,

Handbook of Elliptic and Hyperelliptic Curve Cryptography, Second Edition, 2nd ed.

Chapman & Hall/CRC, 2012.

[13] C. Shu, “Hardware architectures of elliptic curve based cryptosytems over binary

fields,” Ph.D. dissertation, Fairfax, VA, USA, 2007, aAI3246921.

[14] G. Orlando, D. C. Paar, and D. J. Orr, “Efficient elliptic curve processor architec-

tures for field programmable logic,” Tech. Rep., 2002.

[15] Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. seo, and L. Zhou, “On emerging family

of elliptic curves to secure internet of things: Ecc comes of age,” IEEE Trans.

Dependable Secure Comput., vol. PP, no. 99, pp. 1–1, 2016.

[16] R. Amin, S. H. Islam, G. P. Biswas, M. K. Khan, and N. Kumar, “An efficient and

practical smart card based anonymity preserving user authentication scheme for

tmis using elliptic curve cryptography,” Journal of Medical Systems, vol. 39, no. 11,

p. 180, 2015.

Bibliography 341

[17] P. Christof and P. Jan, Understanding Cryptography. Berlin Heidelberg: Springer-

Verlag, 2010.

[18] A. K. Lenstra and E. R. Verheul, Selecting Cryptographic Key Sizes. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2000, pp. 446–465.

[19] D. Karakoyunlu, F. K. Gurkaynak, B. Sunar, and Y. Leblebici, “Efficient and side-

channel-aware implementations of elliptic curve cryptosystems over prime fields,”

IET Information Security, vol. 4, no. 1, pp. 30–43, March 2010.

[20] Y. R. Hitchcock, “Elliptic curve cryptography for lightweight applications,” Ph.D.

dissertation, Queensland University of Technology, 2003.

[21] Z. Liu, D. Liu, and X. Zou, “An efficient and flexible hardware implementation of

the dual-field elliptic curve cryptographic processor,” IEEE Trans. Ind. Electron.,

vol. PP, no. 99, pp. 1–1, 2016.

[22] R. G. Kammer, “NIST- National Institute of Standards and Technology, Digital

Signature Standard, FIPS Publication 186-2,” 2000.

[23] “IEEE standard specifications for public-key cryptography,” IEEE Std 1363-2000,

pp. 1–228, Aug. 2000.

[24] “X 9.62 public key cryptography for the financial services industry: Elliptic curve

digital signature algorithm (ECDSA),” american national standards institute,” 1999.

[25] M. E. Kaihara, “Studies on modular arithmetic hardware algorithms for public-key

cryptography,” Ph.D. dissertation, 2006.

[26] B. Schneier, Applied Cryptography (2nd Ed.): Protocols, Algorithms, and Source

Code in C. New York, NY, USA: John Wiley & Sons, Inc., 1995.

342 Bibliography

[27] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied Cryp-

tography, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1996.

[28] “https://msdn.microsoft.com/en-us/library/ff650720.aspx,” 2005.

[29] “https://en.wikipedia.org/wiki/symmetric-key-algorithm,” 2016.

[30] X. Lai and J. L. Massey, “A proposal for a new block encryption standard,” in Proc.

EUROCRYPT ’90. New York, NY, USA: Springer-Verlag New York, Inc., 1991,

pp. 389–404.

[31] R. C. Merkle, “Secure communications over insecure channels,” Commun. ACM,

vol. 21, no. 4, pp. 294–299, 1978.

[32] S. Pohlig and M. Hellman, “An improved algorithm for computing logarithms over

and its cryptographic significance (corresp.),” IEEE Trans. Inf. Theor., vol. 24,

no. 1, pp. 106–110, Sep. 2006.

[33] D. Hankerson, J. L. Hernandez, and A. Menezes, “Software implementation of ellip-

tic curve cryptography over binary fields,” in Proc. CHES. London, UK: Springer-

Verlag, 2000, pp. 1–24.

[34] D. V. Bailey and C. Paar, “Efficient arithmetic in finite field extensions with ap-

plication in elliptic curve cryptography,” Journal of Cryptology, vol. 14, p. 2001,

2000.

[35] G. Sutter, J. Deschamps, and J. Imana, “Efficient elliptic curve point multiplication

using digit-serial binary field operations,” IEEE Trans. Ind. Electron., vol. 60, no. 1,

pp. 217–225, Jan. 2013.

Bibliography 343

[36] R. Azarderakhsh, “High speed and low-complexity hardware architectures for

elliptic curve-based crypto-processors,” Ph.D. dissertation, 2011. [Online]. Available:

http://ir.lib.uwo.ca/etd/308

[37] H. Y. Kim, J. Y. Park, J. H. Cheon, J. H. Park, J. H. Kim, and S. G. Hahn, Fast

Elliptic Curve Point Counting Using Gaussian Normal Basis. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2002, pp. 292–307.

[38] R. Lercier and D. Lubicz, Counting Points on Elliptic Curves over Finite Fields of

Small Characteristic in Quasi Quadratic Time. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003, pp. 360–373.

