
HIGH EFFICIENCY VIDEO CODING PROCESSOR

WITH RESIDUE NUMBER SYSTEM

by

Niras Cheeckottu Vayalil

Dissertation submitted in fulfilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Engineering
Faculty of Science and Engineering

Macquarie University
Sydney, Australia

June 2017

Copyright c© 2017 Niras Cheeckottu Vayalil

All Rights Reserved

ABSTRACT

The recent demand for high density video, such as ultra high definition (UHD) as

well as its distribution over wired and wireless networks, led to the proposal of the

latest video encoding standard, high efficiency video coding (HEVC/H.265), by

the joint collaborative team on video coding (JCT-VC). HEVC/H.265 achieves

a significantly better compression than its predecessor, advanced video coding

(AVC/H.264), by roughly 50% for an equivalent visual reproduction quality. How-

ever, the improved compression efficiency comes with a drawback, the computa-

tional complexity. Since HEVC/H.265 encoding involves enormous computations,

a hardware implementation of the encoder is necessary for real-time encoding, in

particular for UHD video.

The most computationally intensive task in video encoding is motion estima-

tion, which comprises up to 80% of the total time for video encoding. There have

been several suggestions for motion-estimation algorithms for reducing the com-

plexity, but many proposed for AVC/H.264 are no longer suitable for HEVC/H.265

due to the underlying coding changes and other complications. Hence, this re-

search offers different algorithms and architectures for motion estimation, pro-

viding a trade-off between implementation cost and performance.

Hardware design is proposed for a full-search motion-estimation algorithm

which always comes up with the best results. The memory requirement is reduced

to a large extent together with the data bandwidth demand. Another important

aspect of real-time video compression, including motion estimation, is the delay of

the arithmetic computations. Residue number systems have been used for decades

for improving arithmetical operations performance. However, the non-positional

nature of an RNS makes it difficult to do some mathematical operations such as

sign detection, but it is a vital component for designing motion estimation and

other elements of a video processor. The dissertation presents a fast algorithm

and its architecture for sign detection, which decreases the area-delay product by

24% compared to designs in the literature.

Since the full-search algorithm searches every possible location in a search

area, the algorithm involves much computation, therefore fast-search methods

are preferred for low-cost solutions. The test zone (TZ) search is a fast-search

algorithm and is widely used for HEVC/H.265 as it provides near optimal perfor-

mance. In this dissertation, a TZ-search hardware architecture is presented, which

shows 51% less gate count than existing proposals in the literature and consider-

ably fewer memory requirements than most. Further improvement is achieved by

developing a fast-search algorithm appropriate for hardware designs, providing an

area-efficient, real-time UHD video-encoding-capable design without degradation

in quality from the TZ search in HEVC reference software. An angle-restricted

test zone (ARTZ) search motion estimation is also proposed for software applica-

tions exploiting directional probabilities of the search, saving about 17% to 55%

of time for motion estimation compared to the TZ search.

The discrete cosine transform (DCT) is a standard method in several previous

codecs and it is also a key factor for compression techniques in HEVC/H.265.

A variable-length two-dimensional design is proposed for HEVC/H.265, where

the architecture is optimised for the most likely block sizes in UHD video, thus

eliminating unnecessary complexities found in many designs, and accomplishing

more than 60% savings in hardware.

STATEMENT OF CANDIDATE

I certify that the work in this thesis has not previously been submitted for a

degree nor has it been submitted as part of the requirements for a degree to any

other university or institution other than Macquarie University.

I also certify that the thesis is an original piece of research and it has been written

by me.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

.

Niras Cheeckottu Vayalil

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support and con-

tribution of many people. First and foremost, I would like to express my sincere

gratitude to my supervisor Dr Yinan Kong for his advice and support throughout

the project. He provided many valuable comments and suggestions and constant

encouragement during this work. I would also extend my thanks to A/Prof.

Manoranjan Paul, Charles Sturt University, my adjunct supervisor, Dr Gengfa

Fang and Prof. Michael Heimlich, my co-supervisors, for their excellent support.

I am also thankful to A/Prof. Joachim Rodrigues, EIT, Lund University for

providing me with an opportunity to work with digital design tools in EIT, and

the necessary guidance. I am also grateful to Dr Oskar Andersson, EIT, for his

excellent advice and support during the visit to Lund University.

I am grateful to Dr Keith Imrie for proofreading, and his valuable suggestions

on my research papers and this dissertation. I also thank to Md Selim Hossain, Dr.

Shahzad Asif, all my friends, all my teachers, and my colleagues who contributed

directly or indirectly to my research. I am also thankful to the admirable staff in

the engineering department for their wonderful support.

I wish acknowledge to Macquarie University for awarding me an international

Macquarie University research excellence scholarship (iMQRES), and the travel

grants for collaborative work at Lund University.

I am blessed to have an amazing family and am grateful for their endless

support, particularly during the research.

To My Family

Contents

Table of Contents xv

List of publications xxi

List of contributors xxiii

List of Figures xxv

List of Tables xxxi

1 Introduction 1

1.1 Challenges and objectives . 2

1.2 Main contributions . 4

1.3 Dissertation outline . 5

2 Background and Related Work 9

2.1 Video compression . 9

2.1.1 Statistical redundancy . 10

2.1.2 Psycho-visual redundancy . 12

2.1.3 Coding redundancies . 13

2.1.4 Video quality measurement . 13

2.1.5 Video encoder . 14

xv

xvi CONTENTS

2.2 High efficiency video coding (HEVC/H.265) 16

2.2.1 Coding block and coding tree units 16

2.2.2 High-level parallelisation features of HEVC/H.265 20

2.2.3 Intra-picture prediction . 21

2.2.4 Inter-picture prediction . 21

2.2.5 Transform coding . 24

2.3 Block matching motion estimation algorithms 26

2.3.1 Full-search block-matching algorithm 27

2.3.2 Fast-search block-matching algorithms 27

2.4 Residue number systems . 36

2.4.1 Arithmetic operations in RNS . 38

2.4.2 Negative numbers . 39

2.4.3 Moduli selection . 40

2.4.4 Applications of RNS . 42

2.4.5 HEVC procesor with RNS . 43

3 VLSI Architecture of Full-Search Variable-Block-Size Motion Estima-

tion for HEVC Video Encoding 45

3.1 Abstract . 45

3.2 Introduction . 46

3.3 Full-Search Variable-Block-Size Motion Estimation in HEVC 49

3.4 Hardware Architecture of HEVC/H.265 Variable-Block-Size Motion Esti-

mation . 50

3.4.1 SAD Computation . 51

3.4.2 SAD Summation . 54

3.4.3 SAD Comparator . 56

3.5 Results and discussion . 57

CONTENTS xvii

3.5.1 FPGA Synthesis Results . 59

3.5.2 ASIC Synthesis . 61

3.6 Conclusion . 62

4 Fast Sign-detection Algorithm for Residue Number System Moduli Set

{2n − 1, 2n, 2n+1 − 1} 65

4.1 Abstract . 65

4.2 Introduction . 66

4.3 Residue Number Systems . 67

4.4 Sign detection . 68

4.4.1 Sign determination for special moduli sets 69

4.4.2 Proposed sign detection algorithm for moduli set {2n−1, 2n, 2n+1−

1} . 70

4.4.3 Optimization for hardware . 72

4.4.4 Hardware . 73

4.5 Performance analysis . 77

4.6 Conclusion . 80

5 ASIC Design in Residue Number System for Calculating Minimum Sum

of Absolute Differences 81

5.1 Abstract . 81

5.2 Introduction . 82

5.3 Proposed architecture for calculating minimum of SAD 84

5.3.1 Sign detection . 85

5.3.2 Modulo-(2n − 1) adder and subtractor 87

5.3.3 Absolute difference unit . 89

5.3.4 Accumulation and comparison . 90

xviii CONTENTS

5.4 Implementation and results . 91

5.5 Conclusion . 92

6 ASIC Design of TZ Search Motion-Estimation for HEVC with RNS 93

6.1 Abstract . 93

6.2 Introduction . 94

6.3 Residue Number Systems . 96

6.4 Hardware design of test zone search motion estimation in RNS for HEVC . 97

6.4.1 Hardware architecture for test zone (TZ) search motion-estimation . 98

6.4.2 Residue number systems for the motion-estimation hardware archi-

tecture . 102

6.5 Analysis of Results . 105

6.6 Conclusion . 106

7 A Residue Number System Hardware Design of Fast-Search Variable-

Motion-Estimation Accelerator for HEVC/H.265 109

7.1 Abstract . 109

7.2 Introduction . 110

7.3 Residue Number Systems . 113

7.4 Proposed algorithm for motion estimation 114

7.5 Motion estimation hardware design . 118

7.5.1 Residue number systems for motion-estimation hardware architecture119

7.5.2 Motion-estimation architecture . 121

7.6 Analysis of results . 129

7.7 conclusion . 132

8 A Novel Angle-Restricted Test Zone Search Algorithm for Performance

Improvement of HEVC 135

CONTENTS xix

8.1 Abstract . 135

8.2 Introduction . 136

8.3 Overview of Test Zone Search Algorithm 137

8.4 Proposed Algorithm . 139

8.5 Simulation and results . 143

8.6 Conclusion . 144

9 An Efficient ASIC Design of Variable-Length Discrete Cosine Transform

for HEVC 147

9.1 Abstract . 147

9.2 Introduction . 148

9.3 Hardware Architecture for DCT computation 149

9.3.1 Four-point DCT architecture . 151

9.3.2 Architecture for higher length 1-D DCTs 152

9.4 Proposed hardware architecture for variable-length two-dimensional DCT . 153

9.5 Results and comparison . 156

9.6 Conclusion . 157

10 Conclusions and Future Work 159

10.1 Conclusions . 159

10.2 Future work . 162

A TCL scripts sample for fast search motion estimation design 165

B List of acronyms 169

Bibliography 172

List of publications

Following are the list of peer-reviewed research papers published, accepted or in review

which resulted from the part of research.

Discussed in thesis

1. N. C. Vayalil, and Y. Kong, “VLSI Architecture of Full-Search Variable-Block-Size

Motion Estimation for HEVC Video Encoding”, IET Circuits Devices & Systems,

2017, in press.

2. N. C. Vayalil, and Y. Kong, “Fast sign-detection algorithm for residue number sys-

tem moduli set {2n − 1, 2n, 2n+1 − 1}”, IET Computers Digital Techniques, vol. 11,

no. 1, pp. 33–42, 2016.

3. N. C. Vayalil, A. Safari, and Y. Kong, “ASIC design in residue number system for

calculating minimum sum of absolute differences”, Tenth International Conference

on Computer Engineering & Systems (ICCES), Dec. 2015, pp. 129-132.

4. N. C. Vayalil, and Y. Kong, “ASIC design of test zone search motion-estimation

hardware for high efficiency video coding (HEVC) with residue number system”,

IET Circuits Devices & Systems, 2017, in review.

5. N. C. Vayalil, M. Paul, and Y. Kong, “A residue number system hardware design of

xxi

xxii Chapter 0. List of publications

fast-search variable-motion-estimation accelerator for HEVC/H.265”, IEEE Trans-

actions on Circuits and Systems for Video Technology, 2017, In review.

6. N. C. Vayalil, M. Paul, and Y. Kong, “A novel angle-restricted test zone search

algorithm for performance improvement of HEVC”, IEEE International Conference

on Image Processing (ICIP), 2017, accepted.

7. N. C. Vayalil, J. Haddrill, and Y. Kong, “An efficient ASIC design of variable length

discrete cosine transform for HEVC”, 2016 European Modelling Symposium (EMS),

Nov. 2016, pp. 229-233.

Other Publications

These publications are related but are not discussed in the thesis.

1. A. Safari, N. C. Vayalil, and Y. Kong, “Power-performance enhancement of two-

dimensional RNS-based DWT image processor using static voltage scaling”, Inte-

gration, the VLSI Journal, vol. 53, no. 2, pp. 145156, 2016.

2. M. Hossain, Y. Kong, E. Saeedi, and N. C. Vayalil, “High-performance elliptic curve

cryptography processor over NIST prime fields”, IET Computers & Digital Tech-

niques, vol. 11, no. 1, pp. 33–42, 2017.

3. N. C. Vayalil, A. Safari, and Y. Kong, “Overlapped block-processing VLSI archi-

tecture for separable 2D filters”, Electronics, Communications and Networks IV, ,

June 2015, pp. 1355–1358.

4. Y. Kong, A. Safari, and N. C. Vayalil, “A low-cost architecture for DWT filter banks

in RNS applications,” 2014 International Symposium on Integrated Circuits (ISIC),

Dec. 2014, pp. 448–451.

List of contributors

Supervisor Dr. Yinan Kong, Department of Engineering, Macquarie University, NSW,

Australia

Adjunct Supervisor A/ Prof. Manoranjan Paul, School of Computing and Mathemat-

ics, Charles Sturt University, NSW, Australia.

In all the publications discussed in the thesis, I have conducted the major investigations,

designs measurements, data processing, and drafting. Dr. Yinan Kong, who is the princi-

ple supervisor provided suggestions, advices and invaluable guidance at every stage of the

research. A/ Prof. Manoranjan Paul, adjunct supervisor provided invaluable guidance

and reviewed, proof-read and corrected all the manuscripts that he has contributions. A

graduate student and internal collaborator Joshua Haddrill, helped in designing of DCT

architecture for HEVC/H.265 and writing a research paper co-authored with him. Table 1

gives detailed list of contributors.

xxiii

xxiv Chapter 0. List of contributors

List of contributors

Division of labour in co-authored articles

NC - Niras Cheeckottu Vayalil; YK Yinan Kong; MP Manoranjan Paul; JH Joshua Haddrill

1 2 3 4 5 6 7

Conception&

Design

NC NC NC NC NC NC NC, JH

Planning &

implementation

NC NC NC, YK NC NC NC, MP NC, JH

Data collection NC NC NC NC NC NC NC, JH

Analysis &

interpretation

NC NC NC NC NC NC NC, JH

Writing the

article

NC, YK NC, YK NC, YK NC, YK NC, MP,

YK

NC, MP,

YK

NC, JH,

YK

Overall

responsibility

YK YK YK YK MP, YK MP, YK YK

Table 1: Author’s contributions

List of Figures

1.1 Thesis outline . 6

2.1 (a) First frame of ice 4cif video sequence and (b) grey levels of pixels along

the 300th row of this frame. 10

2.2 Frames from video sequence Foreman, and the differences. 12

2.3 Simplified block diagram of a video encoder. 15

2.4 HEVC Encoder (with decoder modeling elements shaded in light grey) . . 17

2.5 Subdivision of a CTB with its partitioning and corresponding quad-tree

structure. CBs represented in solid lines and TBs in dotted lines. 18

2.6 Splitting coding blocks (CBs) into prediction blocks (PBs); the lower four

are called asymmetric motion partitioning (AMP). 18

2.7 Examples for HEVC intra-prediction for an 8 × 8 luma block, where 0 is

the DC prediction, 1 is planar and the rest are angular predictions 22

2.8 A hierarchical GOP coding structure with size 4. 24

2.9 CTB structure and motion vectors of the ‘bus’ sequence frame 3, where

intra blocks are in red, inter blocks are in blue, merge-mode blocks are in

dark green and skip-mode blocks are in light green. 25

2.10 A 2D logarithmc search procedure for finding minimum distortion. 30

xxv

xxvi LIST OF FIGURES

2.11 NTSS algorithm. (a) Showing search points, where filled circles are the

checking points in TSS and squares are the additional 8 points in the first

step of NTSS, and the triangle shows the second step if the minimum is at

one of the eight neighbours. (b) NTSS flow chart. 31

2.12 Illustration of block-based gradient-descent algorithm; the arrows demon-

strate movements of the search centre. 32

2.13 Search patterns used for the diamond search algorithm. (a) Large diamond

search pattern. (b) Small diamond search pattern. 33

2.14 Use of acceleration information for motion vector prediction in EPZS algo-

rithm. 34

2.15 Search patterns used in test zone search algorithm. (a) Square pattern. (b)

Diamond pattern. (c) Raster scan pattern 35

3.1 Partitioning of CB into PB in HEVC. 49

3.2 Motion Estimation (ME) hardware architecture. RAMs are used for storing

partial and SAD results in each summation stage. 51

3.3 Processing Element (PE) for calculating SAD of 4 pixels. 51

3.4 Processing Element (PE) array for Motion Estimation SAD computation.

The L× 4 PE array can be reconfigurable in the x direction; in the above

L = 4. 52

3.5 Morton order or Z-order method for loading data into CF data buffer.

32×64 pixels are shown, where each square represents a block of 8×8 pixels. 54

3.6 SAD Summation block with the SAD comparators. This calculates SAD

values for higher levels using SAD values from the lower level in HEVC

quad-tree SADs, and finds the minimum of these SAD values. The above

shows calculation of 8× 16, 16× 8 and 16× 16 block SAD values and MVs

from 8× 8 block SAD values. 55

LIST OF FIGURES xxvii

3.7 Simulation window of ModelSim simulator, simulated with ICE (4CIF) test

video sequence. The snapshot shows motion vectors and SAD values of the

first CTU of the video when hardware completes motion search with search

range of ±8 pixels. 58

4.1 Sign-detection schematic. x̂3 is x̄3,n−2:0 concatenated with bit x̄3,n, and

CSA, CGU are n-bit carry-save adder and 2n-bit carry-generation units

respectively. 74

4.2 2n-bit carry-generation Unit (CGU) based on Kogge-Stone architecture;

n = 8. 76

4.3 2n-bit carry-generation Unit (CGU) based on Ling architecture; n = 8. . . 76

4.4 Blocks of the carry-generation unit. 77

4.5 Percentage reduction of area-delay product based on the unit model. . . . 78

5.1 Sign detection module for the moduli set {2n+1 − 1, 2n − 1, 2n}. 86

5.2 Carry-generation unit and post-processing unit, modified with the blocks

in Fig. 5.3. 86

5.3 Modified blocks for carry-generation unit. 86

5.4 Modulo-255 adder based on Ling structure. 88

5.5 Prefix logic operators for modulo-(2n − 1) adder. 88

5.6 Absolute difference unit. 90

5.7 Finding minimum SAD. 91

6.1 Partitioning of CB into PBs in HEVC. 97

6.2 Search pattern for initial grid search and raster search in test zone (TZ)

search algorithm: (a) diamond pattern for initial grid search, (b) raster-

scan pattern. 98

6.3 Architecture of test zone (TZ) search motion-estimation. 99

xxviii LIST OF FIGURES

6.4 Data path of motion-estimation architecture; modular adders are used to

convert binary into RNS, thus carry-propagation delays in long-word addi-

tions in the accumulator are diminished. 101

7.1 Search pattern for initial grid search and raster search in test zone (TZ)

search algorithm: (a) diamond pattern for initial grid search, (b) raster

scan pattern. 114

7.2 Search pattern for initial search and raster-like scan in the proposed search

algorithm: (a) pattern for initial grid search, (b) raster-like search pattern. 117

7.3 Partitioning of CB into PB in HEVC. 119

7.4 Architecture of motion estimation hardware. 123

7.5 Detailed structure of VBS block, where RNS data path and hardware sec-

tions are shown in different color. Motion vectors (MVs) are provided in

binary from both binary and RNS minima comparators. 125

7.6 A hierarchal GOP coding structure with size 4. This structure is used

for determining the number of clock cycles for encoding videos as listed in

Table 7.5. 126

7.7 RD curves for (a) Crosswalk (b) DrivingPOV (c) ToddlerFountain se-

quences with QPs 24, 28, 32, 36. 128

8.1 Flow chart for the Test Zone Search Algorithm. 138

8.2 Search pattern for initial grid search and raster search in test zone (TZ)

search algorithm: (a) diamond pattern for initial grid search, (b) raster

scan pattern. 138

8.3 Change of search direction in each step of initial search in the TZ Search

Algorithm. This image shows the location of minima changes in the 22nd

frame of the Netflix Crosswalk video sequence. 142

LIST OF FIGURES xxix

8.4 RD curves for different video sequences with QPs 22, 27, 32, 37, with search

length 64. 143

9.1 Stick diagram of the butterfly technique applied to the DCT. 150

9.2 A generalized structure of higher radix DCTs, where N = 8, 16, 32. 152

9.3 The proposed 2D-DCT architecture, transposition memory implemented

using a 2-D register array. 153

9.4 The proposed 2D shift register architecture, showing 4 inputs and 4 out-

puts. Data is shifted in the horizontal direction from left to right, and

shifted out in the up direction; all MUX selection changes accordingly. . . . 154

List of Tables

1 Author’s contributions . xxiv

2.1 Comparison of supported prediction block sizes in different generations of

video coding standards. 19

2.2 Residues of various moduli sets . 37

3.1 The detailed data flow in the PE array with L = 4. 53

3.2 Comparison of space time complexities of different integer motion estima-

tion hardwares. 57

3.3 Comparison of proposed design with other HEVC/H.265 full-search integer

motion estimation implementation in Xilinx Virtex-5 devices. 59

3.4 Comparison of proposed design with previous HEVC/H.265 full-search in-

teger motion estimation in ASIC. 61

4.1 Area and delay comparison for the unit-gate model 78

4.2 Area, delay and power comparison of radix-2 architecture experimental

results . 79

4.3 Area, delay and power comparison of radix-4 architecture experimental

results . 80

xxxi

xxxii LIST OF TABLES

5.1 Performance comparison of modulo adders, designed with GLOBALFOUNDRIES R©

0.18 µm . 89

5.2 Performance comparison of proposed SAD unit 91

6.1 Number of 4× 4 SAD computations involved in various test videos for TZ

search inter-picture motion-estimation. 102

6.2 Comparison of HEVC/H.265 motion-estimation architectures. 105

7.1 Percentage of raster searches in a TZ search motion estimation 115

7.2 Percentage of first minimum error locations occurring after the ‘iRaster’ (5

pixels) distance, only considered search involving raster scans 116

7.3 Percentage of 64×64 inter-prediction coding blocks (CBs) in 4K UHD videos122

7.4 Bit-rate and PSNR changes of proposed algorithm compared to the TZ

search. 126

7.5 Bit rate and PSNR and total clock cycles to encode 64 UHD video frames

using the GOP structure in Fig. 7.6. 127

7.6 BD rate and BD PSNR comparison with TZ search. 128

7.7 Comparison of motion estimation architectures. 130

8.1 Percentage of raster searches in a TZ search 140

8.2 Percentage of first minimum error locations occurs after the ‘iRaster’ (5

pixels) distance . 141

8.3 ARTZ search algorithm results (negative values are improvements) with

different search lengths for 4K UHD resolution 144

8.4 ARTZ results with search length 64 and different QPs 145

9.1 Four-Point DCT Algorithm by Stage . 151

9.2 Comparison of 2D-DCT architectures . 155

Chapter 1

Introduction

The influence of video and related applications in everyday life has increased exponen-

tially since the advent of digital video. It has a great impact on almost all types of

industries including communication, entertainment, and arts. With the advancement of

digital technologies, there has been an ever-increasing demand for high-quality video in

real-time communication as well as broadcasting or distribution, which necessitate efficient

video data compression and standards. Since the early 1990s two main standardisation

organizations, the International Telecommunication Union (ITU) and the moving pic-

ture expert group (MPEG) formed by International Standardisation Organizations/The

International Electrotechnical Commission (ISO/IEC) proposed several standards. Al-

though started for different tracks of applications, they have engaged in close coopera-

tions and proposed advanced video coding (AVC/H.264) and high efficiency video coding

(HEVC/H.265) standards, which became milestones in video coding.

On the other hand, the use of mobile devices also increased many-fold along with the

advancement of digital technology. As a result, a significant amount of video processing

is now taking place on these mobile devices or embedded processors, for which speed and

power consumption are very critical. Every new proposal for video coding is targeted

1

2 Chapter 1. Introduction

for efficient compression and improved quality, which in turn increases computational

complexities in the encoding process; this applies to the latest video coding standard

HEVC/H.265 as well, whose computation requirements increased substantially compared

to its predecessor.

HEVC/H.265 video coding provides approximately 50% better compression efficiency

compared to AVC/H.264. The improved compression capability is imperative for very-

high-density videos such as in 4K ultra-high-definition (UHD) resolution. These high-

resolution videos provide an immense display experience and are being widely accepted for

multi-media display panels. The introduction of HEVC/H.265 saves data bandwidth and

storage requirements, but the increased complexity demands hardware implementations

specifically targeted for the application.

1.1 Challenges and objectives

Real-time video encoding is very challenging as it involves much computation. Moreover,

the problem is aggravated by the increased coding complexities of the latest proposal and

the increasing demand for high-quality or UHD-resolution videos. Application specific

integrated circuit (ASIC) designs can exploit their parallel-processing features to mitigate

several challenges in real-time processing. However, the new features of HEVC/H.265 have

not been addressed before, in particular for motion estimation which comprises 60% to

80% of the overall computations for the encoding. HEVC/H.265 introduces several new

choices of partitioning types, a hierarchical quad-tree structure, and increases the size of

the basic coding block for motion estimation and the residual coding. Therefore, many

proposals suggested for its predecessor cannot be adopted for HEVC/H.265.

Due to the difficulties in motion estimation, various algorithms are proposed for al-

leviating this bottleneck. However, the majority of suggestions are made for software

1.1 Challenges and objectives 3

platforms, but the time and power consumption for software implementation are very

high, especially for processes with much computation. Furthermore, the solutions implied

for software are not optimal for hardware architectures as the latter varies significantly in

their operation. As an illustration, it is easy to distribute data in parallel into different

sections and process it concurrently, whereas the representation of data is preferred in

fixed-point notation as the floating-point notations significantly increase hardware area

or cost. On the other hand, parallelism in software is limited by the number of proces-

sors available, but the floating-point data representations and algorithms with irregular

structures or steps are relatively easy.

The speed of arithmetic units are crucial for hardware architectures, but carry prop-

agation delays generally limit their performance. Residue number systems (RNSs) has

been used for improving mathematical operations in hardware platforms for many decades.

However, the research on RNS for video processing is not strong. The RNS has a potential

to outperform traditional binary systems, as the former could have better arithmetic hard-

ware, and this research investigates the possible areas of using RNS for video processing

and its benefits.

In this dissertation, one of the primary objectives is to implement a real-time hard-

ware for motion estimation for HEVC/H.265 as it is responsible for the majority of the

computations. Most of the problems in current proposals in the literature are addressed

in this dissertation. For example, the memory and data bandwidth requirements are

minimised by broadcasting data and using specific reading patterns for full-search motion

estimation. Different proposals for motion estimation, including new algorithms for both

hardware and software platforms, are provided. These choices allow a trade-off between

hardware implementation cost and coding performance, as both increase together.

4 Chapter 1. Introduction

1.2 Main contributions

In this dissertation, several architectures and algorithms have been presented to meet the

challenges in real-time video encoder design with the HEVC/H.265 specifications and for

UHD resolution, which is becoming very popular. A vital problem in hardware processing

is the speed of arithmetic operations, which has been addressed using RNS whenever

appropriate. However, some mathematical operations such as magnitude comparison

and sign detection are not trivial in an RNS, hence a novel algorithm and architecture

have been proposed for addressing this. Motion-compensated prediction is the key for

efficient video compression but it is the most tedious and time-consuming process, and

it is increased many times in HEVC/H.265 and also by the increased pixel resolution for

UHD video. Therefore most of the dissertation is devoted to addressing this problem and

providing fastest and most cost-effective solutions. Residual picture coding is another

challenge in video encoding, and an ASIC design has been presented as a solution. The

following are the some of the key scientific contributions:

• Motion estimation has been broadly classified into full-search and fast-search meth-

ods, where a full-search provides better results than fast-search methods. The mem-

ory and bandwidth requirements of full-search motion estimation in hardware im-

plementations have been reduced using a different approach for the data reading

pattern and by broadcasting data simultaneously to multiple processing elements.

• In this dissertation, the RNS has been used extensively for addressing challenges in

video processor design. Nevertheless, one fundamental difficulty in RNS, the sign

detection problem, has to be solved since it is the key to many hardware designs.

A novel algorithm and architecture have been provided, which significantly reduces

the area-delay product compared to others in the literature for a specific moduli set.

• Test-zone (TZ) search is a widely used fast-search motion estimation in HEVC/H.265

1.3 Dissertation outline 5

as it provides similar results to full-search methods with significant improvement in

computational time. A TZ-search hardware implementation has been presented

with RNS, providing a very cost-effective solution for motion estimation.

• A new algorithm has been proposed for hardware designs which provides equivalent

or better results than a TZ search without increasing hardware cost significantly.

• Angle-restricted test zone (ARTZ) has been proposed for software implementations,

exploiting directional probabilities of a motion-vector search, decreasing motion

estimation time by 20% to 55% with little quality degradation compared to TZ

search in HEVC/H.265 reference software.

• A variable-length discrete cosine transform (DCT) architecture has been presented

for HEVC/H.265 specifications. The design is optimised for the most likely block

sizes in UHD video, hence unnecessary complexities found in many architectures

proposed have been eliminated, which brings about 60% hardware saving and plenty

of processing power for the transform coding of UHD video.

1.3 Dissertation outline

This dissertation follows the non-traditional “Thesis-by-publication” format which has

been approved by the Macquarie University Higher Degree Office. It consists of a general

introduction, background, and a list of the PhD candidate’s major scientific publications.

The thesis materials are original texts and graphics of the author’s publications, published

or under review, that have been reformatted to improve readability. As mentioned before,

motion estimation is the most time-consuming operation in video encoding and the dis-

sertation provides a few alternative solutions with a trade-off between many parameters

such as hardware cost, quality, and compression efficiency.

6 Chapter 1. Introduction

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Sign detection

Full-search

Motion

Estmation

Minimum

Sum of Absolute

Differences

Test Zone Search

ME with RNS

Motion

Estimation

(ME)

Binary

Motion

Estimation

High Efficiencey

Video Coding

(HEVC)

Processor

Software

Motion

Estimation

Hardware

Motion

Estimation

Transform

Coding

(DCT)

New Fast-Search

MEAlgorithm

with RNS

Angle-Restricted

Test Zone Search

Algorithm

Efficient DCT

Hardware

Design

RNS

Motion

Estimation

Fig. 1.1: Thesis outline

1.3 Dissertation outline 7

Chapter 2 gives a brief overview of an overall structure of video compression includ-

ing various basic concepts, encoder architectures and a short introduction to the latest

HEVC/H.265 coding standard. A comprehensive review of different algorithms existing

in the literature for motion estimation is included in this chapter. It also introduces RNS

fundamentals and gives a brief explanation for the choice of a particular moduli set for

the application.

Chapter 3 discusses architecture for motion estimation for HEVC/H.265 with the full-

search method, which always comes up with better results than fast-search methods. The

memory requirement for hardware has been reduced by following a Morton order for data

reading and a sum of absolute differences (SAD) reuse strategy. The data bandwidth is

also minimised by broadcasting data to multiple processing elements (PEs).

Chapter 4 presents a novel algorithm and architecture for sign detection, which is not

trivial in RNS, for the moduli set {2n− 1, 2n, 2n + 1}. A brief overview of algorithms and

architecture for sign detection is also provided, followed by results and comparisons. The

area-delay product has been reduced by 24% compared to the proposed methods in the

literature. The sign-detection architecture is used in RNS architecture described in other

chapters for sign detection as well as magnitude comparison of data.

Chapter 5 investigates the benefits of using an RNS in computations of the minimum

SAD. The SAD is widely used for motion estimation algorithms as it is relatively simple

compared to other distortion measurement matrices. The architecture uses a relatively

prime moduli set, and the results show enhanced computational speed in contrast with

both non-relatively prime moduli sets and binary systems.

Chapter 6 comes up with an architecture for TZ search, which is the most-preferred

fast-search motion estimation algorithm for the HEVC/H.265 standard. RNS has been

incorporated to speed up arithmetic operations, and the proposed method brings down

the gate count by about 51% compared to existing proposals in the literature.

8 Chapter 1. Introduction

Chapter 7 introduces a novel algorithm and its architecture design with RNS for mo-

tion estimation according to the HEVC/H.265 specifications. The hardware is capable of

encoding UHD video in real time with an equivalent or in most cases a better performance

than TZ motion estimation, and without a remarkable increase in hardware cost.

Chapter 8 explains a novel fast-search algorithm, called ARTZ, for software applica-

tions. The algorithm brings down the motion-estimation time by about 20% to 55% by

exploiting directional probabilities in motion search, with little effect on the quality and

compression efficiency compared to a TZ search in the HEVC reference software.

In Chapter 9, an architecture for transform coding (DCT) required by the HEVC/H.265

standard has been introduced. The design is targeted for encoding UHD videos as it re-

quires more extensive computations than comparatively low-resolution video such as high-

definition (HD). Hence the architecture is optimised for UHD video, but can also encode

HD as it has fewer computations. This approach helps to remove unwanted complexities

existing in many other architectures proposed in the literature, and achieves more than

60% hardware savings with enough computational power for real-time processing of UHD

video.

Conclusion remarks are drawn in Chapter 10, and also included directions for the

future research work.

Chapter 2

Background and Related Work

2.1 Video compression

The raw video generally consists of a massive amount of data, and the demand for high-

quality video, with quality in terms of higher video resolution, higher frame rates, or higher

fidelity, further increases the data size significantly. Moreover, video data transferring

through wired as well as wireless networks has also grown considerably in recent years as

there is a rapid growth in applications such as video phone, remote home surveillance, etc.

These make raw video data compression a necessity, and efficient compression techniques

are inevitable to save or transmit the data effectively.

Compression can be either lossless, where no information is lost during compression,

or lossy, where less important or unnecessary information is discarded without much low-

ering the subjective reproduction quality. Although lossless compression can manage a

bit-rate reduction of 3.2% to 13.2% on average [1], lossy compression is very popular for

video coding because of its better compression: a typical HEVC/H.265 lossy compression

showed a bit-rate saving of 50% to 60% for the same perceived video quality [2]. Lossy

compression is subject to a trade-off between various factors such as the degree of com-

9

10 Chapter 2. Background and Related Work

pression, quality degradation, or the complexity involved in compression. For instance, it

may require expensive hardware resources to encode/decode a highly compressed video

in real time even though it save storage space or transmission bandwidth.

Modern video compression methods exploit the redundancy that exists in the natu-

ral video such as statistical redundancy and psycho-visual redundancy. Compression is

achieved by eliminating these redundancies from the raw video data.

2.1.1 Statistical redundancy

Generally, the pixels in a video are not statistically independent; some are similar to

their neighbouring pixels, or to the pixels across successive images or frames. Another

kind of statistical redundancy is coding redundancy which is associated with the coding

technique.

Spatial redundancy

(a)

0 200 400 600
0

50

100

150

200

G
ra

y
L

ev
el

(b)

Fig. 2.1: (a) First frame of ice 4cif video sequence and (b) grey levels of pixels along the

300th row of this frame.

2.1 Video compression 11

The pixel values in a frame change smoothly from one pixel to its neighbouring pixels,

except at the boundaries of an object. This results in a very high statistical correlation

between pixels within an image frame. Spatial redundancy implies that a pixel can be

predicted from its neighbouring pixel values, hence it is not necessary to represent every

pixel of a video frame independently. The spatial redundancy can be used for both lossless

and lossy coding approaches. The first frame from a test video sequence is shown in Fig.

2.1 (a), and the pixel value change in grey level (luminance) over a horizontal line is

plotted in Fig. 2.1 (b). Smooth changes in pixel grey level can be observed except at the

edges or borders of objects.

Spatial redundancy is used in both lossless and lossy compression. Most lossless com-

pression techniques include generating a statistical model for input data, then using this

model to map input data into bit sequence that produces shorter output data, for in-

stance, using a shorter code for frequently occurring symbols and a longer code for less

frequent symbols. Examples of lossless formats are Huffman coding [3], Lempel-Ziv-Welch

(LZW) algorithm [4, 5], etc. On the other hand lossy compression exploits the psycho-

visual limitation of a human eye to discard redundant data. Slow and gradual changes

of luminance are more perceivable to the human eye rather than finer details and rapid

changes of intensity. Such psycho-visual characteristics are used in modern image and

video compression formats.

Temporal redundancy

A video consists of successive frames; usually, they are statistically correlated, contributing

to the temporal redundancy. For example, two frames from a video sequence Foreman

are shown in Fig. 2.2 (a) and Fig. 2.2 (b); as seen from these frames several pixels of

the images remain the same, or the similarity is very high as seen in the difference in

Fig. 2.2 (c). This is the case for a majority of the frames in a video sequence except for

12 Chapter 2. Background and Related Work

(a) Frame 1 (b) Frame 2 (c) Difference

Fig. 2.2: Frames from video sequence Foreman, and the differences.

frames having significant changes, such as scene changes. As a result, it is possible to

predict adjacent frames along the temporal axis. In several cases, the changes from one

frame to another frame are due to movement of some objects, as in Fig. 2.2; apart from

the movement of the lip and face portions, the two frames are static in nature. Motion-

compensated predictive coding considers this motion information, and it is thus possible

to remove many temporal redundancies in the video, resulting in a very high compression

efficiency.

