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Summary

This work investigates the homotopy theory of globular models for higher categorical
structures. In particular, we focus on weak ∞-groupoids, but most of the constructions can
be performed also for weak ∞-categories, and we explicitly mention this when appropriate.

Motivated by Grothendieck’s homotopy hypothesis, we study algebraic models of homo-
topy types in the form of ∞-groupoids, and we address the problem of constructing a path
object for these structures, after having introduced their homotopy theory. In detail, we de-
fine (trivial) cofibrations and (trivial) fibrations of ∞-groupoids, and prove some basic facts
about the induced factorization systems. The construction of a path-object endofunctor is a
highly non-trivial task, and the first step we take is to characterize those globular theories
whose category of models can be endowed with cofibrantly generated semi-model structure
of a precise form, and we also give a sufficient condition for this to happen, based on the
existence of a path object endofunctor.

We then construct the underlying globular set of this path object based on the notion
of cylinders, and show how to endow it with systems of structures, involving compositions,
identities and inverses. Using the combinatorics of finite planar rooted trees we construct an
approximation of the algebraic structure needed for the construction of the path object and
we introduce modifications to “correct” this approximation in low dimensions, and we thus
interpret all operations of dimension less than or equal to 2.

Finally, we manage to complete this construction for the finite-dimensional case of Grothen-
dieck 3-groupoids, thanks to the introduction of a bicategory of cylinders and modifications.
We thus establish a semi-model structure on this category, which is conjectured to model
homotopy 3-types.
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CHAPTER 1

Introduction

Ordinary category theory studies 1-categories, which can be informally described as collec-
tions of objects and arrows between them (i.e. 0-cells and 1-cells), that can be composed via an
associative and unital binary composition operation. However, the intrinsic 1-dimensionality
of these algebraic objects makes them not suitable to deal with certain kinds of structures
or universal constructions, where the universal property encodes more structure than one
detectable by 1-categories.

Strict n-categories, on the other hand, have k-cells for 0 ≤ k ≤ n, that can be composed
appropriately, and all the expected coherences hold strictly. For instance, in a 2-category C,
given a diagram of the form:

•
���� a

DD
�� b
// •

���� c

DD
�� d
// • (1)

there exists a unique way of composing together the displayed 2-cells. Indeed, if one denotes
by ◦ the vertical composition operation and by ∗ the horizontal one, we get:

(a ◦ b) ∗ (c ◦ d) = (a ∗ c) ◦ (b ∗ d).

These structures, despite allowing for higher dimensional data, are too strict to capture
many phenomena that naturally arise in mathematics. An example of this deficiency is given
by the fundamental ∞-groupoid ΠX of a space X: this is supposed to be an ∞-category
where all the k-cells for k > 0 are invertible (hence the name groupoid) that captures all
the homotopical data of a given space X. Its 1-cells are defined to be paths in X, i.e. maps
[0, 1]→ X, whose composition is defined by concatenation of paths. This operation is easily
seen not to be associative, but it is so up to homotopy (relative to the boundary). What this
means is that given paths in X of the form a : w  x, b : x  y, c : y  z we can compose
them in two different ways using concatenation of paths and then rescaling the domain, i.e.
c ◦ (b ◦ a) and (c ◦ b) ◦ a, and there is a map H : [0, 1]2 → X such that

H(s, 0) = (c ◦ (b ◦ a))(s), H(s, 1) = ((c ◦ b) ◦ a)(s) and H(0, t) = ∗w, H(1, t) = ∗z (2)

where ∗t denotes the constant path at t ∈ X. Such a map H is equivalently given by a map
D2 → X, i.e. a 2-disk in X. We see with this example that associativity is not a property of
the composition operation, but rather data encoded by the homotopy H. Therefore, we can
think of H as being a 2-cell between the 1-cells c ◦ (b ◦ a) and (c ◦ b) ◦ a.

Traditionally, the fundamental 1-groupoid Π1X of a space X was defined in the following
way: its objects are points x ∈ X, and maps x→ y are homotopy classes of paths a : x y

fixing the endpoints. This constitutes an ordinary category where all arrows are invertible,
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i.e. a 1-groupoid. However, it only retains 1-dimensional information about the space, i.e.
one can only recover the homotopy groups π0(X) and π1(X,x) for every x ∈ X.

If we keep track of 2-cells such as H in (2), we can instead define a weak 2-category (i.e. a
bicategory) Π2X having the same objects as Π1X, but 1-cells a : x→ y are now simply paths
a : x y in X and 2-cells H : a⇒ b are homotopy classes (relative to their boundary) [h] of
homotopies of paths h : a ' b (fixing the endpoints). This means that if h, h′ : D2 → X are
two maps that agree on the boundary of the 2-disk, i.e. h|S1 = h′|S1 then [h] = [h′] if and only
if there exists a map χ : D3 → X whose restriction to S2 = D2 q

S1
D2 coincides with (h, h′).

The adjective weak comes from the fact that constraints are not satisfied on the nose, i.e.
by equality, but rather witnessed by higher cells. Specifically, associativity and unitality of
composition of 1-cells only holds up to a 2-cell, whereas in top-dimension we still have strict
constraints, as one should expect.

It turns out that every cell in Π2X is invertible in the appropriate sense, thus giving rise
to a weak 2-groupoid. Furthermore, this algebraic object captures the homotopy 2-type of the
space X, i.e. one can recover π0(X) from it, as well as πn(X,x) for n = 1, 2 and all x ∈ X.

As the reader can easily imagine at this point, if one goes on in this way, eventually
one can capture the full homotopy-type of X via an algebraic structure that deserves to be
called weak ∞-groupoid (note that we will often avoid writing the adjective weak, and only
specify when structures are strict). The only problem is, how can we make this into a formal
definition? The most developed model of weak ∞-groupoid is given by Kan complexes, i.e.
simplicial sets with the extension property with respect to horn inclusions. Diagrammatically,
X ∈ sSet is a Kan complex if and only if we have solutions to all extension problems of the
form:

Λni X//Λni

∆n
��

∆n

X
??

(3)

where Λni denotes the simplicial set obtained from the representable n-simplex ∆n by remov-
ing its unique non-degenerate n-simplex and its face opposite to the i-th vertex. Essentially
all of the homotopy theory of topological spaces can be formulated in the language of Kan
complexes, with the advantage of a fully combinatorial framework.

Equivalently, Kan complexes correspond to quasi-categories where all 1-simplices are
invertible. Quasi-categories are, in turn, the most developed model for (∞, 1)-categories
([Lu]), where (∞, n)-categories have cells in each dimension k ≥ 0 which are invertible
above dimension n. They can be characterized as those simplicial sets having the inner
horn extension property, i.e. such that every extension problem as in (3) admits a solution
if 0 < i < n. This ensures the existence of (non-unique) composites, and every coherence is
encoded by higher cells. Also recall that a 1-simplex f in a quasi-category X is said to be an
equivalence (or invertible) if there are 2-simplices in X of the form:

0

1
f
??

0 2

1

2

g

��

0

1
h
??

0 2

1

2

f

��

KS KS (4)

2



The assignment:

[n] 7→ |∆n| def= {(x0, . . . , xn) ∈ Rn+1 :
n∑
i=0

xi = 1}

defines, in a natural way, a functor ∆ → Top, i.e. a cosimplicial space. This determines, in
turn, an adjunction of the form:

sSet
|·|
''

Sing
gg ⊥ Top (5)

with Sing(X)n
def= Top (|∆n|, X). The fact that Kan complexes recover all homotopy types

is encoded by the result that this adjunction induced an equivalence at the level of the
associated homotopy theories, i.e. (∞, 1)-categories. One way of obtaining this is to endow
both categories with a model structure, the one on simplicial sets being the so-called Kan-
Quillen model structure and the one on spaces being the Serre one, and then show that the
adjunction in (5) is a Quillen equivalence (see, for instance, [Ho]).

In the discussion at the beginning of this chapter we sketched the idea behind the funda-
mental ∞-groupoid of a space, and a difference from the simplicial model outlined above is
the following: in the former, the basic shapes are (glueing of) globes, whereas in the latter
they are given by simplices. With regards to globes, this comes with advantages and disad-
vantages: on the upside, the structure one obtains inherits a well-defined notion of source and
target of cells; on the downside, the combinatorics of simplicial sets is deeply understood and
well documented in the mathematical literature, but not so much that of cellular structures.

Using a globular algebraic version of weak ∞-groupoids to model homotopy types was
Grothendieck’s idea, introduced in the famous letter to Quillen dated 1983. He wanted to
have a completely algebraic model of these highly structured gadgets, encoding every possible
composition operation, inverses in all codimensions and coherence constraints needed for a
sensible definition of weak∞-groupoid. The conjecture that these capture all homotopy types
goes under the name of homotopy hypothesis. The basic idea is to start with a category of
shapes Θ0, that consists of globular pasting diagrams, an example of which is depicted in (1).
Using this as a starting point, one freely adds operations via a universal construction, and if
the resulting theory is contractible then it is a good theory for Grothendieck ∞-groupoids.
The freeness provided by the universal construction ensures that all the relations between the
operations only hold up to higher cells, rather than being properties given by equalities. In
other words, models of these theories are weak. On the other hand, contractibility ensures the
existence of all the structure that is needed, which is captured implicitly and never spelled
out as a list of operations and coherences, which would be essentially impossible in infinite
dimension and already quite challenging even in low dimensions.

Once having isolated the right notion of theory for these kind of algebraic structure, one
then defines models (i.e. ∞-groupoids) of a given theory C as presheaves X : Cop → Set
that preserve the globular shapes. This is an analogy of the so-called Segal condition that
characterizes Segal spaces, for instance, among all bisimplicial sets. This time, it is encoded
as a strict condition in that it is a preservation of some limit cones, and that is because the
required “weakness” is all in the theory. Moreover, by construction there is a map Θop

0 → Cop

which induces, by precomposition, a forgetful functor of the form:

U : ∞-Gpd → [Gop,Set]
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where the codomain category is that of globular sets, i.e. family of sets (Yk)k∈N equipped
with source and target maps si, ti : Yi+1 → Yi satisfying sensible axioms. This forgetful
functor is proven to be monadic in [Ar1], which formalizes the idea that these models of
weak ∞-groupoids can be regarded as globular sets with algebraic structure, where we think
of (UX)k as the set of k-cells of the ∞-groupoid X, on which the various operations in C

act. For example, these operations take as input a diagram as in (1) labeled by cells of X,
and return any of the 2-cell composites, or, say, a comparison 3-cell of the form:

Φ: (a ◦ b) ∗ (c ◦ d)V (a ∗ c) ◦ (b ∗ d). (6)

In detail, one has (at least) two ways of composing the diagram (1) using the structure of X,
once we have chosen a vertical and a horizontal composition of 2-cells. These are given by
(a ◦ b) ∗ (c ◦ d) and (a ∗ c) ◦ (b ∗ d), which coincided in the strict case previously discussed.
In contrast with that, in the context of weak structures, the two outcomes are not going
to be equal, but instead there is a (structural) 3-cell depicted in (6). As we will see in the
next chapter, this follows essentially from the fact that the free ∞-groupoid on the globular
pasting diagram (1) is contractible, in a suitable sense.

All that has been said so far can be adapted to the context of (weak) ∞-categories, as
done by Maltsiniotis in [Ma], and more generally to (∞, n)-categories for 0 ≤ n ≤ ∞, i.e.∞-
dimensional categorical structures where all cells above dimension n are invertible. Indeed,
one keeps the cellularity or freeness aspect in the construction of the theories, but the notion of
contractibility has to be suitably modified in order to capture the correct algebraic structure.
For instance, (∞,∞)-categories should not have inverse operations as part of the theory, and
since contractibility is responsible for their presence in the case of ∞-groupoids, it has to be
modified appropriately. Informally speaking, a notion of “directed” contractibility is needed.

Turning to the homotopy hypothesis, firstly we need a formal way of expressing its state-
ment. In order to achieve this, one has to define the homotopy theory of ∞-groupoids, and
comparison functors between this homotopy theory and that of, say, topological spaces. Al-
ready in [Gr] there is a very natural and simple functorial definition of homotopy groups of a
given∞-groupoid, which induces, just like in the case of topological spaces or Kan complexes,
a notion of weak equivalence. In details, a map f : X → Y in ∞-Gpd is a weak equivalence if
it induces a bijection on the set of path components π0(X) ∼= π0(Y ), as well as isomorphisms
of homotopy groups:

πn(X,x) πn (Y, f(x))
πn(f)

//

for every 0-cell x of X.
This choice of weak equivalences endows the category ∞-Gpd with a relative category

structure, and we can also consider Top as a relative category, with the usual notion of weak
equivalences of topological spaces. In [Ar2], following Grothendiecks’s original idea, Ara
defines a fundamental ∞-groupoid functor Π∞ : Top→∞-Gpd which fits into an adjunction
of the form:

∞-Gpd
|•|
''

Π∞
gg ⊥ Top (7)

It turns out that this functor Π∞ preserves weak equivalences, and thus a precise statement
of the homotopy hypothesis is that Π∞ is an equivalence of relative categories (e.g. it induces
a Dwyer-Kan equivalence at the level of the simplicial localization of the relative categories
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involved). Note that its left adjoint may not be a morphism of relative categories and,
therefore, the adjunction in (7) may not be one of relative categories. Recently, Simon
Henry proved in [Hen] that it suffices to construct a semi-model structure on ∞-groupoids
to validate the homotopy hypothesis. This semi-model structure should have, as generating
cofibration (resp. trivial cofibrations), the “boundary inclusions” ∂ : Sn−1 → Dn (resp. the
“source maps” σn : Dn → Dn+1) for every n ≥ 0, which clearly resemble the ones for the
Serre model structure on topological spaces.

The only difficult part in proving the existence of this semi-model structure is showing
that given a cocartesian square of the form:

Dn X//Dn

Dn+1

σn

��

X

X+

i

��

Dn+1 X+//

(8)

where X is cofibrant, the map i : X → X+ is a weak equivalence of ∞-groupoids. In fact we
will show that to prove this “pushout lemma” it is enough to construct a path object PX
for every cofibrant object X (even finitely cellular would do), i.e. a functorial construction of
a fibration ev : PX → X × X which is a trivial fibration when composed with the product
projections. This problem and, more generally, the homotopy hypothesis, are the main
motivations for this work, along with the use of homotopical methods to understand higher
structures.

Despite not having solved this problem in full generality, we have managed to make sig-
nificant progress in this direction. We give a characterization of those globular theories whose
models can be understood as∞-groupoids in a broader sense and bear a cofibrantly generated
semi-model structure which we describe in detail. Furthermore, we isolate a sufficient condi-
tion for the existence of said model structure on groupoids of the form “weak categories with
weak inverses”, i.e. CW-models as introduced in Definition 2.22. We construct the underlying
globular set of PX, and prove that the natural map ev : PX → UX × UX is a fibration,
which is trivial when composed with the product projections. This happens at the level of
underlying globular sets, but is enough to conclude that if one endows PX with the structure
of an ∞-groupoid and extends ev to a map of ∞-groupoids, then the same holds for that
map, since (trivial) fibrations are detected at the level of the underlying globular sets. We
endow PX with non-trivial algebraic structure and we also construct a non-functorial ap-
proximation to an interpretation of any operation of a theory for ∞-categories, dealing with
inverses separately. Moreover, thanks to the use of modifications, we inductively adjust this
interpretation in low dimensions, which allows us to construct the path object endofunctor on
Grothendieck 3-groupoids and thus equip the category of these with a semi-model structure.
We conclude this introduction with a more detailed summary of the contents of the thesis.

In Chapter 2 we introduce the language of globular theories and their corresponding
models. The reader might want to have in mind the analogy with Lawvere theories: in that
case the arities of the theories are given by natural numbers, in this case they are given by
globular sums or finite planar trees, as we will explain. We also adapt the definition available
in the literature to capture (weak) n-groupoids. Given a globular theory C with enough
structure, we define in Definition 2.22 an associated globular theory CW with weak inverses,
that will play a fundamental role in later chapters. Moreover, we introduce an orthogonal

5



factorization system consisting of n-bijective and n-fully faithful maps, which is lifted from
globular sets.

In Chapter 3 we develop basic aspects of the homotopy theory of Grothendieck ∞-
groupoids. We begin by defining the relative category associated with them, i.e. we define
weak equivalences of ∞-groupoids (as in [Ar2]), and we formulate the homotopy hypothesis
in the form of Conjecture 3.4. We then define (trivial) cofibrations of ∞-groupoids by giving
two generating sets I and J , and we prove the existence of a long exact sequence of homotopy
groups associated with a fibration as well as the stability of weak equivalences under pullbacks
along fibrations. After a brief detour into the theory of direct categories we prove some very
useful results about extension problems in the realm of Grothendieck ∞-categories: these
provide necessary and sufficient conditions for the existence of extensions conditional upon
their existence in the case of strict ω-categories.

Chapter 4 is where semi-model structures are introduced. This weakening of the ordinary
concept of model structure is needed since the structures involved are weak but the maps are
strict, so there seems to be no obvious way to construct certain maps, as explained at the
beginning of this chapter.

We prove in Theorem 4.2 a characterization of those globular theories whose category of
models admits a semi-model structure of a precise form, which resemble∞-groupoids: for in-
stance, we prove that in such globular theories globular sums are contractible. Consequently,
we have a sufficient condition for ∞-categories with weak inverses (i.e. CW-models) to be
promoted to ∞-groupoids. This is formulated in Theorem 4.8, and depends essentially on
the existence of a path object.

In Chapter 5 we first construct an adjunction representing the suspension-space of paths
one, which in particular produces, given 1 ≤ n ≤ ∞, an n-groupoid (resp. n-category) X and
two of its 0-cells x, y, an (n − 1)-groupoid (resp. (n − 1)-category) of paths X(x, y), which
can be thought of as the (n− 1)-groupoid (resp. (n− 1)-category) of morphisms between x
and y. Next, we construct a coglobular object Cyl(D•) of cylinders, which represents natural
transformations between ∞-groupoids (resp. ∞-categories).

This coglobular object corepresents a functor that takes an∞-groupoid X and associates
with it its path object PX, which is for the moment a bare globular set. In Chapter 6 we
endow this globular set with some algebraic structure, consisting of a system of compositions,
a system of identities and a system of inverses, as introduced in Definition 2.21.

In Chapter 7 we introduce some combinatorics of trees to construct an approximation
%̂ (i.e. a non-functorial interpretation) of the map Cyl(%) : Cyl(Dn) → Cyl(A) for a given
operation % : Dn → A. This would then corepresent the action of the operation % on PX, so
it is a necessary part of endowing the path object with the structure of an ∞-groupoid. To
achieve this, we construct a zig-zag of globular sums that only depends on A, whose colimit
is Cyl(A), and then exploit the contractibility of globular sums (or the results in Section 3
of Chapter 2) to construct the map %̂ : Cyl(Dn)→ Cyl(A) both in the case of ∞-categories
and ∞-groupoids. To avoid redundancy of data, a notion of degenerate cylinders is required.

In the eight and final chapter we define another coglobular object, which corepresents
modifications (i.e. cells between natural transformations), and we use these to inductively
correct the boundary of the elementary interpretation %̂ constructed in Chapter 7 for low
dimensions. This allows to extend the construction of PX from a globular set to a 3-groupoid,
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so we get an endofunctor P on 3-Gpd. Together with the results of Chapter 4, this proves the
existence of a semi-model structure on the category of Grothendieck 3-groupoids, as recorded
in Theorem 8.30, which concludes this work.

It is worth mentioning that the strategy adopted in this work is substantially different
from the one outlined by Maltsiniotis in [Ma], in which he makes use of the notion (introduced
by A.Grothendieck) of test category. These are, in particular, small categories C for which the
presheaf category [C op,Set] admits a model structure which is Quillen equivalent to Quillen’s
one on simplicial sets, modeling homotopy types. The first step in Maltsiniotis’ strategy is
to show that any coherator for ∞-groupoids is a test category. One would then have to
transfer the model structure on the presheaf category to that on the subcategory of models,
and obtain a Quillen equivalent one. We preferred our approach given the unfamiliarity of
the author with the techniques involved in proving that a certain category is test, but of
course this remains a totally viable approach.
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CHAPTER 2

Globular theories and models

1. Background

The preliminary concepts and definitions needed for understanding this work can be found
in [Ar1] and [Ma]. We now present a summary of these, to ease the reading of this work.

We start by defining the category of globes, which will serve as the starting point for
everything that follows.

Definition 2.1. Let G be the category obtained as the quotient of the free category on
the graph

0 1
σ0
//0 1

τ0
// 1 . . .

σ1
//1 . . .

τ1
// n n+ 1

σn
//n n+ 1

τn
// n+ 1 . . .

σn+1
//n+ 1 . . .

τn+1
//

by the set of relations σk ◦ σk−1 = τk ◦ σk−1, σk ◦ τk−1 = τk ◦ τk−1 for k ≥ 1.
Given integers j > i, define σji = σj−1 ◦ σj−1

i , where σi+1
i = σi. The maps τ ji are defined

similarly.
The category of globular sets is by definition the presheaf category [Gop,Set].

Definition 2.2. For 0 ≤ n, we denote with Gn the full subcategory of G generated by
the set of objects {k ∈ G : k ≤ n}.

The category of n-globular sets is by definition the presheaf category [Gop
n ,Set].

Globes are not enough to capture a meaningful theory of n-groupoids, for which we need
more complex shapes, called globular sums, which are a special kind of pasting of globes.
Indeed, globes alone cannot encode, for instance, composition operations.

In what follows we let 0 ≤ n ≤ ∞, where the case n =∞ refers to globular sets.

Definition 2.3. A table of dimensions is a sequence of integers of the form(
i1 i2 . . . im−1 im

i′1 . . . i′m−1

)
(9)

satisfying the following inequalities: i′k < ik and i′k < ik+1 for every 1 ≤ k ≤ m− 1.
Given a category C and a functor F : Gn → C, a table of dimensions as above, with ik ≤ n

for all 1 ≤ k ≤ m, induces a diagram of the form

F (i′1)

F (i1)

F (σi1
i′1

)

__

F (i′1)

F (i2)
F (τ i2

i′1
) ??

F (i′2)

F (i2)

F (σi2
i′2

)

__

F (i′2)

F (i3)
F (τ i3

i′2
) ??

. . .

F (i′m−1)

F (im−1)

F (σim−1
i′
m−1

)

__

F (i′m−1)

F (im)

F (τ im
i′
m−1

)

??

The n-globular sum (of type F ) associated with (9) is the colimit in C (if it exists) of the
diagram above.
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We also define the height of this n-globular sum to be ht(A) = max{ik}k∈{1,..., m}. Given
an n-globular sum A, we denote with ιAk the colimit inclusion F (ik)→ A, dropping subscripts
when there is no risk of confusion.

Definition 2.4. We denote by Θ0 the full subcategory of globular sets spanned by the
globular sums of type y : G → [Gop,Set], where y is the Yoneda embedding. Moreover, we
denote y(i) by Di and the globular sum corresponding to the table of dimensions:(

1 1 . . . 1 1
0 . . . 0

)

by D⊗k1 , where the integer 1 appears exactly k times.
Also define the subcategory Θ≤n0 ⊂ Θ0 to be that spanned by globular sums of height

less or equal than n.

It is not hard to see that there is a fully faithful embedding functor Θ≤n0 → [Gop
n ,Set].

The category Θ≤n0 plays a similar role for n-groupoids as Θ0 does for ∞-groupoids.

Definition 2.5. An n-truncated globular theory is a pair (E,F), where E is a category
and F : Θ≤n0 → E is a bijective on objects functor that preserves globular sums of height less
than or equal to n.

We denote by GlThn the category of n-globular theories and n-globular sums preserving
functors. More precisely, a morphism H : (E,F) → (C,G) is a functor H : E → C such that
G = H ◦ F.

If there is no risk of confusion we will omit the structural map F : Θ≤n0 → E and simply
denote the globular theory (E,F) by E.

Definition 2.6. Given an n-globular theory E, we define the category of its models,
denoted Mod(E), to be the category of n-globular product preserving functorsG : Eop → Set.
Clearly, the Yoneda embedding y : E→ [Eop,Set] factors through Mod(E), and it will still be
denoted by y : E → Mod(E). Also, notice that Mod(Θ≤n0 ) ∼= [Gop

n ,Set]. Again, we denote
the image of i under y by Di.

We now record the universal property of the category of models of an n-globular theory.

Proposition 2.7. Given an n-globular theory E, its category of models Mod(E) enjoys
a universal property: given any cocomplete category D, a cocontinuous functor F : Mod(E)→
D is determined up to a unique isomorphism by an n-globular sums-preserving functor F : E→
D, corresponding to its restriction along the Yoneda embedding. Conversely, any such functor
F : E→ D extends essentially-uniquely to a cocontinuous one on Mod(E).

Proof. The presheaf category [Eop,Set] is the free cocompletion of E, therefore we get
a natural equivalence induced by the Yoneda embedding of the form:

[E,D] ∼= [[Eop,Set],D]c

where [·, ·]c denotes the class of cocontinuous functors. It is easy to check that this restricts
to an equivalence of the form:

[E,D]gl ∼= [Mod(E),D]c

where [·, ·]gl denotes the set of globular sum-preserving maps. �
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Grothendieck groupoids are presented as models of a certain class of globular theories,
namely the cellular and contractible ones.

Definition 2.8. Given k ≤ n, two maps f, g : Dk → A in an n-globular theory are said
to be parallel if either k = 0 or f ◦ ε = g ◦ ε for ε = σ, τ . A pair of parallel maps (f, g) is said
to be admissible if ht(A) ≤ k + 1. A globular theory (C, F ) is called contractible if for every
admissible pair of maps f, g : Dk → A either k = n and f = g, or k < n and there exists an
extension h : Dk+1 → A rendering the following diagram serially commutative

Dk A
f

//
Dk A

g
//Dk

Dk+1

τk

��

Dk

Dk+1

σk

��

Dk+1

A

h

<<

Contractibility ensures the existence of all the operations that ought to be part of the
structure of an n-groupoid. However, it does not guarantee weakness of the models, and
indeed there exists a contractible globular theory (which we denote by Θ̃≤n) whose models
are strict n-groupoids.

To remedy this, we need the concept of cellularity, or freeness, to restrict the class of
globular theories we consider. This notion is based on a slight variation of a construction
explained in paragraph 4.1.3 of [Ar1], which we record in the following proposition.

Proposition 2.9. Given an n-globular theory E and set X of admissible pairs in it, there
exists another n-globular theory E[X] equipped with a morphism ϕ : E→ E[X] in GlThn with
the following universal property: given an n-globular theory C, a morphism H : E[X]→ C is
determined up to a unique isomorphism by F def= H ◦ϕ, together with a choice of an extension
to Dk+1 of the image under F of each admissible pair f, g : Dk → A in X with k < n, or the
requirement that F (f) = F (g) if k = n.

In words, E[X] is obtained from E by universally adding a lift for each pair in X of
non-maximal dimension and by equalizing parallel n-dimensional operations in X.

Definition 2.10. An n-globular theory E is said to be cellular if there exists a functor
E• : ω → GlThn, where ω is the first infinite ordinal, such that:

(1) E0 ∼= Θ≤n0 ;
(2) for every m ≥ 0, there exists a family Xm of admissible pairs of arrows in Em (as in

Definition 2.8) such that Em+1 ∼= Em[Xm];
(3) colimm∈ω Em ∼= E.

Equivalently, one can consider arbitrary ordinals γ and assume Xα to be a singleton for each
α < γ.

As anticipated earlier, we now define the class of n-globular theories which are appropriate
to develop a theory of n-groupoids.

Definition 2.11. An n-truncated (groupoidal) coherator, or, briefly, an n-coherator, is
a cellular and contractible n-globular theory. Given an n-coherator G, the category of n-
groupoids of type G is the category Mod(G) of models of G. In what follows, G will always
denote a coherator for n-groupoids, with 0 ≤ n ≤ ∞, and sometimes we will denote the
category of its models by n-Gpd, with no reference to G.

10



The restriction of an n-groupoid X : Gop → Set to Θ≤n0
op gives an object of Mod(Θ≤n0 ) '

[Gop
n ,Set], which we call the underlying n-globular set of X. The set Xi represents the set

of i-cells of X for each i ≤ n.
Let us now consider the algebraic structure acting on these sets of cells. Section 3 of

[Ar2] shows how to endow the underlying globular set of an∞-groupoid with all the sensible
operations one would expect it to have. A completely analogous argument applies to the case
of n-groupoids.

For example, we can build operations that represent binary composition of a pair of 1-
cells, codimension-1 inverses for 2-cells and an associativity constraint for composition of
1-cells by solving, respectively, the following extension problems:

D0 D1 q
D0
D1

i0◦σ0
//

D0 D1 q
D0
D1

i1◦τ0
//D0

D1

τ0

��

D0

D1

σ0

��

D1

D1 q
D0
D1

∇1
0

::

D1 D2
τ1

//
D1 D2

σ1
//D1

D2

τ1

��

D1

D2

σ1

��

D2

D2

ω2
1

<<
D1 D1 q

D0
D1 q

D0
D1

(∇1
0 q
D0

1D1 )◦∇1
0

//
D1 D1 q

D0
D1 q

D0
D1

(1D1 qD0
∇1

0)◦∇1
0

//D1

D2

τ1

��

D1

D2

σ1

��

D2

D1 q
D0
D1 q

D0
D1

α

44

We will need to choose some operations once and for all, so we record here their definition.
Choose an operation ∇1

0 : D1 → D1 qD0 D1 as above, and define w = ∇1
0. Next, pick

operations 2w : D2 → D2qD0D1 and w2 : D2 → D1qD0D2 whose source and target are given,
respectively by ((σ qD0 1) ◦ w, (τ qD0 1) ◦ w) and ((1qD0 σ) ◦ w, (1qD0 τ) ◦ w). Proceeding
in this way we get specified whiskering maps for every k ≤ n of the form:

kw : Dk → Dk q
D0
D1

wk : Dk → D1 q
D0
Dk (10)

We will often avoid writing down all the subscripts, when they are clear from the context.

Definition 2.12. Given a globular sum A, whose table of dimensions is(
i1 i2 . . . im−1 im

i′1 . . . i′m−1

)
with i′k > 0 for every 1 ≤ k ≤ m− 1, we define a map Aw : A→ AqD0 D1 by

wi1 qwi′1
. . . q

wi′
m−1

wim : Di1 q
Di′1

. . . q
Di′
m−1

Dim → (Di1 q
Di′1

. . . q
Di′
m−1

Dim+1) q
D0
D1

which makes sense since the target is isomorphic to

(Di1 q
D0
D1) q

Di′1
q
D0

D1
. . . q

Di′
m−1

q
D0

D1
(Dim q

D0
D1)

In a completely analogous manner we define a map wA : A→ D1 qD0 A.

Let us now see how to adapt the main definitions to the case of n-categories, following
[Ar1]. The definition is essentially the same as that of n-groupoids, except we have to restrict
the class of admissible maps.

Definition 2.13. We define a globular theory Θ by considering the full subcategory
of ω-Cats, i.e. strict ∞-categories, spanned by the free ∞-categories on globular pasting
diagrams. More precisely, consider the monadic forgetful functor U : ω-Cats → [Gop,Set],
whose left adjoint we denote by F. Then Θ is the full subcategory of ω-Cats spanned by
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object of the form FA for all globular sum A in [Gop,Set] of type y : G→ [Gop,Set], where
y denotes the Yoneda embedding.

Definition 2.14. Given an n-globular theory (C, F ), we say that a map f in C is globular
if it is in the image of Θ≤n0 under F .

On the other hand, f is called homogeneous if for every factorization f = g ◦ f ′ where g
is a globular map, g must be the identity.

C is said to be homogeneous if it comes endowed with an n-globular sum preserving functor
H : C→ Θ≤n that detects homogeneous maps, in the sense that a map f in C is homogeneous
if and only if H(f) is such, where Θ is the globular theory for strict ∞-categories, as defined
in [Ar1], and Θ≤n is its subcategory spanned by all globular sums of height less or equal to
n. We observe that, given a homogeneous map % : Dm → A in C, we have m ≥ ht(A), since
this is holds true in Θ, see [Ar1].

If globular maps are monomorphisms in C (for instance if C is a coherator for n-categories),
then every map f admits a unique factorization as a homogeneous map followed by a globular
one. Indeed, either f is homogeneous or f = i ◦ f ′, with i globular. Iterating this process for
f ′ and so on, we eventually have to stop, since the sum of the entries in the first row of the
table of dimensions of the domain of a globular map is less than the one of the codomain.
Therefore, for every f , we obtain a factorization of the form f = j ◦ h, with j globular and h
homogeneous. To prove its unicity, we observe that its image in Θ≤n is again a factorization
into a globular map followed by a homogeneous one, so every two factorizations of f have the
same globular part. These maps being monomorphisms, we obtain that also the homogeneous
parts coincide.

Remark 2.15. A map f : A→ B in a homogeneous globular theory C is homogeneous if
and only if, for every Dik appearing in the globular decomposition of A, the homogeneous-
globular factorizations of Dik → A→ B given by Dik → Bk → B induce an isomorphism of
the form:

colimk Bk ∼= B

This holds true since it does in Θ.

Definition 2.16. Given a globular sum A such that ht(A) = m > 0, whose table of
dimensions is (

i1 i2 . . . iq−1 iq

i′1 . . . i′q−1

)
we define its boundary to be the globular sum whose table of dimensions is(

ı̄1 ı̄2 . . . ı̄q−1 ı̄q

i′1 . . . i′q−1

)
where we set

ı̄k =

ik − 1 if ik = m

ik otherwise
and we replace each occurrence of ı̄k−1 = i′k−1 = ı̄k with a single ı̄q−1. The maps σ, τ : Dm−1 →
Dm induce maps:

∂σ, ∂τ : ∂A→ A (11)
12



Definition 2.17. Let (C, F ) be an n-globular theory. A pair of maps (f, g) with f, g : Dk →
A is said to be admissible for a theory of n-categories (or just admissible, in case there is
no risk of confusion with the groupoidal case) if either k = 0, or both of them are homoge-
neous maps or else if there exists homogeneous maps f ′, g′ : Dk → ∂A such that the following
diagrams commute

Dk A
f
//Dk

∂A

f ′

��

∂A

A

∂σ

??
Dk A

g
//Dk

∂A

g′

��

∂A

A

∂τ

??

The definition of a coherator for n-categories is totally analogous to that for n-groupoids.

Definition 2.18. An n-truncated coherator for categories, or, briefly, an n-coherator
for categories, is a cellular and contractible n-globular theory with respect to the class of
admissible pairs defined above. More precisely, the pairs appearing in Definition 2.8 and in
point 2 of Definition 2.10 must be pairs of admissible maps for n-categories.

The following definition is analogous to the one given for the groupoidal case.

Definition 2.19. A (Grothendieck) n-category is a model of a coherator for n-categories.

Unless specified otherwise, n-category and n-groupoid will always mean weak ones, i.e.
Grothendieck n-categories and Grothendieck n-groupoids. Notice that the maps introduced
in Definition 2.12 exist also in coherators for n-categories.

Remark 2.20. We observe here that one can give a definition of (∞, k)-categories for
k > 0 in the same spirit as Definition 2.11 and 2.19. It is enough to define them as models of
an appropriate modified notion of coherator. In detail, we only alter the class of admissible
pairs, imposing it consists of the union of the admissible pairs for a theory for ∞-categories
and all parallel pairs (f, g) : Dn → A with n ≥ k.

We are now going to introduce globular theories whose models can be thought of as
weak n-categories with weak inverses. These will appear in Theorem 4.8, where we prove
that under the existence of a path object fibration these globular theories are coherators for
n-groupoids. We consider left and right inverses instead of two-sided inverses, and this is
done in order to produce the correct homotopy type of globular sums in the corresponding
category of models.

Definition 2.21. A system of compositions in an n-globular theory C consists of a family
of maps {ck : Dk → Dk qDk−1 Dk}1≤k≤n such that ck ◦ σ = i1 ◦ σ and ck ◦ τ = i2 ◦ τ , where
i1 (resp. i2) denotes the colimit inclusion onto the first (resp. second) factor.

A system of identities (with respect to a chosen system of compositions) consists of a
family of maps {idk : Dk+1 → Dk}0≤k≤n−1∪{lk, rk : Dk → Dk−1}2≤k≤n+1 such that idk ◦ε =
1Dk , for every k ≥ 0 and ε = σ, τ , lk ◦ σ = 1Dk−1 , lk ◦ τ = (1Dk−1 , τ ◦ idk−2) ◦ ck−1 and
rk ◦ σ = 1Dk−1 , rk ◦ τ = (σ ◦ idk−2, 1Dk−1) ◦ ck−1.

A system of (left and right) inverses (with respect to chosen systems of compositions and
identities) consists of a family of maps {ilk, irk : Dk → Dk}1≤k≤n∪{klk,krk : Dk → Dk−1}2≤k≤n+1

such that iεk ◦ σ = τ, ik ◦ τ = σ for ε = l, r, klk ◦ σ = σ ◦ idk−2, klk ◦ τ = (ilk−1, 1Dk−1) ◦
ck−1, krk ◦ σ = τ ◦ idk−2 and krk ◦ τ = (irk−1, 1Dk−1) ◦ ck−1.
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If C admits a choice of such three systems, given a globular theory G and a globular
functor F : C → Mod(G) we say that for every G-model X, the C-model G(F, X) can be
endowed with such systems.

Definition 2.22. Given an n-coherator for categories C, we define a new globular theory
CW by means of the following pushout of globular theories:

Θ≤n0 [comp, id]

Θ≤n0 [comp, id, inv]
��

Θ≤n0 [comp, id]

C

i

��

C

CW
��

Θ≤n0 [comp, id, inv]

CW
��

(12)

Here, we denote with Θ≤n0 [comp, id] the free globular theory on a system of compositions
and identities (i.e. morphisms of n-globular theories Θ≤n0 [comp, id] → D corresponds to
choices of a system of compositions and identities in D), and with Θ≤n0 [comp, id, inv] the
free globular theory on a system of compositions, identities and inverses. There is a canonical
map as depicted in the upper left of the square and the map denoted by i is defined (non-
canonically) by choosing a system of compositions and a system of identities in C, using the
fact that it is a coherator for n-categories.

It follows from the definition that CW-models are Grothendieck n-categories in which
each k-cell (for k > 0) admits a left and a right inverse up to homotopy.

Remark 2.23. In the presence of both left and right inverses for every cell, together
with chosen associativity constraints as below, any of the two inverses can be promoted to
a two-sided one. For instance, assume f is an m-cell with both a left inverse k and a right
inverse g, and let us show that k is also a right inverse for f , the other case being similar. It is
enough to provide a cell from k to g as follows, where the arrows are obtained by whiskering
an m-cell with an (m + 1)-cell, i.e. by composing the (m + 1)-cell with the identity on the
m-cell involved:

k k(fg)
kkrm(f)

// k(fg) (kf)g'
// (kf)g g

irm+1(klm(f))g
//

We now introduce two classes of maps of globular sets, that constitute an orthogonal
factorization system in that category. This will be lifted to the category of models of co-
herators for n-categories and n-groupoids, and will be used to prove Proposition 3.9, i.e. the
contractibility of globular sums in the category of n-groupoids.

Definition 2.24. Given m ≤ n, a map f : X → Y of n-globular sets is said to be m-
bijective if fk : Xk → Yk is a bijection of sets for every k ≤ m, and m-fully faithful if the
following square is cartesian for all m ≤ i ≤ n:

Xi+1 Yi+1
fi+1

//Xi+1

Xi ×Xi

(s,t)
��

Yi+1

Yi × Yi

(s,t)
��

Xi ×Xi Yi × Yi
fi×fi

//
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Here, if i = n, we set Xn+1 = Yn+1
def= ∅. We denote the class of m-bijective morphisms by

bijm, and that of m-fully faithful ones by ffm.