[39] Ö. Eǧecioǧlu and Ç. K. Koç, Reducing the Complexity of Normal Basis Multiplica-

tion. Cham: Springer International Publishing, 2015, pp. 61–80.

[40] G. Orlando and C. Paar, “A high-performance reconfigurable elliptic curve processor

for GF(2m).” Springer-Verlag, 2000, pp. 41–56.

[41] J. Wolkerstorfer, “Dual-field arithmetic unit for GF(p) and GF(2m),” in CHES,

Lecture Notes in Computer Science, vol. 2523, Springer, 2002, pp. 500–514.

[42] C. K. Koc and T. Acar, “Montgomery multiplication in gf(2k),” Designs, Codes and

Cryptography, vol. 14, no. 1, pp. 57–69, 1998.

[43] J. S. Pan, C. Y. Lee, and P. K. Meher, “Low-latency digit-serial and digit-parallel

systolic multipliers for large binary extension fields,” IEEE Trans. Circuits Syst. I,

vol. 60, no. 12, pp. 3195–3204, Dec. 2013.

[44] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee, “Efficient power-analysis-

resistant dual-field elliptic curve cryptographic processor using heterogeneous dual-

344 Bibliography

processing-element architecture,” IEEE Trans. VLSI Syst., vol. 22, no. 1, pp. 49–61,

Jan. 2014.

[45] C. Rebeiro, S. S. Roy, and D. Mukhopadhyay, “Pushing the limits of high-speed

GF(2m) elliptic curve scalar multiplication on FPGAs,” in Proc. CHES, 2012, pp.

494–511.

[46] S. Kumar, T. Wollinger, and C. Paar, “Optimum digit serial GF(2m) multipliers for

curve-based cryptography,” IEEE Trans. Comput., vol. 55, no. 10, pp. 1306–1311,

Oct. 2006.

[47] M. N. Ismail, “Towards efficient hardware implementation of elliptic and hyperel-

liptic curve cryptography,” 2012.

[48] M. Rosing, Implementing Elliptic Curve Cryptography. Greenwich, CT, USA: Man-

ning Publications Co., 1999.

[49] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses in

GF(2m) using normal bases,” Information and Computation, vol. 78, no. 3, pp. 171

– 177, 1988.

[50] E. Savas, M. Naseer, A. A. A. Gutub, and C. K. Koc, “Efficient unified montgomery

inversion with multibit shifting,” IEE Proceedings - Computers and Digital Tech-

niques, vol. 152, no. 4, pp. 489–498, Jul. 2005.

[51] H. Brunner, A. Curiger, and M. Hofstetter, “On computing multiplicative inverses

in GF(2m),” IEEE Trans. Comput., vol. 42, no. 8, pp. 1010–1015, Aug. 1993.

[52] J.-H. Guo and C.-L. Wang, “Systolic array implementation of euclid’s algorithm

for inversion and division in GF(2m),” IEEE Trans. Comput., vol. 47, no. 10, pp.

1161–1167, Oct. 1998.

Bibliography 345

[53] M. S. Hossain, E. Saeedi, and Y. Kong, “High-speed, area-efficient, FPGA-based el-

liptic curve cryptographic processor over NIST binary fields,” in IEEE International

Conference on Data Science and Data Intensive Systems, Dec. 2015, pp. 175–181.

[54] “SEC 2: Recommended elliptic curve domain parameters, standards for efficient

cryptography, Certicom Research,” 2000.

[55] K. Javeed and X. Wang, “Speed and area optimized parallel higher-radix modular

multipliers.” IACR Cryptology ePrint Archive, vol. 2016, p. 53, 2016.

[56] L. Rahimzadeh, M. Eshghi, and S. Timarchi, “Radix-4 implementation of redundant

interleaved modular multiplication on FPGA,” in ICEE, May 2014, pp. 523–526.

[57] K. Javeed and X. Wang, “Radix-4 and radix-8 booth encoded interleaved modular

multipliers over general Fp,” in Int. Conf. FPL, Sept. 2014, pp. 1–6.

[58] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Secure dual-core cryptopro-

cessor for pairings over barreto-naehrig curves on FPGA platform,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 3, pp. 434–442, Mar. 2013.

[59] S. H. Wang, W. C. Lin, J. H. Ye, and M. D. Shieh, “Fast scalable radix-4 montgomery

modular multiplier,” in 2012 IEEE ISCAS, May 2012, pp. 3049–3052.

[60] V. Bunimov and M. Schimmler, “Area and time efficient modular multiplication of

large integers,” in Proc. IEEE Int. Conf. ASAP, Jun. 2003, pp. 400–409.

[61] D. N. Amanor, C. Paar, J. Pelzl, V. Bunimov, and M. Schimmler, “Efficient hard-

ware architectures for modular multiplication on fpgas,” in International Conference

on Field Programmable Logic and Applications, 2005., Aug. 2005, pp. 539–542.

346 Bibliography

[62] A. F. Tenca and L. A. Tawalbeh, “An efficient and scalable radix-4 modular multi-

plier design using recoding techniques,” in The Thrity-Seventh Asilomar Conference

on Signals, Systems Computers, 2003, vol. 2, Nov. 2003, pp. 1445–1450.