2.1.2 Psycho-visual redundancy

Psycho-visual redundancy is associated with the perception of the outside world by the

human visual system, where some information may be more valuable than others. For

instance, the human visual system is more sensitive to luminance than colour. Hence less-

relevant information can be represented using less data, and it will not affect perception

qualitatively. Since these videos are made for human perception, psycho-visual redun-

dancies can be utilised for video compression. However, many findings in psycho-visual

effects have not been explored in the context of video compression applications.

2.1 Video compression 13

2.1.3 Coding redundancies

A video is encoded after removing the redundancies mentioned above, although the re-

dundancy exists itself in the coded data, which can be explored for further compression.

Coding redundancy has nothing to do with redundancies in the information but with

redundancy in its representation. Lossless compression methods, such as context-based

adaptive binary arithmetic coding (CABAC) [6], are used in many modern video coding

standards for eliminating these redundancies.

2.1.4 Video quality measurement

Quality measurement is necessary for evaluating two different compression standards or

measuring the effects of an algorithm improvement. When two methods result in the same

quality the advantages of algorithm or compression standards can be easily estimated

regarding speed, bit rate etc. However the measurement is not straightforward. Two

different approaches are used for this: subjective assessment (by human observation) and

objective assessment (by analysing data). In the first method, observers evaluate picture

quality by rating pictures or alternatively giving information about impairments in the

pictures. In image and video data compression, peak signal-to-noise ratio (PSNR) is used

as an objective quality assessment, defined as a ratio of the maximum possible power of

the signal to the power of the noise. Define the error function e(x, y) as the difference

between the input image f(x, y) and the output image g(x, y), i.e.

e(x, y) = f(x, y)− g(x, y) (2.1)

and the mean square error, Ems is defined as

Ems =
1

MN

M−1∑
x

N−1∑
y

e(x, y)2 (2.2)

14 Chapter 2. Background and Related Work

where M and N are image dimensions. The PSNR value is then computed as

PSNR = 10 log10

(
(2B − 1)2

Ems

)
(2.3)

where B is the bit depth of the image samples. Larger PSNR interprets as good image

quality, that is the output image g(x, y) is closer to the input image f(x, y). PSNR is the

most commonly used objective metric for video quality assessment. However, objective

quality measurements do not always give reliable information about perceivable image

quality [7]. Nevertheless, implementations of objective assessments are much faster, re-

peatable, and convenient; owing to these merits, objective measurements are widely used.

2.1.5 Video encoder

A video encoder converts uncompressed raw digital video data into a compressed format.

Modern video encoders use both predictive and transform domain techniques. A simplified

block diagram of a video encoder is given in Fig. 2.3. Since the coding scheme consists

of both predictive and transform coding techniques, the scheme is called hybrid.

The first frame of a video (and also some random accessing points in the video se-

quence) is encoded using only intra-picture prediction, i.e. using only spatial correlations

and no dependence on other pictures. All other frames can use intra-picture prediction

as well as inter-picture prediction techniques, where inter-prediction exploits temporal re-

dundancies across frames. The input frame is compared with its predicted frame; usually

the input frame is subtracted from the predicted frame, and the result is called a residual

image. The residual image is then subjected to a linear spatial transform, generally a

DCT because of its high energy-compaction property, and most of the signal informa-

tion tends to be concentrated in a few low-frequency components. After DCT operation

quantisation is performed over the transformed image. This is essentially removing high-

frequency components thus minimising psycho-visual redundancy in the residues. Note

2.1 Video compression 15

Transform
(DCT)

QuantiserVideo Frame bit stream

Inverse

Transform

Inverse

Quantiser

Motion

Compensation

Motion

Estimation

-

+

Motion Vector

Entropy or

VLC Coding

Decoder

+

Output video

Signal

Fig. 2.3: Simplified block diagram of a video encoder.

that human eyes are more sensitive to low-frequency (smooth changes) components than

high-frequency ones. The quantisation is controlled by a quantization parameter (QP);

the information lost in this step is not recoverable but may not affect the perceivable

image quality. After quantisation the data along with the prediction information are

encoded using lossless compression methods such as entropy coding or variable-length

coding (VLC).

A hybrid encoder also contains a decoder processing loop which is shown as the grey-

shaded box in Fig. 2.3. Therefore the final picture representation, which is equal to the

output of the decoder, is constructed in the decoder loop by subjecting residual picture to

de-quantisation, inverse transform, and adding to the predicted picture from the motion

estimator; this is stored in a picture buffer in order to use prediction for subsequent

pictures. Generally, the order of encoding or decoding of pictures frames is different from

16 Chapter 2. Background and Related Work

the order in which they arrive from the source, or output order (display order).

2.2 High efficiency video coding (HEVC/H.265)

High Efficiency Video Coding (HEVC) or H.265 is the latest video compression stan-

dard proposed by an joint effort of the ITU-T video coding experts group (VCEG)

and the ISO/IEC moving picture experts group (MPEG) standardisation organisations.

Previously, the two organisations jointly produced the MPEG-2 Video/H.262 [8] and

AVC/H.264 [9], and they had a very strong impact on the history of video standards

and were applied in wide variety of products. All these proposals aimed to maximise the

compression capability and improve many other factors such as robustness to data loss

while considering the computational resources available in products for the estimated de-

ployment time of each standard. As with the progress of computational power available in

computer chips, every new proposal brings coding advantages and more processing power

requirements.

Like most video coding standards, HEVC/H.265 is also a block-based video coding,

where each video frame or image is split into square blocks of pixels, and then each

block is predicted by either intra-picture prediction or inter-picture prediction. The latter

prediction method generally compensates motion of real-world objects; it is also called

motion-compensated prediction. In either case, the resulting prediction error of each block

is subjected to DCT, quantisation and entropy coding. A typical HEVC/H.265 encoder

block diagram is shown in Fig. 2.4, and is similar to a generic hybrid video encoder.

2.2.1 Coding block and coding tree units

In AVC/H.264 each video frame is divided into blocks of size 16× 16 pixels, called macro

blocks. Instead of macro blocks, HEVC/H.265 uses a coding tree unit (CTU) of size

2.2 High efficiency video coding (HEVC/H.265) 17

Fig. 2.4: HEVC Encoder (with decoder modelling elements shaded in light grey) [10].

L × L, where L can take values of 16, 32, or 64, selected by the encoder. Larger blocks

typically provide better compression, as it may possible to encode larger areas with fewer

codes. For colour representation HEVC/H.265 generally uses a YCbCr colour space with

4:2:0 sampling, although later versions included 4:2:2 and 4:4:4 schemes, as the human

eye is more sensitive to luma (Y component) than chroma (Cb, and Cr). The two chroma

components Cb, Cr represent the blue-difference and red-difference from luma respectively.

A luma coding tree block (CTB) and two corresponding chroma CTBs form a CTU.

The blocks used for luma and chroma CTBs can be partitioned into one or multiple

CBs in a quad tree structure as shown in Fig. 2.5. Mostly partitioning applies to both

luma and chroma CTBs simultaneously, with an exception when a certain minimum size

is approached for chroma. The splitting process can be iterated until it reaches a block

size 8× 8 pixels or larger, selected by the encoder, for luma samples. One luma CB and

associated chroma CBs together with syntax elements form a coding unit (CU). Every

CU has prediction units (PUs) and transform units (TUs) partitions.

18 Chapter 2. Background and Related Work

Fig. 2.5: Subdivision of a CTB with its partitioning and corresponding quad-tree struc-

ture. CBs represented in solid lines and TBs in dotted lines.

M/4 × M (L) M/4 × M (R) M/4 × M (U) M/4 × M (D)

M × M M/2 × M M × M/2 M/2 × M/2

Fig. 2.6: Splitting coding blocks (CBs) into prediction blocks (PBs); the lower four are

called asymmetric motion partitioning (AMP).

The prediction mode for a CU can be either inter or intra prediction, and is decided

at CU level. The luma and chroma CBs can be split further and predicted by PBs. The

CB can be split into one, two or four PBs as illustrated in Fig. 2.6. For the intra-picture

prediction mode only square blocks (M ×M and M/2×M/2) are supported. The lower

four partitioning types of PBs are known as asymmetric motion partitioning (AMP) and

are only allowed for blocks having a size of 16× 16 or larger. Some other restrictions are

also applied to PB partitioning for saving worst-case memory bandwidth; for example,

4×4 partitions are not allowed in inter-prediction and 4×8 and 8×4 blocks are restricted

to uni-predictive coding. A luma and two chroma PBs with associated coding syntax form

a PU.

2.2 High efficiency video coding (HEVC/H.265) 19

Table 2.1: Comparison of supported prediction block sizes in different generations of video

coding standards.

Video coding standard Supported prediction block sizes

MPEG-2 Video/H.262 16× 16

H.263 16× 16, 8× 8

MPEG-4 Visual 16× 16, 8× 8

MPEG-4 AVC/H.264 16× 16, 16× 8, 8× 16, 8× 8, 8× 4, 4× 8, 4× 4

HEVC/H.265 64× 64, 64× 48, 64× 32, 64× 16, 48× 64, 32× 64,

16× 64, 32× 32, 32× 24, 32× 16, 32× 8, 24× 32,

16 × 32, 8 × 32, 16 × 16, 16 × 12, 16 × 8, 16 × 4,

12× 16, 8× 16, 4× 16, 8× 8, 8× 4, 4× 8, 4× 4

In the development of coding standards from one generation to the next generation, a

key aspect of improving coding efficiency is to increase the number of supported prediction

block sizes. As an illustration, a comparison of different video standards is given in Table

2.1. The early generations of video coding standards such as MPEG/H.262 support only

one block size, of 16× 16 pixels without any subdivisions, and over the generations more

partitioning types and larger block sizes are allowed by the standards.

Transform blocks (TBs) are used for residual transform coding. Luma or chroma TBs

can take the size of a CB or be further split into luma and chroma TBs. Integer DCTs

of sizes 4 × 4, 8 × 8, 16 × 16, and 32 × 32 are defined for transform coding, also an

integer transform derived from the discrete sine transform (DST) is specified for 4 × 4

intra-predictive residuals as an alternative transform. The splitting is implicit if the CB

size is greater than the maximum TB size. The HEVC/H.265 specification allows TBs to

span multiple PBs for inter-picture predicted CUs, for maximising coding efficiency. The

variable block sizes in transform block sizes enable adaptation of different space frequency

20 Chapter 2. Background and Related Work

characteristics of CBs. Larger transform block sizes provide better frequency resolution,

whereas smaller block sizes provide better spatial resolution. The trade-off between these

two is chosen by the encoder control.

2.2.2 High-level parallelisation features of HEVC/H.265

Multi-threading and parallel processing are generic features of today’s microprocessor,

even in low-power platforms. Parallelisation features enable real-time processing of high-

quality video such as UHD in mobile devices, not possible otherwise. Efficient multi-

threading is only feasible when the video coding standards support this feature. In order

to overcome difficulties of parallelisation approaches in previous standards, HEVC/H.265

introduces two new features, tiles and wavefront parallel processing (WPP); both allow

partitioning video into groups of CTBs and processing them independently [11,12].

If tiles are enabled the picture is divided into rectangle groups of CTBs with horizon-

tal and vertical boundaries. Dependencies between tiles across the boundaries are not

allowed, including motion-vector prediction, with an exception for in-loop filtering. Since

tiles are not dependent on each other, the encoder can process tiles in parallel. Tiles in

the ‘active region’, where the picture has more motion, need more processing time. As

an advantage of tile segmentation, the computation time over different processing ele-

ments could be balanced using an adaptive tile-size selection. In previous standards slices

were used to achieve parallelism, but this has some disadvantages like improper pixel

segmentation which quite often reduces pixel correlations; also the slices contain header

information, and the overhead introduced by these slice headers is not negligible in coding

standards with high efficiency, such as HEVC/H.265. Experimental studies reveal that

tile-based parallelism has an average luma bit-rate saving of from 2.2% to 5.5% over the

slice-based approach [11].

In WPP, each row of a CTB is considered as a separate partition, and a number of

2.2 High efficiency video coding (HEVC/H.265) 21

parallel processing threads up to the number of CTB rows can be used in WPP. The

entropy coding dependencies are propagated to the next row with two CTB delays, so

forming a diagonal ‘wavefront’-like processing. One of the advantages of WPP over tiles is

that it does not break coding dependencies over boundaries, thus reduces block artifacts

at the partition boundaries. Since WPP has little effect in the analysing methods and

compression, it has a subtle effect on coding efficiency. However when processing of a

row is finished and no more rows are available in the frame, the processor becomes idle.

This problem can be mitigated by overlapping the processing of consecutive pictures, as

with overlapped wavefront (OWF) [12]. It seems that coding losses or coding inefficiency

due to tiles and WPP decrease with increasing frame size or resolution. Empirical results

show that both WPP and OWF have 0.58% coding losses on average for 4K UHD (2160p)

videos whereas tiles suffer 2.17% average coding losses [12].

2.2.3 Intra-picture prediction

Intra-picture prediction in HEVC/H.265 techniques can be classified into two categories,

angular prediction methods and a second category consisting of planar prediction and DC

prediction. HEVC/H.265 supports 35 directional modes in these two categories, compared

to the 8 directional modes in AVC/H.264. This in turn increases the coding efficiency as

well as the complexity of the intra-picture prediction. All prediction modes use adjacent

reference block samples, two 1-D arrays of upper and left neighbouring pixels which are

twice as long as the intra block size, for the prediction. The DC prediction mode simply

uses a single value, and planar estimate as a smooth gradient of the neighbouring samples.

2.2.4 Inter-picture prediction

Inter-picture prediction exploits temporal redundancies across neighbouring frames. As

mentioned earlier the picture is divided into CTUs and then PBs. Assume that an object

22 Chapter 2. Background and Related Work

0 1

2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34

Fig. 2.7: Examples for HEVC intra-prediction for an 8 × 8 luma block, where 0 is the

planar mode, 1 is the DC mode and the rest are angular predictions mode [13].

is moved in a video sequence, and the motion estimation finds the best matched block

from a previously encoded frame, which acts as a predictor. The positions of the block in

previous frames are indicated by a motion vector (∆x, ∆y), where ∆x and ∆y represents

horizontal and vertical movements respectively.

Motion estimation is an important operation in video coding and also contributes most

of the computation complexities in video encoding. HEVC/H.265 introduces a quad-tree

structure and many additional partitioning modes for PB. The target is to reduce the bits

requirement for representing motion vectors and prediction errors or residues. Motion

estimation can be classified into two types, forward and backward motion estimation,

according to the position of the reference frame – whether it is a future or past frame

on the temporal axis. In forward motion estimation a current frame, which is currently

2.2 High efficiency video coding (HEVC/H.265) 23

encoding, references a frame from the future, implying that search is forward, and vice

versa for backward motion estimation.

The SAD is widely used as a criterion for estimating the cost function, because of its

simplicity. For an M ×N block of pixels SAD is defined as

SAD =
M−1∑
i=0

N−1∑
j=0

|C(i, j)−R(i, j)| (2.4)

Since the encoder has to choose an optimal combination of coding options from parameters

like partitioning types, and number of bits required for both motion-vector coding and

residuals; a Lagrangian (Jmv) cost function is used to select best motion vector

Jmv = SAD(MV) + λ · b(MV − PMV) (2.5)

where λ is the Lagrangian multiplier, MV is the motion vector obtained, PMV is the

predicted motion vector of the block, and b(MV − PMV) is denotes the number of bits

required to represent the motion vector difference (MV − PMV). The vector of the

block having the minimum cost function is selected as the motion vector. Note that the

predicted frame many not have the same pixel values as the corresponding regions in

the current frame. Therefore the difference between the predicted frame and the current

frame, the residues, are sent to the decoder after transform coding and further processing.

Generally there are two kinds of inter-prediction techniques used in HEVC/H.265,

namely unidirectional and bidirectional predictions. In unidirectional predictions (‘P’

frames) only backward motion estimation is used for prediction, whereas both forward and

backward motion estimations are used for bidirectional predictions (‘B’ frames). Examples

of coding using both these techniques with a group of pictures (GOP) of 4 are shown in

Fig 2.8, where the picture order count (POC) is the display order or the order in which

they arrive from the source, and it is different from the decoding or encoding order.

24 Chapter 2. Background and Related Work

B B

PI

B

B B

P

B

POC 0 1 2 3 4 5 6 7 8

Decode Order 0 3 2 4 1 7 6 8 5

Fig. 2.8: A hierarchical GOP coding structure with size 4.

Merge and skip modes

A merge mode similar to the one in AVC/H.264 is also included in HEVC/H.265. The

CB, if encoding as merge mode, takes its motion estimation parameters from its spatially

or temporally neighbouring blocks. HEVC/H.265 also incorporates a skip mode, which is

a special case of merge mode, and the block is considered to be encoded in skip mode if

the motion vectors difference between the current encoding M ×M PU and neighbouring

blocks is zero, and if all the residuals are quantised to zero. Skip mode requires a minimum

amount of bits to encode, and homogeneous and motionless regions are the best candidates

for skip mode.

Fig. 2.9 shows CTB structures and motion vectors of a video frame encoded in

HEVC/H.265, showing the 3rd picture frame of the video sequence ‘bus’ encoded as a

‘B’ frame. The frame is used almost every kind of mode and partitioning types available

in HEVC/H.265, and also it is quite clear that most stationary regions are encoded with

skip mode.

2.2.5 Transform coding

In block-based hybrid video compression the residual image, i.e. the resulting image af-

ter subtracting the inter/intra predicted picture frame from the current encoding frame,

is subjected to transform. Then quantisation is applied to the resulting transform co-

efficients, which is essentially a division by a parameter called quantisation step (Qstep),

followed by rounding. Even though the rounding removes some of the information, it does

2.2 High efficiency video coding (HEVC/H.265) 25

Fig. 2.9: CTB structure and motion vectors of the ‘bus’ sequence frame 3, where intra

blocks are in red, inter blocks are in blue, merge-mode blocks are in dark green and

skip-mode blocks are in light green.

not affect the perceived quality as mentioned before. At the decoder side, the residual

picture frame can be created by applying de-quantisation and the inverse transform.

HEVC/H.265 specifies DCT transforms of sizes 4 × 4, 8 × 8, 16 × 16 and 32 × 32,

and for efficient computation, HEVC/H.265 uses integer approximations of DCT II. A

4 × 4 DST transform is also specified for encoding of 4 × 4 intra-predicted blocks. The

DCT transforms are called core transforms in HEVC/H.265 to differentiate it with DST

[10]. HEVC/H.265 tries to preserve symmetric properties; the even rows have symmetry

whereas odd rows maintain an anti-symmetric property; this property is useful to reduce

26 Chapter 2. Background and Related Work

the number of computations. As an example, 4× 4 matrix coefficients are in the form:

T4 =



t0

t1

t2

t3


=



a0 a0 a0 a0

b0 b1 −b1 b0

a0 −a0 −a0 a0

b1 −b0 b0 −b1


(2.6)

Although HEVC/H.265 relaxed the orthogonality constraint for approximating to integer

values, the deviation is small and the effect is negligible for the overall transform and

quantisation process. The coefficients of inverse transform matrices can be obtained by

transposing the forward DCT transform matrices.

2.3 Block matching motion estimation algorithms

The larger CTU size and the quad-tree encoding structures bring most of the coding

efficiency present in HEVC/H.265. It is possible to encode stationary or homogeneous

regions and some object movements, in larger blocks which results in smaller overhead,

in particular for high-resolution videos as portions of objects are represented with more

pixels than in low-resolution videos. However, the computations increase drastically due

to these changes. Consider the CTU of 64×64 pixels, which has 25 partitioning types (see

Table 2.1), and for the worst-case scenario it is necessary to find motion vectors for all

these available partitioning types. Each of these blocks needs much computation to find

a motion vector from the predefined search area. As an example, an 8× 8 block needs 63

additions/subtractions to find the SAD of one search position. Thus for searching an area

of 128× 128 (±64 in horizontal and vertical) requires 1032192 additions, and larger PBs

like 64 × 64 necessitate 67092480 additions; note that a UHD of resolution 3840 × 2160

pixels has 2040 such CTUs. In other words HEVC/H.265 is a good performer regarding

video quality and compression efficiency; nonetheless, it suffers very large computational

2.3 Block matching motion estimation algorithms 27

complexity as it has many partitioning types and the quad-tree structure.

A motion vector (MV) expresses the displacement of a pixel block or pixels with

respect to its position in another picture frame, and the block matching technique, which

finds the motion vector of a block of pixels, is the most popular. Since the neighbouring

frames of a video are very close along the temporal axis, the motions of objects are usually

confined to a small area, and the motion search is conducted in this particular region,

called the search area or search window. The height and width of the search area depend

on motions in video, and typically the search area is kept wider since a panning motion

is more common in videos. The block-matching algorithms can be broadly classified into

full-search algorithms and fast-search algorithms.

2.3.1 Full-search block-matching algorithm

The full-search block-matching algorithm always comes up with the best results, as it

searches all possible locations in the search window, and thus provides the least possi-

ble residues. However, the required computations are too high since it has (2 × Wx +

1) × (2 × Wy + 1) search points, where ±Wx and ±Wy are the search range in the x

and y directions respectively. Even the simplest distortion metric such as SAD involves

extensive computations for a search position, and it requires to find cost function at

each search candidates; the full search is extremely time consuming. Algorithms that re-

duce search points and hence decrease the computational complexity are called fast-seach

block-matching algorithms.

2.3.2 Fast-search block-matching algorithms

Even though fast-search algorithms omit several search points, many algorithms are as

good as full-search methods in terms of PSNR and bit rate, such as the successive elimi-

nation algorithm (SEA) [14], and partial distortion elimination (PDE) [15]. On the other

28 Chapter 2. Background and Related Work

hand, there are fast-search algorithms that have very much improvement in computation

speed but with slight decreases in PSNR and/or bit rate.

Successive elimination algorithm

The SEA is a two-step algorithm; first the algorithm computes the absolute difference

between the sums (ADS) of current and reference block pixels, as given below

ADS =

∣∣∣∣∣
M−1∑
i=0

N−1∑
j=0

C(i, j)−
M−1∑
i=0

N−1∑
j=0

R(i, j)

∣∣∣∣∣ (2.7)

where M and N are the width and height of the pixel block respectively, C represents

current block pixels, and R represents reference block pixels. In the second step, the

algorithm eliminates computation of SAD for blocks based on the inequality given in

(2.8) since, for any two blocks of equal size, the ADS is always less than or equal to their

SAD.

ADS ≤ SAD =
M−1∑
i=0

N−1∑
j=0

|C(i, j)−R(i, j)| (2.8)

Hence in searching for a better matching block, it is only required to consider candidate

blocks having ADS less than the current minimum ADS. Although there is an additional

overhead of computing the sum of intensities of M × N pixels at candidate blocks, the

omitted SAD computations account for more, and the computations in SEA are reduced

by approximately 85% compared to the full-search algorithm [14].

Multilevel successive elimination algorithm

The multilevel successive elimination algorithm (MSEA) [16] extends the concepts of the

above SEA algorithm into a multilevel case. The efficiency of the SEA depends on the

gap between ADS and SAD in each search position. The MSEA algorithm partitions each

blocks into several sub-blocks in hierarchical levels, for instance, the block is partitioned

into four sub-blocks, then each sub-block partitioned into four sub-blocks until the size of

2.3 Block matching motion estimation algorithms 29

sub-blocks becomes 2× 2. An inequality condition similar to (2.8) is tested in each level.

The SAD is calculated only if it satisfies the inequality conditions at all levels.

Partial distortion elimination algorithms

In PDEs [15, 17, 18] the distortion calculation is stopped whenever the computed distor-

tion is greater than the minimum obtained before. The computational savings is from the

probability of early rejection of non-possible candidate motion vectors. Like SEA algo-

rithms, the PDE algorithms also reduce the number of computations involved in motion

estimation. Note that in these approaches calculation is considered as a sequential pro-

cess, thus may not be a good candidate for highly parallel environments such as hardware

implementations.

Hierarchical fast-search algorithms

In hierarchical algorithms the search window is down-sampled to find the motion vector

in the down-sampled area, typically uses an hierarchical technique as in [19]. After the

motion search in the topmost search window, the results are passed to the lower levels for

refinement. The hierarchical motion estimation is often combined with other techniques.

For instance, a Kalman filter is used in [19] to get low-resolution hierarchical levels, and

in [20], an adaptive sampling positioning technique is used for down-sampling.

Three step search algorithm

The three step search (TSS) algorithm [21] is one of the oldest fast-search algorithms

proposed for motion estimation. The algorithm can be explained as follows; it starts the

search taking the collocated block as the search centre. Initially with the step size ‘S’

taken as 4, the algorithm searches eight locations ±S around the location (0, 0), the

collocated block. In the next step, it picks a location which has the least cost function

30 Chapter 2. Background and Related Work

among the nine locations including the centre and sets this as the new search centre for

the next step. The algorithm continues the above procedure, taking the step size S = S/2,

until the step size becomes one, i.e. the third step.

2D logarithmic search

1

1

1 1

1

2

2

2

23

3

3

3

1

3

2

*

Fig. 2.10: A 2D logarithmic search procedure for finding minimum distortion, ♦ with

the step number inside indicates the searched positions, the number in a circle shows the

location of the minimum in each step, and ‘∗’ shows the final minimum.

The 2D logarithmic search [22] is similar to TSS but is more accurate to find motion

vectors in large search areas. The algorithm illustration is in Fig. 2.10, which starts with

a search location at the centre and takes a step a size, for example S = 4 initially, and

searches 4 locations at the distance S on the x and y axes. The location of the minimum

cost function is set as the centre for the next search with S = S/2. The procedure

continues until S becomes one.

2.3 Block matching motion estimation algorithms 31

New three-step search algorithm

(a)

decision #1 decision #2

2nd and 3rd steps of NTSS

(same as TSS)

2nd steps of NTSS

3 or 5 checking points

2nd steps of NTSS

3 or 5 checking points

MV = (0, 0)

MV MV

decision #1: minimum at the search window centre?

decision #2: minimum at one neighbour of the centre?

Y

Y

N N

(b)

Fig. 2.11: NTSS algorithm. (a) Showing search points, where filled circles are the checking

points in TSS and squares are the additional 8 points in the first step of NTSS, and the

triangle shows the second step if the minimum is at one of the eight neighbours. (b) NTSS

flow chart [23].

The new three-step search algorithm (NTSS) is an improved version of TSS; it assumes

that the error surface is monotonic in a small area near the global minimum [23]. The

algorithm also assumes that the block motion field is gentle, smooth and varies slowly,

in particular for low-bit-rate video applications. Hence there is proposed a central-biased

checking in its first step, which adds eight points additional to the TSS algorithm, and a

halfway stop for stationary or quasi-stationary blocks. NTSS was one of the first widely

accepted fast-search algorithms and was used very often in implementations of earlier

standards such as MPEG 1 [24]. Fig. 2.11 explains NTSS with a flow chart.

32 Chapter 2. Background and Related Work

Fig. 2.12: Illustration of block-based gradient-descent algorithm; the arrows demonstrate

movements of the search centre.

Block-Based Gradient-Descent Search Algorithm

The block-based gradient descent algorithm (BBGDS) [25] also assumes monotonic error

surfaces near the global minimum. The concept is similar to that of the gradient-descent

algorithm, widely used in optimisation theory. The first step is similar to TSS, search

around the centre point. If the optimum is found at this centre, the search stops, otherwise

continue the search around the point where the optimum is found. It will continue until

the minimum is at the centre of the checking points, or when the block of checking points

reaches the search window boundary. The search procedure of the BBGDS algorithm

with a 3× 3 checking block, is illustrated in Fig. 2.12. The BBGDS always moves in the

direction of optimal gradient descent, but there is always a chance of trapping in local

minima.

Diamond search algorithm

Searching with a small pattern, such as the 3 × 3 checking block in BBGDS [25], causes

the search to get trapped in local minima and deteriorates performance, in particular for

picture frames having large motion content. On the other hand, a larger search pattern

2.3 Block matching motion estimation algorithms 33

like in TSS [21] 9× 9 sparse checking points, is quite likely to lead the search in a wrong

direction. The diamond search (DS) [26] algorithm uses two search patterns, the first one

comprises 9 checking points forming a large diamond shape, and the second one consists

of 5 checking points forming a small diamond search pattern. The search patterns used

for DS are shown in Fig. 2.13. The search proceeds similarly to BBGDS with the large

diamond search pattern until the minimum lies in the centre of the search pattern, then

it switches to small diamond pattern, with the minimum point of this selected as the

motion vector. Since the search is not constrained by the number of steps, the probability

of finding the same motion vectors as obtained in the full search is comparatively high [26].

(a) (b)

Fig. 2.13: Search patterns used for the diamond search algorithm. (a) Large diamond

search pattern. (b) Small diamond search pattern.

Predictive motion-estimation search algorithms

A good technique to reduce the computation complexity in motion estimation is to start

the motion search near the possible final location of the motion vector. The prediction-

based algorithm predict this point from already-encoded motion vectors, for example,

the spatially nearest blocks. The algorithm may incorporate more than one method and

select the one which has the least cost function. One of the earliest prediction methods is

34 Chapter 2. Background and Related Work

the median predictor, which is the median of the left, right and top (right or left) block’s

motion vectors, as these blocks may be already encoded and can be used for prediction.

For example, the motion-vector field-adaptive fast motion estimation (MVFAST) [27]

and predictive motion-vector field-adaptive search technique (PMVFAST) [28] algorithms,

both accepted by the MPEG-4 optimisation model [29] as a recommendation for motion

estimation, use median predictor and temporal candidates.

The advanced predictive diamond zonal search (APDZS) algorithm [30] considers a

set of predictors, such as the left, top, top-right block’s motion vectors, their median and

the motion vector of the previous frame collocated block. Some other likely locations,

such as linear merging of temporally and spatially adjacent blocks, are also considered.

From these predictors, the one having the least distortion is selected as the centre for a

diamond pattern search. APDZS also uses an adaptive thresholding for early termination

of the motion search.

frame t-2 frame t-1 current frame

Fig. 2.14: Use of acceleration information for motion vector prediction in EPZS algorithm

[31].

Enhanced predictive zonal search (EPZS) [31] is an improvement of the PMVFAST

and APDZS algorithms, using an additional set of predictors and efficient selection of

the criteria for early stopping. The prediction selection is the key feature of this algo-

rithm; the speed of convergence and the accuracy results depend on the prediction. The

2.3 Block matching motion estimation algorithms 35

EPZS algorithm uses an accelerated motion vector predictor
−−→
MV ap (Fig. 2.14), which is

the increased or decreased motion vector depending the motion vector of the collocated

frame and the frame before that. The threshold value for early termination in the EPZS

algorithm is adaptive and derived from the neighbouring block’s cost values.

Test zone search algorithm

8 0 8

8 8 8

8 8 8

11

1 1

2 2 2

2

222

2 44

4 4 4

444

(a)

1 1

8

0

8

8

8

88

8

8

1

1

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

(b) (c)

Fig. 2.15: Search patterns used in test zone search algorithm. (a) Square pattern. (b)

Diamond pattern. (c) Raster scan pattern

The TZ search algorithm [32] is widely used for motion estimation in HEVC/H.265

applications, and the algorithm is also used in HEVC test model (HM) software [33].

The algorithm consists of an initial grid search and raster search which is a full search

like searching but with a down-sampled search window. The TZ search algorithm uses

median predictor, left predictor, and upper-right predictor, where the starting point for

the initial grid search is the minimum distortion point of these predictors. For the initial

grid search the algorithm uses either a square pattern or a diamond pattern with stride

length changing from 1 to the ‘search length’ in powers of two. An example of search

patterns for the initial grid search of stride length up to 8 are shown Fig. 2.15 (a) and

36 Chapter 2. Background and Related Work

Fig. 2.15 (b). If the minimum distortion point obtained in this step is far from the

starting point, i.e. greater than a predefined value ‘iRaster’, the algorithm will go to the

next step, the raster scan; otherwise it will be skipped.

In the raster search, the algorithm will search in the whole window with a stride length

equal to the previously defined value ‘iRaster’. An illustration of raster scan with stride

length equal to 5 pixels is in Fig. 2.15 (c). This step is the most time-consuming in a TZ

search; the total search points S for the window of size Wx ×Wy pixels is given by

S =

⌈
Wx

iR

⌉
·
⌈
Wy

iR

⌉
(2.9)

where iR represent the ‘iRaster’ value.

The final step in the TZ search algorithm is a refinement search; either raster refine-

ment or star refinement is enabled. Both of these refinements use an eight-point diamond

or square pattern, and they only differ in their search operation. The raster refinement

brings down the stride length of the square/diamond pattern by a factor of two while

changing the search centre to the best location in every step. The star refinement is simi-

lar to the initial grid search except for the change of search centre after every round. The

two refinements stop when the distance from the search centre to the minimum distortion

point becomes zero. Hence the total number of search points is not predictable as it

depends heavily on the video sequence.

2.4 Residue number systems

Video processing involves a large number of computations, and in their hardware im-

plementations in traditional binary systems their performance is usually restricted by

the carry propagation, and it is worsened as the word length of arithmetic operations

increases. If large numbers could be split into smaller numbers and processed indepen-

dently, then the performance can be enhanced. RNSs represent large integers in a smaller

2.4 Residue number systems 37

Table 2.2: Residues of various moduli sets

X
Relatively prime moduli Relatively non-prime moduli

m1 = 2 m2 = 3 m3 = 5 m1 = 2 m2 = 3 m3 = 4

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 0 2 2 0 2 2

3 1 0 3 1 0 3

4 0 1 4 0 1 0

5 1 2 0 1 2 1

6 0 0 1 0 0 2

7 1 1 2 1 1 3

8 0 2 3 0 2 0

9 1 0 4 1 0 1

10 0 1 0 0 1 2

11 1 2 1 1 2 3

12 0 0 2 0 0 0

13 1 1 3 1 1 1

14 0 2 4 0 2 2

15 1 0 0 1 0 3

set of integers, and mathematical operations can be performed on each of these smaller

integers independently, thus generally outperforming its binary equivalent.

The RNS is a non-weighted number system, where a number is represented by the

remainders of a moduli set, called residues. An ordered residues set (x1, x2, . . . xN) repre-

sents the binary number X corresponding to a moduli set (m1,m2, . . .mN), where N ≥ 2,

and each residue xi is the remainder from the integer division of X by mi, mathematically

xi = X mod mi, or more conveniently xi = |X|mi
. If the moduli are mutually prime then

the product of these moduli M is the dynamic range of the system, since any number X

less than M can be represented uniquely using the residues, whereas if they are relatively

non-prime then the dynamic range M will be the least common multiple (LCM) of all the

moduli.

38 Chapter 2. Background and Related Work

Table 2.2 shows an example for both relatively or mutually prime moduli and non-

prime moduli residues of binary number X. The moduli 2, 3, and 5 are relatively prime;

the residues of this moduli set given in the left half of the table, and the residues of a

mutually non-prime moduli set, 2, 3, and 4 are provided in the right half of the table.

For the first case, the dynamic range M =
∏
mi which is equal to 30, hence any number

less than this has a unique representation by residues. On the other hand, the moduli

set of the right-half side of the table is not mutually prime, hence M = lcmmi and the

dynamic range is 12. Observe that there are repetitions on the right-half side of the table

after X ≥ 12.

The residue number system using mutually prime moduli can be considered as a ‘stan-

dard residue number system’, and is widely used. Nevertheless, ‘non-standard residue

number systems’ are also useful in many applications, for instance, in error-tolerant sys-

tems using redundant residue number systems. The digit positions with errors may be

excluded in such systems while still retaining sufficient dynamic range for the application.

Moreover, error detection and correction are also possible with redundant moduli.

2.4.1 Arithmetic operations in RNS

The basic arithmetic operations such as addition, subtraction and multiplication can be

easily implemented in an RNS. The addition or subtraction operations are carried out

independently in each of these residues and do not need to propagate carries between

these residues. For a given moduli set {m1,m2, . . . ,mN}, X = {x1, x2, . . . , xN} and

Y = {y1, y2, . . . , yN} then the addition of Z = X + Y is given as

Z = |X + Y |M = {|x1 + y1|m1
, |x2 + y2|m2

, . . . , |xN + yN |mN
} (2.10)

As an example, consider the moduli set {2, 3, 5}; the binary numbers seven and eight

are represented by {1, 1, 2}, and {0, 2, 3}, and adding these two according to the above

2.4 Residue number systems 39

equation gives {1, 0, 0}, the representation of fifteen.