The following result holds true, and its proof is left as a simple exercise

Proposition 2.25. The pair (bijm,ffm) is an orthogonal factorization system on the
category of n-globular sets [Gop,Set] for every m ≤ n.

We now want to lift the factorization system of Proposition 2.25 to models of an arbitrary
coherator for n-categories or n-groupoids A. To do so, consider the forgetful functor

Un : Mod(A)→Mod(Θ≤n0 ) ' [Gop
n ,Set]

induced by the structural map Θ≤n0 → A. Given a map of A-models f : X → Y and a natural
number m ≤ n, we can factor the map Un(f) as Un(f) = g ◦ h, where h is m-bijective and
g is m-fully faithful thanks to Proposition 2.25. It is not hard to see that the target of h
can be endowed with the structure of an A-model, in such a way that g and h are maps of
such. This follows from the dimensional constraint in the definition of admissible pairs, both
in the case of n-categories and n-groupoids. Thanks to Proposition 2 of [BG], we obtain the
following result:

Proposition 2.26. Given m ≤ n, the orthogonal factorization system (bijm,ffm) on
n-globular sets lifts to one on Mod(A), where A is any given coherator for n-categories or
n-groupoids, via the forgetful functor Un : Mod(A)→ [Gop

n ,Set].

This means, in particular, that every map in Mod(A) admits a unique factorization
f = g ◦ h where Un(h) is m-bijective and Un(g) is m-fully faithful, and that m-bijective
maps are closed under colimits in Mod(A).

Example 2.27. The maps σk, τk : Dk → Dk+1 are (k−1)-bijective. Indeed, since the for-
getful functor Un preserves the right class of the factorization system (bijk,ffk) on Mod(A)
for every k ≤ n, its left adjoint Fn : [Gop

n ,Set]→Mod(A) preserves the left class. Now it is
enough to observe that Fn sends σk and τk in globular sets to σk and τk in A-models, and
for the former it is easy to check the statement on (k − 1)-bijectivity.

Thanks to what we observed in Example 2.27, we have the following result.

Proposition 2.28. Given a globular sum A, with 0 < m = ht(A), the maps ∂σ, ∂τ : ∂A→
A are (m− 1)-bijective.
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CHAPTER 3

Basic homotopy theory of ∞-groupoids

In this chapter, we are going to prove some basic facts about the homotopy theory of ∞-
groupoids, that better illustrate the similarities between these sophisticated algebraic gadgets
and, say, ordinary topological spaces. The definition of (co)fibrations and trivial (co)fibrations
mimicks the one given in the context of the usual model structure on topological spaces or
the Kan-Quillen one on simplicial sets, and the aim is to get one on weak ∞-groupoids as it
has been done in the strict case in [ArMe] (which, in turn, is based on the categorical case
dealt with in [LMW]). We will see in later chapters that this may be a too high expectation,
and one may have to settle for a semi-model structure instead, as we justify at the beginning
of the next chapter.

1. Weak equivalences and the fundamental ∞-groupoid of a space

According to Grothendieck’s homotopy hypothesis, (weak)∞-groupoids should constitute
an algebraic model of homotopy types. Let us now outline a possible way of formalizing this.
First of all, this is a statement about the homotopy theory (i.e. (∞, 1)-category) of homotopy
types, therefore we should have a model for this and a model for the homotopy theory of
Grothendieck ∞-groupoids and the goal would then be to compare them.

The simplest way of describing an (∞, 1)-category is that of a relative category, a concept
introduced in [BK], which we now recall.

Definition 3.1. A relative category is a pair (C,W) where C is a category and W is a
subcategory of it that contains all the objects.

Given a relative category (C,W) we can form its simplicial localization L(C,W) (see
[DK]) which, in particular, produces a simplicial set of morphisms L(C,W)(x, y) between
any pair of objects x, y in C. An equivalence of relative categories F : (C,W) → (D,V) is a
functor F : C → D such that F (W) ⊂ V and F induces an equivalence of simplicial categories

L(C,W) ' L(D,V)

the latter meaning that the induced map on ordinary localizations C[W−1] → D[V−1] is
essentially surjective on objects and F induces weak equivalences of the form:

L(C,W)(x, y) ' L(D,V)(Fx, Fy)

Modeling the homotopy theory of homotopy types by means of a relative category is a pretty
straightforward task, for instance we can consider a (well behaved) category of spaces and
weak equivalences between them to be given by maps which induce isomorphisms on all
homotopy groups.

Turning to Grothendieck ∞-groupoids, we can define homotopy groups in this context
too, as follows. Given an ∞-groupoid X, an integer n ≥ 0 and a pair of parallel (n − 1)-
cells a, b ∈ Xn−1 (ignore this part if n = 0), we define the set πn(X, a, b) to be the set of
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equivalences classes of n-cells H : a → b in X, where the relation is given by H ≈ H ′ if and
only if there exists an (n+1)-cell K : H → H ′. It is easy to show that this set can be naturally
endowed with a group structure provided a = b, by choosing appropriate operations from the
groupoid structure on X (and the structure is independent of these choices, see [Ar2] for a
reference). Finally, if x is a 0-cell of X, we denote by πn(X,x) the group πn(X, id(x), id(x)),
where id(x) is a choice (in fact, any) of an (n− 1)-dimensional identity cell on x.

Definition 3.2. A map f : X → Y of ∞-groupoids is a weak equivalence if it induces
isomorphisms on all homotopy sets, i.e.:

π0(f) : π0(X)
∼=→ π0(Y ) and πn(f) : πn(X, a, b)

∼=→ πn(Y, f(a), f(b))

The following result is an important characterization of the class of weak equivalences of
∞-groupoids, see Theorem 4.18 of [Ar2].

Proposition 3.3. Let f : X → Y be a map of ∞-groupoids. Then the following are
equivalent:

(1) f is a weak equivalence;
(2) for every n ≥ 0 and (a, b) : Sn−1 → X the map πn(f) : πn(X, a, b)→ πn(Y, f(a), f(b))

is a surjection (when n = 0 this map is simply π0(f));
(3) for every x ∈ X0 the map πn(f) : πn(X,x) → πn(Y, f(x)) is an isomorphism and

π0(f) : π0(X)
∼=→ π0(Y ).

Diagrammatically, f is a weak equivalence if and only if given a solid commutative square
of the form:

Sk−1 X//Sk−1

Dk

jk

��

Dk Y
γ
//

X

Y

f

��

Dk

X

Γ
<<

' (13)

there exists a map Γ (as displayed by the dotted arrow) that renders the top triangle strictly
commutative and the bottom one commutative up to an (n+1)-cell (i.e. such that there exists
a (k + 1)-cell H : f ◦ Γ → γ in Y . Here, when k = 0, we let S−1 def= ∅ and, for k > 0, Sk is
defined to be the∞-groupoid that corepresents pairs of parallel k-cells. Note that this notion
makes sense in any globular theory, and indeed it can be defined at that level of generality.

Let Wg be the class of weak equivalences of ∞-groupoids, and Ws that of weak equiva-
lences of spaces. In [Ar2], Ara constructs a map of relative categories

Π∞ : (Top,Ws)→ (∞-Gpd,Wg)

with Π∞(X)n = Top(Dn, X). In fact, it is proven there that given any model category M
where every object is fibrant, the choice of an object X0 ∈M induces an adjunction

M
|·|
''

ΠX0
∞

gg ⊥ ∞-Gpd

The abovementioned functor is associated with the choice ofM = Top and X0 = ∗.
The homotopy hypothesis can now be formulated precisely as follows:

Conjecture 3.4. The map Π∞ : (Top,Ws)→ (∞-Gpd,Wg) is an equivalence of relative
categories.
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In [Hen], Henry proves that in order for this to hold, it is enough to show that, given a
pushout square of ∞-groupoids of the form:

Dk X
x
//Dk

Dk+1

σ

��

X

X+

j

��

Dk+1 X+
h
//

then j is a weak equivalence. To address this problem, we will embark on the process of
defining a path object on the category of ∞-groupoids, and although we do not completely
succeed in doing so, we lay the foundations of a possible approach and we fully construct
it in the case of 3-dimensional Grothendieck groupoids. The reason why such a path object
would be enough to prove the “pushout lemma” is part of the content of Theorem 4.2.

2. (Co)fibrations of ∞-groupoids

In this section, we introduce two important classes of maps, namely cofibrations and
trivial cofibrations, and their corresponding weak factorization systems, which will play a
fundamental role in what follows. As before, we consider the case of n-groupoids for 0 ≤ n ≤
∞. Also, we denote by t the relation of weak orthogonality between arrows, and given a set
of morphisms C in a category C , we let Ct be the class of maps f in C such that c t f for
every c in C, and we define tC in a similar way.

Definition 3.5. Let In be the set {Sk−1 → Dk}0≤k≤n ∪ {(1, 1) : Sn → Dn} of boundary
inclusions in Mod(G), where Sk is the free model on a pair of parallel k-cells, together with
the map collapsing a pair of parallel n-cells to a single n-cell (disregard this last element in
the case n = ∞). Also, let Jn be the set of source maps {σk : Dk → Dk+1}0≤k≤n−1, and In
(resp. Jn) be the saturation of In (resp. Jn), i.e. the set t(Itn ) (resp. Jn = t(Jtn )).

We say that a map of n-groupoids f : X → Y is a cofibration (resp. trivial cofibration)
of n-groupoids if it belongs to In (resp. Jn).

The maps in the class Jtn (resp. Itn ) are called fibrations (resp. trivial fibrations).

Remark 3.6. We observe that the previous definition makes sense in the category of
models of any globular theory, so that we get a notion of (trivial) fibrations and (trivial)
cofibrations of such models, although these may not be sensible notions, depending on the
context.

Let ∗ denote the terminal object in the category of n-groupoids. Since every map in J
admits a retraction, the following result is straightforward.

Proposition 3.7. Every n-groupoid is fibrant, i.e. the unique map X → ∗ is a fibration
for every X ∈Mod(G).

Definition 3.8. An n-groupoid X is said to be contractible if the unique map X → ∗ is
a trivial fibration.

Proposition 3.9. Globular sums, seen as objects in the image of the Yoneda embedding
functor y : G→Mod(G), are contractible n-groupoids.

Proof. We proceed by induction on m = ht(A). If m = 0 then A = D0, in which case
the statement is obvious.
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Let m > 0 and let us prove that any map α : Sk−1 → A extends to Dk. By contractibility
of G we already know this is possible whenever ht(A) = m ≤ k, so we assume k < m.
Consider ∂A, whose height ism−1 by construction, and is therefore contractible by inductive
assumption. The map ∂σ : ∂A → A is (m − 2)-bijective, thanks to Proposition 2.28, thus α
must factor through it since it consists of a pair of parallel (k − 1)-cells, and contractibility
of ∂A allows us to find the desired extension.

By definition of a coherator for n-groupoids, it follows that every globular sum in n-
groupoids lifts against the map (1, 1) : Sn → Dn, which concludes the proof. �

We now construct the long exact sequence of homotopy groups associated with a fibration
of ∞-groupoids. Assume given a fibration p : E → B in ∞-Gpd and a 0-cell e ∈ E, define an
∞-groupoid F by means of the following pullback square:

F E
i
//F

D0
��

E

B

p

����

D0 B
p(e)
//

To begin with, we want to define morphisms of sets ∂n : πn(B, p(e)) → πn−1(E, e). Given
[β] ∈ πn(B, p(e)), where β : id(p(e)) = p(id(e))→ id(p(e)) is an (n+ 1)-cell in B, we can lift
it to an (n+ 1)-cell α : id(e)→ e′ which satisfies p(α) = β, since p is a fibration. We now set
∂n[β] = [e′]. It is a routine calculation to show this does not depend on the choices we made,
and that ∂n is a group morphism.

Proposition 3.10. Given a fibration of ∞-groupoids p : E → B and a 0-cell e ∈ E, we
get a long exact sequence of homotopy groups of the form:

. . . πn+1(B, p(e)) πn(F, e)
∂n+1
// πn(F, e) πn(E, e)

πn(i)
// πn(E, e) πn(B, p(e))

πn(p)
// πn(B, p(e)) πn−1(F, e)

∂n
// . . .

Proof. Let us begin by proving Ker (πn(p)) = Im (πn(i)). Clearly, πn(p) ◦ πn(i) = 0.
Also, if πn(p)([x]) = 0, i.e. there exists an (n + 1)-cell H : p(x) → id(p(e)) in B, then we
can use the lifting property of p to get an (n + 1)-cell in E of the form H : x → x′ with
p(x′) = id(p(e)). Therefore, x ≈ i(x′), so that Ker (πn(p)) = Im (πn(i)).

Turning to the equality Ker (∂n) = Im (πn(p)), assume we have ∂n[β] = 0, i.e there exists
a lift α : id(e)→ e′ of β and an n-cell H : e′ → id(e) in F . The cell p(Hα) is then homotopic
to β by construction, thus showing that Ker (∂n) ⊂ Im (πn(p)). Conversely, if β ≈ p(α) for
an [α] ∈ πn(B, p(e)), then we have ∂n([β]) = ∂n([p(α)]) = [t(α)] = [id(e)] = 0.

The verification of the identity Ker (πn(i)) = Im (∂n+1) is left as an exercise for the
interested reader. �

Since every ∞-groupoid is a fibrant object, the following fact should not come as a
surprise, although it is not straightforward since we do not have a model structure on∞-Gpd.

Proposition 3.11. Given a pullback square of the form:

G E
g
//G

A

q

����

E

B

p

����

A B
f
//

where p is a fibration and f is a weak equivalence, then g is also a weak equivalence.
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Proof. We need to show that for every 0-cell x ∈ G0 and every n ≥ 0 the induced map
πn(G, x)→ πn(E, g(x)) is an isomorphism. Since q is also a fibration, we get a morphism of
fiber sequences of the form:

F ′q(x) G
i′
// G A

q
//F ′q(x)

Ff◦q(x)

∼=
��

Ff◦q(x) E
i
// E B

p
//

G

E

g

��

A

B

f

��

where F ′q(x) denotes the fiber of q over q(x) and Ff◦q(x) that of p over f ◦ q(x) (which are iso-
morphic). This induce a morphism between corresponding long exact sequences of homotopy
groups, part of which is displayed below:

πn+1(A, q(x)) πn
(
F ′q(x), x

)∂n+1
// πn

(
F ′q(x), x

)
πn(G, x)

πn(i′)
// πn(G, x) πn(A, q(x))

πn(q)
// πn(A, q(x)) πn−1

(
F ′q(x), x

)∂n
//

πn+1(B, fq(x)) πn
(
Ffq(x), g(x)

)∂n+1
// πn

(
Ffq(x), g(x)

)
πn(E, g(x))

πn(i)
// πn(E, g(x)) πn(B, fq(x))

πn(q)
// πn(B, fq(x)) πn−1

(
Ffq(x), x

)∂n
//

πn+1(A, q(x))

πn+1(B, fq(x))

πn+1(f)
��

πn
(
F ′q(x), x

)

πn
(
Ffq(x), g(x)

)∼=
��

πn(G, x)

πn(E, g(x))

πn(g)
��

πn(A, q(x))

πn(B, fq(x))

πn(f)
��

πn−1
(
F ′q(x), x

)

πn−1
(
Ffq(x), x

)∼=
��

Thanks to the five lemma, πn(g) must be an isomorphism since f is a weak equivalence, and
this concludes the proof. �

2.1. Direct categories. The small object argument provides a factorization system on
n-groupoids given by cofibrations and trivial fibrations. Lemma 3.13 will be applied to this
factorization system and to the direct category structure on Gn as defined in Example 3.15,
to provide a way of inductively extending certain maps in Mod(G)G.

Definition 3.12 (see also [Ho], Chapter 5). A direct category is a pair (C , d), where C

is a small category and d : Ob(C )→ λ is a function into an ordinal λ, such that if there is a
non-identity morphism f : a→ b in C , then d(a) < d(b).

Given a cocomplete category D and a functor X : C → D, we define the latching object
of X at an object c ∈ C to be the object of D given by

Lc(X) = colimc′∈C<d(c)↓cX(c′)

This defines a functor Lc from the functor category [C ,D] to the category D, together with
a natural transformation εc : Lc ⇒ evc, with codomain the functor given by evaluation at c.
We also define the latching map of a natural transformation α : X → Y in DC at an object
c ∈ C to be the map of D

L̂c(α) : X(c) q
Lc(X)

Lc(Y )→ Y (c)

induced by Lc(f) and εc.

The following results on direct categories are well known, therefore we omit their proofs.

Lemma 3.13. Let D be a direct category and C a category equipped with two classes of
arrows (L ,R) such that L t R. If we define

L D = {α : X → Y in CD | L̂d(α) ∈ L ∀d ∈ D}

and
RD = {α : X → Y in CD | αd : X(d)→ Y (d) ∈ R ∀d ∈ D}
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we have L D t RD.

Lemma 3.14. Let A,B be two cocomplete categories equipped, respectively, with two classes
of arrows (LA,RA) and (LB,RB) such that LA t RA and LB t RB. Given a cocontin-
uous functor F : A → B such that F (LA) ⊂ LB and a direct category D, the induced map
FD : AD → BD preserves the direct cofibrations, i.e.

F (L D
A ) ⊂ L D

B

Example 3.15. The category Gn has a natural structure of direct category, with degree
function defined by

deg : Gn → N
m 7→ m

Every time we have an n-coglobular object D• : Gn → C in a finitely cocomplete category,
we can consider the latching map of ! : ∅ → D• at m, i.e. the map

L̂m(!) : Lm(D•)→ Dm

Notice that
L̂1(!) = (D(σ0),D(τ0)) : D0qD0 → D1

and the other latching maps are obtained inductively from the following cocartesian square

Lm(D•) Dm

L̂m(!)
//Lm(D•)

Dm

L̂m(!)

��

Dm

Lm+1(D•)
��

Dm Lm+1(D•)// Lm+1(D•)

Dm+1
∃!L̂m+1(!) ��

Dm

Dm+1

D(σm)





Dm

Dm+1
D(τm)

22

When D• : Gn → G→Mod(G) is the canonical coglobular n-groupoid, we observe that
Lm(D•) ∼= Sm−1, i.e. the free model on a pair of parallel (m− 1)-cells.

3. Relative lifting properties of Mod(C)

In this section, C will denote a fixed coherator for n-categories. Let us assume, for sake of
simplicity, that n =∞, leaving to the interested reader the task of adapting all what follows
to the finite dimensional case.

We are going to prove some useful lemmas on relative liting properties of C-models with
respect to Θ-models, i.e. strict ∞-categories. These are needed to produce fillers of diagrams
which are essentially provided by the algebraic structure globular sums are endowed with.
In the groupoidal case, we show that globular sums are contractible in Proposition 3.9, but
this is no longer true in this context. However, we establish some criteria that allow us to
produce such fillers without having to explicitly spell them out, provided they exist in their
strict counterpart.

Recall that the structural functor F : C→ Θ of the homogeneous coherator C gives rise to
a cocontinuous functor F : Mod(C)→Mod(Θ) ∼= ω-Cats, where ω-Cats denotes the category
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of strict∞-categories, thanks to Proposition 2.7, by considering the following Kan extension:

C ω-Cats
y◦F

//C

Mod(C)

y

��

Mod(C)

ω-Cats

F

::

where the y’s denote two (different) instances of the Yoneda embedding.

Lemma 3.16. An extension problem in C of the form:

Dn−1 A
f

//
Dn−1 A

g
//Dn−1

Dn

τ

��

Dn−1

Dn

σ

��

Dn

A::

admits a solution if and only its image under F : C → Θ does so, and moreover such an
extension can be chosen so as to live over the one in Θ.

Proof. Let’s prove the non-trivial implication. Suppose we have a map H : Dn → A

in Θ, with boundary (F (f), F (g)). By factoring H into a homogeneous map p : Dn → A′

followed by a globular map i : A′ → A, we see by inspection that the pair (f ′, g′) def= (p ◦
σ, p ◦ τ) : Dn−1 → A′ is admissible: indeed, such are the boundaries of homogeneous maps
in Θ. By uniqueness of homogeneous-globular factorizations in C, we see that f and g have
to factor through A′ via an admissible pair (f, g) : Sn−1 → A′ that lives over (f ′, g′). More
precisely, we can factor f = j ◦ h into a homogeneous map followed by a globular one, so
that F (j) = i by uniqueness of the factorization in Θ. Similarly, the globular part of g also
must be j, and the rest of the claim follows from the simple fact that F detects admissible
pairs. It follows that there exists an extension of (f, g) to a map p : Dn → A′, and therefore
the composite i ◦ p is the extension we are looking for, and lives over H by construction. �

Lemma 3.17. Let i : X → Y be an I-cellular map in Mod(C) (i.e. a transfinite composite
of pushouts of maps in I), and consider the following extension problem, where A is a globular
sum:

X A
f

//X

Y

i

��

Y

A::

Then such an extension exists if and only if F (f) admits an extension along F (i). Moreover,
if we fix an extension in Mod(Θ) then the one in Mod(C) can be chosen to live over that in
Mod(Θ).

Proof. There is only one non-trivial implication, which follows from Lemma 3.16 and
cocontinuity of F by constructing the extension cell by cell. �
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Lemma 3.18. Let i : X → Y be a map in Mod(C)G, such that its latching maps L̂n(i)
are I-cellular maps for every n ≥ 0. Then an extension problem of the form:

X A
f

//X

Y

i

��

Y

A::

where A factors through CG (i.e. is pointwise a globular sum), admits a solution if and only
if its image under FG does so in Mod(Θ)G.

Proof. The non-trivial implication follows from the observation that F (L̂n(i)) ∼= L̂n(F (i))
by cocontinuity of F , so that one can construct an extension using the usual inductive argu-
ment for direct categories and the previous lemmas. �

Let us conclude this section with a very useful lemma on fillers of spheres in globular
sums.

Lemma 3.19. Let A be a globular sum in C with n = ht(A). Then every k-sphere in A

with k ≥ n admits a filler. In particular, D0 is contractible, i.e. the unique map D0 → ∗ has
the right lifting property with respect to all boundary inclusions Sk−1 → Dk.

Proof. Thanks to Lemma 3.16, it is enough to prove the statement in Mod(Θ). If k > n

then the only sphere Sk → A is given by a pair of identities on the same cell, and therefore it
surely admits a filler. If k = n and the restriction along one of the inclusions Dk → Sk is an
identity cell, then the other must be as well, since globular sums in Θ admits no non-trivial
endomorphisms of cells. In this case too, a filler exists. Finally, if we have an n-sphere in
A consisting of a pair of parallel n-cells none of which is an identity, then the claim follows
from the fact that an n-cell in a globular sum in Θ of height n is uniquely determined by its
boundary, as can easily be proven using the combinatorial description of Θ in terms of trees
given in Section 3.3 of [Ar1]. �
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CHAPTER 4

Semi-model structures on categories of models of globular
theories

1. Recognition principle

In this section we are going to characterize those globular theories C for which the category
of models Mod(C) bears a cofibrantly generated semi-model structure that satisfies some
natural conditions for objects of Mod(C) to look like ∞-groupoids. Cofibrantly generated
semi-model structures are defined in [FR], Definition 12.1.3: essentially we have sets of maps
I and J such that the class of fibrations (resp. trivial fibrations) is precisely the class of maps
that has the right lifting property with respect to maps in J (resp. I). The need of a semi-
model structure instead of a full one is that it is not clear how to construct a factorization
of the diagonal X → X × X through some object PX via a strict map. Nevertheless, this
ought to be doable for cofibrant objects, and this is where the weaker axioms of a semi-model
structure come into play. Indeed, the recognition principle for cofibrantly generated model
categories (i.e. Theorem 2.1.19 in [Ho]) can be adapted to this context as follows

Theorem 4.1. Suppose C is a category with all small limits and colimits, let W be a
subcategory of C which contains all the identities and let I, J be sets of maps in C . Then
there exists a cofibrantly generated semi-model structure on C with I as the set of generat-
ing cofibrations, J as the set of generating trivial cofibrations and W as the class of weak
equivalences if and only if the following conditions are satisfied:

• W has the two out of three property and is closed under retracts;
• The domains of I are small relative to I-cell complexes with cofibrant domain;
• The domains of J are small relative to J-cell complexes with cofibrant domain;
• J-cell complexes with cofibrant domain belong to the intersection W ∩ I-cof ;
• I-inj ⊂W ∩ J-inj;
• Either W ∩ I-cof ⊂ J-cof or W ∩ J-inj ⊂ I-inj.

It is clear that everything that follows still holds true, mutatis mutandis, to the case of
n-globular theories for n <∞.

To begin with, we define a class of maps W in Mod(C) that consists of the maps f : X →
Y satisfying the property described in (13).

Theorem 4.2. Given a globular theory C, there exists a cofibrantly generated semi-model
structure on the category of models Mod(C) with weak equivalences given by the class W,
where every object is fibrant, globular sums are contractible and the set of generating cofibra-
tions (resp. trivial cofibrations) consists of the boundary inclusions I def= {jk : Sk−1 → Dk}k≥0

(resp. source maps J def= {σk : Dk → Dk+1}k≥0) if and only if:
• D0 is contractible (i.e. the unique map D0 → ∗ is a trivial fibration);
• C admits a system of composition and identities, as defined in Definition 2.21;
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• for every cofibrant object X in Mod(C) there exists a fibration ev : PX → X × X
such that evi = πi ◦ ev is a trivial fibration for i = 0, 1, where πi : X × X → X

denote the product projections.

In particular, under such assumptions, if C is cellular then it is a coherator for ∞-groupoids.

If such a semi-model structure exists on Mod(C), then clearly the four conditions are
satisfied. Let us check that the converse also holds true.

The proof is a matter of checking that the recognition principle given in Theorem 4.1
applies to this situation. The third condition implies that all maps in J admit a retraction,
therefore all objects are fibrant. Moreover, Mod(C) is complete and cocomplete, and both
the domains of I and J permit the small object argument.

Lemma 4.3. W is closed under retracts.

Proof. Assume f is a retract of g ∈W, so that we have a commutative diagram:

X W
a
//X

Y

f

��

Y Z
c
//

W

Z

g

��

W X
b
// X

Y

f

��

Z Y
d
//

with b◦a = 1X and d◦c = 1Y . Given a (k−1)-sphere (α, β) in X and a k-cell H : f(α)→ f(β)
in Y , we get a k-cell ϕ : a(α)→ a(β) together with a (k+ 1)-cell Γ: g(ϕ)→ c(H) in Z, since
g is a weak equivalence. If we consider the k-cell H def= b(ϕ) in X, we see that H : α→ β and
d(Γ) : f(H) = d(g(ϕ))→ d(c(H)) = H. �

Lemma 4.4. Let f : X → Y, g : Y → Z be maps in Mod(C). Then:

(1) If f and g belong to W then so does g ◦ f ;
(2) If g and g ◦ f belong to W, then so does f ;
(3) If g ◦ f = 1X and f ◦ g belongs to W, then both f and g belong to W.

Proof. Firstly, assume f and g belong to W, and assume given a (k−1)-sphere (a, b) in
X, together with a k-cell γ : g◦f(a)→ g◦f(b) in Z. By assumption we get a k-cell β : f(a)→
f(b) in Y and a (k + 1)-cell H : g(β) → γ. Again by assumption we get a k-cell α : a → b

in X, together with a (k + 1)-cell H ′ : f(α) → β. The composite H ◦ g(H ′) : g ◦ f(α) → γ

(obtained using the system of composition on C) is the data we need to conclude the proof
of the first statement.

Turning to the second statement, assume g and g ◦f belong to W and consider a (k−1)-
sphere (a, b) in X, together with a k-cell α : f(a)→ f(b) in Y . We can lift the (k− 1)-sphere
(g ◦ f(a), g ◦ f(b)) in Z along g ◦ f to get a k-cell in X of the form H : a→ b, together with
a (k + 1)-cell Γ: g ◦ f(H)→ g(α). We now have a k-sphere in Y given by (f(H), α), and an
extension to a (k+ 1)-cell in Z between its image under g. By assumption, we get a lift to a
(k + 1)-cell H : f(H)→ α, which concludes the proof of the second statement.

Finally, if g ◦ f = 1X then g is a retract of f ◦ g, and is thus a weak equivalence thanks to
Lemma 4.3. Therefore, f ∈W thanks to the second point of this lemma, since 1X : X → X

is a weak equivalence thanks to the existence of a system of identities in C. �

Lemma 4.5. cof(J) ⊂ cof(I).
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Proof. Of course it is enough to check that J ⊂ cof(I). We thus have to prove that,
for every k ≥ 0, we have that σk : Dk → Dk+1 belongs to cof(I). We know by assumption
that Sk−1 → Dk is a cofibration, so that the colimit injection i0 : Dk → Sk

def= Dk q
Sk−1

Dk

is also such, being a pushout of it. We can now compose that with the boundary inclusion
Sk → Dk+1 to conclude the proof. �

Lemma 4.6. inj(I) = inj(J) ∩W.

Proof. We start by proving inj(I) ⊂ inj(J) ∩W. Thanks to Lemma 4.5 we only have
to prove that inj(I) ⊂ W, which is obvious, since a cell f → f exists for every cell in Y

thanks to the system of identities in C. Conversely, assume f is both a fibration and a weak
equivalence, and consider a (k − 1)-sphere (a, b) in X together with a k-cell H : f(a)→ f(b)
in Y . Since f belongs to W, we find a k-cell H : a → b in X, together with a (k + 1)-cell
Γ: f(H) → H in Y . Because f is a fibration, we can lift Γ to a cell γ : H → β, so that
f(β) = H and β : a→ b, since it is parallel to H, and this concludes the proof. �

Since relative J-cell complexes relative to D0 include all globular sums, if we prove that
such maps are weak equivalences we then obtain for free the contractibility of globular sums,
since D0 is contractible by hypothesis. We actually prove a little bit more, namely the
following result.

Lemma 4.7. Let f ∈ cof(J) have a cofibrant domain. Then f ∈W.

Proof. Let f : X → Y be as in the statement. Pick a section iY of the trivial fibration
ev0 : PY → Y , which exists since Y is cofibrant and is a weak equivalence thanks to Lemma
4.4, and denote by α the endomorphism ev1 ◦ iY , which is a weak equivalence thanks to
Lemma 4.4 and Lemma 4.6. Consider the following commutative square:

X PY
iY ◦f

//X

Y

f

��

Y Y × Y
(1,α◦f◦r)

//

PY

Y × Y

ev

��

Y

PY

Γ

<<

where r denotes the choice of a retraction of f , which exists since X is fibrant, and the lift
Γ exists by assumption, since f ∈ cof(J), X is cofibrant and ev is a fibration. We have
ev0 ◦ Γ = 1Y which implies that Γ is a weak equivalence, thanks to Lemma 4.4. Therefore,
thanks to the same lemma and Lemma 4.6, we see that α ◦ f ◦ r = ev1 ◦ Γ is also a weak
equivalence. A further application of Lemma 4.4 yields that f ◦ r belongs to W, which in
turn implies that f is a weak equivalence thanks to Lemma 4.4 again, since r ◦ f = 1X . �

Since we have proven that globular sums are contractible in Mod(C), we can endow
models of C with the structure of ∞-groupoids, and use the results in Section 4 of [Ar2]
to obtain the missing piece: namely, the 2-out-of-3 property for W. Indeed, the maps
in W can be characterized as in Theorem 4.18 (ibid.) and we can use the invariance of
basepoints (i.e. Corollary 4.14) to conclude that if f and g ◦ f are weak equivalences then
g is also such. Indeed, it is clear that π0(g) is a bijection. Now, let y be a 0-cell of Y ,
we want to prove that πn(g) : πn(Y, y) → πn(Z, g(y)) is an isomorphism. Choose a 1-cell
f(x) → y, whose existence is ensured by the fact that π0(f) is bijective, so that we have an
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isomorphism πn(Y, y) ∼= πn(Y, f(x)) as well as πn(Z, g(y)) ∼= πn(Y, g(f(x))). Consider the
following commutative diagram:

πn(X,x) πn (Y, f(x))
πn(f)

// πn (Y, f(x)) πn (Z, g(f(x)))
πn(g)

//πn (Y, f(x))

πn (Y, y)

∼=
��

πn (Y, y) πn (Z, g(y))
πn(g)

//

πn (Z, g(f(x)))

πn (Z, g(y))

∼=
��

By assumption, the upper horizontal arrow of the square is bijective, which implies that the
bottom one is also such and this concludes the proof of Theorem 4.2.

2. Semi-model structure on Mod(CW)

The part of Theorem 4.2 that is hard to check in practice is the functorial construction of
a path object, i.e. fibration ev : PX → X×X such that the composition with both projections
is a trivial fibration. Usually, a path object is defined to be a little bit more than that, in
that it requires the existence of a functorial factorization of the diagonal map X → X ×X
through it, but it turns out that our weakened version is enough to get a semi-model structure,
whereas a full path object would produce a model structure in the ordinary sense. As we
now prove, it is enough to construct our weakened path object for a globular theory obtained
from a coherator for n-categories (with 0 ≤ n ≤ ∞) by freely adjoining a left and a right
inverse for each map. This appears to be easier than building a path object for a coherator
for n-groupoids, since we can use the homogeneity property.

Theorem 4.8. Let C be a coherator for n-categories (with 0 ≤ n ≤ ∞), and suppose there
is a functor P : Mod(CW) → Mod(CW) endowed with a natural transformation ev : P ⇒
Id × Id which is a pointwise fibration with the property that evi

def= πi ◦ ev is a pointwise
trivial fibration. Then CW satisfies the hypotheses of Theorem 4.2, and therefore is a coherator
for n-groupoids. Moreover, Mod(CW) admits a semi-model structure as described in 4.2.

Proof. We denote by D0
CW the representable CW-model on D0, and we adopt a similar

convention for D0
C. All the hypotheses of the theorem are trivially satisfied, except for the

contractibility of D0
CW . We know from Lemma 3.19 that D0

C is contractible, so it can be
endowed with the structure of CW-model, that we still denote by D0

C. The claim would then
follow if we can prove that the counit of the adjunction

Mod(C) Mod(CW)
F
,,

Mod(CW)Mod(C)
U

ll
⊥

is a weak equivalence at D0
C, since FUD0

C = D0
CW . This is a consequence of a more general

result, proven in Proposition 4.9. �

Proposition 4.9. Let X be a CW-model such that FUX is cofibrant. Then the counit ε
of the adjunction

Mod(C) Mod(CW)
F
,,

Mod(CW)Mod(C)
U

kk
⊥

is a weak equivalence at X.
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Proof. It is enough to show that U(εX) is a weak equivalence of C-models. Let us
consider the following commutative square in Mod(C):

UX UPFUX
U(i)◦ηUX

//UX

UFUX

ηUX

��

UFUX UFUX ×UFUX
(ηUX◦U(εX),U(ev1◦i))

//

UPFUX

UFUX ×UFUX

U(ev)

����

(14)

Here, i denotes a choice of a section of the trivial fibration ev0 : PFUX → FUX, whose
existence of i is ensured by the cofibrancy assumption on FUX. Suppose we manage to
find a diagonal filler Γ: UFUX → UPFUX for such square, we would then have that Γ is
a weak equivalence by Lemma 4.4, since ev1 and U(ev1 ◦ i) both are, and by construction
ev1 ◦ Γ = U(ev1 ◦ i). This, in turn, implies that ηUX ◦U(εX) is also a weak equivalence,
and moreover, thanks to the triangle identities, we have U(εX) ◦ ηUX = 1UX . This implies,
again thanks to Lemma 4.4, that U(εX) is a weak equivalence. To conclude the proof, all is
left to do is to find the filler Γ, and this is accomplished separately in the next lemmas. �

We define a set of maps αk : Dk → Ik, where the codomain is obtained by freely adding
a pair of k-cell going in the opposite direction as well as a pair of (k+ 1)-cells connecting the
two possible composites with identities (with respect to the system of composition chosen
to define (12)). For example, if k = 1, then Ik is the free C-model on the following pasting
diagram:

0

1
g
??
1

0

f

��

0 0

1 1

0

1

k

??
KS

�� (15)

and α1 picks out f .

Lemma 4.10. The map ηUX is obtained as a transfinite composite of pushouts of maps
of the form αk : Dk → Ik for k ≥ 1.

Proof. The result follows from the same argument given in Proposition 2.2 in [Nik],
where it is proven that the unit of the adjunction between a model category and the (model)
category of its algebraically fibrant objects is an FJ-cell complex (F being the free functor
from the original model category and J being a set of trivial cofibrations that detects the
fibrant objects) provided the J ’s are monomorphisms. In this case, J = {αk : Dk → Ik}k≥1 so
these maps are cofibrations, hence it suffices to show that cofibrations are monomorphisms.
In the language of [JB2], we can view Mod(CW) as the cofiltered limit of a tower of iterated
injectives, starting from

(
[Gop,Set], I0 = {Sk−1 → Dk}k≥0

)
. Since maps in I0 are monomor-

phisms, we see that F I0-cell complexes in Inj(I1), where F0 is the left adjoint to the forgetful
functor into globular sets, are again monomorphisms since, by Proposition 2.18 (ibid.), these
are I0-cell complexes. Therefore we can iterate this construction and get I ⊂ Mod(CW) as
a filtered colimit of Fi(I0), with Fi being the left adjoint to the forgetful functor down to
globular sets, where each set Fi(I0) consists of monomorphisms by induction. It follows that
I consists of monomorphisms. �

Lemma 4.11. If p : E → B is a fibration in Mod(CW), then p has the right lifting property
with respect to the set of maps {τk : Dk → Dk+1}k≥0.
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Proof. Suppose given a (k+ 1)-cell H ∈ Bk+1 with H : g → p(f). By assumption there
exists a (k+1)-cell h0 ∈ Ek+1 with h0 : f → ḡ and p(h0) = H−1. We have p(h0

−1) = (H−1)−1,
so that there exists a (k + 2)-cell γ : p(h0

−1) → H which we can lift to get a (k + 2)-cell
γ : h0

−1 → H. By construction, p(H) = H. �

Lemma 4.12. The commutative square (14) admits a diagonal filler Γ: UFUX → UPFUX.

Proof. Thanks to Lemma 4.10 and to the fact that F (αk) = αk (where, with a minor
abuse of language, we have denoted with the same expression the interpretation of αk in
Mod(C) on the left and in Mod(CW) on the right) with F being the left adjoint to the
forgetful functor Mod(CW)→Mod(C), it is enought to show that αk is a trivial cofibration
in Mod(CW), i.e. it has the left lifting properties with respect to fibrations. Suppose given
a fibration p : E → B and a diagram of k-cells and (k + 1)-cells in B of the form:

p(x)

p(y)
g ??

p(y)

p(x)

p(f)
��

p(x) p(x)

p(y) p(y)

p(x)

p(y)

k

??