[63] J.-H. Hong and C.-W. Wu, “Radix-4 modular multiplication and exponentiation

algorithms for the RSA public-key cryptosystem,” in Proceedings 2000. Design Au-

tomation Conference. (IEEE Cat. No.00CH37106), Jun. 2000, pp. 565–570.

[64] N. Takagi, “A radix-4 modular multiplication hardware algorithm for modular ex-

ponentiation,” IEEE Trans. Comput., vol. 41, no. 8, pp. 949–956, Aug. 1992.

[65] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster interleaved modular mul-

tiplication based on barrett and montgomery reduction methods,” IEEE Trans.

Comput., vol. 59, no. 12, pp. 1715–1721, Dec. 2010.

[66] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of

Computation, vol. 44, no. 170, pp. 519–521, 1985.

[67] P. Barrett, Implementing the Rivest Shamir and Adleman Public Key Encryption

Algorithm on a Standard Digital Signal Processor. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1987, pp. 311–323.

[68] A. Bosselaers, R. Govaerts, and J. Vandewalle, Comparison of three modular reduc-

tion functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 175–186.

[69] M. S. Hossain and Y. Kong, “FPGA-based efficient modular multiplication for el-

liptic curve cryptography,” in International Telecommunication Networks and Ap-

plications Conference (ITNAC), Nov. 2015, pp. 191–195.

[70] L. A. Tawalbeh, A. F. Tenca, and C. K. Koc, “A radix-4 scalable design,” IEEE

Potentials, vol. 24, no. 2, pp. 16–18, Apr. 2005.

Bibliography 347

[71] B. S. Kaliski, “The montgomery inverse and its applications,” IEEE Trans. Comput.,

vol. 44, no. 8, pp. 1064–1065, Aug. 1995.

[72] P. Choi, J. T. Kong, and D. K. Kim, “Analysis of hardware modular inversion mod-

ules for elliptic curve cryptography,” in 2015 International SoC Design Conference

(ISOCC), Nov. 2015, pp. 313–314.

[73] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee, “Efficient power-analysis-

resistant dual-field elliptic curve cryptographic processor using heterogeneous dual-

processing-element architecture,” IEEE Trans. VLSI Syst., vol. 22, no. 1, pp. 49–61,

Jan. 2014.

[74] E. Murat, S. Kardas, and E. Savas, “Scalable and efficient FPGA implementation

of montgomery inversion,” in 2011 Workshop on Lightweight Security Privacy: De-

vices, Protocols, and Applications, Mar. 2011, pp. 61–68.

[75] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Petrel: Power and timing

attack resistant elliptic curve scalar multiplier based on programmable GF(p) arith-

metic unit,” IEEE Trans. Circuits Syst. I, Reg. Papers,, vol. 58, no. 8, pp. 1798–1812,

Aug. 2011.

[76] J. Vliegen, N. Mentens, J. Genoe, A. Braeken, S. Kubera, A. Touhafi, and I. Ver-

bauwhede, “A compact fpga-based architecture for elliptic curve cryptography over

prime fields,” in 2010 21st IEEE International Conference on Application-specific

Systems Architectures and Processors (ASAP), July 2010, pp. 313–316.

[77] G. Chen, J. Zhu, M. Liu, and W. Zheng, “An improved dual field modular inver-

sion algorithm and vlsi implementation,” in 2009 First International Conference on

Information Science and Engineering, Dec. 2009, pp. 1651–1654.

348 Bibliography

[78] S. Ma, Y. Hao, Z. Pan, and H. Chen, “Fast implementation for modular inversion

and scalar multiplication in the elliptic curve cryptography,” in 2008 Second Inter-

national Symposium on Intelligent Information Technology Application, vol. 2, Dec.

2008, pp. 488–492.

[79] C. McIvor, M. McLoone, and J. McCanny, “Hardware elliptic curve cryptographic

processor over gf(p),” IEEE Trans. Circuits Syst. I. Reg. Papers,, vol. 53, no. 9, pp.

1946–1957, Sept. 2006.

[80] A. Daly, W. Marnane, T. Kerins, and E. Popovici, “An FPGA implementation of a

GF(p) ALU for encryption processors,” Microprocessors and Microsystems, vol. 28,

no. 5–6, pp. 253–260, 2004, special Issue on FPGAs: Applications and Designs.

[81] L. A. Tawalbeh, A. F. Tenca, S. Park, and C. K. Koc, “A dual-field modular di-

vision algorithm and architecture for application specific hardware,” in Conference

Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Comput-

ers, 2004., vol. 1, Nov. 2004, pp. 483–487 Vol.1.

[82] T. Zhou, X. Wu, G. Bai, and H. Chen, “New algorithm and fast vlsi implementation

for modular inversion in galois field GF(p),” in IEEE 2002 International Conference

on Communications, Circuits and Systems and West Sino Expositions, vol. 2, Jun.

2002, pp. 1491–1495 vol.2.

