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Abstract

Process model matchers automate the detection of activities that represent similar func-

tionality in different models. Thus, they provide support for various tasks related to the

management of business processes including model collection management and process

design. Yet, prior research primarily demonstrated the matchers’ effectiveness, i.e., the

accuracy and the completeness of the results. In this context, all data is used for the

matcher development and the validity of the design decisions is not studied. A result of

these shortcomings is that existing matchers yield a varying and typically low effectiveness

when applied to different datasets.

With that in mind, the thesis studies the effectiveness of matchers by separating

development from evaluation data and by empirically analyzing the validity and the

limitations of design decisions. In more detail, the thesis develops matching techniques

that rely on different sources of information. First, the activity labels are considered as

natural-language descriptions and the Bag-of-Words Technique is introduced. In comparison

to the state of the art it achieves a high effectiveness. However, its effectiveness depends on

the degree to which the underlying knowledge sources reflect the domain characteristics

of the models. Moreover, it needs to be configured for each model collection which

can require a huge manual effort. Second, the Order Preserving Bag-of-Words Technique

analyzes control flow dependencies between activities in order to automatically configure

the Bag-of-Words Technique and to maximize its effectiveness. Thus, it relieves experts

from manually configuring the matchers. Third, expert feedback is used to adapt the

matchers to the domain characteristics of process model collections and to further improve

vii
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the effectiveness. Here, the Adaptive Bag-of-Words Technique is introduced. It analyzes

expert feedback in order to continuously adjust the matching process and yields a strongly

improved effectiveness. Consequently, it outperforms state-of-the-art matchers as well as

the other matchers from this thesis.
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1
Introducing the Subject

This chapter familiarizes the reader with the topic of this thesis and its underlying research

approach. It first introduces the central subject in Section 1.1. In this regard, Section 1.2

provides a more detailed view on the specific research problem. That is, the research

hypothesis is introduced and particularized in terms of sub-hypotheses. The approach

that was followed to verify these hypotheses is subsequently described in Section 1.3.

Following, a summary of the main research contributions is provided in Section 1.4.

Finally, the structure of this thesis is outlined in Section 1.5.

1.1 Motivation

Over the last decades business processes have increasingly been recognized as an im-

portant element of organizations. In fact, business processes have always existed in

1
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organizations, but were not always perceived as a valuable element. However, with

the advent of Information Systems (IS) at the beginning of the 1980’s more and more

organizations started to automate their processes and to become aware of the importance

of their business processes. Organizations recognized that optimizing and automating

business processes opens opportunities to increase the efficiency and the effectiveness

of businesses. Moreover, they saw the potential to provide services distinguishable from

those of competitors by innovating their business processes. To exploit these advantages,

organizations conducted large Business Process Reengineering (BPR) projects [1] to

optimize their whole business process landscape at once. Such projects were complex,

long-running and cost intensive because all processes needed to be analyzed, re-designed

and adapted. Here, the analysis phase was typically carried out at the beginning of the

projects and the fact that customer requirements and conditions of the market kept evolv-

ing during the project was ignored. The result was that many of the re-designed business

processes were already outdated at the end of the projects. In order to tackle this problem,

a more flexible idea evolved at the beginning of the 2000’s. That is, modern Business

Process Management (BPM) pursues the continuous analysis and adoption of business

processes in focused projects [2]. The benefits of such an ongoing improvement have

been recognized by many companies, most notably large and successful organizations,

such as those on the Fortune-500 list [3], and BPM has been increasingly adapted.

The basic building block of BPM are business process models as restricted represen-

tations of business processes and their environments. Such models serve a multitude of

purposes and provide the basis for an extensive number of business related management

activities [4, 5]. Respective examples are given in the following. Business process mod-

els are used to document and to communicate business processes, e.g., to inform new

employees about working procedures that are in place. Furthermore, the automation of

business processes through IS can be supported in various ways through models. During

requirements analysis those models are employed to capture the demanded workflow

that a software system needs to implement. In the development phase these models

are iteratively refined and adapted to a specific technical environment. In modern BPM

systems technical business process models, usually referred to as workflow models, are
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automatically interpreted and executed without the need for manual implementation.

Business process models are also valuable for business analysis as they constitute the

starting point to identify inefficient activities or steps. When trying to erase identified

deficiencies models are often used to evaluate various alternative solutions through simu-

lation. As a consequence of the broad variety of application scenarios model collections

within organizations might grow to a size of thousands of models, e.g., the China railway

company has more than 200,000 process models [6] and SAP’s best practice business

process collection exceeds 5,500 models [7].

Another implication of the broad range of usage scenarios is that the same process

or sub-process is captured in different models. As models serve different purposes, they

comprise different information and focus on different aspects of the same process. The

models can focus on control flow aspects including the structure and behavior or involve

quantitative metrics that provide information on execution times, costs, or error rates.

Furthermore, several models might represent different angles and different levels of

abstraction of the same process, e.g., when a process is described from a business and

from a technical point of view. Additionally, there might exist variants of the same process

that are captured in separate models, e.g., insurance organizations follow the same basic

procedure to verify customer claims. However, some checks within this procedure depend

on the specific insurance product. Thus, the organizations maintain separate models

for each product class and these models are typically characterized by a huge share of

identical activities. A result of the fragmented description of processes is the existence of

correspondences between models. That is, the same or similar activities occur in various

business processes. In this regard, Akkiraju and Ivan [7] report that about 20% of SAP’s

best practice processes share 50% of their activities with other business processes.

As the creation of business process models is usually a collaborative effort that involves

various experts [8–11] these correspondences can be hidden and hard to detect. The

reason is that experts have different understandings of the same business process and

express their understandings in different ways. Thus, the same fact can be heterogeneously

represented in different models [12, 13]. On the one hand, different labeling styles and

vocabularies might be used to describe the same activity. On the other hand, different
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levels of abstraction might be used or different process layouts can be chosen to express the

same behavior. Consequently, correspondences between models cannot always be detected

by identifying elements with equal labels. Instead, activities can have heterogeneous

labels or are described by a different number of model elements.

In combination with the potentially huge number of models, the model heterogeneity

leads to situations where correspondences get indistinct. In this regard, experts expressed

their concerns in conversations with the author and stated that they “drown in their own

processes” and “need to gain control over their processes again”. The resulting opacity of

the process landscape poses a threat to the success of BPM because being unaware of

such correspondences decreases the usefulness of the models and aggravates BPM related

tasks. The following examples illustrate how knowledge about correspondences can ease

BPM related tasks.

First, to prevent business process models from becoming outdated consistency between

them must be ensured. In this regard, having a list of correspondences between models

helps to transfer updates from the changed model to the related models. For example,

when the layout of a process is changed and the according documentation is updated, the

changes should also be made in the respective simulation model as the new structure might

impact the forecast of execution times, failures, and costs. Second, when a new model is

introduced the modeler should be pointed to existing models or parts of them that contain

steps similar to the ones introduced in the new model. This way, the reuse of models

can be enforced and consistency can be ensured from the beginning [14, 15]. Third, in

optimization projects new layouts of a business process are examined to improve the

performance of the process. However, as processes are interrelated, changing the layout

of the process might impact other processes. Here, correspondences help to determine the

influence of a change on the entire business process landscape. Fourth, when updating a

technical implementation of a business process the constraints posed by a process model

that captures the organizational view should still be satisfied. Again, understanding the

correspondences between the technical and the organizational models constitutes a first

step in checking whether the technical model is still compliant to the organizational model

[16]. Lastly, in business process consolidation projects it is a central task to identify the
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most common activities occurring in a set of processes [17, 18]. Such common activities

can easily be derived from frequent correspondences.

Although, understanding correspondences between business process models is a key

factor in many BPM related tasks, they usually are not explicitly recorded within process

model collections. A reason is that collections are often decentralized and it is left to the

modelers and departments to maintain their own collections. Furthermore, modeling

environments like Signavio3 or ARIS4 do not provide sufficient support to maintain

correspondences. They only enable the reuse of equally labeled process model elements.

However, this requires all experts to use the same modeling environment and to represent

models homogeneously. As explained above, this is not always the case.

To ease the experts’ jobs and allow them to focus on their actual task, business process

model matching techniques aim to assist experts by automatically detecting correspon-

dences. The development of such techniques is confronted with the same challenge

that experts face: identifying a small portion of correspondences out of a huge number

of possible combinations by making sense out of rather restricted and heterogeneous

descriptions of business processes. Accordingly, comparative evaluations revealed that

state-of-the-art approaches yield a low quality [19, 20], i.e., they detect a small share of

the existing correspondences and additionally suggest many non-existing correspondences.

Hence, the applicability of the approaches is often limited to model collections with a

huge share of correspondences between equally labeled activities.

To this effect, this thesis examines the automated identification of correspondences

in collections of heterogeneously modeled business processes. In particular, the thesis

focuses on the effectiveness of matching techniques. Here, effectiveness refers to the

quality of the results proposed by matching techniques, i.e., the share of correctly identi-

fied, falsely suggested and missed correspondences. A matching technique with a high

effectiveness reliably suggests correspondences, because it finds many of the truly existing

correspondences and only proposes a few correspondences that do not exist. In this

3http://www.signavio.com/de/, accessed: 13/01/2017
4http://www.softwareag.com/de/products/aris_alfabet/default.asp, accessed:

13/01/2017

http://www.signavio.com/de/
http://www.softwareag.com/de/products/aris_alfabet/default.asp
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context, three sources of information for process model matching are considered for

the design of effective matching techniques. First, there are the textual descriptions of

activities that encode the purposes of activities. Second, dependencies between activities

captured through structural and behavioral relations within process models are examined.

Third, the expert feedback in terms of corrections made to automatically suggested corre-

spondences constitutes another source of information. The specific research hypotheses

are introduced in the following section.

1.2 Research Hypotheses

The main research objective is to maximize the effectiveness of business process model

matching techniques in order to assist experts’ in the manual identification of correspon-

dences between process models. This objective is concretized in the following hypothesis

which is verified in this thesis.

H0 The adaptation of business process model matching techniques to model collections

is necessary to ensure a high effectiveness and the analysis of the control flow as

well as of expert feedback provides means to implement this adaptation.

According to this hypothesis, the effectiveness of business process model matching

techniques is the primary attribute examined in this thesis. Effectiveness refers to the

quality of correspondences proposed by a technique and characterizes the accuracy

and completeness of these correspondences. Moreover, the hypothesis states that a

high effectiveness which is desirable for practical application requires the adaptation of

business process model matching techniques to the characteristics of model collections.

This implies that it is not sufficient to rely on universal rules that exploit the textual

descriptions encoded in the models. Instead, the hypothesis suggests that the control

flow and expert feedback can be exploited to automate the adaptation. In this context,

expert feedback is viewed as the manual validation of the suggestions made by a matching

technique. That is, experts have to decide whether the classifications proposed by matching

techniques hold or not. The main hypothesis is supported by the following sub-hypotheses.
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H1 The identification of correspondences between business process models is a challenge

for organizations which is not sufficiently supported by existing approaches.

H2 Label-based matching techniques yield a varying and generally insufficient effective-

ness.

H3 The maximization of the effectiveness of label-based matching techniques is enabled

by the analysis of control flow information.

H4 The effectiveness of matching techniques is improved by the utilization of expert

feedback.

Sub-hypothesis H1 emphasizes the practical and scientific relevance of the problem. It

views business process model matching as a problem which organizations face in a variety

of situations and that requires an enormous manual effort. In this context, automatic

decision support in terms of a matching technique bears the potential to minimize the

manual effort and to ease the identification of correspondences for experts. Yet, the

applicability of existing approaches is limited. Next, sub-hypothesis H2 deals with the

textual information in business process models which encodes the purpose of the activities.

In order to interpret this information correctly, relations between terms used in the

labels must be evaluated. However, universal representations of such term relations

are inadequate for an effective matching technique and domain-specific representations

are usually not available as they are expensive to create. The control flow information

present in business process models is addressed in sub-hypothesis H3. Like the textual

descriptions this information is essential for understanding business processes, because it

describes the temporal dependencies between the activities. As shown in this thesis, in

the context of process model matching control flow information allows for estimating, if a

set of proposed correspondences is likely to contain many truly existing correspondences

without having knowledge about the truly existing correspondences. This way, it permits

the evaluation of the effectiveness of label-based matching techniques in the absence of

known correspondences and can be used to automatically configure these techniques in

order to maximize their effectiveness. Finally, sub-hypothesis H4 is concerned with the
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analysis of feedback provided by experts. Such an analysis allows for deriving domain-

specific knowledge that can be used to improve the effectiveness of matching techniques

and to achieve practical applicability.

By verifying each of the sub-hypotheses evidence towards the main hypothesis H0 is

given. How the evaluation of these sub-hypotheses was carried out methodologically is

described in the following section.

1.3 Research Methodology

Business process models play an important role in the design, implementation, and

operation of IS and business process model matching techniques support a variety of

tasks linked to the management of business processes. Thus, developing business process

model matching techniques with a high effectiveness can be classified as design-oriented

Information Systems Research (ISR) which goal is “[...] to develop and provide instructions

for action [...] that allow the design and operation of IS and innovative concepts within IS

[...]” [21, p. 2].

Consequently, the methodology underlying this thesis is based on the ISR framework

proposed by Hevner et al. [22]. This framework combines behavioral science and design

science. Behavioral science “[...] seeks to develop and justify theories (i.e., principles and

laws) that explain or predict organizational and human phenomena surrounding the analysis,

design, implementation, management, and use of information systems.” [22, p. 76]. In

contrast, design science “[...] seeks to create innovations that define the ideas, practices,

technical capabilities, and products through which the analysis, design, implementation,

management, and use of information systems can be effectively and efficiently accomplished

[...]” [22, p. 76]. Hevner et al. [22] argue that these two approaches do not exclude

but complement each other. While behavioral science aims at revealing the truth, design

science puts emphasis on the utility of the designed artifact. Hence, both sciences interact

with each other. On the one hand, the design of an artifact relies on the theories discovered

within behavioral research. On the other hand, when designing an artifact and focusing

on maximizing its utility still unknown truth might be revealed.
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Based on this understanding Hevner et al. [22] suggest the ISR framework shown

in Figure 1.1. According to this framework ISR is influenced by the environment and

the knowledge base. The environment defines the business needs which constitute the

requirements that need to be implemented by the designed artifact. These business needs

underline the relevance of the research objective and arise from various organizational,

human and technical aspects. The knowledge base constitutes the known discovered

truth. It contains foundational knowledge that guides the design of the artifact and

methodologies that can be applied during the design of the artifact. The environment

and the knowledge base establish the frame of ISR.

ISR itself is seen as an iterative approach within this framework. It consists of the

develop/build and the justify/evaluate step. The develop/build step deals with generating

artifacts and theories. Whereas in the justify/evaluate step analyses are carried out to back

up and assess these artifacts and theories. The ISR process contributes to the environment

and the knowledge base. The artifacts are transferred to the environment in order to

implement solutions that address the business needs. Additionally, knowledge gained

within the ISR process is transferred to the knowledge base and contributes to the scientific

state of the art.

Based on the ISR framework the research design outlined in Figure 1.2 was applied. It

can be divided into two phases. The first phase consists of the literature review. Its purpose

Foundations
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 Models
 Methods
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Methodologies
 Data Analysis Techniques
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People
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Organizations
 Strategies
 Structure & Culture
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 Case Study
 Experimental
 Field Study
 Simulation

Applicable
Knowledge

FIGURE 1.1: The ISR framework (cf. [22, p. 80])



10 INTRODUCING THE SUBJECT

Develop
Propositions

Model 
Collections & 

Gold Standards

Develop
Techniques

Assess
Effectiveness

Review
Literature

Matching 
Propositions

Technique 
Candidates

Matching 
Techniques

Phase I Phase II

FIGURE 1.2: Research design

was the identification of the research problem and the justification of the scientific as well

as the practical relevance. Thus, its results give evidence to sub-hypothesis H1.

In the second phase, the development of techniques constitutes the central step. It

corresponds to the develop/build step in the ISR framework. Here, matching technique

candidates were designed. The justify/evaluate step is implemented in two ways. First,

in the effectiveness assessment matching technique candidates were classified as match-

ing techniques or discarded by investigating the degree to which the techniques detect

truly existing correspondences. Second, the development was also based on matching

propositions which are the result of the development of propositions. These propositions

can be classified as explanation theories [23]. In other words, they provide information

on the usefulness of different design options. In accordance with the ISR framework the

steps in the second phase are carried out iteratively to develop techniques that justify the

sub-hypotheses H2 – H4.

A central component of the second phase are model collections and gold standards.

Whereas a model collection is a set of process model pairs, the according gold standard

constitutes the objective truth regarding the correspondences existing in the model collec-

tion. More precisely, a gold standard contains correspondences that were identified by

experts for each pair of process models in the collection. Together the model collections

and gold standards depict the empirical data that was used for two purposes. First,

the data was analyzed in order to develop the matching propositions and ground the
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design of the matching techniques on empirical evidence. Second, it was used to assess

the effectiveness of matching technique candidates. This on the one hand was done to

investigate whether the specific utilization of matching propositions within a technique

(candidate) yields a good effectiveness. On the other hand, it was carried out to give

evidence to the universal applicability and the generalizability of the designed techniques.

To this end, assuming a ground truth to exist is a fundamental decision that determines

the research methodology as well as the proposed artifacts. While it was argued that

different perceptions of whether two elements correspond or not can exist [24, 25], the

decision follows the current state of the art in the evaluation of matching techniques

[19, 20, 26–30]. Threats to validity arising from this decision are discussed in Section 7.2.

To further substantiate the research design, its most important aspects are discussed in

more detail in the following. This comprises the literature review, the proposition develop-

ment and the effectiveness assessment. The prototype development is not considered here

as it deals with formalizing and implementing matching techniques based on the match-

ing proposition that were discovered. It is also guided by the subsequent effectiveness

assessment which provides feedback on the design of the matching techniques. Attention

is also drawn to the choice of model collections and the definition of gold standards. Note

that here the focus is on a basic introduction of methods and concepts relevant to this

thesis. Their specific application is outlined in the corresponding chapters and sections

throughout the thesis.

Review Literature. A literature review is defined as “[...] a summary of a subject field

that supports the identification of specific research questions.” [31, p. 31]. Consequently,

it is suited as a method to give evidence to sub-hypothesis H1. It helps to review the

existing corpus of scientific knowledge and to identify deficiencies of existing approaches.

Furthermore, practical application scenarios were derived from the literature in order to

underline the practical relevance of the topic.

In this regard, the guidelines suggested by vom Brocke et al. [32] are applied which

are the result of an analysis of literature surveys in ISR. They include the review process

outlined in Figure 1.3. The iterative layout of the process is affiliated to the continuous

updates of the scientific knowledge base due to which reviews become outdated [32].
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FIGURE 1.3: Literature review process, adopted from [32, p. 2210]

The first step of the review process is the definition of the review scope. For this purpose,

vom Brocke et al. [32] suggest to follow the taxonomy introduced in [33]. This taxonomy

consists of six dimensions. The focus refers to the type of artifacts that are examined

during the literature review. This includes research outcomes, research methods, theories,

and practices or applications. Typical goals of a review comprise summary, criticism, or

integration of knowledge. The organization of a literature review addresses the structure

of the review which can be historical, conceptual, or methodological. The perspective

defines whether the research takes a neutral position or not. The audience of a literature

review determines the writing style of the author as different audiences require different

ways of presenting the research outcomes. The last dimension is the coverage which defines

to which extent relevant literature is included in the review. The specific configuration of

the taxonomy for the purpose of reviewing business process model matching literature is

outlined in Chapter 3.

The next step is the topic conceptualization. Therefore, known and potentially interest-

ing concepts must be identified and formulated, e.g., by consulting background literature

or literature containing a summary of the field of interest. The concepts also serve as

input to the literature search as they indicate the relevant issues and can serve as search

strings.

Subsequently, the search for literature is carried out in order to identify relevant

literature with regard to the scope definition. The general search process is depicted in

Figure 1.4. It starts with a journal search in order to identify peer-reviewed articles. It

can also include proceedings of renowned conferences. Next, appropriate databases are

identified to further substantiate the review and a keyword search within these databases

is carried out. Finally, to extend the literature review a backward and / or forward search

is conducted to identify papers that have been missed so far.
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FIGURE 1.4: Literature search process, adopted from [32, p. 2211]

Lastly, the identified papers are examined in the literature analysis. This includes the

scanning of title, abstract, and content to filter papers that are not relevant. The filtering

can already be applied during the search process. Each relevant paper is then assessed

with regard to the goal of the literature review. To summarize the results, a concept matrix

[34, 35] can be applied. Such a matrix synthesizes the relevant literature and provides

the basis for the identification of shortcomings.

Model Collections and Gold Standards. The empirical nature of the research design in

this thesis requires data that is used to generate matching propositions and to evaluate

the matching techniques. Hence, special attention needs to be drawn to the design of

the empirical data collection. Following the classification from [36] the purpose of using

the data collection in this thesis is to optimize the matching techniques. Therefore, the

data will be used multiple times for analysis and evaluation purposes. In such cases it

is recommended to separate training and evaluation data [36, 37]. That is, the training

data is used to optimize the techniques while the evaluation data is only used for the

final assessment. The idea of this separation is to avoid over-fitting, i.e., to avoid that the

techniques perform well on the data, but fail on other data due to a limited generalizability.

With that in mind, four datasets were used in this thesis and separated into development

and evaluation datasets. Note that in this thesis the term development datasets is used

instead of training datasets. This is done to avoid confusion as these datasets are not

used to train algorithms, but to guide the development of matching techniques. The

development datasets comprise two publicly available5 datasets that were already used for

comparative evaluations [19, 20]. Furthermore, there are two evaluation datasets which

5http://www.henrikleopold.com/downloads/, accessed: 13/01/2017

http://www.henrikleopold.com/downloads/
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are used to finally assess the effectiveness of the proposed techniques and to examine

their generalizability. The creation of these datasets was carried out by the author in

cooperation with other researchers.

Similar to the evaluation of information retrieval systems [30], a dataset contains a

model collection and a gold standard. While the model collection defines the pairs of

process models that need to be examined, the gold standard contains the classification of

activity pairs contained in the model pairs and thus serves as a baseline for the effectiveness

assessment. This classification separates corresponding from non-corresponding activity

pairs. The first development dataset contains models dealing with the admission processes

at nine different German universities. In particular, they deal with the handling of

applications for master courses. The models in the second development dataset are about

the registration of newborn children in different countries. The third dataset is the first

evaluation dataset and contains models created within the AlmaWeb project at Leipzig

University6. The project’s goal was the unification of processes across all faculties. Finally,

the fourth dataset is also solely used for evaluation purposes and consists of selected

model pairs from the SAP reference model. This reference model was already subject to

scientific analyses [38–40]. A more detailed description of the characteristics of these

process model collections can be found in Chapter 3.

While gold standards were already included in the development datasets, they needed

to be created for the evaluation datasets. In this regard, two researchers, the author of the

thesis and another researcher, manually identified corresponding activities independently.

Then, differences were determined automatically, i.e., a software program identified the

activity pairs that one of the researchers classified as corresponding and the other one

did not. These differences were resolved in a discussion between both experts. Having

each activity pair classified by two experts was the result of the limited availability of

assessor time. That means, there were only a few experts available which were familiar

with the processes or had the time to familiarize themselves with the processes. In such

cases, Carterette [41] suggests to carry out a wide and shallow rather than a narrow and

deep classification.

6http://www.zv.uni-leipzig.de/studium/almaweb.html, accessed: 13/01/2017

http://www.zv.uni-leipzig.de/studium/almaweb.html
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Develop Propositions. In this thesis, matching propositions were derived from two

sources. First, there is the literature on business process model matching and from related

fields including information retrieval as well as schema and ontology matching. As the

review of literature was already discussed, the focus is here on the analysis of the empirical

data, the second source for the development of propositions.

The development of matching propositions was intended to reveal cause and effect re-

lations that provide reusable explanations for the classification of activity pairs. Therefore,

an empirical approach was taken that aimed to derive propositions from the development

datasets. In general, there are three types of empirical inquiries: quantitative, qualitative,

and mixed methods [42].

“A quantitative approach is one in which the investigatory primarily uses postpositive

claims for developing knowledge [...], employs strategies of inquiry such as experiments and

surveys, and collect data on predetermined instruments that yield statistics data.” [42, p.

18]. In other words, quantitative approaches require the researcher to focus on cause and

effect relations that are encoded through variables and theories. These relations are then

falsified by carrying out appropriate statistical tests on the data.

While quantitative research focuses on measurements, “[...] a qualitative approach is

one in which the inquirer often makes knowledge claims based primarily on constructivist

perspectives [...] or advocacy/participatory perspectives [...] or both [...] [and collects]

open-ended, emerging data with the primary intent of developing themes from the data.” [42,

p. 18]. That is, theories are constructed from the data by manually exploring it. Thus,

qualitative research is helpful when a deep understanding of a phenomena is needed

[23].

In this thesis, a mixed method that utilizes quantitative as well as qualitative ap-

proaches was applied. The primary focus was on quantitative analyses of the data to

test propositions regarding the identification of correspondences. However, when a more

detailed understanding was needed in order to refine propositions or identify patterns,

qualitative analyses were carried out.

The quantitative part of the method was carried out by formalizing variables that en-

coded various properties of activities and activity pairs. Based on these encodings various
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FIGURE 1.5: Qualitative analysis process, adopted from [45, pp. 63]

statistical measurements were applied to check whether these variables are correlated

to the classification of activity pairs or not. Amongst others, these measures include the

Kolmogorov-Smirnov Test for testing the equality of probability distributions [43] and the

information gain for comparing the goodness of classification strategies [44].

The qualitative analysis process applied in the context of this thesis is outlined in

Figure 1.5. It is oriented towards the categorizing content analysis [45, 46]. The goal

of this method is to examine a specific property and to determine its typical levels. The

process starts with the definition of the analysis unit. In this step, the data relevant to

the specific property is selected. Next, the data is processed iteratively. First, levels of the

property are defined. In this regard, each level is described and concurrent examples are

defined. Mayring [45] also recommends to define the rules for marking the occurrences.

Following, occurrences of the levels in the data are marked. Then, these occurrences

are processed in order to determine the coverage of the levels. In case, not all the data

can be classified using the defined levels, the levels are revised. This comprises deleting

irrelevant levels as well as adding new levels. Once all data is classified, the typical levels

are selected. Here, non-frequent levels are ignored or merged into levels that subsume

them. Finally, prototypes for each level are selected in order to provide empirical evidence

for their existence.

Assess Effectiveness. The effectiveness assessment constitutes a special quantitative

method in this thesis. Its goal is to estimate the quality of the results a matching technique

proposes. This is an essential step to select the best matching techniques from those

designed in the development step and to examine their generalizability.

To assess the effectiveness three measures well known in information retrieval [30, 47]

are applied. These measures are referred to as precision, recall and f-measure [30]. They

are also widely adapted in schema matching [28, 29]. Furthermore, these measures are
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FIGURE 1.6: Classification of activity pairs with regard to a gold standard

proposed by the Ontology Alignment Evaluation Initiative [48] for the assessment of

ontology matching algorithms and used in the initiative’s annual comparative evaluation,

e.g., [26, 27]. Moreover, they were used in comparative evaluations of business process

model matching techniques [19, 20].

All three measures rely on the comparison of the classification made by the examined

matching technique and the classification suggested by the gold standard as shown in

Figure 1.6. A matching technique automatically classifies activity pairs in the collection as

corresponding or not. The proposed correspondences are referred to as positives, whereas

all other pairs are subsumed as negatives. With regard to the gold standard both sets of

activity pairs can be divided into two subsets. The Set of true positives (T P) comprises all

positives that are truly corresponding with regard to the gold standard, whereas the Set

of false positives (F P) contains all other positives. Similarly, the negatives are grouped

into the Set of true negatives (T N) and the Set of false negatives (FN). With regard to this

classification the three effectiveness measures can be defined.

The precision pr is the share of true positives among all positives. Additionally, the

recall re is the ratio of the number of true positives and all activity pairs that truly corre-

spond. Finally, the f-measure F is the harmonic mean of both measures. A mathematical

definition of these measures with reference to business process model matching is provided

in Chapter 3.

Besides the application of established research methods, the research design was

further substantiated by taking the ISR guidelines [22] into account. Adhering to these

guidelines guaranteed that internationally accepted research standards in the discipline
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were met. In the following, each of the seven guidelines is introduced and it is outlined

how these guidelines were implemented in the context of this thesis.

Guideline 1 (Design as an Artifact) demands that ISR must produce viable artifacts

which can be constructs, models, methods, and instantiations. The thesis produced

three kinds of artifacts. First, the matching propositions constitute constructs that were

generated to gain an understanding of cause-effect relations that can be exploited to

automatically match process models. Furthermore, the matching techniques proposed in

this thesis constitute methods. Lastly, the designed techniques were implemented in a

Java library that is an instantiation of the research results.

Guideline 2 (Problem Relevance) addresses the practical relevance of the examined

problem. That is, ISR projects have to address problems that organizations face. As

already outlined in Section 1.1 business process model matching is a relevant problem

in practice. This is illustrated in more detail through the investigation of sub-hypothesis

H1. Here, a review of BPM activities in which business process model matching plays a

central role provides evidence towards the practical relevance.

Guideline 3 (Design evaluation) expects that the utility, quality, and efficacy of research

results is rigorously verified in order for the results to be accepted as artifacts. To this

end, the clear separation between development and evaluation data permitted a final

assessment of the effectiveness, the important quality criterion of the designed matching

techniques. Thus, it provides evidence towards the general applicability of the designed

techniques.

Guideline 4 (Research Contribution) refers to the scientific relevance. According to

that guideline, the design artifacts must contribute to the relevant research area. In this

respect, the research gap was identified through a literature review. In particular, existing

approaches were identified and their shortcomings examined to verify sub-hypothesis

H1. Furthermore, existing approaches and the designed techniques are compared based

on the datasets. This demonstrates that the research results extend and improve the

state of the art. Moreover, this thesis explicitly examines cause-effect relations underlying
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the matching techniques. In contrast to prior research where matching techniques are

introduced as closed entities, this ensures transparency. Thus, it is easier in future work

to reuse, build upon, and improve the research results. An overview of the designed

techniques is provided in the next section.

Guideline 5 (Research Rigor) postulates that the creation and the evaluation of the

research artifacts have to rely on rigorous methods. This guideline was addressed by

choosing established research methods widely adopted in ISR to implement the steps of

the methodology as outlined in this section.

Guideline 6 (Design as a Search Process) claims that actions and resources have to be

iteratively applied to achieve the defined goals under the constraints and laws of the

solution space. This guideline is also implemented as the final matching approach is based

on continuous analyses and evaluations relying on real world data. On the one hand,

analyses were refined and revealed propositions step by step. On the other hand, the

concrete application of these propositions within the techniques was guided by evaluations.

That way, the techniques could be fine-tuned to maximize their effectiveness.

Guideline 7 (Communication of Research) requires research results to be communi-

cated to scientific as well as technology-oriented and management-oriented audiences.

This guideline is not explicitly addressed in the methodology. However, the dissemination

was taken care of during the research project. The transfer to the scientific community

was ensured through the publication of three conference papers [49–51] and one journal

article [52]. Moreover, the author of the thesis contributed to another conference paper

[25] and submitted version of the developed matching techniques to two comparative

evaluations that were published as workshop papers [19, 20]. Furthermore, the results

were successfully disseminated in practice. This was achieved in cooperation with two

organizations. First, a tool was developed for and with BPM experts of the AOK Bundesver-

band GbR. This tool permits a practical application of the developed matching techniques

in process consolidation projects. Second, through the support of the Versicherungsforen

Leipzig GmbH the research results could be presented to companies from the insurance
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domain. In addition to several presentations held for management-oriented audiences, a

professional article [53] as well as an interview [54] were published.

1.4 Solution Details

As the sub-hypotheses allude, the designed matching techniques utilize textual and

control flow information encoded in business process models as well as expert feedback.

In particular, there are three matching techniques which build upon and extend each

other as outlined in Figure 1.7. At the center of the techniques there is the Bag-of-Words

Technique (BOT). It is the result of the examination of sub-hypothesis H2 and solely

evaluates textual information in terms of activity labels in order to detect correspondences.

The Order Preserving Bag-of-Words Technique (OPBOT) extends BOT by incorporating

control flow information. It originates from the investigations related to sub-hypothesis

H3. Finally, both techniques constitute the core of the Adaptive Bag-of-Words Technique

(ADBOT) which refers to sub-hypothesis H4. This technique analyzes expert feedback to

adapt the matching process and to improve the effectiveness stepwise. Details of these

techniques are provided below.