γ
KS β��

Since identities are preserved by any map, the domain of γ is of the form p(idk−1(x)), therefore
we can lift γ to a (k+1)-cell γ′ : idk−1(x)→ g0 in E. There exists a (k+1)-cell δ : p(f−1

l g0)→ g

in B obtained as the following composite (where (·)−1
l denotes the left inverse operation):

p(f−1
l g0) = p(f−1

l )(p(f)g) (p(f−1
l )p(f))g'

// (p(f−1
l )p(f))g 1g

(klk)−1g
// 1g g

'
//

which we can lift it to get a (k+1)-cell δ : f−1
l g0 → g in E, with in particular p(g) = g. Thanks

to Remark 2.23, there exists a cell χ : g0 → f(f−1
l g0), and the composite fδ◦χ◦γ′ : idk−1(x)→

fg lives over a cell of the form idk−1(p(x)) → p(f)g which is homotopic to γ. In fact, its
image is a composite of γ, associativity constraints, left and right inverse constraints and
their respective inverses, so a simple diagram chasing achieves the desired result. Therefore,
by lifting this homotopy and taking its target, we get a cell γ : idk−1(x) → fg which is the
lift we were looking for. The case of β is similar to the one we have just considered thanks
to Lemma 4.11. �

This concludes the proof of Proposition 4.9 and this chapter as well.
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CHAPTER 5

Main constructions

In this chapter we define a functor

Cyl : G→Mod(A)

where A is a coherator for∞-categories, ∞-groupoids or one of the form CW. It follows from
the results of this section and of Chapter 6 that if one proves the division lemma (see Lemma
6.2 below) holds for CW-models, then it is enough to extend the functor above (in the case
of CW-models) to one of the form:

Cyl : C→Mod(CW)

and set
PX def= Mod(CW) (Cyl(•), X) : Mod(CW)→Mod(C)

to prove CW is a coherator for∞-groupoids and get a semi-model structure on Grothendieck
∞-groupoids of type CW, thanks to Theorem 4.8. Indeed, at that point the remaining work
to do in order to get an endofunctor on CW-models would be to define inverses, which we
address in Chapter 6 of this work. This would solve the open problem of making an ∞-
groupoid à la Batanin, i.e. a CW-model (see [Bat]), into a Grothendieck one and it would
also prove the homotopy hypothesis thanks to the main results in [Hen].

1. Suspension-space of paths adjunction

We construct here the adjunction given by suspension-space of paths that generalizes the
loop space one for, say, topological spaces. It is given in a slightly more general fashion, since
the space of paths that we get takes as input an n-groupoid and two points, and its 0-cells are
not necessarily loops but rather paths. We define it both for C-models and CW-models. In a
similar (and simpler) way, one can get the analogous construction in the case of a coherator
for groupoids G, simply using the contractibility of globular sums in there.

In detail, given X ∈ Mod(CW
n ) (resp. X ∈ Mod(Cn) and two 0-cells a, b ∈ X0 we

produce the CW
n−1-model (resp.Cn−1-model) of morphisms from a to b, denoted by Ω(X, a, b).

This construction is obtained by firstly defining a suspension functor Σ: CW
n−1 → S0 ↓ CW

n ,
where the codomain is defined to be the subcategory of the slice category S0 ↓ Mod(CW

n )
spanned by the representable functors. We then extend this functor (thanks to Proposi-
tion 2.7) to a cocontinuous functor having Mod(CW

n−1) as domain and S0 ↓ Mod(CW
n ) as

codomain. This is defined as a left Kan extension of the following form:

CW
n−1 S0 ↓ CW

n
Σ
// S0 ↓ CW

n S0 ↓Mod(CW
n )//CW

n−1

Mod(CW
n−1)
��

Mod(CW
n−1)

S0 ↓Mod(CW
n )

Σ

44

30



where the unlabelled maps are induced from the appropriate Yoneda embeddings. This
suspension functor must have a right adjoint, which we denote by Ω, since both its domain
and codomain are presentable categories, so that we end up with the following adjunction:

Mod(CW
n−1)

Σ
**

Ω
jj ⊥ S0 ↓Mod(CW

n ) (16)

or with a similar adjunction involving C in place of CW.
Using the language of trees it is straightforward to construct a functor

Σ: (n− 1)-Cats → S0 ↓ n-Cats

that models suspension, sending Dk to Dk+1, where m-Cats denotes the category Mod(Θ≤m)
of strict m-categories. As outlined above, we will firstly construct Σ: Mod(Cn−1) → S0 ↓
Mod(Cn) as the left Kan extension of a functor Σ: Cn−1 → S0 ↓ Mod(Cn), defined by
induction on the defining tower C•n−1 of Cn−1, and then we will extend that construction to
the case where we have inverses too. We assume by inductive hypothesis that at each ordinal
α for which we assume we already have this construction, the following square commutes:

Cαn−1 S0 ↓ Cn
Σ
//Cαn−1

Θ≤n−1

F
��

Θ≤n−1 Θ≤nΣ
//

S0 ↓ Cn

Θ≤n
��

The case Θ0 = C0
n−1 has already been discussed, and the limit ordinal case is trivial. Let

us then suppose we have the construction on Cαn−1, and that Cα+1
n−1 is obtained by adding

an operation % : Dn → A with boundary an admissible pair (f, g). It is easy to see that
Σ: Θ≤n−1 → Θ≤n preserves admissible pairs, so that we can define Σ(%) as the choice of an
extension to the following diagram in Cn, which is automatically under S0 and again satisfies
the inductive hypothesis:

Dn ΣA
Σ(f)

//
Dn ΣA

Σ(g)
//Dn

Dn+1

τ

��

Dn

Dn+1

σ

��

Dn+1

ΣA

Σ(%)

::

This argument can be adapted in a straightforward manner to the case in which the dimension
of (f, g) is maximal.

If we want to extend this construction to the case of Mod(CW), we simply consider
the pushout (12) that defines this globular theory. Thanks to that definition and the work
done so far, constructing a functor Σ: CW

n−1 → Mod(CW
n ) amounts to define an action of

Σ on inverses and inverses constraints in a compatible way. More precisely, we define a
map Σ: Cn−1 → S0 ↓ Mod(CW

n ) by composing the functor Σ: Cn−1 → S0 ↓ Mod(Cn)
defined above with the natural map S0 ↓ Mod(Cn) → S0 ↓ Mod(CW

n ). In addition, we
define a map Σ: Θ0[comp, id, inv] → S0 ↓Mod(CW

n ) by setting Σ(iεk) = Σk(i1) for ε = l, r

and similarly for the maps kmε. The universal property of pushouts yields the desired map
Σ: CW

n−1 → S0 ↓Mod
(
CW
n

)
, and consequently a functor

Σ: Mod(CW
n−1)→ S0 ↓Mod(CW

n )
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by left Kan-extension. This, in turn, can be promoted to the adjunction (16) as observed
earlier.

By adjunction, the underlying globular set of Ω(X, a, b) is given by

Ω(X, a, b)k : = {x ∈ Xk+1| sk+1
0 (x) = a, tk+1

0 (x) = b}

We will often denote Ω(X, a, b) simply by X(a, b).

Remark 5.1. If we compose Σ with the forgetful functor U : S0 ↓Mod(CW
n )→Mod(CW

n ),
we get a functor which is no longer cocontinuous. Nevertheless, it is well known that U cre-
ates connected colimits, therefore U ◦Σ preserves all such. Because Σ(In−1) ⊂ In, where Ik is
the set of maps defined in Definition 3.5, we therefore have that U ◦Σ preserves cofibrations
(i.e. it sends maps in In−1 to maps in In, the respective saturations of In−1 and In). A similar
situation is treated in Lemma 1.3.52 of [Cis].

As a justification for the notation we have chose, we observe that given a map of n-
groupoids (α, β) : Sk → X, seen as a map (α̂, β̂) : Sk−1 → X(a, b), where a = sk0(α) and
b = tk0(β), then it holds true that

πk−1(X(a, b), α̂, β̂) ∼= πk(X,α, β)

(see also [Ar2], Definition 4.11).

Proposition 5.2. Let (X, (a, b)) be an object in S0 ↓ ∞-Gpd. Assume that X is a
contractible ∞-groupoid. Then X(a, b) is again contractible.

Proof. Diagrams of the form:

Sn−1 X(a, b)//Sn−1

Dn

��

Dn

X(a, b)
99

correspond, under the adjunction Σ a Ω, to diagrams under S0 of the form

Sn X//Sn

Dn+1
��

Dn+1

X99

By assumption, all such diagrams admit an extension, which concludes the proof. �

The following lemma holds for the class of all globular theories considered in this section,
and will be used quite frequently in the forthcoming sections. Its proof is straightforward
and it is thus left to the reader.

Lemma 5.3. Let An be a coherator for n-categories, a coherator for n-groupoids or a
globular theory of the form An ∼= CW

n . For every globular sum A in A there exist unique
globular sums α1, . . . , αq such that:

A ∼= Σα1 q
D0

Σα2 q
D0
. . . q

D0
Σαq (17)
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the colimit being taken over the maps

D0

Σαi

>
��

D0

Σαi+1

⊥
��

where we denote by (ΣB,⊥,>) the image under the functor Σ: Mod(An−1)→ S0 ↓Mod(An)
of any globular sum B .

Proof. The proof consists of a simple induction on the number of 0-cells of A. �

We conclude this section with the construction of iterated suspension functors, which we
denote by Σn. We assume that for every n, a sequence of coherators for n-categories (resp.
n-groupoids or of the form CW

n ) An is given.

Lemma 5.4. For every k > 0, n ≥ 0 we have adjunctions of the form:

Mod(An)
Σk

**

Ωk
jj ⊥ Sk−1 ↓Mod(An+k)

Proof. The proof proceeds by induction, and we have already proven the case k = 1.
Assume k > 1, and define Σk by setting:

ΣkX
def= Σ(Σk−1X)

where Σk−1X denotes, with a small abuse of language, the map Sk−2 → Σk−1X defined by
inductive assumption. On the other hand, we define Ωk by setting:

Ωk(f : Sk−1 → Y ) def= Ωk−1(f̂ : Sk−2 → ΩY )

where Ωk−1 is defined by inductive assumption and f̂ is the transpose of f under the adjuntion
Σ a Ω. At this point we can conclude the proof by observing that there is a bijection between
commutative triangles of the form:

Sk−1

Y

f

��

Sk−1

ΣkX
��

ΣkX Y//

and maps X → ΩkY . �

2. Cylinders

Cylinders should be thought as homotopies between cells that are not parallel, so that
one needs to provide first homotopies between the 0-dimensional boundary, then between the
1-dimensional boundary adjusted using those homotopies, and so on. This is the right notion
of natural transformation in this context.

Cylinders first appear in higher category theory in Bénabou’s work on bicategories (see
[Ben]). Later on, Lack makes use of them to construct a model structure on bicategories
and on Gray-categories, see [La] and [La2]. These have later been generalized by Lafont,
Métayer and Worytkiewicz in [LMW] to build a model structure on the category of strict
ω-categories.
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We give all the definitions in the ∞-dimensional case, leaving the appropriate modifica-
tions for the finite case to the interested reader. Also, in what follows A is either a coherator
for ∞-categories, a coherator for ∞-groupoids or a globular theory of the form A ∼= CW.

Definition 5.5. We define, by induction on n ∈ N, a coglobular object Cyl(D•) ∈
Mod(A)G, together with a map

ι = (ι0, ι1) : D•qD• → Cyl(D•)

We begin by setting

Cyl(D0) = D1, (ι)0 = (σ, τ) : D0qD0 → D1

Now, let n > 0 and assume we have constructed

Cyl(D•) ∈Mod(A)G≤n−1 and ι+: D•qD• → Cyl(D•)

We then define Cyl(Dn) as the colimit in Mod(A) of the following diagram:

Dn

Dn q
D0
D1

w 77

Dn

ΣCyl(Dn−1)

Σ(ι0)
''

Dn

ΣCyl(Dn−1)

Σ(ι1)

77

Dn

D1 q
D0
Dn

w ''

(18)

Next, we define ι0, ι1 : Dn → Cyl(Dn) respectively as the composites

Dn Dn q
D0
D1

ι
// Dn q

D0
D1 Cyl(Dn)//

Dn D1 q
D0
Dn

ι
// D1 q

D0
Dn Cyl(Dn)//

where the unlabelled maps are given by the colimit inclusions.
Finally, for ε = σ, τ , we construct the induced map Cyl(ε) : Cyl(Dn−1) → Cyl(Dn) by

induction. We define Cyl(σ),Cyl(τ) : Cyl(D0) → Cyl(D1) respectively as the lower and
upper composite maps

Cyl(D0) ∼= D1

D1 q
D0
D1i1

//

Cyl(D0) ∼= D1

D1 q
D0
D1

i0 //

D1

D1 q
D0
D1

w 77

D1

ΣCyl(D0)

Σ(ι0)
''

D1

ΣCyl(D0)

Σ(ι1)

77

D1

D1 q
D0
D1

w ''

D1 q
D0
D1

Cyl(D1)
EE

D1 q
D0
D1

Cyl(D1)
��

(19)
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We then inductively define for ε = σ, τ the structural map Cyl(ε) : Cyl(Dn−1) → Cyl(Dn)
as the map induced on colimits by the following natural transformation

Dn−1

Dn−1 q
D0
D1

w 77

Dn−1

ΣCyl(Dn − 2)

Σ(ι0)
''

Dn−1

ΣCyl(Dn − 2)

Σ(ι1)

77

Dn−1

D1 q
D0
Dn−1

w ''

Dn−1 q
D0
D1 Dn q

D0
D1

ε q
D0

1
//

Dn−1 Dn
ε

//

ΣCyl(Dn − 2) ΣCyl(Dn − 1)
ΣCyl(ε)

//

Dn−1 Dn
ε

//

D1 q
D0
Dn−1 D1 q

D0
Dn

1 q
D0

ε

//

Dn

Dn q
D0
D1

w 77

Dn

ΣCyl(Dn − 1)

Σ(ι0)
''

Dn

ΣCyl(Dn − 1)

Σ(ι1)

77

Dn

D1 q
D0
Dn

w ''

Definition 5.6. Given an A-model X, an n-cylinder in X is a map C : Cyl(Dn)→ X.
We denote the source and target cylinders of C by, respectively

s(C) = C ◦Cyl(σ), t(C) = C ◦Cyl(τ)

If C ◦ ι0 = A,C ◦ ι1 = B, then we write C : Ay B.
By (18), an n-cylinder C : A y B in an A-model X is given by a pair of 1-cells Cs, Ct

in X and an (n − 1)-cylinder C̄ : CtA y BCs in Ω (X, s(Cs), t(Ct)). C and C̄ will often be
referred to as mutually transpose. We will sometimes refer to the cell C ◦ ι0 (resp. C ◦ ι1) as
the top (resp. bottom) cell of C, and denote it with C0 (resp. C1).

Example 5.7. A 2-cylinder C : A y B in X consists of a pair of 1-cells f = Cs, g = Ct

and a 1-cylinder C̄ : gA y Bf in X (s(f), t(g)). It can also be represented as the following
data in X

s(f)

f

��

++

44�� A

��

s(g)

g

��

t(f)
t(B)

// t(g)

V

s(f)
s(A)

//

f

��

��

s(g)

g

��

t(f) **

44�� B t(g)

Or, in a way that better justifies its name, as

A
((

66

f

��

A��

��

��

Wg

B

g

��

A′
((

66B�� B′

(20)

where the front face is the square (i.e. 1-cylinder) given by t(C), and the back one is s(C).
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We will often denote the source of the n-th latching map L̂n(ι) as ∂Cyl(Dn). This can
be constructed as the following pushout:

Sn−1qSn−1 Cyl(Sn−1)
(ι0,ι1)

//Sn−1qSn−1

DnqDn

��

DnqDn ∂Cyl(Dn)//

Cyl(Sn−1)

∂Cyl(Dn)
��

(21)

Definition 5.8. We call ∂Cyl(Dn) the boundary of the n-cylinder. Given an n-cylinder
in C : Cyl(Dn)→ X, we call the boundary of C, denoted by ∂C, the following composite

∂Cyl(Dn) Cyl(Dn)// // Cyl(Dn) X
C
//

Thanks to (21), we know that specifying the boundary of an n-cylinder in an A-model X
is equivalent to providing the following data:

• a pair of parallel (n− 1)-cylinders C : Ay B,D : A′ y B′ in X;
• a pair of n-cells α : A→ A′, β : B → B′ in X.

Let us now prove the following result:

Proposition 5.9. The natural map

ι : D•qD• → Cyl(D•)

is a direct cofibration in Mod(A)G (i.e. it belongs to the class IG according to the notation
established in Lemma 3.13).

Proof. We prove by induction on n that the latching map at n

L̂n(ι) : ∂Cyl(Dn)→ Cyl(Dn)

fits into a cocartesian square of the form

Sn

∂Cyl(Dn)
��

Sn Dn+1
∂

//

∂Cyl(Dn) Cyl(Dn)
L̂n(ι0,ι1)

//

Dn+1

Cyl(Dn)
��

(22)

and is therefore in I. Observe that the statement is trivially true by definition if n = 0, so
we assume n > 0 and its validity for every k < n. In fact, we are going to prove that there
is a pushout square of the form

Σ∂Cyl(Dn−1) ΣCyl(Dn−1)
Σ(L̂n−1(ι))

//Σ∂Cyl(Dn−1)

∂Cyl(Dn)
��

∂Cyl(Dn) Cyl(Dn)
L̂n(ι)

//

ΣCyl(Dn−1)

Cyl(Dn)
��

(23)

and then conclude by applying the inductive hypothesis.
We prove this representably, i.e. we have to prove that, given n-cells A,B in X and a

pair of parallel (n − 1)-cylinders in X of the form C1 : s(A) y s(B), C2 : t(A) y t(B) (i.e.
a map ∂Cyl(Dn) → X, as observed in Definition 5.8), together with an (n − 1)-cylinder
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C ′ : C2
tA y BC1

s in X (sn(A), tn(B)), there exists a unique n-cylinder C : A y B in X with
C = C ′, s(C) = C1, t(C) = C2 provided s(C ′) = C1, t(C ′) = C2. This fact is an easy
consequence of Definition 5.5. �

We can define a map of coglobular A-models C• : Cyl(D•) → D• that fits into the
following factorization of the codiagonal map

D•qD• Cyl(D•)//
(ι0,ι1)

// Cyl(D•) D•
C•
//

by solving the extension problem

D•qD• D•
∇
//D•qD•

Cyl(D•)

��

(ι0,ι1)
��

Cyl(D•)

D•

C•

<<

(24)

This is achieved, in the case of∞-groupoids, simply by contractibility of the coglobular object
D•. In the case of ∞-categories, it is enough to apply Lemma 3.18, knowing that such an
extension exists in the case of ω-Cat since the n-th latching map of the cofibration on the
left is a pushout of a boundary inclusion Sn → Dn+1 and ht(Dn) = n < n + 1, so that we
conclude thanks to Lemma 3.19.

In the remaining case A ∼= CW, if we let F : Mod(C)→Mod(CW) be the left adjoint to
the obvious restriction functor, then we can set

C•
def= F (C•)

since F preserves globes and cylinders on globes.
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CHAPTER 6

Systems of structure on the path object

In this chapter we define the underlying globular set of our candidate for the path-object
associated with an A-model X, and we endow it with a non-trivial algebraic structure that
depends on the choice of A. This can be either a coherator for n-categories, a coherator for
n-groupoids or a coherator of the form CW, unless specified otherwise. We will indicate the
last two cases by saying that A “admits inverses”. Also, n can be any natural number or
n =∞: we only provide proofs for the latter case, the other being simple adaptations of it.

Definition 6.1. We define a functor P : Mod(A)→ [Gop,Set] by setting:

PX = Mod(A)(Cyl(D•), X)

where the globular structure is induced by the coglobular object Cyl(D•) : G→Mod(A).
Precomposition with ι : D• qD• → Cyl(D•) yields a natural map

pX = (p0, p1) : PX → UX ×UX

where U : Mod(A)→ [Gop,Set] is the forgetful functor induced by precomposition with the
structural map Θ0 → A.

In what follows, we will need a construction representing the composition of an n-cylinder
with a pair of (n+ 1)-cells attached at the top and bottom, respectively. This is an instance
of a more general operation of vertical composition of degenerate cylinders, that will be
defined in Section 5.2 of Chapter 7. Unless specified otherwise, A is a coherator of any of the
abovementioned kinds.

In the proof of Lemma 6.5 and of Proposition 6.6 we will make use of Lemma 4.12 in
[Ar2], the so-called “division lemma”, which we now state for sake of clarity. We record here
the original statement in Ara’s paper, although we observe that it can easily be adapted to
the finite-dimensional case.

Lemma 6.2 (Division lemma). The operation of whiskering n-cells with a given 1-cell in
a coherator for ∞-groupoids is bijective up to homotopy. More precisely, suppose given a
pair of n-cells A,B and a 1-cell γ in an ∞-groupoid X, satisfying tn(A) = tn(B) = s(γ).
Then, given an (n+ 1)-cell of the form H : γA→ γB there exists an (n+ 1)-cell of the form
H : A→ B such that γH ' H, where juxtaposition is the result of a whiskering operation in
G (for example, wn : Dn → Dn q

D0
D1).

Ara’s proof requires contractibility, and we were not able to generalize it to CW (as defined
in Definition 12) in the case where C is a coherator for ∞-categories. The three dimensional
case can still be proven by hands, as follows. Note that, in the presence of both a left and a
right inverse for every cell, any of them can be promoted to a two-sided inverse, therefore we
will use the notation f−1 with no reference to left or right.
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Lemma 6.3. The division lemma holds true in the context of CW-models, where C denotes
a coherator for 3-categories.

Proof. If n = 1 and we have a 2-cell in X of the form:

a c

fA

$$
a c

fB

::H ��

for A,B : a→ b and f : b→ c, then we can define H as the following composite:

A f−1fA
'
// f−1fA f−1fB

f−1H
// f−1fB B

'
//

where “'” denotes coherence constraints that exist in CW. It is a routine exercise to check
that fH is homotopic to H.

Turning to n = 2, we assume we have a 3-cell H : fA → fB. We define H : A → B as
the following composite of 3-cells:

a b

s(A)
$$

a b

t(A)

::A �� V a b

s(A)

��

a b

t(A)

EE
a b

##

a b;; b c
f
// c b

f−1
//

' ��

' ��

A �� V a b

s(B)

��

a b

t(B)

EE
a b

##

a b;; b c
f
// c b

f−1
//

' ��

' ��

B �� V a b

s(B)
$$

a b

t(B)

::B ��

Here, the 2-cells denoted with “'” denote coherence constraints that exist in CW, and the first
and last 3-cells are also composite of constraints, whereas the one in the middle is a whiskering
of H with the other cells depicted there. Again, it is a tedious but straightforward exercise
to check that fH is homotopic (i.e. equal,for dimensionality reasons) to H.

Finally, if n = 3 we have to prove that fA = fB implies A = B, which is entirely
analogous to the arguments given so far. �

Lemma 6.4. Given an A-model X, an n-cylinder C : A y B in X and (n + 1)-cells
α : A′ → A and β : B → B′ we can compose these data to get an n-cylinder βCα : A′ y B′.
Moreover, ε(βCα) = ε(C) for ε = s, t.

Proof. We prove this by induction on n, the case n = 0 being straightforward. Let’s
assume n > 0 and that we have already defined this operation for every k < n. We can
transpose the data at hand to get an (n − 1)-cylinder C : CtA y BCs in X (sn(A), tn(B))
and n-cells Ctα : CtA′ → CtA, βCs : BCs → B′Cs, where juxtaposition denotes the result
of composing using the whiskering w’s defined in 2.12. By inductive hypothesis we can
compose these data to get an (n − 1)-cylinder (βCs)C(αCt) : CtA′ y B′Cs. Finally, we
define (βCα)ε = Cε for ε = s, t, and βCα = (βCs)C(αCt).

The statement on source and target cylinders follows easily from the inductive argument
we have just outlined. �

This operation also comes endowed with a “comparison cylinder”, as explained in the
following result.
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Lemma 6.5. In the situation of the previous lemma, if A admits inverses and the division
lemma holds for A-models (see Lemma 6.2) then there exists an (n+ 1)-cylinder Γβ,C,α in X
such that s(Γβ,C,α) = C and t(Γβ,C,α) = βCα.

Proof. For sake of simplicity we drop the subscripts of Γ in what follows. We prove
this result by induction on n. The base case n = 0 is straightforward, once we set Γ0 = α−1

and Γ1 = β, where (·)−1 is a (left or right) inverse promoted to a two-sided one. Let n > 0,
and assume the result holds for each k < n. By inductive hypothesis we get an n-cylinder
γ : C y (Ctα)C(βCs). If we analyze the source and target of γ0 and γ1, we see that, thanks
to Lemma 6.2, there exist a pair of n-cells E,F and (n+ 1)-cells ϑ : CtE → γ0, ϕ : γ1 → FCs.
We now define Γε = Cε for ε = s, t, and Γ = ϕγϑ, which concludes the proof. �

Recall that a map of globular sets f : X → Y is a fibration (resp. trivial fibration) if it
has the right lifting property with respect to the set of maps {σn : Dn → Dn+1}n≥0 (resp.
{Sn−1 → Dn}n≥0).

Proposition 6.6. Let A = G be a coherator for ∞-groupoids, and X a G-model. The
map pX = (p0, p1) : PX → UX ×UX (resp. pi : PX → X for i = 0, 1) is a fibration (resp.
trivial fibration) of globular sets.

Proof. Let us first prove the claim about pX . We have to prove it lifts against maps
of the form σn : Dn → Dn+1 for n ≥ 0. This is equivalent to saying that given (n + 1)-cells
A,B in X and an n-cylinder in X of the form C : s(A) y s(B) we can always extend C to
C ′ : Ay B, so that s(C ′) = C.

We start by composing C with A−1 on the top and B at the bottom, using Lemma 6.4, to
get a cylinder D def= BCA−1. Observe that, thanks to Lemma 6.5, there is an (n+1)-cylinder
Γ whose source is C and whose target is D. Moreover, thanks to the proof of the same
lemma, we see that Γ1 = B and Γ0 is homotopic to (A−1)−1. Therefore we can compose
Γ with an (n + 1)-cell χ in X witnessing the coherence constraint A ' (A−1)−1, to get an
(n+ 1)-cylinder ∆ def= Γχ that satisfies the desired properties.

We now prove that the map p0 : PX → UX is a trivial fibration, the other case being
entirely similar. This amounts to prove it lifts against all the maps of the form Sn−1 → Dn.
The case n = 0 is equivalent to proving that, for every given 0-cell x ∈ X0 we can find a
0-cylinder C : Cyl(D0)→ X, i.e. a 1-cell in X, such that its source is precisely x. A possible
solution is to take the trivial cylinder on x, i.e. x ◦C0.

If n = 1, we are given 1-cells C,D and γ, and we have to extend this to a 1-cylinder
Γ: γ y δ, whose source and target are, respectively, C and D. If we set δ = DγC−1

(the meaning of (·)−1 being the same as above) then we are left with providing a 2-cell
Γ: (DγC−1)C → Dγ, which surely exists thanks to the structure of G.

Now let n > 1, and assume we have a pair of parallel (n − 1)-cylinders (C,D) in X, i.e.
ε(C) = ε(D) for ε = s, t, together with an n-cell Γ: C0 → D0. Notice that, in particular,
we have that Cε and Dε are parallel for ε = 0, 1. These data transpose to give a pair of
parallel (n − 2)-cylinders (C̄, D̄) in X (s(Cs), t(Ct)). Moreover, we also get an (n − 1)-cell
CtΓ: C̄0 = Ct(C0)→ D̄0 = Ct(D0) in X (s(Cs), t(Ct)).

By inductive hypothesis we thus get an (n−1)-cylinder χ : CtΓ y ε. By construction, the
source (resp. target) of ε are of the form (C̄1)Cs (resp. (D̄1)Cs). Thanks to Lemma 6.2, we see
that there exists an (n− 1)-cell ∆: C̄1 → D̄1 and an n-cell ε→ ∆Cs in X (s(Cs), t(Ct)). We

40



can compose these data with χ using Lemma 6.4, getting an (n−1)-cylinder C̄ ′ : CtΓ y ∆Cs
in X (s(Cs), t(Cs)), which transposes to give the desired cylinder C ′ : Γ y ∆ in X, having C
as source and D as target. �

Since the division lemma is the only non-trivial obstruction to the generalization of the
previous result to the case of CW-models, we have the following corollary.

Corollary 6.7. Let C be a coherator for n-categories (with 0 ≤ n ≤ ∞) such that the
division lemma holds for CW-models. Then, for every CW-model X, we have that the map
pX = (p0, p1) : PX → X × X (resp. pi : PX → X for i = 0, 1) is a fibration (resp. trivial
fibration) of globular sets. In particular, thanks to Lemma 6.3, this holds for n ≤ 3.

The factorization of the codiagonal map:

D•qD• Cyl(D•)//
(ι0,ι1)

// Cyl(D•) D•
C•
//

induces, by applying the functor Mod(A)(•, X), a factorization of the diagonal map in
[Gop,Set] of the form

UX PX//
c
// PX U(X ×X) ∼= UX ×UX

p
// //

It seems unlikely that any sensible structure of A-model on the globular set PX will make
c into a (strict) map of A-models, and this is the reason for the choice of working with
semi-model structures.

Let us now endow PX with some algebraic structure. More precisely, we will show how
to endow it with a system of compositions if X is an n-category (i.e. if A is a coherator for
n-categories), and we will endow it with a system of identities and a system of inverses too
if A is a coherator for n-groupoids or is of the form CW. We refer the reader to Definition
2.21 for the concepts here involved.

To make this more precise, we consider Θ0[comp] in Definition 2.22, i.e. the globular
theory freely generated by a system of composition and a system of identities, and, similarly,
we consider Θ0[comp, id, inv], i.e. the free globular theory on a system of compositions,
identities and inverses. We want to construct an extension of the form:

Θ0 Mod(A)
Cyl
//Θ0

Θ0[comp, id, inv]
��

Θ0[comp, id, inv]

Mod(A)

Cyl

<<

if A admits inverses, and a similar extension with Θ0[comp] in place of Θ0[comp, id, inv]
if A is a coherator for n-categories. In turn, this is equivalent to defining interpretations
Cyl(f) for each of the generators f of Θ0[comp, id, inv] (or Θ0[comp] in the categorical
case), satisfying the appropriate equations.

Theorem 6.8. Let A be a coherator for n-categories, then the functor Cyl : Θ0 →
Mod(A) admits an extension to Θ0[comp]. If A admits inverses and the division lemma
(see Remark 6.2) holds for A-models, then it can be extended to Θ0[comp, id, inv].

Equivalently, given any A-model X, the globular set PX can be endowed with said systems
of structures.

41



We observe here that the techniques employed in the proof of this theorem do not seem
to provide (or at least not as easily as in this context) a system of identities in the case of
Grothendieck categories. One would need, in particular, a version of the division lemma for
invertible cells in Grothendieck categories.

The proof of Theorem 6.8 will be subdivided into several lemmas, the first one addressing
the system of compositions. In what follows, we will use the expression “the structure of the
globular sum A” to mean the relative lifting properties of A in A against boundary inclusions,
where A is a coherator for categories, as described in Section 3, or its contractibility in the
groupoidal case. Moreover, in all the proofs we argue representably, i.e. we assume given,
say, a pair of composable n-cylinders C,D : Cyl(Dn)→ X and we construct their composite
n-cylinder D ◦ C. These constructions are easily seen to be natural in maps of A-models
f : X → Y , so that we get the desired extension thanks to the Yoneda lemma.

Lemma 6.9. Let Θ0[comp] be the globular theory freely generated by a system of compo-
sitions. Then there exists an extension of the form:

Θ0 Mod(A)
Cyl
//Θ0

Θ0[comp]
��

Θ0[comp]

Mod(A)

Cyl

<<

Proof. We define this extension by induction. Firstly, we need to define Cyl(c1). Given
a pair of composable 1-cylinders C,C ′ inX, we denote PX(c1)(C,C ′) with C ′◦c1C, and define
the top cell (resp. bottom cell) of it to be C ′0 ◦ C0 (resp. C ′1 ◦ C1), composed using c1. We
then set (C ′◦c1C)s = Cs and (C ′◦c1C)t = C ′t and declare the 2-cell C ′ ◦c1 C (i.e. a 0-cylinder
in X (s(C0), t(C ′1))) to be the composite of:

C ′t(C ′0C0) (C ′tC ′0)C0
'
// (C ′tC ′0)C0 (C ′1C ′s)C0

C′C0
// (C ′1C ′s)C0 C ′1(C ′sC0)'

// C ′1(C ′sC0) C ′1(C1Cs)
C′1C
// C ′1(C1Cs) (C ′1C1)Cs

'
//

where we have used the fact that C ′s = Ct, and we have denoted instances of associativity of
composition of 1-cells with “'” and the effect of composing using c1 with juxtaposition.

Given n > 1, suppose we have defined Cyl(ck) for each k < n, and denote (F,G)◦Cyl(ck)
by G ◦ck F for each composable pair of k-cylinders in an A-model X. For every A-model
X and every pair of n-cylinders F,G : Cyl(Dn) → X such that t(f) = s(G), we define
G ◦cn F to be the following composite, obtained applying Lemma 6.4 to the following data
in X (sn(F0), tn(F1)):

Ft(G0F0)

(FtG0)(FtF0)

D1
��

(FtG0)(FtF0)

(G1Fs)(F1Fs)

G◦cn−1F

}}

(G1Fs)(F1Fs)

(G1F1)Fs

D2
��
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Here, D1 is an n-cell obtained by using the structure of the globular sum Dn q
Dn−1

Dn q
D0
D1,

and D2 is defined similarly. This assignment defines, by the Yoneda lemma, a map

Cyl(Dn)→ Cyl(Dn) q
Cyl(Dn−1)

Cyl(Dn)

which we take as the definition of Cyl(cn). We also have the following chain of equalities,
provided by the inductive hypothesis together with Lemma 6.4

s(G ◦cn F ) = s(G ◦cn F ) = s(G ◦cn−1 F ) = s(F ) = s(F )

and
(s(G ◦cn F ))ε = s(Fε)

for ε = s, t, which imply that s(G ◦cn F ) = s(F ), and a similar argument can be provided for
the target. �

Remark 6.10. It follows from Lemma 6.5 that if A admits inverses, then there exists an
n-cylinder TF,G in X (s(Fs), t(Gt)) such that s(TF,G) = G ◦cn F and t(TF,G) = G ◦cn−1 F .

We now address the problem of definining a system of identities.

Lemma 6.11. Let Θ0[comp, id] be the globular theory freely generated by a system of
compositions and identities. If A admits inverses and the division lemma holds for A-models
there exists an extension of the form:

Θ0 Mod(A)
Cyl
//Θ0

Θ0[comp, id]
��

Θ0[comp, id]

Mod(A)

Cyl

<<

Proof. We only need to define a system of identities. Firstly, set

Cyl(id0) = C1 : Cyl(D1)→ D1 = Cyl(D0)

as defined in (24). Let n > 1, and assume we have already defined Cyl(idk) for each k < n.
Given F : Cyl(Dk) → X, denote the (k + 1)-cylinder F ◦ Cyl(idk) by idk(F ). We have
to define, for every A-model X and every n-cylinder F : A y B in X, an (n + 1)-cylinder
idn(F ) : Cyl(Dn+1) → X. Define its transpose idn(F ) as the vertical composite of the
following diagram:

Ft1A

1FtA

C1
��

1FtA

1BFs

idn−1(F )
||

1BFs

1BFs

C2
��

Here, juxtaposition of cells indicates, as usual, the whiskering operations w introduced in
Definition 2.12, C1 and C2 are n-cells provided by the structure of the globular sums DnqD0
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D1 and D1 qD0 Dn respectively, and the composition operation is the one defined in Lemma
6.4.

Having defined identities and binary compositions, we can construct whiskering maps

∗k : Cyl(Dk)→ Cyl(Dk) q
Cyl(Dk−2)

Cyl(Dk−1)

k∗ : Cyl(Dk)→ Cyl(Dk−1) q
Cyl(Dk−2)

Cyl(Dk)

by setting
∗k = (1 q

Cyl(Dk−2)
Cyl(idk−1)) ◦Cyl(ck) (25)

and
k∗ = (Cyl(idk−1) q

Cyl(Dk−2)
1) ◦Cyl(ck) (26)

When no confusion arises, subscripts will be dropped.

Remark 6.12. Thanks to Lemma 6.5, if A admits inverses then for every k-cylinder F
in X, there exists a (k + 1)-cylinder λF such that:

s(λF ) = idk(F ) and t(λF ) = idk−1(F )

These identity cylinders satisfy the required properties thanks to Lemma 6.4, so we are
left with defining the action of Cyl on the maps ln, rn. We will only construct the ln’s, the
other case being similar. The construction of l2 reduces to definining a 2-cylinder Γ whose
source is C ◦c1 id0(s(C)) and whose target is C. We use the structure of A once to find a pair
of 2-cells Γ0 : C01s(C0) → C0, Γ1 : C11s(C1) → C1, and then again to choose a 3-cell between
the following composites:

Ct(C01s(C0)) CtC0
CtΓ0

// CtC0 C1Cs
C

//

Ct(C01s(C0)) (C11s(C1))Cs
C◦c1 id0(s(C))

// (C11s(C1))Cs C1Cs
Γ1Cs

//

In detail, this is obtained by finding a filler for the following pasting diagram (using the
structure of A and its relative lifting properties):

Ct(C01s(C0)) CtC0
CtΓ0

// CtC0 C1Cs
C

//Ct(C01s(C0))

(CtC0)1s(C0)

'
��

(CtC0)1s(C0) (C1Cs)1s(C0)
C1s(C0)

//(CtC0)1s(C0)

CtC0
'

88

(C1Cs)1s(C0)

C1Cs
'

??

(C1Cs)1s(C0) C1(Cs1s(C0))
'
// C1(Cs1s(C0))

C1(1t(Cs)Cs)

C1id0(s(C))

??
C1(1t(Cs)Cs)C1Cs

'
oo

Given an (n−1)-cylinder F : Ay B in X, we let α : A◦1s(A) → A be an instance of unitality
of composition in A, and thanks to the structure of Dn−1 qD0 D1 we get an n-cell E1 whose
source is Ftα and whose target is:

(ln−2(F ) ◦cn−1 ((F ∗ λs(F )) ◦cn−1 T1s(F ),F ))0
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where the notation we use was introduced in Remark 6.12 and 6.10, and in (25) and (26).
We observe that, by definition, this coincides with the composite:

Ft
(
A1s(A)

)
(FtA)

(
Ft1s(A)

)'
// (FtA)

(
Ft1s(A)

)
(FtA) (1FtA)'
// (FtA) (1FtA) FtA

'
//

where each one of the displayed cells is obtained by making use of the structure of A. Now,
we define ln−1(F ) to be the following composite:

Ftα

(ln−2(F ) ◦cn−1 (F ∗ λs(F )) ◦cn−1 T1s(F ),F )0

E1
��

(ln−2(F ) ◦cn−1 (F ∗ λs(F )) ◦cn−1 T1s(F ),F )0

(ln−2(F ) ◦cn−1 (F ∗ λs(F )) ◦cn−1 T1s(F ),F )1

(ln−2(F )◦cn−1 (F∗λs(F ))◦cn−1T1s(F ),F )
~~

(ln−2(F ) ◦cn−1 (F ∗ λs(F )) ◦cn−1 T1s(F ),F )1

α′Fs

E2
��

Here, α′ : B ◦ 1s(B) → B is another instance of unitality of composition in A. E2 is obtained
similarly to E1, and we compose the diagram using Lemma 6.4. �

We are now ready to conclude the proof of Theorem 6.8:

Proof. The only thing left to define is a system of inverses on PX under the appropriate
hypotheses, and again we do so by induction. Also, we interpret the left and the right inverse
in the same manner, as follows. Given an A-model X and a 1-cylinder F : A y B in X, we
define i1(F ) as the composite:

FsA
−1 B−1BFsA

−1// B−1BFsA
−1 B−1FtAA

−1B−1(F )−1A−1
// B−1FtAA

−1 B−1Ft//

where the unlabelled cells are obtained by making use of the structure of A and ()−1 is the
action of taking the inverse of a given cell, encoded by promoting the (left or right) inverse
operation of the globular theory A to a two-sided one.

As before, we can construct ks2,kt2 by hands, using the structure of A, which concludes
the proof of the base case.

To address the inductive step, assume given an n-cylinder F : A y B in X with n > 1.
We define in(F ) as the composite of the following diagram, obtained using Lemma 6.4:

FtA
−1

(FtA)−1

M1
��

(FtA)−1

(BFs)−1

in−1(F )
~~

(BFs)−1

B−1Fs

M2
��

45



Here, M1 and M2 are n-cells obtained thanks to the structure of A. Again, observe that
it follows from Lemma 6.5 that there exists a cylinder µF whose source is in(F ) and whose
target is in−1(F ).