[83] A. A. A. Gutub, A. F. Tenca, and C. K. Koc, “Scalable VLSI architecture for GF(p)

montgomery modular inverse computation,” in Proceedings IEEE Computer Society

Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI

2002, Apr. 2002, pp. 46–51.

Bibliography 349

[84] M. S. Hossain and Y. Kong, “High-performance FPGA implementation of modular

inversion over F256 for elliptic curve cryptography,” in IEEE International Confer-

ence on Data Science and Data Intensive Systems, Dec. 2015, pp. 169–174.

[85] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography. New

York, NY, USA: Cambridge University Press, 1999.

[86] H. Shen, J. Shen, M. K. Khan, and J.-H. Lee, “Efficient rfid authentication using

elliptic curve cryptography for the internet of things,” Wireless Personal Commu-

nications, pp. 1–14, 2016.

[87] G. Orlando and C. Paar, “A high-performance reconfigurable elliptic curve processor

for GF(2m),” in Proc. CHES, 2000, pp. 41–56.

[88] D. Schinianakis, A. Fournaris, H. Michail, A. Kakarountas, and T. Stouraitis, “An

RNS implementation of an Fp elliptic curve point multiplier,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 56, no. 6, pp. 1202–1213, June 2009.

[89] P. Longa and A. Miri, “Fast and flexible elliptic curve point arithmetic over prime

fields,” IEEE Trans. Comput., vol. 57, no. 3, pp. 289–302, 2008.

[90] S. Ghosh, M. Alam, D. R. Chowdhury, and I. S. Gupta, “Parallel crypto-devices for

GF(p) elliptic curve multiplication resistant against side channel attacks,” Comput.

Electr. Eng., vol. 35, no. 2, pp. 329–338, Mar. 2009.

[91] E. Saeedi, M. S. Hossain, and Y. Kong, “Multi-class svms analysis of side-channel

information of elliptic curve cryptosystem,” in 2015 International Symposium on

Performance Evaluation of Computer and Telecommunication Systems (SPECTS),

Jul. 2015, pp. 1–6.

350 Bibliography

[92] ——, “Side channel analysis of an elliptic curve crypto-system based on multi-class

classification,” in 2015 6th International Conference on Computing, Communication

and Networking Technologies (ICCCNT), Jul. 2015, pp. 1–7.

[93] E. Saeedi, Y. Kong, and M. S. Hossain, “Side-channel attacks and learning-vector

quantization,” Frontiers of Information Technology & Electronic Engineering, vol. -

1, no. -1, 1998.

[94] S. A. Chaudhry, M. T. Khan, M. K. Khan, and T. Shon, “A multiserver biomet-

ric authentication scheme for tmis using elliptic curve cryptography,” Journal of

Medical Systems, vol. 40, no. 11, p. 230, 2016.

[95] K. A. Alezabi, F. Hashim, S. J. Hashim, B. M. Ali, and A. Jamalipour, “On the au-

thentication and re-authentication protocols in lte-wlan interworking architecture,”

Transactions on Emerging Telecommunications Technologies, pp. n/a–n/a, 2016,

ett.3031.

[96] M. F. F. Khan, Y. Takeshi, I. So, M. Bessho, and K. Sakamura, “A secure and

flexible electronic-ticket system,” in Proc. IEEE COMPSAC, vol. 1, Jul. 2009, pp.

421–426.

[97] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature

algorithm (ECDSA),” Int. J. Inf. Secur., vol. 1, no. 1, pp. 36–63, 2001.

[98] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil pairing,” in

Proc. CRYPTO ’01. London, UK: Springer-Verlag, 2001, pp. 213–229.

[99] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,”

Journal of Cryptology, vol. 17, no. 4, pp. 297–319, 2004.

Bibliography 351

[100] D. F. Aranha, J.-L. Beuchat, J. Detrey, and N. Estibals, “Optimal eta pairing on

supersingular genus-2 binary hyperelliptic curves,” in Proc. CT-RSA’12. Berlin,

Heidelberg: Springer-Verlag, 2012, pp. 98–115.

[101] J. luc Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. Rodríguez-henríquez,

“Fast architectures for the ηt pairing over small-characteristic supersingular elliptic

curves,” IEEE TRANS. COMPUT, vol. 60, no. 2, pp. 266–281, 2011.

[102] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications.

New York, NY, USA: Cambridge University Press, 1986.

[103] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of

the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[104] R. Salarifard, S. Bayat-Sarmadi, and M. Farmani, “High-throughput low-complexity

unified multipliers over GF(2m) in dual and triangular bases,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 63, no. 11, pp. 1944–1953, Nov. 2016.

[105] J. Xie, P. K. Meher, and Z. H. Mao, “Low-latency high-throughput systolic multipli-

ers over GF(2m) for nist recommended pentanomials,” IEEE Trans. Circuits Syst.

I, vol. 62, no. 3, pp. 881–890, Mar. 2015.

[106] M. Khairallah and M. Ghoneima, “New polynomial basis versatile multiplier over

GF(2m) for low-power on-chip crypto-systems,” in Proc. IEEE ISCAS, May 2015,

pp. 1438–1441.