The Bag-of-Words 
Technique 

(BOT)

The Adaptive 
Bag-of-Words Technique

(ADBOT)

The Order Preserving 
Bag-of-Words Technique

(OPBOT)

FIGURE 1.7: The matching techniques and their dependencies
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The Bag-of-Words Technique (BOT) only considers labels to match business process

models. It works by first filtering equally labeled activities and considering them as

correspondences. After that, the remaining activity pairs are inspected. Therefore, the

labels are decomposed into the individual words, and relations between these words are

used to compute a similarity score. If the similarity score indicates that the activities are

highly similar, they are considered as correspondences. Basically, BOT is a configurable

technique with five features. However, as only a specific feature configuration can be

applied by business experts, a default configuration is derived from the evaluation on the

development datasets.

The Order Preserving Bag-of-Words Technique (OPBOT) addresses the configuration

problem. That is, a BOT configuration which is performing well on one dataset does

not necessarily need to yield a high effectiveness on a different dataset. Instead, BOT

needs to be optimized on each dataset in order to maximize its effectiveness. This

requires knowledge about the truly existing correspondences. However, collecting these

correspondences makes the maximization obsolete. To solve this paradox, the order

relation score is introduced. It is based on structural relations between correspondences

and is strongly correlated to the effectiveness of matching techniques. Thus, it can be

utilized by OPBOT to predict the effectiveness of BOT configurations without knowing the

true correspondences. By this means OPBOT searches the space of BOT configurations in

order to detect the most promising configurations. Once they are identified, OPBOT takes

their proposals and combines them to a final result.

The Adaptive Bag-of-Words Technique (ADBOT) analyzes feedback provided by ex-

perts. In more detail, it determines correspondences for a model pair and presents

these model pairs to the experts. Then, the experts are required to correct the suggested

correspondences. This means that they remove falsely proposed correspondences and

add correspondences that were not detected. This feedback is then used to adapt the

matching mechanism and to improve the effectiveness. To this end, the adaptation of

BOT configurations is considered. In particular, OPBOT is used to determine the most

promising BOT configurations. Then, the feedback is used to adjust the word relations
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underlying the BOT configurations to better reflect the characteristics of the domain

terminology. Due to this adaptation the effectiveness of the BOT configuration is gradually

enhanced. Further improvements are gained by transitively inferring correspondences

from other model pairs for which the correspondences are already known. A further

part of ADBOT is a strategy to reduce the workload for the experts while maximizing the

improvements gained through analyzing the feedback. That is, the model pairs that need

to be matched are sorted so that the order in which feedback is collected maximizes the

improvements and thus ADBOT’s effectiveness. Moreover, it is shown that feedback is

only needed for a subset of the model pairs to maximize ADBOT’s effectiveness. Thus,

the remaining pairs are matched automatically without requiring efforts from the experts.

1.5 Structure

This thesis is organized in seven chapters wich can be divided into three parts. The first

part provides the foundations, the second deals with the matching techniques, and the

third concludes the thesis. The content of each chapter is briefly outlined in the following.

Chapter 1: Introducing the Subject defines the thesis’ scope. It motivates business

process model matching as the primary research object and introduces the hypotheses

examined in this thesis. In this context, the research methodology applied to verify the

hypotheses, the contributions, and the structure of the thesis are outlined.

Chapter 2: Modeling Business Processes narrows the context of this thesis down by

discussing BPM and business process modeling. First, a brief overview of BPM is provided

in which business process models are the central building block. Next, basic concepts

regarding the modeling of business processes are introduced. Finally, a formal definition

for business process models is provided and the most widely adopted modeling notations

are reviewed with regard to this definition.

Chapter 3: Matching Business Process Models deals with the problem of automati-

cally identifying correspondences between process models. In this regard, business

process model matching is formally defined. Next, the use of business process model
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matching in BPM is summarized to motivate the need for such techniques in practice.

Afterwards, existing literature regarding business process model matching is reviewed

in order to substantiate the scientific demand. Then, the empirical data comprising the

development and evaluation datasets is introduced. Finally, the findings are summarized

and discussed in order to verify sub-hypothesis H1. An initial discussion of the shortcom-

ings of existing approaches was published in [49] and the literature review is part of the

appendix of the journal article [52].

Chapter 4: Comparing Activity Labels examines sub-hypothesis H2. More precisely,

strategies to exploit the labels of activities are investigated and BOT is introduced. Fur-

thermore, the limitations of label-based matching techniques are discussed. An early

version of BOT was published in [50] and was submitted to the process model matching

contest 2013 [19].

Chapter 5: Analyzing Structure and Behavior deals with the use of the control flow.

Here, properties of activity pairs, patterns of activity clusters, and relations between

correspondences are examined. Based on the outcome of these analyses OPBOT is

introduced. Altogether, these investigations give evidence towards sub-hypothesis H3.

The analysis of the activity properties was published in [51] and a first version of OPBOT

was submitted to the process model matching contest 2015 [20]. Moreover, the manuscript

that was submitted to Decision Support Systems [52] contains all behavioral analyses

regarding the use of control flow information from this chapter as well as the current

version of OPBOT.

Chapter 6: Learning From Expert Feedback provides evidence to the last sub-hypo-

thesis H4. The sub-hypothesis is verified through the development of ADBOT. In this

regard, adjusting word similarities and transitively inferring correspondences are dis-

cussed as strategies to learn from expert feedback. The approach for adjusting the word

similarities was published in [51].

Chapter 7: Discussing the Results summarizes the contributions. It also discusses limi-

tations of the thesis and gives directions for future research.
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2
Modeling Business Processes

This chapter introduces business process models as the key artifact that matching tech-

niques need to handle and hence helps the reader to comprehend the setting in which

process model matching techniques are applied. Following, Section 2.1 gives a general

overview on BPM in order to provide an understanding of the context in which business

process models are used. Subsequently, Section 2.2 deals with business process mod-

eling techniques which constitute the basis for the creation of business process models.

An important aspect in this regard are the modeling languages as they provide means

to capture business processes. Thus, Section 2.3 presents a detailed overview of such

languages. Moreover, the section introduces a definition of a canonical business process

model and relates it to the modeling languages. Relying on this canonical model permits

a language-independent definition of the matching techniques and is a prerequisite for a

broad applicability. Finally, the chapter is summarized in Section 2.4.

25
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2.1 Business Process Management

Modern organizations execute business processes in order to manufacture products or

deliver services to their customers. For example, a university assesses student applications

to decide whether a student is qualified to study at the university or not. Therefore, the

university generally follows a defined process consisting of various checks. First, the

document is formally verified. More precisely, it is investigated if the application was

submitted in time and if it comprises all necessary documents. Here, an IS is used to

support the verification. Afterwards, the application is assessed by the examination board

and the applicant’s aptitude is determined. Based on the recommendation the applicant

is either accepted or rejected. Finally, the application as well as all documents created

during the assessment are archived.

This example illustrates the basic characteristics of business processes as defined by

Weske [5]. First of all, they realize business goals. Here, the assessment of an application

is related to the general goal of a university to provide higher education. Second, business

processes comprise a set of activities that are executed in coordination, e.g., the formal

checks are carried out before the application is assessed. Thirdly, business processes

are embedded in an organizational and technical environment which amongst others

comprises resources, employees, and software. In the above stated example, there are

employees of the university’s examination office and a special IS. Finally, business processes

are always executed within the boundaries of a single organization, but might interact with

business processes from other organizations. For example, the task of accepting a student

could involve the registration of the student with a public student service. In such a case,

the exchange of information about the student’s registration constitutes an interaction

between the university’s and the service’s processes. The following definition summarizes

these characteristics and depicts the basic understanding adopted in this thesis. Note,

that the terms business process and process (in general) are used interchangeably in this

thesis.

Definition 2.1 (Business process) “A business process consists of a set of activities that are

performed in coordination in an organizational and technical environment. These activities
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FIGURE 2.1: Levels of business processes, adopted from [5, p. 18]

jointly realize a business goal. Each business process is enacted by a single organization, but

it may interact with business processes performed by other organizations.” [5, p. 5]

A specific type of business process is called workflow. A workflow automates parts of

or the entire business process by relying on defined rules in order to manage the exchange

of information between participants [5, 55]. In the example, such workflows might be

part of the software responsible for the formal verification of the application or they might

be setup to automate the coordination of the involved parties. In this thesis, workflows

are not discussed separately. Instead they are subsumed under the term business process.

Typically, business processes exist on various levels with regard to the business goals

of an organization. An according classification of such levels proposed by [5] is shown in

Figure 2.1. In this classification business processes on higher levels always determine the

design of those on lower levels, whereas the business processes on lower levels realize the

objectives of the according business processes from higher levels. The top level constitutes

the business strategy. It comprises the long term goals an organization strives to achieve.

With regard to the university example this could be the goal to become one of the most

recognized universities. On the second level the strategies are subdivided into goals that

present a short term perspective. With reference to the example the goal is the provision

of higher education. As the provision of education is recognized by the public, it is an

important aspect for the implementation of the strategy.
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While these two levels deal with objectives an organization aims to achieve, the

lower levels focus their implementation in terms of business processes. On the third

level there are the organizational business processes which represent high level and coarse-

grained business functionalities addressing the defined goals. Each organizational business

process is refined by a couple of operational business processes. Such processes represent a

perspective where activities and execution constraints between them are focused. The

last level consists of implemented business processes. In contrast to organizational business

processes these business processes usually contain information specific to the execution of

the activities. This comprises policies and guidelines as well as automatically executable

pieces of software. The process described in the example constitutes an operational

process as it provides a basic overview of the activities that must be carried out during

the assessment of an application. This operational process is related to the organizational

business process “study management” which again is related to the goal of providing

higher education. Instructions for the examination board as well as procedures that are

part of the software are implemented business processes.

While all levels are important to the management of businesses, organizational and

implemented business processes are not considered in this thesis. The reason is that

organizational business processes are too abstract and implemented business processes

too specific. More precisely, there are usually only a few organizational business processes

within an organization. Thus, identifying correspondences at this level does not require

a huge manual effort. Moreover, due to the abstractness of this level, correspondences

between organizational business processes do not provide valuable insights for experts. In

contrast, implemented business processes are the adaptation of operational business pro-

cesses to certain IS or working environments and they cover a broad variety of fine-grained

steps that are specific to the systems and working environments. As a consequence, there

are many small-scale correspondences which are hard to grasp and to manage coherently.

Hence, process model matching techniques adresses processes at the operational level

in order to support BPM related management activities. For the sake of simplicity and

as long as not stated otherwise, the terms business process and process are used in this

thesis to refer to operational business processes.
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Business processes have a long history. The following summary of the historic devel-

opment of the concept of business processes is oriented towards the overview provided

in [4]. Since the prehistory humans have applied working procedures to build, produce,

and create tools, jewelry, buildings, and so on. While at the beginning humans were

generalists and able to produce various kinds of goods, they became more and more

specialized over time. In the middle ages, this development lead to the establishment of

guilds in which craftsmen pursuing a similar profession organized themselves [4]. The

specialization of labor was further driven by Taylor [56] who proposed his principles

of scientific management at the beginning of the 20th century. One of the elements of

the scientific management was the precise examination of single production steps and

the according development of instructions. As a consequence the functional organiza-

tion was adopted by most companies and laborers became responsible for single tasks.

However, Davenport and Short [57] pointed out that focusing on the optimization of

single tasks rather than looking at the entire process potentially causes inefficiencies.

As a consequence, Business Process Reengineering (BPR) [1, 58] arose. BPR aimed to

apply management concepts in order to restructure the businesses of organizations and

to increase the effectiveness and efficiency of their business processes. BPR projects

aimed to improve the business process landscape at once, i.e., the whole business was

analyzed, redesigned, and changed within a single project. The problem of such large

scale projects is that the time span between the beginning of the planning and the end

of the implementation is long, usually a few years. Within such a long period market

conditions are likely to change and the plans become outdated, so that the improvements

are not effective anymore. Thus, a more continuous approach referred to as Business

Process Management (BPM) emerged at the end of the 20th century [2]. It was driven

by the development of modern IS, like Enterprise Resource Planning (ERP) systems and

Workflow Management Systems (WFMS) [4]. While ERP systems allowed to centralize

the managment of information, WFMS enabled organizations to automate and flexibly

adapt their business processes with regard to changing market conditions. Another driver

was the availability of statistical measures that allowed to assess and evaluate business

processes as well as to examine alternatives. Based on the early work by Deming [59]



30 MODELING BUSINESS PROCESSES

As-is
Process Model

Insights on
Weaknesses and

Their ImpactTo-be 
Process Model

Executable
Process Model

Conformance and
Performance Insights

Process 
Identification

Process 
Discovery

Process
Analysis

Process
Redesign

Process 
Implementation

Process 
Monitoring and 

Controlling

Process Architecture

FIGURE 2.2: The BPM lifecycle, adopted from [4, p. 21]

and Shewhart [60] more sophisticated approaches, like six sigma [61], became available.

Nowadays, organizations establish BPM in order to continuously improve their business

processes. A definition of BPM is presented below.

Definition 2.2 (Business process management) Business Process Management (BPM)

depicts a set of tools to support all activities that aim to continuously improve business

processes over their whole lifecycle.

This definition represents the common understanding of BPM shared by many def-

initions, e.g., [4, 5, 62]. It basically consists of two ingredients. First, BPM is seen as

a toolbox that provides business experts with means to ease their work. Such means

typically comprise concepts, methods, techniques, and software. The matching techniques

developed in this thesis are part of this toolbox. Second, BPM addresses activities that

arise within the lifecycle of business processes. In this regard, various lifecycles have

been proposed [5, 62–65]. To provide a more detailed understanding of the activities

that occur within the BPM lifecycle, the one introduced by Dumas et al. [4] is taken as a

reference here. Its phases and their relations are shown in Figure 2.2.

The iterative design of the lifecycle accounts for a continuous BPM. After the business

processes are setup, they are monitored and adopted to react to changing requirements.

The lifecycle consists of six phases:
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1. Identification: In this first phase a business problem is identified and processes

needed to solve it are determined. Next, relations between these processes are

specified. The outcome of this phase is a process architecture which provides an

overview of the organization’s process landscape. If a process architecture already

exists, it will be updated in this phase.

2. Discovery: This phase is about documenting the current state of the processes. Here,

as-is models describing this state are created or updated, in case the process is

refined.

3. Analysis: The examination of the current process implementation is carried out to

reveal and record limitations. Here, performance measures are used to quantify the

current state of the implementation. The result of this phase is a collection of issues

that need to be solved in order to satisfy the business need. Moreover, the analysis

phase provides insights into the actual implementation which can be used in the

next phase.

4. Redesign: Based on the analysis results various alternatives that implement the

business needs and solve the issues are developed. In consideration of the analysis

results models of alternatives are iteratively evaluated and refined, resulting in a

set of to-be models.

5. Implementation: After a solution was selected, activities needed to transform the

business in order to implement the to-be models are planned and executed. Organi-

zational changes are subject to such activities. Such changes refer to the work of all

process participants. They include amongst others the provision of an appropriate

working environment and the training of the participants. Moreover, changes to

the automation of the processes might be required. This includes the design, cre-

ation, and deployment of appropriate IS. Such systems comprise hardware, e.g.,

computers, machines, robots, as well as software.

6. Monitoring and controlling: Finally, performance indicators are measured to assess

the quality of the process execution. If there is the need for short term intervention,

counter actions are performed in this phase. In cases where fundamental updates to
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the process architecture are required a new iteration of the lifecycle will be triggered,

beginning with the discovery phase.

These explanations illustrate that business process models are an integral component

to BPM. Throughout the lifecycle business process models are used to document, analyze,

design, implement, execute, and monitor business processes. As these steps serve different

purposes, there are also different information needs in these steps. Consequently, the same

process or sub-process is likely to be captured in different models. This fact substantiates

the need for matching techniques that help experts to comprehend the relations between

the models.

2.2 Business Process Modeling Techniques

Models are an important tool to many professional activities. Architects draw models of

buildings that later on are used by construction companies to build it. Dentists create

dental impressions to manufacture protheses. Moreover, models are also omnipresent in

everyday life. For example, people rely on maps to navigate through cities or children

play with toys that are based on real objects.

In the area of computer science and IS respectively, a model is usually conceived as

“[...] a representation of either reality or vision” [66, p. 162], i.e., it constitutes a mapping of

an original. According to Stachowiak [67] this mapping property is one of three properties

that characterize models. Additionally, a model abstracts from the original as it depicts a

subset of the original’s attributes. This property is referred to as reduction. Moreover, the

pragmatism property states that a model serves a certain purpose. It is determined by the

audience that uses the model, the task supported by the model and the point in time of

model creation and usage. Depending on the purpose the model might comprise different

attributes of the original.

As outlined in Definition 2.1 a business process consists of a set of activities that are

performed in a socio-technical environment. Thus, a model of a business process contains

information about such activities, their order of execution and their environment. In

more detail, attributes of a business process can be assigned to one of four perspectives
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[68, 69]. The functional perspective includes attributes regarding the activities that are

carried out in a business process. This perspective also comprises the objects that serve

as input to or are the output of these activities. The behavioral perspective captures the

control flow and provides details about the temporal ordering of these activities. Here,

structural and behavioral constructs like loops, alternative paths, parallel executions etc.

are considered. The characteristics of the objects that are processed by the activities are

focused in the informational perspective. Finally, the organizational perspective deals with

people, resources, and roles relevant to the business process.

Schuette and Rotthowe [70] criticize the definition by Stachowiak [67] as it implies

that a model is a mapping of the real world. Instead, they emphasize the modeler’s role in

the process of mapping the original to the model. They comprehend a model as “[...] the

result of a construct done by a modeler who examines the elements of a system for a specific

purpose [...] at a given point in time with a specific language [...]” [70, p. 243]. According

to this understanding, a model does not directly represent an original, but is a subjective

outcome reflecting the modeler’s perception of the original.

Additionally, models are not always created by a single person, but often the creation

of the model is a collaborative approach [8–11]. Hence, a model is seen as the subjective

outcome of modelers that jointly create the model in this thesis. Based on these positions

the following definition of a business process model is introduced which is similar to the

definitions in [39, 64] .

Definition 2.3 (Business process model) A business process model is constructed by one

or more modelers and represents their perception of a real-world or fictive business process.

It comprises information on the functional, behavioral, informational, and organizational

perspectives of a business process that is relevant with regard to a specific purpose.

Inherent to this definition is that the creation of a model is a process itself. In the

domain of IS it is generally referred to as information modeling or conceptual modeling,

respectively. A basic view onto the information modeling process is provided by Frederiks

and van der Weide [9] who build their understanding of information modeling on the

perception of Burg [71]. According to Frederiks and van der Weide [9] the modeling
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FIGURE 2.3: The information modeling process, adopted from [9, p. 7]

process consists of four phases as shown in Figure 2.3. It was discussed and adopted in

the context of business process modeling, e.g., in [4, 72–75].

The first phase is the elicitation where the universe of discourse is investigated by the

modelers. With regard to business process modeling this universe usually contains the

business processes that have to be modeled and their environment. As a result of this phase

an informal description is created. It represents the analysts’ understanding of the universe

of discourse. The phase can be subdivided into three steps. First, there is the collection

of significant information objects that need to be considered in the model. Next, these

information objects are verbalized using a natural language. Finally, this specification is

reformulated into a unifying format. There is a huge variety of techniques that support

this phase including focused observation, case study analysis, questionnaires, or time line

analysis [76]. A detailed description on discovering business processes including data

collection and the organization of workshops is presented by Sharp and McDermott [77].

In the modeling phase the informal specification is transformed into the formal spec-

ification which represents the model. Therefore, the modelers need to carry out two

tasks. First, the modeling concepts needed to express the informal description have to be

identified. Second, the informal description must be translated to the model by matching

the informal description to the concepts. In this phase, modeling techniques provide

specific means to solve a certain modeling problem. Such modeling techniques consist

of a modeling language and a modeling procedure [78, 79] as shown in Figure 2.4. While

the modeling language defines the concepts that are available to describe the universe
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FIGURE 2.4: Elements of modeling techniques, adopted from [78, p. 184]

of discourse, the modeling procedure defines steps that need to be carried out in order

to yield the desired result, i.e., the model. A similar view on the elements of a modeling

technique is given by the framework for research on conceptual modeling [80].

An overview of modeling languages is provided in the next section. The modeling

procedures are usually specific to these modeling languages, but there also exist a variety

of language independent guidelines to support modelers. A known set of such guidelines in

the context of IS are the guidelines of modeling [70, 81]. These guidelines were discussed

in the context of business process modeling by relating them to the management and

simulation of workflows in [82]. The six guidelines are briefly outlined in the following.

1. Construction Adequacy: This guideline postulates that it is impossible to prove that a

model correctly reflects the reality. Instead the modelers and the model users need

to agree that the model is adequate with regard to a specific problem. This means

that an agreement about the problem as well as about its representation must be

reached.

2. Language Adequacy: There are two criteria regarding the modeling language used

to create the model. First, it has to be suitable, i.e., it must allow the modelers

to represent the reality. Second, it must be ensured that the language is used

correctly. While the first criterion directly addresses the modeling language, the

second criterion refers to its application.

3. Economic Efficiency: The creation of a model causes costs, e.g., modelers need time

to create it. These costs must be justified by the benefits of the model’s use.

4. Clarity: A model needs to be comprehensible and explicit. This requires that the

model is represented on a suitable level of abstraction which is determined by the
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purpose of the model. Further, it must be ensured that the understandability is

supported by the graphical arrangement of the model elements and the model

should be simple. That is, it should comprise as few information objects as possible.

Lastly, the models should be suited to the information needs of its users.

5. Systematic Design: The reality is often described in different models. In such cases

information objects should be consistently defined and used in all models. Moreover,

the relations between all models should be clear and consistent.

6. Comparability: If there are different languages used to create models for the same

purpose, it must be possible to transform models between these languages. Further-

more, similar issues should be represented in a similar way in all models.

A set of rules overlapping with the guidelines of modeling is discussed in [83]. In

accordance with [84], this set focuses the use of conceptual models in the implementation

of systems. Whereas these rules and the guidelines of modeling apply to conceptual

modeling in general, Mendling et al. [85] proposed the Seven Process Modeling Guidelines

(7PMG) that constitute a set of guidelines specific to the domain of business process

modeling. This set of rules was derived from an analysis of understandability and error

probability in business process models. The 7PMG comprise the following guidelines.

1. Use as few elements as possible: As larger models tend to be harder to understand

and have a higher probability to contain errors, a model should contain as few

elements as possible.

2. Minimize the routing paths per element: The higher the degree of incoming or

outgoing control flow connections of elements in the process model is, the more

cumbersome it is to understand the model. Thus, elements should have as few

control flow connections as possible.

3. Use one start and one end event: The presence of multiple start or end events has

a negative impact on the understandability and the error probability of business

process models. Consequently, there should be one start and one end event in each

model.
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4. Model as structured as possible: It is more cumbersome to interpret unstructured

models and they also tend to contain more errors than structured models. A model

is structured, if all elements that split a path into several paths, are matched by

another element that joins all these paths.

5. Avoid OR routing elements: Models that contain OR split elements are ambiguous

as they usually allow for a variety of combinations of the connected paths to be

executed. Thus, models should only contain parallel and alternative split and join

elements.

6. Use verb-object activity labels: The interpretation of an activity label will in general

be easier, if the label consists of a verb and an object, e.g., “evaluate application”

instead of “application evaluation”.

7. Decompose a model with more than 50 elements: This guideline is related to the first

guideline. Models with more than 50 elements tend to have an error probability

that is up to 50% higher than smaller models. Thus, if a model reaches a size of

more than 50 elements it should be split into a number of smaller models.

When modelers have applied the modeling technique including the discussed guide-

lines and created a model, the validation phase is carried out next. Its purpose is to check

whether the model represents the informal description. Therefore, the model is again

translated to a natural language description and compared to the informal specification.

Leopold et al. [86] present a technique to generate natural language documents from

business process models. Furthermore, approaches to compliance checking of business

process models support modelers in determining whether a business process satisfies

regulatory rules [87–89].

In addition to the validation, the verification deals with examining whether the model

concepts have been applied consistently. For the verification of business process models

there exists a variety of approaches in the field of BPM. First, the verification of the

soundness of the control flow was examined in a number of papers [90–92]. A business

process is called sound, if it is free of anomalies like deadlocks and livelocks. A more
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relaxed soundness property that requires each activity to be part of at least one path from

the start to the end node was discussed in [93]. The extension of such approaches to

cross organizational business processes was discussed in [94, 95]. Furthermore, there are

approaches which focus on the verification of business process models with regard to the

informational perspective [96, 97].

There exists a broad spectrum of notions of modeling quality. These notions typically

cover various aspects of the information modeling process and aim to provide guidelines

for the entire modeling process. The SEQUAL framework [98] constitutes such a view on

quality aspects of conceptual models. It addresses the syntactic, the semantic, and the

pragmatic quality. The framework was subsequently extended [99, 100] by considering

more levels of Stamper’s semiotic ladder [101]. Consequently, the latest version of

the SEQUAL framework also addresses the physical, the empirical, the social and the

organizational quality. The Bunge-Wand-Weber ontology [102–104] relies on the scientific

ontology proposed by Bunge [105]. It was used to examine the redundancy and the

excess of the constructs in modeling languages, see [106] for an overview. Additionally,

Wand and Wang [107] use the ontology as a means to compare the modelers’ view of the

domain to how this view is captured in a model. Finally, the conceptual modeling quality

framework [108] combines both – the SEQUAL framework and the Bunge-Wand-Weber

ontology.

Although there exist many approaches that support experts in modeling, business

process modeling is still a rather creative process. The reason is that the approaches

are generic. Thus, the outcome of the modeling process, i.e., the model, relies on the

perception of the modelers and their ability to express it in a model. In this regard, Rittgen

[11] criticizes that most modeling techniques only focus the correct use of the modeling

language concepts, but do not provide any further guidelines on how to derive a model

from the informal specification. As a result, models depicting the same business process

might be very dissimilar, even if they are created for the same purpose. Consequently,

the identification of correspondences between process models can become very cumber-

some and time consuming, motivating the development of techniques that automate this

comparison.
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2.3 Business Process Modeling Languages

In order to capture business processes as models, a plethora of modeling languages has

been proposed. Like other modeling languages they define the syntax and the semantics of

the concepts that can be used to create models [109]. Whereas the syntax defines symbols

and how they can be combined to create expressions, the semantic assigns meanings

to these expressions. Therefore, it comprises the semantic domain and the semantic

mapping. The former defines the relevant concepts and the latter maps these concepts

to the syntactic symbols and expressions. In this regard, simpler expressions can also be

combined to complex expressions whose meanings depend on the simpler expressions.

Karagiannis and Kühn [78] add a further element to the modeling language: the notation.

It describes how expressions are represented, e.g., by graphical elements or by textual

sentences. The relations between these elements are summarized in Figure 2.5.

In this manner, business process modeling languages typically define concepts to depict

activities and execution constraints exposed on them, like control flows, gateways, or

events. Additionally, there might be concepts to express roles, people, or systems that

are responsible for the execution of activities or to express objects or information that

is needed and modified during process execution. However, these concepts only allow

modelers to define the basic layout and elements of business processes. In order to convey

the actual meaning of the elements modelers need to annotate them. This is usually

done by defining a label which constitutes a description of the according element. The

description highly depends on the domain of the business process, i.e., process models

from different domains, like industrial production, university administration, or health
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FIGURE 2.5: Elements of modeling languages, adopted from [78, p. 184]
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FIGURE 2.6: Components of the semantics of business process models, adopted from [39, p. 12]

insurance, are very likely to contain totally different descriptions. Due to the unlimited

variety of possible scenarios, modelers typically use natural language to create such

descriptions. Hence, the actual meaning of a business process model does not only depend

on the specific modeling language in use, but also on the natural language used to describe

the model elements. Leopold [39] summarized this interplay of the modeling language

and the natural language in process models as shown in Figure 2.6.

As the actual semantics of the model elements largely depends on the labels, they

constitute the primary source for the automatic identification of corresponding activity

pairs. However, additional information, like element types, execution constraints etc., are

encoded using a business process modeling language. Especially, the relations between

the model elements in general and the activities in particular provide another source

of information for matching. The reason is that these relations encode the execution

semantics of the process model and define constraints that might be exploited to identify

correspondences. In the following, a basic understanding of relevant model elements

for business process modeling and their relations is provided by the definition of the

canonical business process model. As the canonical model permits the representation of

models defined with different languages, it serves as the basis for all matching techniques

presented in this thesis. This way a broad applicability of these techniques is achieved.
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That is, the techniques can be applied regardless of the process modeling language used

to capture the business processes and hence many organizations are able to utilize the

techniques. In this regard, the Business Process Model and Notation (BPMN), the Event

Driven Process Chain (EPC), and Petri nets are outlined. Besides being well-known in

academia and practice, these three modeling languages were chosen because the four

real-world datasets used for analysis and evaluation in this thesis (see Section 3.4) are

based on them. Thus, to ensure comprehensibility and replicability of the techniques and

analyses presented in this thesis, the languages are not only introduced, but also formally

defined and mapped to the canoncial format. To conclude the discussion of the modeling

languages, an overview of further languages is provided.

2.3.1 The Canonical Business Process Model

Various approaches exist that allow to encode business process models in a language-

independent format. In this regard, Petri nets [110] have been suggested as such a format,

especially in the context of examining the execution semantics of process models. Here,

a variety of approaches to map models of commonly used languages to Petri nets exists,

e.g., for BPMN [111] and for EPC [112], an overview of mapping approaches is provided

in [113].

Furthermore, several abstract business process modeling languages have been defined.

The canonical format of the advanced process model repository [114, 115] constitutes such

an abstract language whose metamodel is presented in [115]. According to this format,

business process models are graphs that consist of nodes and edges connecting these

nodes to represent the control flow. The set of nodes is further subdivided into gateways,

events, states, or activities. These basic elements allow to capture the functional as well

as the behavioral perspective. Additionally, objects or roles can be assigned to the nodes

and especially to the activities in order to include the informational and organizational

perspective.

The notion of business process graphs is introduced in [116, 117]. In contrast to

the canonical format it focuses the functional and behavioral perspective and does not
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include the assignment of roles or objects to nodes. Furthermore, it does not explicitly

distinguish specific sets of nodes, but assigns types to nodes. Similarly, the jBPT library7

defines process models based on directed graphs [118].

In this thesis, the notion of business process graphs is adopted. That is because in

Petri nets there are only two types of nodes. When transforming a model from a different

language to a Petri net, all nodes have to be mapped to these types. This usually leads

to a mapping where a variety of different model elements is encoded as the same Petri

net concept. Consequently, it is hard to distinguish between activities and other types of

business process elements like parallel gateways or events. Furthermore, the matching

techniques in this thesis only rely on the functional and organizational perspective (cf.

Chapter 3). The reason is that activities are regarded as similar if they are carried out

for a similar underlying purpose. To this effect, it does not matter whether an activity is

performed by a different role, especially as there might exist different roles in different

organizations or units. Additionally, different IS might be in place. Furthermore, objects

required for or resulting from the execution of an activity are neglected as they also might

be organization-specific and do not influence the reason why an activity is carried out.

Instead, the purpose of the activity determines the use of such objects. Another problem

in this regard is that roles, objects, etc. might be labeled heterogeneously, too. Thus, to

utilize them during matching, they also need to be aligned. However, the computation of

such alignments is a different problem, e.g., the alignment of entities in the informational

perspective is discussed in the field of schema matching [119, 120].

Definition 2.4 (Canonical business process model) Let L be a set of labels, and T =

{act ivi t y, event, state, xor, and, or} be the set of types. A canonical business process model

P is a 5-tuple

(N , A, E,λ,τ)

such that

• N is the set of nodes;

• E ⊆ N × N is the set of edges;
7https://www.openhub.net/p/jbpt, accessed: 13/01/2017

https://www.openhub.net/p/jbpt
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• λ : N 7→ L is a partial function that maps nodes to labels;

• τ : N →T is a function that maps each node to a type; and

• A= {a|a ∈ N ∧τ(a) = act ivi t y} is the set of activities.

The canonical model does not provide a notation, but it provides the syntax and

semantics to formally define business process models. To outline its application, the

example process which was introduced in Section 2.1 is used. This process and accordingly

its canonical model comprise six activities that represent the steps executed in the process.

This includes checking if the application was submitted in time, checking if the application

is complete, assessing the qualification of the student, accepting the student, rejecting the

student and archiving the documents. Moreover, it will contain an AND-split as well as

an AND-join as both formal checks are carried out in parallel. It also contains a XOR-split

and a XOR-join as the student is either accepted or rejected. Finally, there are a number

of edges connecting all these nodes. Note that unless stated otherwise the terms process

model and business process model are used in this thesis to refer to the canonical business

process model.

2.3.2 Business Process Model and Notation

The Business Process Model and Notation (BPMN) is a widely adapted business process

modeling language that was initially developed at the beginning of the 21st century and

was maintained by the Business Process Management Initiative. Currently, it is a standard

managed by the Object Management Group and available in version 2.0 [121]. Figure 2.7

illustrates the BPMN model for the application assessment process.

The process model contains six activities (rounded rectangles) as well as a start and

an end event (circles). These events mark the beginning and the end of the process.