Subtraction and multiplication are also carried out in a similar way, simply subtract-

ing or multiplying residue pairs, relative to their position to modulus. For example,

multiplication can be defined by

Z = |X × Y |M = {|x1 × y1|m1
, |x2 × y2|m2

, . . . , |xN × yN |mN
} (2.11)

As an illustration, with the moduli set {2, 3, 5}, multiplication of seven and two can be

achieved by multiplying their residue representations {1, 1, 2} and {0, 2, 2} respectively,

which gives {0, 2, 4}, the equivalent of the number fourteen.

However, division in an RNS is not trivial. The basic division operation consists of

a sequence of subtractions and magnitude comparisons. Since an RNS is non-weighted,

or non-positional, the comparison is difficult. For an illustration, in the moduli set {2,

3, 5}, the residue set {1, 0, 0} represents a value five times that of the residue set {1,

0, 3}, but this is far from obvious. One way of doing division could be converting them

to a weighted number system, performing division and converting back. However, the

conversion is also a time-consuming process. Despite the recent progress in magnitude

comparison, sign detection or conversion [34–37], research on topics such as division is in

its early stages, and it is very costly to implement. Therefore an RNS is mainly suggested

in applications where addition, subtraction, or multiplication predominates.

2.4.2 Negative numbers

Many real-world applications require numbers represented as both positive and nega-

tive. As in binary systems, signed-number representations such as sign-magnitude, radix

complement, are possible in RNS as well. However, since it is a non-weighted number

representation, the magnitude comparison is much more difficult in RNS, and the sign

determination is essentially a magnitude comparison. This is the case even with the

40 Chapter 2. Background and Related Work

signed-magnitude representation, where the sign of a resulting mathematical operation

like addition or subtraction is unknown even though the signs of the operands are known.

In signed magnitude, an additional bit is used to represent sign in the RNS, similar to

binary. For the complement notation the dynamic range of the system is partitioned into

two approximately equal parts, and generally the lower half belongs to positive numbers,

and the rest are used for negative. Thus, if the dynamic range M is even then the numbers

[0,M/2− 1], else if M is odd then the numbers [0, (M − 1)/2], are considered as positive

numbers, and −X is represented by {x̄1, x̄2, . . . , x̄N}, where x̄i is the mi’s complement.

The complement or negation of each residue xi can be found by subtracting it from the

moduli |mi− xi|mi
, similar to finding the 2’s complement of an n bit binary number x by

subtracting it from the value 2n.

2.4.3 Moduli selection

The performance of RNSs depends on the effective selection of moduli set. One concern is

the dynamic range required for the application; also it should be efficient in the implemen-

tation of the required arithmetic operations. Different moduli sets are available [38–41]

targeting distinctive applications. Some of the commonly used RNS moduli sets are given

below

• {2n − 1, 2n, 2n + 1}

• {2n−1 − 1, 2n − 1, 2n}

• {2n − 1, 2n, 2n+1 − 1}

• {2n − 1, 2n, 2n + 1, 2n−1 − 1, 2n+1 − 1}

• {2n−3, 2n − 1, 2n + 1, 2n + 3}

• {ra − 1, rb, rc + 1}

2.4 Residue number systems 41

• {rn − 2, rn, rn + 1}

Finding the best moduli is basically done heuristically. Nevertheless, for a guaranteed

best selection some theoretical analysis and guidelines are available. The most important

considerations for a successful moduli set {m1,m2, . . . ,mN} given in [42] are

1. The moduli should be mutually prime.

2. Smaller moduli (mi) are better as they require minimum computation time.

3. The moduli set should allow simple realisation of arithmetic as well as conversion

to and from the weighted system. Sets having moduli in the form of 2k1 + 1, 2k2−1,

and one 2k3 are found to satisfy the above requirements.

4. The dynamic range of the moduli set M should be large enough to implement the

desired dynamic range to avoid overflows. Although scaling is possible, it is not as

easy as in binary systems.

The form of moduli set {2n − 1, 2n, 2n+1 − 1}, where n is a positive integer, has simple

conversion and arithmetic and is suitable for many applications. However, if the required

dynamic range is very large, the size of each modulo mi increases and the performance of

such a moduli set tends to deteriorate. All Mersenne or Fermat numbers [43] moduli with

one 2k result in an unbalanced distribution of the dynamic range, which is not desirable

since some channels become too fast compared to others due to the unbalanced bit widths

of residues. On the other hand, sets having arbitrary small prime numbers generally result

in complicated arithmetic and conversion systems. For example, the modulo 23 requires

a complex hardware for modulus operation after the arithmetic’s of residues, whereas it is

much simpler for modulo 31 or 33 based systems. Probably the arbitrary moduli systems

need look-up-table designs using read-only memorys (ROMs), however the delay and area

of ROM-based systems could be prohibitive.

42 Chapter 2. Background and Related Work

The moduli set {2n − 1, 2n, 2n+1 − 1} consisting only of the 2n and 2k − 1 forms of

moduli, has attained research interest in recent years. The modulo operations, as well

as the reverse conversion [44], are efficient. The forward conversion, i.e. finding the

remainder, is also simple for 2k − 1 type moduli [45], and the remainder of a 2n modulus

is just the least n bits of the binary number. Furthermore, [46] compares various moduli

sets; sets having 3 moduli show the least delay for reverse conversion, and the delay of

modular adders and multipliers are also very close to the least among the sets. For the

same number of bits, the dynamic range of the {2n − 1, 2n, 2n+1 − 1} moduli is almost

double that of the {2n − 1, 2n, 2n + 1} moduli set.

For video processing applications, a dynamic range of 25 bits is generally sufficient for

many modules. Thus in this thesis {2n − 1, 2n, 2n+1 − 1} with n set to 8 has been used

for developing timing-critical modules such as motion-estimation hardware for the video

encoder.

2.4.4 Applications of RNS

Due to the absence of carry propagation between residual digits, an RNS has been used

mainly for systems where arithmetic operations such as additions and multiplications

are dominant. Another important property is the ability to isolate individual digits,

which is useful to design fault-tolerant applications. This is more important in extremely

dense digital IC designs where the chips cannot be tested completely. One of the major

applications of RNS is in digital signal processing (DSP). In DSP, real-world analogue

signals are represented by numbers, after sampling and quantization, for processing the

data using digital computers. The advantage of DSP includes flexibility in modification

and coding of algorithms, stability, repeatability, and relatively easy implementation.

However, DSP is computationally intensive, where the majority of operations involves

multiplications and accumulations. The multiplication is an expensive operation involving

2.4 Residue number systems 43

larger chip area or resource utilisation and speed. Since most DSP applications are in

real-time systems, the speed of multiplication is very crucial, as it is required to complete

a certain set of operations before the new data arrives. Arithmetic operations on large

numbers are inevitably time consuming, so transforming data into an RNS can effectively

reduce delays in such operations.

In DSP, digital filters are quite important as they are essential in applications such

as noise reduction, interpolation, decimation, echo cancellation, and equalisation. Digital

filters primarily rely on multiplication and accumulation operations, and can be easily

adapted to changes in environment by simply changing system parameters. Furthermore,

as these systems are re-programmable, their characteristics are interchangeable without

any making any physical changes. DSP filters are commonly classified into finite impulse

response (FIR) and infinite impulse response (IIR), and an RNS has been used for both

finite and infinite impulse response filters [47, 48]. RNS is also used for several other

applications including Fourier transform, discrete wavelet transform, image processing

and cryptography [49–52].

2.4.5 HEVC procesor with RNS

An RNS has found an application in video processing also. An RNS-based transform

architecture for AVC/H.264 is described in [53], and a video filter with RNS is proposed

in [54]. SAD is an essential component in video encoding, and an RNS-based specific

processor for computing SAD is proposed in [55]. However, application of RNS to the

latest video coding standard, HEVC/H.265, is in its early stage. Furthermore, many

improvements to the overall performance of RNS are still possible, in particular for some

mathematical operations, such as sign detection, that are difficult to do in an RNS.

This dissertation aims to address the research gap and proposes various RNS hardware

implementations for video processing in HEVC/H.265 standard and a fast arithmetic unit

44 Chapter 2. Background and Related Work

for sign detection.

The hybrid video coding structure shown in Fig. 2.3 has been used for all video

coding standards and recommendations of ITU-T and ISO/IEC MPEG since H.261 [56],

and is also followed by this dissertation. Even though the high-level architecture was

not changed, the underlying algorithm for each block has been modified and becomes

more flexible with each new proposal. The coding scheme is called hybrid as it uses both

prediction and transform techniques. A more detailed coding scheme for HEVC/H.265 is

shown in Fig. 2.4. This dissertation presents various efficient algorithms and architectures

for HEVC/H.265 encoder blocks, in particular for motion estimation, as it is the most

computationally intensive task in video encoding, providing a trade-off between cost and

performance. This dissertation also incorporates an RNS to enhance the performance of

video encoding.

Chapter 3

VLSI Architecture of Full-Search

Variable-Block-Size Motion

Estimation for HEVC Video

Encoding 1

3.1 Abstract

Motion estimation (ME) is the most computationally intensive task in video encoding.

This study proposes a full-search variable-block-size ME for the high-efficiency video cod-

ing or H.265 specification. The proposed method reduces memory requirements to a large

extent by following a Morton order for data reading and a sum of absolute differences

reuse strategy. The data bandwidth demand is also diminished by broadcasting data into

1N. C. Vayalil, and Y. Kong, “VLSI Architecture of Full-Search Variable-Block-Size Motion Esti-

mation for HEVC Video Encoding”, IET Circuits Devices & Systems, 2017 in press. Reproduced by

permission of the Institution of Engineering & Technology.

45

46 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

multiple processing elements. This ME accelerator supports variable-block-size prediction

blocks ranging from 8× 4 to 64× 64, and is reconfigurable in various search ranges for a

trade-off between performance and area. The proposed method for very-large-scale integra-

tion (VLSI) architecture is synthesized with 32 nm technology, and is capable of real-time

encoding of ultra-high-definition (4K UHD, at 30 Hz) video with a search range of 64 pixels

in both horizontal and vertical directions, operating at a frequency of 282 MHz.

3.2 Introduction

The latest video compression standard developed by the joint collaborative team on video

coding (JCT-VC) is known as HEVC/H.265 [10]. HEVC/H.265 achieves significantly

better coding efficiency than its predecessor, AVC/H.264 [57], by incorporating a larger

block size and a variety of partitioning modes. In video encoding, motion estimation

(ME) is the most computationally intensive task with approximately 80% of the total

computational load [58]. The computational complexity increases manyfold for ME in

HEVC/H.265 as compared to the previous standard since the basic encoding block, the

CTU, size is increased from 16 × 16 to 64 × 64 (16 times as many pixels as the former

standard) and by introducing a hierarchical quad-tree structure. On the other hand, the

demand for UHD with a resolution of 3840× 2160 (4K UHD) introduces another 4 times

increase in computations for ME.

Several algorithms exist for AVC/H.264 to reduce the number of search points for ME

such as DS [59], new TSS [23] and EPZS [31]. Many of them assume a unimodal error

surface with a global minimum, but that model is not true in general for videos, whereas

many other fast-search algorithms are not suitable for hardware implementation due to

the algorithm complexity, a sequential processing requirement, or the algorithm depen-

dency on thresholds. A hardware-oriented modified diamond search is proposed in [60]

3.2 Introduction 47

to mitigate the above problems. Another search-point reduction algorithm for hardware

implementation is proposed in [61]. A low-complexity variable-block-size motion estima-

tion is proposed in [62], utilizing a fast-search algorithm based on a 9-point block concept.

As a result of the quad-tree partitioning structure and other complexities, various ME

algorithms proposed for AVC/H.264 as in [62–64] are no longer suitable for its successor

HEVC/H.265 [65].

Due to the variety of partitioning modes and the quad-tree structure present in

HEVC/H.265, the mode decision and CU size selection involve enormous computing time

if it tries all available CUs and selects the best. CU decision or mode decision algorithms

are proposed in [66–70] to decide the best CU, and some algorithms reduce the com-

putational complexity by up to 50% in experimental cases. An adaptive-search-window

algorithm (ASWA) presented in [71] tries to reduce the search window size based on

the motion vector and the cost value of previous blocks. ME is suitable for paralleliza-

tion, which leads to a parallel framework for the CPU + GPU (graphics processing unit)

platforms [72–75]. Several algorithm-level optimizations are recommended in [76–78] in-

cluding suggestions of early termination (ET). However most of these proposals are for

software implementations and many of them are not attractive for hardware realization.

Moreover software implementation in video generally consume more power and are not

suitable for real-time encoding.

In order to meet the high computational requirements for HEVC/H.265 this paper

proposes a hardware architecture for full-search ME. Although the fast-search algorithm

requires less hardware resources [79], full-search ME always comes up with the best results

as it covers all the search points of the fast-search method. The proposed architecture

utilizes the Morton order for data reading as well as the SAD [80] reuse strategy for finding

motion vectors in the hierarchical quad-tree coding structure of HEVC/H.265. SAD reuse

is a crucial technique to achieve real-time processing in hardware, where computed SAD

48 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

values are stored and hierarchically used for larger blocks.

A straightforward implementation of variable-block-size ME is to use a P × Q size

SAD computation unit similar to [81] or [82], and a search range of L × L pixels which

generates L × L SADs of P × Q blocks. For the ME in a video with a frame rate f Hz

and a frame size of W ×H pixels, the aforementioned hardware requires a bandwidth of

(W/P ×H/Q) × (L × L) × (P × Q) × f bytes per second. The architecture introduced

in this paper saves bandwidth by broadcasting reference frame pixels to multiple PEs or

SAD computation units, for both horizontal and vertical directions. The architecture has

an L × A PE array, which has an input of L + A − 1 pixels in a row, and computes a

row of L different SADs of an A × A block in each clock cycle, thus requiring L clock

cycles to complete a search window of L×L pixels. Hence the bandwidth requirement is

(W/A×H/A)× (L+A−1)× (L+A−1)×f bytes per second, providing an approximate

bandwidth saving of A2 times over the conventional methods, as L � A. L and A are

taken as 64 and 8 respectively, reducing the bandwidth by a factor of 52.

Since a set of SADs is generated from each rows of PE array, the output pattern

results in groups of varying x coordinates, which is not most suited for hierarchical SAD

computation [83]. This issue is addressed in [83] by saving all SAD data into a random

access memory (RAM), reading the data and reorganizing them. However this demands

at least 512 kB RAM to save all 8×8 block’s SADs inside a 64×64 CTU and for streaming

data continuously. The proposed architecture uses Morton order for data reading, thus

it does not need to save all SAD data, instead it is sufficient to save L rows of L SADs

in each hierarchical level. To facilitate computation of M × M/2 and M/2 × M type

prediction block (PB) SADs, some additional memory is required in each stage, thus a

total of 36 kB RAM is used by the proposed architecture.

3.3 Full-Search Variable-Block-Size Motion Estimation in HEVC 49

3.3 Full-Search Variable-Block-Size Motion Estima-

tion in HEVC

The HEVC/H.265 standard introduces a very flexible and hierarchical coding structure.

A picture is divided into CTUs of L × L where L takes the values of 16, 32 or 64,

depending on the encoders, for different memory and computational requirements [10].

All CTUs have the same size, and the CTU replaces a fixed 16 × 16 macroblock in the

previous standard. The support for larger block sizes provides higher coding efficiency,

approximately 50% bit-rate savings in HEVC/H.265 compared to its predecessor for an

equivalent reproduction quality [57], and is also beneficial for encoding higher-resolution

videos such as UHD. Each CTU consists of L × L samples of a luma CTB and the

corresponding chroma CTBs of L/2× L/2 samples. The luma and chroma CTBs can be

split recursively into square coding block (CB) in 32 × 32, 16 × 16 down to 8 × 8 pixels

(luma samples) in a quad tree structure.

M/4 × M (L) M/4 × M (R) M/4 × M (U) M/4 × M (D)

M × M M/2 × M M × M/2 M/2 × M/2

Fig. 3.1: Partitioning of CB into PB in HEVC.

One luma CB and the associated chroma CB form a CU. A CB can be split differently

to prediction blocks and transform blocks. The CB is split non-recursively into the PB as

shown in Fig. 3.1, where the lower 4 partition types are known as AMP. The prediction

mode for a CU may be either intra or inter depending on whether it uses intra-picture

prediction or inter-picture prediction respectively. In intra-picture prediction mode, only

M ×M and M/2×M/2 partition types are allowed, whereas in inter-picture prediction

50 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

mode the AMP cannot be used if M is less than 16 for luma or AMP is disabled. In the

inter-picture prediction mode the size 4× 4 is not allowed to reduce memory bandwidth.

The luma PB with associated chroma PBs forms a PU.

The objective of the ME is to find the best matching block for all kinds of PU types

of a current frame from a previous or future frames (reference frames) that gives minimal

residues. In an area of picture frame that has many details the smaller block size gives

minimal residues. On the other hand for the smooth areas larger block size gives better

compression. The ME is usually done in a predefined search window because it is expected

that motion is confined to that area for near or consecutive frames, and generally the

search window size increases with increasing resolution and decreases with increasing

frame rates. The ME should be done for all the PU types (variable block size ME) to get

the best coding efficiency.

The SAD is one error measure criterion and is widely used because of its simplicity.

The SAD of an M ×N block can be calculated using (3.1)

SAD =
M−1∑
i=0

N−1∑
j=0

|C(i, j)−R(i, j)| (3.1)

where C and R represent current block and reference block pixels, respectively.

3.4 Hardware Architecture of HEVC/H.265 Variable-

Block-Size Motion Estimation

The proposed architecture for HEVC/H.265 Variable-Block-Size Motion Estimation uses

a full-search method. The schematic of the proposed architecture is given in Fig. 3.2

and consists of three main blocks, namely SAD computation, SAD summation, and SAD

comparator. The SAD computation block finds SAD values with the help of PE, the

SAD summation block calculates various SAD values of different kinds of blocks in the

3.4 Hardware Architecture of HEVC/H.265 Variable-Block-Size Motion Estimation 51

Ref. frame
MV

(depth = 3)

MV
(depth = 2)

MV
(depth = 1)

MV
(depth = 0)

SAD

comparator

SAD

summation

SAD

summation

SAD

summation

SAD

comparator

SAD

comparator

SAD

comparator

SAD

computation
Current

frame

Fig. 3.2: Motion Estimation (ME) hardware architecture. RAMs are used for storing

partial and SAD results in each summation stage.

HEVC/H.265 quad-tree structure, and the comparator blocks find the minimum SAD

values and thus MVs of these blocks.

Fig. 3.3: Processing Element (PE) for calculating SAD of 4 pixels.

3.4.1 SAD Computation

The heart of the SAD computation is a PE as given in Fig. 3.3, which calculates the

SAD values of 4 pixels of the current frame (CF) and the corresponding reference frame

52 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

Fig. 3.4: Processing Element (PE) array for Motion Estimation SAD computation. The

L× 4 PE array can be reconfigurable in the x direction; in the above L = 4.

(RF). Each PE accumulates a 4× 4 pixel SAD. The minimum block size according to the

HEVC/H.265 specification is 4×4 pixels, so that the PEs are arranged as an array of L×4

as shown in Fig. 3.4, where L is shown as 4 for simplicity, which is configurable in the x

direction. In each cycle a row of reference frame data (L+3 pixels) are broadcast into PE

elements, whereas the current frame data is stored in local memory along with the PE

array (CF data buffer). One important difference of this arrangement from many other

structures, including [83,84], is that the proposed structure does not use any multiplexers

in the reference data lines, hence halves the number of reference data lines. Although the

mux with double RF data lines increases throughput, most of the time one half of the

RF-lines are idle, which reduces hardware efficiency.

The detailed data flow of this arrangement is given in Table 3.1, where C and R

represent current frame and reference frame pixels respectively. The PEs are arranged as

a 2D array of size L × 4, and each PE computes the SAD of a row of 4 current frame

3.4 Hardware Architecture of HEVC/H.265 Variable-Block-Size Motion Estimation 53

Table 3.1: The detailed data flow in the PE array with L = 4.

Cycle PE(x = 0) PE(x = 1) PE(x = 2) PE(x = 3) SAD

0

PE(y = 0) C(0 : 3, 0), R(0 : 3, 0) C(0 : 3, 0), R(1 : 4, 0) C(0 : 3, 0), R(2 : 5, 0) C(0 : 3, 0), R(3 : 6, 0)

PE(y = 1) − − − −

PE(y = 2) − − − −

PE(y = 3) − − − −

1

PE(y = 0) C(0 : 3, 1), R(0 : 3, 1) C(0 : 3, 1), R(1 : 4, 1) C(0 : 3, 1), R(2 : 5, 1) C(0 : 3, 1), R(3 : 6, 1)

PE(y = 1) C(0 : 3, 0), R(0 : 3, 1) C(0 : 3, 0), R(1 : 4, 1) C(0 : 3, 0), R(2 : 5, 1) C(0 : 3, 0), R(3 : 6, 1)

PE(y = 2) − − − −

PE(y = 3) − − − −

2

PE(y = 0) C(0 : 3, 2), R(0 : 3, 2) C(0 : 3, 2), R(1 : 4, 2) C(0 : 3, 2), R(2 : 5, 2) C(0 : 3, 2), R(3 : 6, 2)

PE(y = 1) C(0 : 3, 1), R(0 : 3, 2) C(0 : 3, 1), R(1 : 4, 2) C(0 : 3, 1), R(2 : 5, 2) C(0 : 3, 1), R(3 : 6, 2)

PE(y = 2) C(0 : 3, 0), R(0 : 3, 2) C(0 : 3, 0), R(1 : 4, 2) C(0 : 3, 0), R(2 : 5, 2) C(0 : 3, 0), R(3 : 6, 2)

PE(y = 3) − − − −

3

PE(y = 0) C(0 : 3, 3), R(0 : 3, 3) C(0 : 3, 3), R(1 : 4, 3) C(0 : 3, 3), R(2 : 5, 3) C(0 : 3, 3), R(3 : 6, 3) rdy

PE(y = 1) C(0 : 3, 2), R(0 : 3, 3) C(0 : 3, 2), R(1 : 4, 3) C(0 : 3, 2), R(2 : 5, 3) C(0 : 3, 2), R(3 : 6, 3)

PE(y = 2) C(0 : 3, 1), R(0 : 3, 3) C(0 : 3, 1), R(1 : 4, 3) C(0 : 3, 1), R(2 : 5, 3) C(0 : 3, 1), R(3 : 6, 3)

PE(y = 3) C(0 : 3, 0), R(0 : 3, 3) C(0 : 3, 0), R(1 : 4, 3) C(0 : 3, 0), R(2 : 5, 3) C(0 : 3, 0), R(3 : 6, 3)

4

PE(y = 0) C(0 : 3, 0), R(0 : 3, 4) C(0 : 3, 0), R(1 : 4, 4) C(0 : 3, 0), R(2 : 5, 4) C(0 : 3, 0), R(3 : 6, 4)

PE(y = 1) C(0 : 3, 3), R(0 : 3, 4) C(0 : 3, 3), R(1 : 4, 4) C(0 : 3, 3), R(2 : 5, 4) C(0 : 3, 3), R(3 : 6, 4) rdy

PE(y = 2) C(0 : 3, 2), R(0 : 3, 4) C(0 : 3, 2), R(1 : 4, 4) C(0 : 3, 2), R(2 : 5, 4) C(0 : 3, 2), R(3 : 6, 4)

PE(y = 3) C(0 : 3, 1), R(0 : 3, 4) C(0 : 3, 1), R(1 : 4, 4) C(0 : 3, 1), R(2 : 5, 4) C(0 : 3, 1), R(3 : 6, 4)

...
...

...
...

...
...

...

pixels and reference frame pixels, and accumulate them in the ACC register as shown

in Fig. 3.3. In every 4 clock cycles PE starts to accumulate new absolute differences

by with the help of MUX selection. Each PE accumulates the SAD of 4 × 4 blocks in

different x, y search positions. As an example consider PE at x = 1 and y = 0. As

shown in Table 3.1, in cycle 0 the PE finds the SAD of 4 current pixels of columns 0 to

3 (or x = 0 to 3) of row 0, denoted as C(0 : 3, 0), and 4 reference pixels of columns 1

to 4 of row 0, denoted as R(1 : 4, 0). In the next cycle PE adds the SADs of C(0 : 3, 1)

and R(1 : 4, 1) to the accumulator. Hence, in cycle 3 this PE has SAD of a 4 × 4 block

C(0 : 3, 0 : 3) and R(1 : 4, 0 : 3). Note that the reference data are broadcasted to PEs,

54 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

and the PEs are finding SADs of different positions; thus in cycle 4 the PEs in row 0 start

new accumulation and row 1 has the SADs of x from 0 to L− 1 and y = 1.

After an initial latency of 4 clocks, the PE array generates L SAD values of 4 × L

pixels in each clock cycle. In other words the PE array requires N clocks to cover a

search area of N × (L+ 3) pixels. As an example, if the search area is 128×L pixels, the

RF line moves one row in the y direction in each clock, and 132 clock cycles (because of

initial latency) are required to search an area of 128 × (L + 3) pixels. After completion

of scanning in the y direction the RF lines start to broadcast the next set (advancing

L + 3 pixels in the x direction) of reference data, thus RF lines loses its continuity, and

the SAD computation has again some latency but still negligible i.e. 4 in 128 clocks (4

out of the search range of the y direction). The CF data circulates in the CF buffer until

scanning in the y direction completes, and then loads a new set of data. Since only one

row of SAD values are ready in each clock cycle, 4 to 1 muxes are used to select a row

and route it to the SAD summation block. The description is given with 4×L PEs as an

example, but the actual hardware uses four sets of 4× L PEs, where L = 64, and it can

compute 8× 4, 4× 8 and 8× 8 SAD values in parallel.

3.4.2 SAD Summation

Fig. 3.5: Morton order or Z-order method for loading data into CF data buffer. 32× 64

pixels are shown, where each square represents a block of 8× 8 pixels.

The architecture is designed to stream data through SAD computation, SAD com-

3.4 Hardware Architecture of HEVC/H.265 Variable-Block-Size Motion Estimation 55

parator and the SAD comparator blocks to generate MVs. In order to achieve this, CF

data are loaded in a Z order or Morton order [85], i.e. after finding all SADs of an 8× 8

CF block, the next 8× 8 load into the CF buffer memory from a 64× 64 block following

Morton order as shown in Fig. 3.5. This allows the design to free the memories associ-

ated with lower-level HEVC quad-tree blocks of the SAD computation as soon as those

block computations are complete. This reduces the large memory requirements and the

associated bandwidths, and only a few kB of RAM is required in each summation stage,

and that can be easily integrated inside the chip.

Fig. 3.6: SAD Summation block with the SAD comparators. This calculates SAD values

for higher levels using SAD values from the lower level in HEVC quad-tree SADs, and

finds the minimum of these SAD values. The above shows calculation of 8 × 16, 16 × 8

and 16× 16 block SAD values and MVs from 8× 8 block SAD values.

The SAD summation block with the SAD comparators are detailed in Fig. 3.6. Three

such units are required to compute SAD values for block hierarchies of up to 64 × 64 in

size. The figure depicts computation of 8× 16, 16× 8 and 16× 16 block-size SADs from

the 8 × 8 SADs. The working of this module is as follows: when the SAD computation

56 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

block finds SAD values for block ‘0’ in Fig. 3.5, it saves them in RAM ‘A’. Next the SAD

computation finds SADs of block ‘1’ and these are saved in RAM ‘B’, and simultaneously

finds the first 16× 8 SAD values by summing with the previously saved SAD of block ‘0’.

Similarly while receiving block ‘8’ (next block in Morton order) SADs, 8× 16 block SAD

values are calculated and overwrite RAM ‘A’ with block ‘8’ SAD values (block ‘0’ values

are no longer required). In this way the SAD summation finds all SAD values of the 8×16

and 16× 8 blocks. The 16× 16 SAD can be found by summing up either from 8× 16 or

from 16 × 8 blocks. RAM ‘C’ and one adder in the SAD summation block are used for

this purpose. The first 16×8 or 8×16 block SADs are saved in RAM ‘C’ and then added

with the next 8× 16 or 16× 8 to get SADs of 16× 16 blocks. The subsequent blocks can

be clocked at a half rate by saving 16 × 16 SAD results in RAM ‘C’ again and reading

at half clock rate. This improves power efficiency as well as critical path timing, because

during additions the bit width of the data path increases, thus higher-level modules need

more time for computation than lower-level modules.

3.4.3 SAD Comparator

The SAD Comparator consists of a comparator tree of log2(L) stages to find the minimum

of L SAD values, where each comparator finds the lowest value of two binary inputs

and gives it as a result, and also indicates the position of the lowest. The proposed

architecture’s critical path lies in the comparator tree used for finding minimum of the L

8 × 8 SADs obtained from the SAD computation step, where L has been set as 64 and

thus the critical path consists of a total of six 14-bit comparators. Note that the 8 × 8

SAD has 14-bit wide, as the bit-width increases in each addition unless truncating. The

comparator trees are also used after each SAD summation block. In each cycle from a row

of SAD data, the comparator finds the minimum of these and then compares it with the

previous row minimum. Hence when the hardware completes the search in the y direction

3.5 Results and discussion 57

the comparator has the SAD minimum of that area and the MVs.

3.5 Results and discussion

Table 3.2: Comparison of space time complexities of different integer motion estimation

hardwares.

EL ’13 [65] ICIP ’14 H64 P8 [83] This work

Area

Adders 8708 a 58304 a LA2/4× 7 = 7552

Comparators 920 a 256 a 8L = 512

Memory (kB) 20 128 a 3L2 = 32

Bandwidth required b B a B/232 B
(
L+A−1
L·A

)2
= B/52

Critical path Tree adders for

16 numbers a

6 comparators or

Memory access a

log2(L) = 6 compara-

tors

a estimated from the given information
bB = W ·H · L2 · f

A first order comparison of designs are given in Table. 3.2; the most common proposals

for full-search motion estimation are usually a variation of the structure given in [65]. Less

number of comparators in the design [83] is obvious as it has fewer kinds of supported PB

type. The bandwidth decreases, and the area increases in proportion to A2, approximately.

Most importantly the critical path of the proposed design is six comparators whereas it

could be the memory accessing in [83]. The table gives the minimum memory requirement

for a highly parallelized version H64 P8 [83], but such structure is big enough for many

FPGAs, for instance, it can not be implemented in XC5VLX330T [83], and the less

parallelized versions require memory many times of this.

The proposed architecture is coded in VHDL and simulated and verified thoroughly

58 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

{1... {155} {157}... {158} {159}... {162} {162}... {159} {159}... {162}...

{1... {156} {157}... {157} {157}... {163} {163}... {160} {159}... {159}...

{37} 0 0

37

0

0

{123} 5 2 {104} 1 5 {4} 1 7

123 104 4

5 1

2 5 7

{119} 0 0

119

0

0

{65535} 0 0

65535

0

0

{131071} 3 0

131071

3

0

{262143} 7 0

262143

7

0

{85106} 0 0 {524287} 0 0

85106 524287

0

0

{1048575} 0 0 {110484} 0 0

1048575 110484

0

0

/tb_me/rin {1... {155} {157}... {158} {159}... {162} {162}... {159} {159}... {162}...

/tb_me/cin {1... {156} {157}... {157} {157}... {163} {163}... {160} {159}... {159}...

/tb_me/clk

/tb_me/reset

/tb_me/min8x4 {37} 0 0

cost 37

x 0

y 0

/tb_me/min8x8 {123} 5 2 {104} 1 5 {4} 1 7

cost 123 104 4

x 5 1

y 2 5 7

/tb_me/min16x8 {119} 0 0

cost 119

x 0

y 0

/tb_me/min16x16 {65535} 0 0

cost 65535

x 0

y 0

/tb_me/min32x16 {131071} 3 0

cost 131071

x 3

y 0

/tb_me/min32x32 {262143} 7 0

cost 262143

x 7

y 0

/tb_me/min64x32 {85106} 0 0 {524287} 0 0

cost 85106 524287

x 0

y 0

/tb_me/min64x64 {1048575} 0 0 {110484} 0 0

cost 1048575 110484

x 0

y 0

Fig. 3.7: Simulation window of ModelSim simulator, simulated with ICE (4CIF) test

video sequence. The snapshot shows motion vectors and SAD values of the first CTU of

the video when hardware completes motion search with search range of ±8 pixels.

using ModelSim simulator. A snapshot of the simulation window is given in Fig. 3.7,

showing the motion vectors and SAD values of different blocks when hardware completes

ME for the first CTU of the test video sequence ICE (4CIF). The proposed architecture

is configured for a search height of 64 pixels and a search width of 64 pixels. Although

many other configurations are possible, this provides a good trade-off between device

area (or resource utilization) and speed. This requires 72 clock cycles for a 8 × 8 block,

and 72 × 64 = 4608 clocks are required to complete a search for one 64 × 64 size CTU,

for a search area of 64 × 64 pixels. Since the data bandwidth is comparatively low and

3.5 Results and discussion 59

Table 3.3: Comparison of proposed design with other HEVC/H.265 full-search integer

motion estimation implementation in Xilinx Virtex-5 devices.

ICIP ’14 H64 P8 [83] JRTIP ’16 [87] ICCE ’16 [81] This work

Block size
8× 8 to 64× 64 8× 4 to 64× 64 4× 4 to 64× 64 8× 4 to 64× 64

(4 kinds) (27 kinds) (15 kinds)

Search range 64× 64 64× 64 64× 64 64× 64

Max. resolution
4K-UHD 4K-UHD HD 4K-UHD

(2160p @ 13.4 Hz) (2160p @ 19 Hz a) (720p @ 6 Hz a) (2160p @ 9 Hz)

Op. frequency 125 MHz 159 MHz 190.785 MHz 84.96 MHz

LUTs 209,434 184,288 17,992 b 153,314

Filp-flops 199,066 178,620 8,841 a 36,368

BRAM 9.57 MB 36 kB Nil Nil

aEstimated using operating frequency of the design.
bSAD architecture section only.

data fetch is in a predetermined order, it is assumed that data can be fed directly from

the external RAM where the picture frames are stored. The proposed hardware does not

support AMP, and experimental studies demonstrate that AMP only improves the coding

efficiency by 0.8% with the computational increase of 14% [86].

3.5.1 FPGA Synthesis Results

The proposed design is compiled using Xilinx ISE for a XC5VLX330T FPGA. Although

the proposed design minimizes the RAM requirement, it needs a few and that is resolved

with FPGA slices. The synthesis report shows that the design can operate with a maxi-

mum clock frequency of 84.96 MHz. Table 3.3 shows a comparison with [83] implemented

in the same FPGA. There are three proposals in [83], namely H64 P2 H64 P4 and H64

60 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

P8, and the H64 P8 design has the best performance among them even though it does not

fit in this Xilinx Virtex-5 FPGA. Thus our design is compared with the H64 P8 design

of [83]. A basic difference between our proposed architecture and [83] is that the latter

saves all first SAD computation results in memory then reorganizes using a transposer,

and feed to SAD comparators and 4-to-1 adders for calculating other higher-level SADs

in the quad-tree structure. Whereas the proposed method utilizes the Morton order for

reading data as well as a unique RAM arrangement, and its control structure facilitates

data flowing in a streamline fashion through the hardware, resulting in high throughput.

From the table it is clear that the proposed design uses fewer resources, with similar frame

rates and search area.

Hardware architectures for SAD computations are proposed in [82] and [88], which

compute whole 64× 64 CTU SADs at single search position within 372.2 ns and 167.7 ns,

thus to finish ME in an entire 64 × 64 search range these demands 1.525 ms 686.9 µs

respectively. Hence these can not be used for real-time encoding of 4K-UHD (3840×2160)

video as it has 2040 CTUs of size 64× 64 pixels. The architecture proposed in this paper

broadcasts or shares the same reference data lines in both x and y directions as shown in

Fig. 3.4, where L+ 3 reference data lines are used by L× 4 PEs, efficiently utilizing data

loaded to the hardware and hence speeding up overall computations.

Another full-search integer motion estimation architecture is proposed in [87], and

implemented in Xilinx Virtex-5 and virtex-7 FPGAs. The comparison is given in Table

3.3, where the frame rate with 4K-UHD is an estimated value from Virtex-5 operating

frequency as it requires 4096 cycles neglecting initial delays, for the search range of 64×64

pixels. The design is essentially a 2D array of 64 × 64 absolute difference units followed

by an SAD adder-tree block. The design can compute different block size SAD values

in an entire CTU block in a single clock cycle for a search position. A 2D shift register

array is used for storing current and reference block data, and the shift registers for

3.5 Results and discussion 61

Table 3.4: Comparison of proposed design with previous HEVC/H.265 full-search integer

motion estimation in ASIC.