[107] R. Azarderakhsh, K. Järvinen, and V. Dimitrov, “Fast inversion in GF(2m) with

normal basis using hybrid-double multipliers,” IEEE Trans. Comput., vol. 63, no. 4,

pp. 1041–1047, Apr. 2014.

352 Bibliography

[108] H. Ho, “Design and implementation of a polynomial basis multiplier architecture

over GF(2m),” Journal of Signal Processing Systems, vol. 75, no. 3, pp. 203–208,

2014.

[109] R. K. Kodali and L. Boppana, “FPGA implementation of energy efficient multipli-

cation over GF(2m) for ECC,” in Proc. IEEE ICACCI, Sep. 2014, pp. 1815–1821.

[110] K. C. Loi and S.-B. Ko, “High performance scalable elliptic curve cryptosystem

processor for koblitz curves,” Microprocessors and Microsystems, vol. 37, no. 4-5,

pp. 394–406, 2013.

[111] K. C. C. Loi and S. B. Ko, “High performance scalable elliptic curve cryptosystem

processor in GF(2m),” in IEEE ISCAS, May 2013, pp. 2585–2588.

[112] A. Zakerolhosseini and M. Nikooghadam, “Low-power and high-speed design of a

versatile bit-serial multiplier in finite fields GF(2m),” Integration, the VLSI Journal,

vol. 46, no. 2, pp. 211 – 217, 2013.

[113] S. H. Namin, H. Wu, and M. Ahmadi, “Power efficiency of digit level polynomial

basis finite field multipliers in GF(2283),” in Proc. IEEE ICECS, Dec. 2012, pp.

897–900.

[114] K. Kobayashi and N. Takagi, “A combined circuit for multiplication and inversion in

GF(2m),” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 11, pp. 1144–1148,

Nov. 2008.

[115] S. Antao, R. Chaves, and L. Sousa, “Efficient FPGA elliptic curve cryptographic

processor over GF(2m),” in ICECE Technology, 2008. FPT 2008. International Con-

ference on, Dec. 2008, pp. 357–360.

Bibliography 353

[116] M. Morales-Sandoval, C. Feregrino-Uribe, R. Cumplido, and I. Algredo-Badillo, “A

reconfigurable GF(2M) elliptic curve cryptographic coprocessor,” in Proc. SPL, Apr.

2011, pp. 209–214.

[117] M. N. Hassan and M. Benaissa, “A scalable hardware/software co-design for elliptic

curve cryptography on picoblaze microcontroller,” in Proc. IEEE ISCAS, May 2010,

pp. 2111–2114.

[118] M. Machhout, Z. Guitouni, K. Torki, L. Khriji, and R. Tourki, “Coupled FPGA/A-

SIC implementation of elliptic curve crypto-processor,” International Journal of

Network Security & its Applications (IJNSA), vol. 2, no. 2, pp. 100–112, Apr. 2010.

[119] M. Benaissa and W. M. Lim, “Design of flexible GF(2m) elliptic curve cryptography

processors,” IEEE Trans. VLSI Syst., vol. 14, no. 6, pp. 659–662, Jun. 2006.

[120] C. Shu, K. Gaj, and T. El-Ghazawi, “Low latency elliptic curve cryptography ac-

celerators for nist curves over binary fields,” in Proc. IEEE FPT, Dec. 2005, pp.

309–310.

[121] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein, E. Goupy,

and D. Stebila, “An end-to-end systems approach to elliptic curve cryptography,” in

Proc. CHES. London, UK: Springer-Verlag, 2003, pp. 349–365.

[122] P. K. Meher, “On efficient implementation of accumulation in finite field over GF(2m)

and its applications,” IEEE Trans. VLSI Syst., vol. 17, no. 4, pp. 541–550, Apr.

2009.

[123] C. S. Yeh, I. S. Reed, and T. K. Truong, “Systolic multipliers for finite fields

GF(2m),” IEEE Trans. Comput., vol. C-33, no. 4, pp. 357–360, Apr. 1984.

354 Bibliography

[124] J. Hu, W. Guo, J. Wei, and R. C. C. Cheung, “Fast and generic inversion archi-

tectures over GF(2m) using modified Itoh-Tsujii Algorithms,” IEEE Trans. Circuits

Syst. II, Exp. Briefs, vol. 62, no. 4, pp. 367–371, Apr. 2015.

[125] W. Chelton and M. Benaissa, “Fast elliptic curve cryptography on FPGA,” IEEE

Trans. VLSI Syst., vol. 16, no. 2, pp. 198–205, Feb. 2008.

[126] M. B. I. Reaz, J. Jalil, H. Husian, and F. H. Hasim, “FPGA implementation of

elliptic curve cryptography engine for personal communication systems,” WSEAS

Tran. on Circuits and Systems, vol. 11, no. 3, pp. 82–91, Mar. 2012.

[127] M. N. Hassan and M. Benaissa, “Efficient time-area scalable ECC processor using

µ-coding technique,” in Third International Workshop, WAIFI, Arithmetic of Finite

Fields, LNCS 6087, pp. 250-268, Jun. 2010., Jun. 2010, pp. 250–268.