Is Student 
Qualified?

Documents 
Complete?

Documents 
in Time?

Reject
Student

Accept 
Student

Archive
Documents

FIGURE 2.7: BPMN model for the university admission example



44 MODELING BUSINESS PROCESSES

Furthermore, there are two parallel gateways (diamond shape with a plus) and two

exclusive gateways (diamond shape with a cross) to capture the routing behavior of the

process. Finally, sequence flows are used to connect these elements and to define the

control flow.

This model only contains a small subset from the huge variety of elements BPMN

offers. Despite the extensive choice of elements that enables modelers to represent more

complex issues, e.g., choreographies, error handling, or data exchange, zur Muehlen and

Recker [122] observed that only a small subset of the elements is used in practice. Based

on this finding and without loss of generalizability, only a small subset of BPMN elements

is considered here. These elements are presented in Figure 2.8 .

In BPMN the task element is used to represent activities. Furthermore, there are three

different types of events. While the start event indicates the beginning of an instance, the

end event marks its termination. Intermediate events are used to model events that may

occur during the execution of an instance. The gateways represent points during process

execution where the flow is split into separate paths or where such paths are joined. The

exclusive gateway represents a decision where the flow is routed to one of the subsequent

paths or where the execution is continued as soon as one of the paths reaches the join.

The inclusive gateway marks a decision where a subset of the subsequent paths is chosen

for execution or where the execution will continue when all activated paths reach the

gateway. The parallel gateway marks a point where all subsequent paths are activated

or where execution will be continued as soon as all preceding paths terminate. A pool is
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FIGURE 2.8: Basic BPMN elements
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used to model systems, roles, or organizations that are responsible for the execution of

tasks within them. Pools can be further subdivided into lanes which indicate a department

or subsystem. Finally, sequence flows are used to connect the flow elements in a model in

order to depict the control flow.

The BPMN standard describes the graphical notation used to model processes, but it

does not include a formal definition. However, as such a definition is needed in order to

map BPMN models to canonical process models, the formal definition introduced in [123]

is adopted here.

Definition 2.5 (BPMN process model) Given the set of labels L , a BPMN process model

PB is a 13-tuple

(AB,E B,E S
B,E I

B,E E
B,G B,G X

B ,G I
B,G P

B, EB, LB, ιB,λB)

such that

• AB is the sets of tasks;

• E B is the set of events that can be partitioned into the disjoint sets of start E S
B,

intermediate E I
B and end E E

B events;

• G B is the set of gateways that can be partitioned into the disjoint sets of exclusive

G X
B , inclusive G I

B and parallel G P
B gateways;

• EB ⊆ (AB ∪E B ∪G B)× (AB ∪E B ∪G B) is the set of sequence flows;

• LB is the potentially empty set of lanes;

• ιB : N B 7→ LB is a function that maps nodes to lanes; and

• λB : (AB ∪E B ∪G B) 7→ L is a partial function that maps nodes to labels.

A BPMN model can be straightforwardly represented as a canonical process model.

Here, the set of nodes comprises all tasks, events, and gateways in the BPMN model and

the set of activities contains all tasks. The set of edges and the label function are identical

to those in the BPMN model. Finally, the type function classifies a node as an activity, if
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its BPMN counterpart is a task and as an event, if its counterpart is an event. Similarly,

all exclusive gateways are assigned to the xor-type, all parallel gateways to the and-type

and all inclusive gateways to the or-type. This mapping is summarized in the following

definition.

Definition 2.6 (BPMN to canonical business process model mapping) Let PB = (AB,

E B,E S
B,E I

B,E E
B,G B,G X

B ,G I
B,G P

B, EB, LB, ιB,λB) be a BPMN process model. PB can be repre-

sented as a canonical process model P = (N , A, E,λ,τ) such that

• N = AB ∪E B ∪G B

• E = EB

• A= AB

• λ= λB

• τ(n) =















































act ivi t i y if n ∈ AB

event if n ∈ E B

xor if n ∈ G X
B

and if n ∈ G P
B

or otherwise

2.3.3 Event Driven Process Chain

The Event Driven Process Chain (EPC) was developed in the context of the architecture of

integrated information systems which is an approach for the development of information

systems that adhere to organizational requirements [124]. In this regard, EPC models

serve as a means to capture business processes. Figure 2.9 presents an EPC model for the

application assessment process.

Obviously, the model comprises more elements than the corresponding BPMN model.

The reason is that in EPC models it is required that on each path from a start to an

end event functions (rounded rectangles) and events (hexagons) alternate, i.e., on each
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FIGURE 2.9: EPC model for the university admission example

path each function must be followed by an event and each event must be followed by a

function when skipping the connectors (circles). Thus, the number of events in an EPC

model usually exceeds the number of events in an equivalent BPMN model. The possible

elements of an EPC model are shown in Figure 2.10.

As already outlined in the university admission example, EPC comprises functions,

activities and events. Moreover, there are three types of connectors which are used to

split and join the flow. These types comprise the XOR-connector, the AND-connector, and

the OR-connector. But there exists a restriction regarding the use of the XOR-connector

and the OR-connector. An event cannot be followed by a split connector of these types,

as the split requires a decision that can only be actively made by executing a function.

Finally, the elements are connected by control flows.

While the number of EPC elements is small, there exists a number of extensions that

add further elements to the notation. For example, the extended EPC provides elements

to annotate functions with organizational units that are responsible for their execution

and information objects that are required for or the result of the execution of a function. It

also comprises elements to hierarchically organize EPC models. Furthermore, there exist

Function

Event XOR
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V AND 
Connector

V
OR 
Connector

Control
Flow

FIGURE 2.10: EPC elements
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several variants, e.g., an object-oriented extension [125], the modified EPC [126], and

yet another EPC [127]. Sarshar et al. [128] give an overview of variants and additional

elements. A formal definition of EPC process models in the context of this work is provided

in the following.

Definition 2.7 (EPC process model) Given the set of labels L , an EPC process model P E

is an 8-tuple

(AE,E E,G E,G X
E ,G A

E,GO
E , EE,λE)

such that

• AE is the set of functions;

• E E is the set of events;

• G E is the set of connectors that can be partitioned into the disjoint sets of xor G X
E ,

and G A
E as well as or GO

E connectors;

• EB ⊆ (AE ∪E E ∪G E)× (AE ∪E E ∪G E) is the set of control flows; and

• λE : (AE ∪E E ∪G E) 7→ L is a partial function that maps nodes to labels.

Similar to BPMN an EPC process model can be mapped to a canonical process model

where the set of nodes comprises all functions, events, and gateways. Further, the set of

functions constitutes the set of canonical activities and the set of edges corresponds to

the set of control flows in the EPC model. Consequently, the labeling functions of both

models are identical. Finally, the type function classifies each function as an activity and

each event as an event. Elements whose counterpart in the EPC model is a connector

are assigned to the respective connector type, e.g., xor-connectors are assigned to the

xor-type. The mapping is formally defined in the following.

Definition 2.8 (EPC to canonical business process model mapping) Let P E = (AE,E E,

G E,G X
E ,G A

E,GO
E , EE,λE) be an EPC process model. P E can be represented as a canonical pro-

cess model P = (N , A, E,λ,τ) such that

• N = AE ∪E E ∪G E
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• E = EE

• A= AE

• λ= λE

• τ(n) =















































act ivi t i y if n ∈ AE

event if n ∈ E E

xor if n ∈ G X
E

and if n ∈ G A
E

or otherwise

2.3.4 Petri Net

Based on the notion of finite-state machines Petri [110] developed a first version of the

Petri net modeling language to represent concurrency within distributed systems. It is

widely adapted in many scientific areas, e.g., computer science and machine engineering.

Its use in the field of BPM was amongst others discussed in [129]. The representation of

the university admission example as a Petri net is shown in Figure 2.11.

Basically, there are two types of nodes in a Petri net, the transitions (squares) and the

places (circles). Places represent conditions that can be activated during the execution

of the underlying system. Transitions instead describe the active parts of a system, i.e.,

the events or functions that modify a system’s state. In the context of business processes

transitions can be used to depict the process’ activities. The actual state of a system is

represented by a marking. Such a marking consists of a set of tokens where each token is
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FIGURE 2.11: Petri net model for the university admission example
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assigned to a place. Given such a marking it is possible to determine which transitions

can be activated next. In other words, it is possible to determine the actions that can

occur and that can modify the systems’ state. In general, all transitions where each of the

preceding places is marked by at least one token are enabled. If an enabled transition is

fired, one token is removed from each of its input places and one token is added to each

of its output places. Consequently, places can be used to represent XOR-joins or -splits as

only one of the following transitions can be activated if the place is marked by a token.

Similarly, transitions can be used to represent AND-joins or -splits because a transition

is only activated, if all input places are marked and because it marks all output places

during activation. Following a widely adapted definition of Petri nets [130] a Petri net

process model is seen as a directed graph consisting of transitions and places.

Definition 2.9 (Petri net process model) Given the set of labels L , a Petri net process

model P P is a tuple

(T P ,ΘP , EP ,λP)

such that

• T P is the set of transitions;

• ΘP is the set of places;

• EB ⊆ (T P ×ΘP)∪ (ΘP × T P) is the set of arcs connecting transitions to places

and places to transitions; and

• λE : (AE ∪E E ∪G E) 7→ L is a partial function that maps nodes to labels.

As places and transitions are used to depict various basic process elements [13, 112],

transforming a Petri net into a canonical business process model is not as straightforward

as it is to map a BPMN or EPC model to the canonical format. In this thesis, transitions

that possess a label are transformed to activities. Transitions without a label, also referred

to as silent transitions, are treated in different ways. If a silent transition is connected to

more than one input or more than one output transition, it constitutes an AND-gateway.

All other transitions will be treated as events. Note, that a labeled transition that has
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multiple input or output places is treated as an activity. Additionally, places are treated

as states, if they have at most one input and at most one output transition. Otherwise,

places are classified as XOR-gateways.

Definition 2.10 (Petri net to canonical business process model mapping) Let P P =

(T P ,ΘP , EP ,λP) be a Petri net process model. P P can be represented as a canonical pro-

cess model P = (N , A, E,λ,τ) such that

• N = T P ∪ΘP

• E = EP

• λ= λP

• τ(n) =























































































act ivi t i y if n ∈ T P ∧ n ∈ supp(λP)

and if n ∈ T P ∧ n /∈ supp(λP)∧

({(n, n′)|(n, n′) ∈ EP}> 1∨ {(n′, n)|(n′, n) ∈ EP}> 1)

event if n ∈ T P ∧ n /∈ supp(λP)∧

({(n, n′)|(n, n′) ∈ EP} ≤ 1∧ {(n, n′)|(n, n′) ∈ EP})≤ 1

xor if n ∈ ΘP∧

({(n, n′)|(n, n′) ∈ EP}> 1∨ {(n′, n)|(n′, n) ∈ EP}> 1)

state otherwise

• A= {a|a ∈ N ∧τ(a) = act ivi t y}

2.3.5 Other Notations

Besides these three modeling languages and their variants there exist many other business

process modeling languages. In the field of software development the Unified Modeling

Language (UML) [131] provides a number of modeling languages to specify, visualize,

and document software applications. Within this continuum the UML sequence diagram

and the UML state machine diagram constitute modeling languages to capture processes

within a software system.
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In the context of service oriented architectures the Web Services Business Process

Execution Language (BPEL) is a language whose purpose is to support the design and

execution of business activities and their orchestrations [132]. BPEL is block structured,

i.e., the process is basically described as a set of nested blocks where each block contains

one start and one end node. The basic block type is the sequence of one or more activities

or blocks. Other types include parallel or exclusive branches and loops. This block

structure can be straightforwardly transformed into a graph structure.

Both languages can be mapped to a canonical business process model similar to BPMN

and EPC models. That is, all nodes and edges are part of the canonical model and nodes

are assigned to a respective canonical element type.

All the modeling languages considered so far are imperative business process modeling

languages where models based on these modeling languages capture all possible execution

scenarios [133]. However, there are scenarios where such a definition of a process yields

complex and inflexible models. For example, treatment processes in hospitals highly

depend on the specific disease, the circumstances of the patient, and the availability of

resources. Capturing the treatments with imperative process modeling languages has no

prospect of success due to the enormous amount of possible scenarios. Here, declarative

modeling languages that focus on the main characteristics of the process can be used. More

precisely, such languages allow to specify constraints that restrict the space of possible

scenarios by excluding cases that are prohibited. For example, they might provide means

to capture the exclusive use of tasks or the mandatory application of another activity.

Declare [134], DCR Graphs [135] and SCIFF [136] are examples of declarative business

process modeling languages. An in-depth discussion of the difference between imperative

and declarative business process modeling languages can be found in [137].

The functional perspective of declarative business process models can be mapped to

the canonical format quite easily, i.e., all activities in the declarative model are transferred

to the canonical model. Considering the behavioral perspective is not advisable. The

reason is that there are usually only a few but essential characteristics of this perspective

depicted in declarative process models. Thus, it is possible to derive structurally different

imperative models that adhere to the declarative constraints. As a consequence, only those
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matching techniques introduced in this thesis that solely rely on the labels of activities

can be applied, if declarative models need to be matched.

2.4 Summary

This chapter introduced BPM as the context of this thesis. In essence, it defined business

processes as coordinated executions of activities and BPM as a tool set that supports all

phases in the lifecycles of business processes. In this context, the use of business process

models which are restricted representations of business processes was motivated. Next,

approaches to business process modeling were discussed. This comprised a basic overview

of the modeling process including modeling techniques. In this regard, it was pointed

out that despite the broad range of approaches that assist modelers’ in creating models,

business process modeling is a creative process. Consequently, the quality of business

process models depends on the modelers’ capabilities to capture a business process based

on a certain modeling language. As a result, the same process might be represented in

different ways impacting the identification of correspondences and motivating the need

for process model matching techniques. Lastly, the chapter presented a formal definition

of a canonical business process model. This notion provides a basis for all matching

techniques in this thesis and permits their application to different modeling languages. In

this regard, it was shown how different modeling languages, including BPMN, EPC, and

Petri nets, can be represented as canonical business process models.
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3
Matching Business Process Models

H1: The identification of correspondences between business process models

is a challenge for organizations which is not sufficiently supported by existing

approaches.

This chapter introduces business process model matching in more detail. In this regard,

elementary concepts are defined and the sub-hypothesis H1 is examined to provide

evidence to the practical and the scientific demand. Moreover, the characteristics of the

empirical datasets which serve as the basis for the development and the evaluation of the

matching techniques are outlined.

The chapter is structured into five sections. A basic understanding of business process

model matching is introduced in Section 3.1. This includes illustrative examples and

formal definitions. Next, the practical demand is addressed in Section 3.2. Here, an

55
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overview of application scenarios for business process model matching techniques is

provided to substantiate the need for such techniques in practice. After that, the scientific

demand is discussed based on the results of a literature review in Section 3.3. At this

point, the verification of sub-hypothesis H1 concludes and the chapter continues with the

description of the datasets in Section 3.4. Lastly, Section 3.5 summarizes this chapter.

3.1 Basic Concepts

In this thesis, the terminology from the field of ontology matching is adopted. Thus and

unless stated otherwise, the terminology introduced in this section is oriented towards

[138]. Accordingly, business process model matching is seen as the process of identify-

ing an alignment between two process models. The alignment refers to the functional

perspective or more specifically to the activities in the process models. It consists of

correspondences which indicate activity sets that represent the same functionality in both

process models.

An example of an alignment is shown in Figure 3.1 where an alignment between

the application assessment process from the previous chapter (“Process A”) and another

application assessment process (“Process B”) is presented. Although both process models

represent the same higher level process, they implement this process in different ways.

In both processes, the first step is the formal verification of the student’s application.

Whereas in “Process A” there are two activities (α1 and α2) regarding this step, there is

only one activity (β1) in “Process B”. The next step is the assessment of the application

which in both processes is represented by a single activity (α3 and β2). Lastly, a decision

is made and steps to enforce this decision are carried out. This is implemented by two

activities (α4 and α5) in “Process A” and three activities (β3, β4 and β5) in “Process B”.

The final archiving of the documents (α6) is only part of “Process A”.

Two kinds of correspondence relations can be distinguished. On the one hand, there

are elementary or 1:1-correspondences where one activity from the first process corresponds

to exactly one activity in the second process and vice versa. In the example, α3 and β2
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FIGURE 3.1: An alignment between two university admission process models

constitute such an elementary correspondence. On the other hand, complex correspon-

dences refer to correspondence relations where there are sets of activities involved. This

can be the case if one activity from a process corresponds to a set of activities from the

other process and each of these activities only corresponds to the first activity. Those

correspondence relations are also referred to as 1:n-correspondences. In the example α1,

α2 and β1 constitute such a correspondence. Another possible scenario is the existence

of so called m:n-correspondences. That is, sets of activities from both processes have a

correspondence relation, e.g., the activities referring to the enforcement of a decision.

In this thesis, an alignment is formally defined as a binary relation over the sets of

activities of two processes. In other words, it is a set of activity pairs where activity

pairs consist of one activity from each process. This definition allows to represent ele-

mentary correspondences as well as complex correspondences. Table 3.1 outlines this

representation by presenting the alignment matrix for the example. In the table the

TABLE 3.1: Alignment matrix for the university admission example

α1 α2 α3 α4 α5 α6

β1 1 1 0 0 0 0

β2 0 0 1 0 0 0

β3 0 0 0 1 1 0

β4 0 0 0 1 1 0

β5 0 0 0 1 1 0
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activities of “Process A” are represented as columns and those of “Process B” as rows.

Each cell contains a value of 1, if the according activity pair corresponds, and a value of

0 otherwise. In case of an activity pair being an elementary correspondence, all cells in

the respective row and column contain a value of 0 except for the cell representing the

pair. Complex correspondences are encoded by a 1 in each cell that belongs to rows and

columns representing activities from the respective sets.

Definition 3.1 (Alignment, Correspondence) Given two process models P = (N , A, E,λ,

τ) and P ′ = (N ′, A′, E′,λ′,τ′), an alignmentA is a binary relation

A ⊆ A× A′

where each pair of activities c = (a, a′) with a ∈ A, a′ ∈ A′ is referred to as a correspondence,

if it is part of the alignment, i.e., c ∈ A . Furthermore, the domain dom(A ) = A and

the co-domain cod(A ) = A′ of the alignment are used to refer to the sets of activities the

alignment is defined over.

Based on this definition an elementary correspondence can be formally defined as

follows.

Definition 3.2 (Elementary correspondence) LetA ⊆ A× A′ be an alignment over two

sets of activities. A correspondence c = (a, a′) with c ∈ A is called an elementary or 1:1-

correspondence respectively, if both activities do not correspond to any other activity with

regard to the alignment, i.e., {a′′|(a, a′′) ∈A}= {a′} ∧ {a′′|(a′′, a′) ∈A}= {a}.

Complex correspondences are formally defined in a similar way.

Definition 3.3 (Complex correspondence) Let A ⊆ A× A′ be an alignment over two

sets of activities. Two subsets of the activity sets As ⊆ A, A′s ⊆ As constitute a complex

correspondence (As, A′s), if both sets are not empty and in total contain more than two activities,

i.e., |As| > 0 ∧ |A′s| > 0 ∧ |As|+ |A′s| > 2. Furthermore, it is required that for all activities

from the first subset the set of corresponding activities with regard to the alignment is the

second subset and vice versa, i.e., ∀a ∈ As : {a′′|(a, a′′) ∈A} = A′s∧∀a′ ∈ A′s : {a′′|(a′′, a′) ∈

A} = As. If one of the subsets consists of one activity and the other of more than one
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activity (|As|= 1∧ |A′s|> 1)∨ (|As|> 1∧ |A′s|= 1), the complex correspondence is called a

1:n-correspondence. If both subsets contain more than one activity (|As|> 1∧ |A′s|> 1), the

complex correspondence is referred to as an m:n-correspondence. Moreover, each subset with

more than one element |As|> 1 is a corresponding activity cluster.

As stated at the beginning of this section, the identification of an alignment between

two process models is a process. It is referred to as the matching process and can be carried

out by a human who manually identifies the alignment or by a matching technique (also

matcher) which automatically determines an alignment. From an abstract point of view

matching processes can be described as a function whose input is a set of process model

pairs for which alignments need to be determined. Additionally, a sequence of alignments

that might be empty is passed to the matching processes as input. The output of the

process consists of an alignment for each input process model pair.

Definition 3.4 (Matching process, Matching technique) Let Pin = (M P i)ki=1 be a se-

quence of k ∈ N process model pairs with M P i = (P i, P ′i) where P i = (N i, Ai, E i,λi,τi)

and P ′i = (N
′
i, A′i, E′i,λ

′
i,τ
′
i) are two process models. Furthermore, let Ain = (A j)lj=1 be a

potentially empty sequence of l ∈ N0 alignments. Then, a matching process is a function

Aout = match(Pin,Ain)

that determines an alignment for each of the given process model pairs, i.e., Aout = (A k
i=1)

withA i ⊆ Ai ×A′i. To identify these alignments the sequence of alignments provided as input

might be exploited. A piece of software that automatically executes matching processes is

referred to as a matching technique or matcher, respectively.

Based on this abstract view there are several design options for matching techniques.

First, a matching technique could independently compute an alignment for each of the

given process model pairs and ignore the alignments provided as input. For such a

technique it does not matter, if it has to process all model pairs at once, or if the technique

is applied to each model pair separately. In both cases the alignment for a specific model

pair will be the same. Moreover, it might rely on a set of features that contains parameters
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to configure the technique and resources that are used to integrate external knowledge.

An example for such a technique is BOT which is introduced in Chapter 4.

Second, a matching technique could be designed to process a whole model collection

or parts of it at once. In this regard, analyzing characteristics of the process models or

pairs could be used for learning. That is, through the inspection of the model collection

handed over to the technique, it can derive knowledge that is utilized to determine the

alignments. OPBOT that is outlined in Chapter 5 falls into this category.

Thirdly, a matching technique might incorporate expert feedback in terms of manually

identified alignments as discussed in the context of schema matching in [139]. There are

two basic options in this regard. First, experts might provide complete alignments for a

set of process model pairs. A matching technique might analyze these alignments and use

the results to determine correspondences for the current process model pairs. Second, the

experts might provide incomplete alignments that the matching technique has to complete.

This strategy might especially be of interest for model pairs with rather large process

models in order to ease the correspondence identification through a stepwise approach. Of

course, both options can be combined. ADBOT which is discussed in Chapter 6 constitutes

a feedback-based matching technique.

Generally, matching techniques can be implemented through the composition of

matching techniques in a matching workflow. The general workflow for pairwise schema

matching proposed in [140] can be adapted in this regard. Although, it considers the

matching of two models, its basic structure can also be used for techniques that process

model collections and alignments. Its basic structure is outlined in Figure 3.2

In the general matching workflow there are four different components. First, the

pre-processing component is used to load and prepare the models for matching. In this

regard, there might be a series of possible actions, e.g., the transformation of the models

into a canonical format. Afterwards, the models are passed to the matching sub-workflow

whose task is to suggest correspondences. It is a composition of matching techniques

Pre-Processing
Matching

Sub-Workflow
Combination of 

Matching Results
Selection of

Correspondences
Alignment

Process 
Models

FIGURE 3.2: General business process model matching workflow, adopted from [140, p. 7]
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and its general layout adheres to one of the three types shown in Figure 3.3. The

sequential matching sub-workflow executes a number of matching techniques stepwise.

Here, matching techniques might be used to reduce the search space. This includes filtering

of non-corresponding activity pairs as well as marking definite correspondences. The

parallel matching sub-workflow concurrently executes a set of matching techniques. Here,

different strategies could be applied that suggest alignments based on different criteria. It is

also possible to combine both types into a mixed strategy. Once the matching sub-workflow

has terminated, a single alignment must be derived from the set of alignments proposed

by the sub-workflow. Therefore, the next step is the combination of matching results. This,

for example, includes the combination of similarity scores through aggregation or by

determining the maximum. Lastly, the final alignment is created through the selection of

correspondences. At this point, activity pairs are classified as corresponding if they are

considered similar with regard to the previous results.

The purpose of the application of matching techniques is to ease the work for experts.

Consequently, the most important quality dimension of matchers is their effectiveness

which characterizes the degree to which a matcher resembles the opinion of experts, i.e.,

how many mistakes a matcher makes from the perspective of an expert. A further quality

criterion is the efficiency of a matching technique [140]. It refers to the time and space

complexity of a matcher. However, in this thesis only the effectiveness of matching tech-

niques will be examined. The reason is that the effectiveness is an inevitable prerequisite

for practical applicability whereas efficiency is a subordinate feature as illustrated by the

following examples. The first example refers to a matching technique that identifies six

sequential parallel mixed

...
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Matching 
Technique 1

...

Matching 
Technique n

Matching 
Technique 2

...

Matching 
Technique n

Matching 
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FIGURE 3.3: Basic matching sub-workflows, adopted from [140, p. 7]
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correspondences for a given process model, but only three of these correspondences are

actually correct. Additionally, there exist another five correspondences that were not

identified. In this case, an expert would need to carry out eight operations to correct the

alignment. That is, the expert needs to remove the three falsely suggested correspon-

dences and add the five missing correspondences. Given that the expert only needed to

add six correspondences at the beginning, the low effectiveness of the matching technique

might even increase the workload for experts compared to not using a matching technique.

The second example is given by the work of La Rosa et al. [141] who report that three

analysts needed 130 man-hours to merge 25% of two process models. As the identification

of correspondences is a central task in such projects [141], this example illustrates the

enormous efforts linked to the manual matching of process models. The long period

of time needed to manually match business process models in contrast to the negative

impact on the workload for experts that ineffective techniques have, substantiates the

decision to focus on the effectiveness. In the remainder of this work, the term quality is

synonymously used for effectiveness.

In order to estimate the effectiveness of a matching technique, it is usually assessed

with regard to a number of datasets. This approach was already briefly discussed in

Section 1.3 where the effectiveness assessment as part of the research methodology was

explained. Basically, it works by applying the matching technique to a set of model

pairs for which gold standard alignments exist. Such alignments need to be determined

by experts upfront. Given an alignment suggested by the matching technique and an

according alignment from the gold standard, each activity pair in the respective model

pair is assigned to one of four sets. The true positives (T P) comprise all correctly identified

correspondences and the false positives (F P) all correspondences that were suggested by

the technique, but are not among the gold standard correspondences. The true negatives

(T N) and the false negatives (FN) are defined analogously with regard to the activity

pairs that were suggested as non-corresponding by the technique.
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Definition 3.5 (Activity pair classification) Let P = (N , A, E,λ,τ) and P ′ = (N ′, A′, E′,

λ′,τ′) be two process models. Further, letA gs ⊆ A× A′ be the gold standard alignment and

A mt ⊆ A× A′ be an alignment proposed by a matching technique. Then, the sets of true

positives T P, false positives F P, false negatives FN, and true negatives T N are defined as

T P = {c|c ∈A mt ∧ c ∈A gs ∧ c ∈ A× A′}

F P = {c|c ∈A mt ∧ c /∈A gs ∧ c ∈ A× A′}

FN = {c|c /∈A mt ∧ c ∈A gs ∧ c ∈ A× A′}

T N = {c|c /∈A mt ∧ c /∈A gs ∧ c ∈ A× A′}

Given this classification, the following indicators for the effectiveness of the technique

can be defined. The precision provides information on the degree to which a matching

technique proposes correspondences that do not exist. In other words, the higher the

precision of a technique is the less non-existing correspondences it proposes. The recall

characterizes the degree to which a matching technique detects correspondences, i.e.,

the higher the recall the more correspondences that actually exist are proposed by the

technique. Finally, the f-measure is the harmonic mean of both values. These measures

are widely adapted in schema matching [28, 29], information retrieval [30, 47], ontology

matching [26, 27, 48], and business process model matching [19, 20].

These measures can be determined in different ways. First, they can be computed for

a single pair of process models. Second, a whole dataset that contains several model pairs

can be considered. In such situations, the measures can be defined on the macro (M) and

the micro level (µ). On the macro level the measures are computed for each model pair

in the collection separately. The overall effectiveness scores are then yielded by averaging

the model pair scores. On the micro level the sets of true positives are combined and so

are the sets of false positives, false negatives and true negatives. Then, the measures are

determined with regard to the resulting sets.
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Definition 3.6 (Effectiveness measures) Let (A mt
i )

k
i=1 be a sequence of k ∈ N alignments

proposed by a matching technique and (A gs
i )

k
i=1 be the respective sequence of gold standard

alignments where it is required that the ith alignments in both sequences were determined

for the same process model pair, i.e., ∀1≤ i ≤ k : dom(A mt
i ) = dom(A gs

i )∧ cod(A mt
i ) =

cod(A gs
i ). Furthermore, let (T P i)ki=1 denote the according sequence of true positives,

(F P i)ki=1 the sequence of false positives, and (FN i)ki=1 the sequence of false negatives. Then,

the precision pr, the recall re and the f-measure F can be defined in the following ways:

pr i = |T P i |
|T P i |+|F P i |

rei = |T P i |
|T P i |+|FN i |

F i = 2 · pr i ·rei
pr i+rei

prM = 1
k

k
∑

j=1
pr i reM = 1

k

k
∑

j=1
rei F M = 1

k

k
∑

j=1
F i

prµ =

k
∑

j=1
|T P i |

k
∑

j=1
(|T P i |+|F P i |)

reµ =

k
∑

j=1
|T P i |

k
∑

j=1
(|T P i |+|FN i |)

Fµ =
prµ·reµ
prµ+reµ

where a precision score is set to 1, if there are no proposed correspondences, i.e., if |T P|+

|F P|= 0. Accordinlgy, a recall score is set to 1, if there are no truly corresponding activity

pairs, i.e., if |T P|+ |FN |= 0.

All measures are bound to the interval [0,1] and the higher the value for a certain

effectiveness measure is, the higher is the respective effectiveness dimension of the matcher.

In this regard, the f-measure constitutes the most interesting measure because it provides

an indication for the overall effectiveness. But, as the same f-measure value might be

attributed to different combinations of precision and recall values, these measures are

important secondary sources for the effectiveness assessment. In such cases, the recall

should be favoured over the precision [142].

In this thesis, the most important set of measures are the micro level measures. The

reason is that they characterize the effectiveness with regard to a whole model collection.

Moreover, the macro level measures might be distorted in case of a large variance in the

number of correspondences per model pair. However, techniques from related work will

be considered as a baseline for the matching techniques proposed in this thesis. As for
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some techniques there are only macro level measures published, these measures will be

reported where such a comparison is carried out.

3.2 Application Scenarios

After having discussed basic concepts regarding business process model matching in the

previous section, this section focuses on the demand for such techniques in practice. By

reviewing tasks arising from the BPM lifecycle which require the identification of corre-

spondences between business process models, the practical need for matching techniques

is demonstrated and the first part of sub-hypothesis H1 is verified. Moreover, the section

once more motivates the research in this thesis and also explicates research areas that

depend on the results of this thesis.

A first set of such tasks refers to the management of business process model collections.

In practice, organizations possess model collections that comprise hundreds or thousands

of process models [143]. For example, China railway has to maintain 200,000 business

process models [6] and SAP has more than 5,500 best practices process models [7]. Clearly,

the large number of process models makes the manual management of such collections

cumbersome. Especially, managing versions of processes and avoiding duplicates on

activity as well as on process level are central challenges. In this regard, there is a

variety of techniques that address the detection and handling of similar (sub-)processes

including process similarity search, process model merging, clone detection, and process

model querying. Often, these approaches assume that correspondences or alignments

between process models are available and thus require the application of process model

matching techniques. In the following, each of these areas is briefly introduced.

In case there exist similar process models with only a small number of differences it

might be necessary to merge these models. A reason therefore is the reduction of the

number of models referring to the same process in order to ease the management of these

models. In this regard, process model merging techniques, e.g., [17, 141, 144], support

the combination of different models. They automatically join two or more process models
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and ensure that the original control flow constraints from the various models are captured

in the unified model.

The field of process similarity search provides metrics or measures that indicate to

which degree process models are similar. These techniques help to identify and cluster

versions of processes or processes that overlap. Representative works in this areas comprise

[117, 145]. An overview of existing techniques is provided in [146, 147].

Approaches for clone detection, e.g., those introduced in [148–150], aim at detecting

equivalent or very similar fragments in process model collections. Such techniques can be

used for refactoring. In particular, they are applied to introduce sub-process hierarchies

and to maintain frequently occurring fragments in separate process models.

Closely related to the clone detection techniques are process model querying ap-

proaches [15, 151, 152]. Here, queries are formulated by a user in order to retrieve

processes or process fragments that satisfy these queries. The difference to clone detection

algorithms is that the queries do not necessarily need to be formulated using a process

modeling language. Instead a query language might be used. Such languages allow to

define attributes and relations of activities that process models must satisfy, e.g., that only

one of two activities should be present or that the execution of a certain activity must be

followed by the execution of another activity.