We are now left with constructing kεn+1 for ε = s, t. The two cases being similar, we only
construct ksn+1. Let β : AA−1 → 1t(A) be an instance of a coherence constraint for inverses,
provided by the structure of A. The latter also provides a cell H1, whose source is Ftβ and
whose target is given by:

(((in(λF )) ◦cn (ksn−1(F )) ◦cn (µF ∗ F )) ◦cn (TF−1,F ))0

which by definition corresponds the following composite:

Ft(AA−1) (FtA)(FtA−1)
∼=
// (FtA)(FtA−1) (FtA)(FtA)−1∼=

// (FtA)(FtA)−1 1s(FtA)
∼=
// 1s(FtA) Ft1s(A)

∼=
//

Finally, we define lsn+1(F ) as the composite of the following diagram, using Lemma 6.4:

Ftβ

((in(λF )) ◦cn (ksn−1(F )) ◦cn (µF ∗ F ) ◦cn (TF−1,F ))0

H1
��

((in(λF )) ◦cn (ksn−1(F )) ◦cn (µF ∗ F ) ◦cn (TF−1,F ))0

((in(λF )) ◦cn (ksn−1(F )) ◦cn (µF ∗ F ) ◦cn (TF−1,F ))1

((in(λF ))◦cn (ksn−1(F ))◦cn (µF ∗F ))◦cn (TF−1,F )
~~

((in(λF )) ◦cn (ksn−1(F )) ◦cn (µF ∗ F ) ◦cn (TF−1,F ))1

γFs

H2
��

Here, γ : BB−1 → 1t(B) is an instance of a coherence constraint for inverses, and H2 is
obtained analogously to H1, both being provided by the structure of A. �

46



CHAPTER 7

Elementary interpretation of operations on cylinders

In this chapter we make use of the combinatorics of finite planar rooted trees to describe,
given a globular sum A, a zig-zag diagram of globular sums whose colimit is isomorphic
to Cyl(A). We then use this decomposition to construct, given a map % : Dn → A in a
coherator for categories C, a map %̂ : Cyl(Dn) → Cyl(A). We call this map the elementary
interpretation of % (under the functor Cyl), and we consider it an approximation, due to
its non-functoriality, of the map Cyl(%) that one needs to define in order to endow PX
with the structure of a Grothendieck ∞-category. More precisely, given composable maps
% : A→ B,ϕ : B → C in C, one has ϕ̂ ◦ % 6= ϕ̂ ◦ %̂ in general.

1. Globular decomposition of Cylinders on globular sums

The goal of this section is, given a globular sum A ∈ Θ0, to express Cyl(A) as the
colimit in Mod(A) of a zig-zag diagram in A, which will be explicitly described. Here, A is
a coherator of the kind considered so far.

1.1. Zig-zag diagrams. To begin with, we define zig-zags and record their basic prop-
erties.

Definition 7.1. Given a natural number n, define a category In as the one associated to
the poset ({(0, k) : 0 ≤ k ≤ n}∪{(1,m) : 0 ≤ m ≤ n−1},≺), where the relation is completely
described by (0, k) ≺ (1, k) ∀k ∈ {0, . . . , n− 1}

(0,m) ≺ (1,m− 1) ∀m ∈ {1, . . . , n}
Notice that, if k < n, there is a natural inclusion Ik → In.

Pictorially, In looks like

(0, 0)

(1, 0)
��

(0, 1)

(1, 0)
��

(0, 1)
��

(0, n− 1)

(1, n− 1)
��

(0, n− 1)
��

(0, n)

(1, n− 1)
��

. . .

. . .
(27)

We have two natural inclusions ∗ In
(0,0)=ι0

//∗ In
(0,n)=ιn

// for any positive natural number n, where ∗

denotes the terminal category.
In is the free-living zig-zag of length n, in a sense made precise by the following

Definition 7.2. A zig-zag of length n in a category C is a functor F : In → C . If
F (0, 0) = a and F (0, n) = b we write F : a b.

We can also define a partial binary operation on zig-zags, which satisfies an associativity
property and will be used in the next section.
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Definition 7.3. Define the category Im • In as the pushout

∗ In
ιn

//∗

Im

ι0

��

In

Im • In
��

Im Im • In//

Note that Im • In ∼= Im+n.
Given a pair of zig-zags F : In → C, G : Im → C such that F : a  b and G : b  c we

define
G • F : Im • In → C

as the unique functor making the following diagram commute

∗ In
ιn

//∗

Im

ι0

��

In

Im • In
��

Im Im • In// Im • In

C
∃!G•F ��

In

C

F





Im

C
G

55

(28)

Note that G • F : a c.

Obviously, this can be iterated to express In1+n2+...nk as an iterated pushout Ink • . . .•In1 .

Lemma 7.4. Concatenation of zig-zags is associative. More precisely, if we are given
F : a b, G : b c and H : c d then it holds true that

H • (G • F ) = (H •G) • F

Definition 7.5. Let C be a cocomplete category. Given a zig-zag F : In → C, we define
a zig-zag F̃ : I1 → C of length 1 by setting F̃ (0, 0) = F (0, 0), F̃ (0, 1) = F (0, n) and F̃ (1, 0) =
colimIn F , where the structural maps are given by the colimit inclusions.

Given integers ni for 1 ≤ i ≤ k, we let n =
∑k

1 ni. Given a zig-zag F : In ∼= Ink •. . .•In1 →
C, where the target is a cocomplete category, we can consider its restrictions Fi : Ini → C,
obtained as in Definition 7.3. The next result then holds true, thanks to the universal property
of colimits.

Lemma 7.6. In the situation just described, we have the following isomorphism in C:

colimIn F
∼= colimIk

(
F̃k • . . . • F̃1

)
1.2. Trees and globular sums. We now need an alternative way of representing glob-

ular sums. In [Ar1] this is done (following [Bat]) by associating to any given globular sum
A a finite planar rooted tree that uniquely represents it.

Definition 7.7. Consider the functor category Ordωfin, where ω is viewed as a poset with
respect to inclusion, and Ordfin is the category of finite linearly ordered sets.

The category T of finite planar rooted trees is the full subcategory of Ordωfin spanned by
the objects T such that T0 is the terminal object of Ordfin (i.e. the singleton with its unique
ordering) and there exists an n ∈ N such that Ti = ∅ for each i ≥ n.
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We call the elements of v(T ) =
⋃
k∈ω Tk vertices of T , and we say that a vertex x has

height m, denoted by ht(x) = m, if x ∈ Tm. Finally, we set ht(T ) = maxx∈v(T ) ht(x).

Explicitly, a finite planar roote tree T consists of a family of finite linearly ordered sets
(Ti,≤i)0≤i≤n for some n ∈ N, with T0 = {∗}, together with order-preserving maps ιTi : Ti+1 →
Ti.

Definition 7.8. Given n ≥ 0, a tree T and an element x ∈ Tn+1, we define the fiber of
x to be the set (ιTn )−1(ιTn (x)). Clearly, x belongs to such fiber.

Example 7.9. Consider the finite planar tree T given by T1 = {x1
1 < x1

2}, T2 = {x2
1} and

T3 = {x3
1 < x3

2 < x3
3}, whose only non trivial structural map T2 → T1 is given by x2

1 7→ x1
2.

Such a tree T can be depicted as

x0
1

x1
1 x1

2

x2
1

x3
1 x3

2 x3
3

Definition 7.10. Given a tree T , we can define a relation on the set of vertices v(T ) as
follows. Consider x 6= y ∈ v(T ), and set

x ≺ y ⇐⇒


ht(x) = ht(y) and y < x in Tht(x)

ht(x) < ht(y) and ιkT (y) ≤ x in Tht(x)

ht(x) > ht(y) and y < ιk
′
T x in Tht(y)

(29)

where k = ht(y)− ht(x) and k′ = ht(x)− ht(y), and ιkT : Tht(y) → Tht(x), ι
k′
T : Tht(x) → Tht(y)

are composite of the structural maps of T . Clearly, this defines a linear order on v(T ), which
can be described as depth-first, right-to-left ordering.

For instance, given the tree T of the previous example, the totally ordered set of its
vertices is given by

{x0
1 ≺ x1

2 ≺ x2
1 ≺ x3

3 ≺ x3
2 ≺ x3

1 ≺ x1
1}

The proof of the following lemma is straightforward.

Lemma 7.11. Maps of trees f : T → S preserve the order ≺.

We can associate a tree with every given globular sum A. To do so we need the following
definition.

Definition 7.12. Given a tree T and a vertex x ∈ T , we say that x is maximal (also
called a leaf) if (

ιTht(x)

)−1
(x) = ∅

Let {x1 ≺ x2 ≺ . . . ≺ xk} be the ordered set of maximal vertices of T . Let hi be the height
of the highest vertex y such that both xi and xi+1 belong to the fiber of (an iteration of) ιT

over y. hi is called the height of the region between xi and xi+1.

It is an easy exercise to prove the following result.
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Lemma 7.13. Finite planar rooted trees are in bijection with globular sums. More pre-
cisely, the bijection is given by the function that associates the table of dimensions(

i1 i2 . . . im−1 im

i′1 . . . i′m−1

)
with a given tree T , where ik is defined to be the height of the k-th maximal vertex xk of T,
and i′k is the height of the region between xk and xk+1.

Having this in mind, we will often blur the distinction between trees and globular sums.
For example, the globular sum (

2 2 1 2
1 0 0

)
can be represented, equivalently, as

•
����
DD

��

// • // •
%%

99�� • or

Example 7.14. Given a globular sum A ∈ Θ0, we have defined its suspension ΣA in
Chapter 5. It is very easy to define the tree TΣA in terms of TA, where we denote by TB the
tree associated with the globular sum B. In fact, suppose TA consists of the family of finite
linearly ordered sets (Ti,≤i)0≤i≤n for some natural number n. Then we define TΣA

1 = {∗}
and for every k > 1:

TΣA
k

def= TAk−1

Moreover, ιTΣA
k

def= ιT
A

k−1.
For instance, if we let A be the globular sum whose table of dimensions is(

2 2 1 2
1 0 0

)
then ΣA has table of dimensions given by(

3 3 2 3
2 1 1

)

Moreover, the tree TΣA can be depicted as

Remark 7.15. The decomposition given in Lemma 5.3 has a more geometric interpre-
tation in the language of trees. It corresponds to the elementary fact that any tree can be
realized as the glueing at the root of a family of trees all having a single edge at the bottom.
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It turns out that the cylinder on a given globular sum A has a quite simple description in
terms of trees. In fact, it is the colimit of a suitable zig-zag diagram of globes Cyl(A) : InA →
Mod(A), for an integer nA that will be defined in what follows. More precisely, this diagram
is the composite of a diagram InA → A followed by the Yoneda embedding.

To begin with, we want to list the globular sums {Cyl(A)(1, k)}0≤k≤nA−1, i.e. those
appearing on the bottom row (see (27)) of the zig-zag diagram associated with Cyl(A).
These are obtained by considering nA − 1 copies of the tree associated with A, and adding
to each of these a single new branch, following the procedure we now describe. We start by
sticking it at the bottom right and then we traverse the tree going upward and to the left,
counterclockwise.

For example, for A = D2 qD0 D1, whose associated tree is

one gets the trees:

(30)

On the other hand, the upper row is constant on A, i.e.

Cyl(A)(0, k) = A ∀ 0 ≤ k ≤ nA

Let us now formalize what we have said so far.

Definition 7.16. Given a tree T of height n, seen as a family of linearly ordered sets
(Ti)0≤i≤n together with compatible maps ιk : Tk+1 → Tk, we define a set of trees L (A) by
considering all the trees obtained from A by adjoining a single edge.

Formally, this means that we consider all possible trees B such that there exists a unique
1 ≤ k ≤ n+ 1 such that Bk = Ak ∪ {∗B} and Bi = Ai for each i 6= k, in such a way that the
obvious map A→ B is a map of trees.

Note that, by construction, for every B in L (A) there is a natural inclusion of trees
χAB : A→ B. We now define a relation on the set L (A) introduced in Definition 7.16.

Definition 7.17. Given B 6= C in L (A), set B l C if and only if there exists an x ∈ A
such that ∗B ≺B x ≺C ∗C , where the subscripts denote in which tree we are considering the
ordering ≺.

Lemma 7.18. Given a globular sum A, the relation on L (A) just defined is a linear order.

Proof. The only non-trivial thing to check is transitivity. If BlC lD then there exist
x, y in A with ∗B ≺B x ≺C ∗C and ∗C ≺C y ≺D ∗D. Then x (or y) is a witness for the
relation B lD. �

Lemma 7.19. Given a tree T and an n-tuple of vertices (v1, . . . , vn) of T (ordered from
left to right) such that every leaf of T belongs to the tree Ci above vi for some i, and the Ci’s
are disjoint, we have the following isomorphism

T ∼= Σm1C1 q
Dh1

Σm2C2 q
Dh2

. . . q
Dhn−1

ΣmnCn
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where mi = ht(vi), hi is the height of the region between vi and vi+1 and the maps are the
obvious maps in Θ0 that there are between those objects.

Proof. We argue by induction on the total number m of vertices of the tree T . As-
sume vi 6= T (0), i.e. the root, in which case there is nothing to prove. Decompose T as
ΣT1 q

D0
. . . q

D0
ΣTk, as in Remark 7.15. If k > 1 then we can divide and reorder (if needed)

the set of vertices {vi}1≤i≤n as {vj}1≤j≤r ∪{vq}r+1≤q≤n, so that the elements of {vq}r+1≤q≤n

are precisely those vi’s that belong to ΣTk. Therefore, because hr = 0 by construction, the
statement about the decomposition of the tree T holds true since we can apply the induc-
tive hypothesis to the trees ΣT1 q

D0
. . . q

D0
ΣTk−1 and ΣTk, which have strictly fewer than m

vertices.
If instead k = 1, then T = ΣT ′ and all the vi’s belong to T ′. Now, the result follows by

induction, since T ′ has m− 1 vertices. �

In what follows we assumeA is a globular sum, decomposed asA ∼= Σα1 q
D0

Σα2 q
D0
. . . q

D0
Σαq,

and we define the maps in the zig-zag diagram associated with Cyl(A).

Definition 7.20. Consider a globular sum B ∈ L (A). We define a map zAB : A → B

as follows. Suppose B is obtained by adjoining a new vertex ∗B to A, and let m = ht(∗B).
Observe that if m > 1 then ∗B is necessarily adjoined to a unique Σαi. Denote the fiber of
∗B, defined in Definition 7.8, with F . We now have different possible cases, and in each of
these the map zAB will be defined by making use of Lemma 7.19 and the universal property
of pushouts, i.e. we will specify the tuple of vertices vi’s and the maps on each factor ΣmiCi.

(1) If ∗B = minF and F 6= {∗B}, then we choose as vi’s the vertex x together with all the
maximal vertices of A except for those over x, and we order them from left to right.
zAB ∈ Θ0 is then defined as the unique map obtained by considering the identity on
all the factors not associated with x and the unique map ΣmC → Dm+1 q

Dm
ΣmC in

Θ0 on the x-factor.
(2) If ∗B = minF and F = {∗B} then zAB is defined analogously to the previous case

except on the factor associated with the vertex x it is given by τ : Dm → Dm+1,
where m = ht(x).

(3) If ∗B 6= minF , let y ∈ F be the predecessor of ∗B in F , and let C be the subtree of
B over y. Then we apply Lemma 7.19 to the tree associated with A and the set of
vertices {v1, . . . , vn, y} where the vi’s are all the leaves which do not lie above y. This
allows us to define the map zAB by imposing it to be Σm(Cw) : ΣmC → ΣmC q

Dm
Dm+1

(as in Definition 2.12) on ΣmC and the identity on all the other factors.

Dually, we define a map vAB : A→ B by cases:

(1) If ∗B = maxF and F 6= {∗B}, then we choose as vi’s the vertex x together with all
the maximal vertices of A except for those over x, and we order them from left to
right. zAB ∈ Θ0 is then defined as the unique map obtained by considering the identity
on all the factors not associated with x and the unique map ΣmC → ΣmC q

Dm
Dm+1

in Θ0 on the x-factor.
(2) If ∗B = maxF and F = {∗B} then zAB is defined analogously except on the factor

associated with the vertex x it is given by σ : Dm → Dm+1, where m = ht(x).
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(3) If ∗B 6= maxF , let y ∈ F be the successor of ∗B in F , and let C be the subtree of
B over y. Then we apply Lemma 7.19 to the tree associated with A and the set of
vertices {v1, . . . , vn, y} where the vi’s are all the leaves which do not lie above y. This
allows us to define the map zAB by imposing it to be Σm(wC) : ΣmC → Dm+1 q

Dm
ΣmC

(as in Definition 2.12) on ΣmC and the identity on all the other factors.

We are now ready to give the following definition

Definition 7.21. Given a globular sum A, let L (A) = {A1 l A2 l . . . l Am}, so that
m = |L (A)|. We define a functor Cyl(A) : Im →∞-Gpd by setting:

• Cyl(A)(0, k) = A for every 0 ≤ k ≤ n.
• Cyl(A)(1, q) = Aq+1 for every 0 ≤ q ≤ |L (A)| − 1.
• Cyl(A) ((0, r)→ (1, r − 1)) = zAAr−1

.
• Cyl(A) ((0, r)→ (1, r)) = vAAr .

A

A1
vAA1

##

A

. . .##

A

A1
zAA1

{{

A

. . .{{

A

Am
vAAm

##

A

Am
zAAm

{{

Using the trees listed in (30), we can write down the full zig-zag diagram corresponding
to Cyl(D2 qD0 D1), see Figure 1.

We will now prove that the colimit of the zig-zag diagram associated with a globular sum
A we have just defined is precisely Cyl(A). To do so we need two preliminary lemmas, which
we now present.

Lemma 7.22. Cyl(ΣB) can be expressed as the colimit of the following diagram

ΣB

ΣB q
D0
D1

ι

##

ΣB

ΣCyl(B)

Σ(ι0)

##

ΣB

ΣB q
D0
D1

ΣBw

{{

ΣB

ΣCyl(B)

Σ(ι1)

{{

ΣB

D1 q
D0

ΣB

wΣB

##

ΣB

D1 q
D0

ΣB

ι

{{ (32)

Proof. As we let B vary in Θ0, we see that the colimit of the zig-zag in the statement
defines a globular functor Θ0 →Mod(A), which coincides with Cyl(ΣD•) on G. Therefore,
there exists a natural isomorphism as stated thanks to the universal property of Θ0. �

Lemma 7.23. Given a category with pushouts C and a diagram in it of the form

C

A
��

C

B
��

A

A′
��

B

B′
��

we get a pushout square
Aq
C
B Aq

C
B′//Aq

C
B

A′q
C
B
��

Aq
C
B′

A′q
C
B′
��

A′q
C
B A′q

C
B′//
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Figure 1. Zig-zag diagram corresponding to Cyl(D2 q
D0
D1)

D2 q
D0
D1 q

D0
D1

D2 q
D0
D1

D2 q
D0
D2

D2 q
D0
D1

D2 q
D0
D1 q

D0
D1

D2 q
D0
D1

D2 q
D1
D2 q

D0
D1

D2 q
D0
D1

D3 q
D0
D1

D2 q
D0
D1

D2 q
D1
D2 q

D0
D1

D2 q
D0
D1

D1 q
D0
D2 q

D0
D1

1qw

1qσ

1q τ

1qw

wq 1

(i0, i2)

wq 1

σq 1

τ q 1

wq 1

(i1, i2)

wq 1

(31)

Proposition 7.24. Given a globular sum A, there exists a natural isomorphism in
Mod(A):

colimI|L (A)| Cyl(A) ∼= Cyl(A)

Proof. In what follows, ι will denote a colimit inclusion, unless otherwise stated.
We make use of the (unique) decomposition of globular sums described in Lemma 5.3,

which gives:
A ∼= Σα1 q

D0
Σα2 q

D0
. . . q

D0
Σαq
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and we inductively assume the result holds for the αi’s.
By globularity of the cylinder functor, we have the isomorphism:

Cyl(A) ∼= Cyl(Σα1) q
Cyl(D0)

Cyl(Σα2) q
Cyl(D0)

. . . q
Cyl(D0)

Cyl(Σαq)

We can break the ordered set L (A) into subintervals by taking into consideration the globular
sums Ai for which the new edge is joined at the root. More precisely, let 1,m1, . . . ,mk,mk+1 =
|L (A)| be the ordered sequence of integers such that Ami is obtained from A by adding a
new vertex at height 1. We then have:

L (A) = {A1} ∪ {A2, . . . , Am1−1} ∪ {Am1} ∪ . . . ∪ {Amk} ∪ {Amk+1, . . . Amk+1−1} ∪ {Amk+1}

and a corresponding isomorphism:

I|L (A)| ∼= I1 • Imk+1−mk−1 • I1 • . . . • Im1−2 • I1

This, in turn, induces an isomorphism of diagrams:

Cyl(A) ∼= Amk+1 •Cyl(A)′k+1 •Amk−1 •Cyl(A)′k−1 • . . . •Cyl(A)′1 •A1

where we define Cyl(A)′i = Cyl(A)|I(mi−1)−(mi−1+1)+1 , and A1,Ami are zig-zags of length 1
which we now describe. By definition, Ami(1, 0) = Ami , and one has that Ami ((0, 0)→ (1, 0))
is given by:

1 q
D0
wΣ(αi) qD0

1: Σ(α1) q
D0
. . . q

D0
Σ(αk)→ Σ(α1) q

D0
. . . q

D0

(
D1 q

D0
Σ(αi)

)
q
D0
. . . q

D0
Σ(αk) q

D0
D1

if i 6= k + 1.
On the other hand, we have that Ami ((0, 1)→ (1, 0)) coincides with

1 q
D0

Σ(αk−i+1)w q
D0

1: Σ(α1) q
D0
. . . q

D0
Σ(αk)→ Σ(α1) q

D0
. . . q

D0

(
Σ(αk−i+1) q

D0
D1

)
q
D0
. . . q

D0
Σ(αk)

A1 ((0, 0)→ (1, 0)) is the map

ι : Σ(α1) q
D0
. . . q

D0
Σ(αk)→ Σ(α1) q

D0
. . . q

D0
Σ(αk) q

D0
D1

and A1 ((0, 1)→ (1, 0)) is given by

1 q
D0

Σ(αk)w : Σ(α1) q
D0
. . . q

D0
Σ(αk)→ Σ(α1) q

D0
. . . q

D0

(
Σ(αk) q

D0
D1

)
Finally, Amk+1 ((0, 0)→ (1, 0)) coincides with

wΣ(α1) q
D0

1: Σ(α1) q
D0
. . . q

D0
Σ(αk)→

(
D1 q

D0
Σ(α1)

)
q
D0
. . . q

D0
Σ(αk)

and Amk+1 ((0, 1)→ (1, 0)) is the map

ι : Σ(α1) q
D0
. . . q

D0
Σ(αk)→ D1 q

D0
Σ(α1) q

D0
. . . q

D0
Σ(αk)

We now want to show that

colimII(mi−1)−(mi−1+1)+1
Cyl(A)′i ∼= Σ(α1) q

D0
. . . q

D0
Σ(αi−1) q

D0
ΣCyl(αi) q

D0
Σ(αi+1) q

D0
. . . q

D0
Σ(αk)

(33)
Firstly, notice that the interval {Ami−1+1, . . . , Ami−1} is linearly isomorphic to Σ(L (αi)), i.e.
the image of the set L (αi) under the object-part function of the functor Σ.
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By inspection of the maps zAB and vAB of Definition 7.20, we see that the diagram Cyl(A)′i
coincides with

Σ(α1) q
D0
. . . q

D0
Σ(αi−1) q

D0
Σ ◦Cyl(αi) q

D0
Σ(αi+1) q

D0
. . . q

D0
Σ(αk)

Thus, using Remark 5.1, we see that (33) holds by inductive hypothesis. Thus, thanks to
Lemma 7.6, the colimit of the diagram Cyl(A) coincides with the colimit of the zig-zag on
the left-hand side below, where q denotes the operation q

D0
. A further application of Lemma

7.6 and Lemma 7.22 proves that this last colimit is in turn isomorphic to the colimit of the
right-hand side zig-zag below.

A

Σ(α1) q
D0
. . . q

D0
Σ(αk) q

D0
D1

ι

##

A

Σ(α1) q
D0
. . . q

D0
Σ(αk) q

D0
D1

1qΣ(αk)w

;;

A

Σ(α1) q
D0
. . . q

D0
Σ (Cyl(αk))

1qΣ(ι0)

��

A

Σ(α1) q
D0
. . . q

D0
Σ (Cyl(αk))

1qΣ(ι1)

;;

A

. . .##

A

. . .
;;

A

Σ (Cyl(α1)) q
D0
. . . q

D0
Σ(αk)

Σ(ι0)q 1

##

A

Σ (Cyl(α1)) q
D0
. . . q

D0
Σ(αk)

Σ(ι1)q 1

;;

A

D1 q
D0

Σ(α1) q
D0
. . . q

D0
Σ(αk)

wΣ(α1) q 1

##

A

D1 q
D0

Σ(α1) q
D0
. . . q

D0
Σ(αk)

ι ;;

A

Σ(α1) q
D0
. . . q

D0
Cyl (Σ(αk))

1q ι0

##

A

Σ(α1) q
D0
. . . q

D0
Cyl (Σ(αk))

1q(i◦wΣ(αk))

;;

A

. . .##

A

. . .
;;

A

Cyl (Σ(α1)) q
D0
. . . q

D0
Σ(αk)

(i◦Σ(α1)w)q 1

##

A

Cyl (Σ(α1)) q
D0
. . . q

D0
Σ(αk)

ι1 q 1

;;

To finish the proof we now apply Lemma 7.23 (k − 1) times to diagrams of the form:

D1

Σ(α1) q
D0
. . . q

D0

(
Σ(αi) q

D0
D1

)
q
D0
. . . q

D0
Σ(αk)

ss

D1

Σ(α1) q
D0
. . . q

D0

(
D1 q

D0
Σ(αi+1)

)
q
D0
. . . q

D0
Σ(αk)

++

Σ(α1) q
D0
. . . q

D0

(
Σ(αi) q

D0
D1

)
q
D0
. . . q

D0
Σ(αk)

Σ(α1) q
D0
. . . q

D0
Cyl (Σ(αi)) q

D0
. . . q

D0
Σ(αk)

��

Σ(α1) q
D0
. . . q

D0

(
D1 q

D0
Σ(αi+1)

)
q
D0
. . . q

D0
Σ(αk)

Σ(α1) q
D0
. . . q

D0
Cyl (Σ(αi+1)) q

D0
. . . q

D0
Σ(αk)

��

�

Given B ∈ L (A), we denote by iB : B → Cyl(A) the colimit inclusion.
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Remark 7.25. If we consider the globular sum A as in the previous theorem, thenD1 q
D0
A

and A q
D0
D1 both belongs to L (A) by construction. It is clear from the proof of the previous

theorem that the colimit inclusion iD1 q
D0

A : D1 q
D0
A → Cyl(A) is given by (Cyl(σht(A)), ι1).

In a completely analogous manner, iA q
D0

D1 : A q
D0
D1 → Cyl(A) is equal to (ι0,Cyl(τht(A))).

If the globular sum A decomposes as A = S q
D0
T then S q

D0
D1 q

D0
T belongs to L (A), and

the colimit inclusion

iS q
D0

D1 q
D0

T : S q
D0
D1 q

D0
T → Cyl(A) ∼= Cyl(S) q

Cyl(D0)
Cyl(T )

is given, on each summand respectively, by the composites:

S Cyl(S)
ι0
// Cyl(S) Cyl(S) q

Cyl(D0)
Cyl(T )i

//

D1 ∼= Cyl(D0) Cyl(S) q
Cyl(D0)

Cyl(T )i
//

T Cyl(T )
ι1
// Cyl(T ) Cyl(S) q

Cyl(D0)
Cyl(T )i

//

where we denote with i the obvious colimit inclusions.
Finally, observe that if B ∈ L (A) and the new edge is attached at height m > 0, say to

Σ(αi), then the colimit inclusion iB : B → Cyl(A) factors through the natural map:

Σ(α1) q
D0
. . . q

D0
ΣCyl(αi) q

D0
. . . q

D0
Σ(αk)→ Cyl(A)

whose existence is evident from the proof we have just presented, via the map:

1 q
D0

Σ(iB′) q
D0

1: B ∼= Σ(α1) q
D0
. . . q

D0
ΣB′ q

D0
. . . q

D0
Σ(αk)→ Σ(α1) q

D0
. . . q

D0
ΣCyl(αi) q

D0
. . . q

D0
Σ(αk)

for a unique B′ ∈ L (αi).

2. Operations on cylinders (overview)

Consider the globular sum preserving functor

Cyl(•) : Θ0 →Mod(A) (34)

of which we have just given a more explicit definition. Constructing an extension of this func-
tor to a cocontinuous endofunctor on Mod(A) amounts to endowing (34) with the structure
of a co-A-model in Mod(A).

This means that we have to find an extension of the form:

Θ0 Mod(A)
Cyl(•)

//Θ0

A
��

A

Mod(A)

Cyl(•)

99 (35)

Thanks to the cellularity of A and to Lemma 2.9, this becomes an inductive process, where
we assume we have an operation % : Dn → A in A, as well as interpretations of its boundary

Cyl(% ◦ σ),Cyl(% ◦ τ) : Cyl(Dn−1)→ Cyl(A)
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and we need to define a map Cyl(%) : Cyl(Dn)→ Cyl(A) such that for ε = σ, τ :

Cyl(%) ◦Cyl(ε) = Cyl(% ◦ ε) : Cyl(Dn−1)→ Cyl(A)

Given the fact that we have explained how to decompose of cylinders on globular sums into
simpler pieces, we may try to use this fact to build maps representing a first approximation
of these operations between cylinders.

In fact, we construct these first approximations only for categorical operations % : Dn → A.
More precisely, we assume that C is a (homogeneous) coherator for∞-categories: for instance
if A is such then we can assume C = A, otherwise we have to consider a different coherator.
Moreover, we will implicitly assume that a map C→ A has been chosen once and for all (its
existence is ensured by cellularity of C and the fact that, without loss of generality, either
C = A, A = CW or A is a coherator for ∞-groupoids and therefore it is contractible), and we
identify maps in the domain with their image in the codomain. By doing so we manage to
define in Definition 7.42, for every operation % : Dn → A in C, a map of A-models

%̂ : Cyl(Dn)→ Cyl(A)

satisfying two properties, that can be expressed in the following commutative diagrams:

DnqDn AqA
%q %

//

Cyl(Dn) Cyl(A)
%̂
//

AqA

Cyl(A)

ι0 q ι1

��

DnqDn

Cyl(Dn)

ι0 q ι1

��

Cyl(Sn−1) Cyl(A)
(̂%◦σ,̂%◦τ)

//Cyl(Sn−1)

Cyl(Dn)
��

Cyl(Dn)

Cyl(A)

%̂

77

(36)

This map is to be thought of as a first approximation of the “correct” functorial interpretation
Cyl(%). To remedy its non-functoriality (i.e. the fact that for composable operations % : A→
B,ϕ : B → C one has, in general, ϕ̂ ◦ % 6= ϕ̂ ◦ %̂) and get a map Cyl(•) : C→Mod(A) it has
to be inductively modified. We will consider an instance of this process in Chapter 8, where
we extend Cyl to a functor Cyl : CW

3 →Mod(CW
3 ) (C3 being a coherator for 3-categories).

One then has to generalize the process outlined in said chapter to all higher dimensions in
order to render these interpretations functorial, thus succeeding in extending Cyl to C.

The idea to obtain the map %̂ is to construct a vertical stack of (n − 1)-dimensional
(possibly degenerate) cylinders in the A-model Cyl(A)(x0, xm) for an appropriate pair of
0-cells (x0, xm) in Cyl(A). We then compose this vertical stack using a vertical composition
operation, and the result is an (n− 1)-cylinder in the space of paths Cyl(A)(x0, xm), which,
by construction, transposes to give the desired map:

%̂ : Cyl(Dn)→ Cyl(A)

3. Vertical composition of cylinders

The goal of this section is to define an operation that performs the vertical composition of
an m-tuple of compatible n-cylinders. This operation takes as input a sequence of n-cylinders
Fi : Ai y Ai+1 in an ∞-groupoid X, and produces an n-cylinder denoted by:

Fm ⊗ Fm−1 ⊗ . . .⊗ F1 : A1 y Am+1
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It is represented by a map:

Cyl(Dn) Cyl(Dn)⊗ . . .⊗Cyl(Dn)//

where the codomain is defined to be the colimit of the following diagram:

Dn

Cyl(Dn)

ι1

__

Dn

Cyl(Dn)

ι0

??

Dn

Cyl(Dn)

ι1

__

Dn

. . .

ι0

??

Dn

. . .

ι1

__

Dn

Cyl(Dn)

ι0

??

Moreover, it will have the property that:

ε(Fm ⊗ Fm−1 ⊗ . . .⊗ F1) = ε(Fm)⊗ ε(Fm−1)⊗ . . .⊗ ε(F1) (37)

for ε = s, t.
To begin with, we have to do some preliminary work, constructing some morphisms in

Mod(A)G, by extending suitable maps into globular sums. The solution to these extension
problems will produce cylinders that represent coherent rebracketings of certain composites
of globular pasting diagrams in a given A-model.

For example, given an A-model X and a map (f, α, g) : D1qD0 D2qD0 D1 → X, that can
be represented as the following pasting diagram labelled by cells of X:

•
f
// •

h
%%

k

99�� α •
g
// •

we can consider two ways of composing this pasting diagram, namely (gα)f and g(αf), where
binary composition may be interpreted, for instance, using the maps D2w,wD2 . In general
these two cells will differ, and also their boundary will, being given respectively by the pairs
of parallel 1-cells ((gh)f, (gk)f) and (g(hf), g(kf)). Therefore, a comparison between the two
2-cells cannot be encoded by a 3-cell, but rather by a 2-cylinder whose boundary consists of
a pair of 1-cylinders encoding a comparison between the (possibly) different 1-cells we have
just described.

To obtain these cylinders in general, given m ≥ 0, we consider the following map in AG

ΣmD• q
Sm−1

ΣmD• ΣmCyl(D•)
Σm(ι)

//

This map belongs to IG, thanks to Remark 5.1 and Lemma 3.14.
In what follows, we assume we have chosen composition operations γ : Dn → D⊗m1 q

D0
Dn q

D0
D⊗k1

for k,m, n > 0, which are compatible with the source and target maps, i.e.

γ ◦ ε =
(

1D⊗m1
q
D0
ε q
D0

1D⊗k1

)
◦ γ

There is no risk of confusion in referring to all such maps as γ, because the codomain uniquely
determines such γ.

Definition 7.26. Given q,m, k ≥ 0, we consider the following coglobular objects in
Mod(A):

D⊗m1 q
D0

ΣD• q
D0
D⊗k1

59



and
D⊗q1 q

D0
Dm q

Dm−1
ΣmD• q

D0
D⊗k1

where the structural maps the obvious ones.
For m, k 6= 0 define maps:

ΣD• q
S0

ΣD• D⊗m1 q
D0

ΣD• q
D0
D⊗k1

ψm,k
//

by setting the first component in dimension n to be given by the composite:

Dn+1 D⊗m−1
1 q

D0
Dn+1 q

D0
D⊗k1

γ
// D⊗m−1

1 q
D0
Dn+1 q

D0
D⊗k1 D⊗m1 q

D0
Dn+1 q

D0
D⊗k1

1
D⊗m−1

1
qwq 1

D⊗k1
//

and the second one to be:

Dn+1 D⊗m1 q
D0
Dn+1 q

D0
D⊗k−1

1
γ
// D⊗m1 q

D0
Dn+1 q

D0
D⊗k−1

1 D⊗m1 q
D0
Dn+1 q

D0
D⊗k1

1
D⊗m1

qwq 1
D⊗k−1

1
//

This means that given an A-model X and a map

(f1, . . . , fm, α, g1, . . . , gk) : D⊗m1 q
D0
Dn+1 q

D0
D⊗k1 → X

we get a pair of (n+1)-cells inX of the form gk . . . g1(αfm)fm−1 . . . f1 and gk . . . g2(g1α)fmfm−1 . . . f1,
where juxtaposition is the result of composition using the appropriate γ or w.

If m = 0 and k 6= 0 define:

ΣD• q
S0

ΣD• ΣD• q
D0
D⊗k1

ψ0,k
//

by setting the first component in dimension n to be given by the composite:

Dn+1 Dn+1 q
D0
D1

w
// Dn+1 q

D0
D1 Dn+1 q

D0
D⊗k1

1Dn+1 qD0
γ

//

and the second one to be:

Dn+1 Dn+1 q
D0
D⊗k−1

1
γ
// Dn+1 q

D0
D⊗k−1

1 Dn+1 q
D0
D⊗k1

wq 1
D⊗k−1

1
//

This means that given an A-model X and a map:

(α, g1, . . . , gk) : Dn+1 q
D0
D⊗k1 → X

we get a pair of (n+ 1)-cells in X of the form (gk . . . g1)α and gk . . . g2(g1α), where juxtapo-
sition is the result of composition using the appropriate γ or w, as described above. Finally,
if k = 0 and m 6= 0 define:

ΣD• q
S0

ΣD• D⊗m1 q
D0

ΣD•
ψm,0

//

by setting the first component in dimension n to be given by the composite:

Dn+1 D1 q
D0
Dn+1

w
// D1 q

D0
Dn+1 D⊗m1 q

D0
Dn+1

γ q
D0

1Dn+1
//
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and the second one to be:

Dn+1 D⊗m−1
1 q

D0
Dn+1

γ
// D⊗m−1

1 q
D0
Dn+1 D⊗m1 q

D0
Dn+1

1
D⊗m−1

1
q
D0

w

//

This means that given an A-model X and a map:

(f1, . . . , fm, α) : D⊗m1 q
D0
Dn+1 → X

we get a pair of (n+ 1)-cells in X of the form α(fmfm−1 . . . f1) and (αfm)fm−1 . . . f1, where
juxtaposition is the result of composition using the appropriate γ or w as described above.

For m ≥ 1 also define:

ΣmD• q
Sm−1

ΣmD• D⊗q1 q
D0
Dm+1 q

Dm
ΣmD• q

D0
D⊗k1

ϕq,m,k
//

where the first component is given by the central composite in

Dn+m Dm+1 q
Dm

Dn+m
Σm(w)

// Dm+1 q
Dm

Dn+m D⊗q1 q
D0
Dm+1 q

Dm
Dn+m q

D0
D⊗k1

f
//

Dm+1

Dm+1 q
Dm

Dn+m

i
%%

Dm+1 D⊗q1 q
D0
Dm+1 q

D0
D⊗k1

γ
// D⊗q1 q

D0
Dm+1 q

D0
D⊗k1

D⊗q1 q
D0
Dm+1 q

Dm
Dn+m q

D0
D⊗k1

i

''

Dn+m

Dm+1 q
Dm

Dn+m

i

99

Dn+m D⊗q1 q
D0
Dn+m q

D0
D⊗k1

γ
// D⊗q1 q

D0
Dn+m q

D0
D⊗k1

D⊗q1 q
D0
Dm+1 q

Dm
Dn+m q

D0
D⊗k1

i

77

where, with a minor abuse of language, we let i denote the various colimit inclusions and f
the map induced by the universal property of colimits.