Design EL ’13 [65] JSSC ’14 [89] This work

Process 65 nm 40 nm 32 nm

Block size
8× 4 to 64× 64 4× 4 to 16× 16 8× 4 to 64× 64

(27 kinds, support AMP) (All AVC) (15 kinds, no AMP)

Search range 64× 64 ±211H ±106V 64× 64

Max. definition 2160p at 30 Hz 4320p at 48 Hz 2160p at 30 Hz

Operating frequency 250 MHz 210 MHz 282.009 MHz

Gate Count (k) 3560 2458 2878

Memory (kB) 20 552 Nil a

Area - 15.52 mm2 7.3 mm2

Throughput 250 M pixels/s 1.59 G pixels/s 250 M pixels/s

Clocks required / CTU 4105 - 4608

Video standard H.265/HEVC H.264/AVC H.265/HEVC

aIncluded in the gate count.

reference block data need to shift the data in up, down and right directions, resulting in

a complex arrangement. Although the design performs better in terms of throughput, it

consumes 29% more LUTs and 5 times as many flip-flops than the architecture proposed

in this paper. As discussed earlier these hardwares needs approximately 64 times more

bandwidth than the proposed architecture.

3.5.2 ASIC Synthesis

The proposed architecture is compiled using the Synopsys Design Compiler (version K-

2015.06) in topographical mode, which gives the best correlation with physical design

62 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

results, using the SAED 32 nm digital standard-cell library. This proposed motion-

estimation accelerator requires a clock frequency of 282.009 MHz for encoding 4 K-UHD

(3840 × 2160p at 30 Hz) videos in real time. Thus the design is constrained to 330 MHz

while compiling in Synopsys. The proposed design met this constraint with operating

conditions 1.16 V and worst-case temperature 125 ◦C. The critical path, lies in compara-

tor tree after the 8× 8 SAD computation block, has a delay of 2.98µs. A comparison of

various hardware proposals is shown in Table 3.4, where the gate count of the proposed

architecture is estimated from the synthesized area compared to the standard 2-input

NAND gate.

The result shows that the proposed design, operating with slightly higher frequency,

is able to search the same area with the same video resolution as [65]. The design requires

36 kB RAM and is realized using standard logic cells, included with the gate count given

for comparison. The proposed design has 17% less gate count and 20 kB less RAM than the

previous architecture in the literature for full-search motion estimation for HEVC/H.265.

The proposed hardware has significantly less gate count if the gate count for RAM is

considered, even though a direct comparison with [89] is not fair because the AVC/H.264

is much simpler than its successor.

3.6 Conclusion

This paper proposes a new architecture for full-search variable-block-size motion estima-

tion in the HEVC/H.265 specification. The proposed architecture minimizes the usage of

RAM by incorporating a data streaming and SAD reuse strategy hierarchically. With a

similar clock rate, this architecture has 17% less gate count and 20 kB less RAM than pre-

viously proposed full-search motion-estimation accelerator architectures for HEVC/H.265.

The proposed architecture reduces the bandwidth requirement by a factor of approxi-

3.6 Conclusion 63

mately 64 compared to the other full-search ME for HEVC/H.265. The architecture is

designed with 32 nm SAED EDK and can encode up to 4-K UHD videos in real time.

64 Chapter 3. Full-Search Variable-Block-Size Motion Estimation for HEVC

Chapter 4

Fast Sign-detection Algorithm for

Residue Number System Moduli Set

{2n − 1, 2n, 2n+1 − 1} 1

4.1 Abstract

Sign detection is an essential part of many computer hardware designs, and is not a

trivial task in residue number systems because it is a function of all the residues. This

paper proposes an algorithm for the Residue Number System with a three-moduli set {2n−

1, 2n, 2n+1−1} using New Chinese Remainder Theorem II. The unit is built with one n-bit

carry-save adder and a 2n-bit parallel prefix carry-generation unit. In the best case the

Synoposys 90 nm synthesis result shows a 24% reduction in the area-delay product than

existing algorithms for the same moduli set.

1published as: N. C. Vayalil and Y. Kong, “Fast sign-detection algorithm for residue number system

moduli set {2n − 1, 2n, 2n+1 − 1},” in IET Computers & Digital Techniques, vol. 10, no. 2, pp. 54-58,

3 2016. doi: 10.1049/iet-cdt.2015.0050, Reproduced by permission of the Institution of Engineering &

Technology.

65

66 Chapter 4. Sign-detection Algorithm for RNS

4.2 Introduction

The Residue Number System (RNS) has been intensively researched for decades for de-

signing computer hardware. Traditional binary systems have carry propagation which is

one of the major performance limiting factors in such systems. In RNS, large integers

are represented as a smaller set of integers or residues of mutually prime moduli sets.

Since there is no need to propagate carries between these residues, RNS outperforms the

binary systems where addition, subtraction or multiplication dominate. However, the

non-positional nature of RNS makes it difficult to do some mathematical operations such

as division, comparison, and sign detection, but these are essential in certain applications.

Since sign in RNS is a function of all residue digits, sign detection in RNS is not

easy, whereas the sign is usually indicated the by most-significant bit (MSB) in weighted

number systems. Traditional approaches for comparison or sign determination involve

conversion of RNS into a weighted number using Chinese Remainder Theorems (CRT)

or Mixed Radix Conversion (MRC) [45, 90]. However a direct implementation of CRT

requires modulo-M operations (where M is the dynamic range of the RNS), thus is not

an efficient method. On the other hand MRC is a slow sequential method involving a long

delay. [91] proposes a sign-detection algorithm based on New Chinese Remainder Theorem

II [92], and presents a simplified case for a special four-moduli set. CRT II decreases the

modulo multiplier size to less than
√
M . ROM-based architectures are proposed in [93,94]

but ROMs are not suitable for pipelining. A class of monotone functions are proposed

in [95] that can be used for magnitude comparison in RNS. Fully combinational logic sign-

detection architectures are proposed in [34,35,96,97] for moduli sets {2n − 1, 2n, 2n + 1},

{2n − 1, 2n, 2n + 1, 22n + 1}, {2n+1 − 1, 2n − 1, 2n} and {2n − 1, 2n+k, 2n + 1}.

In this paper, we propose another fully combinational fast algorithm for the moduli

set {2n − 1, 2n, 2n+1 − 1}. The moduli set selection has an influence on the efficiency of

the system. This moduli set shows the lowest delay in reverse conversion and is also more

4.3 Residue Number Systems 67

efficient in modulo additions and multiplication than other similar moduli sets [46]. Also

this moduli set contains only 2n − 1 and 2n type moduli, therefore forward conversion

from a binary number to RNS requires a few modulo adders for modulo 2n − 1, and for

modulo 2n just needs to keep the least-significant n bits [45].

4.3 Residue Number Systems

RNS and its properties are detailed in many places [45, 98], so only a brief description is

provided here. RNS represents large integers as a set of small integers or residues. A nat-

ural number X in RNS is represented as an ordered set (x1, x2, . . . , xN) of a corresponding

moduli set {m1,m2, . . . ,mN}, where N ≥ 2, and the residues xi = X mod mi. In order

to avoid redundancy, the moduli set must be selected as mutually prime, i.e., the greatest

common divisor (GCD) of any pair must be 1. Then the dynamic range M of this system

has been defined as

M =
N∏
i=1

mi (4.1)

The Chinese Remainder Theorem (CRT) [45] relates an integer X and its unique repre-

sentation (x1, x2, . . . , xN) in RNS as

X =
∣∣ N∑
i=1

wixi
∣∣
M

(4.2)

where wi = mi|M−1
i |mi

, Mi = M/mi and |M−1
i |mi

is the multiplicative inverse of Mi with

respect to mi. The most important property of RNS is that the resultant of a particular

digit in some arithmetic operations such as addition, subtraction, and multiplication

depends only on the corresponding operand digits:

X � Y = Z ⇔ x� y = z mod mi (4.3)

where � represents addition, subtraction, multiplication or modular division. There-

fore, these operations can be implemented in parallel, without carry propagation between

68 Chapter 4. Sign-detection Algorithm for RNS

residues. Consequently the execution time is significantly reduced, which results in faster

and low-power hardware.

The following addition and multiplication properties [45] of RNS will be used for

deducing the proposed algorithm:

∣∣X ± Y ∣∣
m

=
∣∣|X|m ± |Y |m∣∣m (4.4)∣∣X × Y ∣∣

m
=
∣∣|X|m × |Y |m∣∣m (4.5)

Modulo (2n − 1) addition can be described as

∣∣X + Y
∣∣
2n−1

=
∣∣X + Y + w

∣∣
2n


w = 1 if X + Y ≥ 2n − 1

w = 0 otherwise

(4.6)

Examples of addition of modulo 2n − 1, m = 7, n = 3

A 0 1 0 (2)

B 0 1 1 (3)

1 0 1 (5) = 2 + 3 mod 7

A 0 1 1 (3)

B 1 0 0 (4)

1 1 1 (7)

+ 1 (w = 1)

0 0 0 (0) = 3 + 4 mod 7

Furthermore the additive inverse of X in modulo (2n − 1) addition is

∣∣−X∣∣
2n−1

= 2n − 1−X = X (4.7)

where X denotes the complement of X.

4.4 Sign detection

Sign determination in RNS is a major challenge because in RNS the magnitude is not

readily available from the residues. Attaching a sign bit, as in the case of sign-and-

magnitude representation, does not help in this situation. For example, without knowing

4.4 Sign detection 69

the magnitude of operands, it is impossible to assign sign to the resultant after an arith-

metic operation such as addition or subtraction between negative and positive numbers.

Another problem is to detect overflows in arithmetic operations. It might be expected

that to derive one bit of the required information (sign) then all residue information is

necessary. Szabo [98] has demonstrated that such schemes are impossible and all the

residue information from a residue digit must be used in any sign-determination process,

provided that the modulus of the digit is less than
√
M .

4.4.1 Sign determination for special moduli sets

Generally RNS is defined as positive integers in the range [0,M − 1]. To accommodate

negative numbers, this representable number range is usually partitioned into two approx-

imately equal parts. For example, the numbers [0,M/2 − 1] (or [0, (M − 1)/2], if M is

odd) are considered as positive numbers and the [M/2,M −1] (or [(M −1)/2+1,M −1])

are interpreted as negative numbers.

Consider a mutually prime moduli set {m1,m2, . . . ,mN}, and let any one of the modulo

mk be 2n so that the dynamic range M is an even number. According to our definitions

the numbers greater than or equal to M/2 are negative numbers because M is even. In

other words the binary number X is negative if M = mkMk > X ≥ M/2 = mkMk/2 or

equivalently mk > X/Mk ≥ mk/2. Since mk = 2n, X is negative if 2n > X/Mk ≥ 2n−1,

and therefore the sign of X = (x1, x2, . . . , xN) is determined as

Sign = MSB
(⌊ X
Mk

⌋)
(4.8)

where b•c denotes the floor function. Since X/Mk < 2n, the result of bX/Mkc can be

representable in n bits, and the most-significant bit (MSB) will be set if bX/Mkc ≥ 2n−1.

Instead of division, this paper proposes an algorithm based on New Chinese Remainder

Theorem II (CRT II) [92] to find bX/Mkc for the moduli set {2n − 1, 2n, 2n+1 − 1}.

70 Chapter 4. Sign-detection Algorithm for RNS

4.4.2 Proposed sign detection algorithm for moduli set {2n −

1, 2n, 2n+1 − 1}

A Sign detection architecture for the moduli set {2n+1 − 1, 2n − 1, 2n} is proposed in [35]

based on mixed radix CRT. The architecture has CSA, comparator, carry-generation and

post processing units. In this paper proposes a simple algorithm based on CRT II which

consist CSA and carry-generation units.

The New Chinese Remainder Theorem II pairwise translates smaller modulo residues

into higher modulo residue until we get the binary representation of all residues. Consider

a moduli set of two numbers (P1 and P2); using CRT II the corresponding decimal number

X = (x1, x2) can be found using the following:

X = x2 + P2

∣∣P−1
2 (x1 − x2)

∣∣
P1

(4.9)

where the multiplicative inverse
∣∣P−1

2

∣∣
P1

is defined by
∣∣|P−1

2 |P1P2

∣∣ = 1. For a general

moduli set {P1, P2, . . . , PN}, the binary number can be obtained by recursively applying

(4.9).

The binary number equivalentX = (x1, x2, x3) with the special moduli set {m1,m2,m3} =

{2n − 1, 2n, 2n+1 − 1}, can be found as follows. In the first iteration of (4.9), let P1 =

m1 = 2n − 1 and P2 = m3 = 2n+1 − 1; then∣∣P−1
2

∣∣
P1

= |(2n+1 − 1)−1|2n−1 = 1 (4.10)

∵
∣∣1× (2n+1 − 1)

∣∣
2n−1

=
∣∣|2n|2n−1 × 2− 1

∣∣
2n−1

= 1× 2− 1

= 1

Using the above in equation (4.9), an intermediate result Y is obtained as

Y = x3 +m3|m−1
3 (x1 − x3)|m1

= x3 +m3|x1 − x3|m1 .

(4.11)

4.4 Sign detection 71

In the second iteration of (4.9), take P1 = m2 and P2 = m1m3, then

∣∣P−1
2

∣∣
P1

= |(m1m3)−1|m2 = 1 (4.12)

∵
∣∣1× (2n − 1)(2n+1 − 1)

∣∣
2n

=
∣∣(|2n|2n − 1)

× (|2n|2n2− 1)
∣∣
2n

= (0− 1)× (0× 2− 1)

= 1

Applying the above in (4.9), the binary equivalent X can be calculated

X = Y +m1m3

∣∣(m1m3)−1(x2 − Y)
∣∣
m2

= Y +m1m3

∣∣x2 − Y
∣∣
m2
.

(4.13)

As a numerical example, consider conversion for the moduli set {3, 4, 7}, i.e. n = 2, with

X = 73 = (1, 1, 3)

Y = 3 + 7
∣∣1− 3

∣∣
3

= 3 + 7× 1

= 10

X = Y + 21
∣∣1− Y ∣∣

4

= 10 + 21× 3

= 73

Applying (4.13) in (4.8) gives

b X

m1m3

c = b Y

m1m3

+
∣∣x2 − Y

∣∣
m2
c (4.14)

Note that Y is representable by the mutually prime moduli set {m1,m3}, hence Y ≤

m1m3 − 1, therefore Y/M2 = Y/(m1m3) < 1. Since the first term in (4.14) is always a

72 Chapter 4. Sign-detection Algorithm for RNS

fraction with value less than 1 and the second term is an integer, we can safely discard

the first term in (4.14), and substituting (4.11) gives

b X

m1m3

c =
∣∣x2 − Y

∣∣
m2

=
∣∣x2 − x3 −m3|x1 − x3|m1

∣∣
m2

(4.15)

Note that |m3|m2 = |2n+1 − 1|2n = −1, and so

b X

m1m3

c =
∣∣x2 − x3 + |x1 − x3|m1

∣∣
m2

(4.16)

Hence (4.8) can be written as

Sign = MSB
(∣∣x2 − x3 + |x1 − x3|m1

∣∣
m2

)
(4.17)

It may be possible to derive similar equations for other moduli sets, where at least one of

the moduli is 2n.

4.4.3 Optimization for hardware

The equation (4.17) can be further optimized for efficient hardware implementation. Mod-

ulo (2n+1− 1) requires n+ 1 bits and the other two moduli require n bits. Let x3,n be the

most-significant bit in x3, and x3,n−1:0 the remaining n bits of x3. Since |2n|2n−1 = 1,∣∣x3

∣∣
m1

=
∣∣2n × x3,n + x3,n−1:0

∣∣
2n−1

=
∣∣x3,n + x3,n−1:0

∣∣
2n−1

(4.18)

∣∣x1 − x3

∣∣
m1

=
∣∣x1 − x3,n−1:0 − x3,n

∣∣
2n−1

(4.19)

Note that m2 = 2n, so |x3|m2 = x3,n−1:0, and with (4.19) the terms in (4.17) can be

re-written as ∣∣x2 − x3 + |x1 − x3|m1

∣∣
m2

=
∣∣|x2 − x3|m2 + |x1 − x3|m1

∣∣
m2

=
∣∣|x2 − x3,n−1:0|m2 + |x1 − x3,n−1:0 − x3,n|m1

∣∣
m2

(4.20)

4.4 Sign detection 73

Modulo (2n) and modulo (2n−1) subtractions can be performed as 2’s and 1’s-complement

additions respectively.∣∣x2 − x3 + |x1 − x3|m1

∣∣
m2

=
∣∣x2 + x̄3,n−1:0 + 1 + x1 + x̄3,n−1:0 − x3,n + w

∣∣
m2

=
∣∣x2 + 2x̄3,n−1:0 + 1 + x1 − x3,n + w

∣∣
m2

(4.21)

where w is as given in (4.6) for the modulo (2n − 1) addition of |x1 − x3,n−1:0 − x3,n|m1

and x̄ is the complement of x. Note that 1 − x3,n = x̄3,n, and multiplication of x̄3,n−1:0

by 2 is the one-left shifting of x̄3,n−1:0. Since the least n bits are sufficient for modulo 2n

arithmetic, adding 2x̄3,n−1:0 to x̄3,n becomes a concatenation of x̄3,n−2:0 with x̄3,n which is

denoted as x̂3. ∣∣x2 − x3 + |x1 − x3|m1

∣∣
m2

=
∣∣x2 + x̂3 + x1 + w

∣∣
m2

(4.22)

The w is equal to 1 if (x1−x3,n−1:0−x3,n) is greater than or equal to (2n− 1) else 0. Add

a 1 always with addition to generate a carry even if the sum is equal to (2n − 1). Hence

w = bx1 + x̄3,n−1:0 + 1− x3,n

2n
c

= bx1 + x̄3,n−1:0 + x̄3,n

2n
c

(4.23)

which can be found using an n-bit parallel-prefix logic structure [99] for carry generation

with carry-in input for x̄3,n. Substituting (4.22) in (4.17) gives

Sign = MSB
(∣∣x2 + x̂3 + x1 + w

∣∣
m2

)
(4.24)

where x̂3 is x̄3,n−2:0 concatenated with bit x̄3,n, and w is the carry out from x1 + x̄3,n−1:0 +

x̄3,n.

4.4.4 Hardware

The circuit comprises two main blocks: a multi-operand adder and a carry-generation

unit (CGU), as shown in Fig. 5.1. A single n-bit carry-save adder (CSA) is used as a

74 Chapter 4. Sign-detection Algorithm for RNS

Fig. 4.1: Sign-detection schematic. x̂3 is x̄3,n−2:0 concatenated with bit x̄3,n, and CSA,

CGU are n-bit carry-save adder and 2n-bit carry-generation units respectively.

multi-operand adder [100] to add x2 + x̂3 +x1 in equation (4.24). The results are obtained

as two n-bit vectors S and C (sum and carry). A simplified version of a 2n-bit parallel-

prefix adder, also known as a carry-tree adder, is used for finding w and adding it to

the sum of properly weighted S and C vectors. The performance of this sign detector is

greatly dependent on the parallel prefix structure used.

Let A = an−1an−2 . . . a0 and B = bn−1bn−2 . . . b0 be two numbers to be added and

S = sn−1sn−2 . . . s0 their sum. The signals generate bit gi and propagate bit pi are defined

as

gi = ai · bi and pi = ai + bi (4.25)

These are combined to form carry-generate function Gi:j and carry-propagate function

Pi:j , from position i to j and defined as

Gi:j = Gi:k + Pi:kGk−1:j

Pi:j = Pi:kPk−1:j

(4.26)

where Gi:i = gi and Pi:i = pi The sum can be calculated as si = di ⊕ ci, where the carry

ci = Gi:0 and di = ai⊕ bi. The above is a radix-2 method; higher radices are also possible,

4.4 Sign detection 75

for example ternary tree equations are given below:

Gi:j = Gi:k + Pi:kGk−1:k′ + Pi:kPk−1:k′Gk′−1:j

Pi:j = Pi:kPk−1:k′Pk′−1:j

(4.27)

Ling further simplifies the parallel prefix equations [101], which helps to speed up addi-

tions. Ling defined a pseudo-carry Hi:0 = gi + Gi−1; note that from (4.25) pigi = gi and

so

Gi:0 = gi + pigi−1 + pipi−1gi−2 + . . .

+ pipi−1pi−2 . . . p1g0

Gi:0 = pi(gi + gi−1 + pi−1gi−2 + . . .

+ pi−1pi−2 . . . p1g0)

(4.28)

The Ling carry Hi:0 can be computed faster than the corresponding Gi:0 because it is

based on simpler boolean functions. As in the case of parallel prefix, the Ling carry Hi:0

can also be computed recursively:

Hi:j = Hi:k + Pi−1:k−1Hk−1:j (4.29)

In order to generate the actual carry out (Gi:0), pi and Hi:0 need to be combined. This

extra delay can be eliminated because the critical path for the n-bit adder is in producing

the sn−1 bit in sum S.

sn−1 = an−1 ⊕ bn−1 ⊕ Pn−2Hn−2:0 (4.30)

sn−1 = Hn−2:0(an−1 ⊕ bn−1)

+Hn−2:0((an−1 ⊕ bn−1)⊕ pn−2)

(4.31)

Since all the terms except Hn−2:0 in equation (4.30) can be computed faster than Hn−2:0,

a mux can be used to find sn−1, where the mux delay is approximately equal to that of

an XOR gate. As in the case of the parallel prefix method, more than two groups can be

76 Chapter 4. Sign-detection Algorithm for RNS

Fig. 4.2: 2n-bit carry-generation Unit (CGU) based on Kogge-Stone architecture; n = 8.

Fig. 4.3: 2n-bit carry-generation Unit (CGU) based on Ling architecture; n = 8.

combined to find Ling carries; for example a ternary tree can be described as

Hi:j = Hi:k + Pi−1:k−1Hk−1:k′

+ Pi−1:k−1Pk−2:k′−1Hk′−1:j

(4.32)

Parallel-prefix Kogge-Stone [102] and Ling CGUs are shown in Fig. 4.2 and Fig. 4.3

respectively. These are built from blocks given in Fig. 4.4. One black node used in the

parallel prefix structure is slightly modified to add a carry-in for inputting x̄3, as in Fig.

4.4.

4.5 Performance analysis 77

Fig. 4.4: Blocks of the carry-generation unit.

4.5 Performance analysis

The circuit delay and size are first evaluated using a unit-gate model [103]. In this

approach, each two-input monotonic gate (e.g., AND, OR, NAND, NOR) counts as one

gate (for area and delay) and an XOR gate as two gates (area and delay). The area and

delay of inverters are negligible. Hence a full adder has an area of 7, and a delay of 4. An

n-bit CSA consists of n such full adders, so the area = 7n (delay = 4).

The carry-generation unit based on the the Kogge-Stone structure has 2(n− 1) black

nodes, 2n− 1 square nodes, and two XOR gates. Hence the delay of the carry-generation

unit is 2 log2(2n) + 3 = 2 log2(n) + 5. Therefore the total area and delay of the proposed

sign-detection unit in the Kogge-Stone structure are given by

Area = 17n− 1

Delay = 2 log2(n) + 9

(4.33)

In the Ling structure the carry-generation unit comprises a total of 2n− 1 square nodes,

n − 1 white square nodes, n − 1 black nodes, one diamond node, one XOR gate. The

multiplexer delay is almost equivalent to that of an XOR gate, therefore the total area

78 Chapter 4. Sign-detection Algorithm for RNS

Table 4.1: Area and delay comparison for the unit-gate model

n
Area Delay

K-S Ling [35] K-S Ling [35]

4 67 63 72 13 10 13

8 135 127 148 15 12 15

16 271 255 300 17 14 17

32 543 511 604 19 16 19

n = 4 n = 8 n = 16 n =32
0

5

10

15

20

25

30

35

40

P
er

ce
nt

ag
e

R
ed

uc
tio

n

Kogge−Stone
Ling

Fig. 4.5: Percentage reduction of area-delay product based on the unit model.

and delay of the sign-detection unit with the Ling CGU are given by

Area = 16n− 1

Delay = 2 log2(n) + 6

(4.34)

Using (4.33) and (4.34) the area and delay were calculated and compared with similar

results for the architecture proposed in [35], and given in Table 4.1. The percentage reduc-

tion in area-delay product against [35] is plotted in Fig. 4.5. Note that the architecture

in [35] uses the Kogge-Stone structure for the carry-generation unit and for the com-

4.5 Performance analysis 79

Table 4.2: Area, delay and power comparison of radix-2 architecture experimental results

n
Area (µm2) Delay (ns) Power (µW)

K-S Ling [35] K-S Ling [35] K-S Ling [35]

4 1154 1426 909 1.0522 1.0871 1.03 92 106 69

8 2384 2354 2176 1.1969 1.2014 1.2120 183 184 160

16 4279 3434 4138 1.4270 1.3735 1.4988 352 294 324

32 7506 6564 6871 1.5687 1.6022 1.6148 594 536 557

parator, hence the comparison of the Kogge-Stone structure provides the improvement of

the algorithm itself over [35]. Fig. 4.5 shows an improvement of 32% for the best case

using Ling architecture. Since the proposed architecture uses a 2n-bit carry-generation

unit (CGU) instead of an n-bit CGU and an n-bit comparator, incorporating higher-radix

cells such as radix-3 or radix-4 may give better results.

The circuits were described in VHDL, then simulated and tested thoroughly for 4 bits,

8 bits, 16 bits and 32 bits. The hardware was then synthesized using Synopsys Design

Compiler Ultra with the SAED standard logic cell library (90 nm, 0.7 V, 125 ◦C) for worst-

case analysis. In our experiment, the Synopsys design compiler gives better results if the

OR gates are exchanged for XOR gates in (4.25) for the Kogge-Stone circuit. The results

are given in Table 4.2. The proposed architecture shows better timing performance in

8-bit, 16-bit and 32-bit designs for the both Kogge-Stone and Ling architecture. For the

best case the area-delay product improves 24% than [35] for 16-bit design using Ling

architecture. The power-delay product slightly higher for 4-bit and 8-bit designs but less

in 16-bit and 32-bit designs .

For further improvement, the proposed designs were implemented with radix-4 ar-

chitectures for both Kogge-Stone and Ling-based structures. The result shows a slight

improvement in speed (1%, 0.5%, and 0.4% for 8 bits, 16 bits and 32 bits respectively)

80 Chapter 4. Sign-detection Algorithm for RNS

Table 4.3: Area, delay and power comparison of radix-4 architecture experimental results

n
Area (µm2) Delay (ns) power (µW)

K-S Ling K-S Ling K-S Ling

4 1481 1425 1.0483 1.087 112 106

8 1991 1989 1.1845 1.3285 159 162

16 3923 3991 1.3670 1.4458 325 338

32 8313 8182 1.6462 1.5953 624 605

by radix-4 implementation, as shown in Table 4.3. The area is less in the case of 8 bits,

but it increases slightly for 16 bits and 32 bits. It seems that the Design Compiler was

unable to produce better results with an abstract VHDL coding description of the radix-4

structures. It may be possible to get better results using parallel prefix cells specifically

designed for higher-radix adders [104]. All the above architectures were synthesized for

timing optimization.

4.6 Conclusion

This paper presents a fully combinational fast sign-detection algorithm for one of the

popular moduli sets {2n− 1, 2n, 2n+1− 1} in RNS using New CRT II [92]. This algorithm

is then implemented in hardware and the experimental results show improved speed as

well as area over existing architectures in the literature. The proposed algorithm improves

the speed and area of general RNS hardware implementations because sign detection has

a key role in many computing applications, where it is not a trivial task in RNS in contrast

with binary systems.

Chapter 5

ASIC Design in Residue Number

System for Calculating Minimum

Sum of Absolute Differences 1

5.1 Abstract

Sum of Absolute Difference (SAD) is widely used in motion estimation algorithms which

is the most computationally intensive task in video compression, and in determining simi-

larities between two data sets. This paper proposes a SAD hardware implementation using

Residue Number System (RNS) which results in superior performance than conventional

binary systems. Residue Number Systems (RNS) have been used for decades in designing

low-power and high speed computer hardware, because of their inherent parallel structure.

In RNS, large integers are represented as sets of smaller integers or residues, where the

number base or moduli are mutually prime. Since these residues are independent from

1published as: N. C. Vayalil, A. Safari, and Y. Kong, “ASIC design in residue number system

for calculating minimum sum of absolute differences”, Tenth International Conference on Computer

Engineering & Systems (ICCES), Dec. 2015, pp. 129-132.

81

82 Chapter 5. ASIC design in RNS for calculating minimum SADs

each other, mathematical operations such as addition, subtraction and multiplication can

be carried out without any carry propagation between residues, which is in most cases a

limiting factor in binary systems. However, some arithmetical operations such as com-

parison and division are more difficult in RNS than in conventional binary systems, such

as determining sign and magnitude comparison of two numbers. The proposed SAD ar-

chitecture is based on a very recent advancement in fast sign detection algorithm for RNS

and the experimental results shows the proposed architecture has higher speed and less area

than previous SAD implementation.

5.2 Introduction

Interest in residue number systems (RNS) for making computer hardware is not new. The

conventional binary number systems have carry propagation which limits the performance

of such systems. Instead, RNS represents large integers as a set of small integers, defined

as the residues of mutually prime moduli. Since these residues are independent from each

other and there is no carry propagation between these residues in arithmetic operations,

the RNS systems outperform traditional binary systems in many computer hardware

implementations. However, the non-weighted nature of RNS makes it difficult to do some

arithmetic operations such as comparison and division. Recently, some fast architectures

were proposed for comparison and sign detection which are essential for computing the

minimum sum of absolute differences [34,35,105].

Sign detection or magnitude comparison has a key role in finding absolute differences

in RNS. Generally residue number systems are defined exclusively for positive numbers

in the range of [0,M − 1], where M =
∏
mi, and mi are moduli. To accommodate

negative numbers, the range of representable numbers are usually partitioned into two

approximately equal parts, i.e. the integers X in the range of [0,M/2−1] (or [0, (M−1)/2]

5.2 Introduction 83

if M is odd) are considered as positive numbers and the remaining half are interpreted as

negative numbers [45].

Sign detection in RNS has been investigated by many researchers. Some of them

used Mixed Radix Conversion [106], and some others Chinese Remainder Theorem [93].

The authors in [107] and [91] proposed new implementations of sign detection based on

Chinese Remainder Theorem II. A magnitude comparison with two pairs of conjugate

moduli {2n − 1, 2n + 1, 2n+1 − 1, 2n+1 + 1} is proposed in [105], and the sum of absolute

difference module implemented in FPGA. In [55] a sum of absolute difference module for

ASIC in RNS is implemented, and both FPGA and ASIC implementations show superior

performance over the binary counter part. Sign detection for the specific moduli set

{2n − 1, 2n, 2n + 1} and {2n+1 − 1, 2n − 1, 2n} are proposed in [34] and [35] respectively,

and showed better performance over previous implementations for sign detection.

This paper proposes a hardware architecture for computing minimum SAD, utilizing

one of the fast sign detection algorithm [35] with modifications for further improvement

in its hardware implementation and with modified modular adders. Since RNS adders

are faster than binary adders the SAD computation which mainly consists of additions

becomes simpler and faster in RNS. A SAD architecture using RNS is proposed in [55]

but with a moduli set which are not relatively prime. A mutually prime or relatively

prime moduli set gives dynamic range M = m1m2 . . .mn whereas M is determined

by least common multiple (LCM) of the moduli if they are not relatively prime, i.e.

M = lcm(m1,m2, . . . ,mn). In other words the former moduli set gives better hardware

efficiency than the later one, and our experimental results validates it.

84 Chapter 5. ASIC design in RNS for calculating minimum SADs

5.3 Proposed architecture for calculating minimum

of SAD

The Sum of absolute differences (SAD) takes the absolute difference between pixels of

the current block and the corresponding pixel in the reference block, followed by aggre-

gation of the absolute differences. Due to its simplicity SAD is widely used in hardware

implementations. The SAD between a current and reference block of size M ×N can be

calculated using (5.1)

SAD =
M−1∑
i=0

N−1∑
j=0

|C(i, j)−R(i, j)| (5.1)

SADMIN = min(SAD(i, j))

where C and R represent current block and reference block pixels, respectively.

Motion estimation (ME) is the most computationally intensive task in video process-

ing. SAD algorithms are widely used in block matching algorithms for motion estimation.

In motion estimation, search methods for finding similar blocks can vary from full search

to sub-optimal fast search such as the 2D-logarithmic search [22], however full search

matching algorithms produce the best results in finding motion vectors. Nevertheless, it

is not necessary to search all pixels in the reference image; depending on the character-

istics of the movement, the resolution of the image, and the frame rate, it is sufficient to

consider a rectangular area centered at the matching block. For a typical application, the

block size M × N varies from 16 to 4096 [10, 108]. Generally, the intensity of the pixels

can be represented by 8 bits, so that SAD < 224. The binary implementation of the SAD

requires 24 bits, where the performance is certainly affected by carry propagation. Hence

in this paper we propose a RNS-based hardware architecture for computing minimum

SAD.

The SADMIN computation can be considered as a three stage process: first find absolute

5.3 Proposed architecture for calculating minimum of SAD 85

difference of two pixels, then sum all the absolute differences, and finally find the SADMIN.

A comparison or sign-detection module is an essential for the first and third stages, but

as mentioned earlier comparison is generally a difficult task in RNS, because of its non-

positional nature. This paper utilises Fast Sign Detection Algorithm for the RNS Moduli

Set {2n+1 − 1, 2n − 1, 2n} [35] and takes the mutually prime moduli set {m1,m2,m3} as

{511, 255, 256} which can represent binary equivalent values in the range of 0 to m1m2m3

(0 to ∼ 225), or as signed numbers where the numbers ≥ m1m2m3/2 is considered as

negative numbers.

5.3.1 Sign detection

The sign for the moduli set {2n+1−1, 2n−1, 2n} can be found using the following equation

[35]:

sgn(x1, x2, x3) = MSB
(∣∣b−2x1 + x2 + x3 +

x2 − x1

2n − 1
c
∣∣
2n

)
(5.2)

where sgn(x1, x2, x3) represents the sign of X = (x1, x2, x3). Equation (5.2) can be re-

written for hardware implementation as [35]:

sgn(x1, x2, x3) = |x̄′′

1 + x2 + x3 +W |2n (5.3)

where

W = 1 + bx2 − x
′
1 − x1,n

2n − 1
c

=


0 if x1,n and x2 < x

′

1 or x1,n = 1 and x2 ≤ x
′

1

1 if x1,n and x2 ≥ x
′

1 or x1,n = 1 and x2 > x
′

1

(5.4)

where x1,n is the n+1th bit of x1, x
′
1 is the least significant n bits of x1, and x

′′
is an n-bit

digit that equals 2x1,n−2:0 + x1,n, that is concatenated by least n− 1 bits of x1 and x1,n.

Fig. 5.1 shows the schematic for a hardware implementation of sign-detection module

using the moduli set {2n+1− 1, 2n− 1, 2n} [35]. The circuit consists of a carry generation

86 Chapter 5. ASIC design in RNS for calculating minimum SADs

Fig. 5.1: Sign detection module for the moduli set {2n+1 − 1, 2n − 1, 2n}.

Fig. 5.2: Carry-generation unit and post-processing unit, modified with the blocks in Fig.

5.3.

Fig. 5.3: Modified blocks for carry-generation unit.

5.3 Proposed architecture for calculating minimum of SAD 87

unit, a comparator unit, and a post-processing unit with a few gates. The carry generation

unit and comparator units [34, 35] are built used prefix tree structure [99]. It is possible

to replace the XOR gates of carry generation unit in [35] with a more simple circuit of

OR gates, shown in Fig. 5.2 and Fig. 5.3. This reduces delay because a OR gate is much

simpler than XOR gate, but in order to generate Pn−1:n−1 an XOR gate is required, but

this is not in the critical path.