Another use case for process model matching techniques is the support for modelers

in the design of process models. Here, a modeler is pointed to activities or fragments

that share characteristics with the currently designed model. Based on these suggestions,

the modeler can orient the layout of the new process model towards existing designs.

Whereas the techniques referring to the management of modeling collections analyze

existing collections, modeling support aims to reuse knowledge from collections and to

ensure consistent modeling from the beginning. Awad et al. [14] and Chan et al. [153]

introduce approaches that support modelers by presenting alternative modeling options

and giving the modeler the chance to select an option. Additionally, Niedermann et al.

[154] present the idea of taking existing process analysis results during modeling into

account. Therefore, correspondences between the created model and existing models are
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used to apply insights from past process executions to the new model. This way process

optimization can already be conducted during design time.

A further area that benefits from process model matching techniques is compliance

checking. It deals with determining if a process model adheres to rules, e.g., regulatory

guidelines induced by the law, or internal standards implemented by a company. In case

these rules exist as reference process models, matching techniques can help to check

whether all necessary activities are implemented. Process similarity metrics could then be

used to validate that control flow constraints are also met. This method could be applied

in a variety of scenarios, e.g., when processes of service providers must be compared

to customer requirements [49] in the context of service management platforms [155].

Similarly, this method can be of use for the evaluation of standard software [156] where

the processes of the software packages are compared to the processes in a company [157].

Moreover, Branco et al. [16] apply business process model matching in the context of

model-driven engineering [158, 159]. Their goal is to verify that a software process is

compliant to the higher level business process defined in an early phase of the software

development project.

There also exist compliance checking algorithms that support scenarios where the

regulatory rules are not represented as process models. Instead, they are encoded as

logical rules which might be derived from legislative texts or other sources. These rules

contain relations between possible states of the process execution. To utilize these rules,

the process models must be annotated with the respective states. Then, algorithms are

applied to verify whether the constraints imposed by a rule are satisfied in a process model.

According techniques include [87–89]. As the annotation of process models requires

human effort, correspondences could be used to transfer annotations between models.

The last use case scenario for business process model matching considered here

is the consolidation of business processes. It is seen as one of the central use cases

for matching [116, 160–162]. In case two companies merge and want to unify their

business processes, process model matching techniques help to identify the similarities

and differences between process models. In this regard, a further use case is inductive
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reference process modeling [18, 163, 164] where reference process models are derived

from a set of existing process models.

These use cases illustrate the broad variety of application scenarios for business process

model matching techniques in practice. Despite this demand, the support for these use

cases that professional process modeling tools offer is insufficient. Tools like Signavio8,

or ARIS9 do not employ business process model matching techniques, but determine

correspondences based on equal attributes, mainly labels and identifiers [116]. As will be

discussed in the next section this is clearly not sufficient as process models from practice

are often characterized by textual and structural heterogeneity. In summary, the use cases

as well as the insufficient support offered by professional tools illustrate the practical need

for process model matching techniques.

3.3 State of the Art

The second part of sub-hypothesis H1, the scientific demand, is subject to this section.

Its verification is based on a critical review of the current state of the art on business

process model matching. Therefore, the particular questions that the review aims to

answer are introduced in Section 3.3.1. Next, the search strategy that was applied to

identify relevant literature is explained in Section 3.3.2. Then, the identified literature is

briefly summarized in Section 3.3.3. Finally, Section 3.3.4 discusses the state of the art

based on the questions and identifies the research gap.

3.3.1 Questions

The examination of the state of the art is guided by four questions that view the related

work from two angles. First, there are two questions that focus on the matching techniques

as the research artifact. To this end, the first question refers to the applicability and exam-

ines, if the application of matching techniques is restricted to certain matching scenarios.

8http://www.signavio.com/, accessed: 13/01/2017
9http://www.softwareag.com/de/products/aris_alfabet/default.asp, accessed:

13/01/2017

http://www.signavio.com/
http://www.softwareag.com/de/products/aris_alfabet/default.asp
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Additionally, the second question focuses on the evidence that was given towards the

effectiveness of the matching techniques. In contrast to these two questions, the other two

questions investigate the research underlying the development of the techniques. Here,

the third question is related to the type of the research approach and the fourth question

to the empiricism in terms of the amount of empirical data the research relies on. All

questions are outlined in the following.

Q1 - Applicability: Is a broad applicability of the matching techniques ensured? In order to

be applicable in as many matching scenarios as possible, the techniques should not pose

any restrictions on the process models. The restrictions can refer to a diverse range of

characteristics. The following requirements refer to the most important characteristics.

First, there are different modeling languages available (cf. Section 2.3). Consequently,

matching techniques must be able to process a diverse range of such languages.

Second, not all modeling languages provide means to capture the informational and

organizational perspectives of a business process, e.g., in their basic form EPC and Petri

nets do not provide such elements. Even if a language provides appropriate elements

it cannot be assumed that they are also used. For example, zur Muehlen et al. and

Recker [122] observe that only a small subset of BPMN elements is used in practice with a

strong emphasis on functional and behavioral perspective (cf. Section 2.3). Consequently,

matching techniques have to be able to compute alignments by only exploiting the activity

descriptions and the control flow.

Third, while the labels within a model collection are expected to rely on the same

natural language, it cannot be assumed that the process model elements are labeled

homogeneously, i.e., with equal labels. This is supported by various empirical observations.

Mendling et al. [38] and Leopold [39] observed that labeling styles vary within model

collections. Similarly, Pittke et al. [165] revealed that control flow constraints might be

encoded in labels rather than being expressed with the according modeling language

elements. Weber et al. [166] observed that there are activities with similar purposes, but

different labels. Finally, Gottschalk et al. [144] were challenged by the versatile labeling

of similar activities when consolidating a set of process models from Dutch municipalities.
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Fourth, matchers cannot expect models to be sound. Basically, a model is considered to

be sound, if for each state during the execution of the process, it is possible to terminate

the process [91]. Typical errors that lead to unsound models include deadlocks and

livelocks. Again, this requirement is based on various empirical evidence. Fahland et al.

[90] report that 49% of 735 models that stem from three IBM libraries are unsound and

Mendling [64] discovered that 21% of the 604 EPC models from the SAP reference model

are unsound. An extensive overview on quality aspects of business process models that

further substantiates the last two requirements can be found in [167].

Lastly, matching techniques must be aware of a varying granularity in process models.

Such differences usually result in complex correspondences. In this regard, Dijkman

[12, 13] observed differences in the granularity where a set of activities in one process

model implements the same or overlapping functionality as a single activity or a set of

activities from another model.

Based on these requirements the applicability of a matching technique is estimated to

be high, if it implements all requirements. Similarly, a matcher is considered to have a

medium applicability, if one or two of the requirements are violated. In all other cases the

applicability is classified as low.

Q2 - Effectiveness: How effective are the matching techniques? In contrast to the first

question which refers to the input of the matching techniques, the second question is

related to the output in terms of the effectiveness. In particular, the effectiveness is

assessed by investigating the empirical evidence from the literature. That is, the reported

effectiveness measures (Section 3.1, Definition 3.6) and especially the f-measure are

considered. In cases where only precision and recall values are reported, the f-measure is

computed based on these values.

Based on the f-measure, the matchers’ effectiveness is classified as high (F ∈ (.6, 1]),

medium (F ∈ (.3, .6]), or low (F ∈ (0, .3]). This rough classification was chosen to provide

an overview of the results achieved in the process matching literature. More details are

provided in the context of the summary of the identified techniques and in the respective

publications. Note that in cases where a technique was evaluated in multiple publications,
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it might be assigned to a range of effectiveness classifications. Moreover, if no evaluation

results are presented for a matcher, its effectiveness was not assessed.

Q3 - Approach: What are the limitations of the applied research approaches? The goal of

this question is to examine whether there are any threats that limit the validity of the

existing research results. To this end, the research approaches applied in the literature

are classified and potential shortcomings are discussed. In this regard, the results of this

analysis substantiate the research approach underlying this thesis.

In particular, this thesis distinguishes between five categories of approaches. First,

the proposition approach characterizes literature that introduces a design for a matching

technique, but does not present any empirical evidence that supports the underlying

assumptions or that demonstrates the technique’s effectiveness. Clearly, such works do not

allow to assess the utility of the design choices. Second, papers might present an illustra-

tion of the proposed technique. While this approach enables readers to comprehend the

intended use and functioning of the technique, there is still no quantifiable evidence that

supports the technique’s design. Third, the evaluation of a technique provides information

regarding the effectiveness of the technique. Here, a technique is applied to a set of model

collections, its suggestions are compared to a predefined gold standard, and respective

effectiveness measures are reported. In contrast to the first two categories, papers that

follow this approach provide quantifiable evidence. Yet, the limitation of this approach is

that there is no baseline that allows for assessing whether the achieved effectiveness can

be considered to advance existing techniques or not. Fourth, papers might comprise a

comparison of different techniques to overcome the weaknesses of the evaluation approach

and to put the achieved effectiveness into context. Here, one or more techniques from

prior work serve as a baseline and the comparison of the effectiveness measures allows

for a more detailed assessment of the contributions of the introduced matcher. Yet, as

discussed in [168, 169], such comparisons need to be treated with care, as the results

might have been observed by chance. Fifth, the thesis thus also distinguishes analysis

approaches where an assessment of the basic cause-and-effect relationships is conducted.

By going beyond the pure evaluation of matchers and studying assumptions and design
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options, such an approach provides the most solid foundation for future improvements.

That is because it makes the utility of the design choices explicit and hence fosters the

reuse of them in future work.

Q4 - Empiricism: How many model pairs are typically used in the evaluation? In addition

to the third question, the fourth question addresses the size of the empirical data used

in the literature. To this end, the number of process model pairs is used as an indicator

for the size of the empirical data. The purpose of this question is twofold. On the one

hand, it helps to assess the external validity of the proposed approaches, i.e., to which

degree the achieved effectiveness can be generalized. Clearly, the higher the amount of

the model pairs, the more generalizable the results are. On the other hand, it puts the

extent of empirical data that this thesis relies on into perspective and justifies the choice

of four real-world datasets as the empirical base for this thesis.

3.3.2 Search Strategy

Business process model matching is closely related to the area of ontology and schema

matching where techniques for the comparison of database schemas and ontologies

are developed. An overview of schema and ontology matching algorithms is provided

in [119, 120, 170, 171]. Basic concepts and techniques are summarized in [138, 172].

Although the research in the context of schema and ontology matching provides a valuable

pool of concepts for process model matching, respective approaches are excluded from

the literature review. The reason is that in comparison to process models ontologies and

database schemas are characterized by different types of textual and structural information.

For example, entities in database schemas are usually labeled with terms, e.g., there might

be tables like ‘sales order’ and attributes like ‘order item’. Furthermore, typical relations in

database schemata include generalizations or aggregations. In contrast, activity labels in

process models contain phrases consisting of several words that describe an action and the

relations between these activities refer to temporal dependencies. Consequently, Dijkman

[116] observed that the quality of process model alignments yielded by the similarity
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flooding algorithm for schema matching [173] is poor. Additionally, the AML ontology

matcher [174] with good results in comparative ontology matching evaluations [26, 174]

yielded poor results on two out of three datasets in the process model matching contest

of 2015 [20].

Consequently, the literature search was limited to the field of process model matching

and its goal was to provide a representative collection of techniques from this field. This

also means that research areas in the field of BPM that are related to process model match-

ing, e.g., process similarity search, process querying and clone detection (cf. Section 3.2),

were excluded from the search. The reason is that techniques in this field aim to measure

similarity at the process or fragment level rather than at activity level. Thus, they do not

necessarily determine an alignment between process models. With that in mind, the focus

was on related work where a process model matching technique is introduced.

To identify such related work, the search strategy suggested by vom Brocke et al. [32]

(cf. Section 1.3) was adapted here. The basic structure of this strategy is to carry out a

journal search and refine it by a database search which finally is completed by a backward

and forward search. Here, the journal search was skipped and replaced by an analysis of

the two process model matching contests from 2013 and 2015 [19, 20] as the contests

were considered to be representative of the state of the art. The contests were carried

out in the context of the International Conference on Business Process Management

and invited researchers to submit their matching techniques. Therefore, the researchers

were required to provide a short description of their matcher as well as matching results

for various model collections. A brief overview of the two editions is provided in the

next section. In addition to the respective publications of the contest results in [19, 20],

another six papers that dealt with matching techniques were derived from the respective

reference lists.

Based on the eight publications that were identified so far a database search was

prepared by deriving search terms to query the databases. Basically, each of these terms

consisted of two terms. The first term referred to process models as the central artifact. In

particular, this comprised “process model” and “business process”. Here, the quotes indicate

that both words in the term needed to occur in the paper. The second term was related
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to matching including the terms match*, map*, and align*. The asterisk indicates that

different declinations are included, e.g., “match”, “matches”, “matching” or “matched”

satisfy the search term “match*”. As a result there were six search strings (“process model”

match*; “process model” map*; “process model” align*; “business process” match*;

“business process” map*; “business process” align*) which were seperately used to query

the databases. A further query constraint referred to the publication date of the papers. In

this regard, only papers that were published between 2000 and May 2016 were considered.

The latter date corresponds to the time at which the literature search was carried out. The

former was chosen, because modern BPM together with an increased usage of process

models arose at beginning of the 2000s [2].

To finalize the preparation of the database search, relevant databases were selected.

The focus was on databases that contain papers that are written in English, peer-reviewed,

and were published in well-known journals and conferences from the IS-domain. Thus,

the following databases were chosen: the IEEE Xplore Digital Library10, the ACM digital

library11, Science Direct12, Springer Link13, Google Scholar14 and Emerald Insight15.

During the database search the result lists for each database and search string com-

bination were examined in order to assess the relevance of the proposed papers and

to exclude papers that were out of scope. Therefore, the titles and the abstracts were

scanned. In most of the cases, the result lists comprised hundreds or thousands of papers

where papers with a low position were likely to be irrelevant. Thus, the result lists were

scanned stepwise starting from the highest position. For each result list the first 50 papers

were examined. Afterwards, papers were scanned until the distance to the last relevant

paper exceeded 20. Once all result lists were filtered, duplicates were removed from

the identified set of papers. At this point, the eight initial papers were used to validate

the database search. That is, it was checked, if the results contained these eight papers.

Except for the publication of the results of the second matching contest [20] all papers

10http://ieeexplore.ieee.org/Xplore/home.jsp, accessed: 13/01/2017
11http://dl.acm.org, accessed: 13/01/2017
12http://www.sciencedirect.com, accessed: 13/01/2017
13http://link.springer.com, accessed: 13/01/2017
14http://scholar.google.com, accessed: 13/01/2017
15http://www.emeraldinsight.com, accessed: 13/01/2017

http://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org
http://www.sciencedirect.com
http://link.springer.com
http://scholar.google.com
http://www.emeraldinsight.com
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FIGURE 3.4: Overview of the search process and the identified papers

were present. The reason for the absence of this paper is that it was published in the

Lecture Notes in Informatics by the German society for computer science (Gesellschaft für

Informatik) which were not indexed by any of the databases at this time. However, this

result was considered to verify our strategy. Nevertheless, the completeness of the search

is limited by the completeness of the employed databases. Thus, to mitigate the risk of

overlooking papers, the database search was finally complemented by a backward search

over the references in the identified papers.

All identified papers were evaluated and only those papers that were relevant with

respect to the questions were selected. Here, the inclusion criterion was that the papers

introduced a process model matcher. In contrast, papers that (i) discussed process model

matching (e.g., [175, 176]) ; (ii) addressed aspects of model collection management (e.g.,

[177–180]) ; (iii) discussed support for process model design (e.g., [153, 181]); or (iv)

referred to Business-IT alignment ([182]) were excluded.

The final set of relevant literature contained 19 papers where two of the papers [50, 51]

were co-authored by the author of the thesis. As these two papers include results that are

discussed in this thesis, they were removed. Thus, the literature search revealed a total

of 17 papers. The search is summarized in Figure 3.4 and an overview of all identified

papers is provided in Appendix A.

3.3.3 Matching Techniques

Next, all techniques that were identified during the literature review are briefly summa-

rized. To ensure that relations between these techniques are comprehensible, they are

presented in historical order.

Semantic Alignment of Business Processes [160] A generic approach to identify ele-

mentary correspondences between elements of Pr/T nets [183] which are a specialization
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of Petri nets is proposed in [160]. Besides correspondences between transitions, the ap-

proach also suggests correspondences between other elements. The authors later adapted

the approach for process similarity search [145]. In the approach the types of elements

that should be matched and the relevant properties of these elements are determined first.

Then, for all possible property pairs similarity scores are calculated based on manually

created ontologies and aggregated in order to yield a similarity score per element pair.

Based on the scores, corresponding element pairs are selected and another iteration might

be triggered to refine the results. The approach is not evaluated.

Matching Statecharts Specifications [161] A matcher that is tailored to dialects of state-

charts [184] and especially to ECharts [185] is presented in [161]. The approach focuses

on matching states. Transitions are not matched, but analyzed during the matching

process. The authors propose two types of sub-matchers. Static matchers investigate

labels and positions of states. Behavioral matchers examine whether two states depend

on or transition into similar states. In an evaluation based on three statechart pairs it is

shown that the approach achieves recall values between .81 and 1.0 as well as precision

values between .51 and .55.

Aligning Business Process Models [116] A configurable matching technique is intro-

duced in [116]. To measure the similarity of activities, a syntactic measure is applied to

the labels. Additionally, the labels can be harmonized before the score is calculated. Based

on the scores there are two ways to determine an alignment. First, activity pairs that

have a label similarity score higher than a threshold are classified as a correspondence.

Second, alignments can be identified by optimizing an overall similarity score for the

process models which is also used for similarity search in [146]. This score is based on

the graph edit distance [186] and besides the label similarity score also takes the number

of matched activities and edges into account. To construct an alignment, correspondences

are added to the empty alignment as long as the score can be improved. Therefore, a

greedy strategy and the A-star heuristic [187, 188] are used. Finally, a post-process step

can be activated in order to also yield complex correspondences by extending elementary

correspondences. Different variants are evaluated on a dataset that comprises 17 model
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pairs from Dutch municipalities. Here, the macro f-measures of the variants range in

between .66 and .72.

Complex Mapping Discovery [189] Another approach that relies on a graph edit dis-

tance is proposed in [189]. As the approach is applied for Web Service retrieval, the

identification of correspondences relies on the comparison of the labels as well as of

annotated input and output objects. First, all activity pairs with compatible input and

output are determined and ranked with regard to a weighted similarity score that is based

on the labels and the input and output objects. From this set of potential elementary

correspondences a set of 1:n-correspondence candidates is derived. Here, elementary

correspondences are composed, if the activities from the n-side occur in the same sequence,

parallel or exclusive block, and if the similarity score of the combination is sufficiently

high. Finally, all candidates are considered to construct an alignment that maximizes a

graph edit distance. The matcher is not evaluated.

The ICoP framework [162] The ICoP framework [162] provides components for the

detection of elementary and 1:n-correspondences. Like the general matching workflow

[140], it constitutes a configurable and extendable infrastructure that allows users to select

components according to their needs. Searchers constitute the first set of components

that are used to identify potential correspondences by applying similarity measures and

heuristics. The result of the searcher execution is a multi-set of correspondences from

which a set of correspondences can be constructed through the application of boosters.

In this regard, correspondences are removed or aggregated and similarity scores are

adapted. Finally, selectors construct an alignment by selecting correspondences from the

set. Therefore, a selector can either rely on the determined similarity scores or on an

evaluator. Evaluators calculate overall scores for potential alignments and might rely on

properties derived from the process models. The ICoP framework also provides a couple

of implementations for all of these components. Different configurations of the framework

are evaluated using the 17 model pairs from [116] as well as three additional model pairs.

Moreover, they are compared to a variant of the matcher from [116]. The f-measures for

all matchers differ only marginally and are located close to a value of .6. Weidlich et al.
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[162] observed low f-measures of about .3 for the three new model pairs. Due to these

model pairs, the overall f-measures were lower than those reported in [116].

Summary-Based Process Model Matching [190] A refined version of their previous

work [189] is discussed by Gater et al. [190]. The matcher also considers input and

output objects that are annotated to the activities. It first summarizes process models,

by composing parallel and alternative blocks as well as sequences into a single activity

and deriving a label as well as input and output annotations from the activities in the

block. Then, the summarized versions of the process models are matched using a graph

edit distance approach. The alignment is then refined by adding unmatched activities

to correspondences in their neighborhoods. Moreover, m:n-correspondences are broken

down to elementary and 1:n-correspondences. Based on an evaluation of 1,200 model

pairs, an overall f-measure of .84 is reported.

Precise Mappings in Versioning Scenarios [191] The matching technique from [191,

192] determines correspondences between activities as well as between edges and frag-

ments. The approach supports a specific scenario where an original and two of its versions

are compared. The basic idea is to establish an alignment whenever a new version of a

model is created by copying the original and to automatically update it whenever changes

are made to the new version. As the updates might not cover all changes, missing corre-

spondences are identified automatically. First, the labels of all activity pairs are compared

to identify missing correspondences between activities. Then, missing correspondences

between edges are identified by checking whether there are edges with corresponding

sources and targets. Finally, fragments are derived through a structural decomposition

of the models. To compare two fragments Gerth et al. [191] rely on descriptions that

combine the labels within the fragment as introduced in [193]. Alignments between

versions of the same original are initially inferred from the alignments between the ver-

sions and the original. Then, they are completed by applying the same procedure for

completing alignments between the original and its versions. Due to a missing evaluation,

the effectiveness requirements cannot be assessed.



3.3 STATE OF THE ART 79

Matching Processes Across Abstraction Layers [16] The matcher from [16] is designed

to support compliance checks in model driven engineering projects where abstract pro-

cess models are compared to refined and more fine-grained models. The approach first

classifies all node pairs with equal labels and types as elementary correspondences. As

the scenario suggests the existence of many complex correspondences, a structural de-

compositions of the process model in terms of fragment hierarchies are used to identify

complex correspondences. For each fragment the labels of its activities are combined and

a syntactic label similarity measure is used to compare the combined elements. Corre-

spondences in the fragment hierarchies are identified by a top-down traversal. Branco et

al. [16] present an evaluation of the approach based on 110 model pairs from the Bank

of Northeast Brazil. The overall macro f-measure is .81. However, while the approach

detects 400 of the 416 elementary correspondences, it only identifies 38 out of the 222

complex correspondences.

Semantic Process Model Matching [194] Labels typically contain different components

that describe the action and the business object or that provide additional information.

Accordingly, Leopold et al. [194] compare labels based on the components that they

derive by applying their own component detection algorithm [195]. Based on a weighted

component similarity score, they use Markov logic networks [196] to construct alignments.

In this regard, they further define a set of constraints that alignments must satisfy. These

constraints refer to the inclusion of complex correspondences as well as to the consistency

of behavioral dependencies. The evaluation is based on 36 model pairs and a configuration

of the ICoP framework serves as a baseline. Here, the approach by Leopold et al. [194]

slightly outperforms the ICoP framework in terms of the f-measure (.318 vs. .294).

The Prediction of Matching Quality [197] A flexible approach to process model match-

ing is discussed in [197]. The basic idea is to select the most promising matcher for a

given process model pair. Therefore, a prediction model is trained on a set of known

alignments. This model identifies correlations between the effectiveness of matchers

and characteristics of process models as well as of activities. Once the prediction model

was learned, it can be used to identify matchers with a high effectiveness for a given
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process model. While a set of measures to assess characteristics of models and activities

is introduced, the framework does not comprise any specific matching techniques and

was not evaluated.

Matching Based on Positional Language Models [198] Process models often do not

exist in isolation, but are accompanied by documentations. Accordingly, Weidlich et

al. [198] propose a technique that allows for integrating additional documents into

the matching process. The matcher first derives a document for each process model.

Therefore, it traverses a structural decomposition of the model to transform it into a

sequence of activities. Then, each activity is transformed into a passage that contains

the label and additional documentation, if it exists. Afterwards, similarity scores are

computed for each activity pair by comparing the respective passages. Therefore, the

probability of terms to occur in the passages is determined based on the work by Lv and

Zhai [199]. Then, a similarity score is computed using these probabilities by applying the

approach from [200]. Finally, the alignment is identified by selecting the most similar

activity pairs. The evaluation comprises four different sets of model pairs from [16] and

[162]. The f-measure varies between .18 and .33 on these sets.

The Process Model Matching Contest 2013 [19] Besides the approaches from [116,

162, 197] and a technique developed by the author of this thesis (cf. Chapter 4) three

additional approaches that were not published anywhere else were submitted to the

contest. The Triple-S technique measures the similarity of activities based on their labels

as well as the number of incoming and outgoing edges. All activity pairs whose respective

similarity score is higher than a predefined threshold are suggested as correspondences.

The RefMod-Mine/NSCM (RMM/NSCM) technique is tailored towards Petri nets. In the

first step, it identifies transitions in the Petri nets whose labels indicate that these transi-

tions are actually places. The detection of such transitions is based on the analysis of the

form and position of verbs and nouns in the labels. All identified transitions are ignored

during matching. Contrary to other approaches from related work RMM/NSCM matches

all models in a model collection at once. Therefore, all transitions are compared to each

other and a single similarity score is computed for each transition pair. This score solely
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relies on the transitions’ labels. In particular, it splits the labels into sets of words and

removes stop words. Next, it computes the stem for each word. Then, the score is the

percentage of stems that occur in both labels. If the score is below a predefined threshold,

it is set to 0. In all other cases it is checked whether the labels contain antonyms and thus

can be considered totally disimilar. If there are antonyms, the score is set to 0. Based

on the similarity scores for all transition pairs, hierarchical agglomerative clustering is

applied to cluster the transitions. At the beginning of the clustering a cluster is created for

each transition. Then, the clusters are stepwise merged by determining the two clusters

containing the most similar transitions and merging these clusters. The clustering stops

when the maximum score for a transition pair with two transitions from different clusters

is 0. Finally, the identified clusters are translated to correspondences, i.e., each pair of tran-

sitions from the same cluster is considered a correspondence. The RefMod-Mine/ESGM

(RMM/ESGM) also filters and harmonizes activities. The selection of correspondences

follows the approach by [116], but exploits dictionary lookups and syntactical similarity

measures to compare labels. Lastly, the alignment is completed by adding activity pairs

with a similarity score higher than a predefined threshold to the alignment. In addition to

the dataset from [194], the evaluation of the matchers comprised another set of 36 model

pairs. All approaches yielded a low effectiveness with the highest f-measures at about .4.

Multi-Perspective Matching [201] Another variant of the approach by Dijkman et al.

[116] is presented in [201]. The extension is intended to identify complex correspon-

dences, but is limited to process models that represent sequences. In contrast to [116] the

similarity score for two activities is not only computed with regard to the labels. Instead,

it also considers the order of the activities in relation to all other correspondences, the

ratio of data objects shared by the activities, and the roles responsible for the execution

of the activities. The approach is not evaluated.

Semantic Model Alignment [202] Fengel [202] presents an approach to

model matching that only relies on the labels. In a pre-processing step the process

models are transformed into a common format which is based on the web ontology

language [203]. Next, a label similarity score is determined for each activity pair. This
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score considers equal labels, the number of shared words and synonyms, the existence

of negation words (e.g., “not”), and a label based similarity. Given the similarity scores,

each activity pair is classified as an exact, a close, a loose, or a low correspondence. Based

on an evaluation on eight model pairs, a macro f-measure of .89 is reported.

Fast Discovery of Complex Matches [204] The next approach is again a variant of the

approach by Dijkman et al. [116]. However, Ling et al. [204] do not match activities, but

activity groups that are derived from structural decompositions of the process models.

First, the set of activity groups is determined for each model. Then, a similarity score is

computed for each pair of activity groups. In this regard, Ling et al. [204] do not explain

how this score is computed. Each group pair gp for which there is no other group pair

gp′ that comprises subsets of the groups in gp and yields a higher similarity than gp

is a potential correspondence. The alignment is then derived from the set of potential

correspondences through the application of the greedy strategy introduced by Dijkman

et al. [116]. Therefore, the overall alignment similarity is adapted to consider sets of

substituted and of skipped activity groups as well as of skipped edges. Additionally, a

further component is added to account for the corresponding edges within pairs of activity

groups. The authors conduct an assessment of the effectiveness based on 20 model pairs.

Here, the approach achieves an f-measure .73.

Resource-Aware Process Matching [205] Baumann et al. [205] refine their own work

from [201]. In particular, they extend their approach through a more fine-grain assessment

of the organizational perspective. Therefore, they introduce different approaches to

compute an activity similarity score based on the roles assigned to the activities. This

score distinguishes between human and non-human roles as well as resources. Although

the authors discuss practical limitations of their approach, they do not provide any

evaluation results.

The Process Model Matching Contest 2015 [20] The second edition of the matching

contest concludes the presentation of matching techniques from prior research. In this

edition of the contest twelve matchers were evaluated. Besides matchers from [19, 198]

and the technique from Chapter 5 there were nine additional techniques which are briefly
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summarized in the following. The AML-PM matcher is a based on the AML ontology

matcher [174]. It compares two process models by first transforming the models into

an ontological representation. AML-PM loads the ontological representations and pre-

processes them. That is, it transforms the ontologies into an efficient data structure

that comprises lexical, structural, and semantic information from the models. It also

contains a lexicon that contains the labels and automatically derives synonyms. Next,

AML-PM detects all activity pairs with the same labels and adds them to a set of potential

correspondences. All remaining activity pairs are then processed by the string matcher

which computes a string similarity score per pair. In this step, all pairs with a similarity

score above a predefined threshold are added to the set of potential correspondences. In

the final step, the word matcher is applied to all activity pairs that are not in the set of

potential correspondences. This matcher is based on the Jaccard index and it is run twice:

first without label modifications and in the second run all words are stemmed. Again,

activities with scores above a threshold are added to the set of potential correspondences.

In the last step, the alignment is constructed by ranking the potential correspondences

in descending order with regard to the similarity scores. Then, the correspondences are

stepwise added to the alignment. A correspondence is only added, if none of the two

activities is already part of a selected correspondence. Thus, the matcher only suggests

1:1-correspondences. For each activity the KnoMa-Proc matcher extracts its neighboring

activities and joins their and the activity’s labels. It then uses the joined labels to determine

correspondence candidates for each activity based on a non-specified approach. From

the set of candidates an alignment is constructed by considering the confidence in the

correspondences. The Match-SSS and the Know-Match-SSS techniques compute similarity

scores based on the words in the labels and select correspondences with high scores. The

approaches differ with regard to the applied word similarities. The RefMod-Mine/VM2

(RMM/VM2) matcher first identifies all activity pairs with equal labels. Next, activity

pairs with similar words in different orders are determined. Lastly, correspondences are

added based on a label similarity score that utilizes statistics on the occurrence of words

in the model pair. The RefMod-Mine/NCHM (RMM/NCHM) matcher is an extension of

the RMM/NSCM technique from the first contest [19]. In contrast to the first version,
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the RMM/NCHM incorporates a post-processing step to filter activity pairs with different

roles. The RefMod-Mine/NLM (RMM/NLM) matcher computes label similarity scores

based on word relations in a dictionary. It selects all activity pairs whose similarity score is

considered to be high. The RefMod-Mine/SMSL (RMM/SMSL) is also based on the analysis

of word relations. However, it optimizes the similarity scores based on gold standard

alignments. Lastly, the pPalm-DS matcher also solely relies on labels. It computes a label

similarity score for each activity pair in the two process models being matched. If the

score of an activity pair is higher than or equal to a predefined threshold, it is proposed

as a correspondence. In contrast to many other approaches pPalm-DS relies on corpora

to compare the words in the labels. It relies on the Gigaword corpus and a collection of

English Wikipedia articles. Both corpora are processed using the word2vec16 library, in

order to extract semantic context vectors with 300 elements for the words in the corpora.

Based on the vectors a label similarity score is computed as follows. First, the labels are

split and the sets of words are derived. Then, for each word the context vector is retrieved

and per label the respective context vectors are summed up to yield the context vector

for the label. Finally, the similarity score is the cosine similarity of the two label vectors.

Similar to RefMod-Mine/VM2, it computes label similarities based on word occurrences.

To determine occurrence counts, it does not consider the process models, but Wikipedia17.

There are three datasets used to evaluate the matchers. The best f-measure scores on

each dataset rank in between 0.54 and 0.68.

3.3.4 Results

To identify the research gap, the identified literature is now examined. Therefore, each

publication is characterized with regard to the four questions. In the following, the focus is

first on the applicability (Q1) and the effectiveness (Q2) of the matching techniques. After

that, the underlying research approaches (Q3) and the empiricism (Q4) are discussed.

Table 3.2 summarizes the assessment of all identified publications.