The second component is given by:

Dn+m D⊗q1 q
D0
Dn+m q

D0
D⊗k1

γ
// D⊗q1 q

D0
Dn+m q

D0
D⊗k1 D⊗q1 q

D0
Dm+1 q

Dm
Dn+m q

D0
D⊗k1

1 q
D0

Σm(w) q
D0

D1

//

This means that, given a map:

(f1, . . . , fq, α, β, g1, . . . , gk) : D⊗q1 q
D0
Dm+1 q

Dm
Dn+m q

D0
D⊗k1 → X

we get a pair of (n+m)-cells (gk . . . g1βfq . . . f1)(gk . . . g1αfq . . . f1) and gk . . . g1(βα)fq . . . f1,
where juxtaposition stands for the result of composing those cells using the appropriate
operations described above. Notice that both these (n+m)-cells can be interpreted as n-cells
in Ωm(X,ϕ) for appropriate choices of ϕ : Sm−1 → X.

Similarly to ϕq,m,k, we define a map:

ΣmD• q
Sm−1

ΣmD• D⊗q1 q
D0

ΣmD• q
Dm

Dm+1 q
D0
D⊗k1

ϑq,m,k
//

with a completely analogous definition on both components. This time, given a map:

(f1, . . . , fq, α, β, g1, . . . , gk) : D⊗q1 q
D0

ΣmD• q
Dm

Dm+1 q
D0
D⊗k1 → X

61



we get back a pair of (n+m)-cells gk . . . g1(βα)fq . . . f1 and (gk . . . g1βfq . . . f1)(gk . . . g1αfq . . . f1),
where juxtaposition stands for the result of composing those cells using the appropriate op-
erations described above. Again, both of these (n+m)-cells can be interpreted as n-cells in
Ωm(X,ϕ) for appropriate choices of ϕ : Sm → X.

Let us now define maps Ψm,k, Φm,k and Θq,m,k by constructing fillers as follows. Their
existence is ensured by contractibility of globular sums in case A is a coherator for ∞-
groupoids, by the results of Section 3 of Chapter 2 if A is a coherator for ∞-categories and
by applying these results and the free functor F : Mod(C) → Mod(CW) in case A ∼= CW.
The extension problems we consider are the ones depicted below:

ΣD• q
S0

ΣD• D⊗m1 q
D0

ΣD• q
D0
D⊗k1

ψm,k
//ΣD• q

S0
ΣD•

ΣCyl(D•)

Σ(ι)
��

ΣCyl(D•)

D⊗m1 q
D0

ΣD• q
D0
D⊗k1

Ψm,k

66

ΣmD• q
Sm−1

ΣmD• D⊗q1 q
D0
Dm+1 q

Dm
ΣmD• q

D0
D⊗k1

ϕq,m,k
//ΣmD• q

Sm−1
ΣmD•

ΣmCyl(D•)

Σm(ι)
��

ΣmCyl(D•)

D⊗q1 q
D0
Dm+1 q

Dm
ΣmD• q

D0
D⊗k1

Φm,k

55

ΣmD• q
Sm−1

ΣmD• D⊗q1 q
D0

ΣmD• q
Dm

Dm+1 q
D0
D⊗k1

ϑq,m,k
//ΣmD• q

Sm−1
ΣmD•

ΣmCyl(D•)

Σm(ι)
��

ΣmCyl(D•)

D⊗q1 q
D0

ΣmD• q
Dm

Dm+1 q
D0
D⊗k1

Θq,m,k

55

(38)

For example, this means that given a map:

(f1, . . . , fm, α, g1, . . . , gk) : D⊗m1 q
D0
Dn+1 q

D0
D⊗k1 → X

we get an n-cylinder in Ω(X, s(F1), t(gk)) of the form:

Ψm,k(f1, . . . , fm, α, g1, . . . , gk) : gk . . . g1(αfm)fm−1 . . . f1 y gk . . . g2(g1α)fmfm−1 . . . f1

and similarly for the other cases.
We are now ready to define vertical composition of cylinders. We define this recursively

on n, simultaneously with an operation which, given:
m ≥ 0, g : Sm → X, g|S0 = (b, c) and an n-cylinder F : Ay B in Ωm+1(X, g),

1-cells hi : bi → bi+1 in X, 1 ≤ i ≤ q, bq+1 = b

1-cells fj : cj → cj+1 in X, 1 ≤ j ≤ k, c1 = c

produces an n-cylinder:

fk . . . f1Fhq . . . h1 : fk . . . f1Ahq . . . h1 y fk . . . f1Bhq . . . h1 (39)
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in Ωm+1(X, fk . . . f1 ∗ g ∗ hq . . . h1), where we define, for m > 0 and g = (g0, g1):

fk . . . f1 ∗ g ∗ hq . . . h1 = (fk . . . f1g0hq . . . h1, fk . . . f1g1hq . . . h1)

where juxtaposition represents the result of composing cells using the appropriate operation
γ. If m = 0 then g = (b, c) : S0 → X, and we define:

fk . . . f1 ∗ g ∗ hq . . . h1 = (s(h1), t(fk))

We begin with the case n = 0. A vertical stack of 0-cylinders consists of a string of composable
1-cells, which we compose using the appropriate choice of γ. Explicitly, given 0-cylinders
(F i : xi y xi+1)i∈{1,...,n}, i.e. 1-cells F i : xi → xi+1 in X, we define:

Fn ⊗ . . .⊗ F 1 = Fn . . . F 1 : x1 y xn+1

To construct (39), note that a 0-cylinder F : Ay B in Ωm+1(X, g) is just an (m+ 2)-cell in
X. Therefore, we simply define the required 0-cylinder by:

fk . . . f1Fhq . . . h1 : fk . . . f1Ahq . . . h1 y fk . . . f1Bhq . . . h1

where, as usual, juxtaposition means the result of composing those cells using the appropriate
operation γ

Turning to the recursive step, given p > 0 and (n+ 1)-cylinders F i : Ai y Ai+1 in X for
1 ≤ i ≤ p we want to define an (n+ 1)-cylinder:

F p ⊗ . . .⊗ F 1 : A1 y Ap+1

in a way that is compatible with the already-defined composition in lower dimensions. We
can express the cylinders F i in an equivalent way, by considering them as n-cylinders:

F̄ i : Ai+1F
i
s y F itAi

in X(s(F is), t(F it )). We define the (n+ 1)-cylinder F p ⊗ . . .⊗ F 1 by setting:

(F p ⊗ . . .⊗ F 1)ε = F pε . . . F
1
ε

63



for ε = s, t, using γ to compose these 1-cells, and defining F p ⊗ . . .⊗ F 1 to be the vertical
composition of the following sequence of n-cylinders in X(s(F 1

s ), t(F pt )):

(F pt . . . F 1
t )A0

Ψ0,p(F pt ,...,F 1
t ,A0)

��

F pt . . . F
1
t (F 0

t A0)

F pt ...F
1
t F

0

��

F pt . . . F
1
t (A1F

1
s )

Ψ1,p−1(F pt ,...,F 1
t ,A1,F 1

s )
��

F pt . . . (F 1
t A1)F 1

s

��
. . .

Ψp−1,1(F pt ,Ap,F
p−1
s ,...,F 1

s )
��

(F pt Ap)F p−1
s . . . F 1

s

F pF p−1
s ...F 1

s
��

(Ap+1F
p
s )F p−1

s . . . F 1
s

Ψp,0(Ap+1,F
p
s ,...,F

1
s )

��

Ap+1(F ps . . . F 1
s )

Let us now address the construction of (39).
The data are the following:
m ≥ 0, g : Sm → X, g|S0 = (b, c), an (n+ 1)-cylinder F : Ay B in Ωm+1(X, g),

1-cells in hi : bi → bi+1 in X, 1 ≤ i ≤ q, bq+1 = b

1-cells in fj : cj → cj+1 in X, 1 ≤ j ≤ k, ck+1 = c

View F as an n-cylinder:

F̄ : BFs y FtA in Ω(Ωm+1(X, g), sn+1A, sn+1B) ∼= Ωm+2(X,ϕ)

where we set ϕ : = (sn+1A, sn+1B) : Sm+1 → X.
By recursion we can construct an n-cylinder:

fk . . . f1F̄ hq . . . h1 : fk . . . f1(BFs)hq . . . h1 y fk . . . f1(FtA)hq . . . h1

in Ωm+2(X, fk . . . f1 ∗ ϕ ∗ hq . . . h1), which is isomorphic to:

Ω(Ωm+1(X, fk . . . f1 ∗ g ∗ hq . . . h1), fk . . . f1 ∗ sn+1(A) ∗ hq . . . h1, fk . . . f1 ∗ tn+1(B) ∗ hq . . . h1)

Finally, we define fk . . . f1Fhq . . . h1 by setting:

(fk . . . f1Fhq . . . h1)ε = fk . . . f1Fεhq . . . h1
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for ε = s, t, using γ to compose these 1-cells, and defining fk . . . f1Fhq . . . h1 to be the vertical
composition of the following sequence of n-cylinders in Ωm+2(X, fk . . . f1 ∗ ϕ ∗ hq . . . h1):

(fk . . . f1Bhq . . . h1)(fk . . . f1Fshq . . . h1)

Φq,m+2,k(fk,...,f1,B,Fs,hq ,...h1)
��

fk . . . f1(BFs)hq . . . h1

fk...f1F̄ hq ...h1
��

fk . . . f1(FtA)hq . . . h1

Θq,m+2,k(fk,...,f1,Ft,A,hq ,...h1)
��

(fk . . . f1Fthq . . . h1)(fk . . . f1Ahq . . . h1)

This completes the recursion. Now, by an easy induction, one can check that this operation
we have obtained is coglobular, i.e. it satisfies the condition expressed in (37).

4. Naive elementary interpretation of operations

We now describe how to define the map of A-models %̂ : Cyl(Dn) → Cyl(A) for any
given homogeneous operation in a coherator for ∞-categories C in a way that will satisfy the
first condition in (36) but not the second. The next section will then address and solve the
problem of also satisfying the second condition. Let p = |L (A)|, and B1, . . . , Bp the ordered
list L (A). We recall here that the idea is to define %̂ as the transpose of the vertical composite
of a stack of (n− 1)-cylinders in Cyl(A) (a, b), for a = Cyl(∂mσ ) ◦ σ and b = Cyl(∂mτ ) ◦ τ .

First, we specify a sequence of n-cells (α0, . . . , αp) in Cyl(A) that appear as top and
bottom cells of the cylinders in the stack. The first and the last are thus forced by the
requirement that the vertical composite (n − 1)-cylinder in the space of paths between a

and b is the transpose of an actual n-cylinder in Cyl(A) satisfying the first of the conditions
expressed in (36). Therefore, α0 must be given by the composite:

Dn Dn q
D0
D1

Dnw
// Dn q

D0
D1 Cyl(A)

(ι0◦%,Cyl(∂mτ ))
//

where m = ht(A). Similarly, αp must be defined to be the composite

Dn D1 q
D0
Dn

wDn
// D1 q

D0
Dn Cyl(A)

(Cyl(∂mσ ),ι1◦%)
//

For 1 ≤ i ≤ p− 1, we define αi : Dn → Cyl(A) as the following composite

Dn A
%
// A Bi

zABi
// Bi Cyl(A)

iBi
// (40)

Notice that the αi’s all transpose under the adjunction Σ a Ω to give (n− 1)-cells α0, . . . , αp

in Cyl(A) (a, b), where a = Cyl(∂mσ ) ◦ σ and b = Cyl(∂mτ ) ◦ τ . In addition, by construction,
αi−1 and αi factor through Bi(a, b), where, for every Bi ∈ L (A), we denote the endpoints of
this globular sum (i.e. the 0-cells ∂ht(Bi)

σ , ∂
ht(Bi)
τ : D0 → Bi) with a and b, committing a slight

abuse of language since they are all sent to a and b in Cyl(A) by the maps iBi .

Example 7.27. Let A = D2 qD0 D1 and consider a homogeneous map % : D2 → A. This
operation may represent, for instance, the whiskering of a 2-cell with a 1-cell.
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Thanks to diagram (31), if we follow the algorithm explained above we find that the cells
in the list we have to provide are given by the transposes of:

D2 q
D0
D1 q

D0
D1

D2 D2 q
D0
D1 D2 q

D0
D2

D2 D2 q
D0
D1 D2 q

D0
D1 q

D0
D1

D2 D2 q
D0
D1 D2 q

D1
D2 q

D0
D1 Cyl(A)

D2 D2 q
D0
D1 D3 q

D0
D1

D2 D2 q
D0
D1 D2 q

D1
D2 q

D0
D1

D2 D2 q
D0
D1

1qw

1q τ

wq 1

wq 1

τ q 1

(i1, i2)

%

%

%

%

%

%

together with the transpose of the composite

D2 D2 q
D0
D1

w
// D2 q

D0
D1 A q

D0
D1

% q
D0

1
// A q

D0
D1 Cyl(A)

(ι0,Cyl(∂2
τ ))
//

as the first cell of the list, and of the composite

D2 D2 q
D0
D1

w
// D2 q

D0
D1 D1 q

D0
A

1 q
D0

%

// D1 q
D0
A Cyl(A)

(Cyl(∂2
σ),ι1)

//

as the last.

We can now define a stack of (n − 1)-cylinders C%i : αi−1 y αi in Cyl(A) (a, b), for
1 ≤ i ≤ p, such that C%i factors through Bi(a, b).

We do so by solving the following lifting problems:

Dn−1qDn−1 Bi(a, b)
(αi−1,αi)

//Dn−1qDn−1

Cyl(Dn−1)

∂

��

Cyl(Dn−1)

Bi(a, b)
77
Bi(a, b) Cyl(A) (a, b)

Ω(iBi )
//

Cyl(Dn−1)

Cyl(A) (a, b)

C%i

33
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In detail, we first transpose along the adjunction Σ a Ω to get diagrams of the form:

Σ(Dn−1qDn−1) Bi
(αi−1,αi)

//Σ(Dn−1qDn−1)

ΣCyl(Dn−1)

∂

��

ΣCyl(Dn−1)

Bi77

The lift is now obtained by contractibility of globular sums in case A is a coherator for ∞-
groupoids, by the results of Section 3 of Chapter 2 if A is a coherator for ∞-categories and
by applying these results plus the free functor F : Mod(C) → Mod(CW) in case A ∼= CW.
Finally, set %̂ as the n-cylinder induced by the transpose of C%p ⊗ . . .⊗ C

%
1 : α0 y αp, viewed

as a map ΣCyl(Dn−1) → Cyl(A). It is now straightforward to check that, in general, this
definition satisfies only the first condition of (36), essentially because we have no control on
what happens to the boundary of %̂, i.e. %̂◦Cyl(ε), in relation to %̂ ◦ ε for ε = σ, τ . To rectify
this, we will need to be a bit more careful with the definition of the stack of cylinders.

5. Degenerate Cylinders

In this section we want to define cylinders whose iterated source or target are degenerate,
in a suitable sense. We will also extend the operation of vertical compositions to this more
general setting, as it will be needed later to construct the “correct” elementary interpretation
of a homogeneous operation, i.e. the one satisfying both conditions expressed in (36).

Definition 7.28. Let n > 0. Define the A-model Cyl0−1(Dn) = Cyl0(Dn) as the colimit
of the following diagram:

Dn

Dn q
D0
D1

w 55

Dn

ΣCyl(Dn−1)
Σ(ι0) ))

Similarly, define Cyl−1
0 (Dn) = Cyl0(Dn) as the colimit of the following diagram:

Dn

D1 q
D0
Dn

w 55

Dn

ΣCyl(Dn−1)
Σ(ι1) ))

Also set Cyl00(Dn) = ΣCyl(Dn−1).
Finally, given 0 < p, q < n with |p− q| ≤ 1, define inductively:

Cylpq(Dn) = ΣCylp−1
q−1(Dn−1)

We call Cylpq the n-cylinder with degenerate p-source and degenerate q-target.

It is clear that all these cylinders come equipped with maps ι0, ι1 : Dn → Cylpq(Dn).

Definition 7.29. Given a pair of n-cells α, β in X and integers 0 ≤ p, q < n as above,
an n-cylinder in X from α to β with degenerate p-source and degenerate q-target is a map:

C : Cylpq(Dn)→ X
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such that C ◦ ι0 = α and C ◦ ι1 = β. We will denote it by C : αyp
q β.

Remark 7.30. Notice that a cylinder C : α yp
q β exists only if sp(α) = sp(β) and

tq(α) = tq(β).

To describe these data explicitly, we need to distinguish between cases.
If p = 0 and q = −1 then it consists of:

• a 1-cell c : tn(α)→ tn(β);
• an (n− 1)-cylinder C̄ : cαy β in X (sn(α), tn(β)).

If p = −1 and q = 0 then it consists of:

• a 1-cell c : sn(α)→ sn(β);
• an (n− 1)-cylinder C̄ : αy βc in X (sn(α), tn(β)).

If p, q > 0 then it consists of:

• an (n− 1)-cylinder with degenerate (p− 1)-source and (q − 1)-target C̄ : α yp−1
q−1 β

in X (sn(α), tn(β)).

Definition 7.31. Let p, q ≥ −1 be integers such that |p− q| ≤ 1. We define the category
Gp
q as the full subcategory of G generated by:

• G≥p+1 if p = q;
• G≥p and τ : q → p if q = p− 1;
• G≥q and σ : p→ q if p = q − 1;

Clearly, the direct category structure on G restricts to one on Gp
q , and we can extend the

previous construction to a functor

Cylpq(D•) : Gp
q →Mod(A)

5.1. Boundary of degenerate cylinders. As we did for normal cylinders, we will
construct a map of diagrams indexed by a direct category, with codomain Cylpq(D•), whose
latching maps will represent the inclusion of the boundary of a degenerate cylinder. This con-
struction will be fundamental to perform inductive constructions involving cylinders. Given
such p, q as before, we construct a functor Bp

q : Gp
q →Mod(A) by defining:

Bp
q (n) ∼= colim

Dp Dn
σ
//Dp

Dn

σ

��

Dq

Dn

τ

OO

DqDn
τ

oo

where we set D−1 = ∅, the initial object of Mod(A).
For each such pair of integers we get a natural transformation:

ι : Bp
q → Cylpq(D•)

induced by ι0, ι1 : Dn → Cylpq(Dn).

Definition 7.32. We define the boundary of the n-cylinder with degenerate p-source
and q-target to be the domain of L̂n(ι), and we denote it by ∂Cylpq(Dn). Given an A-model
X and an n-cylinder with degenerate p-source and q-target in X, represented by a map
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C : Cylpq(Dn)→ X, we call the boundary of C the map we get by precomposing C with the
natural map from the boundary, as displayed below:

∂Cylpq(Dn) Cylpq(Dn)// // Cylpq(Dn) X
C
//

By definition, given an A-model X, specifying the boundary of a degenerate n-cylinder
Cylpq(Dn)→ X is equivalent to providing the following data:

• a pair of parallel (n − 1)-cylinders C : A yp
q B, D : A′ yp

q B
′ in X (except in the

case where n− 1 = p, q);
• a pair of n-cells α : A→ A′, β : B → B′ in X.

Example 7.33. A 1-cylinder with degenerate 0-source in an A-model X is represented
by a map C : Cyl0(D1)→ X, which consists of specifying the following data:

a b
α
//a

aa c
β
//

b

c

g

��

C ��

by which we mean a 2-cell C : gα → β. In this case, the pair (α, β) represents the natural
map ι : B0

−1(1)→ Cyl0(D1).

Proposition 7.34. The map

ι : Bp
q → Cylpq(D•)

is a direct cofibration in Mod(A)G
p
q .

Proof. If p, q ≥ 0, we have

Bp
q
∼= ΣBp−1

q−1 and Cylpq ∼= ΣCylp−1
q−1

and the map Bp
q → Cylpq results from applying Σ to Bp−1

q−1 → Cylp−1
q−1. Therefore, since Σ

preserves cofibrations, it is enough to prove the result for p = 0, q = −1 and p = −1, q = 0.
Let’s consider Cyl0(D•). Consider the following square where n > 1, which is cocartesian
thanks to Proposition 5.9:

Sn−1

∂Cyl(Dn−1)
��

Sn−1 Dn
//

∂Cyl(Dn−1) Cyl(Dn−1)
L̂n−1(ι)

//

Dn

Cyl(Dn−1)
��

We can prove representably (as we did for Proposition 5.9) that the following square is
cocartesian, thus concluding the proof thanks to Remark 5.1:

Σ∂Cyl(Dn−1)

∂Cyl0(Dn)
��

Σ∂Cyl(Dn−1) ΣCyl(Dn−1)
Σ(L̂n−1(ι))

//

∂Cyl0(Dn) Cyl0(Dn)
L̂n(ι)

//

ΣCyl(Dn−1)

Cyl0(Dn)
��
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A similar argument shows that also B0 → Cyl0(D•) is a direct cofibration of G0-diagrams in
Mod(A). �

5.2. Vertical composition of degenerate cylinders. We now want to define an op-
eration of vertical composition that generalizes the one we already have to the case of a
vertical stack of (possibly) degenerate cylinders.

To do so, assume given a k-tuple of pairs of integers (pi, ki)1≤i≤k, with |pi − qi| ≤ 1 for
each 1 ≤ i ≤ k, and let p = min{pi}1≤i≤k, q = min{qi}1≤i≤k. This operation is represented
by a map:

Cylpq(Dn) Cylp1
q1 (Dn)⊗ . . .⊗Cylpkqk (Dn)// (41)

where the codomain is defined to be the colimit of the following diagram:

Dn

Cylp1
q1 (Dn)

ι1

__

Dn

Cylp2
q2 (Dn)

ι0

??

Dn

Cylp2
q2 (Dn)

ι1

__

Dn

. . .

ι0

??

Dn

. . .

ι1

__

Dn

Cylpkqk (Dn)

ι0

??

We will adapt the construction we already have for the case pi = qi = −1, and again we
proceed to construct it recursively on n, simultaneously with an operation of whiskerings of
degenerate cylinders with 1-cells. Given:

m ≥ 0, g : Sm → X, g|S0 = (b, c) an n-cylinder C : Ayp
q B in Ωm+1(X, g)

1-cells hi : bi → bi+1 in X, 1 ≤ i ≤ q, bq+1 = b

1-cells fj : cj → cj+1 in X, 1 ≤ j ≤ k, c1 = c

this whiskering operation produces an n-cylinder:

fk . . . f1Fhq . . . h1 : fk . . . f1Ahq . . . h1 yp
q fk . . . f1Bhq . . . h1

in Ωm+1(X, fk . . . f1 ∗ g ∗ hq . . . h1), where we define (for m > 0):

fk . . . f1 ∗ g ∗ hq . . . h1 = (fk . . . f1g0hq . . . h1, fk . . . f1g1hq . . . h1)

if g = (g0, g1). Once we have constructed these whiskerings, the rest of the proof follows just
by adapting the one for normal cylinders, omitting the use of the Ψ’s when no rebracketing
is needed.

Let us start with the case p = 0, q = −1. By definition, C induces an (n− 1)-cylinder:

C̄ : CtAy B in Ωm+2(X,ϕ)

where ϕ = (sn(A), tn(B)). Because we already know how to whisker normal cylinders with
1-cells, we get an (n− 1)-cylinder:

fk . . . f1C̄hq . . . h1 : fk . . . f1(CtA)hq . . . h1 y fk . . . f1Bhq . . . h1

We now define:

fk . . . f1Chq . . . h1 : fk . . . f1Ahq . . . h1 y0 fk . . . f1Bhq . . . h1
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as the vertical composition of the following cylinders in Ωm+2(X, fk . . . f1 ∗ ϕ ∗ hq . . . h1):

(fk . . . f1c hq . . . h1)(fk . . . f1Ahq . . . h1)

Φq,m+2,k(fk,...,f1,c,A,hq ,...h1)
��

fk . . . f1(CtA)hq . . . h1

fk...f1C̄hq ...h1
��

fk . . . f1Bhq . . . h1

In a completely analogous way, if p = −1, q = 0, we obtain:

fk . . . f1Chq . . . h1 : fk . . . f1Ahq . . . h1 y0 fk . . . f1(BCs)hq . . . h1

in Ωm+2(X, fk . . . f1 ∗ ϕ ∗ hq . . . h1).
The case C : Ay0

0 B in Ωm+1(X, g) is even simpler, because we simply define the whisker-
ing as:

fk . . . f1Chq . . . h1 = fk . . . f1C̄hq . . . h1

This concludes the base case of the recursion.
Finally, let us consider the case C : A yp

p−1 B in Ωm+1(X, g) with p > 0 (the remaining
case C : Ayp−1

p B in Ωm+1(X, g) can be treated similarly). By definition, we have a cylinder:

C̄ : Ayp−1
p−2 B in Ωm+2(X,ϕ)

where ϕ = (sn(A), tn(B)). By inductive hypothesis, we obtain:

fk . . . f1C̄hq . . . h1 : fk . . . f1Ahq . . . h1 yp−1
p−2 fk . . . f1Bhq . . . h1

so that we can set:
fk . . . f1Chq . . . h1 = fk . . . f1C̄hq . . . h1

Given vertically composable (possibly degenerate) n-cylinders C1, . . . , Ck in an A-model X,
we denote by C1 ⊗ . . .⊗ Ck the n-cylinder in X that results as their vertical composition.

6. Elementary interpretation of operations

In this section we finally define, for every homogeneous operation % : Dm → A in a fixed
coherator for ∞-categories C (endowed with a map C→ A), a map:

%̂ : Cyl(Dm)→ Cyl(A)

in Mod(A) satisfying both properties depicted in (36). To achieve the goal we set for this
section, given ε = σ, τ we need a description of the map:

Cyl(∂ε) : Cyl(∂A)→ Cyl(A) (42)

in terms of the globular decomposition of both its domain and its target, where ∂ε : ∂A→ A

are the maps in Θ0 defined in 11.
By construction, we know that the bottom row (see (27)) of the globular decomposition

of Cyl(A) is obtained by sticking a new branch at the bottom right of the tree associated
with A and then letting this new branch traverse the tree counterclockwise.

We let n = ht(A). To begin with, we explain how to relate the list of trees appearing
on the bottom row of the globular decomposition of Cyl(∂A) with the one associated with
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Cyl(A). In fact, this can be done in two ways, depending on whether we are interested in
ε = σ or ε = τ in (42). We will focus on ε = σ in what follows. We have three possible cases
for the newly added branch in each tree belonging to the set L (A):

• it is attached at height n, i.e. the new vertex is added at height n+ 1;
• it is attached at height k < n− 1;
• it is attached at height n− 1.

Of these trees, we discard all of those in the first class, and we keep all the trees in the second
class, chopping off everything above height k = n − 1. In the third case, if we focus on the
strip between height n− 1 and n, the newly added branch has to appear in a certain corolla.
If the newly added branch is at the far left of the corolla it belongs to, then we chop off
everything above height n− 1 except this new branch, and we keep the resulting tree. If not,
we discard the tree.

By doing so we get a new list that can be easily proven to correspond exactly to the
one associated with ∂A, and we have maps in Θ0 between each tree in the list for Cyl(∂A)
and the corresponding one in the list for Cyl(A), induced by the source maps or appropriate
colimit inclusions.

This can be reformulated in the following way. Consider the two diagrams of A-models
Cyl(∂A) : I|L (∂A)| → Mod(A) and Cyl(A) : I|L (A)| → Mod(A). The previous analysis
informally specifies a cocone under Cyl(∂A), whose vertex is Cyl(A), such that the map
induced on the colimit is precisely Cyl(∂σ).

A similar analysis, replacing every occurence of “left” with “right”, gives an analogous
result for the map Cyl(∂τ ) : Cyl(∂A)→ Cyl(A).

Example 7.35. Let’s have a look at a specific example to clarify the situation.
Consider the globular sum given by A = D2 qD1 D2 qD0 D1. We have ∂A = D1 qD0 D1.

According to the abovementioned rule, to describe the map Cyl(∂σ) : Cyl(∂A) → Cyl(A)
we have to consider each of the trees in L (A), and check where the new edge is. We have
to discard all those in which this special edge is attached at height n = 2, and keep those in
which it is attached at height n = 0, chopping off everything above height n = 1. Moreover,
whenever it is attached at height n = 1, we select only those in which the newly added edge is
at the far left of the corolla it belongs to, and we chop everything above height n = 1 except
for this edge.

The list appearing on the bottom row in the zig-zag expressing the globular decomposition
of Cyl(A) is given by:

(43)

For example, let’s consider the sixth tree of this list, namely:

72



The corolla which the special edge belongs to is , and the red edge is not at the far left
of it, so we discard this tree.

Proceding as described by the rule, we are left with the following list of trees, identified
with (respectively) the first, second, third, eighth and ninth tree of the previous list

(44)

Clearly, this is the list of trees appearing on the bottom row of the globular decomposition
of Cyl(∂A) = Cyl(D1 qD0 D1), and there are maps induced by the source maps and colimit
inclusions (i.e. maps in Θ0) from each of these tree into the tree associated with it in L (A).
For instance the first tree of the list (44) is associated with the first one in the list (43), and
the map between them is induced by the map ∂σ : D1 → D2 q

D1
D2.

Let’s formalize this: we start by defining a map of sets ϕσA : L (∂A) → L (A) (resp.
ϕτA : L (∂A)→ L (A)) by sending B ∈ L (∂A), obtained by adjoining a new vertex to ∂A in
the fiber over x ∈ ∂Am−1, to the globular sum corresponding to the tree ϕσA(B) (resp. ϕτA(B)),
whose underlying presheaf of sets (viewing globular sums as trees) is given by adjoining a
new vertex to A in the fiber over the image of x in A, and whose linear order is defined next.

We need to consider two possible cases. First, ifm < n = ht(A) then one has (ι∂Am−1)−1{x} =
(ιAm−1)−1{x}. Therefore, we endow the fiber over x in ϕσA(B) (resp. ϕτA(B)) with the linear
order transported from the one in (ι∂Am−1)−1{x}. If m = n, we impose that the newly adjoined
vertex in ϕσA(B) (resp. ϕτA(B)) is the least element (resp. the greatest element) in the fiber
over x .

Given any B ∈ L (∂A), let us define a map jσB : B → ϕσA(B) (resp. jτB : B → ϕτA(B))
in Θ0. Following the notation in the previous paragraph, if m < n, we define jσB to be
∂σ : B → ϕσA(B), and jτB to be ∂τ : B → ϕτA(B). If m = n, then the maps jσB : B → ϕσA(B)
and jτB : B → ϕτA(B) are induced by the universal property of pushouts as depicted in the
diagrams below, where the front and back faces of the cubes are cocartesian squares:

Dn−1 Dn
τ

//Dn−1

∂A

α

��

∂A B
∂τ

//

Dn

B
��

D⊗kn D⊗k+1
n

d1
//D⊗kn

A

β

��

A ϕσA(B)
zAB

//

D⊗k+1
n

ϕσA(B)
��

∂A

A
∂σ

<<

Dn−1

D⊗kn
i1◦σ

<<

Dn

D⊗k+1
n

i1

<<

B

ϕσA(B)

jσB

<<

Dn−1 Dn
σ

//Dn−1

∂A

α′

��

∂A B
∂σ

//

Dn

B
��

D⊗kn D⊗k+1
n

dk+1
//D⊗kn

A

β′

��

A ϕτA(B)
vAB

//

D⊗k+1
n

ϕτA(B)
��

∂A

A
∂τ

<<

Dn−1

D⊗kn
ik◦τ

<<

Dn

D⊗k+1
n

ik+1

<<

B

ϕτA(B)

jτB

<<

(45)

Here, D⊗kn = Σn−1(D⊗k1 ), dr is the map that skips the r-th summand, ik denotes the inclusion
of the k-th summand, α, α′ represent the target (resp.source) of the leaf we are adjoining to
∂A and β, β′ are the corresponding inclusion of the fiber of A over x.
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Proposition 7.36. Given a globular sum A with ht(A) = n > 0, we have the following
commutative square for each B ∈ L (∂A) and ε = σ, τ :

B ϕεA(B)
jεB

//B

Cyl(∂A)

iB

��

Cyl(∂A) Cyl(A)
Cyl(∂ε)

//

ϕεA(B)

Cyl(A)

iϕε
A

(B)

��

Proof. We only prove the case ε = σ, the other one being entirely dual. The statement
is clear if A = D⊗m1 , in which case ∂A = D0. Otherwise, let A = ΣA1qD0 . . .qD0 ΣAk, as in
(5.3), and assume the result holds for all the Ai’s. Define A′i to be Ai if ht(Ai) < n − 1, or
∂Ai otherwise. Let us subdivide the set L (∂A) as the union of the set of globular sums for
which the new edge is joined at the root, and the sets of the form

{ΣA′1 q
D0
. . . q

D0
ΣB′ q

D0
. . . q

D0
ΣA′k}1≤i≤k,B′∈L (A′i)

If B belongs to the first set, i.e. B = ΣA′1 qD0 . . .ΣA′i qD0 D1 qD0 ΣA′i+1 qD0 ΣA′k for some
0 ≤ i ≤ k + 1, then thanks to Remark 7.25 one has the following commutative square

B ΣA1 q
D0
. . .ΣAi q

D0
D1 q

D0
ΣAi+1 q

D0
ΣAk

∂σ
//B

Cyl(∂A)

iB

��

Cyl(∂A) Cyl(A)
Cyl(∂σ)

//

ΣA1 q
D0
. . .ΣAi q

D0
D1 q

D0
ΣAi+1 q

D0
ΣAk

Cyl(A)

iϕA(B)

��

To conclude the proof for this case, just observe that the upper horizontal map coincides with
jσB : B → ϕσA(B).

Next, suppose B = ΣA′1 qD0 . . . qD0 ΣB′ qD0 . . . qD0 ΣA′k for some B′ ∈ L (A′i). By
construction, we have that the natural transformation Cyl(∂σ) restricted to the sub zig-zag

ΣA′1 q
D0
. . . q

D0
ΣA′i−1 q

D0
ΣCyl(A′i) q

D0
ΣA′i+1 q

D0
. . . q

D0
ΣA′k

coincides with
Σ∂′1 q

D0
. . . q

D0
ΣCyl(∂′i) q

D0
Σ∂′i+1 q

D0
. . . q

D0
Σ∂′k

where we set ∂′i to be ∂σ : ∂Ai = A′i → Ai if ht(Ai) = n− 1, and the identity otherwise.
Thanks to Remark 7.25 and the inductive hypothesis,we get the following commutative

square

B ΣA1 q
D0
. . . q

D0
ΣϕσA′i(B

′) q
D0
. . . q

D0
ΣAk

Σ∂′1 q
D0
... q
D0

ΣjB′ q
D0

Σ∂′i+1 q
D0
... q
D0

Σ∂′k
//B

Cyl(∂A)

iB

��

Cyl(∂A) Cyl(A)
Cyl(∂σ)

//

ΣA1 q
D0
. . . q

D0
ΣϕσA′i(B

′) q
D0
. . . q

D0
ΣAk

Cyl(A)

i

��

We conclude by observing that

ΣA1 q
D0
. . . q

D0
ΣϕσA′i(B

′) q
D0
. . . q

D0
ΣAk = ϕA(B)
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and
Σ∂′1 q

D0
. . . q

D0
ΣjB′ q

D0
Σ∂′i+1 q

D0
. . . q

D0
Σ∂′k = jB

�

We also record here the following result, for future use (and generalization).

Proposition 7.37. The following square commutes for ε = σ, τ

∂A A
∂Aε

//∂A

B

z∂AB

��

B ϕεA(B)
jεB
//

A

ϕεA(B)

zA
ϕε
A

(B)

��

Proof. We only prove the case ε = σ, the other one being entirely dual. Let ∗B be the
vertex adjoined to ∂A to get B, and denote by F the fiber of ∗B.

If ∗B = minF and F 6= {∗B} (i.e. case (1) of Definition 7.20), then m < n and the square
in the statement is given by:

∂A A
∂σ

//∂A

B
��

B ϕσA(B)
∂σ
//

A

ϕσA(B)
��

where the unlabelled maps are the unique globular maps with such domain and codomain.
This square obviously commutes.

If F = {∗B} (i.e. case (2) of Definition 7.20) and m < n, the square is given by:

∂A A
∂σ

//∂A

B

z∂AB

��

B ϕσA(B)
∂σB
//

A

ϕσA(B)

zA
ϕσ
A

(B)

��

where z∂AB and zAϕσA(B) are both induced by target maps. In this case too, it is not hard to
check commutativity.

If m > n, the square we obtain the bottom face of the cube appearing in Definition 45,
and therefore commutes by construction.

If ∗B 6= minF , then m < n and so the square is given by:

∂A
∂σ

//∂A

B

z∂AB

��

B ϕσA(B)
∂σ
//

A

ϕσA(B)

zA
ϕσ
A

(B)

��

where both z∂AB and zAϕσA(B) are as in case (3) of Definition 7.20, so that the commutativity
of the square above follows immediately from the globularity of the generalized whiskering
w’s. �
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We now describe how to extend the results presented thus far, in order to study the maps
Cyl(∂kε ) : Cyl(∂kA) → Cyl(A) for k > 1. This time too, we can obtain the list of trees
appearing on the bottom row of the globular decomposition of Cyl(∂kA) from those in the
decomposition of Cyl(A). Again, we concentrate on the case ε = σ.

Firstly, we have to discard all the trees in which the new edge has been attached at height
m ≥ n − k + 1. If it has been attached at height m < n − k, we keep the trees after having
chopped off everything above height n − k. Finally, if the new edge is attached at height
m = n− k, we consider the strip comprised between height m = n− k and m′ = n− k + 1.
The new edge belongs to a corolla in here, and we only keep the trees in which it is at the far
left of the corolla it belongs to. Again, in this case, we chop everything above height n− k,
except for the newly added edge.

Each of the trees (representing a globular sum) we thus obtain comes equipped with a
map (induced by a k-fold iteration of the source maps or by a colimit inclusion) towards the
one appearing in the decomposition of Cyl(A) which it is associated to. In this way one gets
a cocone under the diagram Cyl(∂kA) : Im → Mod(A), whose vertex is Cyl(A), such that
the map induced on the colimit is precisely Cyl(∂kσ).

A similar argument, replacing every occurence of “left” with “right”, yields an analogous
result for the map Cyl(∂kτ ) : Cyl(∂kA)→ Cyl(A). To make this precise we have to generalize
the work already done for k = 1.

Definition 7.38. Let A be a globular sum, and k > 0 a positive integer. Define (for
ε = σ, τ) the map of sets (ϕεA)k : L (∂kA) → L (A) inductively, by setting (ϕεA)1 = ϕεA and
(ϕεA)k = ϕεA ◦ (ϕε∂A)k−1 for k > 1.

Unraveling the previous definition we see that (ϕεA)k = ϕεA ◦ ϕε∂A ◦ . . . ◦ ϕε∂kA. We also
define, given B ∈ L (∂kA), a map (jεB)k : B → (ϕεA)k(B) by setting (jεB)1 = jεB and (jεB)k =
jε(ϕε

∂A
)k−1(B) ◦ (jεB)k−1 if k > 1.

The following result is an immediate consequence of Proposition 7.36.

Proposition 7.39. Given a positive integer k and a globular sum A with ht(A) = n ≥ k,
we have the following commutative square for each B ∈ L (∂kA):

B (ϕεA)k(B)
(jεB)k

//B

Cyl(∂kA)

iB

��

Cyl(∂kA) Cyl(A)
Cyl(∂kε )

//

(ϕεA)k(B)

Cyl(A)

i(ϕε
A

)k(B)

��

It is easy to give an explicit description of (ϕεA)k(B), similar to what we did for the case
k = 1.

Lemma 7.40. Consider a globular sum B ∈ L (∂kA), so that B is obtained by adjoining
a new vertex ∗B to ∂kA. Let m = ht(∗B), define F to be the fiber of ∗B.

If 1 ≤ m ≤ n − k then (ϕεA)k(B) is obtained by adding a new vertex to A in the fiber of
∗B in the unique way that makes it linearly isomorphic to F .