5.3.2 Modulo-(2n − 1) adder and subtractor

In the RNS, addition and subtraction can be performed in parallel on the small encoded

integers. A modulo-2n addition/subtraction becomes a common integer addition/sub-

traction with discarding carry, whereas modulo-(2n − 1) additions and subtractions are

computed as 1’s-complement additions and subtractions with end-around carry. Subtrac-

tion can be performed by adding a negated subtrahend, and in the case of modulo-(2n−1)

negating is obtained by simply inverting each bit. In order to speed up the addition the la-

tency of the carry should be minimised. The standard implementation of modulo-(2n−1)

addition uses a conventional binary adder, where end-around carry is achieved by connect-

ing the carry output to the carry input. This creates a potential race problem between

two stable states and may exhibit long delays. In the proposed design, we follow a parallel

prefix modulo-(2n−1) adder structure [109] modified for single zero representation at the

output. The Ling Adder [110] prefix structure is used instead of the Kogge-Stone [102]

prefix structure as proposed in [111].

The schematic of a prefix modulo-(2n − 1) adder using the Ling prefix structure is

shown in details in Fig. 5.4, and the prefix blocks are in Fig. 5.5. The parallel prefix

modulo-(2n− 1) adder structures in [111] has two representation for zero, either all ‘0’ or

all ‘1’. The two zero representations are sometimes not desirable. The ‘all one’ condition

88 Chapter 5. ASIC design in RNS for calculating minimum SADs

Fig. 5.4: Modulo-255 adder based on Ling structure.

Fig. 5.5: Prefix logic operators for modulo-(2n − 1) adder.

5.3 Proposed architecture for calculating minimum of SAD 89

Table 5.1: Performance comparison of modulo adders, designed with

GLOBALFOUNDRIES R© 0.18µm

Area (µm2) Delay (ns)

Modulo-255 with single zero format 675 0.89

Modulo-255 with double zero format 415 0.88

Modulo-511 with single zero format 748 1.01

Modulo-511 with double zero format 675 0.94

at the output can be easily detected by observing Hn−1:0 and Pn−1:0 (by ‘Pn−1:0’ ‘AND’ing

with an inverted ‘Hn−1:0’, where H is the Ling carry) of the final layer in the prefix

structure. This signal is used to select the output from the prefix structure or from all

zeros using a mux.

The comparison of modulo adders with a single-zero representation and with the

double-zero representation are given in Table 5.2. It is clear that single-zero represen-

tations are slightly slower due to additional logic, hence are used only when required.

Carry-save adders (CSA) with end-around carry are used for adder trees in the absolute

difference (AD) unit.

5.3.3 Absolute difference unit

Before using RNS logic, the binary numbers should be converted into RNS. Considering

the maximum input value (X = 255) for the moduli set {511, 255, 256} the conversion is

not required, because the input is always less than the modulus except for modulo-255.

The modulo-255 subtracter considers the input X = 255 (all ones) as zero, as desired (255

mod 255 = 0). Hence, the subtractions can be directly performed on binary data, in all

the three channels in parallel. The output is fed to a mux, after negation and without

90 Chapter 5. ASIC design in RNS for calculating minimum SADs

Fig. 5.6: Absolute difference unit.

negation, where the selection is decided after finding the sign of the output using a sign-

detection module as shown in Fig. 5.6. The negation is performed as 2’s-complement

for modulo-2n, and 1’s-complement (inversion of each bit) for modulo-(2n − 1). The

modulo-(2n− 1)) adder with double zero representations is used here, because it does not

create problems for the downstream modules. There are sixteen such AD modules in the

proposed design.

5.3.4 Accumulation and comparison

The accumulator unit is used for computing the sum of ‘absolute difference’ values ob-

tained from AD units. This can be implemented using an adder tree of carry-save adders

(CSA). We can discard the carry of modulo-2n additions, whereas end-around carry is

achieved by connecting the ‘carry output’ to the next-stage ‘carry in’ for modulo-(2n− 1)

adders.

The accumulated value is then compared with the minimum SAD value using a sub-

tracter and a sign-detection unit as shown in Fig. 5.7. The minimum of these values is

stored in the SADMIN registers.

5.4 Implementation and results 91

Fig. 5.7: Finding minimum SAD.

Table 5.2: Performance comparison of proposed SAD unit

Area (mm2) Delay (ns)

Binary design with 12 stage pipeline [55] 0.15 4.55 (219 MHz)

RNS design with 12 stage pipeline [55] 0.73 3.00 (333 MHz)

Proposed design with 5 stage pipeline 0.02 2.9 (345 MHz)

5.4 Implementation and results

The proposed design is implemented using VHDL with a five-stage pipeline in the hard-

ware. The functionality is tested thoroughly. The proposed design is compiled with Syn-

opsys tools with the GLOBALFOUNDRIES R© csm18os120 standard-cell library (180 nm,

1.62 V, 125 ◦C) for the worst-case analysis. The results are compared with different im-

plementations in RNS and binary [9] and are given in Table 2. The proposed design area

is only 3% of that of [55] and achieved greater speed using 5 pipeline stages instead of 12

pipeline stages. Hence the proposed design has superior performance over the RNS-based

design and the binary design of [55].

92 Chapter 5. ASIC design in RNS for calculating minimum SADs

5.5 Conclusion

This paper proposes a specific structure for computing the minimum sum of absolute

difference based on a residue number system using the hardware efficient moduli set

{2n+1 − 1, 2n − 1, 2n}. This paper also proposes some modifications in hardware for the

Fast Sign Detection Algorithm for the RNS Moduli Set {2n+1−1, 2n−1, 2n} [35] and for the

High-speed Parallel-prefix Modulo-(2n − 1). The proposed hardware for finding minimum

SAD is compiled for Application Specific Integrated Circuit (ASIC) using Synopsys tools.

The obtained results show superior performance over previously implemented hardware.

Chapter 6

ASIC design of test zone search

motion-estimation hardware for high

efficiency video coding (HEVC) with

residue number system 1

6.1 Abstract

Residue Number Systems have been used for designing computer hardware, as carry propa-

gation in conventional binary systems limits their performance. Motion-estimation is the

most computationally intensive task in video processing, increasing considerably with every

new proposed video coding standard. High efficiency video coding (HEVC), also known as

H.265, is the latest video compression standard proposed by the joint collaborative team on

1N. C. Vayalil, and Y. Kong, “ASIC design of test zone search motion-estimation hardware for high

efficiency video coding (HEVC) with residue number system”, IET Circuits Devices & Systems,, 2017,

in review

93

94 Chapter 6. ASIC Design of TZ Search Motion-Estimation for HEVC with RNS

video coding (JCT-VC), and is a successor to the popular advanced video coding (AVC)

or H.264. Along with the introduction of new standards, the quest for high quality or high

resolution, such as ultra high definition (UHD), and the increased bit depth for consumer

video applications, greatly increase computing complexity for motion-estimation. This pa-

per proposes a hardware approach based on a residue number system for implementing a

test zone (TZ) search algorithm for motion-estimation in the HEVC/H.265 standard. The

implemented results show that the proposed method has 51% less gate count than existing

proposals in the literature and considerably less memory requirements than most.

6.2 Introduction

Recent demand for UHD video content in consumer devices is an important driving factor

for improving video coding efficiency, which led to the proposal of HEVC/H.265 [10], by

the JCT-VC. It is estimated that approximately 80% of the total consumer internet traffic

will be video in 2018, a 64% rise from 2014 [112]. The HEVC/H.265 project achieves a

significantly better bit-rate than its predecessor AVC/H.264 [9] by roughly 50% [57].

However the improvement comes with a drawback, the computational complexity. The

coding efficiency and complexity together increase for every new proposal, as in the case

of AVC/H.264 and MPEG-2 [108]. The efficiency of HEVC/H.265 mainly comes from

increasing the basic CU block size from 16 × 16 to 64 × 64, introducing a variety of

partitioning types, and a recursive quad-tree coding structure. Larger block sizes are

important for HD video, especially UHD, because portions of objects are represented by

more pixels in HD/UHD video and this could be effectively compressed or encoded by

larger block sizes.

The most computationally intensive task in video coding is ME which comprises al-

most 80% of the total computations for video encoding [84]. In order to cope with this

6.2 Introduction 95

complexity, there have been several suggestions for motion-estimation algorithms, but

many algorithms proposed for AVC/H.264 such as [62–64] are no longer suitable for

HEVC/H.265 due to its quad-tree coding structure and other complexities [65]. The

quad-tree structure allows the CU to be split recursively into four equally sized blocks,

which is completely different from the AVC/H.264 motion-estimation procedure. The

determination of the best CU size (or depth level in the tree structure), involves much

computations, as it may require testing all the possible prediction modes to find the one

with the least rate distortion (RD) cost, and algorithms such as [113] are suggested to

reduce this CU mode decision complexity.

Motion-estimation algorithms can be broadly classified into full-search and fast-search

algorithms. Generally, full-search algorithms are preferred for hardware architectures

since they have a regular data-flow structure, preferable for pipelining. Although full-

search algorithms produce the best results for finding motion vectors, they usually require

enormous hardware resources, as seen in [65], which has 3.56M gates. This paper proposes

an aASIC architecture of a TZ search algorithm with the aim to minimize the PSNR

degradation. The TZ search is a preferred fast-search algorithm for HEVC/H.265, and

is used in the HEVC/H.265 reference software HM [33]. Since the TZ search algorithm

has a definite search pattern, pipelining is also feasible. The proposed method is cost-

efficient for motion-estimation of 4K UHD videos by employing 4 units with the parallel

processing methods supported by the HEVC/H.265 specification, such as tiles or WPP.

Encoding with tiles or WPP further helps the decoder to use multithreading, therefore

speeding up the decoding process. Furthermore this proposal uses a RNS, which enhances

the computational speed.

96 Chapter 6. ASIC Design of TZ Search Motion-Estimation for HEVC with RNS

6.3 Residue Number Systems

RNSs use a set ofN residues {x1, x2, . . . , xN} corresponding to a moduli set {m1,m2, . . . ,mN}

to represent an integer X. A residue r is the remainder of an integer division of X by

m, and by definition X ≡ x mod m, denoted by x = |X|m. Let M be the least com-

mon multiple, or simply the product of all moduli mi if they are relatively prime. M is

the dynamic range of the system, and any number X which is smaller than M can be

uniquely represented by a residue set {x1, x2, . . . , xN} of the moduli {m1,m2, . . . ,mN},

where xi = |X|mi
.

The Chinese remainder theorem (CRT) [114] relates the integer X and its RNS rep-

resentation {x1, x2, . . . , xN} by

X =
∣∣ N∑
i=1

wixi
∣∣
M

(6.1)

where wi = |M−1
i |mi

, Mi = M/mi, and |M−1
i |mi

is the multiplicative inverse of Mi

with respect to mi. An RNS does not require to propagation of carries between these

residues; in other words the mathematical operations such as addition, subtraction and

multiplication can accomplished by performing the same operation on this smaller residue

set independently, i.e.

X � Y = Z ⇔ xi � yi = zi mod mi (6.2)

where � represents addition, subtraction, multiplication or modular division.

The following properties of an RNS [45] are also used in designing hardware:

∣∣X ± Y ∣∣
m

=
∣∣|X|m ± |Y |m∣∣m (6.3)∣∣X × Y ∣∣

m
=
∣∣|X|m × |Y |m∣∣m (6.4)

6.4 Hardware design of test zone search motion estimation in RNS for HEVC 97

6.4 Hardware design of test zone search motion esti-

mation in RNS for HEVC

HEVC/H.265 introduces a very flexible hierarchical quad-tree coding structure. A pic-

ture frame is divided into CTUs, each containing a luma CTB, two chroma CTBs and

associated syntax elements [10]. A luma CTB consists of L × L blocks of luma compo-

nents, where L takes values of 16, 32 or 64, depending on the memory requirements and

computational capabilities of the encoders. The luma and chroma CTBs can be directly

used as the CB, or further split into multiple square CBs in a quad-tree structure. The

splitting process stops when the luma CB reaches the minimum allowed CB size selected

by the encoder, and is always greater than or equal to 8× 8 luma samples.

M/4 × M (L) M/4 × M (R) M/4 × M (U) M/4 × M (D)

M × M M/2 × M M × M/2 M/2 × M/2

Fig. 6.1: Partitioning of CB into PBs in HEVC.

One luma CB and the associated chroma CB form a CU. In the interpicture prediction

mode a CB is split into one, two or four prediction blocks as shown in Fig. 6.1. The lower

four partitions are referred to as AMP, which can not be used if M is less than 16 for luma.

The PB size 4× 4 is not allowed in interpicture prediction to reduce memory bandwidth.

In intra-picture prediction mode PB may split into four quadrants. The luma PB with

associated chroma PBs and syntax elements forms a PU.

The purpose of the motion-estimation is to select the best matching PB for each block

in the current encoding frame from previous or future frames. Note that the encoding or

decoding order of picture frames is different from the order they arrive from the source or

98 Chapter 6. ASIC Design of TZ Search Motion-Estimation for HEVC with RNS

the displaying order. The SAD is commonly used as the matching criterion, because of

its simplicity. The SAD between current and reference blocks of size M ×N is defined as

SAD =
M−1∑
i=0

N−1∑
j=0

|C(i, j)−R(i, j)| (6.5)

where C and R represent current and reference block pixels. Due to the said quad-tree

structure and the introduction of varieties of PB partitioning types, the motion-estimation

becomes more complicated in HEVC/H.265.

6.4.1 Hardware architecture for test zone (TZ) search motion-

estimation

8

88

8

8

8

8

1
1

1
1

2

2

2

2
22

2 2

4

4

4

4

4

4 4

4

8

(a) (b)

Fig. 6.2: Search pattern for initial grid search and raster search in test zone (TZ) search

algorithm: (a) diamond pattern for initial grid search, (b) raster-scan pattern.

The TZ search combines an initial grid search, using either a diamond or square search

pattern, and a raster search. The first step, the initial grid search, searches with variable

stride lengths of 1 to the ‘search range’ (64 for example) through multiples of two. If

the best distance, i.e. the distance from the initial start point to the global minimum, is

greater than ‘iRaster’ (a predefined value) the algorithm does a raster search, otherwise

6.4 Hardware design of test zone search motion estimation in RNS for HEVC 99

address

data data

addresssearch area
data
RAM

current block
data
RAMmin SAD

MV

min SAD

accumulator

comparator

SAD

Control Unit

&

MV selection

sum of absolute

differences

computation

Fig. 6.3: Architecture of test zone (TZ) search motion-estimation.

skips this step. This hardware proposal for a TZ search uses an 8-point diamond grid

pattern for the initial grid search, as shown in Fig. 6.2 (a), with stride lengths ranging

from 1 to 5. In HM Reference Software, the TZ search uses a stride length of from 1 to

the ‘search range’, but it is best to stop the search if the best distance is greater than

iRaster (the default value in the HEVC/H.265 reference software for iRaster is 5, used

in this hardware configuration), because then it always needs to do the raster search and

that covers all these points. This modification of TZ does not affect the PSNR and bit

rate appreciably, reported as −0.044 dB and 0.554% respectively on average [32]. A raster

search is a kind of full-search motion-estimation but advances search points by iRaster

pixels, as shown in Fig. 6.2 (b). The algorithm also has an optional refinement step using

either a raster or a star pattern for refinement [32].

Fig. 6.3 shows the architecture of the proposed TZ search motion-estimation hardware

implementation. The search area and current block data of the reference picture frame

and the current picture frame respectively are stored in RAM for accessing quickly. The

search starts by finding the minimum SAD of the first PB partition of the largest CU

size, i.e. the 64× 64 block size. Note that it requires multiple computations by the SAD

computation module to find the SAD of a 64 × 64 block, because in one clock cycle it

can only compute a smaller 4 × 4 or 8 × 8 block’s SAD, depending on the size of SAD

module used. The accumulator accumulates these SADs to get higher block SADs such as

100 Chapter 6. ASIC Design of TZ Search Motion-Estimation for HEVC with RNS

32× 64, 64× 64. After finding a 64× 64 SAD the control logic offsets the RAM addresses

to the next position according to the TZ search algorithm and starts accumulating to get

the next 64 × 64 block SAD. These accumulated SADs are compared with the previous

SAD and the minimum saved in a register. It also keeps track of the position where the

minimum occurs, that is the motion vector of this PB partition.

In a similar way the hardware computes the minimum SADs and motion vectors

of other partitions of the CB. The proposed hardware supports symmetric as well as

square partitions but not AMP. If the total cost function of square partitions (sum of

four M/2×M/2) is less than that of the other partitioning types, then the control logic

decides to split the CB into quad partitions. Otherwise the hardware chooses a motion

vector and partitioning type from one of the first three partition kinds of Fig. 6.1 where

the minimum cost function belongs to, and exits computation. If the hardware decides

to divide the block into square quad partitions, then the above procedure repeats with

smaller block sizes till the CU size reaches 16×16. The hardware selects the best partitions

for a CU as well as motion vectors based on the cost function; for simplicity the minimum

SAD itself is taken as the cost function in this design. The hardware gives the best motion

vectors and cost function as its outputs.

The detailed data path for the ME architecture is shown in Fig. 6.4. The absolute-

difference (AD) module receives pixels values from the current picture frame block and

reference picture frame block from respective RAM and finds the absolute differences. A

series of adders accumulates these values, followed by modular adders for converting the

accumulated value into the RNS. RNS systems show better performance in mathematical

operations such as addition and multiplication, especially when the word length is high.

The accumulator has a 24-bit word length for accumulating the SADs of larger blocks,

and in such word lengths the carry propagation definitely affects the performance of a

traditional binary addition. The binary number system is used in the initial adders in

6.4 Hardware design of test zone search motion estimation in RNS for HEVC 101

modular adder

current frame and reference frame pixels

Binary:

RNS:

select smaller

accumulator

0

Fig. 6.4: Data path of motion-estimation architecture; modular adders are used to convert

binary into RNS, thus carry-propagation delays in long-word additions in the accumulator

are diminished.

the data path of the ME architecture as the word length is comparatively small, and the

word length increases one bit in each adder. Instead if the RNS is used at these stages it

may requires a 24-bit equivalent RNS system from the beginning, resulting in an under-

utilized hardware system in the early stages of the data path. Although scaling is possible

in RNS, it is not trivial as in binary, requiring additional hardware at each stage.

Two different designs are proposed: (a) Using a 4 × 4 SAD in the data path, (b)

Using an 8× 8 SAD in the data path. The architecture (a) accesses 16 pixels from both

current picture and reference picture frames whereas architecture (b) accesses 64 pixels

from both current and reference picture frames. 4 kB of RAM is required for storing the

pixels in the current frame and another 16 kB of RAM for search-area data or pixels in

the reference frame, for both cases (a) and (b). Since configuration (b) has 8 × 8 SAD

computation hardware in its data path, composed of four 4×4 SAD units, it can compute

102 Chapter 6. ASIC Design of TZ Search Motion-Estimation for HEVC with RNS

Table 6.1: Number of 4 × 4 SAD computations involved in various test videos for TZ

search inter-picture motion-estimation.

Resolution / fps / bits No. of 4× 4 SADs/sec (max)

Netflix DrivingPOVa 4096× 2160, 30 fps, 8bit 4,929,299,677

Netflix Aeriala 4096× 2160, 30 fps, 8bit 4,927,921,301

Netflix RollerCoastera 4096× 2160, 30 fps, 8bit 4,861,365,984

Netflix ToddlerFountaina 4096× 2160, 30 fps, 8bit 4,942,194,456

Netflix PierSeasidea 4096× 2160, 30 fps, 8bit 4,845,479,084

aoriginal video has 10 bit, 60 fps, converted using FFmpeg software [115].

both 4 × 8 and 8 × 4 PB’s SADs from the partial 4 × 4 SAD results if M equals 8 in

motion-estimation search.

For calculating the timing requirements, various UHD test videos have been encoded

in the HM [33]. A few hundred frames of each video are encoded using HM, obtaining the

peak value the of number of 4 × 4 SAD computations involved in the encoding process.

These results are tabulated in Table 6.1. The maximum among different videos of the

number of 4×4 SAD computations required for the motion search, with additional 5% as

an allowance, is taken for estimating the number of clock cycles for the hardware. More

than this many computations are not expected for determining motion vectors by the TZ

search method for encoding 4K UHD videos.

6.4.2 Residue number systems for the motion-estimation hard-

ware architecture

For this application, a three-mutually-prime moduli set {2n − 1, 2n, 2n+1 − 1} is selected

because it has the lowest delay in reverse conversion as well as being efficient in modulo

6.4 Hardware design of test zone search motion estimation in RNS for HEVC 103

additions and multiplications [46], where n is determined as 8 for accommodating the

largest possible value. As discussed, the RNS is used in the accumulator, where the carry-

propagation delay is dominant because the bit length is so high. Forward conversion,

i.e. binary to RNS conversion, is a trivial task in the above moduli set, and can be

accomplished employing a few modular adders. The residue with respect to modulus 2n

is easily obtained by dividing the number by 2n and taking the remainder. Since the

division is an n-bit right-shift operation, to get the remainder we just need to keep the

least n bits. The residues modulus 2n − 1 can be found as follows [45]; note that

|2n|2n−1 = |2n − 1 + 1|2n−1 = 1 (6.6)

and that can be easily extended to 2nq

|2nq|2n−1 =
∣∣ q∏
i=1

|2n|2n−1

∣∣
2n−1

= 1 (6.7)

Although the dynamic range M has 3n + 1 bits for the RNS with moduli set {2n −

1, 2n, 2n+1 − 1}, the binary to RNS conversion happens at a lower bit width, so 3n bits

are enough to represent the binary input X:

X = b3n−1b3n−2 . . . b2n−1b2n−2 . . . bn−1bn−2 . . . b1b0

Partition the input binary number X to three n-bit blocks

B1
∆
=

3n−1∑
j=2n

bj2
j−2n

B2
∆
=

2n−1∑
j=n

bj2
j−n

B3
∆
=

n−1∑
j=0

bj2
j

The residue with respect to modulo 2n − 1 is obtained as

x1 =
∣∣X∣∣

2n−1
=
∣∣B122n +B22n +B3

∣∣
2n−1

(6.8)

104 Chapter 6. ASIC Design of TZ Search Motion-Estimation for HEVC with RNS

Applying (6.3) and (6.7) in the above equation results in

x1 =
∣∣B1 +B2 +B3

∣∣
2n−1

(6.9)

The residue modulo 2n+1− 1 is also obtained in exactly the same way, except that the bit

width is n+1 for additions. Parallel-prefix 2n−1 and 2n+1−1 modulo adders [80,109] are

used in the data path of the ME architecture for this forward conversion. A multiplexer is

used to select a new start or continuing accumulation to find larger block’s SADs. Some

of the mathematical operations such as sign detection and comparison are not trivial in

RNS, but recent proposals [35,37] helps to mitigate this problem. The fast sign-detection

architecture for moduli set {2n−1, 2n, 2n+1−1} proposed in [37] is used for the comparator

implementation, which compares a value with the previous value in the accumulator and

saves in the SADmin register.

The synthesized results shows that both hardwares can operate up to a frequency of

375 MHz. From Table 6.1 it is determined that 16 parallel processing units of hardware in

configuration (a) or 4 parallel processing units in configuration (b) are capable of encoding

4K UHD videos, as these require 1 clock cycle for each 4× 4 block SAD computation and

8×8 block SAD computation respectively. Parallel processing of four units of configuration

(b) is selected as it seems more optimal than configuration (a) for encoding real-time

UHD videos. The HEVC/H.265 specification has several promising proposals for parallel

processing including WPP and tiles; one of them can be adopted to achieve real-time

encoding of videos up to 4K UHD resolution. Experimental studies show that WPP and

OWF have 0.58% coding losses on average for 4K UHD (2160p) videos whereas tiles suffer

2.17% average coding losses [12].

6.5 Analysis of Results 105

Table 6.2: Comparison of HEVC/H.265 motion-estimation architectures.

Design This work TCASVT’15

[63]

JSTSP’13 [116] EL’13 [65]

Technology (nm) 32 90 65 65

Clock freq. (MHz) 333 270 200 250

Gate Count (k) 101.6 206 a 1067.5 3560

Memory (kB) 80 11.9 a 89 20

Video format 4096 ×

2160p30

4096× 2048p60 3840× 2160p30 3840× 2160p30

Search range 64 ±64 64 64

Block sizes Except AMP

(12 kinds)

Exludes AMP,

32× 64, 64× 32,

16 × 16, 32 × 16

(8 kinds)

16× 16, 32× 32,

64× 64 (3 kinds)

All HEVC (27

kinds)

MV accuracy 1-pixel 1-pixel a 1/4-pixel 1-pixel

Frame types P/B P/B P/B P

Reference frames 4 b 1 b 1 b 1

aonly integer motion-estimation is considered
bin each direction

6.5 Analysis of Results

The proposed design is written in VHDL hardware description language, simulated and

verified. The design is synthesized using the SAED 32 nm digital standard cell library for

the operating conditions 1.16 V and 125 ◦C using the Synopsys design compiler version

K-2015.06. The obtained results are tabulated in Table 6.2. The proposed hardware uses

residue number systems to speed up computations in the SAD accumulator stages. A

simplified version of the TZ search motion-estimation hardware architecture is proposed

106 Chapter 6. ASIC Design of TZ Search Motion-Estimation for HEVC with RNS

in [63]. The integer motion estimation (IME) section of [63] excluded the raster scan,

which is the most time-consuming process in the algorithm, and also several PB types

such as 64×32, 32×64, 32×16 and 16×32 are omitted from the search. Hence the PSNR

is worsened by approximately 5% [116]. Nevertheless the design in [63] requires roughly

51% more gates than the proposed architecture in this paper, considering bi-directional

prediction with integer motion-estimation.

On the other hand full-search motion-estimation architecture designs are very straight-

forward but require more resources as seen in [65,117]. A simplified version of full search,

like the cost and coding efficient (CCE) architecture, is proposed in [116] which sup-

ports fewer PB types, 3 kinds instead of 15 kinds (without AMP), which results in a 12%

bit-rate increase [116]. Even though the hardware has quarter-pixel resolution for motion-

estimation, it has almost 10 times the area (in terms of gate count) and the supported

reference frame is only one fourth of the design in this paper. It is clear from the table

that the proposed hardware has fewer gates and also in most cases less memory require-

ment than various proposals in the literature, even though it does not compromise much

on the algorithm and hence the PSNR. Although the principles behind motion-estimation

in AVC/H.264 and HEVC/H.265 are similar, the computations involved in HEVC/H.265

are much greater, hence a direct comparison on these architectures is meaningless and

not included in the table.

6.6 Conclusion

This paper investigate the possibilities of the TZ search algorithm for hardware imple-

mentation with residue number systems to speed up the arithmetic operations involved

in motion-estimation. The results show that less hardware is used without compromising

the bit rate or PSNR compared to other ME search implementations in the literature.

6.6 Conclusion 107

The parallelized version of the proposed method requires a gate count of 101.6 k with

80 kB RAM in total for encoding 4096× 2048p30 videos in real time. Parallel processing

in encoding also helps the decoder to utilize multi-threading, which is favorable for de-

coding UHD video. The authors expect a good future for the RNS in video processing

as the quality, or in other words the bit depth, of video increases; the propagation delays

in binary arithmetic become a bottleneck in most of the computations involved in video

processing, where RNS can outperform traditional binary systems.

108 Chapter 6. ASIC Design of TZ Search Motion-Estimation for HEVC with RNS

Chapter 7

A Residue Number System

Hardware Design of Fast-Search

Variable-Motion-Estimation

Accelerator for HEVC/H.265 1

7.1 Abstract

A residue number system (RNS) has an inherent parallel structure that can be utilized

for improving computer hardware systems. An RNS represents large integer numbers

as a smaller integer set, or residues of a modulo set, without carry propagation between

them. Hence mathematical operations such as addition or subtraction can be performed on

residues independently. This paper proposes an RNS implementation of motion estima-

1N. C. Vayalil, M. Paul, and Y. Kong, “A residue number system hardware design of fast-search

variable-motion-estimation accelerator for HEVC/H.265”, IEEE Transactions on Circuits and Systems

for Video Technology, 2017, in review

109

110 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

tion for the latest video coding standard known as high-efficiency video coding (HEVC) or

H.265. Since motion estimation is the most computationally intensive task in video coding,

several simplified algorithms are proposed for mitigating the problem, but the majority of

them result in a worsening peak signal-to-noise ratio (PSNR) or bit-rate performance, or

sometimes both. This paper also proposes a modified algorithm based on a test-zone (TZ)

search algorithm, a widely used fast search algorithm with good rate-distortion (RD) per-

formance, suitable for hardware implementation for encoding ultra-high-definition (UHD)

videos in real time. The results show that worst-case PSNR degradation and bit-rate

increases compared to the TZ search in HEVC reference software implementation are neg-

ligible, and the hardware gate count is less than for many other designs in the literature.

7.2 Introduction

The latest video coding standard introduced by the joint collaborative team on video

coding (JCT-VC), known as HEVC/H.265 [10], allows more coding efficiency than its

predecessors. The HEVC/H.265 project shows an approximately 50% bit-rate reduction

to its predecessor, AVC/H.264 [9], in experimental results for an equivalent subjective

reproduction quality, and is also shown to be effective for high-resolution video content

[57]. The coding efficiency mainly comes from the introduction of a recursive quad-tree

coding structure in its basic CTU as well as the escalation of the block size from 16× 16

to 64× 64 with additional partitioning modes. Motion estimation is used for eliminating

temporal redundancy in the consecutive frames of a video sequence and relates the content

of a picture frame, usually a rectangular block in current video coding standards such as

AVC/H.264 HEVC/H.265, to the known content of an adjacent frame. Larger block

sizes are effective for compressing smoother regions of a picture, and in high-resolution

videos such as UHD videos are more likely to have large smoother regions [118]. The

7.2 Introduction 111

improved coding efficiency demands more computation as it needs to investigate larger

areas with more complex and varied partitioning types. In a nutshell, more efficient

hardware implementation and algorithms are required to cope with this computational

complexity and for real-time encoding.

Several algorithms have been proposed for AVC/H.264 to confront the computational

complexity [62–64], but they are no longer valid for HEVC/H.265 as it has a recursive

quad-tree structure and other complexities [65]. As motion estimation dominates the

video encoding process, requiring approximately 60% to 80% of the total computation [58],

several algorithms are proposed for reducing the complexity of motion estimation. The

CU size and mode decision in HEVC/H.265 take an enormous amount of computation if

it tries all available CUs and selects the best. A latent SAD based CU decision approach

proposed in [67] reduces the computational complexity to half in experimental cases.

Several other CU sizes or mode decision approaches are found in [66,68,70,113]. Adaptive

search methods are proposed in [119, 120] for reducing the number of search points. An

early termination (ET) process is proposed in [78] to speed up the computation process for

motion estimation. Most of the proposals in these papers are for software implementation,

and are very hard to implement in hardware, or not efficient for hardware realization.

Several of the above algorithms try to increase the computational speed by reducing the

number of search points, which causes a performance reduction in the PSNR or bit rate,

or sometimes both.

Motion-estimation algorithms are mainly classified as full-search algorithms or fast-

search algorithms. As the temporal distance between consecutive frames is small, the

motion is usually confined to a small region, and the search for a matching block can be re-

stricted to this region, called a ‘search window.’ The full-search algorithms or exhaustive-

search algorithms search for a match in all candidates in this window based on a cost

function and come up with the best match. On the other hand, fast-search algorithms

112 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

skip several candidates which are less probable to find the best match. Although full-

search algorithms always come up with better results than fast-search methods, the full

search algorithm is an extremely tedious time-consuming process. The TZ search algo-

rithm is a fast-search algorithm implemented in [121] and also in HEVC/H.265 reference

software HM [33]. The TZ search algorithm comprises a zonal search, centered around

the predicted motion vector, and a raster search if the best location obtained in the zonal

search is far from the predicted center. The TZ search shows good RD performance com-

pared to the full-search algorithms and decreased coding time by 60% [32]. Commonly,

SAD is used as the cost function for either full-search or fast-search methods, as it is

simple and requires less computation than other matching criteria. The SAD takes the

absolute difference between the current and reference block pixels and then finds the sum

of all these absolute differences. The SAD between M × N current and reference block

pixels is given by

SAD =
M−1∑
i=0

N−1∑
j=0

|C(i, j)−R(i, j)| (7.1)

where C and R represent current block and reference block pixels, respectively.

As HEVC/H.265 motion estimation is highly complex for hardware implementation

for real-time encoding, several methods proposed such as [63, 116] simplify the hardware

by omitting various search points, which affects their performance. In this paper, we

propose a modified TZ algorithm which is suitable for hardware architectures, neither

degrading PSNR nor increasing bit rate noticeably. The initial zonal search of the TZ

search algorithm needs to get data from various locations of a reference picture frame to

find the cost function. Most of these sites are far apart from each other and it necessary

to get all M ×N pixels of the reference pixels each time, which increases data bandwidth

requirements. The proposed method uses a snake scan order which loads one row or col-

umn data and scans through more probable locations, found in our experiments. Another

proposal in this paper is to use a RNS to speed up computation SAD, which usually lies

7.3 Residue Number Systems 113

in the critical path of the hardware. RNS has been used for hardware architectures for

many decades, including video processing [54], but the research related to HEVC/H.265

applications is in its early stages. Carry propagation is the performance-limiting factor in

many binary systems, but RNS does not need to propagate carries between the residues

used for representing the number, thus shows better performance in several hardware

systems than a binary counterpart.

7.3 Residue Number Systems

An RNS represents a large integer number as a smaller set of integers or residues of moduli

set {m1,m2, . . . ,mN}. If q and r are the quotient and remainder of an integer division of

x by m, then the number r is said to be the residue of x with respect to m, and then by

definition a ≡ r mod m, denoted by r = |a|m. Let M be the least common multiple, or

simply the product of all moduli mi if they are relatively prime. M is the dynamic range

of the system, and any number X which is smaller than M can be uniquely represented

by a residue set {x1, x2, . . . , xN} of the moduli {m1,m2, . . . ,mN}, where xi = |X|mi
.

The Chinese remainder theorem (CRT) [122] relates the integer X and its RNS rep-

resentation {x1, x2, . . . , xN} as

X =
∣∣ N∑
i=1

wixi
∣∣
M

(7.2)

where wi = Mi|M−1
i |mi

, Mi = M/mi, and |M−1
i |mi

is the multiplicative inverse of Mi

with respect to mi. An RNS does not require carries to propagate between these residues;

in other words mathematical operations such as addition, subtraction, and multiplication

can be accomplished by performing the same operation on this smaller residue set, i.e.

X � Y = Z ⇔ xi � yi = zi mod mi (7.3)

where � represents addition, subtraction, multiplication or modular division.

114 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

8

88

8

8

8

8

1
1

1
1

2

2

2

2
22

2 2

4

4

4

4

4

4 4

4

8

(a) (b)

Fig. 7.1: Search pattern for initial grid search and raster search in test zone (TZ) search

algorithm: (a) diamond pattern for initial grid search, (b) raster scan pattern.

The following properties of an RNS [45] have been used in designing hardware:

∣∣X ± Y ∣∣
m

=
∣∣|X|m ± |Y |m∣∣m (7.4)∣∣X × Y ∣∣

m
=
∣∣|X|m × |Y |m∣∣m (7.5)

7.4 Proposed algorithm for motion estimation

The proposed algorithm is derived from TZ search, which combines a zonal search and

a raster search. The TZ search algorithm has the following four steps: motion vector

prediction, initial grid search, raster search and raster/star refinement. The first step in

the TZ search algorithm is a prediction of the motion vector based on the already obtained

motion vectors of nearby blocks, and the predicted location is the starting point for the

initial grid search. The initial grid search uses an eight-point pattern, either diamond or

square, with a stride length ranging from ‘1’ to the ‘search length’ in multiples of two. The

diamond search pattern for the initial grid search is shown in Fig. 7.1 (a). If the distance

from the search center to the minimum distortion point is greater than a predefined value

7.4 Proposed algorithm for motion estimation 115

Table 7.1: Percentage of raster searches in a TZ search motion estimation

Video Name Frame No. No. of Raster searches (%)

ToddlerFountain a 20 14.99

DrivingPOV a 29 0.87

TunnelFlag a 27 7.92

Crosswalk a 22 5.22

a 4K UHD video, encoded as P-frames using 4 reference frames

(called ‘iRaster’ in HM software, with a default value of 5 pixels) then the algorithm does

the next step, i.e. raster search, otherwise skips the raster search. The raster search is

similar to a simple full search or exhaustive search with the search window down-sampled

by a factor equal to the ‘iRaster’ value. A raster search pattern with stride length 5 pixels

is shown in Fig. 7.1 (b). Raster or star refinement is a fine adjustment of the motion

vector obtained in the previous step. Usually one of the methods, either raster refinement

or square/diamond pattern refinement (star refinement), is enabled in the algorithm to

speed up computation.