[128] N. Ghanmy, L. C. Fourati, and L. Kamoun, “Elliptic curve cryptography for WSN

and SPA attacks method for energy evaluation,” Journal of Networks, vol. 9, no. 11,

pp. 2943–2950, Nov. 2014.

[129] M.-D. Shieh, J.-H. Chen, W.-C. Lin, and C.-M. Wu, “An efficient multiplier/divider

design for elliptic curve cryptosystem over GF(2m),” Journal of Information Science

and Engineering 25, pp. 1555-1573, 2009, pp. 1555–1553, Apr. 2009.

[130] N. Smyth, M. McLoone, and J. V. McCanny, “An adaptable and scalable asymmetric

cryptographic processor.” in ASAP. IEEE Computer Society, 2006, pp. 341–346.

[131] J. Park and J.-T. Hwang, “FPGA and ASIC implementation of ECC processor for

security on medical embedded system,” in Proc. ICITA, ser. ICITA ’05. Washing-

ton, DC, USA: IEEE Computer Society, 2005, pp. 547–551.

Bibliography 355

[132] Y. Kong and B. Phillips, “Fast scaling in the residue number system,” IEEE Trans.

VLSI Syst., vol. 17, no. 3, pp. 443–447, Mar. 2009.

[133] B. Phillips, Y. Kong, and Z. Lim, “Highly parallel modular multiplication in the

residue number system using sum of residues reduction,” Applicable Algebra in En-

gineering, Communication and Computing, vol. 21, no. 3, pp. 249–255, 2010.

[134] Y.-B. Wang, X.-J. Dong, and Z.-G. Tian, “FPGA based design of elliptic curve cryp-

tography coprocessor,” in Third International Conference on Natural Computation,

ICNC 2007, Aug. 2007, pp. 185–189.

[135] X. Zeng, C. Chen, and Q. Zhang, “A reconfigurable public-key cryptography copro-

cessor,” in Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System

Integrated Circuits 2004., Aug. 2004, pp. 172–175.

[136] N. Nguyen, K. Gaj, D. Caliga, and T. El-Ghazawi, “Implementation of elliptic curve

cryptosystems on a reconfigurable computer,” in Proceedings. 2003 IEEE Interna-

tional Conference on Field-Programmable Technology (FPT), 2003., Dec. 2003, pp.

60–67.

[137] Y. Kong, S. Asif, and M. Khan, “Modular multiplication using the core function

in the residue number system,” Applicable Algebra in Engineering, Communication

and Computing, pp. 1–16, Jan. 2015.

[138] K. C. C. Loi, S. An, and S. B. Ko, “FPGA implementation of low latency scalable

elliptic curve cryptosystem processor in GF(2m),” in Proc. IEEE ISCAS, Jun. 2014,

pp. 822–825.

[139] S. Liu, L. Ju, X. Cai, Z. Jia, and Z. Zhang, “High performance FPGA implemen-

tation of elliptic curve cryptography over binary fields,” in Proc. IEEE TrustCom,

Sept. 2014, pp. 148–155.

356 Bibliography

[140] R. Azarderakhsh and A. Reyhani-Masoleh, “High-performance implementation of

point multiplication on koblitz curves,” IEEE Trans. Circuits Syst. II, vol. 60, no. 1,

pp. 41–45, Jan. 2013.

[141] H. Mahdizadeh and M. Masoumi, “Novel architecture for efficient FPGA implemen-

tation of elliptic curve cryptographic processor over GF(2163),” IEEE Trans. VLSI

Syst., vol. 21, no. 12, pp. 2330–2333, Dec. 2013.

[142] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA implementations of

point multiplication on binary edwards and generalized hessian curves using gaus-

sian normal basis,” IEEE Trans. VLSI Syst., vol. 20, no. 8, pp. 1453–1466, Aug.

2012.

[143] S. S. Roy, C. Rebeiro, and D. Mukhopadhyay, “A parallel architecture for koblitz

curve scalar multiplications on FPGA platforms,” in Proc. Euromicro DSD, Sep.

2012, pp. 553–559.

[144] Y. Zhang, D. Chen, Y. Choi, L. Chen, and S.-B. Ko, “A high performance ECC

hardware implementation with instruction-level parallelism over GF(2163),” Micro-

process. Microsyst., vol. 34, no. 6, pp. 228–236, Oct. 2010.

[145] D. Schinianakis, A. Kakarountas, T. Stouraitis, and A. Skavantzos, “Elliptic curve

point multiplication in GF(2n) using polynomial residue arithmetic,” in IEEE

ICECS, Dec. 2009, pp. 980–983.

[146] B. Ansari and M. A. Hasan, “High-performance architecture of elliptic curve scalar

multiplication,” IEEE Trans. Comput., vol. 57, no. 11, pp. 1443–1453, Nov. 2008.

[147] C. H. Kim, S. Kwon, and C. P. Hong, “FPGA implementation of high performance

elliptic curve cryptographic processor over GF(2163),” J. Syst. Archit., vol. 54, no. 10,

pp. 893–900, 2008.