16https://code.google.com/p/word2vec/
17https://en.wikipedia.org/, accessed: 13/01/2017

https://code.google.com/p/word2vec/
https://en.wikipedia.org/ 
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TABLE 3.2: Summarized assessment of the approaches from prior research

Q1 - Q2 - Q3 - Q4 -

Source Applicability Effectiveness Approach Empiricism

[19] high low - medium Evaluation 72

[20] high low - high Evaluation 108

[160] medium not assessed Illustration

[161] medium medium - high Comparison 3

[116] high low - medium Comparison 17

[189] medium not assessed Proposition

[162] high medium - high Comparison 20

[190] medium high Comparison 1200

[191] medium not assessed Proposition

[16] medium high Comparison 110

[194] medium low Comparison 26

[197] high not assessed Proposition

[198] high medium Comparison 130

[201] medium not assessed Illustration

[202] high high Evaluation 8

[204] high high Evaluation 20

[205] medium not assessed Proposition

That matchers need to be applicable in a broad variety of scenarios is widely ac-

knowledged in the literature. That is because there are no restrictions imposed on the

applicability in 8 of the 17 publications and thus the applicability of the respective match-

ers is considered to be high. Moreover, the remaining publications only introduce one or

two restrictions, which still allows for a broad application of the matchers. Consequently,

none of the approaches from the literature has a low applicability.

In contrast to the applicability, the effectiveness of the matchers is generally insuffi-

cient. Admittedly, there are results that give evidence towards a high effectiveness, e.g.,
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the matchers in [16, 190, 202, 204] achieve a high effectiveness on the entire dataset.

However, the according publications are typically characterized by a small size of the

dataset as in [202, 204] or by restrictions regarding the applicability as in [16, 190].

In the rest of the publications that presented evaluation results, evidence is given that

the effectiveness of the approaches varies including a low effectiveness on parts of the

data. These observations suggest that the difficulty of the datasets varies and that further

research to improve the effectiveness of matching techniques as postulated by the research

hypothesis H1 is required.

A further shortcoming of the identified publications is related to the research ap-

proaches which can be assigned to one out of four classes. First, there are three papers

that only propose matchers but provide no empirical evidence. Another two papers use

one synthetic example to illustrate how the matcher is supposed to work. Papers falling

into these classes do not provide any evidence towards the proposed ideas and concepts.

Among the remaining twelve publications, there are three papers [19, 20, 204] that

evaluate matchers as black boxes. Such an evaluation assesses the effectiveness of the

entire matchers, but an analysis of the influence of the matchers’ components is not con-

ducted. Thus, the re-use of these matchers’ components in the design of the more effective

matchers is not enforced. For example, the matcher in [204] comprises components that

compute label similarity scores, investigate the graph neighborhood, detect fragments,

and check the consistency. Clearly, the reported overall effectiveness provides no insights

into the contribution of each component. Similarly, the contests [19, 20] compare the

effectiveness of various matchers, but not the influence of their respective components.

Another seven papers compare the effectiveness of different matcher variants. However,

as e.g., discussed in [168, 169] such results need to be interpreted with care and typically

have a limited validity. That is because without further statistical analyses differences

might have been observed simply by chance – especially as the reported difference are

rather small, e.g., the f-measures in [116] differ by about .06 and in [162] by ≈ .05.

Moreover, the results of all variants are typically dependent on a basic variant. This entails

the risk that the relative performance of the variants and thus the contribution of the

components changes, if the basic variant is modified. For example, the approaches in [194]
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and [162] analyze structural relations between correspondences to assess the consistency

of the correspondences. While in [194] this assessment improves the effectiveness of

a basic variant, it reduces the quality in [162]. This shows that even those papers that

compare variants are characterized by a limited validity regarding the contribution of the

matchers’ components. Finally, there is no paper that analyzes the results and techniques

in more detail.

In summary, the majority of the works focuses on the evaluation of the matchers’

effectiveness, but does not study whether the separate design decisions have a generally

positive or negative effect on the identification of correspondences. Thus, the re-use of

proposed concepts is not enforced. This observation also motivates the research approach

in this thesis which explicitly incorporates the examination of matching propositions to

understand which design decisions have the potential to improve the matching. Moreover,

almost no publication distinguishes between data that is used to develop the matcher and

data that is used to evaluate it. Yet, this is necessary to avoid fitting the matchers to the

data [37]. Here, the matching contests [19, 20] constitute an exception, as researchers

were provided with an excerpt of the data in order for them to finetune their approaches.

All the data was only used by the organizers to evaluate all submitted approaches. As

a consequence, the results presented in the related work are likely to draw an overly

optimistic picture of the effectiveness. This substantiates the decision to study the general

validity of the matching techniques on separate datasets in this thesis.

Considering that companies maintain model collections with up to hundreds or thou-

sand of models, the extent of the empirical data in the literature is rather small. Only

four publications comprise more than 100 different model pairs. In this regard, [190] is a

notable exception as 1,200 model pairs are used. The overall limited extent of data was

considered during the collection of empirical data in this thesis. More details regarding

the data are given in the next section.

In summary, the assessment of the four questions justifies the research in this thesis. On

the one hand, this pertains the improvement of the existing matching techniques. While the

applicability of the matchers is generally high, it was shown that their overall effectiveness

is insufficient. On the other hand, the research approaches in the literature focused on the
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evaluation of the matchers. But, the effects of the underlying design decisions are rarely

studied. Moreover, development and evaluation data is rarely separated impacting the

generalizability of the findings. These two issues substantiate the research design chosen

in this thesis. Moreover, the amount of empirical data used in prior work is generally small

and hence limits the general validity of the results. This warrants a broader evaluation

which is hampered by the unavailability of datasets. Thus, as outlined in the next section

the author of this thesis aimed to improve the situation by collecting additional datasets

and making them (partly) available to the community.

3.4 Model Collections

As outlined in the previous section, prior work primarily focused on evaluating the ef-

fectiveness of matching techniques. Due to the lack of detailed analyses the validity

and the limitations of assumptions and design decisions are rarely studied. In order

to overcome this problem, this thesis utilizes four real-world datasets for analysis and

evaluation. In particular, two datasets are used during development to study fundamen-

tal design decisions based on behavioral analyses as well as to evaluate and fine-tune

designs of matching techniques. Using all data during development entails the risk to

fit the matchers to the data and to over-estimate the validity of design decisions [37].

Consequently, two evaluation datasets are exclusively used to exmaine the general validity

and the limitations of the matchers. Contrary to prior work, this approach allows for

explicating the limitations and the general validity and hence also fosters reuse. In the

following all four datasets are introduced and characterized with regard to their models

and gold standards. Moreover, as some of the datasets were used in the matching contests

of 2013 and 2015 [19, 20], the respective results are introduced as a baseline for the

evaluation of the matching techniques.

The University Admission (UA) dataset was introduced by Leopold et al. [194] and

also used in the process model matching contest 2013 and 2015 [19, 20]. It contains nine

Petri net models that describe admission processes of nine different German universities.

The process models were created by students in the context of business process modeling
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lectures at Humboldt University of Berlin. The gold standard was created by three experts.

Two of the experts created alignments for all of the 36 model pairs manually. Afterwards,

these alignments were merged by the third expert who dissolved differences. Note that

in the second matching contest [20] a different version of this dataset including BPMN

models and a new gold standard was used. In contrast to the original gold standard

from [19, 194] the new version is based on the assumption that correspondences only

exists between activities with the same or similar roles. As outlined in Section 3.3.1 it

cannot safely be assumed that such information is present in the models. Moreover, the

alignment of roles is a separate problem and the selection of correspondences based on

role similarity can be implemented as a post-processing step where the alignment between

roles is used to filter the previously identified correspondences. For these reasons, the

first version of the dataset from [194] along with the evaluation results from [19] is used

in this thesis. This version is publicly available18.

The second dataset is the Birth Registration (BR) dataset which was introduced in the

context of the process model matching contest 2013 [19]. It also comprises nine Petri net

models which describe processes for birth registration in Germany, Russia, South Africa

and the Netherlands. Whereas four models were again created by students at Humboldt

University of Berlin, five of the models stem from a process analysis project at Dutch

municipalities. The creation of the gold standard followed the same procedure that was

applied for the UA dataset.

The UA and the BR datasets were chosen as development datasets because they

were available at the beginning of the research project and guided the development of

earlier versions of the presented techniques [50, 51]. The models in both datasets were

(partly) created by students. Considering such models as real-world data is justified by the

observation that the modeling performance of students is similar to the performance of

experts [40]. However, to also include model collections from a professional background,

the SAP Reference Model (SR) and the Alma Web (AW) dataset were developed in a later

phase of the research project and used as evaluation datasets.

18http://www.henrikleopold.com/downloads, accessed: 13/01/2017

http://www.henrikleopold.com/downloads
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TABLE 3.3: Descriptive statistics for the process model collections

Models Activities

Dataset # Pairs Language Min Max Ø Σ

Alma Web AW 9 36 German 3 22 7.4 67

Birth Registration BR 9 36 English 9 25 19.3 174

SAP Reference Model SR 72 36 English 1 43 9.3 667

University Admission UA 9 36 English 13 48 27.6 248

The SAP Reference Model (SR) dataset is based on the SAP Reference model which

was discussed in the literature [64, 85, 146]. It contains process models related to finance

and accounting. The dataset was created by the author based on the similarity search

evaluation in [146]. It comprises 36 model pairs, but in contrast to the UA and the BR

datasets these model pairs comprise 72 different EPC models. Furthermore, the dataset

covers a broad variety of scenarios. There are model pairs with almost identical models

and some model pairs comprise models that do not share any correspondences. The rest

of the model pairs is somewhere in between. The gold standard was created by two

experts including the author that independently identified gold standards. These gold

standards were automatically merged and the differences were dissolved in a discussion

between both experts. The gold standard was provided to the process model matching

contest 2015 [20] and was published19 by the organizers of the second contest together

with the BR dataset.

The last dataset is the Alma Web (AW) dataset which contains nine BPMN process

models from different faculties of the Leipzig University. The process models were created

within the AlmaWeb project 20 and deal with the examination management at the faculties.

While all other datasets were created in English, this dataset contains labels in German.

For the creation of the gold standard the author applied the same procedure as for the SR

dataset. This dataset is not publicly available.

19https://ai.wu.ac.at/emisa2015/contest.php, accessed: 13/01/2017
20https://almaweb.uni-leipzig.de, accessed: 13/01/2017

https://ai.wu.ac.at/emisa2015/contest.php
https://almaweb.uni-leipzig.de
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TABLE 3.4: Descriptive statistics for the gold standards

Activity Pairs

Dataset 1:1 1:n m:n Corresponding Total

AW 27 53 25 375 1,866

BR 156 95 13 584 13,358

SR 137 16 3 218 4,559

UA 251 77 1 531 26,853

Table 3.3 provides an overview of the process models that are part of the datasets.

While all datasets comprise 36 model pairs, the size of the process models differs as

indicated by the average number of activities. On average the AW dataset contains the

smallest process models, followed by the SR dataset. In contrast, the models of the other

two other datasets contain more activities.

Furthermore, descriptive statistics of the gold standards are provided in Table 3.4.

The distribution of correspondences is different in all datasets. Due to the variety of the

matching scenarios the SR dataset has the smallest number of correspondences. Most of

these correspondences constitute elementary correspondences. The AW dataset has the

second smallest number of correspondences. However, from a relative perspecitve 20% of

the activity pairs correspond. This is the highest value among all datasets. Additionally,

only a small share of the correspondences comprises elementary correspondences. The UA

dataset has the lowest share of corresponding activity pairs and similar to the SR dataset

a large amount of the correspondences are elementary correspondences. Finally, the BR

dataset contains the most correspondences. Like the AW dataset it is also characterized

by a huge share of complex correspondences. In summary, the datasets cover a broad

variety of characteristics with regard to the model collections and the gold standards.

Three of the datasets were used in at least one of the two matching contests. Thus,

the corresponding results are used as a baseline in this thesis to compare the proposed

techniques to the state of the art. In this regard, the best technique in terms of the

f-measure was chosen for each dataset. As explained in Section 3.1 the micro f-measure

is in the focus of this thesis. Thus, it is used to select the best performing matchers from
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TABLE 3.5: Results of the matching contests 2013 and 2015 (cf. [19, 20])

Dataset Matcher prµ reµ Fµ prM reM F M

BR
RMM/NSCM - - - .68 .33 .45

pPalm-DS .502 .422 .459 .499 .429 .426

UA RMM/NSCM - - - .37 .39 .38

SR AML-PM .786 .595 .677 .664 .635 .480

the contests. However, in the first edition of the contest [19] only macro level measures

were used to evaluate the matchers. Thus, macro f-measures are considered where no

micro level f-measures are available. Moreover, techniques developed by the author were

excluded in order to achieve a comparison to the state of the art. The best results for each

dataset are summarized in Table 3.5.

As the UA dataset was only used in the first contest, the results of the RMM/NSCM

matcher which yielded the best f-measure are considered. The BR dataset was used in

both contest editions. Here, the RMM/NSCM matcher also performed best in the first

contest [19] and pPalm-DS in the second [20]. As both matchers achieve a similar macro

f-measure and micro f-measures are available for pPalm-DS, the results of RMM/NSCM

are discarded and only those of pPalm-DS will be used as a baseline. Finally, the AML-PM

achieves the best performance on SR [20].

3.5 Summary

This chapter dealt with the topic of business process model matching. Hence, it first intro-

duced the basic terminology and formal definitions. In this regard, a basic understanding

of matching techniques was provided. Additionally, it was shown how the effectiveness

can be assessed based on a set of model pairs and a respective gold standard that comprises

manually identified correspondences. Here, the (micro) f-measure was identified as the

primary effectiveness indicator.

Furthermore, the chapter discussed sub-hypothesis H1 and gave evidence to the

practical and scientific demand for further research on business process model matching

techniques. The practical need for matching techniques was demonstrated by reviewing a
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variety of use case scenarios. Therefore, an overview of approaches from the literature

that support various tasks in BPM and for which the availability of correspondences is

a necessary prerequisite was presented. Next, the scientific demand was substantiated

through a critical literature survey. In this survey 17 publications that introduced business

process model matching techniques were examined. It was shown that a broad applicability

of the techniques in different matching scenarios is generally ensured, but that their

effectiveness is insufficient. Moreover, the literature analysis revealed that the research

design in prior work is a further limiting factor. On the one hand, prior research primarily

focused on the evaluation of the effectiveness, but did not analyze the limitations and the

validity of the design decisions. Thus, reuse of matching techniques and design decisions

is not enforced. On the other hand, the amount of empirical data is typically small and

all data is used for the development which usually leads to an optimistic view onto the

evaluation results [37]. Although the survey only focused on the matching techniques and

ignored research from related fields, these findings are considered to draw a representative

picture for work on business process model matching. Hence, they justify the research for

more effective matching techniques and also back up the research approach in this thesis.

Finally, the empirical data used in this thesis was introduced. Here, the four datasets

which were divided into two evaluation and two development datasets were described. In

this regard, the origin of the models and the creation of the gold standards was discussed.

Based on descriptive statistics it was shown that the four datasets cover a variety of

scenarios. Lastly, evaluation results for three of the four datasets from the matching

contests in 2013 and 2015 [19, 20] were summarized. These results serve as a baseline

for techniques developed in this thesis.
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4
Comparing Activity Labels

H2: Label-based matching techniques yield a varying and generally insufficient

effectiveness.

While the model elements of a process modeling language provide means to capture

relevant aspects of processes and relate them to each other, the labels which are brief

descriptions expressed in a natural language assign meanings to these elements. Hence,

they constitute the primary source of information to determine the similarity of two

activities. This chapter draws on the importance of labels for business process model

matching and examines sub-hypothesis H2 by developing the Bag-of-Words Technique

(BOT), a matching technique solely relying on labels. To this end, the matching technique

is iteratively refined by evaluating and comparing the effectiveness of different versions on

the development datasets. First, a basic matching algorithm is introduced in Section 4.1.

95
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This algorithm considers labels as strings of characters. Subsequently, Section 4.2 refines

the algorithm by extracting words from labels and assessing the similarity of labels through

a comparison of the words. Whereas the first two variants compute similarity scores at

the syntactic level, Section 4.3 further extends the algorithm and examines measures to

evaluate the semantic relatedness of words. That is, instead of comparing words based on

how they are composed of single characters, the similarity of words is assessed with regard

to their meanings. Following, the resolution of differences in label specificity is discussed

in Section 4.4. Such differences occur when labels provide different levels of detail. Then,

Section 4.5 presents BOT which is based on the introduced matching algorithms. BOT

is configurable and comprises various features for which different manifestations are

provided. Next, Section 4.6 analyzes BOT. In this regard, the maximum effectiveness

yielded by the BOT configuration is assessed on the development and evaluation datasets.

In this context, a default configuration that can directly be applied is derived from the

evaluation on the development datasets and a semi-manual configuration approach that

allows experts to configure BOT with regard to model collection characteristics is examined.

Furthermore, a qualitative analysis of BOT’s results is carried out. Together these analysis

results give evidence to sub-hypothesis H2. Finally, Section 4.7 concludes the chapter.

4.1 Basic Label Matching

To construct an alignment for two given process models P, P ′ and their respective sets

of activities A, A′, correspondences need to be extracted from the set of all activity pairs

A× A′. In this regard, the basic matching algorithm outlined in Algorithm 4.1 constitutes

a simple strategy to distinguish corresponding from non-corresponding activity pairs.

The algorithm takes two process models and iterates over the set of all activity pairs

that can be constructed from the pair of process models (lines 2 to 11). For each activity

it determines the normalized label by applying the label normalization function norm

(lines 3 and 5). This is done to convert the labels to a common syntactic format. Here,

the following normalization techniques from [138] are applied. First, case normalization

is applied to transform all capital alphabetic characters into their lower case counterpart.
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Algorithm 4.1: Basic label matching algorithm
Input: P = (N , E,λ,τ, A), P ′ = (N ′, E′,λ′,τ′, A′)

Output: A

1 A = ;;

2 foreach a ∈ A do

3 label = norm(λ(a));

4 foreach a′ ∈ A′ do

5 label ′ = norm(λ′(a′));

6 similari t y = σ.λ(label, label ′);

7 if similari t y ≥ ϑ then

8 A =A ∪{(a, a′)};

9 end

10 end

11 end

Second, punctuation elimination is carried out to replace any punctuation sign with a single

blank character. Third, all links between two words are converted to a blank character.

This step is referred to as link stripping. Next, through digit suppression all numerical

digits are removed. Finally, blank normalization replaces blank characters, like tabulation

or carriage return, with a single blank character. Such harmonization techniques are also

part of the matching technique developed by Dijkman et al. [116] and RMM/NSCM from

the matching contest [19].

Definition 4.1 (Label normalization) Given the set of all labels L , the function

norm :L →L

returns the normalized version of a given label by applying case normalization, punctuation

elimination, link stripping, digit suppression as well as blank normalization.

Based on the normalized labels, a similarity score for the activity pair is computed

(line 6). Therefore, a label similarity function σ.λ is applied. Such a similarity function

returns a score on the interval [0,1]. The rationale is that high values suggest a strong

similarity between the activities and low values indicate differences.
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Definition 4.2 (Label similarity) Given the set of labels L , the label similarity function

σ.λ is defined as

σ.λ :L ×L → [0,1]

where a value of 1 indicates equality, a value of 0 total dissimilarity and values in between

are interpreted as degrees of similarity.

The last step in the classification of an activity pair is the evaluation of the similarity

score yielded by applying the label similarity function. That is, if the similarity score

is higher than or equal to a predefined threshold ϑ ∈ [0,1] (line 7), the activity pair is

classified as a correspondence and added to the alignment (line 8).

The basic label matching approach is a generic classification mechanism in which the

threshold is used to decide, if activity pairs are similar enough with respect to a label

similarity function in order to be considered as correspondences. Thus, as illustrated in

Figure 4.1, the effectiveness of the algorithm is determined by the specific label similarity

function and the value to which the threshold parameter is set. Here, two different

instances of the algorithm are applied to ten activity pairs (circles) among which three cor-

respond (black circles). The first instance (top) relies on the label similarity function σ.λ1.

The proposed alignment (grey background) contains many non-corresponding activity

pairs yielding a low effectiveness. This can be traced back to σ.λ1 which poorly separates

corresponding from non-corresponding activity pairs. That is, the three corresponding

activity pairs are spread over the entire interval of [0, 1] and so are the non-corresponding

pairs. Thus, introducing a threshold yields two sub-sets where at least one of them contains

corresponding and non-corresponding pairs. In contrast, σ.λ2 (bottom) achieves a perfect

f-measure of 1. Here, the function yields high similarity scores for all correspondences,

0 1σ.λ1ϑ1

0 1σ.λ2 ϑ2

FIGURE 4.1: Two configurations of the basic label matching algorithm
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whereas all non-corresponding activity pairs are assigned to low values. Consequently, a

threshold can be introduced that perfectly separates the set of activity pairs. Based on

these considerations the remainder of this chapter is devoted to the maximization of the

effectiveness of the label-based matching algorithm by improving the assessment of the

label similarity.

A first strategy that constitutes the starting point of this development is to consider

activity pairs as corresponding, if their labels are equal. To adapt this strategy, the Equal

String Similarity (EQL) is introduced. The function returns a value of 1, if the two labels

are equal and 0 otherwise. When using the label equality function in the basic matching

technique the threshold parameter is set to 1. That way all activity pairs with equal labels

are considered as correspondences whereas all other activity pairs are neglected. The

matching technique by Branco et al. [16] incorporates label equality to detect elementary

correspondences, too.

A drawback of requiring label equality is that minor differences in the labels already

have a big impact on the recall. Labels might differ due to spelling errors, different word

forms, etc. In such cases EQL classifies labels that clearly express the same functionality

as non-corresponding. In this respect, string similarity measures provide a more differ-

entiated assessment of the similarity of labels. They consider labels as compositions of

characters and investigate to which degree these compositions overlap. Hence, they are

less susceptible to minor differences. In the following, a set of well-known string similarity

measures [138] is introduced.

The first measure is the Normalized Hamming Similarity (HAM) which is based on

the Hamming distance [206]. First, the number of positions with different characters in

both strings and the difference of the strings’ lengths are computed. Then, HAM is the

normalized sum of these values. Here, the normalization is achieved by dividing the sum

with the maximum length of the strings. Finally, the distance value is transformed into a

similarity value by subtracting it from 1.

The Sub-String Similarity (SUB) [138] relies on the longest sub-string that appears in

both strings. It is defined as the ratio of twice the length of the longest sub-string and the

sum of the lengths of the strings.
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In contrast to SUB, the Longest Common Sub-Sequence Similarity (LCS) [207] takes

sub-sequences rather than sub-strings into account. The characters of a sub-sequence do

not need to consecutively occur in the string. Instead, all characters of a sub-sequence

only need to appear in the same order in the string. Thus, a sub-string is a special kind

of sub-sequence. For example, consider the strings “rejecting application”, “reject” and

“reject application”. While “reject” is both a sub-sequence and a sub-string of “rejecting

application”, “reject application” is a sub-sequence, but not a sub-string of “rejecting

application”. Given the longest common sub-sequence of two strings, LCS is the ratio of

twice the length of this sub-sequence and the sum of lengths of the strings.

Next, there are similarity measures that determine all n-grams, i.e., sub-strings of

length n, in both strings [138]. With regard to the n-grams a similarity score is calculated

as the fraction of the number of n-grams appearing in both strings and the number of

n-grams in the shorter string. Here, the Bigram Similarity (2G), the Trigram Similarity

(3G), and the Quadrigram Similarity (4G) are considered.

Another way to compare two strings is to assess the costs of transforming one string

into the other. Those measures are called edit distances [138] and the Levenshtein distance

[208] is a well-known measure of this class. It defines the edit costs as the minimal number

of operations needed to transform a string into the other. These operations include the

insertion, the deletion, and the substitution of a character. The Levenshtein Similarity

(LEV) is defined as the fraction of the Levenshtein distance and the length of the longer

string subtracted from one. Dijkman et al. [116] apply this measure to compute a label

similarity score.

Finally, the Jaro measure [209] considers the number of equal characters on the same

position as well as transposed characters. Here, the Jaro Winkler Measure (J/W) as a

refined version of the Jaro measure is considered [210]. In contrast to the Jaro measure,

it additionally takes prefixes into account.

These nine label similarity measures and the threshold parameter ϑ span the configu-

ration space of the basic label matching algorithm. Figure 4.2 summarizes this space by

showing the feature model [211, 212] for the algorithm.
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Basic Label Matching Algorithm

ϑ ϵ [0,1] 

SUB2G

4G LCSJ/W LEVEQL HAM

σ.λ   

3G

FIGURE 4.2: The feature model for the basic label matching algorithm

In order to apply the algorithm, a label similarity measure must be chosen and the

threshold parameter must be set to a specific value. Whereas the determination of the

threshold parameter for the label equality function EQL is straightforward due to its binary

nature, this is not the case for the string similarities. In conformance with the definition

of the label similarity function high scores yielded by string similarity functions are seen

as an indication for the similarity relation between activities. Yet, there exists no universal

threshold parameter that maximizes the effectiveness for a string similarity function, i.e.,

that yields the best possible separation of corresponding and non-corresponding activity

pairs. In fact, it will be shown that the optimal threshold value varies from similarity to

similarity and across the datasets.

Thus, the threshold parameter is optimized for each string similarity on each of

the development datasets. Given a string similarity and a dataset, the set of threshold

candidates comprises all distinct similarity scores yielded by applying the string similarity

to all activity pairs in the dataset. For each of the threshold candidates the effectiveness

is measured. Therefore, the alignments resulting from the application of the threshold

candidate are determined and compared to the gold standard. Then, the candidate with

the highest micro f-measure is chosen as the optimal threshold for the string similarity

with regard to the dataset. Table 4.1 summarizes the effectiveness of all label similarity

functions in combination with their optimal threshold parameters.

The results show that relying on label equality or utilizing string similarity measures

does not guarantee practical applicability as the effectiveness is rather low. In terms of

the micro f-measure the best results are yielded by LCS on both datasets. However, it

only achieves a micro f-measure of .415 on BR and of .361 on UA. The main reason for

the poor effectiveness is the overall low recall. Here, the maximum value on BR is .442
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TABLE 4.1: Effectiveness of the basic matching algorithm

BR UA

σ.λ ϑ prµ reµ Fµ ϑ prµ reµ Fµ

EQL 1.00 .855 .161 .271 1.00 .782 .162 .268

LCS .640 .490 .360 .415 .737 .531 .273 .361

SUB .462 .447 .373 .407 .692 .595 .213 .313

LEV .440 .364 .442 .399 .583 .367 .288 .323

2G .625 .678 .274 .390 .528 .326 .328 .327

3G .608 .640 .274 .384 .522 .321 .330 .325

4G .592 .598 .272 .374 .494 .305 .341 .322

J/W .907 .842 .238 .371 .780 .338 .335 .336

HAM .345 .421 .293 .345 .268 .262 .345 .298

for LEV and on UA .345 for HAM. That is, for each label similarity less then 45% of all

correspondences are detected. Additionally, the precision varies strongly. While in some

cases the precision is very low, e.g., it is .364 for LEV on BR and .262 for HAM on UA,

there are also high values. Here, EQL achieves the best results with .855 on BR and .782

on UA. The high precision shows that label equality can basically be considered as an

indicator for a correspondence relation between activities. That is because a high share of

the equally labeled activity pairs actually corresponds, but exceptions must be tolerated.

In the development datasets such exceptions primarily include activity pairs where the

activities are carried out at different points in the processes. Thus, they might either be

carried out by different, but implicit roles or in different contexts for slightly different

purposes. However, label equality is clearly not a sufficient criteria as only a small share

of the correspondences has equal labels. The recall of EQL is approximately .16 on both

datasets.

The effectiveness is not only low, but also varying across the similarities and the

datasets. In this regard, all similarities achieve a better micro f-measure on BR than on UA.

Moreover, the relative performance of the label similarities varies. For instance, SUB ranks

second on BR, but only seventh on UA. Similarly, J/W ranks seventh on BR and second
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on UA. Additionally, the optimal threshold values for the label similarities differ across

the datasets. On average the difference between the optimal threshold values per string

similarity is .119 with LEV yielding the biggest difference (|ϑBR − ϑUA|= |.440− .583|=

.143). Note that EQL was excluded as its threshold parameter is fixed. These observations

provide first evidence that label-based matching techniques yield a varying effectiveness

across model collections. Thus, they need to be adapted to the domain specifics of the

model collections in order to optimize and stabilize their effectiveness. Furthermore, they

illustrate that the heterogeneity of the labels and thus the difficulty to automatically detect

correspondences are likely to differ across datasets.

Finally, the table shows that many of the optimal thresholds are fairly low. In total

there are four similarities with an optimal threshold below .6 on BR and five on UA.

That is, in 50% of the cases the optimal threshold violates the definition of the label

similarity where low values are required to indicate a dissimilarity. HAM even takes

an optimal threshold value of .268 on UA. Thus, the optimal threshold values do not

provide an indication for the degree to which activity pairs can safely be considered to

correspond. Instead, they are optimized values for which the most effective separation of

corresponding and non-corresponding activity pairs was observed. In consequence, these

low values provide further evidence that applying string similarities to the entire labels is

a generally insufficient strategy.

4.2 Label Decomposition

Although labels usually consist of several words, they have been treated as a single se-

quence of characters so far. Mendling et al. [38] argued that there are three classes of

words in a label: an activity label typically comprises an action that is performed on an

object and it might provide additional information, like roles responsible to perform the

operation or conditions that need to be met. Moreover, natural languages typically allow

to compose words in different ways. Accordingly, in an empirical analysis Leopold [39]

observed four labeling styles for activities. The Verb-Object labeling style (VO) charac-

terizes labels where the action is expressed by a verb, e.g., “accept application”. Further,
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TABLE 4.2: Relative frequencies of the activity labeling styles

Style BR UA

VO 95.4% 75.0%

AN 2.3% 4.0%

DES 1.7% 0.0%

NA 0.6% 21.0%

the Activity-Noun labeling style (AN) refers to labels where the action is represented as a

noun, e.g., “application acceptance” or “accepting application”. Moreover, labels adhere

to the descriptive labeling style (DES), if they contain a role and the action is expressed by

a verb in the third person form, e.g., “faculty accepts application”. Labels based on these

styles provide information on the action performed through an activity. Thus, these styles

constitute regular labeling styles. In contrast, the No-Action labeling style (NA) subsumes

all labels that do not contain an action and can be considered as irregular or anomalous,

like “accepted” or “application”. Leopold [39] further reports the number of occurrences

of these styles within the SAP Reference Model and two other process model collections.

The collections consist of 328 to 604 models and each collection contains more than 2,400

activities. Whereas 81% of the activity labels in the SAP Reference Model are classified as

AN, in the two other collections 74% and 80% of the activity labels are assigned to VO.

Additionally, only a small share of activities adheres to DES. Interestingly, about 10% of

all activity labels in each collection belong to NA. As shown in Table 4.2 there is also one

dominant labeling style in the development datasets. On both datasets VO is the most

frequent style with 95.4% of all activities belonging to this class on BR and 75% on UA.

While due to the high frequency of VO BR can be considered as very homogeneous, UA is

also characterized by a large share of irregular activity labels (21%).

Whereas Leopold [39] defines the labeling styles with regard to the action and thus

primarily addresses the use of action fragments, a more diversified picture of the labeling

styles can be gained by also looking at the frequencies of the other two classes (business

object and additional information). Table 4.3 presents these frequencies for the develop-

ment datasets. Note that because of the anomaly of the AN labels, only the regular labels
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TABLE 4.3: Frequencies of object and additional information fragments in regular labels

Object Add. Information BR UA

not in label not in label 2.3% 4.0%

occurs in label not in label 76.4% 53.6%

occurs in label occurs in label 16.1% 14.1%

not in label occurs in label 4.6% 7.3%

are considered. In BR (UA) 76.4% (53.6%) of the regular labels contain an object, but no

additional information. Another 16.1% (14.1%) of the activities also contain additional

information. Furthermore only 2.3% (4.0%) of the activities contain only an action and

4.6% (7.3%) consist of an action and additional information.

Overall, these descriptive statistics show that labeling styles are typically inconsistently

applied within model collections and that labels might only contain a subset of the three

classes which might be composed in different ways. Accordingly, matching techniques

must be prepared for varying labeling styles. That matching techniques which consider

labels as single strings do not address the problem of heterogeneous labeling styles is

shown in Table 4.4. Here, three string similarities are applied to three activity pairs

where each pair consists of the activity “accept application” and another activity. First,

there is the activity “accept” which does not contain an object or additional information.

Although, depending on the context this label might be similar to “accept application”,

the string-based label similarities yield low values. This is because the difference in the

label length distorts the similarity calculation. The same effect can be observed for the

activity “accept application if requirements are met” where the label contains an object

and additional information. Finally, there is the label “reject application”. It yields the

highest similarity scores among all three labels although it has the opposite meaning. The

reason is that both labels have a length of 18, but only the first five letters differ.