The proposed algorithm is specifically designed for high-resolution videos such as 4K

UHD or higher. Several 4K UHD videos are encoded in HEVC/H.265 format using HEVC

reference software HM [33], with the TZ search motion estimation. Table 7.1 shows the

percentage of raster search involved in motion estimation of 4K UHD test videos. All

frames except an initial frame are encoded as a P-frame with 4 reference frames using the

configuration file ‘encoderlowdelay P main.cfg’ provided with the HM. From these results,

it is seen that the TZ search algorithm skips raster search in approximately 85% to 99%

of the motion-vector searches. In other words, the best motion vectors are found near

or within a 5-pixel radius of the predicted motion vector. The initial diamond search,

as seen in the experiments, is dominant in the TZ search algorithm. Since most of its

116 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

Table 7.2: Percentage of first minimum error locations occurring after the ‘iRaster’ (5

pixels) distance, only considered search involving raster scans

% of first minima at the distance (pixels)

Video Name 8 16 32 64 128 256

ToddlerFountain a 24.5 44.7 16.2 8.1 4.3 2.2

DrivingPOV a 53.5 34.8 7.7 2.7 0.9 0.4

TunnelFlag a 22.4 45.1 14.4 8.8 5.8 3.5

Crosswalk a 29.4 47.6 11.5 6.2 3.5 1.8

a 4K UHD @ 60 fps, frames 1 to 29 encoded as P-frames using 4 reference frames

search locations are far apart, a hardware implementation may need to get a new set of

reference pixel data when moving to another search point. Grabbing an entirely new set

of reference data requires very high data bandwidth, especially for larger block sizes.

The motion search generally has a non-uni-modal error surface with multiple local

minima except for the small region surrounding the global minimum [60]. If the minimum

obtained in the initial grid search is far from the predicted motion vector, a raster search is

inevitable to avoid this local minima trap. Since the raster search covers all points in the

initial grid search, as it is a full search like the search window down-sampled by ‘iRaster’,

the initial grid search can be stopped if the minimum is found after the ‘iRaster’ distance.

Table 7.2 shows the percentage of first minima occurring after the ‘iRaster’ distance

while encoding various videos using HM software. The table only considers searches with

the minimum after ‘iRaster’ distances; others are excluded. From the table, it is clear

that approximately 70% of minima occur on or before a 16 pixels distance in the videos

examined; also note that at maximum only 15% of searches involve raster scan or minima

after a distance of 5 pixels.

From these observations, it has been concluded that most of the minima are confined

7.4 Proposed algorithm for motion estimation 117

A

B

D

C

A : shift rightward 32 pixels

B : shift downward 8 pixels

C : shift leftward 32 pixels

32 pixels

31 pixels

B
A

D : shift downward 1 pixel

D
C

(a)

E

F

F
E

G

128 pixels

126 pixels

F

E : shift rightward 128 pixels

F : shift downward 5 pixels

G : shift leftward 128 pixels

(b)

Fig. 7.2: Search pattern for initial search and raster-like scan in the proposed search

algorithm: (a) pattern for initial grid search, (b) raster-like search pattern.

in a search window of ±16 pixels. Hence, for the hardware implementation, the search

pattern shown in Fig. 7.2 has been proposed. Like the TZ search algorithm, the proposed

algorithm has an initial search and raster scan. The first step is an initial search which

searches in a search window of 31 × 32 centered (15 rows above and below the center)

on the predicted motion vector. The search starts from the left-top corner of the search

window and moves like a snake-scan order. The search is equivalent to a full-search motion

estimation except for after the first line and before the last line in the search window,

where the search moves 8 pixels down at the end of the line, shown as B in Fig. 7.2 (a).

Thus the initial search is composed of a full search for the 16 × 32 pixel window and a

search in two lines 8 pixels above and below the window, thus including search points for

a diamond or square pattern with the 16-pixels stride length of a TZ-search initial grid

search.

This unique snake search pattern is used to exploit hardware design features, as the

hardware is able to load a single column or row of 64 pixels in a cycle into its shift register.

Thus to move a distance of, say, 16 pixels as an example, requires 16 cycles to load 16

118 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

new columns or rows of pixels. Thus to complete an initial search the hardware requires

556 clock cycles (total 17 lines, needs 17 × 32 cycles and 2 × 6 cycles in step ‘B’ in Fig.

7.2), and another 64 cycles to fill the reference block data into the shift registers initially.

As in the TZ search, the next step is a raster scan if the location of the minimum picked

up is far from the predicted motion vector. Unlike in HM or in software, the hardware

searches a 64×64 block and its sub-blocks in parallel, so making a decision for raster scan

is complicated because it is required to consider all PBs. As a simplified approach, the

number and size of PBs with minima found in an initial search farther than ‘iRaster’ pixels

from the predicted motion vector in a 64×64 pixel block directs the decision whether to do

a raster search or not; the larger PBs’ have more weight than smaller PBs in making this

decision. The raster scan also follows a snake-scan order where the horizontal movements

are 128 pixels and the vertical movements are 5 pixels, and completes a search area of

126 × 128 pixels. The raster scan is the most time-consuming process in this algorithm:

the search window has 26 lines and thus requires 26 × 128 clock cycles for all horizontal

movements and 25×4 clock cycles for the vertical movements in between, thus 3428 clock

cycles in total. Since the vertical movement by 5 rows downward each time ends in the

126th row, the search window height is adjusted to 126 pixels for the above scan pattern.

As the initial search pattern covers all search points near the predicted motion vector, like

a full search, the final step in the TZ search algorithm, a refinement search, is omitted

from the proposed method.

7.5 Motion estimation hardware design

The HEVC/H.265 standard introduces a very flexible hierarchical quad-tree coding struc-

ture. A picture frame is divided into CTUs containing a luma CTB, two chroma CTBs

and associated syntax elements [10]. A luma CTB consists of L× L blocks of luma com-

7.5 Motion estimation hardware design 119

M/4 × M (L) M/4 × M (R) M/4 × M (U) M/4 × M (D)

M × M M/2 × M M × M/2 M/2 × M/2

Fig. 7.3: Partitioning of CB into PB in HEVC.

ponents where L takes values of 16, 32 or 64, depending on the encoders, for different

memory and computational requirements. The luma and chroma CTBs can be directly

used as CBs or further split into multiple square CBs in a quad-tree structure. The split-

ting process stops when the luma CB reaches the minimum allowed CB size selected by

the encoder and is always greater than or equal to 8× 8 luma samples.

One luma CB and the associated chroma CB form a CU. In interpicture prediction

mode a CB is split into one, two or four prediction blocks as shown in Fig. 7.3. The lower

four partitions are referred to as AMP, which can not be used if M is less than 16 for

luma. The PB size 4× 4 is not allowed in interpicture prediction, to reduce the memory

bandwidth. In intra-picture prediction mode PBs may be split into four quadrants. The

luma PB with associated chroma PBs forms a PU.

7.5.1 Residue number systems for motion-estimation hardware

architecture

An RNS is used with the motion-estimation architecture to enhance the computational

speed. In this application a three-mutually-prime modulo set {m1,m2,m3} = {2n −

1, 2n, 2n+1 − 1} is selected as it is efficient in modulo additions and multiplications [46]

of moduli sets having a dynamic range of 3n bits, and n is chosen as 8 to accommodate

the largest possible values in the hardware. Forward conversion, i.e. binary to RNS

conversion, is not a difficult task for the above modulo set, and it can be achieved with a

120 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

few modulo adders.

The residues modulo 2n − 1 can be found as follows [45]; note that

|2n|2n−1 = |2n − 1 + 1|2n−1 = 1 (7.6)

and that can be easily extended to 2nq

|2nq|2n−1 =
∣∣ q∏
i=1

|2n|2n−1

∣∣
2n−1

= 1 (7.7)

Although the dynamic range M has 3n + 1 bits for the RNS with modulo set {2n −

1, 2n, 2n+1 − 1}, in the proposed design the binary to RNS conversion taken place after

8× 8 SAD computation, which has only (n+ 6)-bit width, so 3n bits, where 3n > n+ 6,

are enough to represent the binary input X:

X = b3n−1b3n−2 . . . b2n−1b2n−2 . . . bn−1bn−2 . . . b1b0

Partition the input binary number X to three n-bit blocks:

B1,n
∆
=

3n−1∑
j=2n

bj2
j−2n

B2,n
∆
=

2n−1∑
j=n

bj2
j−n

B3,n
∆
=

n−1∑
j=0

bj2
j

The residue with respect to modulo 2n − 1 is obtained as [45]:

x1 =
∣∣X∣∣

2n−1

=
∣∣B1,n · 22n +B2,n · 2n +B3,n

∣∣
2n−1

(7.8)

Applying (7.4) and (7.7) in the above equation results in

x1 =
∣∣B1,n · 1 +B2,n · 1 +B3,n

∣∣
2n−1

=
∣∣B1,n +B2,n +B3,n

∣∣
2n−1

(7.9)

7.5 Motion estimation hardware design 121

The residue modulo 2n+1 − 1 is obtained in exactly the same way, except that the bit

width is n+ 1 for additions.

x3 =
∣∣B1,n+1 +B2,n+1, B3,n+1

∣∣
2n+1−1

(7.10)

The residue x2, of modulo 2n, is given as

x2 = B3,n (7.11)

7.5.2 Motion-estimation architecture

The proposed design incorporated the following features. Firstly, the hardware processing

element’s size is selected to be the most likely block size found in UHD videos. Thus it

could more efficiently utilize the data bandwidth than architectures which start the search

with a lower block size and eventually come up with the higher block search results. Fur-

thermore, the proposed hardware employs the SAD reuse technique and searches lower

block sizes with the largest possible size allowed by the hardware. Secondly, our experi-

mental results show that in most cases the search results are found near to the predicted

motion vector, and the proposed hardware mostly searches in this area. Many proposals

suggest a full-search method as it is more suitable for a hardware structure and easy to

pipeline, but these result in wasting time by searching in the least-probable locations.

However, to avoid local minima traps a raster-like scan is included in the proposed al-

gorithm. Finally, an RNS is integrated into the hardware SAD data path to improve

computational speed. The hardware size is selected to process whole 64× 64 CBs in one

cycle because, in 4K UHD or higher-resolution videos, it is expected that a significant

number of motion searches will result in CBs of this size. This can be seen from the

percentage of 64 × 64 CBs in 4K UHD videos in Table 7.3, where frames 2 to 30 of the

videos are encoded as P-frames using the configuration file ‘encoderlowdelay P main.cfg’.

Even though the video ‘TunnelFlag’ has very high motion in its frames, approximately

122 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

Table 7.3: Percentage of 64× 64 inter-prediction coding blocks (CBs) in 4K UHD videos

Video Name Percentage of 64× 64 size CBs

ToddlerFountain 25.8

DrivingPOV 79.8

TunnelFlag 47.6

Crosswalk 81.5

47% of CBs are in the 64× 64 block size, and ‘ToddlerFountain’ has several small moving

objects (water droplets for example) thus comparatively low 64× 64-block count; others

have approximately 80% of CBs in the largest block size.

The motion-estimation architecture is shown in Fig. 7.4; in essence, it is a 2-D array of

PEs and a variable-block-size (VBS) SAD tree. The basic architecture is similar to a scaled

version of the proposal for AVC/H.264 in [84], with necessary changes for incorporating

a TZ-search-like motion estimation. The architecture has two arrays of data registers,

which hold current-block and reference-block data, and are connected to a 16 × 16 PE

array. Each PE computes an SAD of 4 × 4 pixels of current and reference blocks. A

2-D array of 64 adder blocks calculates 8 × 8 SADs from the 4 × 4 SADs, and the VBS

adder tree find SADs of higher blocks, VBS also finds minimum SADs as well as motion

vectors. A column of 64 pixels of data can be loaded into the shift registers of the current-

block or the reference-block data registers at each clock. The reference data register array

is capable of updating data in either left column or right column and shifting to the

right or left direction respectively for left or right directional horizontal movement. The

reference-block data needs to update the bottom row, shifting data in the registers in the

up direction for a downward movement.

The VBS consists of a series of adders for reusing the SADs of smaller PBs to get the

SADs of larger PBs. The word length required to represent the binary number inside the

7.5 Motion estimation hardware design 123

4096 PE Array

Motion vectors (mv)

Current frame

pixels

Reference frame

pixels
64 × 64

Shift registers

64 × 64

Shift registers

64 2D adder array

for 8 × 8 SADs

VBS block for

larger block SADs

and decision unit

to find mv

Fig. 7.4: Architecture of motion estimation hardware.

hardware increases after each addition, thus the carry propagation delay increases with

each adder of the hierarchy. One of the important advantages of an RNS is that it does

not need to propagate a carry between each modulo, and thus outperforms traditional

binary systems where the propagation delay is a performance limiting factor of such

mathematical operations. On the other hand scaling or increasing the dynamic range

in an RNS is not trivial, so its bit length has to be selected to accommodate a possible

maximum value of the calculation from the very beginning. Thus the design follows a

hybrid approach, using binary for lower-bit-length computations and the RNS for higher-

bit-length computations. The hardware uses a binary number system until the 8×8 SAD

modules and an RNS after that, and a conversion from binary to RNS is required after

the 8× 8 SAD blocks, which is easily done with a few modular adders.

A detailed structure of a VBS module is shown in Fig. 7.5, where the RNS data path

and the hardware modules are represented in different colors. A 4-to-1 adder is used to

124 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

sum partial SADs to find larger PB’s SADs in the quad-tree structure of HEVC/H.265.

In RNS, a modulo-2n addition uses a simple binary adder and discards the final carry

generated, and a modulo 2n − 1 addition is given as:

(a+ b) mod (2n − 1) =


(a+ b) mod 2n, if a+ b < 2n

(a+ b) mod 2n + 1, if a+ b ≥ 2n

(7.12)

If two representations, either all ‘0’s or all ‘1’s, are allowed for zero in modulo 2n − 1

residues in hardware, equation (7.12) becomes an end-around-carry addition as

(a+ b) mod (2n − 1) = (a+ b) mod 2n + cn−1 (7.13)

where cn−1 is the carry from the (n − 1)th bit. Multi-operand carry-save-adders (CSAs)

with end-around carry are used as modulo adders in both binary to RNS conversion

and 4-to-1 adders. Parallel-prefix hardware realizations of equation (7.13) are provided

in [80, 111], and are employed between CSA and minima comparator, to combine the

carry and sum results of the CSA before feeding them to the comparator module. The

comparator uses a subtracter, which adds negated subtrahend to minuend, followed by

a sign detection [37] to find the minimum of SAD by comparing it with the previous

minimum of SAD. Note that negation of modulo 2n−1 residues are the one’s complement

(inversion of each bit), and 2n residues are two’s complement. MVs are the ‘x’ and ‘y’

(horizontal and vertical positions) locations of the minima that can be provided as binary

numbers from the minima comparators. A detailed discussion of the advantages of an

RNS over the traditional binary systems in SAD architectures is given in [55], based on

a sign-detection algorithm provided in [105], with a different moduli set; the moduli set

used in this proposal was found to be more attractive [80].

The performance of the proposed method is tested using a software model; the pro-

posed method was integrated into the HM and encoded various test videos. The bit-rate

increase and the PSNR degradation are compared with results obtained from the TZ

7.5 Motion estimation hardware design 125

4 32×32 SADs

256 PE array

256 4×4 SADs

64 4-to-1 adder array

64 8×8 SADs

4×4 minima
comparators

8×8 minima
comparators

4×4 MVs

8×8 MVs

Reference frame
pixels

Current frame
pixels

4-to-1 adder

16 16×16 SADs

16 4-to-1 adder array

4 4-to-1 adder array

16×16 minima
comparators

32×32 minima
comparators

16×16 MVs

32×32 MVs

64×64 MV

Binary to RNS
conversion

Binary:

RNS:

64×64 minima
comparator

Fig. 7.5: Detailed structure of VBS block, where RNS data path and hardware sections

are shown in different color. Motion vectors (MVs) are provided in binary from both

binary and RNS minima comparators.

search method, using the same search range and QP (±64, and 32 respectively), as tab-

ulated in Table 7.4. It is evident from the table that the worst-case PSNR degradation

as well as bit-rate increase are negligible, 0.0026 dB and 0.9438% respectively in the case

of the UHD videos tested, also showing similar results for FHD (full high-definition) and

CIF (common intermediate format or common interchange format) videos. Moreover, it is

evident from the table that in several cases the proposed algorithm for hardware improves

performance in both the PSNR and bit rate, because the algorithm includes more search

points, especially if the motion is near the predicted center.

The highest number of raster searches obtained in the experiments shown in Table 7.1

is approximately 15% of total searches, and this can be used for estimating the number of

clock cycles required for the proposed hardware. Since the initial grid search and raster

search require 556 and 3428 clock cycles respectively, on average 986.8 clock cycles are

126 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

Table 7.4: Bit-rate and PSNR changes of proposed algorithm compared to the TZ search.

Video Name Bit-rate Increase (%) PSNR reduction (dB)

ToddlerFountain 0.0487 0.0021

DrivingPOV 0.1386 0.0026

TunnelFlag 0.9438 −0.0376

Crosswalk 0.0618 0.0005

rush hour 0.2968 −0.0038

Kimono1 0.1806 −0.0009

ParkScene 0.2741 −0.005

paris −0.5271 −0.006

waterfall −0.0652 −0.0144

tempete −0.3017 0.0061

B B

PI

B

B B

P

B

POC 0 1 2 3 4 5 6 7 8

Decode Order 0 3 2 4 1 7 6 8 5

Fig. 7.6: A hierarchal GOP coding structure with size 4. This structure is used for

determining the number of clock cycles for encoding videos as listed in Table 7.5.

7.5 Motion estimation hardware design 127

Table 7.5: Bit rate and PSNR and total clock cycles to encode 64 UHD video frames

using the GOP structure in Fig. 7.6.

Video Name
Bit rate PSNR (dB)

Clock Cycles
‘P’ Slices ‘B’ Slices ‘P’ Slices ‘B’ Slices

ToddlerFountain 115398 46293 37.1945 33.8613 449444280

DrivingPOV 19578 398 38.5168 38.2155 191880232

TunnelFlag 41396 4368 39.6618 38.7374 402928657

Crosswalk 11549 1375 42.4185 41.8984 389560891

required for motion estimation of a 64 × 64 block, and an additional 64 clock cycles for

loading the current frame data into the shift registers. Thus motion estimation with 2

reference frames for 4K UHD @ 60 fps (frames per second) requires 1050.8×2176×60×2,

or approximately 275M clock cycles per second for real-time encoding.

For a more realistic estimation, the software model of the proposed hardware archi-

tecture can be used for determining the maximum number of clock cycles required for a

motion search with a search range ±64 pixels in both horizontal and vertical directions.

Videos are encoded in GOP size 4 as shown in Fig. 7.6, where all ‘P’ frames have 1

reference pictures and ‘B’ frames have 2. The POC is the display order of the frames

within a GOP. A total of 65 frames of different UHD videos are encoded, and the clock

cycles for encoding 64 frames (excepting the first ‘I’ frame) are listed in Table 7.5. The

experiment shows that videos having a high motion content, such as ‘ToddlerFountain’

or ‘TunnelFlag’, require a clock frequency of 450 MHz to encode at the rate of 64 frames

per second in real time.

The Bjøntegaard delta (BD) bit rate and RD curves [123] are shown in Table 7.6

and Fig. 7.7 respectively, for the hardware-search and TZ-search algorithms, with the

UHD video sequences Crosswalk, DrivingPOV, TunnelFlag, and ToddlerFountain, where

128 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

Table 7.6: BD rate and BD PSNR comparison with TZ search.

Video Name BD-PSNR (dB) BD-rate (%)

ToddlerFountain −0.0034 −0.08

DrivingPOV −0.0009 −0.05

TunnelFlag 0.0201 0.82

Crosswalk 0.0022 0.09

2.0 4.0 6.0 8.0 10.0 12.0
Bitrate (kbps)

41.0

41.5

42.0

42.5

43.0

43.5

44.0

P
S
N
R
 (
d
B
)

Crosswalk

Hardware Search

TZ Search

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Bitrate (kbps)

36

37

38

39

40

41

42

P
S

N
R

 (
d

B
)

DrivingPOV

Hardware Search

TZ Search

0.0 50.0 100.0 150.0 200.0 250.0
Bitrate (kbps)

35

36

37

38

39

40

41

P
S
N
R
 (
d
B
)

ToddlerFountain

Hardware Search

TZ Search

Fig. 7.7: RD curves for (a) Crosswalk (b) DrivingPOV (c) ToddlerFountain sequences

with QPs 24, 28, 32, 36.

7.6 Analysis of results 129

29 frames are encoded as ‘P’ frames with QPs 24, 28, 32 and 36. There is virtually

no difference between these two and in some cases the performance improves, thus the

proposed modifications have a negligible degradation of both bit rate and PSNR for integer

motion estimation by the modification of the algorithm to make it suitable for hardware.

7.6 Analysis of results

The proposed hardware architecture for integer motion estimation can support 4K UHD

videos with 2 reference frames (‘B’ frames) with a clock frequency of 450 MHz. The

proposed design is written in VHDL hardware description language, and the design is

compiled with Synopsys Design Compiler version K-2015.06. The design primarily con-

sists of an SAD tree block, and control logic which sets the data address and performs

other logic functions. The architecture is verified by simulating the design in ModelSim.

Synopsys Armenia Educational Department (SAED) design kit standard 32 nm logic-cell

libraries are used for synthesizing the design with operating conditions 1.16 V and 125 ◦C.

The synthesized design has an area of 1.488 mm2 when the design is constrained for a

clock frequency of 450 MHz, and the compiler easily meets the constraint. Hence the

design can be used for motion estimation of 4K UHD at 60 Hz videos in real time. The

synthesized design has a 586k standard NAND-gate equivalent gate count.

Table 7.7 shows a comparison of different motion-estimation hardware architectures

in the literature. The design proposed in [63] uses a modified TZ search where the search

is restricted to an angle ±45◦, but this can only be true for videos where the error surface

increases monotonically as the search moves away from the global minimum (a unimodal

error surface); that is not the general case for videos, where the error surface is usually

non-unimodal with multiple local minima [60]. Furthermore, the proposal omits block

sizes 64 × 32 and 32 × 64 and the raster scan from the search algorithm to reduce the

130 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

Table 7.7: Comparison of motion estimation architectures.

Design This work TCSVT’15 [63] EL’13 [65] JSTSP’13 [116] JSSC’14 [117] TCASVT’13

[120]

Technology (nm) 32 90 65 65 40 130

Clock freq. (MHz) 450 270 250 200 210 200

Gate Count (k) 586 206 a 3560 1068 2458 b 143 b

Memory (kB) nil 11.9 a 20.23 89 552 b 256 b

Video format 4096 ×2160p60 4096× 2160p60 3840× 2160p30 3840× 2160p30 7680× 4320p48 1920× 1080p30

Video standard HEVC HEVC HEVC HEVC AVC AVC

Search range ±64 ±64 64 ±64 ±107H ±56V ±64

Supported blocks All HEVC ex-

cept AMP

All HEVC ex-

cluding AMP,

32 × 64, and

64 × 32

All HEVC 16×16, 32×32,

and 64 × 64

All AVC 8× 8 to 16× 16

Frame types P/B P/B P P/B P/B P

BD-rate increase nil 5.14% - 12% - -

a Only integer motion estimation is considered
b Including fractional motion estimation engine

number of search points in order to speed up the motion search. These modifications in

the algorithm considerably degrade its performance, as is seen from a BD-rate increase

of 5.14% on average. The hardware gate count of [63] is a bit more than one-third that

of the proposed architecture but requires approximately 11 kB memory for the integer

motion sections of the proposal. On the other hand, the proposed architecture implements

memory using registers as is essential for row/column-wise data movement, which is not

easily achievable with RAM, and these registers are included in the gate count. Although

the proposed design consumes more logic gates, a direct comparison is a little misleading

because our design makes use of registers which increases our logic requirements.

The work in [65] proposes a full-search algorithm with a significantly higher gate count

(3.56M). The full-search algorithm always seems better than fast-search algorithms like

TZ searches, but require substantially higher computation time than fast-search algo-

7.6 Analysis of results 131

rithms. Hence, to achieve real-time encoding of UHD videos, the proposal in [65] reduces

the search window to a 64× 64 pixels area, which is one-fourth of the search area of the

design in this paper; the reduced search area affects its performance or BD rate, especially

for videos having higher motion content. The proposal in [65] is only capable of encoding

at half the frame rate (30 Hz), but generally 4K UHD videos use a 60 Hz frame rate. Also,

it uses only one reference frame and thus it may not be possible to encode ‘B’ frames

of 4K UHD frames in real time; ‘B’ has a remarkably smaller bit rate than other frame

types.

The cost-and coding-efficient (CCE) motion-estimation engine designed in [116] only

uses block sizes 16× 16, 32× 32, and 64× 64. The algorithm has an independent coarse

search and localized 3-step search stages, and the better of these two parallel search results

is taken as the motion vector. Even though this has a gate count approximately twice

the architecture gate count proposed in this paper and an additional 89 kB of memory,

the omission of several block sizes induces a bit-rate increase of 12% [116].

Since HEVC/H.265 is much more complex than its predecessor, a direct comparison

of motion-estimation engines proposed for AVC/H.264 is not a fair approach. Neverthe-

less, some of the hardware designs for AVC/H.264 are given in Table 7.7. A hardware

architecture is proposed for UHDTV applications in [117], which includes a fractional-

motion-estimation engine as well. The hardware architecture achieves approximately 3

times the pixels processing of the design in this paper but has a 4 times gate count as

well as a much a higher internal memory prerequisite. Another proposal in [120] is also

for AVC/H.264 and includes a fractional-motion-estimation engine, has less gate count

but is only capable of processing FHD videos with 30 fps (frames per second), and also

ignores some block sizes inside the AVC/H.264 specification.

The full-search hardware designs have a higher hardware cost as is seen from the results

of [65, 117], whereas simplified fast-search approaches for hardware such as [63,116] have

132 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

a lower hardware cost but worse search performances. In this proposal, we describe a

modified TZ search algorithm which is suitable for hardware implementation in such a

way that it retains its performance compared to the TZ search algorithm in the reference

software (HM) application.

7.7 conclusion

This paper introduces a search algorithm which is suitable for hardware realization. From

our observations the majority of motion vectors are found near the predicted motion

vectors. Therefore, a full search around this location brings the best motion vectors in

most cases, and searching other areas results in a wastage of time or energy. However,

due to the non-uni-modal nature of the error surface, it must also test some locations

outside of this adjacent region, and if a minimum is found outside the adjacent region a

raster-like scan is necessary to avoid local minima traps. Therefore, the proposed methods

use two search methods, an initial search and a raster-like search, which search patterns

are appropriate for a hardware motion-estimation architecture. Since the initial search is

a full search around the predicted motion vector, the proposed algorithm was found to be

better than the TZ search in many cases.

The synthesized results with SAED 32 nm libraries show that the hardware can process

4K UHD @ 60 fps videos in real time. The major drawback found in many hardware-

optimized designs for motion search in HEVC/H.265 is that the motion-search perfor-

mance deteriorates due to simplification of the hardware to meet the new challenges in

HEVC/H.265. This performance deterioration is practically imperceptible in the pro-

posed architecture in this paper. The hardware also utilizes an RNS to increase the

computational speed, as the RNS does not have the carry-propagation delay which re-

duces the speed of traditional binary systems. The proposed architecture along with the

7.7 conclusion 133

suggested algorithm achieves better PSNR and BD-rate results, maintaining the hardware

cost approximately equal to other proposals in the literature.

134 Chapter 7. A RNS Design of Fast-Search Variable-ME Accelerator for HEVC

Chapter 8

A Novel Angle-Restricted Test Zone

Search Algorithm for Performance

Improvement of HEVC 1

8.1 Abstract

High Efficiency Video Coding (HEVC) is the latest video encoding standard and has ap-

proximately 50% bit-rate saving compared to its predecessor. However, the motion esti-

mation (ME) is considerably complicated by the incorporation of varieties of partitioning

modes and a quad-tree based coding structure, and also by increasing the basic coding

unit size by a factor of 16. Motion estimation is the most complex task in the video en-

coding process, consuming 60-80% of overall encoding time. This paper proposes a new

algorithm, angle-restricted test zone (ARTZ) for motion estimation which is based on a

test zone (TZ) search, exploiting directional probabilities of motion vector search. In our

1N. C. Vayalil, M. Paul, and Y. Kong, “A novel angle-restricted test zone search algorithm for

performance improvement of HEVC”, IEEE International Conference on Image Processing (ICIP), 2017,

accepted

135

136 Chapter 8. A novel ARTZ search algorithm for performance improvement of HEVC

experiments, this proposal achieves a time saving in motion estimation of about 20% to

50% compared to a TZ search in the HEVC test model (HM) implementation for UHD

videos without significant degradation of PSNR.

8.2 Introduction

HEVC/H.265 [10] is a video encoding standard proposed by the Joint Collaborative Team

on Video Coding (JCT-VC), a collaboration between ISO/IEC MPEG and ITU-T VCEG.

HEVC can achieve an equivalent subjective reproduction quality with approximately 50%

less bit rate on average than its predecessor [57], AVC/H.264 [9]. A primary driving factor

to improve video coding efficiency is the recent high demand for ultra high definition

(UHD) video content in consumer devices. It is expected that video traffic will be 82%

of all consumer Internet traffic by 2020, a 70% increase from 2015 [124]. The coding

efficiency along with the computational complexity increases with every new proposal as

in the case of MPEG2 and AVC [108]. In HEVC the size of the basic CU block is 64× 64

whereas it is 16× 16 for its predecessor, and also introduced quad-tree structuring as well

as a variety of partitioning types. Larger block sizes are useful for compression as it could

efficiently compress a larger area, in particular for high-resolution videos, where smoother

or similar regions may be found in larger blocks.

Motion estimation is the most computationally intensive task in video compression,

consuming 60% to 80% of the total encoding time [58]. Due to this high complexity in ME,

numerous algorithms are proposed to tackle its complexity [77,125,126]. The TZ algorithm

is one of the best fast-search algorithms, providing a good RD and a 60% improvement

in encoding time compared to full-search algorithms. There are several proposals for TZ

search improvement by reducing the number of search points, by changing the search

pattern of its initial grid search to hexagon, pentagon or similar [127–129] instead of a

8.3 Overview of Test Zone Search Algorithm 137

diamond/square pattern. However, it seems that they suffer considerable PSNR (peak

signal-to-noise ratio) degradation of from 0.026 dB to 0.137 dB. The proposal in [32]

avoids searching after a certain distance in the initial grid search of the TZ algorithm,

assuming a monotonic error surface, but generally this assumption is not valid.

This paper proposes a new algorithm; ARTZ search, based on the directional properties

and probability of finding global minima in a search for motion vectors. The experimental

observations reveal that ultimate motion vectors are in proximity of predicted motion vec-

tors and the searching of motion vectors follows certain directions. The proposed method

mainly targets UHD videos as they requires larger computations for motion estimation

than high definition (HD) or lower resolution videos. The algorithm is based on the TZ

search, a preferred algorithm in HEVC, also implemented in HEVC reference software,

HM [33]. This proposed method considerably reduces search points by discarding the

least-probable locations to find minima, thus achieving a speed-up of computation of ME

of from 20% to 50% compared to standard TZ search depending on the nature of the

video.

8.3 Overview of Test Zone Search Algorithm

A flow chart of the TZ search algorithm is given in Fig. 8.1. The TZ search starts with an

initial grid search, either using a diamond or square search pattern with different stride

lengths ranging from 1 to ‘search length’ in multiples of two. An 8-point diamond grid

pattern used for an initial grid search is shown in Fig. 8.2 (a). The search starts with

a predicted motion vector as its search center. Initial grid searches find a minimum dis-

tortion point, usually using a sum of absolute differences (SAD) [80] as a block matching

criterion, because SAD is the simplest of the various matching criteria. If the distance

from the search center to this minimum distortion point (best distance) is greater than a

138 Chapter 8. A novel ARTZ search algorithm for performance improvement of HEVC

best distance > 0

STOP

Initial grid search with predicted

motion vectors as starting point

Raster search

Raster/star refinement search

START

best
distance > iRaster

Raster/star
refinement
enabled

No

Yes

No

Yes

No

Yes

Fig. 8.1: Flow chart for the Test Zone Search Algorithm.

8

88

8

8

8

8

1
1

1
1

2

2

2

2
22

2 2

4

4

4

4

4

4 4

4

8

(a) (b)

Fig. 8.2: Search pattern for initial grid search and raster search in test zone (TZ) search

algorithm: (a) diamond pattern for initial grid search, (b) raster scan pattern.

8.4 Proposed Algorithm 139

predefined value, called ‘iRaster’ in HM, then the algorithm does a raster search; other-

wise, skip this step. The raster search is a kind of full-search algorithm where the search

window is sub-sampled by a factor equal to ‘iRaster’, which is set at compilation time.

A raster-search pattern with an ‘iRaster’ equal to 5 is shown in Fig. 8.2 (b). The next

step in this TZ search algorithm is a raster/star refinement if enabled. Generally, only

one of them is enabled to speed-up computation. In this step, the algorithm makes a fine

adjustment to the motion vector obtained from the previous steps. Both refinements use

a diamond or square pattern, and they differ in their search operation. In the raster scan,

the stride length of the search pattern is halved in every step and it also changes the search

center, whereas the star refinement is similar to the initial grid search except changing

its starting point to the minimum distortion point in every round. The refinement search

stops when the best distance becomes zero.

8.4 Proposed Algorithm

Table 8.1 shows the number of raster searches involved in the TZ search algorithm for

different 4K UHD resolution videos when encoded as P-frames using 4 reference frames.

Although the error surface for the motion search is not monotonic, from observing various

videos it seems that most of the motion vectors are not too far from the predicted location.

This is evident from the table, as in some cases only 0.87% of motion searches involve

a raster search, where the criterion for doing a raster search is that the distance to

the minimum error location from the search center is larger than 5 pixels. In other

words, the majority of motion vectors are found within a 5-pixel radius of the predicted

location. Another important property from our observations is that the minimum error

location in each step of the TZ motion search algorithm moves in a single direction

or does not change its movement direction drastically. In this experiment, we traced

140 Chapter 8. A novel ARTZ search algorithm for performance improvement of HEVC

Table 8.1: Percentage of raster searches in a TZ search

Video Name Frame No. No. of Raster searches (%)

ToddlerFountain a 20 14.99

DrivingPOV a 29 0.87

TunnelFlag a 27 7.92

Crosswalk a 22 5.22

a 4K UHD video, encoded as P-frames using 4 reference frames

the movement of the minimum point in each step of the TZ search using HM reference

software. The first 30 frames of the 4K UHD videos were encoded using configuration file

‘encoder lowdelay P main.cfg’, which encodes all frames except the initial one (I frame)

as P frames with 4 reference frames. The motion vectors which involve a raster scan have

a particular interest because others (motion vectors found without raster scan) are in the

close vicinity of the predicted motion vector, and thus we do not expect any directional

properties for their minima movements. In the TZ search algorithm, if the minimum is

found outside of the predefined ‘iRaster’, the next step involves a raster search, which

is equivalent to a full search where the search window is sub-sampled by a factor equal

to ‘iRaster’, i.e. searching blocks in increment of ’iRaster’ pixels in both horizontal and

vertical directions. The initial searches, involving raster scan searches, are monitored for

various video sequences and the point where the first minimum occurs after an ‘iRaster’

distance is noted, and the percentages of such incidents are tabulated in Table 8.2. The

raster search modifies or finds a better minimum if the initial search lies outside of ‘iRaster’

because it covers all the blocks within the ‘iRaster’ distance. For this reason the proposal

in [32] entirely avoids a search after the ‘iRaster’ distance in the initial grid search of

the TZ search algorithm. This assumption is only valid for a monotonic error surface;

that is not the case generally, thus there is a good probability of finding a minimum

8.4 Proposed Algorithm 141

Table 8.2: Percentage of first minimum error locations occurs after the ‘iRaster’ (5 pixels)

distance

% of first minima at the distances

Video Name 8 16 32 64 128 256

ToddlerFountain, frame no. 25 25.1 44.5 16.0 7.9 4.3 2.2

DrivingPOV, frame no. 27 51.8 35.9 7.9 2.8 1.1 0.5

TunnelFlag, frame no. 19 20.2 45.4 14.9 9.4 6.3 3.8

Crosswalk, frame no. 25 27.5 48.6 11.8 6.6 3.6 1.9

after the ‘iRaster’ distance even though the error is increasing till the ‘iRaster’ distance

(or even more than ‘iRaster distance’), which is evident from Table 8.2. In some video

sequences, approximately more than 80% of minimum locations first arise after a distance

of 8 pixels; if these points are skipped 80% of raster scans would not happen in the TZ

search algorithm for some cases, which affects finding global minimum error locations and

predictions of further blocks. In these observations, it is also found that in several cases

the minimum location updates follow the direction of previous updates. Fig. 8.3 shows

search directional changes in the initial search of the TZ algorithm for the 22nd frame of the

Netflix Crosswalk video sequence. Only searches having minima outside of the ‘iRaster’

distance are used for the plot. From the figure, it is clear that large number of searches

(28.41% in total) follow the previous direction (0◦) especially at the 3rd step of the initial

diamond search. In the 4th and 5th steps, 21.1% and 4% respectively are at ±90◦. After

this step (i.e. distance larger than 32 pixels) only a few minima are found, approximately

equal to 10% in total. In a similar way, the videos in Table 8.2 also analyzed; even though

the results vary, they all follow a similar pattern for the probability of finding minima

in the search steps. These videos are selected because of having high motion content in

4K UHD resolution. It is obvious that higher resolution and high motion demands more

142 Chapter 8. A novel ARTZ search algorithm for performance improvement of HEVC

0 ◦ ±45 ◦ ±90 ◦ ±135 ◦ 180 ◦

Deviation of search direction

0

5

10

15

20

25
%

 o
f c

ha
ng

es
step 3
step 4
step 5
step 6
step 7
step 8

Fig. 8.3: Change of search direction in each step of initial search in the TZ Search Al-

gorithm. This image shows the location of minima changes in the 22nd frame of the

Netflix Crosswalk video sequence.

computations, also the motion estimation characteristics of 4K UHD videos differ from

the lower resolutions.