Bibliography 357

[148] M. S. Hossain, E. Saeedi, and Y. Kong, “High-performance FPGA implementation

of elliptic curve cryptography processor over binary field GF (2163),” in International

Conference on Information Systems Security and Provacy (ICISSP), 2016, pp. 415–

422.

[149] J.-H. Chen, M.-D. Shieh, and W.-C. Lin, “A high-performance unified-field recon-

figurable cryptographic processor,” IEEE Trans. VLSI Syst., vol. 18, no. 8, pp.

1145–1158, Aug. 2010.

[150] J. H. Hong and W. C. Wu, “The design of high performance elliptic curve crypto-

graphic,” in IEEE Int. Midwest Symp. Circuits Syst., Aug. 2009, pp. 527–530.

[151] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede, “Elliptic-curve-based se-

curity processor for RFID,” IEEE Trans. Comput., vol. 57, no. 11, pp. 1514–1527,

Nov. 2008.

[152] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “Multicore curve-based

cryptoprocessor with reconfigurable modular arithmetic logic units over GF(2n),”

IEEE Trans. Comput., vol. 56, no. 9, pp. 1269–1282, Sept. 2007.

[153] E. S. Kumar and C. Paar, “Are standards compliant elliptic curve cryptosystems

feasible on RFID,” in Proc. of RFIDSec’06, 2006.

[154] A. G. Reddy, A. K. Das, E. J. Yoon, and K. Y. Yoo, “A secure anonymous authen-

tication protocol for mobile services on elliptic curve cryptography,” IEEE Access,

vol. 4, pp. 4394–4407, 2016.

[155] L. Zhang, S. Tang, and H. Luo, “Elliptic curve cryptography-based authentication

with identity protection for smart grids,” PLOS ONE, vol. 11, no. 3, pp. 1–15, 03

2016.

358 Bibliography

[156] J. Nam, K.-K. R. Choo, S. Han, M. Kim, J. Paik, and D. Won, “Efficient and

anonymous two-factor user authentication in wireless sensor networks: Achieving

user anonymity with lightweight sensor computation,” PLOS ONE, vol. 10, no. 4,

pp. 1–21, 04 2015.

[157] Y.-M. Lai, P.-J. Cheng, C.-C. Lee, and C.-Y. Ku, “A new ticket-based authentication

mechanism for fast handover in mesh network,” PLOS ONE, vol. 11, no. 5, pp. 1–18,

05 2016.

[158] A. G. Reddy, A. K. Das, V. Odelu, and K.-Y. Yoo, “An enhanced biometric based

authentication with key-agreement protocol for multi-server architecture based on

elliptic curve cryptography,” PLOS ONE, vol. 11, no. 5, pp. 1–28, 05 2016.

[159] M. Wang, G. Dai, K.-K. R. Choo, P. P. Jayaraman, and R. Ranjan, “Construct-

ing pairing-friendly elliptic curves under embedding degree 1 for securing critical

infrastructures,” PLOS ONE, vol. 11, no. 8, pp. 1–13, 08 2016.

[160] Y. Lu, L. Li, H. Peng, and Y. Yang, “An anonymous two-factor authenticated key

agreement scheme for session initiation protocol using elliptic curve cryptography,”

Multimedia Tools and Applications, pp. 1–15, 2015.

[161] Z. U. A. Khan and M. Benaissa, “Low area ecc implementation on FPGA,” in Proc.

IEEE ICECS, Dec. 2013, pp. 581–584.

[162] F. A. Urbano-Molano, V. Trujillo-Olaya, and J. Velasco-Medina, “Design of an

elliptic curve cryptoprocessor using optimal normal basis over GF(2233),” in Proc.

IEEE LASCAS, Feb. 2013, pp. 1–4.

[163] M. Imran, M. Kashif, and M. Rashid, “Hardware design and implementation of

scalar multiplication in elliptic curve cryptography (ECC) over GF(2163) on FPGA,”

in Proc. ICICT, Dec. 2015, pp. 1–4.

Bibliography 359

[164] S. Antao, R. Chaves, and L. Sousa, “Compact and flexible microcoded elliptic curve

processor for reconfigurable devices,” in Proc. IEEE Symp. FCCM, Apr. 2009, pp.

193–200.

[165] J. P. Deschamps and G. Sutter, “Elliptic-curve point-multiplication over GF(2163),”

in Proc. IEEE SPL, Mar. 2008, pp. 25–30.

[166] G. Zied, M. Mohsen, and T. Rached, “On the hardware design of elliptic curve

public key cryptosystems using programmable cellular automata,” in Proc. Intern.

Conf. SCS, Nov. 2008, pp. 1–6.

[167] K. Sakiyama, E. D. Mulder, B. Preneel, and I. Verbauwhede, “A parallel processing

hardware architecture for elliptic curve cryptosystems,” in Proc. IEEE ICASSP,

vol. 3, May 2006, pp. III–III.

[168] J. Y. Lai and C. T. Huang, “Energy-adaptive dual-field processor for high-

performance elliptic curve cryptographic applications,” IEEE Trans. VLSI Syst.,

vol. 19, no. 8, pp. 1512–1517, Aug. 2011.