The varying use of labeling styles typically impacts the similarity assessment for a

huge share of activity pairs, even for model collections with a rather homogeneous use of

labeling styles. This can best be illustrated with regard to the BR dataset where the values

from Table 4.4 are considered to reflect the actual distribution of labeling styles. Although



106 COMPARING ACTIVITY LABELS

TABLE 4.4: String similarity scores for “accept application” and a second label

Second Label LCS LEV 3G

accept .500 .333 .333

accept application if requirements are met .600 .429 .429

reject application .722 .778 .722

these values indicate a rather homogeneous labeling style, only (2.3%)2 + (76.4%)2 +

(16.1%)2 + (4.6%)2 = 61.2% of all activity pairs have the same labeling style.

To better address varying labeling styles, a refined version of the basic label matching

algorithm is introduced in the following. It breaks labels down into sets of words in

order to compute a similarity score. Therefore, it relies on the bags-of-words model which

has been adopted in linguistic contexts [213, 214] and is also widely used in the field

of object recognition, e.g., [215]. Rather than considering texts as sequences of words

with a certain order, the bag-of-words model omits the structure and represents texts

as multi-sets of words. Such a multi-set contains the words from the respective text

and provides information on how often these words occur within the text. As labels are

rather short texts, it might be assumed that they do not contain words more than once

and can thus be represented as sets of words. However, there are counterexamples that

violate this assumption. For example, Pittke et al. [165] report that labels sometimes

contain descriptions of two or more distinct activities, like “evaluate application and check

application”. Similarly, labels might contain an additional information fragment that

represents a condition for the activity execution, e.g., “accept applicant if the applicant is

qualified”. Although model collections usually only contain a small number of such labels,

the bag-of-words model is adapted here to account for the general case.

Definition 4.3 (Bag-of-words) Given the set of words W , a bag-of-words

$ :W → N

is a multi-set that returns the number of occurrences for a given word in a text document.

The support of the bag-of-words supp($) comprises all distinct words that occur in the text

document, i.e., ∀w ∈ W : w ∈ supp($)⇔ $(w) > 0. Additionally, the total number
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of words in the text document is the cardinality of the bag-of-words which is defined as

|$| :=
∑

w∈supp($)
$(w) :=
∑

w∈W
$(w).

The decomposition of labels into bag-of-words is referred to as tokenization. During

tokenization the words are extracted from a label and stop words are removed. Such

words are function words of a natural language that only carry little semantic meaning

[214], like “a”, “be” or “could”21. To transform a label into a bag-of-words the tokenization

function tok is used in this thesis.

Definition 4.4 (Tokenization) Given the set of labels L and the set of all bag-of words

O∞ the tokenization function

tok :L → O∞

returns the bag-of-words for a label by splitting the label into individual words and removing

the stop words.

Based on the bag-of-words model and the tokenization function, the basic matching

algorithm can now be refined in terms of the bag-of-words matching algorithm. As shown

in Algorithm 4.2, it also iterates over the set of all activity pairs (lines 2 to 13). For each

activity it determines the normalized label (lines 3 and 6) and the according bag-of-words

(lines 4 and 7). If the similarity score determined for an activity pair is higher than or

equal to the predefined threshold ϑ, it classifies the according pair as a correspondence

and adds it to the alignment (lines 9 and 10). In contrast to the basic matching algorithm,

the similarity score is determined by applying the bag-of-words similarity σ.$ rather

than a label similarity function σ.λ (line 8).

The most important part of the algorithm is the bag-of-words similarity because

it breaks the comparison of two labels down into the comparison of their words. To

determine a similarity score the bag-of-words similarity first applies a stemming algorithm

to each word. Similar to the tokenization which eliminates differences in the label

structure, i.e., it omits information about the position of words, stemming is carried out

21In this thesis the default English stop word list and the German stop word list from http://www.

ranks.nl/stopwords (accessed: 13/01/2017) are used.

http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
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Algorithm 4.2: Bag-of-words matching algorithm
Input: P = (N , E,λ,τ, A), P ′ = (N ′, E′,λ′,τ′, A′)

Output: A

1 A = ;;

2 foreach a ∈ A do

3 label = norm(λ(a));

4 $= tok(label);

5 foreach a′ ∈ A′ do

6 label ′ = norm(λ′(a′));

7 $′ = tok(label ′);

8 similari t y = σ.$($,$′);

9 if similari t y ≥ ϑ then

10 A =A ∪{(a, a′)};

11 end

12 end

13 end

to erase effects arising from different labeling styles. In particular, stemming aims to

harmonize the word forms. That is, it strips off affixes in order to find a word’s basic form

[214]. The labels “accept application” and “accepting application” constitute an example

where stemming can help to improve the comparison of the labels. Here, stemming can

be used to harmonize the words and to reduce “accepting” to its basic form “accept”.

To incorporate stemming algorithms the bag-of-words similarity relies on a stemming

function st that returns a set of possible stems for a word.

Definition 4.5 (Stemming) Given the set of words W a stemming function

st :W →P (W )

returns a set of words which comprises possible stems of the word.

There is a plethora of stemming algorithms available. Some algorithms utilize a set of

predefined rules or suffices to stem words, e.g., [216, 217]. Other algorithms are based

on statistical measures and corpora analysis [218–220]. In this thesis, two stemming

algorithms are considered. First, there is the Porter Stemming Algorithm (PSA) [221]
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which is a common rule based matcher [214]. Here, the implementation by Porter22 which

is also available for languages other than English including German, Russian, and French

is utilized. Second, the WordNet Stemming Algorithm (WSA) provided by the MIT Java

Wordnet Interface (JWI) library23 is applied. It aims to reduce a word to its stem based

on dictionary lookups. In particular, it relies on WordNet which is a widely used lexical

database for English [222] (cf. Section 4.3). The JWI library was suggested for accessing

WordNet based on a comparison of different libraries [223]. Moreover, stemming can be

deactivated. At implementation level this is achieved by using a stemming function that

returns an empty set for each word.

Furthermore, the bag-of-words similarity needs to assess the similarity of words, in

order to compute an overall similarity score for two activities. Therefore, it incorporates

a word similarity function σ.w.

Definition 4.6 (Word similarity) Given the set of words W a word similarity function

σ.w :W ×W → [0,1]

returns a similarity score for a given pair of words where a value of 1 indicates equality, a

value of 0 total dissimilarity and values in between are interpreted as degrees of similarity.

As words are also sequences of characters, the label similarity functions introduced in

the previous section can be directly applied here. As outlined, these similarities compare

words on the syntactical level, i.e., words are considered similar, if they share a large

portion of characters and these characters appear in a similar order.

The bag-of-words similarity σ.$ then computes a similarity as outlined in Table 4.5.

Based on the bag-of-words {“accept”, “application”} and {“reject”, “application”}, a word

similarity function (here LCS) is applied to determine a similarity score for each word

pair that consists of one word from each bag-of-words. Therefore, for each word the

set of stems that includes the word itself is determined. For a given word pair the word

similarity function is then applied to all possible combinations of the stems and the

maximum similarity score is yielded. In the next step, for each word in the bag-of-words

22http://snowball.tartarus.org, accessed: 13/01/2017
23http://projects.csail.mit.edu/jwi/, accessed: 13/01/2017

http://snowball.tartarus.org
http://projects.csail.mit.edu/jwi/
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TABLE 4.5: Illustration of the bag-of-words similarity using LCS as the word similarity

reject application max

accept .333 .353 .353

application .235 1.000 1.000

max .333 1.000 σ.$= .672

the maximum similarity score yielded in the previous step is then determined. Finally, the

overall score is the average of all these maximum scores. In the example this score is now

.672. This value is lower than the score yielded by the basic label matching algorithm

(.722). Thus, it better reflects the relation between the labels.

Definition 4.7 (Bag-of-words similarity) Let$,$′ be two bag-of-words and Ω = supp(

$), Ω′ = supp($′) be the words occurring in these bag-of-words. Given a stemming function

st and a word similarity σ.w, the bag-of-words similarity σ.$ is defined as:

σ.$($,$′) :=

∑

w∈Ω
$(w) ·max

w′∈Ω′
σ.st(w, w′) +
∑

w′∈Ω′
$′(w′) ·max

w∈Ω
σ.st(w′, w)

|$|+ |$′|

with

σ.st(w, w′) = max
s∈{w}∪st(w)

[ max
s′∈{w′}∪st(w′)

σ.w(s, s′)]

The effect of the bag-of-words similarity is further illustrated in Table 4.6. In this

table the bag-of-word similarity scores for the same activity pairs and the same syntactic

similarity measures as in Table 4.4 are presented. In contrast to considering labels as

strings, the bag-of-words similarity separates the non-corresponding and corresponding

activity pairs better. The similarity score for the activity pair “accept application” and

“reject application” remains high (.65 on average) due to “application” being part of both

TABLE 4.6: Bag-of-words similarities for “accept application” and a second label

Label LCS LEV 3G

accept .784 .727 .742

accept application if requirements are met .778 .750 .704

reject application .672 .667 .612
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FIGURE 4.3: The feature model for the bag-of-words matching algorithm

labels. However, the scores for the corresponding activity pairs are improved and take a

value of .75 on average. The reason is that in both cases all words from the shorter label

also occur in the longer label and the effect of differences in the label length is reduced.

As outlined by the feature model in Figure 4.3 the space of possible configurations

of the bag-of-words algorithm is larger than that for the basic label matching algorithm.

While the application of the bag-of-words algorithm still requires to set a specific value

for the threshold parameter ϑ, the computation of the label-based similarity score σ.$ is

more complex. That is, in addition to the selection of the string-based similarity measures

to compare words σ.w, stemming can be activated or not. Moreover, in case it is activated

a stemming function st needs to be selected.

To assess the effect of these configuration options in combination with the bag-of-words

model, the bag-of-words matching algorithm was also evaluated on the development

datasets. In this regard, all combinations of stemming options and word similarity

functions were considered and the optimal threshold value was determined the same way

as it was for the label similarities in Section 4.1. Table 4.7 summarizes the effectiveness

for the combinations that comprise either HAM or SUB. Both word similarities yield the

highest micro f-measure on one of the datasets when stemming is deactivated.

On both datasets the bag-of-words matching algorithm improves the maximum micro

f-measure achieved by the basic label matching algorithm. HAM yields the highest value

in combination with PSA on BR where it increases the prior maximum (.466 > .415).

Similarly, SUB outperforms the basic label matching algorithm on UA where the maximum

micro f-measure is yielded in combination with WSA (.430 > .361). Whereas SUB’s

performance is similar on both datasets, HAM yields a better effectiveness on BR.
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TABLE 4.7: Effectiveness of the bag-of-words matching algorithm

BR UA

st σ.$ ϑ prµ reµ Fµ ϑ prµ reµ Fµ

-
HAM .541 .569 .387 .461 .650 .524 .330 .405

SUB .521 .345 .519 .414 .708 .541 .339 .417

PSA
HAM .515 .477 .455 .466 .767 .652 .303 .414

SUB .640 .500 .349 .411 .737 .549 .337 .418

WSA
HAM .543 .568 .387 .460 .733 .606 .333 .430

SUB .532 .351 .514 .417 .758 .726 .284 .409

The reason for the increased effectiveness on BR is a higher recall. Here, a value

of .519 constitutes a clear improvement of the best recall for the basic label matching

algorithm (.442). On the contrary, the bag-of-words matching algorithm improves the

precision on UA with a maximum of .726. Admittedly, for the basic matching algorithm

EQL yielded a precision of .782. However, the respective recall is very low (.162). The

remaining similarities achieved recall values similar to that of the bag-of-words algorithm,

but their maximum precision is .595. This analysis provides evidence that the bag-of-

words matching algorithm is to be preferred over the basic label matching algorithm.

However, the improvements are modest and still do not permit a practical application.

According to the evaluation results, the stemming algorithms marginally impact the

effectiveness. PSA improves the values yielded without stemming in three out of four

times. Only for SUB on UA it yields a lower micro f-measure. WSA increases the micro

f-measure twice: for SUB on BR and for HAM on UA. Overall, the effects are rather small

as the maximum improvement yielded by PSA is .009 for HAM on UA and by WSA it is

.025 for HAM on UA. This analysis indicates that stemming does not strongly impact the

effectiveness and that there is almost no difference between PSA and WSA.

Lastly, the evaluation results confirm the observation that the effectiveness of algo-

rithms differs across datasets and configurations. That is, the optimal threshold and

effectiveness values vary for all combinations of word similarity and stemming functions.
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4.3 Semantic Comparison of Words

Usually business process models are created by a group of modelers (cf. Section 2.2). As a

consequence, the vocabulary within a model collection is likely to comprise a broad range

of terms, especially when the model collection comprises models of different organizations.

Such differences repose on the versatility and ambiguity of natural languages. That is,

different words of a natural language might refer to the same sense or a single word might

have different senses. Consequently, the same meaning can be expressed in different

ways. For example, “send application electronically” and “submit application online”

are different labels, but refer to the same activity. Additionally, syntactically identical

expressions might convey different meanings, e.g., the label “prepare application” might

refer to the creation of documents in order to reply to a job offer. In a different context, it

also might be used to address the configuration of a piece of software. In this light, the

string similarity functions seem to be inadequate as they compare the syntax, but not the

semantics of words, i.e., the meaning and senses conveyed by words.

In the field of linguistics two classes of sense relations are distinguished: paradigmatic

and syntagmatic relations [224]. Paradigmatic relations refer to the senses that can be

assigned to words. They are general relations between words that exist regardless of the

specific use of the words and that provide options to choose words in a certain context.

There are six relations of this type: hyponymy, meronymy, synonymy, incompatibility,

co-meronymy, and opposites [224]. Hyponymy and meronymy are relations referring to

the inclusion of words. The former represents so called “is-a” relations where one word

subsumes another, e.g., an application is a document. The latter refers to “part-whole”

relations where a word is a member of another, like a chair is part of a faculty which again

is part of a university. Synonymy is a relation that holds between words, if they represent

the same sense, e.g., “assess” and “evaluate” are two verbs describing the act of judging the

value or the worth of something. Similar to hyponymy and meronymy, incompatibility and

co-meronymy refer to the exclusion of words. Incompatibility is a relation that represents

the mutual exclusion of words. In other words, there is nothing that can simultaneously

be part of both classes, e.g., there is nothing that can be a confirmation and a refusal.
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Co-meronymy is characterized by words being part of the same whole, but not having any

substance in common, e.g., the database and the graphical user interface of an enterprise

application are separate parts of the application. Finally, opposites are pairs of words

that logically belong together but represent incompatibles, like “open” and “closed”, or

“increase” and “decrease”.

Syntagmatic relations refer to the appearance of words in the same context [224],

e.g., in a sentence or phrase. Such relations provide options for chaining words in a

sentence. On the one hand, there might be relations that are independent from the

grammar and hold between words that might have a rather long distance between them.

That is, words might “go together” in a specific context or not. On the other hand, there

are relations between words that are situated close to each other and are part of the same

grammatically well-formed construction. Such relations typically comprise normal (“drink

water”), redundant (“female aunt“), or semantically clashing (“drink rock”) uses of words

in the same context.

To consider sense relations between words, measures for the semantic relatedness

of words are utilized here. Such measures are based on Word Sense Disambiguation

(WSD) which constitutes “... the ability to computationally determine which sense of a

word is activated by its use in a particular context.” [225]. In the context of process model

matching, WSD can be used to check whether two words in a label constitute the same

or a similar meaning. Hence, it can contribute to the comparison of the meaning of the

activity descriptions, i.e., the actual purposes of activities.

In order to associate words with senses WSD utilizes external information. It is derived

from knowledge sources that can basically be divided into structured and unstructured

sources [225]. Thesauri and machine readable dictionaries are structured resources that

contain words and sense relations between them. Roget’s thesaurus [226] and the Mac-

quarie thesaurus [227] constitute widely adapted thesauri for natural language processing

and WSD. WordNet [222, 228] is a prominent machine readable dictionary with wide

application in WSD. There also exist dictionaries for other languages, e.g., GermaNet

[229, 230] for German, WoNeF [231] for French, or EuroWordNet as a multilingual

database for some European languages [232]. BabelNet [233] is a multilingual dictionary
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that was initially created through the integration of Wikipedia24 and WordNet. Thus,

it builds on lexicographic and encyclopedic knowledge. Furthermore, ontologies as ex-

plicit specifications of conceptualizations [234] are another type of structured knowledge

sources. They usually contain a specification of terminology and the hierarchical classifi-

cation of the terms along with semantic relations between them. The suggested upper

merged ontology and its domain ontologies [235] are examples of ontologies.

Unstructured resources include corpora that represent collections of texts. Whereas,

sense-annotated corpora also include information regarding the senses of (a subset of) the

words, raw corpora only contain texts. The Brown Corpus [236] and the British National

Corpus [237] are well-known raw corpora in national language processing. Examples of

sense-annotated corpora include SemCor [238], the line-hard-serve corpus [239], and

the Open Mind Word Expert corpus [240]. Stopword lists, like the ones introduced in

Section 4.2, are also unstructured knowledge resources for WSD. Furthermore, collocation

resources provide information on the co-occurrences of words. The collocations in the

British National Corpus and the Web1T corpus [241] are examples for such knowledge

sources. A more detailed overview of knowledge sources for WSD is provided in [242].

WSD methods exploit such sources in order to derive information on the semantic

relatedness of words. On an abstract level two strategies can be distinguished: supervised

and unsupervised methods [225]. Supervised methods exploit sense-annotated corpora to

train a classifier through the application of machine learning. Thus, to apply such methods

there is usually some manual effort needed to provide the training data. Unsupervised

methods do not incorporate any sense-tags and can be further subdivided into corpus-

based and knowledge-based techniques [225]. Whereas, corpus-based methods rely on

raw corpora, knowledge-based techniques utilize structured resources.

To integrate approaches that measure the semantic relatedness of words into the

bag-of-words matching algorithm, several semantic word similarity functions that rely

on unsupervised methods are introduced in the following, whereas supervised methods

are discarded. The reason is that here the focus is on automatic matching techniques

that determine alignments between process models without requiring experts to interfere

24http://www.wikipedia.org, accessed: 13/01/2017

http://www.wikipedia.org
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because they aim to ease the experts’ job. Demanding additional input from the experts

violates this goal. In this regard, involving the experts is discussed in Chapter 6 where

ADBOT is introduced. This matcher comprises a strategy to adapt sense relation measures

by analyzing alignments provided by experts and can thus be considered to be a supervised

WSD method.

The first set of semantic word similarity functions comprises paradigmatic relatedness

measures based on WordNet. As already outlined before, WordNet is a lexical database

for English. It contains words and paradigmatic sense relations between them. The set

of words only comprises open-class words, i.e., verbs, nouns, adjectives, and adverbs,

whereas closed-class word categories, like pronouns and prepositions, are not included

[222]. The words in WordNet are assigned to synsets which represent specific concepts

[222]. As each synset comprises words that represent the according concept, the synsets

encode synonymy relations between words. WordNet further distinguishes between lexical

and semantic relations [225]. Lexical relations exist between words and include amongst

others opposite meanings. Semantic relations instead exist between synsets and include

meronymy and hyponymy. According to the WordNet statistics25 it contains about 155,000

words and approximately 118,000 synsets.

There is a plethora of word similarity functions that exploit the semantic relations in

WordNet. Here, the measures included in the WordNet::Similarity module26 [243, 244]

are applied. For implementation purposes, the Java implementation27 of this module is

used. The module provides popular measures for paradigmatic sense relations and makes

them available for the use with WordNet.

On a high level these measures essentially follow the same procedure to determine a

similarity score for two words. First, they determine all synsets for each of the two given

words. Then, they exploit various relations to calculate a score between each possible

combination of synsets, where there is one synset for each of the two words. The maximal

score yielded for the synset pairs constitutes the similarity score for the pair of words.

25http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html, accessed: 13/01/2017
26http://wn-similarity.sourceforge.net, accessed: 13/01/2017
27https://code.google.com/p/ws4j/, accessed: 13/01/2017

http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
http://wn-similarity.sourceforge.net
https://code.google.com/p/ws4j/
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The Lesk Similarity (LESK) is based on the algorithm proposed by Lesk [245]. Given

two synsets it determines a score based on the overlap of words in the descriptions of their

senses. Here, the extended notion by Banerjee and Pedersen [246] that also considers

semantic relations to other synsets is used.

There is a series of measures based on hyponymy relations between synsets. The

Leacock-Chodorow Similarity (L/C) [247] utilizes the distance of synsets based on hy-

ponymy relations. Similarly, the Resnik Similarity (RES) [248] is based on the lowest

common ancestor of two synsets in the hyponomy hierarchy. The deeper the lowest

common ancestor is located in the hierarchy, the more semantically related the according

synsets are. The Wu-Palmer Similarity (W/P) [249], the Jiang-Conrath Similarity (J/C)

[250] and the Lin Similarity (LIN) [251] also consider the depth of lowest common ances-

tor. But, in contrast to RES they further consider the depth of the two synsets. All three

measures combine the three depth values based on different mathematical formulas.

The Hirst-St.Onge Similarity (H/S) [252] is based on a graph distance. It determines

the shortest path between two synsets and considers all possible relations. The measure

takes the distance of this path into account and penalizes turns in the path. In essence, a

turn occurs when a relation is followed by an opposite relation, e.g., when a generalization

relation is followed by a specialization relation.

The second set of semantic word similarity functions exploits syntagmatic sense

relations between words. Basically, such relations are defined upon statistical measures

regarding co-occurrences of words in a corpora. The rationale is that the more often two

words occur in the same context, the higher their semantic relatedness. The contextual

similarity [253, 254] is such a measure. Given two words, it is defined as the cosine of the

angle between the context vectors of these words. The context vectors are determined with

regard to a set of context words. For each of the context words there is a vector element.

Such an element represents the co-occurrence count of the context word and the word

the vector is defined for. Consequently, words that tend to occur in the same contexts will

have a contextual similarity close to 1 and are considered to be syntagmatically related.

To apply the contextual similarity to business process model matching, a corpus as

well as a way to determine the context vectors must be defined. Regarding the former,
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FIGURE 4.4: The extended feature model for the bag-of-words matching algorithm

the model collections are used as corpora in this thesis. That is, each activity label from

each model is taken as a text document and added to the corpus. The rationale is that the

model collections reflect the domain characteristics.

Given this corpus the following strategy is applied to determine the context vectors

for a pair of words. First, the set of the n most frequently co-occurring context words

is determined for each of the two words. Then, these two sets are merged and the

resulting set comprises the elements of the context vectors. For each of the two words the

corresponding context vector then contains the co-occurrence counts for the word and

the context vector elements. Finally, the cosine of the angle between these two context

vectors constitutes the similarity score for the two words.

Based on the number of context words n that are considered for each word, different

contextual similarities can be defined. In this thesis, numbers on the interval [2,5] are

considered as possible values for n. Accordingly, the set of syntagmatic word similarity

functions comprises the Two Words Contextual Similarity (2CS), the Three Words Contex-

tual Similarity (3CS), the Four Words Contextual Similarity (4CS), and the Five Words

Contextual Similarity (5CS).

All these word similarity measures add further configuration options to the bag-of-

words matching algorithm as shown in Figure 4.4. To assess the effect of relying on the

semantic word similarities, these functions are also evaluated on the development datasets.

In this regard, stemming is deactivated in order to enable an unbiased comparison with
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TABLE 4.8: Effectiveness of the semantic word similarities

BR UA

σ.w ϑ prµ reµ Fµ ϑ prµ reµ Fµ

J/C .517 .546 .342 .421 .551 .488 .309 .378

LESK .556 .627 .300 .406 .545 .455 .316 .373

LIN .521 .519 .358 .424 .667 .505 .288 .367

W/P .621 .425 .443 .434 .877 .777 .217 .339

2CS .812 .444 .442 .443 1.00 .688 .166 .267

3CS .783 .469 .445 .457 .917 .322 .245 .278

4CS .769 .475 .449 .461 .897 .345 .252 .292

5CS .761 .475 .449 .461 .904 .391 .241 .298

the string similarities. Moreover, the threshold parameter is optimized the same way as it

was in the previous evaluations. Table 4.8 summarizes the paradigmatic and syntagmatic

word similarities that perform best with regard to the micro f-measure.

Contrary to the presumed necessity for a semantic comparison of words, the considered

semantic word similarities do not improve the effectiveness of the bag-of-words matching

algorithm. In fact, the paradigmatic word similarities yield lower micro f-measures than

the best string similarity function on both datasets. Here, W/P achieves a micro f-measure

of .434 (< .461) on BR . Similarly, J/C is the best performing paradigmatic word similarity

on UA with a micro f-measure .378 (< .417).

With regard to the syntagmatic word similarities the results are different. 4CS and

5CS achieve the same micro f-measure like HAM (.461) at a higher recall (.449> .387).

In contrast, the performance of these similarities is poor on UA (max = .298). This is

not only worse than the performance of all syntactic similarities in combination with the

bag-of-words matching algorithm, but it is also worse than the performance of the majority

of the syntactic similarities in combination with the basic label matching algorithm. Here,

only EQL results in a lower micro f-measure of .268.

These findings indicate that the incorporation of universal word similarity functions

does not guarantee a high effectiveness. Instead, they seem to be inappropriate for a



120 COMPARING ACTIVITY LABELS

general application as the evaluation revealed a low performance in comparison to the

string similarities on the development datasets. The reason is that the paradigmatic word

similarities do not integrate domain specific knowledge instead they rely on WordNet, a

dictionary for Standard English. In contrast, the syntagmatic similarities are based on

domain specific knowledge which is derived from the model collections. However, as

they exploit occurrence statistics their quality depends on the availability of a sufficient

amount of text. In this regard, the evaluation results indicate that model collections can

generally not be considered to comprise enough data. These shortcomings are discussed

in more detail in Section 4.6.

4.4 Label Specificity

A further problem that label-based matching techniques face is the varying label specificity

within model collections. Here, label specificity refers to the level of detail of a label. In

general, it is assumed that the higher the specificity, the more precise the information;

and the lower the specificity, the more abstract the information.

A factor that influences the label specificity was already discussed in the context of

the semantic relations between words in Section 4.3. Hyponymy and meronymy relations

between words provide modelers with options to choose from a variety of words with

different levels of abstractions. For example, the label “check application” is more precise

than “check request”. The reason is that “request” is an abstract term that in different

contexts might refer to other concepts, e.g., a request for money. Moreover, “evaluate

application” is less specific than “evaluate cv” as the latter addresses the part of the

application which is relevant for the evaluation. Whereas such relations are addressed by

the integration of paradigmatic word similarities, another factor that influences the label

specificity has not been addressed yet. This factor is the length of labels. The rationale is

that the more words a label contains, the more specific is its information.

To examine the variety of the label length within model collections, Figure 4.5 shows

the number of labels with a certain label length within the development datasets. In this

thesis, the length of a label corresponds to the cardinality of its bag-of-words. According
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FIGURE 4.5: Distribution of the label length

to the figure, the label length can take a broad range of values within model collections.

In this regard, the distribution of the label length in BR is comparable to that in UA. Most

of the labels consist of two words and labels with a length of three and four words rank

second and third, respectively. The average label length on both datasets is 3.2, whereas

the longest label in BR comprises twelve and on UA ten words. Moreover, there are also

labels with a length of one in both datasets. Overall, a huge percentage of activity pairs

in both datasets is characterized by different lengths of the labels. On BR 64.5% of the

activity pairs and on UA 71.7% are impacted.

Differences in the label length can arise from inconsistent labeling styles. As outlined

at the beginning of Section 4.2, there are precise labels which contain the action, the

object, and additional information. In contrast, other labels are abstract and simply

describe the basic action. The impact of a varying label length was already illustrated by

the exemplary application of the bag-of-words similarity in Table 4.6. That is, even small

differences, e.g., a label contains one word more than the other, can lower the overall

bag-of-words similarity score. That is because some words from the longer label typically

do not have a counterpart in the shorter label, e.g., the condition “if requirements are met”

of the label “accept application if requirements are met” is not represented in the label

“accept application”. Yet, those words are considered in the calculation of the bag-of-words

similarity and lead to a low similarity score.
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To overcome this problem, the matching technique proposed by Leopold et al. [194]

separates the words referring to the action from those referring to the object or the

additional information by applying the algorithm from [39, 195]. During the computation

of label similarity scores only words that belong to the same class are compared. However,

natural languages provide versatile options to express the functionality of activities as

illustrated by the labels “email application” and “apply via email”. Clearly, the meanings

are very similar – if not the same – and the same terminology is used in both labels. Yet,

the strategy by Leopold et al. [194] yields a similarity score of 0. The reason is that “email”

is used to express the action in the first label, whereas it is the object in the second label.

Similarly, “application” is the object in the first and “apply” the action in the second label.

As this example illustrates, aspects relevant to the assessment of the similarity of activities

can be encoded in different label fragments. Thus, the decomposition of labels can be

misleading and is considered as inappropriate to solve differences in label specificity.

The label length is also impacted by the use of collocations which are arbitrary and

recurrent word combinations [255]. Examples include “letter of acceptance” as a spe-

cialization of “letter” or “make a decision” as a synonym of “decide”. There is a broad

range of approaches to the automated extraction of collocations from documents. The

comprehensive overview by Seretan [256] served as a basis for the following summary of

the field. The determination of collocations is basically carried out in two steps. First, a

list of candidates is derived from the documents and the list might be filtered to reduce the

number of candidates, as amongst others suggested by Justeson and Katz [257]. Therefore,

the words in a text are annotated with part-of-speech tags, i.e., with a syntactical word

class, like noun, verb, adjective etc. This can be automatically achieved by part-of-speech

taggers such as those from [258, 259]. Then, only word combinations which adhere

to a promising part-of-speech pattern are further considered. Similarly, part-of-speech

parsers can be used to annotate the words in texts. In contrast to the part-of-speech

taggers, parsers also account for syntactical links between words when annotating a

text. Thus, their results are considered more reliable [256]. Examples of parsers include

those presented in [260, 261]. Once the list of candidates is determined, the second step

deals with the inspection of the candidates in order to identify collocations. At this point,
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statistical tests based on frequency and co-occurrence counts are carried out to verify

that a word combination is actually a collocation. In this regard, the z-score [262], the

log-likelihood ratio [263], and the pointwise mutual information [264] were suggested.

The integration of such extraction methods could be used to adjust the levels of

abstraction of two labels. For example, when comparing “send letter” and “send letter of

acceptance”, “letter of acceptance” could be considered as a specialization of “letter” in

the first label. This way, the overall similarity score for the labels would be increased and

the true relation between the two activities would be better reflected. However, there

are also problems connected to the implementation of this idea. Collocation extraction

methods are generally not able to detect less frequent collocations [265]. Moreover,

they require corpora of a sufficient size in order to produce reliable results. However,

business process model collections comprise a rather small amount of short texts and can

thus be considered as insufficient corpora. In this regard, the evaluation results of the

paradigmatic word similarities indicated that the amount of text in model collections is

typically too low to yield reliable results (cf. Section 4.3).

Even if such extraction methods could reliably detect collocations, they would not solve

the label specificity problem entirely. Consider the label “notify applicant of acceptance

in writing” in which “notify in writing” constitutes a collocation. When this label is

compared to the label “send letter of acceptance”, “notify in writing” should be matched to

“send letter” and “acceptance” should be matched to “acceptance”, as these word groups

express the same meaning. Yet, there is still a difference in the specificity or label lengths,

respectively. That is because “notify applicant of acceptance in writing” contains the word

“applicant” while “send letter of acceptance” does not.

Due to these reasons the use of methods for collocation extraction is not further

pursued here. Instead, a different approach to the harmonization of the label length is

taken. It is referred to as pruning. Here, the idea is to remove those words from the

longer label that are considered to not have a counterpart in the shorter label. Once these

words were removed, the bag-of-words similarity is computed. To implement this idea,

the pruning function prune is introduced. It takes two bag-of-words and cuts the first

bag-of-words to the size of the second, in case the first is larger than the second.
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Definition 4.8 (Pruning) Given two bag-of-words $,$′, a pruning function prune is

defined as:

prune($,$′) :=







$ if |$| ≤ |$′|

$∗ else

where$∗ is a subset of$ that must have the same cardinality as$′ and all words in$∗

must appear in $, i.e., |$∗|= |$′| ∧ supp($∗) ⊆ supp($).

Based on the pruning function the bag-of-words matching algorithm with pruning is

introduced in Algorithm 4.3. It is a refined version of the bag-of-words matching algorithm

and also iterates over the set of all activity pairs (lines 2 to 15). For each pair it harmonizes

the label of each activity (lines 3 and 6) and determines the according bag-of-words (lines

4 and 7). In contrast to the bag-of-words matching algorithm it then unifies the label

length by applying the pruning function to the bag-of-words (line 8 to 9). Here, the

pruning function needs to be applied twice as each of the two bag-of-words could be the

larger one. Based on the pruned bag-of-words the bag-of-words similarity is computed

(line 10) and the score is compared to the threshold (line 11) in order to decide if the

according activity pair is added to the alignment (line 12).

In addition to the specific word similarity and the stemming functions used to calculate

the bag-of-words similarity scores, the effectiveness of the bag-of-words algorithm with

pruning also depends on the pruning function applied to harmonize the length of labels.