The algorithm was developed based on the above results; the search points are re-

stricted to certain locations after analyzing the probability of each point in the diamond-

grid search. Search all points at step 4 (16 pixel distance), and search restricted to 0◦,

±90◦ and 180◦ points for step 3 (8 pixel distance), and 0◦ and ±90◦ points for step 5

(32 pixel distance). No other points in the initial diamond search seem to have a higher

probability of finding a first minimum; thus they are omitted from the initial grid search,

hence saving considerable computational effort for motion estimation. These changes re-

duce the computational effort for the initial grid search by approximately 56% (HM uses

a 16-point diamond grid if the distance is more than 8 pixels) if the search distance is

set at 64 pixels, but the TZ search has a raster search in certain cases, which is the most

time-consuming part in this algorithm. Hence the time saving for ME depends on how

8.5 Simulation and results 143

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
Bitrate (kbps)

34

36

38

40

42
P

S
N

R
 (

d
B

)

Video size = 1920x1080

Tennis TZ

Tennis ARTZ

BasketballDrive TZ

BasketballDrive ARTZ

BQTerrace TZ

BQTerrace ARTZ

Cactus TZ

Cactus ARTZ

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Bitrate (kbps)

32

34

36

38

40

42

P
S

N
R

 (
d

B
)

Video size = 832x480

BasketballDrillText TZ

BasketballDrillText ARTZ

BasketballDrill TZ

BasketballDrill ARTZ

BQMall TZ

BQMall ARTZ

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bitrate (kbps)

30

35

40

45

50

P
S
N
R
 (
d
B
)

Video size = 416x240

Flowervase TZ

Flowervase ARTZ

BQSquare TZ

BQSquare ARTZ

BasketballPass TZ

BasketballPass ARTZ

BlowingBubbles TZ

BlowingBubbles ARTZ

Fig. 8.4: RD curves for different video sequences with QPs 22, 27, 32, 37, with search

length 64.

many times the algorithm does this raster search, which in turn depends on the motion

characteristics of the video.

8.5 Simulation and results

Computation time for the motion-estimation function is estimated by reading CPU cycles

from the CPU’s hardware cycle counter according to the benchmarking instructions pro-

vided in [130]. The simulations are run in the CentOS 6.8 platform on an Intel R© Xeon R©

CPU @ 2.67 GHz, having disabled hyper-threading and frequency scaling for getting ac-

curate timing results. The first 30 frames of videos with 4K UHD are encoded with and

without modification in the HM software for various test videos, and the obtained results

are tabulated in Table 8.3. All video frames except the initial I-frame are encoded as

P-frames using one reference frame, the QP set as 32, and with the three search ranges

of 64, 128, and 256 pixels in both horizontal and vertical directions. From the results

it is clear that PSNR degradation with the standard TZ search algorithm is negligible;

for the worst case, it is 0.013 dB with a search range of 64 pixels in 4K UHD video.

Bit-rate increases are also insignificant in the results, which have a worst-case value of

0.459%. It seems that in some cases the proposed ARTZ algorithm is better able to track

global minima instead of being trapped by local minima due to its directional properties,

144 Chapter 8. A novel ARTZ search algorithm for performance improvement of HEVC

Table 8.3: ARTZ search algorithm results (negative values are improvements) with dif-

ferent search lengths for 4K UHD resolution

Video Sequence
Search Bitrate PSNR ME time

range increase (%) reduction (dB) saving (%)

TunnelFlag 64 0.291 0.013 39.9

TunnelFlag 128 0.2693 0.0035 44.2

TunnelFlag 256 0.459 0.0048 39.2

ToddlerFountain 64 −0.0016 −0.0001 25.5

ToddlerFountain 128 0.0057 −0.0008 24.0

ToddlerFountain 256 −0.0105 0.0005 20.7

DrivingPOV 64 −0.0485 −0.0009 42.9

DrivingPOV 128 −0.3278 −0.0011 50.3

DrivingPOV 256 −0.0675 0.003 49.5

thus improving PSNR and bit rate (negative values indicates improvements by ARTZ) in

several cases. Although the algorithm is developed for 4K UHD videos, the experiments

with standard test videos of different sizes reveal that the proposed algorithm performance

closely follows that of an HM software implementation of a TZ search as seen in the RD

curves [123] plotted in Fig. 8.4, and from Table 8.4.

8.6 Conclusion

The algorithm proposed for computation saving in motion estimation is based on the

probability of obtaining minima in certain locations of an initial diamond grid-search. The

proposal is mainly intended for UHD-resolution video encoding in the HEVC standard.

The proposed ARTZ algorithm improves the computation time for motion estimation

considerably, with a maximum of 50.3% time saving compared to the standard TZ search

8.6 Conclusion 145

Table 8.4: ARTZ results with search length 64 and different QPs

Video sequence QP
Bitrate

increase (%)

PSNR

reduction (dB)

ME time

saving (%)

Tennis 37 0.0342 0.0022 33.6

Tennis 32 0.0167 0.0022 31.6

Tennis 27 −0.027 0.0019 30.1

Tennis 22 0.0596 0.0004 28.5

BasketballDrive 37 −0.0284 0.0007 36.9

BasketballDrive 32 0.0384 0.0002 35.6

BasketballDrive 27 −0.0132 0.0006 34.2

BasketballDrive 22 −0.0242 0.0007 31.9

Cactus 37 0.026 −0.0021 39.4

Cactus 32 0.0425 0.0044 39.1

Cactus 27 0.0391 −0.0004 38.5

Cactus 22 −0.0818 0.0004 38.2

BasketballDrillText 37 0.3566 0.0095 39.5

BasketballDrillText 32 0.1318 0.0056 38.0

BasketballDrillText 27 −0.0446 0.0027 37.8

BasketballDrillText 22 −0.0139 −0.0062 37.8

BasketballDrill 37 0.5209 0.0181 39.6

BasketballDrill 32 −0.0224 −0.0056 38.8

BasketballDrill 27 0.2136 0.0001 37.8

BasketballDrill 22 −0.0052 0.0055 37.6

BQMall 37 −0.137 0.0119 39.6

BQMall 32 0.0402 −0.0047 39.6

BQMall 27 0.0247 0.0023 39.4

BQMall 22 −0.0269 −0.0031 39.8

BQSquare 37 0.0294 −0.0012 41.6

BQSquare 32 0.2745 0.0023 41.4

BQSquare 27 −0.0336 −0.0024 40.7

BQSquare 22 −0.0792 −0.0053 41.2

BasketballPass 37 0.0 0.0017 40.0

BasketballPass 32 0.0936 0.0054 39.0

BasketballPass 27 −0.0962 0.0087 38.9

BasketballPass 22 −0.0107 0.0078 40.4

BlowingBubbles 37 −0.0759 −0.0239 37.6

BlowingBubbles 32 −0.2183 −0.0015 37.6

BlowingBubbles 27 −0.0933 0.0032 37.1

BlowingBubbles 22 0.0911 −0.0059 37.5

146 Chapter 8. A novel ARTZ search algorithm for performance improvement of HEVC

algorithm. The worst-case bit-rate degradation and PSNR degradation are 0.459% and

0.013 dB respectively, which are negligible, and for the best-case bit rate and PSNR are

improved by 0.52% and 0.0239 dB respectively. Hence the modified algorithm can be

used for encoding in HEVC and may also be suitable for other encoding standards such

as AVC.

Chapter 9

An Efficient ASIC Design of

Variable-Length Discrete Cosine

Transform for HEVC 1

9.1 Abstract

The latest video coding standard introduced by the joint collaborative team on video coding

(JCT-VC) is known as high-efficiency video coding (HEVC) or H.265. HEVC/H.265 is

mainly targeted for high-definition videos, and offer more compression than its predecessor.

The discrete cosine transform (DCT) is widely used for image and video compression in-

cluding HEVC. This paper proposes a variable-length DCT architecture for encoding video

according to the HEVC/H.265 specifications. The architecture is optimized for most likely

block sizes in ultra-high definition (UHD) video, and eliminates unnecessary complexities

found in many architectures proposed. The synthesized results with Synopsys design tools

1published as: N. C. Vayalil, J. Haddrill, and Y. Kong, “An efficient ASIC design of variable length

discrete cosine transform for HEVC”, 2016 European Modelling Symposium (EMS), Nov. 2016, pp.

229-233.

147

148 Chapter 9. An Efficient ASIC Design of Variable-Length DCT for HEVC

show that the proposed method can encode 8K UHD videos @ 60 fps in real-time and

accomplishes more than 60% in hardware savings.

9.2 Introduction

As the demand for HD video content increases, so does the need for efficient compression

techniques. The HEVC/H.265 standard [10] is a relatively new codec that is poised to

replace AVC/H.264 [9] as the standard for high-definition video encoding. HEVC/H.265

offers more compression, approximately a 50% bit-rate reduction, than its predecessor

AVC/H.264 for an equivalent subjective reproduction quality [57]. The use of the DCT is

a common method in several previous codecs and could be a key factor in the development

of compression techniques for HEVC due to its near-optimal efficiency for performing this

task. To be compatible for proper use with HEVC/H.265 the DCT needs to be computed

for a matrix of varying length.

To accommodate the varying size of the architecture it would be ideal to develop

components that can be utilized by other lengths such that the architecture is more area

efficient, but the common method of multiplying by a constant matrix would not be

effective in this case, due to its architecture not being able to be reused for other lengths.

Mehr et al proposed a reusable integer DCT architecture [131] providing same through-

put in all supported transform lengths, but resulting in a higher area or gate count. An

approximated architecture of DCT through the Walsh-Hadamard Transform (WHT) fol-

lowed by a set of Givens rotations in [132] reduces gate count. Another approximate DCT

architecture is proposed in [133] and offers better PSNR. High-resolution video such as

UHD video is more likely to have large smoother regions [118], thus transforms of larger

size are mostly used. Hence the design is targeted mainly for the most likely block sizes

instead of all possible sizes, and this assumption can reduce the hardware complexity sig-

9.3 Hardware Architecture for DCT computation 149

nificantly. This paper proposes a 2D-DCT architecture which has substantial throughput,

with block sizes 16× 16 and 32× 32 for real-time encoding of 8K UHD. This architecture

leads to a simple memory and DCT hardware structure and thus is smaller (lower gate

count) and faster than many proposals in the literature.

9.3 Hardware Architecture for DCT computation

The DCT is a Fourier-related transform that only uses real numbers to represent a set

number of discrete data points within a signal; unlike the discrete Fourier transform

(DFT) the DCT only uses cosine functions to represent the data points [134]. There are

multiple versions of the DCT that range from DCT-I to DCT-IV, the most common of

which is DCT-II and referred to as ‘the DCT’ and defined as

Xk =
N−1∑
n=0

cos

[
π

N
(n+

1

2
)k

]
xn 0 ≤ k < N (9.1)

For processing two-dimensional signals such as images, a two-dimensional version of the

DCT (2D-DCT) is used; it is a trivial expansion of the standard DCT, given as

Xk1,k2 =

N1−1∑
n1=0

N2−1∑
n2=0

cos

[
π

N1

(n1 +
1

2
)k1

]
cos

[
π

N2

(n2 +
1

2
)k2

]
xn1,n2

(9.2)

where 0 ≤ k1 < N1, 0 ≤ k2 < N2.

One property of the 2D-DCT is separability [135], i.e. the 2-D DCT can be computed

in two steps, a column-wise 1-D DCT followed by a row-wise 1-D DCT, or vice versa.

This procedure of calculating a multidimensional separable transform is called row-column

decomposition, which reduces the number of computations.

150 Chapter 9. An Efficient ASIC Design of Variable-Length DCT for HEVC

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]-

-

-

-

-

-

-

-

-

Stage 1 Stage 2 Stage 3

Fig. 9.1: Stick diagram of the butterfly technique applied to the DCT.

The DCT has become a staple in image compression, specifically in the JPEG for-

mat, due to the resulting lossy compression that occurs as a result of the transform and

quantization, allowing larger image data to be compressed. This is done by applying the

DCT to a quantization of an image’s pixels to obtain an approximation that requires less

data to be stored. DCT possesses a strong energy compaction property [136]; most of the

signal information tends to be concentrated in few low-frequency components, making

DCTs useful for image compression.

The related Fourier properties of the DCT make it possible to use the butterfly mul-

tiplication approach described by Budagavi et al, in such a way that the overall trans-

formation completes in sections that effectively ‘fold’ into the next section [137]. This

method is ideal as it is more efficient than the brute-force matrix multiplication method

which is very costly in terms of computing time [137]. A stripped-down representation of

this process can be seen in Fig. 9.1, where the horizontal lines represent the input and

manipulated data after operations while a (−) beneath the dot represents subtraction or

addition.

9.3 Hardware Architecture for DCT computation 151

Table 9.1: Four-Point DCT Algorithm by Stage

Stage Computation Binary expression Notes

Stage 1 (IAU)
a(i) = x(i) + x(3− i)

for i = 0 to 3
b(i) = x(i)− x(3− i)

Stage 2 (SAU)

mi,9 = 9b(i) (b(i) << 3) + b(i)

for i = 0 to 3
mi,64 = 64a(i) a(i) << 6

ti,83 = 83b(i) (b(i) << 6) + (m1,9 << 1) + b(i)

ti,36 = 36b(i) m1,9 << 1

Stage 3 (OAU)

y(0) = t0,64 + t1,64

y(1) = t0,83 + t1,36

y(2) = t0,64 + t1,64

y(3) = t0,36 + t1,83

9.3.1 Four-point DCT architecture

The four-point DCT module is based on the algorithm by Meher et al [131]. The algorithm

used to implement the DCT for a 4 × 4 matrix is outlined in stages in Table 9.1. For

efficient implementation the algorithm is divided into an input adder unit (IAU), a shift

adder unit (SAU) and an output adder unit (OAU), such that each stage can be examined

and implemented individually to ensure that necessary values are available as each stage

completes. This algorithm is used to replicate the kernel matrix represented by equation

(9.3) to perform the transform without directly performing matrix multiplication. This

is done to improve the computational speed and efficiency of the architecture.

C4 =



64 64 64 64

83 36 −36 −83

64 −64 −64 64

36 −83 83 −36


(9.3)

152 Chapter 9. An Efficient ASIC Design of Variable-Length DCT for HEVC

y(1)

y(3)

y(N-1)

a(0)

a(1)

a(N/2-1)

y(0)

y(2)

y(N-2)

shift and adder unit
b(0)

b(1)

b(N/2-1)

shift and adder unit

shift and adder unit

N/2

N/2

N/2

x(0)

x(1)

x(N-2)

x(N-1)

In
p
u
t
ad
d
d
er
u
n
it

N/2 point

DCT

O
u
tp
u
t
ad
d
d
er
u
n
it

Fig. 9.2: A generalized structure of higher radix DCTs, where N = 8, 16, 32. [131]. The

N point DCT is build upon N/2 DCT with adder units and shift units.

9.3.2 Architecture for higher length 1-D DCTs

Higher-length DCTs with N = 8, 16 and 32 are built upon 4 point DCTs recursively. A

generalized structure of N = 8, 16, 32 point integer DCTs are shown in Fig. 9.2. At each

stage of this process the input data is first manipulated by an IAU to create intermediate

data that is then used as the input for further operations. The even-numbered rows/-

columns, including zero, are processed as an N/2 point DCT to obtain the corresponding

output values. The odd-numbered rows and columns are passed through a SAU, which

is specific to the point length of the DCT being performed, to produce the corresponding

values in the output matrix.

Once the lower level transforms and operations have been completed the resulting data

is then further manipulated by an OAU to complete the transformation. The complete

architecture implementation operates recursively by gradually calling N/2-point DCTs

until it reaches the four-point DCT.

9.4 Proposed hardware architecture for variable-length two-dimensional DCT 153

4/8/16/32 1D-DCT

Transposition memory

shift in/shift out
mode select

M
U
X

columns of

2D-DCT inputrows of

2D-DCT output

Fig. 9.3: The proposed 2D-DCT architecture, transposition memory implemented using

a 2-D register array.

9.4 Proposed hardware architecture for variable-length

two-dimensional DCT

The separability property is used to design the 2-D DCT because the row-column de-

composition results in computational savings but this introduces another problem of data

storage or memory for saving first-step results. It is clear that the second step (row/-

column 1D-DCT) can only begin after completing the first step (column/row 1D-DCT),

thus it is necessary to save all data and retrieve it in a transposed order. In this proposed

architecture we use a 2 dimensional register array to save and transpose first 1-D DCT

results, which results in an efficient 2D-DCT architecture.

The architecture of the proposed method is shown in Fig. 9.3, where the transpose

module has a size of 32× 32 words (1-D DCT input and output have 16 bit word length)

which can hold all column transforms of a 32 × 32 blocks pixels. Initially, the 2D shift

registers are set into ‘shift-in mode’ and input data is given into the 1D-DCT module

column-wise. During the ‘shift-in mode’, the results of the first 1D-DCTs are stored into

the leftmost column of the 2D register array, and each column of data in the register

array is shifted right-ward at every clock cycle. A detailed digram of the 2D shift register

154 Chapter 9. An Efficient ASIC Design of Variable-Length DCT for HEVC

R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

x0

x1

x2

x3

y0 y1 y3y2

Fig. 9.4: The proposed 2D shift register architecture, showing 4 inputs and 4 outputs.

Data is shifted in the horizontal direction from left to right, and shifted out in the up

direction; all MUX selection changes accordingly.

arrangement is shown in Fig. 9.4.

After completion of all column transformations, the 2D shift register changes into

‘shift-out’ mode and the DCT module input connects to the 2D shift register outputs

with the help of a multiplexer (MUX). In ‘shift-out’ mode the shift register’s data shifts

in the upward direction, and the output is taken from the top row. This write and read

arrangement facilitates the transpose operation. The shift registers do not load data

in this mode of operation. Since the DCT module completes a row transform in each

cycle, the proposed architecture requires 2N clock cycles to complete an N point 2D-

DCT transform. An an example, for a 32 point 2D-DCT, the first 32 clock cycles are

required to complete all column transforms which are stored into the shift registers, and

another 32 clock cycles are required to shift-out these data row-wise and complete all row

transformations.

In HEVC/H.265, the transform is performed after intra and inter prediction, on the

9.4 Proposed hardware architecture for variable-length two-dimensional DCT 155

Table 9.2: Comparison of 2D-DCT architectures

Design Technology Gates Max. Freq. Throughput Supported format

TCSVT’14 [131] Arch. 1 90 nm 347 k 187 MHz 5.984 G 8K UHD @ 60 fps

TCSVT’14 [131] Arch. 2 90 nm 208 k 187 MHz 2.992 G 8K UHD @ 60 fps

TCSVT’16 [132] Arch. 1 90 nm 243 k 250 MHz 3.212 G 8K UHD @ 64 fps

TCSVT’16 [132] Arch. 2 90 nm 157 k 250 MHz 1.302 G 8K UHD @ 26 fps

Proposed 32 nm 96 k 450 MHz 3.600 G 8K UHD @ 60 fps

residues obtained by the differences between the original pixels and predicted pixels. For

the residual coding, HEVC/H.265 employs recursive quad tree-structured partitioning of

coding blocks [10]. The HEVC/H.265 specification supports four transform sizes: 4 × 4,

8 × 8, 16 × 16 and 32 × 32. The different block sizes in the specification are introduced

for accommodating varying space-frequency characteristics of the residuals. The RD

cost computation is to be done for all CU sizes to select the best among the various

block sizes. However this ‘trial and error’ method has a very high computational cost.

Several algorithms are proposed for early TU decision reducing this complexity. Chio

et al. propose a method for early TU decision by determining the number of nonzero

DCT coefficients as a threshold to stop further RD cost evaluation in the quad tree

structure [138]. But this method still has enough complexity, especially for sequences

with active motion or rich textures, thus further optimizations are proposed in [139].

Quad-tree TU encoding process termination based on the residual coefficients is proposed

in [140–143]

One of the options in the HM [33] to reduce the computational complexity is to use

the largest available transform size. The homogeneity of the transform block residuals has

a strong relation to the homogeneity of input block; when the TU covers multiple PUs

these transform residues may not be consistent and also there is a chance for introducing

156 Chapter 9. An Efficient ASIC Design of Variable-Length DCT for HEVC

blocks artifacts which in turn increases the high-frequency energy in the residuals. To

cope with computational complexity and the aforementioned problems, this architecture

decided to use the maximum TU size that fits in the PU as the TU size. This decreases

the computational complexity but the BD-rate [123] increases by 3.02% in the low-delay

P configuration [144].

9.5 Results and comparison

The proposed architecture is written in the VHDL hardware description language, and is

verified by simulating the design in ModelSim. The design is synthesized using Synop-

sys Design Compiler version K-2015.06 with Synopsys Armenia Educational Department

(SAED) design kit 32 nm standard logic cell libraries, for operating conditions of 1.16 V

and a worst-case temperature 125 ◦C. The highest throughput of the architecture is 16

pixels per clock cycle while processing a 32× 32 block within 64 clock cycles, and varies

to a worst-case 2 pixels per clock cycle when processing blocks are in 4× 4 size. In high-

resolution video, especially for 8K UHD video, lower block sizes are rarely expected, hence

as an average, throughput of 16 × 16 blocks are taken for calculation purposes. Thus to

encode 8K UHD @ 60 Hz in 4:2:0 YUV format requires 7680 × 4320 × 60 × 1.5/8 clock

cycles per second or 374 MHz. The design can operate up to 450 MHz, a much higher

clock frequency than is required, and the synthesized results are in Table 9.2.

The synthesized design has an area of 0.2443 mm2 or a 96 k standard 2-input NAND

equivalent gate count. There are two architectures proposed in each of [131] and [132]

for the 2D-DCT, based on unfolded and folded 1D-DCT modules, and are referred to as

Architecture-1 and Architecture-2 respectively. The unfolded or full-parallel structures

have higher throughput at the expense of larger area or gate count. A comparison is

given in the table with the proposed architecture, and is clear that the proposed method

9.6 Conclusion 157

has approximately 61% gate count of [132] Architecture-2 and is twice as fast. For an

equivalent throughput, the proposed method saves more than 60% gate count of the

designs in the table.

9.6 Conclusion

In this paper we propose a 2-D DCT architecture for encoding UHD video in the HEVC/H.265

standard. The hardware has substantial throughput for block sizes that are more likely to

be found in HD or UHD video. This assumption removes several unnecessary complexities

established in many other architectures. The proposed method has an efficient and fast

DCT structures as well as transposition memory. Thus the synthesized results show a

lower gate count or a smaller area than the architectures in the literature.

158 Chapter 9. An Efficient ASIC Design of Variable-Length DCT for HEVC

Chapter 10

Conclusions and Future Work

10.1 Conclusions

This dissertation has presented research on a video processor for the HEVC/H.265 stan-

dard with an RNS. Several novel algorithms and architectures were proposed and inves-

tigated to achieve encoding of very-high-density video such as 4K UHD in real time. As

motion estimation is the bottleneck in video compression, the research provided a number

of alternative solutions in ASIC implementation and also presented an algorithm for soft-

ware applications. Although RNS has been used for designing high-speed computation

hardware, the research in video encoding is not carried out extensively; and this disserta-

tion tried to address this gap. This dissertation showed that an RNS could advance the

performance of arithmetic units, hence critical modules of video encoding such as motion

estimation. Even though HEVC/H.265 is a complex proposal among video coding stan-

dards, efficient designs are still possible, and various optimised solutions were presented

in this dissertation.

Motion estimation is the most computation demanding task in video processing and

consumes 60% to 80% of the overall encoding time. Full-search motion estimation, which

159

160 Chapter 10. Conclusions and Future Work

searches in every possible location in a search window, gives better PSNR and bit-rate

reduction than any other methods. A motion-estimation architecture for a full-search

algorithm was presented in Chapter 3, which brought down the data bandwidth by a factor

of about 52 times from conventional architectures by broadcasting data into multiple

processing elements, and an SAD reuse strategy. Morton order has been used for data

reading which decreased the memory requirement, and its ASIC implementation results

showed it is able to process 4K UHD videos in real time. The proposed design has 17% less

gate count and 20 kB less memory than other full-search motion-estimation architectures

in the literature.

Motion estimation requires enormous arithmetic operations, mainly addition and sub-

traction, where an RNS could improve the performance. Since the RNS is a non-weighted

number system, the sign detection is substantially burdensome but is an essential com-

ponent of motion estimation or other similar components. For instance, sign detection is

required to implement an absolute difference, or as a magnitude comparison for finding

minima in motion estimation. A novel algorithm based on CRT II and its fully combi-

national ASIC architecture were presented in Chapter 4, and a synthesised result with

Synopsys Design Compiler showed improved speed, area and a 24% reduction in the

area-delay product.

A distortion-measuring matrix is required for motion estimation for comparing differ-

ent PBs, and SAD is commonly used, because of its simplicity compared to other criteria.

Chapter 5 investigated the advantage of using an RNS system for SAD as it involves nu-

merous addition and subtraction operations. A relatively prime moduli set has been used

for the SAD design and the synthesised results had been compared with an equivalent

non-relatively prime moduli set and a binary design, and showed higher speed than both

of them with fewer pipelines (5 instead of 12 in the former design) using approximately

3% of the area.

10.1 Conclusions 161

Since the full-search designs involve a large number of computations and require much

hardware resources, Chapter 6 described a TZ search-algorithm implementation in ASIC

with an RNS to speed up the computations of its arithmetic units. The TZ search is a

commonly used fast-search algorithm due to its performance near to that of full-search

methods but having less computation complexity. Although there have been proposals

for a TZ search for hardware, those are significantly simplify the algorithm and worsening

the quality; for instance one implementation increases the bit rate by approximately 5%.

Results showed that a parallelised version of the proposal could process 4K UHD video in

real time with 51% less gate count than existing proposals and less memory requirements

than most.

A major drawback in many proposals on motion estimation for hardware designs is

the performance degradation, as they simplify the algorithms to fit the hardware. A fast-

search motion-estimation algorithm suitable for hardware designs has been introduced

in Chapter 7, utilising an RNS for improving the speed of arithmetic units, where per-

formance degradation was practically absent, and was even improved in several cases.

The design is capable of processing 4K UHD @ 60 fps videos in real time and the hard-

ware resources used for ASIC design, i.e. the gate count, was even less than many other

proposals.

Even though the error surface for the motion search is non-unimodal, in a good number

of cases the motion search follows a directional tracking of minima. A novel algorithm

based on TZ search, the angle-restricted test zone search (ARTZ) was proposed in Chapter

8, exploiting the directional probabilities of motion searches. This algorithm is targeted

for software platforms, and reduced computations by from 20% to 55% without noticeable

degradation of PSNR and bit rate compared to the TZ search in HEVC reference test

model (HM) software.

After the motion estimation, a transform coding is applied to the residual image that

162 Chapter 10. Conclusions and Future Work

results from subtracting the motion-compensated prediction frame from the currently

encoding picture frame. DCT is widely used for transform coding because of its high

energy-compaction property, including HEVC/H.265. It is a well-known fact that in

several cases many simple designs provide better performance than complex, versatile

one as in the principle behind reduced-instruction-set computer (RISC) CPU design. A

variable-length DCT architecture required for the HEVC/H.265 standard was presented

in Chapter 9, which optimised for the most-probable block sizes of 4K UHD video and

eliminated the unwanted complexities found in many other proposals. The resulting design

has plenty of computing power for encoding UHD video, which can also encode relatively

low-density video such as HD resolution since it requires less computation. The hardware

utilisation has been reduced to 60% that of proposals in the literature.

10.2 Future work

The research lays down a foundation for video encoding in HEVC/H.265 with an RNS.

It seems that RNS has a good future in video processing, as the consumer demand for

higher quality videos increases as time passes. The RNS can present better arithmetic

units especially as the bit width increases, and an increasing trend of greater supported

bit-width can be seen with every new proposal or standard. Hence further contributions

may be possible with a smaller moduli set instead of the moduli set used in the dissertation,

for videos where the pixels are represented with higher bit depths.

All the motion-estimation architectures described in this thesis used an approach of

computing the cost function of PBs and selecting the best. However, it may be possible

to make a pre-decision about block partitioning from its temporal neighbours, and this

may avoid the overhead of computing the cost function of several partition types, and

further enhance motion estimation computation speed. Further improvement to the PSNR

10.2 Future work 163

and bit rate is possible with incorporating sub-pixel or fractional motion estimation to

the proposed architectures for motion estimation. Fractional motion estimation refines

the integer motion estimation by interpolating pixels around the integer motion vector

followed by a fractional search process. HEVC/H.265 supports motion vectors with a

precision of one quarter of the distance between luma pixels. There are several proposals

for very-large-scale integration (VLSI) architectures of fractional motion estimation in the

HEVC/H.265 standard [145–147], which can be combined with the proposed methods.

164 Chapter 10. Conclusions and Future Work

Appendix A

TCL scripts sample for fast search

motion estimation design

1 # Top− level Module

2 s e t t o p l e v e l top

3

4 # Al l VHDL f i l e s , s eparated by spaces

5 s e t v h d l f i l e s [l i s t r eg a r ray .vhd me 64.vhd con t ro l 64 . vhd top 64.vhd]

6 #

7 s e t v h d l l i b s [l i s t l i b c s a . v h d l i b a d d e r . v h d l i b s i g n d e t . v h d \

8 s t d l o g i c a r r a y . v h d l i b r n s . v h d pe rns .vhd]

9

10

11 s e t v h d l f i l e s [concat $ v h d l l i b s $ v h d l f i l e s]

12

13 s e t op fname . s a ed

14

15 # D i r e c t o r i e s conta in ing l o g i c a l des ign and s c r i p t f i l e s .

16 s e t a d d i t i o n a l s e a r c h p a t h ” . / r t l . / r t l / l i b . / s c r i p t s ”

17

165

166 Chapter A. TCL scripts sample for fast search motion estimation design

18 #−−

19 # Other s e t t i n g s (s ee . s y n o p s y s d c . s e t u p)

20 #−−−

21 # Common ALIB l i b r a r y l o c a t i o n

22 s e t app var a l i b l i b r a r y a n a l y s i s p a t h Synopsys/ pro j ;

23 d e f i n e d e s i g n l i b WORK −path . /work ; # Locat ion o f ” ana lyze ”d f i l e s

24

25 s e t search path ” $ a d d i t i o n a l s e a r c h p a t h $search path ”

26

27 f i l e d e l e t e − force work

28 ana lyze −f vhdl $ v h d l f i l e s

29

30 e l a b o r a t e $ t o p l e v e l

31

32 i f { [l i n k] == 0} {

33 echo ” Linking Error ”

34 e x i t

35 }

36 i f { [check des i gn] == 0} {

37 echo ”Check Design Error ”

38 e x i t

39 }

40 # TCL command to c r e a t e d i r e c t o r i e s i f not e x i s t s

41 f i l e mkdir r e p o r t s output

42

43 wr i t e −f ddc −hierarchy −output output /${ t o p l e v e l } .unmapped.ddc

44

45 source top .con

46 un iqu i f y

47 s e t h o s t o p t i o n s −max cores 4

48 c o m p i l e u l t r a

167

49 check des i gn > r e p o r t s / c h e c k d e s i g n . r p t

50 c o m p i l e u l t r a − incremental

51 r e p o r t c o n s t r a i n t − a l l v i o l a t o r s > r e p o r t s /${ t o p l e v e l }${op fname}

. c o n s t v i o l a t e r s . r p t

52 change names −rules v e r i l o g −hierarchy

53

54 wr i t e −f v e r i l o g −hierarchy −output output /${ t o p l e v e l }${op fname} . v

55 w r i t e s d c output /${ t o p l e v e l }${op fname} . s d c

56 wr i t e −f ddc −hierarchy −output output /${ t o p l e v e l } .mapped${op fname} .ddc

57

58 r e p o r t a r e a > r e p o r t s /${ t o p l e v e l }${op fname} . a r e a . r p t

59 r e p o r t c e l l > r e p o r t s / c e l l s . r p t

60 r e p o r t q o r > r e p o r t s / q o r . r p t

61 r e p o r t r e s o u r c e s > r e p o r t s / r e s o u r c e s . r p t

62 r ep o r t t im ing > r e p o r t s /${ t o p l e v e l }${op fname} . t i m i n g . r p t

63 report power > r e p o r t s /${ t o p l e v e l }${op fname} . power . rp t

64

65 qu i t

168 Chapter A. TCL scripts sample for fast search motion estimation design

Appendix B

List of acronyms

AMP asymmetric motion partitioning.

APDZS advanced predictive diamond zonal search.

ARTZ angle-restricted test zone.

ASIC application specific integrated circuit.

AVC/H.264 advanced video coding.

BBGDS block-based gradient descent algorithm.

BD Bjøntegaard delta.

CABAC context-based adaptive binary arithmetic coding.

CB coding block.

CIF common intermediate format or common interchange format.

CRT Chinese remainder theorem.

CTB coding tree block.

CTU coding tree unit.

CU coding unit.

169

170 Chapter B. List of acronyms

DCT discrete cosine transform.

DS diamond search.

DSP digital signal processing.

DST discrete sine transform.

EPZS enhanced predictive zonal search.

ET early termination.

FHD full high-definition.

FIR finite impulse response.

fps frames per second.

GOP group of pictures.

HD high-definition.

HEVC/H.265 high efficiency video coding.

HM HEVC test model.

IAU input adder unit.

IIR infinite impulse response.

IME integer motion estimation.

JCT-VC joint collaborative team on video coding.

LCM least common multiple.

171

ME motion estimation.

MSEA multilevel successive elimination algorithm.

MV motion vector.

MVFAST motion-vector field-adaptive fast motion estimation.

NTSS new three-step search algorithm.

OAU output adder unit.

OWF overlapped wavefront.

PB prediction block.

PDE partial distortion elimination.

PE processing element.

PMVFAST predictive motion-vector field-adaptive search technique.

POC picture order count.

PSNR peak signal-to-noise ratio.

PU prediction unit.

QP quantization parameter.

RAM random access memory.

RD rate distortion.

RNS residue number system.

ROM read-only memory.

172 Chapter B. List of acronyms

SAD sum of absolute differences.

SAU shift adder unit.

SEA successive elimination algorithm.

TB transform block.

TSS three step search.

TU transform unit.

TZ test-zone.

UHD ultra-high-definition.

VBS variable-block-size.

VLSI very-large-scale integration.

WPP wavefront parallel processing.

Bibliography

[1] M. Zhou, W. Gao, M. Jiang, and H. Yu, “HEVC lossless coding and improvements,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12,

pp. 1839–1843, Dec 2012.

[2] R. Weerakkody, M. Mrak, V. Baroncini, J. R. Ohm, T. K. Tan, and G. J. Sullivan,

“Verification testing of HEVC compression performance for UHD video,” in 2014

IEEE Global Conference on Signal and Information Processing (GlobalSIP), Dec

2014, pp. 1083–1087.

[3] D. A. Huffman, “A method for the construction of minimum-redundancy codes,”

Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, Sept 1952.

[4] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate cod-

ing,” IEEE Transactions on Information Theory, vol. 24, no. 5, pp. 530–536, Sep

1978.

[5] T. A. Welch, “A technique for high-performance data compression,” Computer,

vol. 17, no. 6, pp. 8–19, June 1984.