[169] ——, “A highly efficient cipher processor for dual-field elliptic curve cryptography,”

IEEE Trans. Circuits Syst. II, vol. 56, no. 5, pp. 394–398, May 2009.

[170] M. Kaihara and N. Takagi, “Bipartite modular multiplication method,” IEEE Trans.

Comput., vol. 57, no. 2, pp. 157–164, 2008.

[171] Y. Kong and B. Phillips, “Revisiting sum of residues modular multiplication,” JECE,

vol. 2010, pp. 43:1–43:9, Jan. 2010.

[172] D. Cheng-hua, L. Yi, and C. Yong-tao, “A 3-stage pipelined large integer modular

arithmetic unit for ecc,” in International Symposium on Information Engineering

and Electronic Commerce (IEEC ’09), May 2009, pp. 519–523.

360 Bibliography

[173] J. Fan, K. Sakiyama, and I. Verbauwhede, “Montgomery modular multiplication

algorithm on multi-core systems,” in IEEE Workshop on Signal Processing Systems,

Oct. 2007, pp. 261–266.

[174] A. Daly, W. Marnane, T. Kerins, and E. Popovici, “Division in GF(p) for appli-

cation in elliptic curve cryptosystems on field programmable logic,” in New Algo-

rithms, Architectures and Applications for Reconfigurable Computing, P. Lysaght

and W. Rosenstiel, Eds. Springer US, 2005, pp. 219–229.

[175] K. C. C. Loi and S. B. Ko, “Scalable elliptic curve cryptosystem fpga processor

for nist prime curves,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23,

no. 11, pp. 2753–2756, Nov. 2015.

[176] H. Marzouqi, M. Al-Qutayri, and K. Salah, “An FPGA implementation of NIST

256 prime field ECC processor,” in Proc. IEEE ICECS, Dec. 2013, pp. 493–496.

[177] K. Ananyi, H. Alrimeih, and D. Rakhmatov, “Flexible hardware processor for elliptic

curve cryptography over nist prime fields,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 17, no. 8, pp. 1099–1112, Aug. 2009.

[178] H. Ahmadi and A. Afzali-Kusha, “Low-power low-energy prime-field ecc processor

based on montgomery modular inverse algorithm,” in Proc. 12th Euromicro DSD,

Aug. 2009, pp. 817–822.

[179] J. Fan, K. Sakiyama, and I. Verbauwhede, “Elliptic curve cryptography on embed-

ded multicore systems,” Design Automation for Embedded Systems, vol. 12, no. 3,

pp. 231–242, 2008.

[180] N. Mentens, K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “A side-

channel attack resistant programmable pkc coprocessor for embedded applications,”

in Proc. IC-SAMOS, July 2007, pp. 194–200.

Bibliography 361

[181] K. Sakiyama, N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “Recon-

figurable modular arithmetic logic unit for high-performance public-key cryptosys-

tems,” in Reconfigurable Computing: Architectures and Applications, ser. Lecture

Notes in Computer Science, K. Bertels, J. Cardoso, and S. Vassiliadis, Eds. Springer

Berlin Heidelberg, 2006, vol. 3985, pp. 347–357.

[182] A. Byrne, N. Meloni, F. Crowe, W. Marnane, A. Tisserand, and E. Popovici, “SPA

resistant elliptic curve cryptosystem using addition chains,” in Proc. Int. Conf.

ITNG, Apr. 2007, pp. 995–1000.

[183] Z. Liu, J. Groszschaedl, Z. Hu, K. Jarvinen, H. Wang, and I. Verbauwhede, “Elliptic

curve cryptography with efficiently computable endomorphisms and its hardware

implementations for the internet of things,” IEEE Trans. Comput., vol. PP, no. 99,

pp. 1–1, 2016.

[184] G. Chen, G. Bai, and H. Chen, “A high-performance elliptic curve cryptographic

processor for general curves over GF(p) based on a systolic arithmetic unit,” IEEE

Trans. Circuits Syst. II, vol. 54, no. 5, pp. 412–416, May 2007.

[185] J. Y. Lai and C. T. Huang, “Elixir: High-throughput cost-effective dual-field proces-

sors and the design framework for elliptic curve cryptography,” IEEE Trans. VLSI

Syst., vol. 16, no. 11, pp. 1567–1580, Nov. 2008.

[186] A. Satoh and K. Takano, “A scalable dual-field elliptic curve cryptographic proces-

sor,” IEEE Trans. Comput., vol. 52, no. 4, pp. 449–460, Apr. 2003.

[187] K. K. Duane E. Galbi, “Measuring active power using pt px-a user perspective snug

boston,” 2010.

[188] H. M. Edwards, “A normal form for elliptic curves,” in Bulletin of the American

Mathematical Society, pp. 393–422.

362 Bibliography

[189] D. J. Bernstein, T. Lange, and R. Rezaeian Farashahi, Binary Edwards Curves.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 244–265.

[190] N. P. Smart, “The hessian form of an elliptic curve,” in Proc. CHES ’01. London,

UK, UK: Springer-Verlag, 2001, pp. 118–125.