In particular, three pruning functions are considered in the following. At heart, all

three functions follow the same procedure. To prune a bag-of-words, the functions first

transform it into a list. Therefore, each word is added to the list as often as it occurs in

the bag-of-words. Next, the list is sorted in descending order with regard to one or more

criteria. At this point, the functions distinguish themselves from one another by relying

on different sort keys. Finally, the pruned bag-of-words is created. Therefore, the first n

words of the sorted lists are selected and added to the pruned bag-of-words. Here, n is

equal to the number of words in the shorter bag-of-words.

The Maximum Pruning Function (MaxPF) utilizes the word similarity and stemming

functions. For each word from the larger bag-of-words it determines the maximum word
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Algorithm 4.3: Bag-of-words matching algorithm with pruning
Input: P = (N , E,λ,τ, A), P ′ = (N ′, E′,λ′,τ′, A′)

Output: A

1 A = ;;

2 foreach a ∈ A do

3 label = norm(λ(a));

4 $= tok(label);

5 foreach a′ ∈ A′ do

6 label ′ = norm(λ′(a′));

7 $′ = tok(label ′);

8 $p = prune($,$′);

9 $′p = prune($′,$);

10 similari t y = σ.$($p,$′p);

11 if similari t y ≥ ϑ then

12 A =A ∪{(a, a′)};

13 end

14 end

15 end

similarity score yielded by comparing the word and its stems to each of the words and

their possible stems in the smaller bag-of-words. The maximum scores are then taken as

the sort criteria.

The other two pruning functions are inspired by the term frequency / inverse document

frequency weighting which is used to assess the relevancy of a word for a given document

within a document collection [266]. It takes the term frequency into account, i.e., the

number of occurrences of a word in a document. That is, the higher the number of

occurrences is, the more relevant is the word for the document. However, words that

frequently occur in the collection have no or only little discriminating power because all

documents would be similarly relevant with regard to these words [30]. Consequently,

such words distort the ranking of the documents. Therefore, the inverse document

frequency [267] is used to weight the term frequency. The inverse document frequency is

inversely proportional to the number of documents that contain the word. That means,

the higher the number of documents in which the word occurs, the less important it is.
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In this spirit, the Frequency Pruning Function (FreqPF) is suggested as a pruning

function. Here, words are ranked with regard to their frequency in the model collection.

The frequency of a particular word is the number of activities in the model collection whose

label contains the word. Then, the words are ranked in descending order with regard

to their frequency or relevance, respectively. If two words have the same frequency, the

maximum similarity is used as a second sort criteria. In contrast to the inverse document

frequency this strategy favors frequently occurring words over rare words. That is because

contrary to information retrieval pruning is applied to balance the label specificity by

bringing the more specific label to the specificity level of the more abstract label. Hence,

the focus is on relevant aspects, e.g., the main actions, rather than less relevant aspects,

e.g., conditions related to a small number of actions.

As opposed to FreqPF, the Co-occurrence Pruning Function (CoPF) does not consider

the relevance of words with regard to the entire collection. Instead, the current context

is focused, i.e, the smaller bag-of-words. Thus, words that are more likely to co-occur

in the same context as those in the other bag-of-words are selected. Therefore, the

words are ranked with regard to their overall co-occurrence count. For a specific word

from the larger bag-of-words this count is calculated by summing up the co-occurrence

counts of the considered word and all words from the shorter bag-of-words. Here, the

co-occurrence counts are equal to those in the context of the syntagmatic word similarities

(cf. Section 4.3) which are defined with regard to the entire model collection. Similar to

FreqPF, CoPF utilizes the maximum similarity as a subordinate sorting criteria.

As a consequence of integrating pruning into the matching process, the space of possible

configurations grew again. As shown in Figure 4.6 the feature model now contains the

additional prune feature which can be activated or not. Similar to the deactivation of

stemming the deactivation of pruning can be achieved through the implementation of a

function that always returns the first bag-of-words without pruning it. To enable pruning

one of the three options needs to be selected.

Like the other matching algorithms, the bag-of-words matching algorithm with pruning

is evaluated on the development datasets. To assess the effect of the pruning function,

stemming is neglected. Similar to the evaluation of the stemming algorithms HAM and
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FIGURE 4.6: The feature model for the bag-of-words matching algorithm with pruning

SUB are chosen as the best performing word similarity functions in combination with the

bag-of-words matching algorithm. Table 4.9 summarizes the effectiveness.

With regard to BR applying MaxPF or FreqPF yields a higher micro f-measure for

both word similarity functions, whereas CoPF only increases the effectiveness for SUB.

The maximum micro f-measure of .474 is the result of combining HAM with MaxPF.

This however is only a marginal improvement, as HAM yields a micro f-measure of .461

without pruning. In this regard, MaxPF also leads to the maximum f-measure of .466 for

SUB. This value constitutes a stronger improvement (.466 vs. .414).

This slightly positive effect is not confirmed by the results on UA. Similar to BR, MaxPF

yields higher values for both word similarities than FreqPF and CoPF. Yet, the micro

f-measure for MaxPF in combination with HAM is .401 and with SUB .414. These values

are slightly lower than those yielded without pruning (HAM: .405; SUB: .417).

The evaluation results show that similar to the stemming functions, pruning does

not significantly improve the effectiveness. Instead it can even decrease the overall

effectiveness in terms of the micro f-measure. Another finding is that MaxPF is to be

preferred over FreqPF and CoPF. The reason is that MaxPF yields the highest micro

f-measures on both datasets for both word similarity functions.
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TABLE 4.9: Effectiveness of the bag-of-words matching algorithm with pruning

BR UA

st σ.w ϑ prµ reµ Fµ ϑ prµ reµ Fµ

MaxPF
HAM .598 .546 .420 .474 .764 .484 .343 .401

SUB .641 .478 .455 .466 .748 .429 .401 .414

FreqPF
HAM .571 .518 .430 .470 .792 .632 .275 .383

SUB .643 .508 .394 .444 .785 .554 .299 .389

CoPF
HAM .583 .564 .384 .457 .783 .564 .298 .390

SUB .654 .539 .378 .445 .764 .648 .267 .379

4.5 The Bag-of-Words Matching Technique

In this section the Bag-of-Words Technique (BOT) is finally introduced. It consists of

two parts. First, there is the bag-of-words matching algorithm with pruning and filtering

which is based on the algorithms from the previous sections. Second, it comprises a set of

features which provide configuration options. In this regard, the most promising options

are considered, whereas the options for which poor results were obtained in the previous

analyses are discarded.

The bag-of-words matching algorithm with pruning and filtering is an extended version

of the bag-of-words matching algorithm with pruning. Its basic structure is shown in

Algorithm 4.4. From an abstract point of view, the algorithm can be divided into a

sequence of two steps. The first step (lines 2 to 11) filters activity pairs. It is optional and

can be deactivated by setting the filter variable to “false” (line 2). The second step (lines

12 to 25) iterates over the remaining activity pairs and applies the bag-of-words similarity

in combination with the pruning function to classify the activities.

In more detail, the filtering step searches the set of all activity pairs for equally labeled

pairs. Whenever such a pair is found (line 5), it is considered as a correspondence and

added to the alignment (line 6). This is based on the finding that equal labels are a precise

correspondence indicator. As shown in Section 4.1, 85.5% of the activity pairs with

equal labels actually correspond on BR and 78.2% on UA. Thus, assuming equally labeled
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Algorithm 4.4: Bag-of-words matching algorithm with pruning and filtering
Input: P = (N , E,λ,τ, A), P ′ = (N ′, E′,λ′,τ′, A′)

Output: A

1 A =∅; A= =∅;

2 if filter then

3 foreach a ∈ A do

4 foreach a′ ∈ A′ do

5 if norm(λ(a)) = norm(λ′(a′)) then

6 A =A ∪{(a, a′)};

7 A= = A= ∪ {a, a′};

8 end

9 end

10 end

11 end

12 foreach a ∈ A\ A= do

13 label = norm(λ(a));

14 $= tok(label);

15 foreach a′ ∈ A′ \ A= do

16 label ′ = norm(λ′(a′));

17 $′ = tok(label ′);

18 $p = prune($,$′);

19 $′p = prune($′,$);

20 similari t y = σ.$($p,$′p);

21 if similari t y ≥ ϑ then

22 A =A ∪{(a, a′)};

23 end

24 end

25 end

activities to correspond results in only a small amount of false positives. But, the filtering

goes further and also uses equally labeled activity pairs as an exclusion criteria. That is,

activities that have an equally labeled counterpart in the other process are considered

totally dissimilar from the remaining activities in the other process. Accordingly, activities

that occur in an equally labeled activity pair are stored (line 7) and all activity pairs
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that contain one of these activities are not considered in the second step (lines 12 and

15). This is based on the assumption that equal labels are a typical characteristic for

elementary correspondences which by definition comprise activities that do not correspond

to any other activity (cf. Section 3.1). No analyses carried out so far provides evidence

towards this assumption. Thus, in addition to the precision values, the impact of removing

activity pairs from the set of possible correspondences is analyzed here with regard to the

development datasets. On BR 46 correspondences are excluded from the classification

in the second step when filtering is activated. From a relative perspective, this conforms

to 1.53% of the excluded activity pairs and to 7.88% of all correspondences. On UA

there are only two correspondences excluded being equivalent to .05% of all excluded

pairs and .38% of all correspondences. These overall low values show that only a small

number of correspondences are missed, if equally labeled activity pairs are considered

to be elementary correspondences. Thus, evidence towards the assumption is given and

filtering might be used to reduce the search space for the second step. That is, a huge

share of truly non-corresponding activity pairs is already correctly classified in the filtering

step. Consequently, the filtering is also a strategy to reduce the amount of false positives.

The second step relies on the bag-of-words model to compute similarity scores for

activities instead of applying string similarities to the whole label. This decision is made

because the bag-of-words model allows for a more fine-grained and accurate calculation

of similarity scores. Evidence in this regard is given by the evaluation results of the

bag-of-words matching algorithm which achieves higher micro f-measures than the basic

label matching algorithm (cf. Section 4.2). Here, additional support for the decision

is presented in terms of Receiver Operating Characteristic (ROC) and Precision Recall

(PR) curves. These curves are well-known in the field of information retrieval [30] and

provide means to inspect the development of the effectiveness with regard to different

configurations of matching algorithms.

ROC curves show the development of the true positive and the false positive rate.

While the true positive rate is the micro level recall, the false positive rate measures

how many of the non-corresponding activities were falsely suggested as correspondences.

For each possible configuration the true positive and false positive rate are determined
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and plotted as a curve. Here, the x-axis represents the false positive and the y-axis the

true positive rate. Thus, the curve shows to which degree a change in the technique’s

configuration that increases the number of correctly detected correspondences is linked

to an increase in the number of falsely suggested correspondences. Effective matching

techniques are typically characterized by large true positive rates for all possible values

of the false negative rate. Hence, the larger the area under the curve, the better is the

matcher suited for activity pair classification.

However, the ROC curve is known to present an optimistic view on the effectiveness

of matchers in case there is a huge difference in the number of corresponding and non-

corresponding activity pairs [268]. As this is usually the case for business process model

collections as outlined by the descriptive statistics for the datasets in Section 3.4, PR curves

are also investigated here. A PR curve outlines the tendency to which the precision of a

matching technique decreases, when it is configured to yield a certain recall. Therefore,

the micro recall and the micro precision values are calculated for all configurations of

a matching technique. Then, the micro level recall is sampled in equal steps on the

interval of [0, 1]. Here, the step size is .01 resulting in 101-point PR curves. For each of

the sampled recall values the highest precision value that was yielded together with a

recall value equal to or higher than the sampled value is determined. Then, the curve

plots the sampled recall values on the x-axis and the respective precision values on the

y-axis. Similar to the ROC curve, effective matching techniques are characterized by large

precision values for all possible values of the recall. Thus, the larger the area under the

curve, the better is the technique suited for matching.

Figures 4.7 and 4.8 contrast the ROC and PR curves for the basic label and the bag-

of-words matching algorithms on both development datasets. Here, both algorithms

were configured with HAM on BR and SUB on UA as these are the word similarities that

yielded the highest micro f-measure for the bag-of-words matching algorithm on one of

the datasets. Moreover, stemming is neglected and the threshold is the only parameter

that is varied for both algorithms. As the figure reveals, all curves for the bag-of-words

matching algorithm cover a larger area than those for the basic label matching algorithm.

Consequently, the bag-of-words algorithm is better suited as an increase in the recall is
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FIGURE 4.7: ROC curves on BR (top) and UA (bottom)

connected with a smaller decrease in the precision and thus also with a smaller increase

in the false positive rate. In other words, when the bag-of-words matching algorithm is

configured to yield a certain micro recall it is likely to propose less false positives than a

configuration of the basic label matching algorithm that achieves the same micro recall.

BOT’s features are shown in Figure 4.9. Besides the filter feature which can be selected

or not, BOT’s features are oriented towards the ones introduced in the previous sections.

However, BOT does not comprise all of these features. Instead, only those features that

showed positive effects on the effectiveness are considered. In the following, the selection

of features is briefly discussed.

First, the threshold ϑ is used to cut off activity pairs that are considered dissimilar.

Here, all values in the interval [0,1] can be chosen for the threshold.
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FIGURE 4.8: PR curves on BR (top) and UA (bottom)

Additionally, a variety of syntactic, paradigmatic, and syntagmatic word similarity

functions was introduced. In total there are 20 different functions. However, their

effectiveness varies and some of them yield low micro f-measures. Thus, the number of

possible functions is reduced to twelve. First, HAM, LCS, LEV, and SUB are proposed as

the syntactic similarities because they yield higher micro f-measures on the development

datasets than the other functions from this group. Similarly, J/C, LESK, LIN, and W/P are

the representatives of the paradigmatic similarity functions. Finally, all four syntagmatic

similarity functions are considered because their effectiveness is quite similar and none of

the functions clearly outperformed the others in the evaluations.

As shown in Section 4.2 the stemming functions do not have a significant impact on

the effectiveness. Moreover, there is also no significant difference between PSA and WSA.

Consequently, only PSA is considered as an option which can be enabled or disabled. The
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FIGURE 4.9: The feature model for the Bag-of-Words Technique

reason for neglecting WSA is that it is limited to English as it is based on WordNet. In

contrast, PSA is available for different languages28.

Finally, similar to stemming, pruning is optional as it might lead to an increase or

decrease in the effectiveness. Moreover, only MaxPF is considered, because CoPF and

FreqPF performed worse than MaxPF.

4.6 Evaluation and Analysis

To conclude the discussion of label-based process model matching and the verification of

Sub-hypothesis H2, this section evaluates and analyzes BOT. First, BOT is evaluated on the

development datasets and a default configuration of BOT is derived. Such a configuration

enables the direct application of BOT without the need to manually configure it. Next,

the effectiveness of this default configuration is examined with regard to the evaluation

datasets. These results provide insights into BOT’s general effectiveness as well as into

its limitations. Furthermore, the use of the default configuration is contrasted to a

semi-manual configuration approach. In this approach experts provide alignments for a

subset of the model collection. From these alignments the best performing configuration is

derived and used to match the remaining model pairs in the collection. Finally, a challenge

analysis is presented. This analysis explicates problems regarding the identification of

correspondences based on BOT. Thus, it also provides guidance for future work on the

label-based matching of process models.

28http://snowball.tartarus.org, accessed: 13/01/2017

http://snowball.tartarus.org
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4.6.1 Effectiveness on the Development Datasets

In Section 4.5 the configuration space of BOT was cut by removing features which had little

influence on the effectiveness of the discussed matching algorithms. However, without

considering the possibility to add further features in future work, the configuration space

of BOT is still large. That is, filtering, pruning, and stemming can be enabled or disabled.

Additionally, one of twelve word similarities needs to be chosen. Accordingly, there are

(2 × 2 × 2 × 12 =) 96 options to determine how BOT calculates similarity scores for

activity pairs in a model collection. Moreover, the threshold parameter needs to be set to a

specific value in order to split the activity pairs into corresponding and non-corresponding

pairs based on the calculated similarity values. If, for example, the interval of possible

threshold values [0, 1] is sampled in steps of .05, there are 21 different threshold values

and consequently (96× 21=) 2016 configurations of BOT.

With that in mind, the maximum effectiveness achieved by any BOT configuration on

the development datasets is determined. This results provides further insights into BOT’s

effectiveness. Moreover, it serves as a baseline for the selection of a default configuration

that can be directly applied by experts without additional configuration efforts. To this

end, three configurations are considered: the maximum effectiveness of BOTBR and BOTUA

as the best performing configurations on each dataset and BOTALL which was optimized

on the union of both datasets. Table 4.10 summarizes the features and the effectiveness

of the three configurations.

While BOTBR and BOTUA yield the highest values on the according datasets, they also

yield the lowest effectiveness on the other dataset. In particular, the effectiveness of

BOTBR on UA is drastically lower than this of BOTUA. In contrast, BOTALL ranks second on

TABLE 4.10: Effectiveness of the optimized BOT configurations on BR and UA

Options BR UA

Matcher filter σ.w st prune ϑ prµ reµ Fµ prµ reµ Fµ

BOTBR true 2CS PSA - .859 .652 .452 .534 .095 .460 .157

BOTUA true J/C PSA MaxPF .577 .611 .301 .404 .406 .486 .442

BOTALL true HAM - - .550 .657 .344 .452 .429 .380 .403
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both datasets and achieves the highest average micro f-measure (BOTALL: .428; BOTBR:

.346; BOTUA: .423). Due to the better average performance BOTALL is proposed as BOT’s

default configuration.

The results also outline two problems related to universal label-based matching tech-

niques. First, the effectiveness of a specific configuration usually varies across datasets.

Here, adapting BOT to the characteristics of one dataset and then applying the respective

configuration to other datasets typically results in a poor performance with regard to

the maximum effectiveness. This could be observed for BOTBR and BOTUA as well as for

the configurations of the matching algorithms throughout this chapter. Moreover, the

effectiveness of BOTALL does not vary that strongly, but is still outperformed by the config-

uration with the maximum effectiveness. The reason is that the domain characteristics of

model collections vary and are reflected differently by the configurations. This problem

has also been recognized in the area of schema and ontology matching [171, 269, 270].

Second, the low effectiveness shows that the domain characteristics are not represented

sufficiently by BOT and its universal features. That this is a general problem of label-based

matching techniques is on the one hand substantiated by the consideration of state-of-the-

art techniques from natural language processing, ontology matching, and information

retrieval. In this chapter a broad variety of such approaches has been discussed and

analyzed. However, a high effectiveness could not be achieved. On the other hand, the

comparison to the best performing techniques from the process model matching contests

in 2013 and 2015 [19, 20] reveals that other techniques also struggle with the assessment

of the label similarity. Table 4.11 contrasts the results of the best techniques from the

contests and the results of the three BOT configurations. As the publication from the first

contest [19] only reported the macro level effectiveness of the techniques, the macro and

the micro effectiveness are outlined in the table.

The results reveal that BOT’s maximum effectiveness outperforms the state of the art.

That is, BOTBR and BOTUA yield higher micro and macro f-measures than the techniques

from the contests. Moreover, the default configuration (BOTALL) yields results comparable

to that of the state of the art. To this end, its micro f-measure is virtually identical to

that of pPalm-DS on BR (.452 vs. .459). The macro level effectiveness is worse than that
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TABLE 4.11: Effectiveness of BOT and the contest matchers [19, 20] on BR and UA

Dataset Matcher prM reM F M prM reM F M

BR

BOTBR .652 .452 .534 .633 .467 .511

BOTALL .657 .344 .452 .615 .329 .382

RMM/NSCM - - - .68 .33 .45

pPalm-DS .502 .422 .459 .499 .429 .426

UA

BOTUA .406 .486 .442 .443 .511 .453

BOTALL .380 .403 .428 .455 .386 .382

RMM/NSCM - - - .37 .39 .38

of pPalm-DS and RMM/NSCM (.382 < .426, .382 < .45). Yet, the significance of this

observation is limited, as the macro f-measure tends to draw a distorted picture of the

effectiveness (cf. Section 3.1). On UA RMM/NSCM and BOTALL also achieve virtually

identical macro f-measures (.382 vs. .38). These results show that in comparison to the

state of the art BOT can be considered as a high performing matching technique. Moreover,

as both techniques from the contests also solely exploit labels (cf. Section 3.3.3), the

results further substantiate that label-based matching techniques suffer from a generally

low effectiveness.

4.6.2 Effectiveness on the Evaluation Datasets

To examine the general validity of the findings, the evaluation datasets are used to assess

the effectiveness of BOT. Besides the default configuration BOTALL, the other two optimized

configurations from the development datasets (BOTBR, BOTUA) are considered here as

well. Additionally, the top performing BOT configurations on each of the two evaluation

datasets (BOTSR, BOTAW) are determined and serve as a baseline. Furthermore, as the

SR dataset was used in the second process model matching contest [20], the results of

the BOT configurations are compared to AML-PM, the best performing technique on this

dataset. Table 4.12 presents the respective results.



138 COMPARING ACTIVITY LABELS

TABLE 4.12: Effectiveness of BOT and the contest matcher [20] on SR and AW

SR AW

Matcher prµ reµ Fµ prµ reµ Fµ

BOTBR .606 .590 .598 .519 .285 .368

BOTUA .750 .581 .655 .510 .333 .403

BOTSR .887 .568 .692 .947 .240 .383

BOTAW .227 .608 .330 .616 .552 .582

BOTALL .774 .572 .658 .959 .251 .397

AML-PM .786 .595 .677 - - -

On SR the maximum effectiveness is Fµ = .692 yielded by BOTSR. This high effective-

ness value in comparison to the development datasets can be traced back to the increased

label homogeneity. For example, 47% of the correspondences on SR have the same

labels, whereas on the development datasets only 16% are equally labeled (cf. Table 4.1).

Moreover, the effectiveness of the configurations trained on the other datasets falls into

the interval of [.330, .658] and BOTALL yields the highest micro f-measure among those

configurations. Finally, the f-measure of BOTSR and BOTALL is similar to that of AML-PM.

On AW the maximum micro f-measure of .582 yielded by BOTAW is only moderate,

but still higher than that on the development datasets. Moreover, the configurations that

were optimized on the other datasets perform poorly in comparison to BOTAW. That is

because these optimized configurations rely on filtering and thus suggest equally labeled

activities as elementary correspondences. However, this appears to be too restrictive for

AW where equally labeled activities tend to be part of complex correspondences.

In summary, the findings provide further evidence towards Sub-hypothesis H2. First,

the analysis on the evaluation datasets confirms that label-based matching techniques

cannot be assumed to yield a high effectiveness on all datasets, as they do not sufficiently

reflect the domain characteristics and require a high labeling homogeneity to yield a

high effectiveness. Moreover, the results revealed that the effectiveness of matcher

configurations that are optimized on some datasets varies with regard to the maximum

effectiveness when they are applied to new datasets. This problem of a limited portability
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of matcher configurations has also been recognized in the field of schema and ontology

matching [171, 269, 270]. Finally, the comparison to the state of the art demonstrated

that BOT together with its default configuration BOTALL is a high performing matching

technique. Thus, its results can be considered to be representative of the state of the art

substantiating the general validity of the findings.

4.6.3 Semi-manual Configuration

As shown in the preceding evaluations, on each dataset the quality of the default con-

figuration is lower than the maximum. Thus, experts might be interested in configuring

BOT in order to maximize its utility. This selection of a configuration (i) requires some

ground truth that can be used to estimate the effectiveness and (ii) needs to be repeated

whenever the context, i.e., the model collection, changes. With that in mind, the following

semi-manual configuration approach is applied to investigate the manual effort needed to

improve the effectiveness of the default configuration. First, a part of the model collection

is manually matched by the experts. Then, the best-performing configuration on these

alignments is automatically determined and used to match the remaining model pairs.

In the experiment, the experts’ opinion is simulated by selecting gold standard align-

ments. That is, on each dataset the 36 model pairs are randomly partitioned into s = 36/k

distinct sets of size k ∈ {1, 2, 3, 4, 6, 9}. For each k 36 sets are determined by generating

36/s partitions. Then, for each of the sets the BOT configuration is optimized, i.e., the

configuration with the highest micro f-measure is determined. After that, this configura-

tion is applied to the model pairs that were not used in the optimization. Finally, per k

the average f-measure Fµ on the evaluation model pairs is computed as an estimation

of the effectiveness that can be achieved by training BOT. Further, the experts’ effort is

estimated in terms of the average of the number of correspondences |{c}| and activity

pairs |{ap}| in the training sets: the user needs to correctly identify |{c}| correspondences

from a pool of |{ap}| candidates. Table 4.13 contrasts the results of the semi-manual

configuration approach to the effectiveness of the default configuration (BOTALL) and the

maximum (BOTMAX).
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TABLE 4.13: Results of the semi-manual configuration approach

BR UA SR AW

k Fµ |{c}| |{ap}| Fµ |{c}| |{ap}| Fµ |{c}| |{ap}| Fµ |{c}| |{ap}|

1 .42 16 371 .36 15 746 .46 6 126 .45 10 52

2 .45 32 742 .39 30 1492 .50 12 253 .47 21 104

3 .46 49 1113 .40 44 2238 .60 19 380 .50 31 156

4 .47 65 1484 .40 59 2983 .59 25 507 .52 42 207

6 .48 97 2226 .41 89 4476 .63 37 760 .52 63 311

9 .50 146 3340 .42 133 6713 .63 56 1140 .55 94 467

BOTALL .45 - - .40 - - .66 - - .40 - -

BOTMAX .53 - - .44 - - .69 - - .58 - -

The table reveals that even when experts manually align nine model pairs to optimize

the BOT configuration they do not reach the maximum effectiveness. However, on BR

they need to align two model pairs, on UA three, and on AW only one in order to yield an

effectiveness that is higher than that of the default configuration. Only on SR they do

not reach the default configuration’s effectiveness, but after three model pairs have been

matched the effectiveness levels off and it is close to that of the default configuration.

These observations suggest that the provision of alignments for (3 out of 36 Ò=) 8% of

the model pairs will enable experts to yield a configuration that is at least close to and

often better than the effectiveness of the default configuration. Yet, given the rather small

differences in the f-measure, the potentially huge effort, e.g., for k = 3 experts need to

identify 40 out of 2238 activity pairs on UA, should be considered by experts before opting

for a semi-manual configuration approach.

4.6.4 Challenge Analysis

The overall low and varying effectiveness on all four datasets raises the question why

label-based matching techniques struggle with the identification of correspondences. In

order to better understand the problems, an analysis of challenges is presented in the

following. This analysis also gives further evidence towards Sub-hypothesis H2 and

provides guidance for the development of enhanced label-based matching techniques.
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TABLE 4.14: Overview of the false positive challenges

Challenge BR UA SR AW Σ

Equal Labels 16 32 1 0 49

Shared Words 121 182 15 129 447

Stop Word Removal 0 10 0 0 10

No commonalities 4 2 0 0 6

Σ 141 226 16 129

In particular, it focuses on BOT’s misclassifications, i.e., the false positives and the false

negatives. The analysis builds upon a representative sample of such misclassifications.

Hence, for each dataset it considers the misclassifications of the best performing BOT

configuration. Focusing on these misclassifications is a limiting factor because this way

the analysis ignores the similarity assessment and the degree to which an activity pair is

misclassified. That is, a similarity score close to the threshold can be considered to be less

problematic than values with a larger distance. Nevertheless, as all misclassifications are

regarded, the analysis is considered to provide a representative overview of the challenges.

The first part of the analysis focuses on the false positives. That means it investigates

reasons for the identification of correspondences that do not exist. To this end, all false

positives were derived from the datasets and manually classified with respect to the reason

of the misclassification. In this regard, the guidelines for qualitative analysis [45, 46] (cf.

Section 1.3) were applied. The result of the analysis is a set of four challenges which are

discussed in the following. Additionally, Table 4.14 summarizes the frequencies of the

challenges in the datasets.

Equal Labels. The analysis revealed that there are false positives with equal labels. In

contrast to the label equality similarity function EQL labels were also considered to be

equal, if they consisted of the same words regardless of the specific word form used in the

label. Consequently, the labels “wait for response” and “waiting for response” are viewed

as equal labels. This observation confirms that matching techniques which build upon

label equality need to accept exceptions. These exceptions can be due to implicit roles or
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to different contexts and positions. However, in comparison to the next challenge this

challenge rarely occurs.

Shared Words. The most frequent problem which in total comprises 447 of the 512

false positives (Ò= 87%) refers to situations where some words occur in both labels, but

there are also words that occur in only one of the labels. Examples include “create birth

certificate” vs. “send birth certificate” and “accept application” vs. “reject application”.

Here, the words that occur in both labels dominate the determination of the bag-of-words

similarity and thus a high similarity score is yielded. This effect is increased, if pruning

is enabled because this way more emphasis is put on words with high similarity scores.

Additionally, low threshold values, e.g., the threshold of BOTUA is .577, amplify the impact

of this problem. A strategy to mitigate the problem is to only consider high similarity

values as a correspondence indicator. However, as discussed in the context of the false

negative challenges (see below), this strategy might lead to a low recall because the

similarity of many truly correspondences is not assessed properly. Accordingly, many true

correspondences are ruled out when the threshold is set to a high value.

Stop Word Removal. A challenge that was only observed on UA refers to the removal

of stop words and in particular to the removal of “not” from the bag-of-words, e.g.,

“mark student as not qualified” is transformed into the bag-of-words {“mark”, “student”,

“qualified”}. Here, discarding “not” changes the meaning and thus the label might be

matched to labels which actually constitute antonyms like “mark student as qualified”.

Yet, this problem was only observed ten times.

No commonalities. Finally, the least frequently occurring challenge is that some activities

were matched although their labels have nothing in common. That is, labels like “archive

documents” and “return to migrantshelter” were proposed as correspondences although

their meanings are not related in any sense and the labels do not share any words. This

clearly is attributed to a wrong assessment of the senses. However, only six false positives

fall into this category making the problem negligible.
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TABLE 4.15: Overview of the false negative challenges

Challenge BR UA SR AW Σ

Holonymy 68 204 73 0 345

Same Holonym 78 39 2 120 239

Generic Activity 88 2 9 12 111

Synonymy 74 87 7 37 205

Case Differentiation 0 0 5 2 7

Filtering 12 6 0 0 18

Σ 320 338 96 171

The second part of the analysis dealt with the false negatives. Here, reasons why BOT

did not propose activity pairs that actually correspond were investigated. Similar to the

analysis of the false positives qualitative methods were applied to categorize the challenges.

Table 4.15 introduces the six identified challenges and their number of occurrence within

the datasets.

Holonymy. The first challenge is the most frequently occurring challenge with regard to

the false negatives. It comprises all activity pairs where one of the activities comprises

the other activity as it is more generic, e.g., “publishing the letters” vs. “send letter of

rejection” and “send letter of acceptance”. Hence, this challenge is related to the existence

of 1:n-correspondences.

Same Holonym. Similar to the first challenge BOT also often struggles with the iden-

tification of m:n-correspondences. Here, two activities might not represent the same

functionality, but are part of the same abstract activity. An example is given by the labels

“create and add cv” vs. “fill in online form of application” that represent sub-steps of the

more abstract activity “apply online”.

Synonymy. In contrast to the first two challenges the third challenge refers to elementary

correspondences. Some correspondences exist between activities that represent the

same functionality, but their labels differ as they also comprise conditions or rely on
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different terminology, e.g., “send documents by post” vs. “send application”. Like the

other challenges this problem occurs frequently.

Generic Activity. This challenge is linked to the other challenges, but was observed less

frequently. In some cases one of the labels indicates a generic task like “adjust” and

“selection” which does not provide specific information on the functionality and can thus

occur in many different contexts.

Case Differentiation. Some labels represent the same functionality in different contexts.

For example, the labels “transfer to ps of time recorded” and “forwarding of time sheet

data to cs” represent activities where similar business objects are forwarded to a business

unit. Yet, this challenge rarely occurs.

Filtering. Finally, there are those activity pairs that were excluded in the filtering step

because at least one of the activities had an equally labeled counterpart in the other

process model. As already outlined in Section 4.5 this might lead to the exclusion of

correspondences. In the analysis only activity pairs with almost identical labels were

assigned to this category. The remaining activity pairs were assigned to the other challenges

as BOT would not have identified them anyway.

The analysis of the false negatives reveals that a huge share of the correspondences

is not discovered as the sense relations between the labels are not assessed correctly.

Accordingly, the similarity scores yielded for the respective activity pairs are low and the

pairs are misclassified as non-corresponding. Here, holonymy and synonymy relations as

well as generic activities constitute the major challenges in the assessment of the similarity

of activities. The low similarity values resulting from this misjudgement of the sense

relations pose a problem because lowering the threshold value in order to relax the degree

to which activities are considered similar results in many false positives. In this regard,

the analysis revealed that the major problem concerning the false positives is that the

respective labels often share words that dominate the similarity assessment and lead to

high scores. In such situations the influence of the words that are responsible for the

different meaning diminishes. In summary, the analysis verifies that universal label-based
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matching techniques are likely to yield an insufficient effectiveness. The reason is that

such techniques rely on universal knowledge which does not necessarily reflect the domain

characteristics of the model collections.