[6] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arith-

metic coding in the h.264/avc video compression standard,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620–636, July 2003.

173

174 BIBLIOGRAPHY

[7] Y. Q. Shi and H. Sun, Image and Video Compression for Multimedia Engineering:

Fundamentals, Algorithms, and Standards. CRC Press, Taylor & Francis Group,

FL, 2008.

[8] ITU-T and ISO/IEC JTC 1, Generic Coding of Moving Pictures and Associated

Audio Information Part 2: Video, ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG

2 Video), Nov. 2003.

[9] ——, Advanced video coding for generic audiovisual services, ITU-T Rec. H.264 and

ISO/IEC 14496-10 (AVC), 2003.

[10] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency

video coding (HEVC) standard,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[11] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou, “An overview

of tiles in hevc,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6,

pp. 969–977, Dec. 2013.

[12] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux, and

T. Schierl, “Parallel scalability and efficiency of HEVC parallelization approaches,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12,

pp. 1827–1838, Dec. 2012.

[13] V. Sze, M. Budagavi, and G. J. Sullivan, Eds., High Efficiency Video Coding

(HEVC): Algorithms and Architectures. Springer International Publishing, Switzer-

land, 2014.

[14] W. Li and E. Salari, “Successive elimination algorithm for motion estimation,” IEEE

Transactions on Image Processing, vol. 4, no. 1, pp. 105–107, Jan. 1995.

BIBLIOGRAPHY 175

[15] C.-D. Bei and R. Gray, “An improvement of the minimum distortion encoding

algorithm for vector quantization,” IEEE Transactions on Communications, vol. 33,

no. 10, pp. 1132–1133, Oct 1985.

[16] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel successive elimination

algorithm for block matching motion estimation,” IEEE Transactions on Image

Processing, vol. 9, no. 3, pp. 501–504, Mar. 2000.

[17] C.-K. Cheung and L.-M. Po, “Normalized partial distortion search algorithm for

block motion estimation,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 10, no. 3, pp. 417–422, Apr 2000.

[18] Y.-L. Chan and W.-C. Siu, “Search strategy for partial distortion elimination in

motion estimation,” Electronics Letters, vol. 38, no. 23, pp. 1427–1428, Nov 2002.

[19] S. Tedmori and N. Al-Najdawi, “Hierarchical stochastic fast search motion estima-

tion algorithm,” IET Computer Vision, vol. 6, no. 1, pp. 21–28, Jan. 2012.

[20] H. Lim and T. G. Ahn, “An hierarchical motion estimation method using adaptive

image down-sizing,” in 2014 IEEE International Conference on Consumer Electron-

ics (ICCE), Jan 2014, pp. 361–362.

[21] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated

interframe coding for video conferencing,” in Proc. of National Telecommunication

Conference, New Orleans, L. A., Nov./Dec. 1981, pp. C9.6.1–9.6.5.

[22] J. Jain and A. Jain, “Displacement measurement and its application in interframe

image coding,” Communications, IEEE Transactions on, vol. 29, no. 12, pp. 1799–

1808, Dec. 1981.

176 BIBLIOGRAPHY

[23] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for block motion

estimation,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 4, no. 4, pp. 438–442, Aug. 1994.

[24] D. Le Gall, “MPEG: A video compression standard for multimedia applications,”

Commun. ACM, vol. 34, no. 4, pp. 46–58, apr 1991. [Online]. Available:

http://doi.acm.org/10.1145/103085.103090

[25] L.-K. Liu and E. Feig, “A block-based gradient descent search algorithm for block

motion estimation in video coding,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 6, no. 4, pp. 419–422, Aug. 1996.

[26] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block matching

motion estimation,” in Proceedings of ICICS, 1997 International Conference on In-

formation, Communications and Signal Processing. Theme: Trends in Information

Systems Engineering and Wireless Multimedia Communications (Cat., vol. 1, Sep

1997, pp. 292–296 vol.1.

[27] P. Hosur and K. Ma, “Motion vector field adaptive fast motion estimation,” in

Second International Conference on Information, Communications and Signal Pro-

cessing (ICICS ’99), Singapore, Dec. 7–10, 1999, pp. 883–892.

[28] A. M. Tourapis, O. C. L. Au, and M. L. Liou, “Predictive motion vector

field adaptive search technique (PMVFAST): enhancing block-based motion

estimation,” in Proc. SPIE, vol. 4310, 2000, pp. 883–892. [Online]. Available:

http://dx.doi.org/10.1117/12.411871

[29] Optimization Model Version 3.0, ISO/IEC JTC1/SC29/WG11 Coding of moving

pictures and audio/N4344, 2001.

http://doi.acm.org/10.1145/103085.103090
http://dx.doi.org/10.1117/12.411871

BIBLIOGRAPHY 177

[30] A. M. Tourapis, O. C. Au, and M. L. Liou, “New results on zonal based mo-

tion estimation algorithms-advanced predictive diamond zonal search,” in ISCAS

2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat.

No.01CH37196), vol. 5, 2001, pp. 183–186 vol. 5.

[31] A. M. Tourapis, “Enhanced predictive zonal search for single and multiple frame

motion estimation,” SPIE Visual Communications and Image Processing, vol. 4671,

pp. 1069–1079, Jan. 2002.

[32] N. Purnachand, L. N. Alves, and A. Navarro, “Improvements to TZ search mo-

tion estimation algorithm for multiview video coding,” in 2012 19th International

Conference on Systems, Signals and Image Processing (IWSSIP), April 2012, pp.

388–391.

[33] “HEVC reference software 16.3,” [Online]. Available: https://hevc.hhi.fraunhofer.

de/svn/svn HEVCSoftware/.

[34] T. Tomczak, “Fast sign detection for RNS (2n−1, 2n, 2n+1),” Circuits and Systems

I: Regular Papers, IEEE Transactions on, vol. 55, no. 6, pp. 1502–1511, July 2008.

[35] M. Xu, Z. Bian, and R. Yao, “Fast sign detection algorithm for the RNS moduli set

{2n+1− 1, 2n− 1, 2n},” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 23, no. 2, pp. 379–383, Feb 2015.

[36] S. Kumar, C. H. Chang, and T. F. Tay, “New algorithm for signed integer compar-

ison in {2n+k, 2n − 1, 2n + 1, 2n±1 − 1} and its efficient hardware implementation,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. PP, no. 99, pp.

1–13, 2016.

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/

178 BIBLIOGRAPHY

[37] C. V. Niras and Y. Kong, “Fast sign-detection algorithm for residue number system

moduli set {2n−1, 2n, 2n+1−1},” IET Computers Digital Techniques, vol. 10, no. 2,

pp. 54–58, 2016.

[38] R. Chaves and L. Sousa, “2n + 1, 2n+k, 2n - 1 : a new rns moduli set extension,”

in Euromicro Symposium on Digital System Design, 2004. DSD 2004., Aug 2004,

pp. 210–217.

[39] W. Wang, M. N. S. Swamy, and M. O. Ahmad, “Moduli selection in rns for efficient

vlsi implementation,” in Circuits and Systems, 2003. ISCAS ’03. Proceedings of the

2003 International Symposium on, vol. 4, May 2003, pp. IV–512–IV–515 vol.4.

[40] E. Setiaarif and P. Siy, “A new moduli set selection technique to improve sign

detection and number comparison in residue number system (rns),” in NAFIPS

2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing

Society, June 2005, pp. 766–768.

[41] N. I. Chervyakov, P. A. Lyakhov, D. I. Kalita, and K. S. Shulzhenko, “Effect of

rns moduli set selection on digital filter performance for satellite communications,”

in 2015 International Siberian Conference on Control and Communications (SIB-

CON), May 2015, pp. 1–7.

[42] M. Abdallah and A. Skavantzos, “A systematic approach for selecting practical

moduli sets for residue number systems,” in Proceedings of the Twenty-Seventh

Southeastern Symposium on System Theory, Mar 1995, pp. 445–449.

[43] V. S. Dimitrov, T. V. Cooklev, and B. D. Donevsky, “Generalized fermat-mersenne

number theoretic transform,” IEEE Transactions on Circuits and Systems II: Ana-

log and Digital Signal Processing, vol. 41, no. 2, pp. 133–139, Feb. 1994.

BIBLIOGRAPHY 179

[44] P. V. A. Mohan, “Rns-to-binary converter for a new three-moduli set {2n+1 −

1, 2n, 2n − 1},” IEEE Transactions on Circuits and Systems II: Express Briefs,

vol. 54, no. 9, pp. 775–779, Sept 2007.

[45] A. Omondi and B. Premkumar, Residue number systems: theory and implementa-

tion. Imperial College Press, London, 2007.

[46] D. Younes and P. Steffan, “A comparative study on different moduli sets in residue

number system,” in Computer Systems and Industrial Informatics (ICCSII), 2012

International Conference on, Dec. 2012, pp. 1–6.

[47] R. Conway and J. Nelson, “Improved RNS FIR filter architectures,” IEEE Trans-

actions on Circuits and Systems II: Express Briefs, vol. 51, no. 1, pp. 26–28, Jan.

2004.

[48] J. C. Bajard, L. S. Didier, and T. Hilaire, “ρ-direct form transposed and residue

number systems for filter implementations,” in 2011 IEEE 54th International Mid-

west Symposium on Circuits and Systems (MWSCAS), Aug 2011, pp. 1–4.

[49] N. S. Szabo and R. I. Tanka, Residue Arithmetic and Its Applications to Computer

Technology. Mc Graw-Hill, New York, 1967.

[50] A. Safari, N. C. Vayalil, and Y. Kong, “VLSI architecture of multiplier-less DWT

image processor,” in IEEE 2013 Tencon - Spring, Apr. 2013, pp. 280–284.

[51] E. Vassalos, D. Bakalis, and H. T. Vergos, “RNS assisted image filtering and edge de-

tection,” in 2013 18th International Conference on Digital Signal Processing (DSP),

July 2013, pp. 1–6.

180 BIBLIOGRAPHY

[52] S. Asif, M. S. Hossain, and Y. Kong, “High-throughput multi-key elliptic curve cryp-

tosystem based on residue number system,” IET Computers & Digital Techniques,

2017.

[53] R. B. Are and K. Rajan, “An rns based transform architecture for h.264/avc,” in

TENCON 2008 - 2008 IEEE Region 10 Conference, Nov. 2008, pp. 1–6.

[54] T. Toivonen and J. Heikkila, “Video filtering with fermat number theoretic trans-

forms using residue number system,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 16, no. 1, pp. 92–101, Jan. 2006.

[55] P. Matutino and L. Sousa, “An RNS based specific processor for computing the min-

imum sum-of-absolute-differences,” in Digital System Design Architectures, Methods

and Tools, 2008. DSD ’08. 11th EUROMICRO Conference on, Sept. 2008, pp. 768–

775.

[56] M. Wein, High Efficiency Video Coding (HEVC): Coding Tools and Specification.

Springer-Verlag Berlin Heidelberg, 2015.

[57] J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of

the coding efficiency of video coding standards – including high efficiency video

coding (HEVC),” Circuits and Systems for Video Technology, IEEE Transactions

on, vol. 22, no. 12, pp. 1669–1684, Dec. 2012.

[58] Z. Chen, J. Xu, Y. He, and J. Zheng, “Fast integer-pel and fractional-pel

motion estimation for H.264/AVC,” Journal of Visual Communication and

Image Representation, vol. 17, no. 2, pp. 264–290, 2006, introduction: Special

Issue on emerging H.264/AVC video coding standard. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1047320305000787

http://www.sciencedirect.com/science/article/pii/S1047320305000787

BIBLIOGRAPHY 181

[59] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel unrestricted

center-biased diamond search algorithm for block motion estimation,” IEEE Trans-

actions on Circuits and Systems for Video Technology, vol. 8, no. 4, pp. 369–377,

Aug. 1998.

[60] O. Ndili and T. Ogunfunmi, “Algorithm and architecture co-design of hardware-

oriented, modified diamond search for fast motion estimation in H.264/AVC,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 21, no. 9, pp. 1214–

1227, Sept. 2011.

[61] A. C. Tsai, K. Bharanitharan, J. F. Wang, and K. I. Lee, “Effective search point

reduction algorithm and its VLSI design for HDTV H.264/AVC variable block size

motion estimation,” IEEE Transactions on Circuits and Systems for Video Tech-

nology, vol. 22, no. 7, pp. 981–988, July 2012.

[62] S. C. Hsia and P. Y. Hong, “Very large scale integration (VLSI) implementation of

low-complexity variable block size motion estimation for H.264/AVC coding,” IET

Circuits, Devices Systems, vol. 4, no. 5, pp. 414–424, Sept. 2010.

[63] S. Y. Jou, S. J. Chang, and T. S. Chang, “Fast motion estimation algorithm and

design for real time QFHD high efficiency video coding,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 25, no. 9, pp. 1533–1544, Sept.

2015.

[64] C. Y. Kao and Y. L. Lin, “A memory-efficient and highly parallel architecture for

variable block size integer motion estimation in H.264/AVC,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 6, pp. 866–874, June

2010.

182 BIBLIOGRAPHY

[65] J. Byun, Y. Jung, and J. Kim, “Design of integer motion estimator of HEVC for

asymmetric motion-partitioning mode and 4K-UHD,” Electronics Letters, vol. 49,

no. 18, pp. 1142–1143, Aug. 2013.

[66] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, “An effective CU size decision

method for HEVC encoders,” IEEE Transactions on Multimedia, vol. 15, no. 2, pp.

465–470, Feb. 2013.

[67] J. Xiong, H. Li, F. Meng, Q. Wu, and K. N. Ngan, “Fast hevc inter cu decision

based on latent sad estimation,” IEEE Transactions on Multimedia, vol. 17, no. 12,

pp. 2147–2159, Dec. 2015.

[68] P. K. Podder, M. Paul, and M. Murshed, “Efficient coding strategy for HEVC

performance improvement by exploiting motion features,” in Acoustics, Speech and

Signal Processing (ICASSP), 2015 IEEE International Conference on, April 2015,

pp. 1414–1418.

[69] L. Shen, Z. Zhang, and Z. Liu, “Adaptive inter-mode decision for HEVC jointly uti-

lizing inter-level and spatiotemporal correlations,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 24, no. 10, pp. 1709–1722, Oct. 2014.

[70] J. Zhang, B. Li, and H. Li, “An efficient fast mode decision method for inter predic-

tion in HEVC,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 26, no. 8, pp. 1502–1515, Aug. 2016.

[71] A. Medhat, A. Shalaby, M. S. Sayed, M. Elsabrouty, and F. Mehdipour, “Adap-

tive low-complexity motion estimation algorithm for high efficiency video coding

encoder,” IET Image Processing, vol. 10, no. 6, pp. 438–447, 2016.

BIBLIOGRAPHY 183

[72] S. Radicke, J. U. Hahn, Q. Wang, and C. Grecos, “Bi-predictive motion estimation

for hevc on a graphics processing unit (gpu),” IEEE Transactions on Consumer

Electronics, vol. 60, no. 4, pp. 728–736, Nov. 2014.

[73] F. Luo, S. Ma, J. Ma, H. Qi, L. Su, and W. Gao, “Multiple layer parallel motion

estimation on GPU for high efficiency video coding (HEVC),” in 2015 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), May 2015, pp. 1122–1125.

[74] W. Xiao, B. Li, J. Xu, G. Shi, and F. Wu, “HEVC encoding optimization using

multicore CPUs and GPUs,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 25, no. 11, pp. 1830–1843, Nov. 2015.

[75] S. Radicke, J. U. Hahn, Q. Wang, and C. Grecos, “A parallel HEVC intra predic-

tion algorithm for heterogeneous CPU + GPU platforms,” IEEE Transactions on

Broadcasting, vol. 62, no. 1, pp. 103–119, Mar. 2016.

[76] N. Hu and E. H. Yang, “Fast motion estimation based on confidence interval,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 8,

pp. 1310–1322, Aug. 2014.

[77] S. H. Yang, J. Z. Jiang, and H. J. Yang, “Fast motion estimation for hevc with

directional search,” Electronics Letters, vol. 50, no. 9, pp. 673–675, Apr. 2014.

[78] I. Zupancic, S. G. Blasi, and E. Izquierdo, “Multiple early termination for fast HEVC

coding of UHD content,” in 2015 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), April 2015, pp. 1419–1423.

[79] G. Pastuszak and M. Trochimiuk, “Algorithm and architecture design of the

motion estimation for the H.265/HEVC 4K-UHD encoder,” Journal of Real-Time

Image Processing, vol. 12, no. 2, pp. 517–529, 2016. [Online]. Available:

http://dx.doi.org/10.1007/s11554-015-0516-4

http://dx.doi.org/10.1007/s11554-015-0516-4

184 BIBLIOGRAPHY

[80] N. C. Vayalil, A. Safari, and Y. Kong, “ASIC design in residue number system

for calculating minimum sum of absolute differences,” in 2015 Tenth International

Conference on Computer Engineering Systems (ICCES), Dec 2015, pp. 129–132.

[81] V. N. Dinh, H. A. Phuong, D. V. Duc, P. T. K. Ha, P. V. Tien, and N. V. Thang,

“High speed SAD architecture for variable block size motion estimation in HEVC

encoder,” in 2016 IEEE Sixth International Conference on Communications and

Electronics (ICCE), July 2016, pp. 195–198.

[82] P. Nalluri, L. N. Alves, and A. Navarro, “A novel SAD architecture for variable block

size motion estimation in HEVC video coding,” in 2013 International Symposium

on System on Chip (SoC), Oct. 2013, pp. 1–4.

[83] T. P. K. C. D’huys, S. Momcilovic, F. Pratas, and L. Sousa, “Reconfigurable data

flow engine for HEVC motion estimation,” in IEEE International Conference on

Image Processing (ICIP), Aug. 2014.

[84] C. Chen, S. Chien, Y. Huang, T. Chen, T. Wang, and L. Chen, “Analysis and ar-

chitecture design of variable block-size motion estimation for H.264/AVC,” Circuits

and Systems I: Regular Papers, IEEE Transactions on, vol. 53, no. 3, pp. 578–593,

Mar. 2006.

[85] H. Samet, The Design and Analysis of Spatial Data Structures. Addison-Wesley,

Reading, Massachusetts, 1990.

[86] I. K. Kim, S. Lee, M. S. Cheon, T. Lee, and J. Park, “Coding efficiency improvement

of HEVC using asymmetric motion partitioning,” in Broadband Multimedia Systems

and Broadcasting (BMSB), 2012 IEEE International Symposium on, June 2012, pp.

1–4.

BIBLIOGRAPHY 185

[87] E. Alcocer, R. Gutierrez, O. Lopez-Granado, and M. P. Malumbres, “Design and

implementation of an efficient hardware integer motion estimator for an HEVC

video encoder,” Journal of Real-Time Image Processing, pp. 1–11, 2016. [Online].

Available: http://dx.doi.org/10.1007/s11554-016-0572-4

[88] L. F. Ding, W. Y. Chen, P. K. Tsung, T. D. Chuang, P. H. Hsiao, Y. H. Chen,

H. K. Chiu, S. Y. Chien, and L. G. Chen, “A 212 M pixels 4096× 2160p multiview

video encoder chip for 3D/quad full HDTV applications,” Solid-State Circuits, IEEE

Journal of, vol. 45, no. 1, pp. 46–58, Jan. 2010.

[89] D. Zhou, J. Zhou, G. He, and S. Goto, “A 1.59 Gpixel/s motion estimation processor

with -211 to +211 search range for UHDTV video encoder,” Solid-State Circuits,

IEEE Journal of, vol. 49, no. 4, pp. 827–837, Apr. 2014.

[90] H. Henkelmann and W. Anheier, “Implementation of sign detection in RNS using

mixed radix representation,” in Electronics, Circuits and Systems, 1999. Proceedings

of ICECS ’99. The 6th IEEE International Conference on, vol. 1, 1999, pp. 323–326.

[91] E. Al-Radadi and P. Siy, “RNS sign detector based on Chinese remainder theorem

II (CRT II),” Computers & Mathematics with Applications, vol. 46, no. 1011,

pp. 1559–1570, 2003. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S089812210390191X

[92] Y. Wang, “New Chinese remainder theorems,” in Signals, Systems & Computers,

1998. Conference Record of the Thirty-Second Asilomar Conference on, vol. 1, Nov.

1998, pp. 165–171.

[93] T. V. Vu, “Efficient implementations of the Chinese remainder theorem for sign

detection and residue decoding,” Computers, IEEE Transactions on, vol. C-34,

no. 7, pp. 646–651, July 1985.

http://dx.doi.org/10.1007/s11554-016-0572-4
http://www.sciencedirect.com/science/article/pii/S089812210390191X
http://www.sciencedirect.com/science/article/pii/S089812210390191X

186 BIBLIOGRAPHY

[94] G. Alia and E. Martinelli, “Sign detection in residue arithmetic units,” Journal

of Systems Architecture, vol. 45, no. 3, pp. 251–258, 1998. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1383762197000854

[95] G. Pirlo and D. Impedovo, “A new class of monotone functions of the residue num-

ber system,” International journal of mathematical models and methods in applied

sciences, vol. 7, no. 1, pp. 802–805, Oct 2013.

[96] C. H. Chang and S. Kumar, “Area-efficient and fast sign detection for four-moduli

set RNS {2n− 1, 2n, 2n + 1, 22n + 1},” in Circuits and Systems (ISCAS), 2014 IEEE

International Symposium on, June 2014, pp. 1540–1543.

[97] L. Sousa and P. Martins, “Efficient sign identification engines for integers repre-

sented in RNS extended 3-moduli set {2n − 1, 2n+k, 2n + 1},” Electronics Letters,

vol. 50, no. 16, pp. 1138–1139, July 2014.

[98] N. Szabo, “Sign detection in nonredundant residue systems,” Electronic Computers,

IRE Transactions on, vol. EC-11, no. 4, pp. 494–500, Aug. 1962.

[99] R. Zimmermann, “Efficient VLSI implementation of modulo (2n ± 1) addition and

multiplication,” in Computer Arithmetic, 1999. Proceedings. 14th IEEE Symposium

on, 1999, pp. 158–167.

[100] S. Piestrak, “Design of residue generators and multioperand modular adders using

carry-save adders,” Computers, IEEE Transactions on, vol. 43, no. 1, pp. 68–77,

Jan. 1994.

[101] R. Jackson and S. Talwar, “High speed binary addition,” in Signals, Systems and

Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference on,

vol. 2, Nov. 2004, pp. 1350–1353.

http://www.sciencedirect.com/science/article/pii/S1383762197000854

BIBLIOGRAPHY 187

[102] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of

a general class of recurrence equations,” Computers, IEEE Transactions on, vol.

C-22, no. 8, pp. 786–793, Aug. 1973.

[103] A. Tyagi, “A reduced-area scheme for carry-select adders,” Computers, IEEE Trans-

actions on, vol. 42, no. 10, pp. 1163–1170, Oct 1993.

[104] F. Gurkayna, Y. Leblebicit, L. Chaouati, and P. McGuinness, “Higher radix Kogge-

Stone parallel prefix adder architectures,” in Circuits and Systems, 2000. Proceed-

ings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, vol. 5,

2000, pp. 609–612.

[105] L. Sousa, “Efficient method for magnitude comparison in RNS based on two pairs

of conjugate moduli,” in Computer Arithmetic, 2007. ARITH ’07. 18th IEEE Sym-

posium on, June 2007, pp. 240–250.

[106] S. Bi and W. Gross, “The mixed-radix Chinese remainder theorem and its appli-

cations to residue comparison,” Computers, IEEE Transactions on, vol. 57, no. 12,

pp. 1624–1632, Dec. 2008.

[107] Y. Wang, X. Song, and M. Aboulhamid, “A new algorithm for RNS magnitude com-

parison based on new Chinese remainder theorem II,” in VLSI, 1999. Proceedings.

Ninth Great Lakes Symposium on, Mar. 1999, pp. 362–365.

[108] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stock-

hammer, and T. Wedi, “Video coding with H.264/AVC: tools, performance, and

complexity,” Circuits and Systems Magazine, IEEE, vol. 4, no. 1, pp. 7–28, First

Quarter 2004.

188 BIBLIOGRAPHY

[109] L. Kalampoukas, D. Nikolos, C. Efstathiou, H. Vergos, and J. Kalamatianos, “High-

speed parallel-prefix modulo 2n − 1 adders,” Computers, IEEE Transactions on,

vol. 49, no. 7, pp. 673–680, Jul. 2000.

[110] D. Wang, X. Cui, and X. Wang, “Optimized design of parallel prefix ling adder,” in

Electronics, Communications and Control (ICECC), 2011 International Conference

on, Sept. 2011, pp. 941–944.

[111] G. Dimitrakopoulos, D. Nikolos, H. Vergos, D. Nikolos, and C. Efstathiou, “New

architectures for modulo 2n−1 adders,” in Electronics, Circuits and Systems, 2005.

ICECS 2005. 12th IEEE International Conference on, Dec. 2005, pp. 1–4.

[112] Cisco visual networking index: Forecast and methodology, 2014–2019. [Online].

Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white paper c11-481360.html

[113] L. Shen, Z. Zhang, and Z. Liu, “Adaptive inter-mode decision for HEVC jointly uti-

lizing inter-level and spatiotemporal correlations,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 24, no. 10, pp. 1709–1722, Oct 2014.

[114] Y. Kong, S. Asif, and M. A. U. Khan, “Modular multiplication using the core

function in the residue number system,” Applicable Algebra in Eng., Commun. and

Computing, vol. 27, no. 1, pp. 1–16, 2016.

[115] FFmpeg software version git-2014-11-14-b186b71. [Online]. Available: https:

//www.ffmpeg.org/

[116] M. Sinangil, V. Sze, M. Zhou, and A. Chandrakasan, “Cost and coding efficient mo-

tion estimation design considerations for high efficiency video coding (hevc) stan-

dard,” Selected Topics in Signal Processing, IEEE Journal of, vol. 7, no. 6, pp.

1017–1028, Dec. 2013.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
https://www.ffmpeg.org/
https://www.ffmpeg.org/

BIBLIOGRAPHY 189

[117] D. Zhou, J. Zhou, G. He, and S. Goto, “A 1.59 Gpixel/s motion estimation processor

with - 211 to +211 search range for UHDTV video encoder,” IEEE Journal of Solid-

State Circuits, vol. 49, no. 4, pp. 827–837, April 2014.

[118] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, “HEVC: The new gold

standard for video compression: How does HEVC compare with H.264/AVC?” IEEE

Consumer Electronics Magazine, vol. 1, no. 3, pp. 36–46, July 2012.

[119] Z. T. Liao and C. A. Shen, “A novel search window selection scheme for the mo-

tion estimation of hevc systems,” in 2015 International SoC Design Conference

(ISOCC), Nov. 2015, pp. 267–268.

[120] G. Pastuszak and M. Jakubowski, “Adaptive computationally scalable motion esti-

mation for the hardware H.264/AVC encoder,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 23, no. 5, pp. 802–812, May 2013.

[121] JVT of ISO/IEC MPEG, ITU-T VCEG, MVC software Reference Manual-JMVC

8.2, Mar. 2010.

[122] H. L. Garner, “The residue number system,” IRE Transactions on Electronic Com-

puters, vol. EC-8, no. 2, pp. 140–147, June 1959.

[123] G. Bjøntegaard, Calculation of average PSNR differences between RD-curves,

ITU-T SG16 Document VCEG-M33, Joint Collaborative Team on Video Coding

(JCTVC), Apr. 2001.

[124] “Cisco visual networking index: Forecast and methodology, 2015–2020,” [Online].

Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/complete-white-paper-c11-481360.html.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

190 BIBLIOGRAPHY

[125] N. Purnachand, L. N. Alves, and A. Navarro, “Fast motion estimation algorithm for

HEVC,” in 2012 IEEE Second International Conference on Consumer Electronics

- Berlin (ICCE-Berlin), Sept. 2012, pp. 34–37.

[126] X. Li, R. Wang, W. Wang, Z. Wang, and S. Dong, “Fast motion estimation meth-

ods for HEVC,” in 2014 IEEE International Symposium on Broadband Multimedia

Systems and Broadcasting, June 2014, pp. 1–4.

[127] H. Kibeya, F. Belghith, H. Loukil, M. A. B. Ayed, and N. Masmoudi, “TZ search

pattern search improvement for HEVC motion estimation modules,” in Advanced

Technologies for Signal and Image Processing (ATSIP), 2014 1st International Con-

ference on, March 2014, pp. 95–99.

[128] J. H. Jeong, N. Parmar, and M. H. Sunwoo, “Enhanced test zone search algo-

rithm with rotating pentagon search,” in 2015 International SoC Design Conference

(ISOCC), Nov 2015, pp. 275–276.

[129] T. Nguyen, P. Nguyen, P. Nguyen, and C. Dinh, “A novel search pattern for motion

estimation in high efficiency video coding,” in 2016 International Conference on

Computer Communication and Informatics (ICCCI), Jan 2016, pp. 1–6.

[130] G. Paoloni, “How to benchmark code execution times on Intel R© IA-32 and IA-64

instruction set architectures,” [Online]. Available: http://www.intel.com/content/

www/us/en/embedded/training/ia-32-ia-64-benchmark-code-execution-paper.

html, Intel, Sept. 2010.

[131] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo, “Efficient integer

DCT architectures for HEVC,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 24, no. 1, pp. 168–178, Jan. 2014.

http://www.intel.com/content/www/us/en/embedded/training/ia-32-ia-64-benchmark-code-execution-paper.html
http://www.intel.com/content/www/us/en/embedded/training/ia-32-ia-64-benchmark-code-execution-paper.html
http://www.intel.com/content/www/us/en/embedded/training/ia-32-ia-64-benchmark-code-execution-paper.html

BIBLIOGRAPHY 191

[132] M. Masera, M. Martina, and G. Masera, “Adaptive approximated DCT architec-

tures for HEVC,” IEEE Transactions on Circuits and Systems for Video Technology,

no. 99, pp. 1–1, 2016.

[133] M. Jridi and P. Meher, “A scalable approximate DCT architectures for efficient

HEVC compliant video coding,” IEEE Transactions on Circuits and Systems for

Video Technology, no. 99, pp. 1–1, 2016.

[134] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans-

actions on Computers, vol. C-23, no. 1, pp. 90–93, Jan 1974.

[135] N. C. Vayalil, A. Safari, and Y. Kong, “Overlapped block-processing VLSI archi-

tecture for separable 2D filters,” in Electronics, Communications and Networks IV,

Jun 2015, pp. 1355–1358.

[136] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Appli-

cations. Academic Press, Boston, 1990.

[137] M. Budagavi, A. Fuldseth, G. Bjntegaard, V. Sze, and M. Sadafale, “Core transform

design in the high efficiency video coding (HEVC) standard,” IEEE Journal of

Selected Topics in Signal Processing, vol. 7, no. 6, pp. 1029–1041, Dec 2013.

[138] K. Choi and E. S. Jang, “Early TU decision method for fast video encoding in high

efficiency video coding,” Electronics Letters, vol. 48, no. 12, pp. 689–691, June 2012.

[139] C. C. Wang, Y. C. Liao, J. W. Wang, and C. W. Tung, “An effective TU size

decision method for fast HEVC encoders,” in Computer, Consumer and Control

(IS3C), 2014 International Symposium on, June 2014, pp. 1195–1198.

192 BIBLIOGRAPHY

[140] J. Su, K. Nitta, M. Ikeda, and A. Shimizu, “Residue role assignment based transform

partition predetermination on HEVC,” in 2013 IEEE International Conference on

Image Processing, Sept 2013, pp. 2019–2023.

[141] J. Kang, H. Choi, and J. G. Kim, “Fast transform unit decision for HEVC,” in

Image and Signal Processing (CISP), 2013 6th International Congress on, vol. 01,

Dec 2013, pp. 26–30.

[142] Z. Pan, J. Lei, Y. Zhang, W. Yan, and S. Kwong, “Fast transform unit depth decision

based on quantized coefficients for hevc,” in Systems, Man, and Cybernetics (SMC),

2015 IEEE International Conference on, Oct 2015, pp. 1127–1132.

[143] J. T. Fang, Y. C. Tsai, J. X. Lee, and P. S. Yu, “Computation reduction in transform

unit of high efficiency video coding based on zero-coefficients,” in 2016 International

Symposium on Computer, Consumer and Control (IS3C), July 2016, pp. 797–800.

[144] V. Sze, M. Budagavi, and G. J. Sullivan, Eds., High Efficiency Video Coding

(HEVC): Algorithms and Architectures. Springer International Publishing, Switzer-

land, 2014, ch. 11.

[145] S. C. Hsia and L. S. Chen, “Parallel very large-scale integration chip implementation

of optimal fractional motion estimation,” IET Circuits, Devices Systems, vol. 8,

no. 6, pp. 499–508, 2014.

[146] D. Kang, Y. Kang, and Y. Hong, “VLSI implementation of fractional motion esti-

mation interpolation for high efficiency video coding,” Electronics Letters, vol. 51,

no. 15, pp. 1163–1165, 2015.

[147] G. He, D. Zhou, Y. Li, Z. Chen, T. Zhang, and S. Goto, “High-throughput power-

efficient VLSI architecture of fractional motion estimation for ultra-HD HEVC video

BIBLIOGRAPHY 193

encoding,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 23, no. 12, pp. 3138–3142, Dec 2015.

	Title Page
	Copyright
	Statement
	Dedication
	Table of Contents
	List of publications
	List of contributors
	List of Figures
	List of Tables
	Introduction
	Challenges and objectives
	Main contributions
	Dissertation outline

	Background and Related Work
	Video compression
	Statistical redundancy
	Psycho-visual redundancy
	Coding redundancies
	Video quality measurement
	Video encoder

	High efficiency video coding (HEVC/H.265)
	Coding block and coding tree units
	High-level parallelisation features of HEVC/H.265
	Intra-picture prediction
	Inter-picture prediction
	Transform coding

	Block matching motion estimation algorithms
	Full-search block-matching algorithm
	Fast-search block-matching algorithms

	Residue number systems
	Arithmetic operations in RNS
	Negative numbers
	Moduli selection
	Applications of RNS
	HEVC procesor with RNS

	VLSI Architecture of Full-Search Variable-Block-Size Motion Estimation for HEVC Video Encoding
	Abstract
	Introduction
	Full-Search Variable-Block-Size Motion Estimation in HEVC
	Hardware Architecture of HEVC/H.265 Variable-Block-Size Motion Estimation
	SAD Computation
	SAD Summation
	SAD Comparator

	Results and discussion
	FPGA Synthesis Results
	ASIC Synthesis

	Conclusion

	Fast Sign-detection Algorithm for Residue Number System Moduli Set {2n - 1, 2n, 2n+1 - 1}
	Abstract
	Introduction
	Residue Number Systems
	Sign detection
	 Sign determination for special moduli sets
	 Proposed sign detection algorithm for moduli set {2n-1, 2n, 2n+1-1 }
	 Optimization for hardware
	 Hardware

	Performance analysis
	Conclusion

	ASIC Design in Residue Number System for Calculating Minimum Sum of Absolute Differences
	Abstract
	Introduction
	Proposed architecture for calculating minimum of SAD
	Sign detection
	Modulo-(2n - 1) adder and subtractor
	Absolute difference unit
	Accumulation and comparison

	Implementation and results
	Conclusion

	ASIC Design of TZ Search Motion-Estimation for HEVC with RNS
	Abstract
	Introduction
	Residue Number Systems
	Hardware design of test zone search motion estimation in RNS for HEVC
	Hardware architecture for test zone (TZ) search motion-estimation
	Residue number systems for the motion-estimation hardware architecture

	Analysis of Results
	Conclusion

	A Residue Number System Hardware Design of Fast-Search Variable-Motion-Estimation Accelerator for HEVC/H.265
	Abstract
	Introduction
	Residue Number Systems
	Proposed algorithm for motion estimation
	Motion estimation hardware design
	Residue number systems for motion-estimation hardware architecture
	Motion-estimation architecture

	Analysis of results
	conclusion

	A Novel Angle-Restricted Test Zone Search Algorithm for Performance Improvement of HEVC
	Abstract
	Introduction
	Overview of Test Zone Search Algorithm
	Proposed Algorithm
	Simulation and results
	Conclusion

	An Efficient ASIC Design of Variable-Length Discrete Cosine Transform for HEVC
	Abstract
	Introduction
	Hardware Architecture for DCT computation
	Four-point DCT architecture
	Architecture for higher length 1-D DCTs

	Proposed hardware architecture for variable-length two-dimensional DCT
	Results and comparison
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future work

	TCL scripts sample for fast search motion estimation design
	List of acronyms
	Bibliography