If m = n − k + 1, then (ϕεA)k(B) is obtained by adding a new vertex to A in the fiber
of ∗B, where we extend the linear order by imposing that the newly added vertex is the least
element in this fiber if ε = σ, and the greatest if ε = τ .
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Proof. We prove this lemma by induction, the case k = 1 being already proven. We
also assume ε = σ, the other case being entirely dual, and we drop the superscripts since we
have just clarified any possible ambiguity. Let k > 1 and assume the claim holds for every
k′ < k. By definition, ϕkA(B) = ϕA

(
ϕk−1
∂A (B)

)
.

If 1 ≤ m ≤ n− k then m ≤ (n− 1)− (k − 1), so that, by inductive hypothesis, ϕk−1
∂A (B)

is obtained by adding a new vertex to the fiber of ∂A over x (this fiber coincides with F ,
and the order is the transported one). Because m ≤ n− k < n, ϕA sends ϕk−1

∂A (B) to a tree
obtained by adding a new vertex to A, over x, with the order induced once again by that of
F .

If m = n − k + 1 = (n − 1) − (k − 1) + 1 then ϕk−1
∂A (B) is obtained from ∂A by adding

a new least element to its fiber over x. Since k > 1, this fiber is the same as that of A over
x, and ϕA sends ϕk−1

∂A (B) to the tree obtained by adding a new vertex over x to A, with the
order transported from that of ϕk−1

∂A (B). Therefore, the newly added vertex is going to be
the minimum in the fiber over x, which concludes the proof. �

We also generalize Proposition 7.37.

Proposition 7.41. Let k be a positive integer and A be a globular sum with ht(A) = n ≥
k. Given B ∈ L (∂kA) the following square commutes for ε = σ, τ

∂kA A
∂kε

//∂kA

B

z∂
kA
B

��

B (ϕεA)k(B)
(jεB)k

//

A

(ϕεA)k(B)

zA
(ϕε
A

)k(B)

��

Proof. The square is obtained by gluing together two squares, as displayed below

∂kA ∂A
∂kε

//∂kA

B

z∂
kA
B

��

B (ϕε∂A)k−1(B)
(jεB)k−1

//

∂A

(ϕε∂A)k−1(B)

z∂A
(ϕε
∂A

)k−1(B)

��

∂A A
∂ε

//

(ϕε∂A)k−1(B) (ϕεA)k(B)
jε
(ϕε
∂A

)k−1(B)
//

A

(ϕεA)k(B)

zA
(ϕε
A

)k(B)

��

Therefore, the claim follows by induction from the case treated in Proposition 7.37. �

We now get back to the task of defining %̂ : Cyl(Dn)→ Cyl(A), for a homogeneous map
% : Dn → A, with m = ht(A). The goal is to define it as the vertical composition of a suitable
stack of (n − 1)-cylinders in the A-model Cyl(A) (a, b). Therefore, we just need to define
this vertical stack so that its vertical composition has the desired properties. We assume this
construction has been performed for every k < n, in the same way as in what follows. So far
we have (n−1)-cells α0, . . . , αp, as in (40). We now build possibly degenerate (n−1)-cylinders
C%i : αi−1 yri

qi αi in Cyl(A) (a, b) for 1 ≤ i ≤ p, such that C%i factors through Bi(a, b).
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We do so by defining the boundary of each of these cylinders, and then we extend these
data to cylinders by applying Propositions 5.2 and 7.34 to diagrams of the form:

∂Cylriqi(Dn−1) Bi(a, b)//∂Cylriqi(Dn−1)

Cylriqi(Dn−1)

∂

��

Cylriqi(Dn−1)

Bi(a, b)
99
Bi(a, b) Cyl(A) (a, b)

Ω(iBi )
//

Cylriqi(Dn−1)

Cyl(A) (a, b)

C%i

33

To begin with, we have to define ri and qi for every 0 ≤ i ≤ p − 1. Bi is obtained, by con-
struction, by adding a new vertex ∗Bi to A. Letting d = ht(∗Bi), we have three possibilities:
if d = 1 then ri = qi = −1; otherwise either ∗Bi is the least (resp. greatest) element in its
fiber or it is not. In the first case we set ri = d − 3 (resp. qi = d − 3), otherwise ri = d − 2
(resp. qi = d− 2).

If n > m then we define the source (resp. the target) of C%i to be C%◦σi (resp. C%◦τi ),
which have already been defined, since % ◦ ε is a homogeneous map with domain Dn−1. It is
easy to check that this is well defined, since the indexing set for the i’s is given in both cases
by L (A).

If n = m then, for ε = σ, τ , there exists a unique factorization of % ◦ ε, due to the
homogeneity of the coherator for ∞-categories C, of the form:

Dn−1 Dn
ε
//Dn−1

∂A

%ε

��

∂A A
∂Aε

//

Dn

A

%

��

where %ε is a homogeneous map. If ri = n − 2 (resp. qi = n − 2) there is nothing to do. If
ri < n − 2 (resp. qi < n − 2), i.e. the source (resp. the target) is not collapsed, then either
d = n and ∗Bi is the least (resp. greatest) element in its fiber or d ≤ n − 1. In both cases
there exists a unique 1 ≤ k ≤ |L (∂A)| such that Bi = ϕσA(Ek) (resp. Bi = ϕτA(Ek)), where
Ek is the k-th element of L (∂A). We now define the source (resp. target) of C%i to be C%σk
(resp. C%τk ) This assignment is well defined, as the commutative squares below ensure that
the cylinder C%σk (resp. C%τk ) has, as top and bottom cells, the source (resp. target) of the
top and bottom cells of C%i

Dn−1 Dn
ε
//Dn−1

∂A

%ε

��

∂A A
∂Aε

//

Dn

A

%

��

∂A

Ek

z∂AEk

��

A

ϕεA(Ek)

zA
ϕε
A

(Ek)

��

Ek ϕεA(Ek)
jEk
//

Here, the bottom square commutes thanks to Proposition 7.37. The extensions are obtained
as in the non-degenerate case, thanks to Proposition 7.34.

The vertical composition of the stack of cylinders given by:

C%1 ⊗ . . .⊗ C
%
p : Cylr1q1(Dn−1)⊗ . . .⊗Cylrpqp(Dn−1)→ Ω (Cyl(A), a, b)
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produces an (n − 1)-cylinder C% : α0 y αp in Cyl(A) (a, b), since min{ri}1≤i≤p = −1 and
min{qi}1≤i≤p = −1 by construction.

Definition 7.42. Let % : Dn → A be a homogeneous operation in C. Using the notation
established so far, we let %̂ : Cyl(Dn)→ Cyl(A) be the n-cylinder consisting of the following
data:

• %̂ε = Cyl(∂nε ) : D1 ∼= Cyl(D0)→ Cyl(A) for ε = s, t;
• %̂ is given by C% : Cyl(Dn−1)→ Cyl(A) (a, b).

We are now left with checking the compatibility with the coglobular structure, i.e. we
have to prove that, for ε = σ, τ , %̂ ◦Cyl(ε) = %̂ ◦ ε if n > m and %̂ ◦Cyl(ε) = Cyl(∂ε) ◦ %̂ε if
n = m.

The first case is straightforward by construction, since the operation of vertical composi-
tion is compatible with the coglobular structure.

The proof of the second case is accomplished by using the following lemma, which essen-
tially says that the collapsed pieces of the boundaries do not contribute to the result of the
vertical composition.

Lemma 7.43. Let q be a positive integer, and suppose given a sequence of n-cylinders
Ci : αi ypi

qi αi+1 in an A-model X. Consider the ordered set {pi}1≤i≤q, where pi < pj if and
only if i < j, and let {p̄i1 , . . . , p̄ik} be the (ordered) subset spanned by those pi < n− 1. Then
the cylinders (Cij ◦Cyl(σ))1≤j≤k are again composable, and moreover we have

(C1 ⊗ . . .⊗ Cq) ◦Cyl(σ) = (Ci1 ◦Cyl(σ))⊗ . . .⊗ (Cik ◦Cyl(σ))

An analogous result holds true if we replace p with q and σ with τ .

Proof. The fact that the Cij are again composable is obvious. We prove the second
statement by induction on n, the base case n = 1 being straightforward. We know that
C1 ⊗ . . .⊗ Cq is obtained by transposing the result of vertically composing a stack obtained
from whiskerings of the (n − 1)-cylinders C̄i with appropriate 1-cells together with (n − 1)-
cylinders of the form ψc,d that witness the rebracketing of cells when needed (as explained in
Section 5.2 ). Whenever pi = n− 1 these Ψ’s do not appear, so that the claim follows from
the inductive assumption and the coglobularity of the remaining Ψ’s. �

We conclude this section with an extension of Definition 7.42. Recall from Remark
2.15 that a map ϕ : A → B in C is homogeneous if the homogeneous-globular factorizations
Dik → Bk → B of the composites Dik → A→ B for every ik in the table of dimensions of A
are such that the induced canonical map

colimk Bk → B

is an isomorphism.

Definition 7.44. If ϕ : A→ B is a homogeneous map in C, we can obtain an elementary
interpretation of it which still satisfies the properties expressed in (36) simply by coglobu-
larity of the construction recorded in Definition 7.42. Indeed, we can consider the induced
homogeneous maps ϕk : Dik → Bk and define ϕ̂ : Cyl(A) → Cyl(B) as the map induced by
passing to the colimit the family of maps ϕ̂k : Cyl(Dik)→ Cyl(Bk).

For a general map h : A→ B in C, we factor h as h = i ◦ %, using homogeneity of C, with
% : A → C a homogeneous map and i : C → B globular map, i.e. a map in Θ0. Now define
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its elementary interpretation as ĥ = Cyl(i) ◦ %̂, where we have used the fact that we do have
a functor Cyl : Θ0 →Mod(A).

We will now describe this in detail for a homogeneous operation % : D2 → A. We proceed
representably, so assume given a map C : Cyl(A)→ X, with C : U y V .

To each of the globular sums in L (A) we associate a (possibly degenerate) 1-cylinder
in X(x, y), where x = s2 (X(%)(U)) , y = t2 (X(%)(V )). These 1-cylinders will be vertically
composable in the order induced by that of L (A), and the composite will produce the desired
2-cylinder C%̂ : Cyl(D2)→ X upon transposing along the adjunction Σ a Ω (here, we make
use of the fact that an n-cylinder is defined to be an (n − 1)-cylinder in the space of paths
between two objects, with the appropriate top and bottom (n− 1)-cells, see Definition 5.5).
The first 1-cylinder, i.e. the one associated with the globular sum B ∈ L (A) where the new
vertex ∗B has been added at height 1 as the maximal element over the root (i.e. the right
most one) is given by:

· ·
Ct%(U)

//

· ·
%(U<p,CtUp)

//

·

·

'
��

·

·

'
��

{� (46)

Here, U<p and Up respectively denote the restriction of U to Σα1 q
D0
. . . q

D0
Σαp−1 and Σαp,

where we have considered the decomposition of A as Σα1 q
D0
. . . q

D0
Σαp as in Lemma 5.3.

Furthermore, juxtaposition is the result of composing using the maps introduced in Definition
2.12, and given a map W : A → X, which we think as an A-shaped pasting diagram in X,
we denote X(%)(W ) with %(W ). Finally, we denoted C ◦ Cyl(∂2

τ ) with Ct. Both the sides
and the interior of the square are obtained by solving extension problems in the globular sum
B, using the algorithm outlined in this section, and the same holds for all the other cases to
follow.

Dually, the last square in the stack is associated to the globular sum B obtained from A

by adjoining a new vertex at height 1 as the minimal element over the root (i.e. the left most
one). This time, the square is given by:

· ·
%(V1Cs,V>1)

//

· ·
%(V )Cs

//

·

·

'
��

·

·

'
��

{� (47)

Suppose now the new vertex in B ∈ L (A) is adjoined at height 1 as the q-th element in the
linear order on B1. The associated square then looks like the one depicted here below:

· ·
%(U<q ,Vqa,V>q)

//

· ·
%(U<q ,aUq ,V>q)

//

·

·

'
��

·

·

'
��

{� (48)

80



Here, we have used a to denote the 1-cell in X corresponding to the restriction of the
composite map C ◦ iB : B → Cyl(A)→ X to the 1-cell in B associated with the newly added
vertex.

Suppose now the vertex has been added to A at height 2, to get a globular sum B ∈ L (A).
We need to consider all the vertices over the one at which the new edge has been adjoined, and
again we distinguish according to the position of the newly added vertex. Firstly, let’s consider
the case in which it has been added over a copy of D1 (i.e. it is the only vertex above the one
to which the new edge is attached). This determines a decomposition A = A< q

D0
D1 q

D0
A>.

Precomposing U (resp. V ) with the inclusion of A< (resp. A>) we get an A<-shaped (resp.
A>-shaped) pasting diagram in X which we call U< (resp.V>). The square is then given by:

· ·
%(U<,V>s(F ))

//

· ·
%(U<,V>t(F ))

//

·

·

%∗τ (∂τU<,∂τV>F )
��

·

·

%∗σ(∂σU<,∂σV>F )
��

{� (49)

Here, ∂ε ◦ %ε is the homogeneous-globular factorization of % ◦ ε for ε = σ, τ , F is the 2-cell
that fills the 1-cylinder

Cyl(i) : Cyl(D1)→ Cyl(A< q
D0
D1 q

D0
A>) = Cyl(A)

and ∂εW denotes, given a map W : A → X, the precomposition of W with ∂ε : ∂A → A.
Finally, %∗ε is obtained as an extension of the following form:

S1 ∂A+(∂σ◦%ε,∂τ◦%ε)
//S1

D2
��

D2

∂A+

%∗ε

88

where ∂A+ is obtained from ∂A by adjoining a new vertex in the same position as the one
that was added to A in order to get B.

If the new vertex ∗B is not the only one in its fiber, then we have to distinguish three
cases. If ∗B is the maximal element, and it has been added to Σαq, then the 1-cylinder we
get has degenerate source, and can be depicted as follows:

· ·
%(U<q ,aUq ,V>q)

//

· ·
%(U<q ,αUq ,V>q)

//

·

·

%∗τ (∂τU<q ,α,∂τV>q)
��

·

·

degenerate {� (50)

Here, we have denoted by α the 2-cell of the 1-cylinder C|Σαq ◦ Cyl(∂τ ), and with a its
target 0-cylinder (viewed as a 1-cell). Dually, if it is the minimal element, the 1-cylinder has
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degenerate target, and is of the following form:

· ·
%(U<q ,Vqα,V>q)

//

· ·
%(U<q ,Vqa,V>q)

//

·

·

degenerate

·

·

%∗σ(∂σU<q ,α,∂σV>q)
��

{� (51)

Here, we have denoted with α the 2-cell of the 1-cylinder C|Σαq ◦ Cyl(∂σ), and with a its
source 0-cylinder (viewed as a 1-cell). Finally, if the new vertex has been added as the r-th
element in its fiber, then we get sub-globular sums of Σαq ∼= ΣD⊗m1 of the form ΣD⊗r1 and
ΣD⊗m−r1 . Corresponding to this subdivision we have a ΣD⊗r1 -shaped diagram in X induced
by U , that we denote with U≤rq , and, similarly, a ΣD⊗m−r1 -shaped diagram induced by V ,
that we denote with V ≥rq . The corresponding 1-cylinder is essentially a 2-cell in X(x, y), since
its source and target are degenerate, as depicted here below:

· ·
%(U<q ,Uq≤r,Vq≥rα,V>q)

//

· ·
%(U<q ,αUq≤r,Vq≥r,V>q)

//

·

·

degenerate

·

·

degenerate {� (52)

Here, we have denoted with α the 2-cell of the 1-cylinder given by the target of the r-th
2-cylinder in the image of C|Σαq .

The last case is that of a globular sum B ∈ L (A) in which the new vertex ∗B has been
added to A at height 3. Say the 2-cell the new edge has been attached to is the r-th in
Σαq ∼= ΣD⊗m1 , then the associated 1-cylinder has degenerate source and target, and is of the
following form:

· ·
%(U<q ,Uq<r,s(F ),Vq>ra,V>q)

//

· ·
%(U<q ,Uq<r,t(F ),Vq>ra,V>q)

//

·

·

degenerate

·

·

degenerate {� (53)

Here, F denotes the 3-cell of the 2-cylinder in X, whose 0-dimensional source we denoted by
a, picked out by precomposing C with Cyl(D2 → A), where the copy of D2 in question is
the one that corresponds to the vertex in A of height 2 over which ∗B has been added.

So far, we have described a stack of |L (A)| vertically composable (possibly degenerate)
1-cylinders in X(x, y). Its (vertical) composite is a 1-cylinder Ct%(U) y %(V )Cs in X(x, y),
that transposes under the adjunction Σ a Ω to give the desired 2-cylinder C◦%̂ : %(U) y %(V ).
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CHAPTER 8

Path object on Grothendieck 3-groupoids of type CW

So far, we have constructed the elementary interpretation of any given homogeneous
operation % : Dk → A of a given coherator for n-categories for 0 ≤ n ≤ ∞. Unfortunately,
as we observed at the beginning of Chapter 7, the assignment % 7→ %̂ : Cyl(A) → Cyl(B)
cannot be made into a functor of the form Cyl : C → Mod(A), since it would not preserve
composition of maps.

To address this problem, we introduce the concept of modifications, and we use these
to interpret all the operations up to dimension 2. We then specialize to the 3-dimensional
case, and further extend this construction to every map in a coherator for 3-categories, finally
proving the existence of a semi-model structure on Grothendieck 3-groupoids of type CW in
Theorem 8.30 thanks to the results in Chapter 4.

1. Modifications

Assume given a globular theory A among those considered in the previous section. Given
an A-modelX, a modification inX between n-cylinders Θ: C ⇒ D will be defined inductively
to consist of a pair of 2-cells Θs : Cs → Ds, Θt : Dt → Ct together with a modification of
(n− 1)-cylinders in X(x, y) of the form:

Θ̄ : Υ(ι0C,Θt)⊗ C̄ ⊗ Γ(Θs, ι1C)⇒ D̄

where x = sn(C) ◦ σ, y = tn(C) ◦ τ , and Γ,Υ are cylinders we define below, and ⊗ denotes
vertical composition of cylinders. We choose this asymmetric version (compare it to the one
given for cylinders) since this will simplify the exposition later on (in particular, we want to
prove Lemma 8.6).

Example 8.1. Before we formally give the definition of modification, we give an example
of what modifications look like in low dimensions. If n = 0 then a modification is simply a
2-cell. If n = 1 then we can depict C and D as, respectively

a b
α
//a

c

f
��

b

d

g
��

c d
β
//

Γ
{�

a b
α
//a

c

f ′

��

b

d

g′
��

c d
β
//

∆
{�

A modification Θ: C ⇒ D corresponds to the data of a pair of 2-cells S : f → f ′, T : g′ → g

in X and a 3-cell Θ̃ : (βΘs)(Γ(Θtα))→ ∆ in X, where we denote by juxtaposition the result
of the appropriate operations w involved in the definition.

a b
α
//a

c

f
��

b

d

g
��

c d
β
//

Γ
{�

b

d

g′

vv

a

c

f ′

((

TksSks
Θ̃
V

a b
α
//a

c

f ′

��

b

d

g′
��

c d
β
//

∆
{�
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Notice that if f = f ′ and g = g′, then a modification Θ: C ⇒ D such that Θs and Θt are
identities can be equivalently thought of as a 3-cell between the 2-cells Γ and ∆.

We will construct a coglobular object M• : G → Mod(A), that will also come provided
with a map Ξ = (Ξ0,Ξ1) : Cyl(D•) ∗Cyl(D•)→M•, where the domain denotes the colimit
of the diagram:

D• Cyl(D•)
ι0
//D•

Cyl(D•)

ι0

��

D•

Cyl(D•)

ι1

OO

D•Cyl(D•)
ι1
oo

Just like in the case of cylinders, this map will be proven to be a direct cofibration.
As a preliminary step, we need to construct cylinders that witness specific coherences

between whiskerings, that will be used in the definition of modifications. We define these
cylinders by solving the following extension problems in Mod(A)G:

Σ(D•qD•) D2 q
D0

ΣD•
(a,b)

//Σ(D•qD•)

ΣCyl(D•)

Σ(ι0,ι1)
��

ΣCyl(D•)

D2 q
D0

ΣD•

Γ

66

Σ(D•qD•) ΣD• q
D0
D2

(a′,b′)
//Σ(D•qD•)

ΣCyl(D•)

Σ(ι0,ι1)
��

ΣCyl(D•)

ΣD• q
D0
D2

Υ

66

where we define a = (σ1qD0 1) ◦w, b = (τ1qD0 1) ◦w, a′ = (1qD0 σ) ◦w, b′ = (1qD0 τ) ◦w.
These extensions are obtained similarly to those of the case of constant cylinders in (24).
In words, given an A-model X, these produce (n − 1)-cylinders Γ(c,B) : Bs(c) y Bt(c) in
X
(
s2(c), tn(B)

)
(resp. Υ(A, d) : s(d)A y t(d)A in X

(
sn(A), t2(d)

)
) out of an n-cell B and

2-cell c (resp. an n-cell A and a 2-cell d) in X which are suitably compatible .
We start with defining M0 = D2 and (Ξ)0 to be simply the boundary inclusion S1 → D2.

Assuming we have defined M• : G≤n−1 → Mod(A) together with a direct cofibration of
(n − 1)-truncated coglobular objects Ξ: Cyl(D•) ∗ Cyl(D•) → M•, we set Mn to be the
colimit of the following diagram of A-models:

ΣCyl(Dn−1)

ΣMn−1

Σ(Ξ0)

OO

ΣCyl(Dn−1)

Σ (Cyl(Dn−1)⊗Cyl(Dn−1)⊗Cyl(Dn−1))

Σ(c)
��

ΣCyl(Dn−1)

Σ (Cyl(Dn−1)⊗Cyl(Dn−1)⊗Cyl(Dn−1))
Σ(i3)ww

ΣCyl(Dn−1)

Σ (Cyl(Dn−1)⊗Cyl(Dn−1)⊗Cyl(Dn−1))
Σ(i1) ''

ΣCyl(Dn−1)

Dn q
D0
D2

Υn−1

OO

ΣCyl(Dn−1)

D2 q
D0
Dn

Γn−1

OO

where c denotes the vertical composition of a stack of three (n − 1)-cylinders and ik is the
inclusion on the k-th cylinder of the stack.

Define Mσ0 : M0 → M1 to be the composite D2 → D2 qD0 D1 → M1, both maps
being given by colimit inclusions. Analogously, we set Mτ0 : M0 →M1 to be the composite
D2 → D1 qD0 D2 →M1.

Now suppose n > 2, and define Mεn−1 : Mn−1 →Mn (for ε = σ, τ) as the map obtained
by applying the colimit functor to the natural transformation between the defining diagrams
for Mn−1 and Mn induced by εn−1, Cyl(εn−2) and Mεn−2 .
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We define Ξ = (Ξ0,Ξ1) : Cyl(Dn) ∗Cyl(Dn) →Mn by setting Ξ0 to be induced by the
following cocone

ΣCyl(Dn−1) ΣCyl(Dn−1)⊗3Σ(i1)
//

Dn

ΣCyl(Dn−1)
ι0

��

Dn Dn q
D0
D1

w
// Dn q

D0
D1 Dn q

D0
D2

1q
τ
//

ΣCyl(Dn−1)⊗3 Mn
//

Dn q
D0
D2

Mn

''

Dn

ΣCyl(Dn−1)
ι1

??

Dn D1 q
D0
Dn

w
// D1 q

D0
Dn D2 q

D0
Dn

σq
1
// D2 q

D0
Dn

Mn77

Next, we set Ξ1 to be induced by the following cocone

ΣCyl(Dn−1) ΣMn−1
Σ(Ξ1)

//

Dn

ΣCyl(Dn−1)
ι0

��

Dn Dn q
D0
D1

w
// Dn q

D0
D1 Dn q

D0
D2

1q
τ
//

ΣMn−1 Mn
//

Dn q
D0
D2

Mn

''

Dn

ΣCyl(Dn−1)
ι1

??

Dn D1 q
D0
Dn

w
// D1 q

D0
Dn D2 q

D0
Dn

σq
1
// D2 q

D0
Dn

Mn77

In both cases the unlabeled maps denote the colimit inclusions.

Definition 8.2. Given an A-model X and a map Θ: Mn → X such that C = Θ ◦ Ξ0

and D = Θ ◦ Ξ1 we say that Θ is a modification between the n-cylinders C and D. Notice
that, by construction, Ck = Dk for k = 0, 1.

We will also denote this by Θ: C ⇒ D or, pictorially, by:

Cyl(Dn) X

C

##

Cyl(Dn) X

D

;;
Θ
��

Θ ◦Mσ is called the source of Θ, and it is denoted by s(M). Similarly, Θ ◦Mτ is called the
target of Θ, and it is denoted by t(M).

Given two modifications Θ1,Θ2 such that ε(Θ1) = ε(Θ2) for ε = σ, τ , we say that Θ1 and
Θ2 are parallel.

We will also need the following notion, analogous to the one introduced in Definition 7.29
in the case of cylinders.

Definition 8.3. Given a pair of n-cylinders C,D : Cyl(Dn) → X with εn−k(C) =
εn−k(D) for ε = s, t, we inductively define a k-collapsed modification Θ: C ⇒ D for
−1 ≤ k ≤ n−1 to be an ordinary modification if k = −1, and a (k−1)-collapsed modification
Θ: C̄ ⇒ D̄ in X (sn(C0), tn(C1)) if k ≥ 0.

Observe that an (n− 1)-collapsed n-modification is an (n+ 2)-cell.

Lemma 8.4. The map of coglobular objects Ξ: Cyl(D•) ∗ Cyl(D•) → M• is a direct
cofibration.
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Proof. We will prove by induction on n that the n-th latching map L̂n(Ξ) is a cofibration
of A-models. For n = 0 this is just (Ξ)0, i.e. the boundary inclusion S1 → D2, and therefore
it is a cofibration.

Assume by induction that L̂k(Ξ) is the pushout of the boundary inclusion Sk+1 → Dk+2

for each 0 ≤ q ≤ n−1 and let’s prove the same holds true for k = n. We do this representably,
as follows: let X be an A-model, and C,D : Cyl(Dn) → X be two n-cylinders in X, such
that Ck = Dk for k = 0, 1. Assume given a pair of parallel modifications Θ: s(C) ⇒ s(D),
Ψ: t(C)⇒ t(D). To extend this to a modification C ⇒ D we have to give a modification of
(n−1)-cylinders Υ(ι0C,Θt)⊗C̄⊗Γ(Θs, ι1C)⇒ D̄ in X(a, b) where Θs,Θt are the 2-cells that
are part of the data of both C and D, and a = s2(S), b = t2(T ). Notice that we already have
the source and target of this modification, so that (by inductive hypothesis), this extension
amounts to filling in an n-sphere in X(a, b). Upon transposing along the suspension-space of
paths adjunction we see that the original extension problem is equivalent to extending along
the boundary inclusion Sn+1 → Dn+2, which concludes the proof. �

Thanks to this lemma, it is straightforward to prove the next result.

Lemma 8.5. Let X be a contractible A-model, i.e. the map X → ∗ is a trivial fibration
of A-models. Given a pair of n-cylinders C,D : A y B in X, there exists a modification
Θ: C ⇒ D in X.

We also record here, for future use, the following lemma

Lemma 8.6. Given either an ∞-groupoid or a CW-model X, an n-cylinder C : A y B

in X, a pair of parallel (n− 1)-cylinders Ds, Dt : Cyl(Dn−1)→ X and parallel modifications
Θ1 : s(C) ⇒ Ds, Θ2 : t(C) ⇒ Dt there exists an n-cylinder D : Cyl(Dn) → X such that
s(D) = Ds, t(D) = Dt and a modification Θ: C ⇒ D such that s(Θ) = Θ1 and t(Θ) = Θ2.

Proof. We prove this statement by induction, the base case being n = 1. We can
use the 2-cells Θ1 : s(C) → Ds and Θ2 : t(C) → Dt and define the 2-cell filling D to be
(BΘ1)(C(Θ−1

2 A)). Clearly, it is possible to extend (Θ1,Θ−1
2 ) to a modification Θ: C ⇒ D,

thanks to the structure of X.
Now let n > 1 and assume the statement holds true for every integer k < n. The pair of

parallel (n− 2)-cylinders D̄s, D̄t in X (x, y) (where x = sn(C)σ, y = tn(C) ◦ τ), the (n− 1)-
cylinder Υ(ι0C,Θt) ⊗ C̄ ⊗ Γ(Θs, ι1C) in X (x, y) and the modifications Θ̄1, Θ̄2 satisfy the
assumptions of the lemma for k = n − 1. Therefore, we get an (n − 1)-cylinder D̄ and a
modification Θ̄ : Υ(ι0C,Θt) ⊗ C̄ ⊗ Γ(Θs, ι1C) ⇒ D̄, both in X (x, y), which concludes the
proof. �
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The content of the previous lemma can be pictorially represented by the following exten-
sion problem

Cyl(Sn−1) X

(s(C),t(C))

((Cyl(Sn−1) X

(Ds,Dt)

66(Θ1,Θ2)
��

Cyl(Sn−1)

Cyl(Dn)

(Cyl(σ),Cyl(τ))

��

Cyl(Dn)

X

C

66

Cyl(Dn)

X

D

DD

Θ
�#

Remark 8.7. Note that all modifications of ∞-groupoids or CW-models are “invertible”
in a sense that can be made precise, but here we content ourselves with the weaker statement
that given n-cylinders C,D in an ∞-groupoid X, there exists a modification Θ: C ⇒ D if
and only if there exists a modification Θ′ : D ⇒ C. This is proven in Lemma B.11.

2. Low dimensional operations in PX

Given a coherator A that admits inverses (meaning it is either a coherator for∞-groupoids
or it is of the form CW) and an A-model X, we will now endow the underlying globular set
of PX with all the operations PX(%) for % : Dn → A in a homogeneous coherator for ∞-
categories C, with n ≤ 2. If we denote by P2X the 2-globular set obtained from PX by
identifying 2-cells connected by a 3-cell and keeping the same 0 and 1-cells, then we can
construct a bicategory structure with weak inverses on P2X, thanks to this result and those
of Chapter 6.

Remark 8.8. Thanks to Proposition 2.26 and a similar argument as the one used in
the proof of the lemma below, it is not hard to show that one can assume, without loss of
generality, that the coherator C has been obtained in the following manner: there is a functor
C• : ω → GlTh as in Definition 2.10, with Cn+1 = Cn[X], whereX = {(h1, h2) : Dn → A}, i.e.
all the (n+1)-dimensional “basic” operations of C are added at the (n+1)st step. Therefore,
we may rephrase the goal of this section in terms of constructing an extension of the form:

Θ0 Mod(A)
Cyl
//Θ0

C2
��

C2

Mod(A)

Cyl

<<

We only need to interpret all the homogeneous operations of dimension n ≤ 2 since we
have already defined Cyl(•) on globular maps. More precisely, we have to define Cyl(%) : Cyl(Dn)→
Cyl(A) for every homogeneous map % : Dn → A with n ≤ 2 in C. Notice that this forces
m = ht(A) ≤ 2. We will make use of the following fact, whose proof we only sketch not to
disrupt the flow of this section

Lemma 8.9. Given a cellular globular theory D, the inclusion Θ0 → D induces isomor-
phisms

Θ0(D0, A) ∼= D(D0, A)
87



Proof. It is enough to prove that the unit map ηA : A→ U ◦ FA of the adjunction:

[Gop,Set]
F

))

U

ii ⊥ Mod(A)

is sent to an isomorphism when we evaluate [Gop,Set](D0,−) at it. Thanks to Proposition 2.2
of [Nik], the unit is an I≥1-cellular map (where we denote by I≥1 the set {Sk−1 → Dk}k≥1),
and therefore it is 0-bijective. �

To begin with, we start with operations of dimension 1, i.e. extending the functor Cyl to
C1.

Proposition 8.10. There exists an extension of the form:

Θ0 Mod(A)
Cyl
//Θ0

C1
��

C1

Mod(A)

Cyl

<<

Proof. Consider an operation h added as solutions of lifting problems of the following
form, as in point (2) of Definition 2.10:

D0 A
f

//
D0 A

g
//D0

D1

τ0

��

D0

D1

σ0

��

D1

A

h

<<

We know that, since C is assumed to be homogeneous, this implies ht(A) ≤ 1, and therefore
either f = g = 1D0 , or ht(A) = 1 and necessarily f = ∂σ, g = ∂τ thanks to the previous
lemma. Therefore, setting Cyl(h) = ĥ as in Definition 7.42 is a well-defined choice. Doing so
for all the 1-dimensional operations h added as fillers of pairs (f, g) ∈ X0 with C1 = C0[X0],
we get the desired extension. �

Let us now address the problem of extending this to 2-dimensional operations, i.e. mor-
phisms D2 → A in C. This can be done using the following result, whose proof is fundamental
to this section and will be subdivided into several lemmas.

Proposition 8.11. Given a map % : D1 → A in C, there exists a 0-collapsed modification:

ϑ% : %̂⇒ Cyl(%)

where Cyl(%) is constructed in (8.10). Furthermore, these modifications can be built in such
a way that if %1, %2 : D1 → A are parallel maps then ϑ%1 and ϑ%2 are parallel.

If we assume this result, we can now prove:

Proposition 8.12. Assume A has inverses. Given any operation % : D2 → A in C fitting
into a diagram of the form:

D1 A
h1

//D1 A
h2

//D1

D2

τ

��

D1

D2

σ

��

D2

A

%

::
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we can associate to it a map Cyl(%) : Cyl(D2)→ Cyl(A) fitting into a diagram of the form

Cyl(D1) Cyl(A)
Cyl(h1)

//Cyl(D1) Cyl(A)
Cyl(h2)

//Cyl(D1)

Cyl(D2)

Cyl(τ)

��

Cyl(D1)

Cyl(D2)

Cyl(σ)

��

Cyl(D2)

Cyl(A)

Cyl(%)

::

Moreover, this map also comes endowed with a modification ϑ% : %̂⇒ Cyl(%) whose boundary
is given by (ϑ%◦σ, ϑ%◦τ ).

Proof. Using Lemma 8.11, we can apply Lemma 8.6 to the following diagram, where
the solid triangle at the back commutes by (36):

Cyl(S1) Cyl(A)

(̂%◦σ,̂%◦τ)
++

Cyl(S1) Cyl(A)

(Cyl(%◦σ),Cyl(%◦τ))

33(ϑ%◦σ ,ϑ%◦τ )
��

Cyl(S1)

Cyl(D2)

(Cyl(σ),Cyl(τ))

��

Cyl(D2)

Cyl(A)

%̂

77

Cyl(D2)

Cyl(A)

Cyl(%)

AA

ϑ%
�#

It is straightforward to observe that this is enough to conclude the proof. �

The following result follows immediately from the previous one and cellularity of C

Proposition 8.13. There exists an extension of the form:

Θ0 Mod(A)
Cyl
//Θ0

C2
��

C2

Mod(A)

Cyl

<<

We now prove Proposition 8.11 via a series of lemmas.

Lemma 8.14. Given integers i, k, q > 0, a map % : D1 → D⊗k1 such that %◦σ = ∂σ, %◦ τ =
∂τ , and a 0-collapsed modification Θ: C ⇒ D : Cyl(D1) → Cyl(D⊗q1 ) we get an induced
0-collapsed modification denoted by %̂ ◦i Θ: %̂ ◦i C ⇒ %̂ ◦iD between the following 1-cylinders:

Cyl(D⊗k1 ) Cyl(D⊗k+q−1
1 )

1q...qC q...q 1

,,

Cyl(D⊗k1 ) Cyl(D⊗k+q−1
1 )

1q...qDq...q 1

33
Cyl(D1) Cyl(D⊗k1 )

%̂
//

Proof. We prove this representably, i.e. we assume given compatible 1-cylinders Ci : Ai y
Bi in an ∞-groupoid X, with s(Ci) = wi and t(Ci) = wi+1. We let E = (Ci, . . . , Ci+q−1) ◦C
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and F = (Ci, . . . , Ci+q−1) ◦ D, and we observe that Θ essentially consists of a 2-cell E →
F : wi+qE0 → E1wi in X (s(E0), t(E1)). The composite of the following pasting diagram in
X (s(A1), t(Bk+q−1)) transpose via the adjunction Σ a Ω to give the 3-cell in X which %̂ ◦i Θ
essentially corresponds to:

wk+q%(Ak+q−1, . . . , Ai+q, E0, Ai−1, . . . , A1)

. . .��. . .

%(Bk+q−1, . . . , Bi+q, (wi+qE0), Ai−1, . . . , A1)
��

%(Bk+q−1, . . . , Bi+q, (wi+qE0), Ai−1, . . . , A1)

%(Bk+q−1, . . . , Bi+q, (E1wi), Ai−1, . . . , A1)

%∗(Bk+q−1,..., Bi+q , F , Ai−1,..., A1)

��

%(Bk+q−1, . . . , Bi+q, (wi+qE0), Ai−1, . . . , A1)

%(Bk+q−1, . . . , Bi+q, (E1wi), Ai−1, . . . , A1)

%∗(Bk+q−1,..., Bi+q , E, Ai−1,..., A1)

��

...Θ...+3

%(Bk+q−1, . . . , Bi+q, (E1wi), Ai−1, . . . , A1)

. . .��. . .

%(Bk+q−1, . . . , Bi+q, E1, Bi−1, . . . , B1)w1

��

where we have implicitly used the fact that Ei = Fi for i = 0, 1 and we denoted by %∗ a
homogeneous operation whose boundary is given by (∂σ ◦%, ∂τ ◦%). Notice that, by definition,
the left-hand side composite is (C1, . . . Ci−1, E, Ci+q, . . . , Ck+q−1)◦ %̂, and the right-hand side
one is (C1, . . . Ci−1, F, Ci+q, . . . , Ck+q−1) ◦ %̂, which concludes the proof. �

We will need something a bit stronger, namely the following generalization of the previous
lemma, whose proof is left to the reader.

Lemma 8.15. Assume given integers k, qj > 0 for 1 ≤ j ≤ k, a map % : D1 → D⊗k1
such that % ◦ σ = ∂σ, % ◦ τ = ∂τ , and 0-collapsed modifications Θj : Cj ⇒ Dj : Cyl(D1) →
Cyl(Dqj

1 ). We then get an induced 0-collapsed modification (Θ1, . . . ,Θk) ◦ %̂ : (C1, . . . , Ck) ◦
%̂⇒ (D1, . . . , Dk) ◦ %̂, between the following 1-cylinders:

Cyl(D⊗k1 ) Cyl
(
D
⊗(
∑

j
qj)

1

)q
1≤j≤k

Cj

,,

Cyl(D⊗k1 ) Cyl
(
D
⊗(
∑

j
qj)

1

)
q

1≤j≤k
Dj

22

Cyl(D1) Cyl(D⊗k1 )
%̂
//

Lemma 8.16. Given compatible operations % : D1 → D⊗k1 , ϕj : D1 → D
⊗qj
1 for 1 ≤ j ≤ k

similarly to the previous lemma, there is an induced 0-collapsed modification:

Cyl(D⊗k1 )

Cyl
(
D
⊗(
∑

j
qj)

1

)
q

1≤j≤k
ϕ̂j

++

Cyl(D1)

Cyl(D⊗k1 )
%̂

77

Cyl(D1) Cyl
(
D
⊗(
∑

j
qj)

1

)
((ϕj)1≤j≤k◦%)∧

//

�# (54)
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Proof. We prove this representably, thus we assume given an ∞-groupoid X and a
family of compatible 1-cylinders Cmr with 1 ≤ m ≤ k and 1 ≤ r ≤ qm. Denote with Cm the
map (Cm1 , . . . , Cmqm) : Cyl(D⊗qm1 ) → X, and, for ε = 0, 1, let Cεm be the string of 1-cells in
X given by (Cm1 ε, . . . , C

m
qmε

) : D⊗qm1 → X. In this way, we have that ϕ̂m acts on Cm, and
ϕm acts on Cε

m. Define n =
∑
j qj and denote the target of the i-th cylinder in the list

(C1
1 , . . . , C

1
q1 , . . . , C

m
1 , . . . , C

m
qm) by wi. Consider the following diagram in X(a, b), where

a = s
(
(C1

1 )0
)
and b = t

(
(Cmqm)1

)
, where the left and the right-hand side composites coincide

with the upper and lower composites of (55):

wn%
(
ϕk(C0

k), . . . , ϕ1(C0
1)
)

%
((
wnϕk(C0

k)
)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)tt

%
((
wnϕk(C0

k)
)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

%
((
ϕk(C1

k)wn−qk
)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

g

��

%
((
wnϕk(C0

k)
)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

%
(
ϕk
(
(wn(Ckqk)0), . . . , (Ck1 )0

)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)--

%
((
ϕk(C1

k)wn−qk
)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

%
(
ϕk(C1

k),
(
wn−qkϕk(C0

k−1
)
, . . . , ϕ1(C0

1)
)��

%
(
ϕk(C1

k),
(
wn−qkϕk(C0

k−1
)
, . . . , ϕ1(C0

1)
)

. . .��. . .

%
(
ϕk(C1

k), . . . ,
(
ϕ1(C1

1)w1
))��

%
(
ϕk(C1

k), . . . ,
(
ϕ1(C1

1)w1
))

%
(
ϕk(C1

k), . . . , ϕ1(C1
1)
)
w1

**

wn%
(
ϕk(C0

k), . . . , ϕ1(C0
1)
)

%
(
ϕk
(
(wn(Ckqk)0), . . . , (Ck1 )0

)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)!!

%
(
ϕk
(
(wn(Ckqk)0), . . . , (Ck1 )0

)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

. . .��. . .

%
(
ϕk
(
(Ckqk)1, . . . , (Ck1 )1wn−qk

)
, ϕk−1(C0

k−1), . . . , . . . ϕ1(C0
1)
)��

(2)

%
((
ϕk(C1

k)wn−qk
)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

%
(
ϕk
(
(Ckqk)1, . . . , (Ck1 )1wn−qk

)
, ϕk−1(C0

k−1), . . . , . . . ϕ1(C0
1)
)**

(1)

%
(
ϕk
(
(Ckqk)1, . . . , (Ck1 )1wn−qk

)
, ϕk−1(C0

k−1), . . . , . . . ϕ1(C0
1)
)

. . .��. . .

%
(
ϕk(C1

k), . . . , ϕ1(C1
1)
)
w1

{{

where g def= %∗
((
ϕ̂k(Ck)

)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)
and %∗ : D2 → D2 q

D0
D⊗k1 is an oper-

ation whose boundary is given by (∂σ ◦ %, ∂τ ◦ %).
We now explain how to fill the part of the diagram labelled with (1) with a 2-cell, and

the same argument will provide fillers for the other analogous subdivisions of the diagram,
corresponding to the ϕj for j < k. Note the cell ϕ̂k(Ck) appearing in g is a composite of the
form

wnϕk(C0
k) · · ·

a1
// · · · ϕk(C1

k)wn−qk
ap
//

Here, we denote the 1-cells which constitute the vertical stack of 0-cylinders appearing in the
construction of ϕ̂k with {ai}1≤i≤p.

By the structure of A, we see that there is a 2-cell α : g → g′, where g′ is the com-
posite of 2-cells of the form %∗

(
ai , ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)
. Furthermore, the target of

%∗
(
a1, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)
is precisely given by

%
(
ϕk
(
wn(Ckqk)0 . . . (Ck1 )0

)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)
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and each of the 2-cells %∗
(
ai, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)
for 1 < i < p is parallel to (and

appears in the same order as) one on the right-hand side composite labelled with (2). Each of
this pair of parallel 2-cells factors, by construction, through the same globular sum. However,
they could be obtained using possibly different operations in A. These have to be parallel
operations by construction, and therefore there is a 3-cell between them (if A = CW, its
existence is easily checked in Mod(Θ) and so the usual argument applies). Using again the
structure of A for the triangle of the form:

wn%
(
ϕk(C0

k), . . . , ϕ1(C0
1)
)

%
((
wnϕk(C0

k)
)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)��

wn%
(
ϕk(C0

k), . . . , ϕ1(C0
1)
)

%
(
ϕk
(
wn(Ckqk)0 . . . (Ck1 )0

)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

//

%
((
wnϕk(C0

k)
)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

%
(
ϕk
(
wn(Ckqk)0 . . . (Ck1 )0

)
, ϕk−1(C0

k−1), . . . , ϕ1(C0
1)
)

%(a1, ϕk−1(C0k−1),..., ϕ1(C01))

22

and for the analogous one at the bottom we get the remaining 3-cell fillers needed to provide
the desired filler for (1). Finally, we can compose this pasting diagram using the bicategorical
structure on 0-cylinders and 0-modifications developed in the Appendix. �

Finally, the last intermediate result before the proof of Lemma 8.11.

Lemma 8.17. Given compatible operations % : D1 → D⊗k1 , ϕj : D1 → D
⊗qj
1 for 1 ≤ j ≤ k

and 0-collapsed modifications Cyl(%) ⇒ %̂,Cyl(ϕj) ⇒ ϕ̂j, there is an induced 0-collapsed
modification of A-models:

Cyl(D⊗k1 )

Cyl
(
D
⊗(
∑

j
qj)

1

)
q

1≤j≤k
Cyl(ϕj)

++

Cyl(D1)

Cyl(D⊗k1 )
Cyl(%)

77

Cyl(D1) Cyl
(
D
⊗(
∑

j
qj)

1

)
((ϕj)1≤j≤k◦%)∧

//

δϕ,%

�# (55)

Proof. By Lemma 8.15 we get a modification (Cyl(ϕ1), . . . ,Cyl(ϕk))◦%̂⇒ (ϕ̂1, . . . , ϕ̂k)◦
%̂, and thanks to the previous lemma we get one of the form (ϕ̂1, . . . , ϕ̂k)◦%̂⇒ ((ϕj)1≤j≤k ◦ %)∧.
Moreover, we can precompose the former with:

q
1≤j≤k

Cyl(ϕj) ◦ ϑ% : q
1≤j≤k

Cyl(ϕj) ◦Cyl(%)⇒ q
1≤j≤k

Cyl(ϕj) ◦ %̂

All of these modifications are 0-collapsed by construction, so that we can compose them as
2-cells in Cyl

(
D
⊗(
∑

j
qj)

1

)
and conclude the proof. �

Corollary 8.18. Given operations % : A → B,ϕ : B → C in A between 1-dimensional
globular sums, and 0-collapsed modifications Cyl(%) ⇒ %̂,Cyl(ϕ) ⇒ ϕ̂, one gets an induced
0-collapsed modification Cyl(ϕ) ◦Cyl(%)⇒ ϕ̂ ◦ %.

Proof. The proof of this corollary is a straightforward generalization of that of the
previous lemma. In fact, by precomposing Cyl(%) with the various maps Cyl(i) : Cyl(D1)→
Cyl(A) for every globe D1 in the globular decomposition of A ∼= D⊗k1 , we get 0-collapsed
modifications δϕ,%◦i as in the previous lemma, which can be glued together. More precisely,
being 0-collapsed forces them to be compatible on their source and target, i.e. t(δϕ,%◦iq) =
s(δϕ,%◦iq+1), where ir is the colimit inclusion of the r-th copy of D1 in D⊗k1 . Therefore, they
induce the desired modification Cyl(ϕ) ◦Cyl(%)⇒ ϕ̂ ◦ % thanks to the universal property of
colimits. �
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We now end this section with a proof of Proposition 8.11, which we recall here below.

Proposition 8.19. Given a map % : D1 → A in C, there exists a 0-collapsed modification:

ϑ% : %̂⇒ Cyl(%)

where Cyl(%) is constructed in (8.10). Furthermore, these modifications can be built in such
a way that if %1, %2 : D1 → A are parallel maps then ϑ%1 and ϑ%2 are parallel.

Proof. Define a category C′ whose objects are globular sums of height less than or equal
to 1, where a map f : A→ B consists of a map f : A→ B in C such that for every globular
map i : A′ → A there exists a 0-collapsed modification Cyl(g) → ĝ, where g denotes the
homogeneous part of the composite f ◦ i, as depicted below:

A′ B′
g
// //A′

A

��

i

��

A B
f
//

B′

B

��

j

��

Thanks to the hypothesis on the modifications being 0-collapsed, it is easy to show that this
is a 1-globular theory, and that it contains every generator of C1, thanks to the previous
results. Therefore, it must coincide with C1, which concludes the proof. �

3. Path object on Mod(CW)

Given a coherator for 3-categories C, we are going to endow the globular set:

(PX)k = Mod(CW) (Cyl(Dk), X)

with the structure of a C-model, which we can then extend to a CW-model thanks to the
result of Chapter 7, thus providing a proof of Proposition 8.29. We can adapt the argument
given in the previous section to find an extension of the form:

C2

Mod(CW)

Cyl

::
Θ0 Mod(CW)

Cyl
//Θ0

C2
��

where we denote by C2 the step in the defining tower for the coherator C in which all the
2-dimensional operations are introduced (see Remark 8.8).

We now focus on finding an extension of the form:

C3

Mod(CW)

Cyl

::
C2 Mod(CW)

Cyl
//C2

C3
��

(56)

and this, in turn, amounts to defining a map Cyl(%) : Cyl(D3)→ Cyl(A) for every % : D3 →
A added as a filler of a pair (h1, h2) ∈ X2, in such a way that Cyl(%)◦Cyl(σ) = Cyl(h1) and
Cyl(%) ◦Cyl(τ) = Cyl(h2). Note that these last 2 equations make sense, since h1, h2 ∈ C2.

The strategy for constructing such maps will be the same as the one used to get the
extension to C2, namely to prove that we can endow every interpretation of a 2-dimensional
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operation Cyl(ϕ) : Cyl(D2)→ Cyl(A) with a modification:

Θϕ : ϕ̂⇒ Cyl(ϕ) (57)

in a way that is compatible with source and target (as will be explained in more detail later
on), so that we can then use Lemma 8.6 to produce the map we are after. In fact, we can
apply this lemma to the situation depicted in the diagram below, thus getting the desired
extension:

Cyl(S2) X

(ĥ1,ĥ2)

**Cyl(S2) X

(Cyl(h1),Cyl(h2))

44(Θh1 ,Θh2 )
��

Cyl(S2)

Cyl(D3)

(Cyl(σ),Cyl(τ))

��

Cyl(D3)

X

%̂

66

Cyl(D3)

X

Cyl(%)

@@

Θ
�#

We start with a lemma that allows us to “plug” modifications of globular sums of cylinders
into the elementary interpretation of a 2-dimensional operation.

Lemma 8.20. Assume given a homogeneous operation % : D2 → A in C, a CW-model X
and a pair of cylinders C,D : Cyl(A)→ X that agree on the 0-cells of A (i.e. each inclusion
Cyl (D0 → A) equalizes these maps), with C,D : U y V . Given a modification Θ: C ⇒ D

such that for each globular map D1 → A, the induced modification M1 MA
// MA X

Θ
// is

0-collapsed, we get an induced modification of the form Θ ◦ %̂ : C ◦ %̂⇒ D ◦ %̂.

Proof. The proof is structured in the following manner: since both cylinders C ◦ %̂ and
D ◦ %̂ are built as the vertical composite of a stack of cylinders, we will construct compatible
modifications from each of the cylinders that constitute the stack associated with C ◦ %̂
towards the corresponding ones in the stack associated with D ◦ %̂. We will then conclude by
using the bicategorical structure described in part B of the appendix to compose up these
modifications thus getting the desired map Θ ◦ %̂. Let(

i1 i2 . . . im−1 im

i′1 . . . i′m−1

)
be the table of dimensions of A. Since % is homogeneous, we have ht(A) ≤ 2, and therefore
ik = 1, 2 for every 1 ≤ k ≤ m. By precomposing with the appropriate colimit inclusions we
thus get cylinders Ck, Dk : Cyl(Dik)→ X.

The cylinders associated with case (46) to (48) in both stacks coincide thanks to the
assumptions, thus we can use identity modifications in these cases. We now consider case
(49): i.e globular sums B ∈ L (A) in which we added a new vertex ∗B to A at height
ht(∗B) = 2, in such a way that this new vertex is the unique element of its fiber. Fix a
globular sum B in this family, such that the vertex ∗B has been added to A over Dir = D1,
and consider the vertical stacks of 1-cylinders whose composites are the transpose of C ◦ %̂
and D ◦ %̂ respectively. The 2-cell in B corresponding to the vertex ∗B picks out the 2-cell
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associated with the 1-cylinder Cr (resp.Dr) via the composites:

B Cyl(A)
iB
// Cyl(A) X

C
// B Cyl(A)

iB
// Cyl(A) X

D
//

We can use the components of Θ to construct the following boundary of a 1-modification in
B(x, y) (for x = si1(C1)0, y = tim(Cm)1), where the 1-cylinders ΓB and ∆B are the ones
associated with the globular sum B in the two stacks (using the notation established at the
end of Chapter 7):

a b
%(U<r,V>rs(Cr))

//

a′ b′
%(U<r,V>rt(Cr))

//

b

b′

%∗τ(Uτ<r,V τ>rCr)

zz

a

a′

%∗σ(Uσ<r,V σ>rCr)

$$

b

b′

%∗τ(Uτ<r,V τ>rDr)

$$

a

a′

%∗σ(Uσ<r,V σ>rDr)

zz

%+
σ (Uσ<r,V σ>rΘr)ks

%+
τ (Uτ<r,V τ>rΘr)ks

ΓB
��

∆B

W_

Here, we have committed a minor abuse of language in denoting by Uσ what we normally
denote with ∂σU , and with %+

σ

(
Uσ<r, V

σ
>rΘr

)
the result of composing that pasting diagram

with a chosen operation whose boundary is given by (∂σ, ∂τ ) ◦ %∗σ, and similarly for the
analogues with τ . We can now use the fact that a filler certainly exists in ω-Cat to extend
this to a modification of 1-cylinders, and this concludes the construction for the first case.

Let us now address the case of globular sums B ∈ L (A) of case (50) to (53) that appear
consecutively in L (A). We will build a modification involving the sub-stack associated with
this subset of L (A), all at once rather than cylinder by cylinder. Let A ∼= Σα1 q

D0
. . . q

D0
Σαp

be the decomposition of A. Then, we are interested in those αq such that αq = D⊗k1 for
k > 0. Pick any such. The globular inclusion ΣD⊗k1 → A picks out k composable 2-cylinders
Γ1, . . . ,Γk via C and ∆1, . . . ,∆k via D. Notice that there exists an integer r such that
Γi = Cr+i, and the same holds if we replace C and Γ with D and ∆, with the same r.
Consider the vertical stacks of 1-cylinders whose composites are the transpose of C ◦ %̂ and
D ◦ %̂ respectively. As in the proof of Proposition 7.24, we may identify ΣL (αq) with a
subinterval of L (A). The sub-stack associated with the globular sums in the ordered set
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ΣL (αq) is mapped under C to a pasting diagram in X(x, y) of the form:

a b
%(U<q ,dUq ,V>q)

//a

c

%∗σ(∂σU<q ,s(Γ1),∂σV>q)

��

c d
%(U<q ,Vqe,V>q)

//

b

d

%∗τ (∂τU<q ,t(Γk),∂τV>q)

��

a

d

h1

��

a

d

h2

��

a

d

h3

��

a

d

h2k−2

''

a

d

h2k

//

a

d

h2k−1

,,

'
{�

α1
{�

α2
{�

α3
{�

...
α2k−3

{�
α2k−2

{�
α2k−1

{�

'
{�

where d = t2(Γ1), e = s2(Γ1). Here, we have set:

h2m+1 = %
(
U<q, Uq

<r, s(Γk−m), Vq>ra, V>q
)

h2m = %
(
U<q, Uq

<r, t(Γk−m), Vq>ra, V>q
)

where we have used F to denote the 3-cell filling a 2-cylinder F , and t(Γ0) is defined to be
s(Γ1). Obviously we get a similar one replacing every occurrence of C with D and of Γ with
∆. The 2-cells in X(x, y) labelled with α’s represent 1-cylinders whose source and target are
degenerate. In particular, each α2m+1 is a whiskering of the 3-cell Γk−m and each α2m is an
associativity constraint, for every 0 ≤ m ≤ k−1, as explained in detail at the end of Chapter
7. We can use the components of Θ to find a modification between the vertical composites
of these (degenerate) cylinders using the following lemma, which concludes the proof. �

The following is a result that is needed in the proof of the previous lemma, but we only
concern ourselves with a small simplification of it, leaving the (straightforward) proof of the
generalization of the result to the interested reader. The simplification consists of restricting
to the case k = 2, following the notation established above. Nevertheless, the proof of the
general case is entirely similar and has no more genuine content than the one we present.

Lemma 8.21. Assume given 2-cylinders C,D : A y B and C ′, D′ : A′ y B′ in a CW-
model X, with t(C) = s(C ′), t(D) = s(D′), together with 2-dimensional pasting diagrams
ε : E → X,ϕ : F → X with s2(ε) = t2(B), t2(ϕ) = s2(A) and an operation % : D2 →
F q
D0
D2 q

D1
D2 q

D0
E in C. This implies that, in particular, t(A) = s(A′) and t(B) = s(B′).

Also, assume given modifications Θ: C ⇒ D,Θ′ : C ′ ⇒ D′, with t(Θ) = s(Θ′), whose sources
and targets, denoted respectively with S : s(C) ⇒ s(D), S′ : s(C ′) ⇒ s(D′) and T : t(D) ⇒
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t(C), T ′ : t(D′) ⇒ t(C ′), are 0-collapsed. Then we get an induced modification εΘ′Θϕ be-
tween the vertical composite depicted below for (C,C ′) and the corresponding one for (D,D′).

x y
ε(CtA1)(CtA0)ϕ

//x

w

εs(C)ϕ

��

w z
ε(B1Cs)(B0Cs)ϕ

//

y

z

εt(G)ϕ

��

x

z

h1

��

x

z

h4

..

x

z

h2

��

x

z

h3

((

'{�

α1

{�

α2

{�

α3

{�

'
{�

The notation is defined as follows:

• h1 = %(ε, (t(G)(CtA1))(CtA0), ϕ), h2 = %(ε, ((B1Cs)s(G))(CtA0), ϕ)
• h3 = %(ε, (B1Cs)(s(G)(CtA0)), ϕ), h4 = %(ε, (B1Cs)((B0Cs)s(C)), ϕ)
• α1 = %∗(ε,G(CtA0), ϕ), α3 = %∗(ε, (B1Cs)C,ϕ)

where we have used F to denote the underlying 3-cell of a 2-cylinder F , α2 is simply an asso-
ciativity constraint, and the 2-cells labelled with “'” are also given by coherence constraints.
Also, juxtaposition indicates the result of composing using the composition operations that
appear in the definition of cylinders, and %∗ is an operation with boundary (∂σ ◦ %, ∂τ ◦ %).

Proof. To begin with, we observe that the hypotheses imply Cs = Ds and Ct = Dt, and
we denote these 1-cells with a and b respectively. We consider the following pasting diagram
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in Ω2(X,x, z) with x, z being the appropriate 1-cells of X depicted in the diagram above:

(εt(H)ϕ)(ε((bA1)(bA0))ϕ) (εt(G)ϕ)(ε((bA1)(bA0))ϕ)
(εT ′ϕ)(ε((bA1)(bA0))ϕ)

//(εt(H)ϕ)(ε((bA1)(bA0))ϕ)

ε((t(H)(bA1))(bA0))ϕ

'
��

(εt(G)ϕ)(ε((bA1)(bA0))ϕ)

ε((t(G)(bA1))(bA0))ϕ

'
��

ε((t(H)(bA1))(bA0))ϕ ε((t(G)(bA1))(bA0))ϕ
ε((T ′(bA1))(bA0))ϕ

// ε((t(G)(bA1))(bA0))ϕ

ε(((B1a)s(G))(bA0))ϕ

α1
��

ε(((B1a)s(G))(bA0))ϕε(((B1a)s(H))(bA0))ϕ
ε(((B1a)S′)(bA0))ϕ

oo

ε((t(H)(bA1))(bA0))ϕ

ε(((B1a)s(H))(bA0))ϕ

α′1
$$

ε((t(H)(bA1))(bA0))ϕ

ε(((B1a)s(H))(bA0))ϕ

ε(s(Θ′)(bA0))ϕ
zz

ε(((B1a)s(H))(bA0))ϕ

ε((B1a)(s(H)(bA0)))ϕ

α′2
��

ε(((B1a)s(G))(bA0))ϕ

ε((B1a)(s(G)(bA0)))ϕ

α2
��

ε((B1a)(s(G)(bA0)))ϕε((B1a)(s(H)(bA0)))ϕ
ε((B1a)(S′(bA0)))ϕ

oo

(ε((B1a)(B0a))ϕ)(εs(C)ϕ)(ε((B1a)(B0a))ϕ)(εs(D)ϕ)
(ε((B1a)(B0a))ϕ)(εSϕ)
oo

ε((B1a)((B0a)s(C)))ϕε((B1a)((B0a)s(D)))ϕ
ε((B1a)((B0a)S))ϕ

oo ε((B1a)((B0a)s(C)))ϕ

(ε((B1a)(B0a))ϕ)(εs(C)ϕ)

'
��

ε((B1a)((B0a)s(D)))ϕ

(ε((B1a)(B0a))ϕ)(εs(D)ϕ)

'
��

ε((B1a)(s(G)(bA0)))ϕ

ε((B1a)((B0a)s(C)))ϕ

α3
��

ε((B1a)(s(H)(bA0)))ϕ

ε((B1a)((B0a)s(D)))ϕ

α′3
$$

ε((B1a)(s(H)(bA0)))ϕ

ε((B1a)((B0a)s(D)))ϕ

ε((B1a)(s(Θ′)))ϕ
zz

' ��

' ��ε(Θ′(bA0))ϕ
ks

ε((B1a)Θ)ϕ
ks

' ��

' ��

' ��

in which all the cells labelled by “'” are obtained by verifying their existence in ω-Cat, since
their boundaries factor through appropriate globular sums, and Θ,Θ′ are the underlying 4-
cell of the modifications. If we set (εΘΘ′ϕ)s = εSϕ and (εΘΘ′ϕ)t = εT ′ϕ, we see that the
composite of this pasting diagram gives the modification εΘΘ′ϕ of the statement. �

Given an operation % : D2 → A in C, we can consider the map %̃ : Cyl(D2) → Cyl(A)
obtained by applying Lemma 8.6 to the following diagram:

Cyl(S1) Cyl(A)

(̂%◦σ,̂%◦τ)

++

Cyl(S1) Cyl(A)

(Cyl(%◦σ),Cyl(%◦τ))

33(ϑ%◦σ ,ϑ%◦τ )
��

Cyl(S1)

Cyl(D2)

(Cyl(σ),Cyl(τ))

��

Cyl(D2)

Cyl(A)

%̂

66

Cyl(D2)

Cyl(A)

%̃

@@

χ%

�#

By construction, there is a modification χ% : %̂⇒ %̃. Also, note that Cyl(%) and %̃, although
potentially different, are parallel 2-cylinders.

Lemma 8.22. In the situation of Lemma 8.20 and in the context of CW-models, we can
replace %̂ with %̃.

98



Proof. Consider the following diagram:

Cyl(A) Cyl (B)

(Cj)1≤j≤m

++

Cyl(A) Cyl (B)

(Dj)1≤j≤m

33
Cyl(D2) Cyl(A)

%̃

''

Cyl(D2) Cyl(A)

%̂

77
χ−1
%��

where we denote by χ−1
% the modification obtained by applying Lemma B.11 to the modifica-

tion χ%. It induces a modification (Cj)1≤j≤m◦χ%
−1 : (Cj)1≤j≤m◦%̃⇒ (Cj)1≤j≤m◦%̂, which we

can compose with the modification Θ◦ %̂ : (Cj)1≤j≤m ◦ %̂⇒ (Dj)1≤j≤m ◦ %̂ obtained in Lemma
8.6. Finally, we compose the result with (Dj)1≤j≤m ◦ χ% : (Dj)1≤j≤m ◦ %̂ ⇒ (Dj)1≤j≤m ◦ %̃
using the results in the Appendix, to get the desired modification. �

In what follows, we consider a homogeneous map ϕ : A → B and we use the notation ϕ̃
to denote the map Cyl(A)→ Cyl(B) obtained by glueing the various maps ϕ̃j : Cyl(Dij )→
Cyl(Bj) for 1 ≤ j ≤ m, where ϕj is the homogeneous part of the composite Dij → A → B

for every globe Dij in the globular decomposition of A, and colimk Bk ∼= B.

Lemma 8.23. Assume given homogeneous operations % : D2 → A and ϕ : A → B. There
is a 1-collapsed modification of CW-model of the form:

Λ: ϕ̃ ◦ %̃⇒ ϕ̃ ◦ %

For dimensionality reasons, this is equivalent to ϕ̃ ◦ %̃ = ϕ̃ ◦ %.

The idea of the proof is to consider the following diagram of composable modifications,
where the solid ones have already been constructed:

ϕ̃ ◦ %̃ ϕ̃ ◦ %̂
ϕ̃◦χ% +3 ϕ̃ ◦ %̂ ϕ̂ ◦ %̂

χϕ−1◦%̂
+3 ϕ̂ ◦ %̂ ϕ̂ ◦ %

η
+3 ϕ̂ ◦ % ϕ̃ ◦ %

χϕ◦% +3 (58)

We then have to construct the modification denoted with η, and then prove that the resulting
composite can be adjusted so as to be rendered 1-collapsed. This is accomplished by making
use of the following lemma, whose assumptions are satisfied in the case at hand.

Lemma 8.24. Assume given a pair of parallel n-cylinders C,D : Ay B in a CW-model X,
together with a modification Θ: C ⇒ D between them. Assume further that s(Θ) and t(Θ) are
(n− 1)-collapsed, and that there are (n+ 2)-cells ηs : s(Θ)→ 1

ŝ(C), ηt : t(Θ)→ 1
t̂(C), where

Ê denotes the n-cell filling an (n − 1)-cylinder and 1f the choice of an identity (n + 1)-cell
on an n-cell f . Then there exists an n-collapsed modification Θ′ : C ⇒ D.

Proof. We prove the statement by induction on n > 0. Let n = 1, and set Θε = ε(Θ)
for ε = s, t. Consider the following pasting diagram in X (s(Cs), t(Ct)), where the unlabelled
2-cell comes from unitality of composition in CW:

CtA BCs

Ĉ

%%

CtA CtA

1
**

CtA CtA

ΘsA

44 CtA BCs
Ĉ
// BCs BCs

1
**

BCs BCs

BΘt

44CtA BCs

D̂

99

��

Θ ��

(ηs)−1A �� B(ηt)−1 ��
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The composite of this pasting diagram is the modification Θ′ we are looking for.
Now let n > 1, we have a modification of (n−1)-cylinders Θ: C ⇒ D in X (s(Cs), t(Ct)).

For ε = s, t we have ε(C) = ε(C) = ε(D) = ε(D) and ε(Θ) is an n-cell between (n − 2)-
cylinders. Also, we can view ηs, ηt as (n + 1)-cells in X (s(Cs), t(Ct)), so that we can apply
the inductive hypothesis to get a modification Θ′ : C ⇒ D which consists of an (n + 1)-cell
between (n − 1)-cylinders in X (s(Cs), t(Ct)). Its transpose Θ′ : C ⇒ D is the modification
we are looking for and this concludes the proof. �

We refer the reader to Lemma 8.16 for the notation used in what follows. The proof is
quite technical, but crucial to get the missing piece for this section.

Lemma 8.25. Assume given homogeneous operations % : D2 → A and ϕ : A → B. There
is a modification of the form:

η : ϕ̂ ◦ %̂⇒ ϕ̂ ◦ % : Cyl(D2)→ Cyl(B)

with source and target given by the modifications Cyl(j)◦δ(ϕ◦i)ε,%ε for ε = σ, τ , where i◦%ε is
the homogeneous-globular factorization of %◦ ε and, similarly, j ◦ (ϕ◦ i)ε is the homogeneous-
globular factorization of ϕ ◦ i.

D2 A
%
//

D1

D2

OO

ε

OO

D1 A′
%ε
// // A′

A

OO

i

OO
A B

ϕ
//

A′ B′
(ϕ◦i)ε

// // B′

B

OO

j

OO

Here, we have used the arrow � to denote homogeneous maps and � for globular ones.

Proof. The proof proceeds very similarly as to that of Lemma 8.20, i.e. we construct
the modification ∆ as the composite of modifications from substacks of the stack defining
ϕ̂◦ %̂ towards substacks of the one defining ϕ̂ ◦ %, parametrized by the globular sums in L (A)
in an exhaustive fashion. We let:(

i1 i2 . . . im−1 im

i′1 . . . i′m−1

) (
j1 i2 . . . jq−1 jq

j′1 . . . j′q−1

)
be the table of dimensions of A and B respectively. Notice that, by assumption on the
homogeneity of % and ϕ, we have ik, jr ≤ 2 for every 1 ≤ k ≤ m and 1 ≤ r ≤ q. We proceed
representably. This means that we are given a CW-model X and a map C : Cyl(B) → X,
with C : U y V . From this, we get cylinders C1, . . . , Cq in X, where Ck is a jk-cylinder. The
two cylinders C ◦ ϕ̂ ◦ %̂ and C ◦ ϕ̂ ◦ % are both obtained as vertical composites of (different)
stacks of 1-cylinders in X(x, y) for x = si1(C1)0, y = sim(Cm)1. Therefore, we need to provide
a filler for this pair of composite 1-cells in the bicategory hom (D1, X(x, y)) (see the Appendix
for clarifications on this notation), and we do so by decomposing both stacks into some sub-
composite, and we then explain how to find fillers for each such piece. As in Lemma 8.20, we
firstly consider the cases (46) to (48), where modifications can be constructed by using the
fact that the corresponding cylinders factor through appropriate globular sums, and in ω-Cat
the boundary data of these modifications admits fillers in a way that is compatible with the
modifications we already have for the boundary. We now address case (49), i.e. globular sums
D ∈ L (A) which have been obtained by adding a new vertex ∗D to A at height ht(∗D) = 2,
in such a way that this new vertex is the unique element of its fiber. Given such globular

100



sum D, the 2-cell in D represented by ∗D picks out via:

D Cyl(A)// Cyl(A) Cyl(B)
ϕ̂
// Cyl(B) X

C
//

the 2-cell associated with the 1-cylinder Fk = ϕ̂k(Cnk , . . . , Cnk+1−1), where ϕ = (ϕi)1≤i≤m,
according to the globular decomposition of A, and each of the ϕk has the sub-globular sum
Gk ⊂ B spanned by Djnk

, . . . , Djnk+1−1 as codomain. Corresponding to such D, we have a
cylinder in the stack associated with C ◦ ϕ̂ ◦ %̂ of the form:

a b
%
(
ϕ>k

(
U|G>k

)
,s(Fk),ϕ<k

(
V|G<k

))
//

a′ b′
%
(
ϕ>k

(
U|G>k

)
,t(Fk),ϕ<k

(
V|G<k

))//

b

b′

%∗τ
(
(ϕ>k)τ

(
U|G>k

)
,Fk,(ϕ<k)τ

(
V|G<k

))
��

a

a′

%∗τ
(
(ϕ>k)τ

(
U|G>k

)
,Fk,(ϕ<k)τ

(
V|G<k

))
��

��

We have used ϕ>k
(
U|G>k

)
to denote the result of composing, using (ϕi)i≥k, the restriction

of U to the union of the sub-globular sum of B given by Gi for i > k. Similarly for the other
piece of notation involving the indices smaller than k. We want to produce a modification
having this cylinder as source, and having as target a sub-composite of the vertical stack of
1-cylinders associated to C ◦ ϕ̂ ◦ %. This sub-stack is the one parametrized by the family of
globular sums of the form:

{Dj1 q
Dj′1

. . . q
Dj′

nk−1

E q
Djnk+1−1

. . . q
Dj′

q−1

Djq}E∈L (Gk) ⊂ L (B)

Notice that the respective boundaries of these cylinders are of the same form as the ones
appearing in the proof of Lemma 8.16, and therefore we can use the modifications we produced
there to compare the boundaries. These constitute the boundary of the modification we want
to construct, whose existence follows, finally, from the fact that this boundary factors through
the globular sum:

Dj1 q
Dj′1

. . . q
Dj′

nk−1

q
Dj′

nk−1

Σ(D⊗|L (D
⊗nk+1−nk
1 )|

1 ) q
Djnk+1−1

. . . q
Dj′

q−1

Djq

and a filler for it certainly exists in ω-Cat. We now turn to the case of globular sums
C ∈ L (A) corresponding to case (50) to (53). We can thus consider the decomposition A =
Σα1 q

D0
. . . q

D0
Σαp and some αk such that αq = D⊗k1 . The globular inclusion ΣD⊗k1 → A picks

out k composable 2-cylinders Γ1, . . . ,Γk in X, where we have Γi = ϕr+i(Cnr+i , . . . , Cnr+i+1−1)
for a unique integer r. We will construct a modification whose source is given by a stack of
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(collapsed) cylinders of the form:

a b
%(U<q ,dUq ,V>q)

//a

c

%∗σ(∂σU<q ,s(Γ1),∂σV>q)

��

c d
%(U<q ,Vqe,V>q)

//

b

d

%∗τ (∂τU<q ,t(Γk),∂τV>q)

��

a

d

h1

��

a

d

h2

��

a

d

h3

��

a

d

h2k−2

''

a

d

h2k

//

a

d

h2k−1

,,

'
{�

α1
{�

α2
{�

α3
{�

...
α2k−3

{�
α2k−2

{�
α2k−1

{�

'
{�

Here, we set d = t2(Γ1), e = s2(Γ1), and:

h2m+1 = %
(
U<q, Uq

<r, s(Γk−m), Vq>ra, V>q
)

h2m = %
(
U<q, Uq

<r, t(Γk−m), Vq>ra, V>q
)

where, as before, we have used F to denote the underlying 3-cell of a 2-cylinder F , and t(Γ0)
is defined to be s(Γ1). The 2-cells in X(x, y) labelled with α’s represent 1-cylinders whose
source and target are degenerate. In particular, α2m+1 is a whiskering of the 3-cell Γk−m
and α2m is an associativity constraint. The target of the modification we want to construct
is a composite of a sub-stack of the one associated with ϕ̂ ◦ %, parametrized by the family of
globular sums given by

{Dj1 q
Dj′1

. . . q
Dj′

nk−1

E q
Djnk+1−1

. . . q
Dj′

q−1

Djq}E∈L (Gp) ⊂ L (B)

To finish this construction, we introduce an intermediate step in this modification by taking
into consideration Lemma A.2, and we focus on the square (59) that originates from it. By
applying this to each of the (possibly degenerate) 1-cylinders in the sub-stack we are consid-
ering, we obtain a new stack of the same shape where all the new 1-cylinders are whiskering
of the previous ones in the appropriate sense. The respective boundaries of these stacks
we are comparing are of the same form as the ones appearing in the proof of Lemma 8.16,
and therefore we can use the modifications we produced there to compare the boundaries.
In the same way, the boundary of this new “whiskered” stack and the one of the source of
the modification we want to build can also be compared using the modification of Lemma
8.16 (which was indeed the composite of two such). After having composed the boundary
with such modifications, filling in the rest of the modification follows from a straightforward
application of the classical result of coherence for pseudofunctors and bicategories. �

By construction, it is clear that the boundary of the composite modification in (58)
satisfies the assumptions of Lemma 8.24. Hence, we get the abovementioned 1-collapsed
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modification which implies:
ϕ̃ ◦ %̃ = ϕ̃ ◦ %

for dimensionality reasons. Therefore, we see that an extension to C2 is equivalently obtained
by setting Cyl(%) = %̃ for all homogeneous operations % : D2 → A. Finally, we recall that,
by definition, C3 ∼= C2[X2] and so we can obtain the desired extension depicted in (56) by
defining Cyl(Φ), for every Φ: D3 → A added as a filler of (ϕ0, ϕ1) ∈ X2, in the following
manner:

D2 A
ϕ0

//
D2 A

ϕ1
//D2

D3

τ2

��

D2

D3

σ2

��

D3

A

Φ

<<

 

Cyl(S2) Cyl(A)

(ϕ̂0,ϕ̂1)

++

Cyl(S2) Cyl(A)

(ϕ̃0,ϕ̃1)

33(χϕ0 ,χϕ1 )
��

Cyl(S2)

Cyl(D3)

(Cyl(σ),Cyl(τ))

��

Cyl(D3)

Cyl(A)

Φ̂

55

Cyl(D3)

Cyl(A)

Cyl(Φ)

>>

�#

It turns out that extending along i3 : C3 → C4 = C is automatic, thanks to the following
result.

Lemma 8.26. Suppose given a pair of n-cylinders (F,G) in a CW-model X, where C

is a coherator for n-categories, such that s(F ) = s(G), t(F ) = t(G) and F0 = G0 = A,
F1 = G1 = B. Then F = G.

Proof. If n = 0 the result is clear. Assume n > 0, then we get (n− 1)-cylinders F ,G in
X (s(f), t(g)) where f = Fs = Gs and g = Ft = Gt. By definition, we have F ,G : gA y Bf

and ε(F ) = ε(G) for ε = s, t. Therefore, by inductive assumption we get that F = G, which
concludes the proof. �

We can now apply this lemma to the situation where we have a pair of parallel operations
α, β : D3 → A in X3, so that α = β in C, and interpretations Cyl(α),Cyl(β) : Cyl(D3) →
Cyl(A) which are compatible with the map ι : D3qD3 → Cyl(D3). We want to prove that
Cyl(α) = Cyl(β), and we do so representably. Given H : Cyl(A)→ Y , with Y ∈Mod(CW),
we see that

(H ◦Cyl(α))ε = Hε ◦ α = Hε ◦ β = (H ◦Cyl(β))ε
for ε = 0, 1. Moreover, s(H ◦Cyl(α)) = H ◦Cyl(α ◦ σ) = H ◦Cyl(β ◦ σ) = s(H ◦Cyl(β)),
and similarly for the target. This implies Cyl(α) = Cyl(β).

This concludes the construction of the C-model PX associated with a CW-model X, as
we record here below.

Theorem 8.27. Let C be a 3-coherator for categories. Then there is an extension of the
form:

C

Mod(CW)

Cyl

::
Θ0 Mod(CW)

Cyl
//Θ0

C
��
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Thanks to the results of Chapter 6, it is possible to extend the domain a bit further, thus
providing more structure on cylinders, as follows.

Corollary 8.28. Let C be a 3-coherator for categories, then there exists an extension of
the form:

CW

Mod(CW)

Cyl

::
Θ0 Mod(CW)

Cyl
//Θ0

CW
��

Proof. Such an extension amounts to endow the C-model PX obtained in the previous
theorem with a system of inverses with respect to the chosen systems of compositions and
identities. This was done in Theorem 6.8. �

As anticipated earlier, when n = 3 we can use the results of this chapter in conjunction
with those of Chapter 6 to obtain an endofunctor P on Mod(CW) with the desired properties.

Proposition 8.29. Given a coherator C for 3-categories, there exists a functor:

P : Mod(CW)→Mod(CW)

equipped with a natural transformation ev : P⇒ Id× Id which is a pointwise fibration.
Moreover the composites with the product projections evi

def= π1 ◦ ev are trivial fibrations
for i = 0, 1.

Proof. It is enough to define (PX)k
def= Mod(CW) (Cyl(Dk), X) for every CW-model

X, and then use the previous corollary to endow this globular set with the structure of a
CW-model. �

It follows that, in the situation of the previous proposition, CW is a coherator for 3-
groupoids, and we can now present the central result of this work.

Theorem 8.30. There exists a cofibrantly generated semi-model structure on the cate-
gory 3-Gpd ∼= Mod(CW) of Grothendieck 3-groupoids of type CW, whose set of generating
cofibrations (resp. trivial cofibrations) consists of boundary inclusions {Sk−1 → Dk}0≤k≤4

(resp. source maps {σk : Dk → Dk+1}0≤k≤2), where by definition we set S3 → D4 equal to
(1, 1) : S3 → D3. The weak equivalences coincide with the class W defined in (3.2), and all
the objects are fibrant.

Proof. Thanks to the previous corollary, we have that CW satisfies all the hypotheses
of Theorem 4.2, and this concludes the proof. �
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CHAPTER 9

Perspectives

To sum up, the goal of this work was to investigate the homotopy theory of globular
models for higher structures, in the form of Grothendieck ∞-categories and ∞-groupoids.
We defined the underlying globular set for a path object on the category of ∞-groupoids
and proved how endowing it with the structure of an ∞-category is enough to get a semi-
model structure on the category of∞-groupoids and therefore prove the homotopy hypothesis
thanks to the work of Henry (see [Hen]). Also, we characterized those globular theory whose
category of models admits a semi-model structure of a specific form, and whose objects can be
endowed with the structure of an ∞-groupoid. We have then addressed a finite-dimensional
version of this problem and achieved the desired result in dimension n = 3.

At this point, there are two possible directions one could take. On the one hand, one
could extend our construction of the path object on 3-dimensional CW-models to infinite-
dimensional ones.

On the other hand, Grothendieck’s homotopy hypothesis admits an adaptation to n-types,
which can be roughly formulated as follows:

Weak n-groupoids model all homotopy n-types

As mentioned earlier, in [Hen] it was proved that if a (semi)-model structure on the category
of Grothendieck ∞-groupoids exists, then the homotopy hypothesis holds true: this result is
achieved by showing that the associated (∞, 1)-category (i.e. quasi-category) has the same
universal property as that of homotopy types, namely they are both the free cocompletion of
the terminal (∞, 1)-category. More precisely, if we consider the (∞, 2)-category of presentable
(∞, 1)-categories and cocontinuous functors, then we have that:

FunL (H, C) ' C

where H denotes the (∞, 1)-category of homotopy types and FunL is the (∞, 1)-category of
cocontinuous functors from H to C.

One could adapt that result to the case of n-groupoids, to show that under similar con-
ditions, i.e. the existence of a (semi)-model structure on the category of Grothendieck n-
groupoids, the generalized homotopy hypothesis is valid. Thanks to Theorem 8.30, this
would immediately imply that Grothendieck 3-groupoids model homotopy 3-types (a similar
statement involving Gray-groupoids is usually credited to Joyal and Tierney, and was proven
independently in [Ber2] and [La2]).

The key point is to formulate the correct universal property that the (∞, 1)-category of
n-types Hn satisfies. One possible way is to exploit, given any complete (∞, 1)-category C,
the tensoring with objects of H: given an object x ∈ C and a homotopy type w ∈ H, the
tensor x ⊗ w is defined by taking the colimit of the constant functor W → C at x, where
we identify the homotopy type w with the corresponding Kan complex (thought of as an
∞-groupoid) W . By functoriality of colimits, one gets a map x ⊗ Sn → x for every x ∈ C
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and every n ≥ −1 induced by Sn → ∗. The universal property of Hn can then be stated as
follows:
Hn is the free cocomplete (∞, 1)-category containing an object x such that x⊗ Sn+1 → x is

an equivalence
Having formulated this universal property, it is then a matter of adapting the machinery
developed in [Hen] to the finite case, guided by the case n = 3 where the semi-model
structure has already been established.

On the semantics side, one may try to compare Grothendieck ∞-categories with Verity’s
(weak) complicial sets, whose theory is developed in [Ve2] in which, among other things, the
author equips this category with a model structure. The first step is to define a globular
sums-preserving functor C → AlgCs whose codomain denotes the category of algebraically
fibrant (see [Nik] for the notion of algebraically fibrant object) weak complicial sets.

By left Kan extension this would induce an adjunction of the form:

∞-Cat
((

gg ⊥ AlgCs

where∞-Cat 'Mod(C) denotes the category of models of a coherator for∞-categories. The
right adjoint should preserve weak equivalences, although we have not defined them yet in
the case of Grothendieck ∞-categories. The conjecture is that this functor is an equivalence
of relative categories.
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APPENDIX A

Pseudofunctoriality of whiskerings

In this section we want to record some results and constructions that involve the Grothendieck
2-category of morphisms X(x, y), where X is a Grothendieck 3-category and x, y are 0-cells
in X. Clearly, this all applies to the case of globular theories with inverses. Having in mind
that Grothendieck 2-categories essentially corresponds to unbiased bicategories, we will treat
them as such.

Let’s consider the following situation. We are given 1-dimensional globular pasting dia-
grams in X of the form α : A→ X,β : B → X, with ∂σ(α) def= α◦∂σ = w, ∂τ (α) = x, ∂σ(β) =
y, ∂τ (β) = z. Moreover, we are given a homogeneous operation % : D1 → A q

D0
D1 q

D0
B. We

then have the following result:

Lemma A.1. The data above extend to a pseudofunctor of bicategories of the form:

(α,−, β) ◦ % : X(x, y)→ X(w, z)

Proof. Choose operations %2, %3 as depicted in the following diagrams:

D1 A q
D0
D2 q

D0
B

(1,σ,1)◦%
//

D1 A q
D0
D2 q

D0
B

(1,τ,1)◦%
//D1

D2

τ

��

D1

D2

σ

��

D2

A q
D0
D2 q

D0
B

%2

77

D2 A q
D0
D3 q

D0
B

(1,σ,1)◦%2
//

D2 A q
D0
D3 q

D0
B

(1,τ,1)◦%2
//D2

D3

τ

��

D2

D3

σ

��

D3

A q
D0
D3 q

D0
B

%3

77

Next, define the underlying map of globular sets to be given by (α,−, β) ◦ %k+1 : X(x, y)k →
X(w, z)k on k-cells, where we implicitly use the isomorphism of sets X(a, b)k ∼= {f ∈
Xk+1|sk(f) = a, tk(f) = b}. The fact that this extends to a pseudofunctor is a simple
exercise using the algebraic structure of globular sums, and is thus left to the interested
reader. �

If we go one dimension up, we can consider the following situation: we are given globular
sums A,B with max{ht(A), ht(B)} = 2, and maps α : A→ X,β : B → X, with ∂ht(A)

σ (α) def=
α ◦ ∂ht(A)

σ = w, ∂
ht(A)
τ (α) = x, ∂

ht(B)
σ (β) = y, ∂

ht(B)
τ (β) = z. Furthermore, assume given a

homogeneous operation of the form % : D2 → A+D2 + B, where + denotes either q
D0

or q
D1

.
We then have the following result, whose proof is analogous to that of the previous one.

Lemma A.2. The previous data determine a pseudo-natural transformation of the form:

X(x, y) X(w, z)

(
∂

ht(A)−1
σ (α),−,∂ht(B)−1

σ (β)
)
◦%σ

''

X(x, y) X(w, z)

(
∂

ht(A)−1
τ (α),−,∂ht(B)−1

τ (β)
)
◦%τ

77
(α,−,β)◦% ��

107



where %ε denotes the homogeneous part of the composite % ◦ ε for ε = σ, τ .

Finally, we observe that given bicategories K,L , a square in K of the form:

A B
h
//A

C

f

��

C D
k
//

B

D

g

��
Θ ��

and a pseudo-natural transformation:

K L

F

$$

K L

G

;;α ��

we get a filler for the square:

FA GB
G(h)αA

//FA

FC

F (f)
��

FC GD
F (k)αD

//

GB

GD

G(g)
��

∃Φ ��
(59)

Indeed, it is enough to consider the following composite:

G(g)(G(h)αA) G(gh)αA
∼=
// G(gh)αA G(kf)αA

G(Θ)αA
// G(kf)αA αDF (kf)

αkf
// αDF (kf) (αDF (k))F (f)

∼=
//

It is clear that an analogous statement holds if we replace squares, i.e. 1-cylinders, with
degenerate 1-cylinders.
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APPENDIX B

A bicategory of cylinders and modifications

Given an ∞-groupoid X and an integer n ≥ 0, we want to organize the collection of
n-cells, n-cylinders and modifications between n-cylinders into an algebraic structure that
allows us to perform calculations with them. This is a truncation of a (yet to be defined)
internal hom ∞-groupoid of the form hom(Dn, X), which justifies the notation we establish
here below.

Definition B.1. Given an∞ groupoidX, we define a 2-truncated globular set hom(Dn, X)
out of it, for each n ≥ 0, as follows: its objects are n-cells in X; 1-cells are n-cylinders
C : Ay B and there is a unique 2-cell C ⇒ D if and only if there exists a modification from
C to D.

Remark B.2. Everything that follows can be proven to hold true also in Mod(C) (or
Mod

(
CW)

)
for any given coherator for ∞-categories C. Indeed, all the fillers obtained using

contractibility can be obtained using the methods we described in Section 5, once we observe
that the latching map of Ξ: Cyl(•) ∗Cyl(•) → M• is a pushout of the boundary inclusion
Sn+1 → Dn+2, as proven in Lemma 8.4.

Theorem B.3. Given n ≥ 0 and an ∞-groupoid X, hom(Dn, X) can be endowed with
the structure of a bicategory.

All the proof and construction that follow, can be adapted to the more general case of
(possibly) degenerate cylinders as 1-cells and (possibly) collapsed modifications as 2-cells.

We already have some of the operations required to get a locally posetal bicategory
out of it: composition of 1-cells is given by vertical composition of cylinders, and the
identity 1-cell on an n-cell A ∈ Xn is the trivial cylinder CA defined as the composite

Cyl(Dn) Dn
Cn
// Dn X

A
// .

The existence of the rest of the structure in the case n = 0 is straightforward, and follows
directly from the structure of the coherator C. In what follows, we fix an integer n > 0 and we
assume as inductive hypotheses that hom(Dk, X) is a (locally posetal) bicategory for each
k < n together with the statements in Lemma B.10.

Let us now firstly address vertical composition of modifications. From here onwards,
until the end of this section, whenever a 1-cell is labelled with Θ,Ψ or Φ, that refers to the
coherence cylinders considered in Definition 38.

Lemma B.4. Given a pair of composable modifications Θ: F ⇒ G, Ψ: G ⇒ H between
n-cylinders F,G,H : Ay B in X, there exists a composite modification Ψ ◦Θ: F ⇒ H

Proof. Consider the following 2-dimensional pasting diagram in hom(Dn−1, X(x, y)),
where x = s2(Θs), y = t2(Θt) and the 2-cells (Ψ ◦ Θ)ε = Ψε ◦ Θε for ε = s, t come from the
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base case n = 0:
HtA

FtA

Γ(A,(Ψ◦Θ)t)

ww

FtA

BFs

F̄
��

BFs

BHs

Υ((Ψ◦Θ)s,B)
''

HtA

GtA

Γ(A,Ψt)
��

GtAFtA
Γ(A,Θt)

oo GtA

BGs

Ḡ
��

BFs BGs
Υ(Θs,B)

// BGs

BHs

Υ(Ψs,B)
��

HtA

BHs

H̄

vv

α +3

Θ̄ +3

β
+3

Ψ̄
+3

Here, the existence of α (resp. β) follows by an application of Lemma 8.5 to the contractible
∞-groupoid Dn q

D0
D2 q

D1
D2 (resp. D2 q

D1
D2 q

D0
Dn). The composite of this pasting diagram

defines the modification claimed in the statement, thus concluding the proof. �

We now construct whiskerings of 2-cells with 1-cells.

Lemma B.5. Assume given n-cylinders F : Ay B, G : B y C together with a modifica-
tion Θ: F ⇒ F ′ in X. Then there is an induced modification G ∗Θ: G ◦ F → G ◦ F ′.

Proof. Consider the bicategory hom(Dn−1, X(sn(A), tn(C))), and the following 2-dimensional
pasting diagram in it:

(GtF ′t)A(GtFt)A
Γ(A,GtΘt)
oo(GtFt)A

Gt(FtA)

Ψ
��

Gt(FtA)

Gt(BFs)

GtF
��

Gt(BFs)

(GtB)Fs

Ψ
��

(GtB)Fs

(CGs)Fs

GFs
��

(CGs)Fs

C(GsFs)

Ψ
��

C(GsFs) C(GsF ′s)Υ(GsΘs,C)
//

(GtF ′t)A

Gt(F ′tA)

Ψ
��

Gt(F ′tA)

Gt(BF ′s)

GtF ′

��

Gt(BF ′s)

(GtB)F ′s

Ψ
��

(GtB)F ′s

(CGs)F ′s

GF ′s
��

(CGs)F ′s

C(GsF ′s)

Ψ
��

Gt(F ′tA)Gt(FtA)
GtΓ(A,Θt)
oo

Gt(BFs) Gt(BF ′s)
GtΥ(Θs,B)

//

(GtB)F ′s(GtB)Fs oo

(CGs)Fs (CGs)F ′s//

+3

ind.hyp.
+3

+3

ind.hyp.
+3

+3

The unlabeled cells come from the contractibility of the appropriate globular sums, while the
remaining 2-cells are provided by the inductive hypothesis, as indicated. �

Let us now address the problem of constructing identity 2-cells in hom(Dn, X).

Lemma B.6. Given an n-cylinder F : A y B in X, there exists a modification of n-
cylinders in X of the form 1F : F ⇒ F .

Proof. Consider the following 2-dimensional pasting diagram in hom (Dn−1, X(x, y)),
with x = sn(A), y = tn(B) and where the pair of 2-cells (1F )ε = 1Fε for ε = s, t comes from
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the base case n = 0, where 1f denotes the choice of an identity 2-cell on a 1-cell f :

FtA

FtA

Γ(A,(1Ft ))

��

FtA

FtA CFtA
mmFtA

BFs

F̄
��

BFs

BFsΥ((1Fs ),B) 11

BFs

BFs

CBFs

��

FtA

BFs

F̄

��

α

�#

β ;C

γ
+3

Here, α (resp. β) is obtained by applying Lemma 8.5 to the contractible∞-groupoidDn q
D0
D1

(resp. D1 q
D0
Dn), and γ is a pasting of unit constraints in the bicategory hom(Dn−1, X(x, y)).

The composite of this pasting diagram provides the modification we are looking for, and thus
we conclude the proof. �

The next lemma provides the unit constraint for the bicategory structure on hom(Dn, X).
We only prove one side of the unit constraint, the other one being analogous.

Lemma B.7. Given an n-cylinder C : Ay B there exists a modification υ : C ◦CA ⇒ C.

Proof. Consider the following pasting diagram in hom(Dn−1, X(sn(A), tn(B))), where
a = sn(A), b = tn(B) and the pair of 2-cells υs, υt comes from the base case n = 0:

ctA(ct1a)A
Γ(A,υt)

oo(ct1b)A

ct(1bA)

Ψ
��

ct(1bA)

ct(A1a)

ctCA

��

ct(A1a)

(ctA)1a

Ψ
��

(ctA)1a (Bcs)1a
C1a
// (Bcs)1a B(cs1a)Ψ

// B(cs1a)

Bcs

Υ(υt,A)

OO

ctA

(ctA)1a

λ1

��

(Bcs)1a

Bcs

λ2

??

ctA

Bcs

C

��

+3

(1) ;C

KS

The unlabeled 2-cells come from contractibility of appropriate globular sums, as well as λ1

and λ2, and the 2-cell labeled with (1) is provided by the inductive hypothesis. �

We now turn to the final construction, that of the associator for the bicategory hom(Dn, X).

Lemma B.8. Given a composable triple of n-cylinders F : Ay B, G : B y C, H : C y D

in X, there exists a modification α : (H ◦G) ◦ F ⇒ H ◦ (G ◦ F ).

Proof. The required 2-cells αs, αt come from the base case n = 0. The modification α
is induced by composing the 2-dimensional pasting diagram in hom(Dn−1, X(sn(A), tn(C)))
depicted in Figure 1 here below. In said diagram, the unlabelled 2-cells and the 1-cells ηi, µi
and νi for i = 1, 2 all come from contractibility of suitable globular sums, others are obtained
by inductive hypothesis (when indicated) and the 2-cells labelled with (0) and (1) are built
in an analogous way. �
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Figure 1. Inductive step for the associator

(ht(GtFt))A

((htGt)Ft)A

Γ(A,αt)
ss

((htGt)Ft)A

(htGt)(FtA)

Ψ
��

(htGt)(FtA)

(htGt)(BFs)

(htGt)F
��

(htGt)(BFs)

((htGt)B)Fs

Ψ

��

((htGt)B)Fs

(D(hsGs))Fs

H◦GFs
��

(D(hsGs))Fs

D((hsGs)Fs)

Ψ
��

D((hsGs)Fs)

D(hs(GsFs))
Υ(αs,D)

��

(ht(GtFt))A

ht((GtFt)A)
Ψ

,,

ht((GtFt)A)

ht(C(GsFs))

htG◦F

��

ht(C(GsFs))

(htC)(GsFs)

Ψ

��

(htC)(GsFs)

(Dhs)(GsFs) H(GsFs)
mm

(Dhs)(GsFs)

D(hs(GsFs))
Ψ

��

ht((GtFt)A)

ht(Gt(FtA))

htΨ

uu

ht(Gt(FtA))

ht(Gt(BFs))

ht(GtF )
��

ht(Gt(BFs))

ht((GtB)Fs)

htΨ
��

ht((GtB)Fs) ht((CGs)Fs)
ht(GFs)

// ht((CGs)Fs)

ht(C(GsFs))

htΨ

OO

ht(Gt(FtA))(htGt)(FtA) η1
oo

(htGt)(BFs) ht(Gt(BFs))η2
//

((htGt)B)Fs (ht(GtB))Fs
ΨFs // (ht(GtB))Fs (ht(CGs))Fs

(htG)Fs
// (ht(CGs))Fs

((htC)Gs)Fs

ΨFs
��

((htC)Gs)Fs((Dhs)Gs)Fs
(HGs)Fs
oo((Dhs)Gs)Fs(D(hsGs))Fs

ΨFsoo

ht((GtB)Fs)

(ht(GtB))Fs

µ1

��

(ht(CGs))Fs

ht((CGs)Fs)

µ2

OO

(htC)(GsFs)

((htC)Gs)Fs

ν1

{{

((Dhs)Gs)Fs

(Dhs)(GsFs)

ν2

��

+3

ind.hyp.+3 ind.hyp.+3

+3

(0) +3 +3

ind.hyp+3

(1) +3+3

(60)

Lemma B.9. Given a pair of composable modifications Θ: F ⇒ G, Ψ: G ⇒ H between
n-cylinders F,G,H : Ay B in X, there exists a composite modification Ψ ◦Θ: F ⇒ H.

Proof. The 2-cells (Ψ◦Θ)ε = Ψε◦Θε for ε = s, t come from the base case n = 0. Consider
the following 2-dimensional pasting diagram in hom(Dn−1, X(x, y)), where x = s2(Θs) and
y = t2(Θt):

HtA

FtA

Γ(A,(Ψ◦Θ)t)

ww

FtA

BFs

F̄
��

BFs

BHs

Υ((Ψ◦Θ)s,B)
''

HtA

GtA

Γ(A,Ψt)
��

GtAFtA
Γ(A,Θt)

oo GtA

BGs

Ḡ
��

BFs BGs
Υ(Θs,B)

// BGs

BHs

Υ(Ψs,B)
��

HtA

BHs

H̄

vv

α +3

Θ̄ +3

β
+3

Ψ̄
+3

The existence of α (resp. β) follows by contractibility ofDn q
D0
D2 q

D1
D2 (resp. D2 q

D1
D2 q

D0
Dn).

The composite of this pasting diagram defines the modification claimed in the statement, thus
concluding the proof. �

112



The following lemma is a collection of auxiliary facts that we have included in the inductive
assumptions in order to prove the existence of the bicategory structure.

Lemma B.10. The following facts hold true:

(1) Given an n-cylinder F : A y B in Ωm(X,ϕ), a 1-cell g in Ωm(X,ϕ) and a 1-cell
h : a → sn+m(A) in X, such that s2(g) = tn+1(A) = tn+1(B), there is a modifica-
tion χ as displayed below, where the cylinders denoted by λ and µ are obtained by
contractibility of the appropriate globular sums:

(gA)h(gh)(Ah) λ
oo(gh)(Ah)

(gh)(Bh)

(gh)(Fh)
��

(gh)(Bh) (gB)h
µ
//

(gA)h

(gB)h

(gF )h
��

χ
+3

(2) Let F : A y B, G : B y C be n-cylinders in Ωm(X,ϕ1, ϕ2) where (ϕ1, ϕ2) =
ϕ : Sm−1 → X. Given a 1-cell h : a → sn+m(A) = sn+m(B) = sn+m(C) in X,
we get a modification:

Θg,f,h : (Gh) ◦ (Fh)⇒ (G ◦ F )h : Ahy Ch

where (•)h denotes the operation of whiskering defined in Section 3 and ◦ is the
vertical composition of cylinders.

(3) Given a pair of n-cylinders F,G : A y B in Ωm(X,ϕ), a modification Λ: F ⇒ G

and a 1-cell c : b = tn+m(B)→ b′, there exists an induced modification cΛ: cF ⇒ cG

between the n-cylinders cF, cG : cAy cB in Ωm(X, cϕ).
(4) Given an n-cylinder G : Ay B in Ωm(X,ϕ) and a 2-cell in X of the form:

a

f
))

f ′
55�� α sn+m(A)

we get an induced modification:

Af ′ Af
Λ1
//Af ′

Bf ′

Gf ′

��

Af

Bf

Gf

��

BfBf ′
Λ2
oo

∆ +3

Here, Λ1 and Λ2 are obtained by contractibility of suitable globular sums, and the
existence of ∆ does not depend on the choice of these.

(5) Assume given an n-cylinder C : A y B in Ωm(X,ϕ) and a choice of an identity
1-cell 1a : a → a in X, where a = sn+m(A). We then get a modification of the
following form:

AA1a
Λ1
ooA1a

B1a

C1a
��

B1a B
Λ2

//

A

B

C

��

β
+3

Again, Λ1 and Λ2 are obtained by contractibility of the appropriate globular sums
and the existence of β does not depend on a choice of such.
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(6) Given an n-cylinder F : A y B in Ωm(X,ϕ), and a pair of composable 1-cells
h : tn+m(A)→ b, g : b→ c, there is a modification:

h(gA)(hg)A
λ1
oo(hg)A

(hg)B

(hg)F
��

(hg)B h(gB)
λ2

//

h(gA)

h(gB)

h(gF )
��

ζ
+3

Here, λ1, λ2 come from the contractibility of Dn q
D0
D1 q

D0
D1, and the existence of ζ

does not depend on the choice of such cylinders.

Proof. Firstly, let us address point (1). Notice that the existence of such modification
does not depend on the choice of λ and µ. By definition, given ε = s, t, we have (from the
base case n = 0) that (µ ◦ (gh)(Fh) ◦ λ)ε is given by the composite:

(gεn(A))h (gh)(εn(A)h)
λt
// (gh)(εn(A)h) (gh)(εn(B)h)

(gh)(Fεh)
// (gh)(εn(B)h) (gεn(B))h

µt
//

where the first and the third map arise from contractibility of suitable globular sums.
On the other hand, ((gF )h)ε is given by (gFε)h : (gεn(A))h→ (gεn(B))h. The base case

n = 0 provides a pair of two cells χs, χt as required in the definition of a modification. The rest
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of the modification is obtained by composing up the following pasting diagram, whose left-
hand side composite is Υ(χs, (gB)h)⊗ (µ⊗ (gh)(Fh)⊗ λ)⊗ Γ((gA)h, χt) and whose right-
hand composite is (gF )h, where we let C = µ ◦ (gh)(Fh) ◦ λ:

((gFt)h)((gA)h)

(µtCtλt)((gA)h)

Γ((gA)h,χt)

tt

(µtCtλt)((gA)h)

(µtCt)(λt((gA)h))

Ψ
��

(µtCt)(λt((gA)h))

(µtCt)(((gh)(Ah))λs)

(µtCt)λ
��

(µtCt)(((gh)(Ah))λs)

µt(Ct((gh)(Ah)))λs

Ψ
��

µt(Ct((gh)(Ah)))λs

µt(((gh)(Bh))Cs)λs

µt(gh)(Fh)λs
��

µt(((gh)(Bh))Cs)λs

(µt((gh)(Bh)))(Csλs)

Ψ
��

(µt((gh)(Bh)))(Csλs)

(((gB)h)µs)(Csλs)

µ(Csλs)
��

(((gB)h)µs)(Csλs)

((gB)h)(µsCsλs)

Ψ
��

((gB)h)(µsCsλs) ((gB)h)((gFs)h)
Υ(χs,(gB)h)

//

((gFt)h)((gA)h)

((gFt)(gA))h

Ψ

**

((gFt)(gA))h

((gB)(gFs))h

gFh

��

((gB)(gFs))h

((gB)h)((gFs)h)

Θ
��

µt(Ct((gh)(Ah)))λs µt(Ct((gh)(Ah)))λs
Φ
// µt(Ct((gh)(Ah)))λs

µt(Ct((gh)(Bh)))λs

µt(Ct((gh)(Fh)))λs
��

µt(Ct((gh)(Bh)))λsµt(((gh)(Bh))Cs)λs
Θ

oo

((gFt)(gA))h

(g(FtA))h

Φh

��

(g(FtA))h

µt(Ct((gh)(Ah)))λs

λ′

��

µt(Ct((gh)(Bh)))λs

(g(BFs))h

µ′

��

(g(BFs))h

((gB)(gFs))h
Θh
**

(g(FtA))h

(g(BFs))h

(gF )h

��

contr. +3

ind.hyp.
+3

(g(FtA))h

(g(BFs))h

(gF )h

��
contr. +3

ind.hyp.
+3

ind.hyp.
+3

The 2-cells in this pasting diagram either come from contractibility of the appropriate globular
sums (in this case we do not label them), or from the inductive hypotheses, as indicated.
Composing up this pasting diagram using the bicategorical structure on hom(Dn−1, X(x, y))
for the approriate x, y in X gives the desired modification.

We now prove point (2). To begin with, the base case n = 0 provides a pair of 2-cells:

Θg,f,h
s : (Gsh)(Fsh)→ (GsFs)h and Θg,f,h

t : (GtFt)h→ (Gth)(Fth)

in Ωm(X,ϕ1h, ϕ2h). These are obtained, in the target case, from the contractibility of the
globular sum D1 q

D0
Dm+1 q

Dm
Dm+1. Indeed, one has the following string of equalities:

sn+m(A) = sm(sn(A)) = sm(tn(A)) = sm(s(Ft)) = sm(t(Ft)) = sm(s(Gt))

which implies that there is a map (h, Ft, Gt) : D1 q
D0
Dm+1 q

Dm
Dm+1 → X. The source case is

treated similarly.
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We then have the following diagram in hom(Dn−1,Ωm+1(X, sn(Ah), tn(Ch))):

((GtFt)h)(Ah)

((Gth)(Fth))(Ah)

Γ(Ah,Θg,f,ht )

ww

((Gth)(Fth))(Ah)

(Gth)((Fth)(Ah))

Ψ
��

(Gth)((Fth)(Ah))

(Gth)((Bh)(Fsh))

(Gth)Fh

ww

(Gth)((Fth)(Ah))

(Gth)((FtA)h)

(Gth)Φ

''

(Gth)((FtA)h)

(Gth)((BFs)h)
(Gth)(Fh)ww

(Gth)((BFs)h)

(Gth)((Bh)(Fsh))

(Gth)Θ

gg

((Gt)(FtA))h

(Gth)((FtA)h)
ww

((GtFt)h)(Ah)

((GtFt)A)h

Φ

''

((GtFt)A)h

((Gt)(FtA))h

Ψh
��

((Gt)(FtA))h

(Gt(BFs))h

(GtF )h

��

(Gth)((BFs)h) (Gt(BFs))h// (Gt(BFs))h

((GtB)Fs)h

Ψh
��

(Gth)((Bh)(Fsh))

((Gth)(Bh))(Fsh)

Ψ

��

((Gth)(Bh))(Fsh) ((GtB)h)(Fsh)
Φ(Fsh)

// ((GtB)Fs)h((GtB)h)(Fsh) oo((Gth)(Bh))(Fsh)

((Ch)(Gsh))(Fsh)

(Gh(Fsh))
��

((GtB)h)(Fsh)

((CGs)h)(Fsh)

((Gh)(Fsh))
��

((CGs)h)(Fsh)((Ch)(Gsh))(Fsh)
Θ(Gsh)

oo

((GtB)Fs)h

((CGs)Fs)h

(GFs)h
��

((CGs)h)(Fsh) ((CGs)Fs)h//((Ch)(Gsh))(Fsh)

(Ch)((Gsh)(Fsh))
Ψ ''

(Ch)((Gsh)(Fsh)) (C(GsFs))h//

((CGs)Fs)h

(C(GsFs))h

Ψh
��

(Ch)((Gsh)(Fsh))

(Ch)((GsFs)h)
Υ(Θg,f,hs ,Ch) ''

(C(GsFs))h

(Ch)((GsFs)h)
Θww

((GtFt)A)h

(C(GsFs))h

(G◦F )h

��

+3

ind.hyp.
+3

ind.hyp.
+3

+3

ind.hyp.
+3

ind.hyp.
+3

+3

+3

ind.hyp.
+3

The composite of this pasting diagram provides the 2-cell we are looking for, the left-hand
side (resp. right-hand side) composite being (isomorphic to) Υ(Θg,f,h

s , Ch) ◦ (Gh) ◦ (Fh) ◦
Γ(Ah,Θg,f,h

t ) (resp.(G ◦ F )h).
The 2-cells filling this diagram either come from the inductive hypotheses (where specified)

or from contractibility of the appropriate globular sums (the unlabeled 2-cells).
Let us now prove point (3). Consider the bicategory hom(Dn−1,Ωm+1(X, sn(cA), tn(cB)),

inside which we define the following 2-dimensional pasting diagram:

(cGt)(cA)

(cFt)(cA)

Γ(cA,cΛt)

ww

(cFt)(cA)

c(FtA)

ϕ

��

(cGt)(cA)

c(GtA)

ϕ

��

c(GtA)

c(FtA)

cΓ(A,Λt)

ww

c(FtA)

c(BFs)

cF
��

c(GtA)

c(BGs)

cG

��

c(GtA)

c(BGs)

c(Υ◦F◦Γ)

��

c(BFs) c(BGs)
cΥ(Λs,B)

//c(BFs)

(cB)(cFs)

Θ
��

(cB)(cFs) (cB)(cGs)
Υ(cΛs,cB)

//

c(BGs)

(cB)(cGs)

Θ
��

+3

ind.hyp.
+3

ind.hyp.
+3

+3
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The 2-cells that fill the diagram either come from the inductive hypotheses or by contractibil-
ity of suitable globular sums when unlabeled. The composite of this pasting diagram is the
2-cell we are looking for, and so this concludes the proof of this inductive step.

Let us now prove the inductive step of point (4). The base case n = 0 provides us with pair
of 2-cells ∆s,∆t, obtained by contractibility of suitable globular sums, and the modification
∆ is given by the composite of the following 2-dimensional pasting diagram in the bicategory
hom(Dn−1,Ωm(X,ϕ)(sn(Af ′), tn(Bf ′)):

(Gtf ′)(Af ′)((1(Gtf))1)(Af ′)
Γ(Af ′,∆t)
oo((1(Gtf))1)(Af ′)

(1(Gtf))(1(Af ′))

Ψ
��

(1(Gtf))(1(Af ′))

(1(Gtf))((Af)1)

(1(Gtf))Λ1
��

(1(Gtf))((Af)1)

(1((Gtf)(Af)))1

Ψ
��

(1((Gtf)(Af)))1

(1((Bf)(Gsf)))1
(1Gf)1 ��

(1((Bf)(Gsf)))1

(1(Bf))((Gsf)1)

Ψ
��

(1(Bf))((Gsf)1) ((Bf ′)1)((Gsf)1)
Λ2((Gsf)1)

// ((Bf ′)1)((Gsf)1)

(Bf ′)(1((Gsf)1))
Ψ ��

(Bf ′)(1((Gsf)1))

(Bf ′)(Gsf ′)

Υ(∆s,Bf ′)

??

(Gtf ′)(Af ′)

(GtA)f ′
Φ
��

(GtA)f ′

(GtA)f

η1
��

(GtA)f

(1((GtA)f))1
��

(1((Gtf)(Af)))1 (1((GtA)f))1// (1((GtA)f))1

(1((BGs)f))1
(1(Gf))1 $$

(1((BGs)f))1(1((Bf)(Gsf)))1 oo (1((BGs)f))1

(BGs)f
OO

(GtA)f

(BGs)f

Gf

$$

(BGs)f (BGs)f ′η2
//

(GtA)f ′

(BGs)f ′

Gf ′

&&

(BGs)f ′

(Bf ′)(Gsf ′)

Θ

��

+3

ind.hyp
+3

+3

ind.hyp
+3

ind.hyp.
+3

The unlabelled cells are obtained by contractibility of suitable globular sums, and the re-
maining 2-cells exist by inductive hypothesis, as indicated.

We now prove the inductive step of point (5). The 1-cells (Λi)ε in Ωm(X,ϕ), for ε = s, t

and i = 1, 2, are obtained by contractibility of Dn and are therefore identity cells (having the
same source and target). For this reason, we denote all of them by 1, since there is no risk
of ambiguity.

The pair of 2-cells βs, βt provided by the base case n = 0 is obtained by contractibility, and
we choose β to be induced by the composite of the following 2-dimensional pasting diagram
in hom(Dn−1,Ωm(X,ϕ)(sn(A), tn(B))):

ctA(1(ct1a)1)A
Γ(A,βt)

oo(1(ct1a)1)A

(1(ct1a))(1A)

Ψ
��

(1(ct1a))(1A)

(1(ct1a))((A1a)1)

(1(ct1a))Λ1
��

(1(ct1a))((A1a)1) (1((ct1a)(A1a)))1
Ψ
// (1((ct1a)(A1a)))1 (1((B1a)(cs1a)))1

(1(C1a))1
// (1((B1a)(cs1a)))1

(1(B1a))((cs1a)1)

Ψ

OO
(1(B1a))((cs1a)1)

B((cs1a)1)

Λ2((cs1a)1)

OO
B((cs1a)1)Ba

Υ(βs,B)
ooctA

(1((ct1a)(A1a)))1

γ1

��

(1((B1a)(cs1a)))1

Ba

γ2

aa
ctA Ba

C
//

+3

ks

ind.hyp.
KS

where the unlabelled 2-cells arise from contractibility of the appropriate globular sums, and
the remaining one comes from the inductive hypothesis.
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Finally, let us prove the inductive step of point (6). We denote the 1-cells εn(λi), for
ε = s, t and i = 1, 2 with a, being instances of an associativity constraint.

The 2-cells ζs, ζt provided by the base case n = 0 come from contractibility of appropriate
globular sums, and the modification we are looking for is given by the composite of the
following 2-dimensional pasting diagram in hom(Dn−1,Ωm(X,ϕ)(sn(h(gA)), tn(h(gB)))):

(h(gFt))(h(gA))

(a(((hg)Ft)a))(h(gA))

Γ(h(gA),ζt)

ww

(a(((hg)Ft)a))(h(gA))

(a((hg)Ft))(a(h(gA)))

Ψ
��

(a((hg)Ft))(a(h(gA)))

(a((hg)Ft))(((hg)A)a)

(a((hg)Ft))λ1
��

(a((hg)Ft))(((hg)A)a)

(a(((hg)Ft)((hg)A)))a

Ψ
��

(a(((hg)Ft)((hg)A)))a

(a(((hg)B)((hg)Fs)))a

(a((hg)F ))a
��

(a(((hg)B)((hg)Fs)))a

(a((hg)B))(((hg)Fs)a)
Ψ
,,

(a((hg)B))(((hg)Fs)a)

(h((gB)a))(((hg)Fs)a)

λ2(((hg)Fs)a)

44
(h((gB)a))(((hg)Fs)a)

(h(gB))(h(gFs))

Υ(ζs,h(gB))

OO

(a(((hg)Ft)((hg)A)))a

(a((hg)(FtA)))a
(aΦ)a

44
(a((hg)(FtA)))a

(a((hg)(BFs)))a

(a((hg)F ))a
��

(a((hg)(BFs)))a

(a(((hg)B)((hg)Fs)))a

(aΘ)a

tt

(h(gFt))(h(gA))

h((gFt)A)

Φ

$$

h((gFt)A)

h(g(FtA))

Φ
��

h(g(FtA))

h(g(BFs))

h(g(F ))
**

h(g(FtA))

(a((hg)(FtA)))a

δ1
��

(a((hg)(BFs)))a

h(g(BFs))

δ2

QQ
h(g(BFs))

h((gB)(gFs))

Θ

JJ
h((gFt)A) h((gB)(gFs))

h(gF )
// h((gB)(gFs))

(h(gB))(h(gFs))

Θ

��

+3

ind.hyp.
+3

ind.hyp.
+3

ind.hyp.
+3

+3

Here, δ1, δ2 and the unlabelled 2-cells come from contractibility of suitable globular sums and
the remaining ones comes from the inductive hypothesis, as indicated. �

This concludes the construction of the bicategory structure on hom(Dn, X) and thus
proves Theorem B.3.

We end this section with the following result, which requires the existence of inverses and
does not hold true in Mod(C).

Lemma B.11. Given a pair of n-cylinders F,G : Cyl(Dn) → X in Mod(CW) and a
modification Θ: F → G there exists a modification Θ′ : G→ F

Proof. We denote by f−1 the result of promoting either a left or a right inverse for
f to a two-sided inverse. If n = 0 then Θ′ is obtained by inverting the 2-cell Θ. Let
n > 0, we define Θ′s = (Θs)−1 and Θ′t = (Θt)−1. By definition, Θ induces a modification
of (n − 1)-cylinders of the form Θ: Υ(C0,Θt) ⊗ C̄ ⊗ Γ(Θs, C1) ⇒ D̄ (where ⊗ denotes the
vertical composition operation). By inductive hypothesis this can be inverted, to give us
Θ′ : D̄ ⇒ Υ(C0,Θt)⊗ C̄ ⊗ Γ(Θs, C1). Thereom B.3 implies that we get a modification:

Υ(C0, (Θt)−1)⊗ D̄ ⊗ Γ((Θs)−1, C1)

Υ(C0, (Θt)−1)⊗Υ(C0,Θt)⊗ C̄ ⊗ Γ(Θs, C1)⊗ Γ((Θs)−1, C1)

Υ(C0,(Θt)−1)Θ′Γ((Θs)−1

��

by whiskering.
Now, the existence of 3-cells Θs ◦ (Θs)−1 → 1t(Θs) and (Θt)−1 ◦ (Θt)→ 1s(Θt) implies that

there is an induced modification (using the usual methods to produce such modification in
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Mod(C), applied to the globular sums D3 q
D0
Dn and Dn q

D0
D3):

Υ(C0, (Θt)−1)⊗Υ(C0,Θt)⇒ Υ(C0, 1t(Θs))

and
Γ(Θs, C1)⊗ Γ((Θs)−1, C1)⇒ Γ(1s(Θt), C1)

The usual methods can also be employed to construct modifications Γ(1s(Θt), C1)⇒ Cn−1(C1Cs)
and Υ(C0, 1t(Θs)) ⇒ Cn−1(CtC0), so that upon composing the (n − 1)-modification defined
so far we get one of the form:

Υ(C0, (Θt)−1)⊗ D̄ ⊗ Γ((Θs)−1, C1)

Cn−1(CtC0)⊗ C̄ ⊗Cn−1(C1Cs)
��

We can now finish the construction of Θ′ by using the unit constraints provided by Theorem
B.3. �
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