The generalizability of this finding is limited by the number of the considered knowl-

edge sources and similarity measures that were considered in this chapter. Yet, relying on

other corpora and measures with a general character like those discussed in Section 4.3

is unlikely to improve the effectiveness. On the one hand, the state-of-the-art matchers

from the matching contests [19, 20] incorporated other knowledge sources, but yielded

an effectiveness close to or lower than that of BOT. On the other hand, the statement is

substantiated by the knowledge acquisition bottleneck [271] which is a known problem

in the context of measuring the semantic relatedness between words [225]. According

to this problem, knowledge sources must be suited to the specific domain characteristics

and the domain vocabulary in order to yield reliable results. Consequently, different

model collections require different knowledge sources. However, the creation of such

sources is expensive and time-consuming [272]. The knowledge acquisition problem has

been recognized as a central challenge in the field of schema and ontology matching

[171]. Accordingly, the use of domain specific knowledge sources was discussed. To

this end, Aleksovski [273], Madhavan et al. [274], and Saha et al. [275] consider the

use of corpora that comprise schemas and alignments. Additionally, improving schema

and ontology matching by incorporating domain specific ontologies was amongst others

examined in [276–279]. In a similar vein, Brockmans et al. [160] require experts to

provide domain ontologies for business process model matching.

4.7 Summary

This chapter discussed the matching of process models by solely exploiting the labels of the

activities. It started by introducing various options for the design of label-based matching

techniques and by analyzing them with regard to the development datasets. First, it was

shown that considering labels as strings and applying syntactic similarity measures to

assess the similarity of the strings does not generally guarantee a high effectiveness. Next,
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a more fine-grain assessment of the label similarity was examined. Here, labels were split

into bag-of-words, the words were normalized through stemming, and a label similarity

score was determined based on the comparison of the words. Although, the effectiveness

was improved, it was still fairly low. Thus, the incorporation of word similarities that

measure the sense relation of the words was studied. In contrast to the motivation

that such approaches are necessary to assess the similarity of activities the considered

similarities did not result in a significant increase in the effectiveness. Finally, techniques

to address different levels of specificity were discussed, i.e., labels might be more abstract

or definite than others. Here, pruning was introduced in order to cut large bag-of-words

to the size of smaller bag-of-words. In this regard, relying on the maximum similarity

to select words from the larger label yielded the best results. However, the impact was

marginal.

Based on the results, the Bag-of-Words Technique (BOT) was introduced. It filters

activities based on label equality, harmonizes labels, breaks these labels down into sets of

harmonized words, reduces differences in the label specificity, and compares the words to

determine a similarity score which can be used to classify activities as corresponding or

not. BOT also comprises different features that implement these steps and that can be

used to configure BOT.

While all the analysis results from the examination of the different design options

already provided evidence towards Sub-hypothesis H2, the evidence was refined by

analyzing BOT with regard to all datasets. First, a default configuration that permits the

direct application of BOT was derived from the development results. Here, it was shown

that the three considered configurations yield a varying and rather low effectiveness on the

development datasets. This observation confirms that label-based matching techniques

are characterized by a varing and generally poor effectiveness as postulated by Sub-

hypothesis H2. Moreover, a comparison to the state of the art in terms of the results from

the matching contests [19, 20] revealed that BOT’s maximum effectiveness outperforms

the state-of-the-art matchers and that the default configuration performs similarly to these

matchers.
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With regard to the evaluation datasets, the maximum effectiveness of BOT is higher,

due to a higher labeling homogeneity. Further, the results confirmed that the effectiveness

of different configurations varies across datasets. Additionally, the results also demon-

strated that BOT is high performing with respect to the state of the art. Overall, the

examination of BOT on these datasets provided evidence towards the general validity of

Sub-hypothesis H2.

When applying the proposed default configuration, experts need to accept that it

yields an effectiveness that is lower than the maximum effectiveness any configuration of

BOT could achieve. To overcome this limitation, a semi-manual configuration approach

was examined. That is, a subset of the gold standard alignments was used to optimize

BOT’s configuration. Then, the remaining model pairs were matched automatically by

the optimized configuration. In this context, it was shown that a substantial amount of

correspondences needs to be manually identified, in order to yield a configuration with an

f-measure that is at least close to the default configuration. This result does not only justify

the use of the default configuration, but also motivates the remaining sub-hypotheses

which address the optimization of BOT’s configuration.

Lastly, to conclude the discussion of the sub-hypothesis, challenges related to the

identification of correspondences were analyzed. In this regard, it was revealed that false

negatives reside on a poor assessment of the sense relations between the activities’ labels.

Moreover, the analysis unveiled that false positives are typically characterized by sets of

shared words. Consequently, these findings demonstrated that knowledge sources are

needed that reflect domain characteristics of model collections in order to improve the

effectiveness of label-based techniques. However, in line with the literature it was argued

that these knowledge sources are typically not available and expensive to create.
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5
Analyzing Structure and Behavior

H3: The maximization of the effectiveness of label-based matching techniques

is enabled by the analysis of control flow information.

In addition to the functional perspective which provides textual descriptions of activities,

business process models also capture the behavioral perspective of business processes

[68, 69]. That is, they define the control flow, i.e., structural and behavioral dependencies

between activities, including sequential, parallel, and alternative execution patterns. Ac-

cordingly, many existing matching techniques consider the control flow. In this regard, the

existence of certain control flow characteristics is usually assumed and a respective design

that exploits these characteristics is proposed. Yet, evidence for the basic assumptions is

typically not provided and the effects of the according design decisions are rarely studied

(cf. Section 3.3). From this observation the question arises: how can the consideration

149
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of control flow information improve the matching process? Through the verification of

sub-hypothesis H3 this chapter aims to answer this question. In particular, the behavioral

perspective is viewed from three different angles. First, it is examined whether control

flow information is suited to enhance the pairwise classification of activities. The goal is

to identify similarity scores based on control flow properties that help to better separate

non-corresponding from corresponding activity pairs. Second, structural patterns for the

identification of corresponding activity clusters are investigated. As defined in Section 3.1

such activity clusters constitute sets of activities within a process model that are part of

complex correspondences. Respectively, the idea is to extend the classification of activity

pairs by detecting activity clusters within process models and considering them as candi-

dates for complex correspondences. Third, the order relation between correspondences is

studied. This concept refers to the degree to which the order of activities in one process

model resembles the order of their corresponding counterparts in another model. Here,

the goal is to estimate the effectiveness of alignments by assessing their consistency, so that

matching techniques can automatically optimize the proposed alignments by improving

the consistency. Finally, the results are used to develop the Order Preserving Bag-of-Words

Technique (OPBOT): a self-optimizing matching technique that searches the space of

configurations of BOT in order to identify configurations that yield a high effectiveness

and to combine the results of the best performing configurations.

The remainder of this chapter is organized as follows. Section 5.1 examines the

pairwise classification, Section 5.2 structural patterns for activity clusters, and Section 5.3

the order relation. Next, OPBOT is introduced in Section 5.4. Then, it is evaluated and

analyzed in Section 5.5. Finally, Section 5.6 discusses the findings in order to confirm the

sub-hypothesis H3.

5.1 Multi-Dimensional Classification of Activity Pairs

The design of the label-based matching algorithms in Chapter 4 reposes on the idea to

view business process model matching as a classification problem. That is, for a given pair

of process models these algorithms iterate over the set of all activity pairs. For each of the
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FIGURE 5.1: One-dimensional (top) vs. two-dimensional (bottom) classification of activity pairs

pairs they compute a single similarity score and classify the pair as corresponding, if the

score is high enough, and otherwise as non-corresponding. As shown in Chapter 4 and on

the top of Figure 5.1 the effectiveness of these one-dimensional label-based classifiers is

limited. In the figure, the classifier yields two true positives, one false negative, and five

false positives. Accordingly, the recall is .667, the precision .286, and the f-measure .4.

To improve the effectiveness of those one-dimensional, label-based classifiers, this

section pursues the idea to consider multiple similarity dimensions. In particular, the goal

is to add similarity scores based on the behavioral perspective to the matching techniques.

The right side of Figure 5.1 illustrates the effect that this extension strives to achieve. Here,

adding another similarity score leads to a distribution of activity pairs within a space of

similarity scores. That is, the activity pairs are now distributed in a two-dimensional space

spanned by a label similarity score σ.λ and a similarity score based on the behavioral

perspective σ.π, instead of being ordered according to a label similarity score σ.λ. The

figure shows the ideal case where addingσ.π allows for a definition of a threshold function

that yields a better separation of corresponding and non-corresponding activity pairs. As

the classifier proposes all truly existing correspondences and only one false positive, the

effectiveness is improved: the recall is 1, the precision .75 and the f-measure .857.

In order to examine the extension of label-based matching algorithms, a series of

similarity scores is introduced. These scores are based on a diverse range of activity

properties derived from the behavioral perspective. Each property is represented by

a particular property function that returns a numeric value for a given activity. There
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are two versions for each property function. The first version returns a natural number

for the activity, e.g., the number of activities on the path to the start node. It is also

referred to as the absolute property function Π. However, process models are usually of a

varying complexity and contain a different number of activities or control flow constraints,

e.g., the number of activities in the process models of the BR dataset varies from 9 to

25 activities (cf. Table 3.3). Hence, relying on absolute values may lead to a distorted

similarity assessment as illustrated by the following example: consider two activities a, a′

from two process models P, P ′ and their distances to the start node. While a is preceded

by one activity in P, a′ is preceded by three activities in P ′. Thus, the absolute property

values for the activities are Π(a) = 1 and Π(a) = 3. With regard to these values, both

activities are different. However, the assessment differs when the context of both activities

is taken into account, i.e., the respective process models. In the example, both models

are sequences where a is succeeded by one activity and a′ by three activities. In this case

both activities have the same relative distance to the start node as they are located in the

middle of the respective process model. Consequently, they should be considered as equal

with regard to the start node distance. Based on these considerations the second version

of the property function is the relative property function π which returns a value on the

interval [0..1]. It is based on the normalization of the absolute value achieved by dividing

the value with the maximum value found for any activity in the same model.

Definition 5.1 (Property) Let P = (N , E,λ,τ, A) be a process model and a ∈ A be an

activity. Then, an absolute property function Π is a function

Π : A→ N

that returns a natural number for the activity with regard to a certain property. The respective

relative property function π is then defined as

π(a) =







0 if max
a∗∈A
Π(a∗) = 0

Π(a)
max
a∗∈A

Π(a∗) else

To consider property functions for multi-dimensional activity pair classification, prop-

erty similarity functions σ.π are defined to measure the similarity of activities with regard
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to a certain property. For two activities the absolute difference between their relative

property values is determined and then subtracted from one. Due to relying on the relative

property functions the respective similarity functions are also bound to the interval [0, 1].

Definition 5.2 (Property similarity) Let P = (N , E,λ,τ, A), P ′ = (N ′, E′,λ′,τ′, A′) be

two process models and a ∈ A, a′ ∈ A′ be two activities. Given a relative property function π,

the property similarity function σ.π is defined as:

σ.π(a, a′) = 1− |π(a)−π(a′)|

In the following, specific properties in terms of absolute property functions are intro-

duced. These functions are grouped into three property categories: path, fragment, and

execution semantics properties. Moreover, for each property a subscript x is defined which

is used to refer to the absolute property, Πx , the relative property πx and the property

similarity σ.πx functions. Beside the formal definitions, examples based on the university

admission process models from Section 3.1 are provided and matching techniques from

related work are pointed out that incorporate similar properties. After the properties were

introduced, they are assessed with regard to their suitability for activity pair classification.

5.1.1 Path Properties

The first group of properties considers the process models as directed graphs consisting of

nodes that represent the process elements including activities, events, gateways etc., and

edges which depict the dependencies between these elements. To this end, the execution

semantics that the models capture are ignored, e.g., and-, xor-, and or-gateways are simply

considered as model elements and the differences in their meanings are neglected. In

particular, the focus is on paths which depict connections between nodes in a graph.

Following the common understanding from graph theory [280], a path in a directed

graph (N , E) is a sub-graph which contains a sequence of nodes {ni}k∈Ni=1 with ni ∈ N where

each node that is part of the path only occurs once in the path, i.e., ∀1≤ i, j ≤ k : (ni 6=

n j ⇔ i 6= j)∧ (ni = n j ⇔ i = j). Moreover, for each node in the sequence there must be

a directed edge in the graph that connects the node to its successor, i.e., ∀1≤ i ≤ k− 1 :

(ni, ni+1) ∈ E.
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Definition 5.3 (Path) Let P = (N , E,λ,τ, A) be a process model. Then, a path is defined as

a subgraph P→ = (N→, E→) such that

• N→ = {ni}k∈Ni=1 with ni ∈ N and ∀1≤ i, j ≤ k : (ni 6= n j ⇔ i 6= j)∧ (ni = n j ⇔ i = j)

is a sequence of distinct nodes; and

• E→ = {(ni, ni+1)}k−1
i=1 with (ni, ni+1) ∈ E is the sequence of edges connecting the nodes.

Furthermore, n1→ nk explicitly denotes that the path P→ leads from n1 to nk. Finally, the

set of all distinct paths leading from n1 to nk is referred to as n1
∗
→ nk.

Examples of paths can be found in Figure 5.2. This figure shows the university

admission process models from Section 3.1 where the labels were omitted and replaced

by the ids of the nodes. As the labels are irrelevant for the definition of the control flow

properties, this was done to keep the example concise. First, consider the nodes β1 and

β3 in process B. These nodes are connected by a path that consists of the activities β1, β2,

and β3 as well as of the edges e2 and e3. On the contrary, there is no path in process B that

leads from β3 to β1. Second, the nodes sα and α3 from process A are connected by two

paths. There is the path that contains sα, α1, and α3 as well as e1, e2, and e4. Moreover,

the nodes are also connected by the path that comprises sα, α2, and α3 as well as e1, e3,

and e5. This example shows that paths do not necessarily reflect the observable behavior

as α1 and α2 are part of a parallel block and are always carried out before α3. However,

they are part of different paths connecting sα to α3.
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e6
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FIGURE 5.2: Graph structure of the university admission models
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There are different algorithms to determine paths within graphs. One of the most

popular algorithms is Dijkstra’s algorithm [281] for finding the shortest paths from a start

node to all nodes in a graph. The A* (A star) algorithm [187, 188] is an extension of

Dijkstra’s algorithm that generally achieves a better performance. Additionally, the set of

all paths between two nodes can typically be determined by a depth first search [282].

Based on this understanding the first subset of properties in this category are the

path position properties. In alignment with the related work the assumption is that

corresponding activities are located at similar positions in a process model. For example,

the matching techniques by Nejati et al. [161] and Baumann et al. [201] consider the

position of activities. Furthermore, the ICoP framework [162] also comprises several

components which exploit the position of activities. Here, two properties are defined. The

absolute start distance Π→a of an activity was used to explain the difference between the

relative and absolute property function at the beginning of this section. It is the minimum

number of activities that can be found on any path leading from any of the start nodes of

the process to the activity. Similarly, the absolute end distance Πa→ of an activity is the

minimum number of activities that can be found on any path leading from the activity to

any of the end nodes of the process model.

Definition 5.4 (Path position properties) Let P = (N , E,λ,τ, A) be a process model. Fur-

ther, let N s = {ns|ns ∈ N ∧∀n ∈ N : (n, ns) /∈ E} be the set of start nodes and N e = {ne|ne ∈

N ∧∀n ∈ N : (ne, n) /∈ E} be the set of end nodes. Given an activity a ∈ A, the absolute start

distance Π→a and end distance Πa→ properties are defined as:

Π→a(a) := min
ns∈N s

min
ns→a∈ns

∗
→a
|N→ ∩ A| − 1

Πa→(a) := min
ne∈N e

min
a→ne∈a

∗
→ne

|N→ ∩ A| − 1

To illustrate the graph position properties Table 5.1 summarizes the respective property

and similarity values for the activity pairs (α3,β2) and (α6,β1) from the example in

Figure 5.2. The activities α3 and β2 are located at similar positions in their process models.

That is, both of them have an absolute start distance of 1 and an absolute end distance

of 2. As the maximum absolute start and end distance is 3 in both process models the



156 ANALYZING STRUCTURE AND BEHAVIOR

TABLE 5.1: Path position properties for the university admission example

Π→a π→a σ.π→a Πa→ πa→ σ.πa→

α3 1 .3
1

2 .6
1

β2 1 .3 2 .6

α6 3 1
0

0 0
0

β1 0 0 3 1

relative distances are also equal and the property similarity scores are 1. In contrast, the

activities α6 and β1 are located at opposite ends of their process models. While β1 is the

activity closest to the start node, α6 is the activity closest to the end node. Consequently,

the respective similarity scores are 0.

The second category of properties is based on the assumption that corresponding

activities are embedded in similar neighborhoods. To this end, different variants of

the path neighborhood are introduced. For a given activity a the absolute upstream

neighborhood property Π•a returns the number of activities for which there is at least

one path leading to a that does not contain any other activity. In contrast, the absolute

downstream neighborhood property Πa• for a given activity a is the number of activities

for which there exists at least one path that leads from a to them and that does not

contain any other activity. Finally, the absolute neighborhood property Π•a• combines the

upstream and the downstream neighborhood. Similar to these properties, the matching

technique from [161] as well as the Triple-S approach from the first matching contest

[19] incorporate notions of graph neighborhoods.

Definition 5.5 (Path neighborhood properties) Let P = (N , E,λ,τ, A) be a process model

and a ∈ A be an activity. Then, the upstream neighborhood Π•a, the downstream neighbor-

hood Πa•, and the neighborhood Π•a• properties are defined as:

Π•a(a) := |{a′|a′ ∈ A∧ ∃a′→ a : N→ ∩ A= ;}|

Πa•(a) := |{a′|a′ ∈ A∧ ∃a→ a′ : N→ ∩ A= ;}|

Π•a•(a) := |{a′|a′ ∈ A∧ (∃a→ a′ : N→ ∩ A= ; ∨ ∃a′→ a : N→ ∩ A= ;)}|
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TABLE 5.2: Path neighborhood properties for the university admission example

Π•a π•a σ.π•a Πa• πa• σ.πa• Π•a• π•a• σ.π•a•

α3 2 1
1

2 1
.5

4 1
.3

β2 1 1 1 .5 1 .3

α6 2 1
0

0 0
.5

2 1
.6

β1 0 0 1 .5 2 .6

Table 5.2 shows the corresponding values for the activity pairs (α3,β2) and (α6,β1)

from the running example. Here, α3 and β2 are equal with regard to the upstream

neighborhood, but differ with regard to the other two properties. Similarly, α6 and β1 are

totally dissimilar with regard to the upstream neighborhood, but share similarities with

regard to the other two properties.

5.1.2 Fragment Properties

Similar to the path category the fragment properties neglect the dynamic aspects of the

behavioral perspective. In contrast, the fragment properties do not directly rely on the

graphs. Instead, they are defined with regard to a nested hierarchy of fragments derived

from process models. In this regard, fragments are connected sub-graphs that have a

single-entry and a single-exit node [283]. That is, all paths leading from a node in the

fragment to a node outside the fragment contain the exist node. Likewise, all paths

connecting a node outside the fragment to a node in the fragment comprise the entry

node. The entry and the exit node of a fragment are also referred to as the fragment’s

boundary nodes. Moreover, fragments might be decomposed into further fragments and

the whole process model is typically perceived as the root fragment.

Many matching techniques incorporate the idea to decompose process models into

hierarchies of fragments. In this regard, the basic assumption is that fragments are sub-

processes and their activities refer to the same purpose. Thus, it is believed that activities

within a fragment are likely to correspond to activities in a different process model that

are also part of the same fragment. For instance, the ICoP framework [162] contains
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various components that rely on a fragment hierarchy, e.g., the tree depth ratio booster

is used to filter correspondences by comparing the depth of the two activities in the

respective fragment hierarchies. Here, correspondences are favored where the activities

have a similar depth in the hierarchy over those with dissimilar depth values. Weidlich

et al. [198] represent process models as text documents where each passage represents

an activity and the context of passages, i.e., the preceding and succeeding passages, is

considered in the similarity computation. Hereby, the sequential ordering of the passages

is derived from a fragment hierarchy. Other matching techniques that rely on fragment

hierarchies include [16, 193, 197].

The first step to define fragment properties is to determine how fragments are derived

from a process model. For this task there are various approaches available. Tarjan and

Valdes [284] introduced an approach to decompose sequential programs into sub-program

hierarchies based on their work on graph connectivity [285]. Similarly, program structure

trees are presented in [286, 287]. Moreover, Ouyang et al. [288, 289] developed a

parsing technique to translate BPMN models into block structures.

In this thesis, a process model is decomposed into a Refined Process Structure Tree

(RPST) [283, 290] which is also used by many of the aforementioned matching techniques

[16, 162, 198]. In contrast to the other approaches that detect fragments RPSTs have

the advantage that they are unique and more fine-grain [283]. In other words, the

computation of an RPST for a process model is deterministic, i.e., there is only one

RPST for each model. Moreover, the resulting hierarchy contains more fragments than

hierarchies determined by other approaches. Finally, the fragments in an RPST are

maximal. That means that no other node from the model can be added to the fragment

so that it is a connected sub-graph and still has one exit and one entry node. A simplified

algorithm to compute RPSTs based on other decomposition techniques [291, 292] is

presented in [293].

To outline the decomposition of process models based on the RPST, Figure 5.3 presents

the RPSTs for the process models from the example. The edges of a process model are

considered as the most fine-grain fragments and are referred to as trivial fragments. As a

consequence each edge in a process model corresponds to a leaf node in the according
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FIGURE 5.3: RPSTs for the university admission models

RPST. In the hierarchy more complex fragments are composed of sub-fragments. There are

three different types of such complex fragments. A polygon (marked with P in Figure 5.3)

is a path in the model that connects the entry to the exit node and all nodes in the fragment

are part of this path. In the example, both process models constitute polygons. There

are also further polygons, e.g., process B contains a polygon that comprises the entry

node, the activities β1, β2, β3, and the or-split. A bond (marked with B in Figure 5.3) is

composed of multiple other sub-fragments. Here, it is required that in each sub-fragment

the entry node corresponds to either the entry or the exit node of the bond, and that in

each sub-fragment the exit node also corresponds to either the entry or the exit node of

the bond. An example of a bond is the parallel block in process A. Here, all sub-fragments

connect the parallel split to the parallel join. Complex fragments that are neither a polygon

nor a bond are referred to as rigids. The example models contain no rigids.

A prerequisite for the computation of the RPST is that process models contain exactly

one start and exactly one end node. However, in practice process models might contain

more than one start and one end node. Consequently, this requirement might appear to

limit the application of the RPST and thus of the fragment properties. But, models with

multiple start and/or end nodes can be transformed into models with a single start and a

single end node without changing the original structure of the model [294]. In case there

are multiple start nodes, a new start node is introduced and for all initial start nodes an
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edge is introduced that connects the new start node to the initial start node. Analogously,

multiple end nodes are handled by defining a new end node and an edge for each of the

original end nodes that leads from the original end node to the new end node.

Another requirement is introduced to simplify the definition of the fragment properties.

It is expected that for each activity there is at most one incoming and at most one outgoing

edge, i.e., ∀a ∈ A, n ∈ N : (|{n|(n, a) ∈ E}| ≤ |{n|(a, n)| ∈ E} ≤ 1). Again this requirement

can be ensured without impacting the fragment structure [294]. Therefore, for each

activity with multiple incoming edges a new node is introduced and all incoming edges

are replaced by edges that end in the new node rather than in the activity. The new

node is then linked to the activity. Activities with multiple outgoing edges are handled

analogously and so are activities with multiple incoming and outgoing edges. The result

of this transformation is that there are at most two trivial fragments for each activity,

one representing the incoming and the other the outgoing edge. In case there are two

trivial fragments for an activity, the paths connecting the root to the ancestors of the

trivial fragments in the RPST are identical for both trivial fragments. Accordingly, there is

exactly one path of complex fragments for each activity. In the remainder of the thesis,

the introduced transformations are implicitly applied to a process model when its RPST is

computed.

Based on these considerations the RPST is formally defined as a set of complex

fragments where each fragment contains a set of activities and is located at a certain

depth. The depth of a fragment is the number of fragments on the path from the root to

the fragment inclusive of the fragment itself and exclusive of the root. By definition the

depth of the root is 0.

Definition 5.6 (Refined process structure tree) Let P = (N , E,λ,τ, A) be a process model.

The refined process structure tree R of this process is a 3-tuple

(F , depth, act)

such that

• F is the set of complex fragments;
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• depth : F → N is a function that returns the depth of a fragment; and

• act : F →P (A) is a function that returns the set of activities in a fragment.

Given the definition of the RPST, two fragment property functions are defined. The

first function is the absolute RPST depth Π↓R. Similar to the graph position properties, it

refers to the position of an activity in the RPST. The depth for an activity is equal to the

depth of the lowest complex fragment in the RPST that contains the activity. The other

function is the absolute RPST neighborhood Π•R• which determines the neighborhood

of an activity in the RPST. Here, the neighborhood is defined as the activities in the

lowest complex fragment that contains the activity exclusive of the activity. The RPST

neighborhood function returns the number of activities in this set.

Definition 5.7 (Fragment properties) Let P = (N , E,λ,τ, A) be a process model and R =

(F , depth, act) be the respective RPST. Further, let a ∈ A be an activity and f raga ∈ F be the

fragment with the largest depths that contains a, i.e., ¬∃ f rag ∈ F : f rag 6= f raga ∧ a ∈

act( f rag)∧ depth( f rag)≥ depth( f raga). Then, the absolute RPST depth Π↓R and the

absolute RPST neighborhood Π•R• properties are defined as:

Π↓R(a) = depth( f raga)

Π•R•(a) = |act( f raga)| − 1

Table 5.3 shows the respective values for the two activity pairs from the university

admission example. With regard to the RPST depth both activity pairs are characterized

by equality. That is because the absolute depth of all four activities is 1 and the maximum

depth for both processes is 2. On the contrary, the activity pairs are totally dissimilar with

regard to the RPST neighborhood. The main reason is that each of the activities in the first

model has no neighbors in the RPST. Thus, all activities take an absolute and a relative

value of 0 for this property, while β1 and β2 take the largest absolute values in process B.

5.1.3 Execution Semantics Properties

In contrast to the other property groups the last category comprises properties that rely

on the execution semantics of processes. They define in which order activities can be
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TABLE 5.3: Fragment properties for the university admission example

Π↓R π↓R σ.π↓R Π•R• π•R• σ.π•R•

α3 1 .5
1

0 0
0

β2 1 .5 2 1

α6 1 .5
1

0 0
0

β1 1 .5 2 1

executed and modeling languages typically provide a set of elements to capture them.

The most common elements in this regard provide means to model the parallel, exclusive,

and inclusive execution of activities. The parallel execution indicates that activities can

be carried out simultaneously. The exclusive execution is used when there are different

alternative execution paths and only one of them can be executed. Similarly, the inclusive

execution refers to situations where either one, all, or a subset of the alternatives needs

to be chosen. Respective elements in process model languages comprise the parallel,

exclusive, and inclusive gateways in BPMN as well as the and-, xor-, and or-connectors

in EPC. An overview of constructs and patterns to capture the execution semantics of

processes is given in [295, 296].

The examination of the execution semantics typically relies on traces where a trace

captures a possible order in which the activities of a process can be executed. That is, a

trace is a sequence of activities θ = {ai}i∈N and the order of the activities in the sequence

is determined by the order in which the execution of the activities is started [5, 85pp.].

Thus, for any two activities ak, al that occur in the trace with k < l holds that the execution

of ak was started before the execution of al . To illustrate the concept of a trace Table 5.4

presents the set of all possible traces for the processes from the running example.

For Process A there are four different traces that can be derived from the process

model. As α1 and α2 are part of a parallel block, they are part of every trace, but their

order might differ depending on which activity is started first. Consequently, each trace

starts with either α1 7→ α2 or α2 7→ α1. Once these activities were executed, α3 is carried

out. Thus, each trace starts with α1 7→ α2 7→ α3 or α2 7→ α1 7→ α3. Next, α4 and α5

are executed alternatively. Consequently, there are four sub-traces containing one of
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TABLE 5.4: Possible execution traces of the university admission process models

Process A Process B

α1 7→ α2 7→ α3 7→ α4 7→ α6 β1 7→ β2 7→ β3 7→ β4

α2 7→ α1 7→ α3 7→ α4 7→ α6 β1 7→ β2 7→ β3 7→ β5

α1 7→ α2 7→ α3 7→ α5 7→ α6 β1 7→ β2 7→ β3 7→ β4 7→ β5

α2 7→ α1 7→ α3 7→ α5 7→ α6 β1 7→ β2 7→ β3 7→ β5 7→ β4

the two start traces followed by either α4 or α5. Finally, each trace ends with α6 as it

is always carried out after α4 or α5. Similarly, there are also four traces for Process B.

Here, each trace starts with β1 7→ β2 7→ β3. This sequence of activities is completed by

a combination of β4 and β5. As these two activities are part of an inclusive block, there

are four sub-traces for this block. On the one hand, β4 and β5 can be executed in parallel

leading to the sub-traces β4 7→ β5 and β5 7→ β4. On the other hand, they can be executed

alternatively resulting in two sub-traces that contain just one of them. Note that the

exclusive execution of β4 might violate the intention of the modeler. The reason is that

β4 represents the activity ’register applicant’ and β5 stands for ’publish notification’. In

this context, β5 should always be executed as all applicants need to be notified about the

university’s decision. In contrast, β4 will only be carried out in cases where the applicant

is accepted. To capture the exclusive execution that β5 always needs to be executed, the

model needs to be annotated with additional rules. However, such annotations are not

considered in this thesis.

A strategy to incorporate traces is to use logs which contain traces that were observed

during the execution of processes. Logs were suggested for the determination of the

similarity of process models [297, 298]. However, relying on observed behavior implies

that experts need to provide logs or that logs are available. As this limits the applicability

of the approaches, logs are not considered here. It is also possible to derive traces from

models through model simulation. Yet, the set of possible traces can be very large and

it might even be impossible to determine all traces [299, 300]. Hence, the execution

semantics properties in this thesis rely on an abstract representation of the execution

semantics in terms of the behavioral profile [163, 301, 302]. The behavioral profile of
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a process model can be computed without determining the set of all possible traces

[303, 304]. In this thesis, the implementation provided by the jBPT library29 is utilized.

The matching technique by Leopold et al. [194] considers constraints that alignments

must satisfy and that are derived from behavioral profiles. Other related uses of the

behavioral profile include consistency checking [163] and similarity search [305].

A prerequisite for the computation of the behavioral profiles is that they are sound

[162]. This is a general assumption for approaches that determine the execution semantics

of a process model. The reason is that unsound process models can contain deadlocks,

livelocks, dead tasks, or might not properly terminate [92] and thus their execution

semantics cannot be reliably assessed. Consequently, the execution semantics properties

only yield reliable results, if the matched process models fulfill the soundness criterion.

In essence, a behavioral profile captures relations between activities from the same

process models and provides information whether activities occur in sequence, in parallel,

or alternatively. These relations are defined with regard to the weak order relation�P . Two

activities a1, a2 are in a weak order relation a1 �P a2, if there exists a trace θ = {ai}m∈Ni=1

in which a1 occurs before a2.

Definition 5.8 (Weak order relation) Let P = (N , E,λ,τ, A) be a process model and ΘP

the set of all traces. The weak order relation �P⊆ A×A contains all activity pairs (ax , a y) for

which there is a trace θ ∈ ΘP with θ = {ai}m∈Ni=1 such that a j = ax , ak = a y and i < k ≤ m.

Based on the weak order relation between activities from a process model, the behav-

ioral profile comprises four relations that define in which order the activities occur. The

strict order  P and the inverse strict order relation  −1
P hold between activities that occur

in sequence. That is, if there is at least one trace in which a1 occurs before a2, but no trace

in which a2 occurs before a1, a1 is in strict order with a2, i.e., a1  P a2. Moreover, in this

case a2 is in inverse strict order with a1, i.e., a2  −1
P a1. If there is at least one trace in

which a1 appears before a2 and there is also at least one trace in which a2 appears before

a1, then these two activities are in interleaving order a1 ‖ P a2 indicating that they can be

executed in parallel. Finally, if there is no trace that contains both activities, they are in

29https://www.openhub.net/p/jbpt, accessed: 13/01/2017

https://www.openhub.net/p/jbpt
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exclusive order a1 + P a2, meaning that they are carried out alternatively. By definition

each activity is in exclusive order to itself, i.e., ∀a ∈ A : a+ P a. Note that Weidlich et al.

[306] introduced the causal behavioral profiles which distinguishes two types of strict

order relations. The first relation comprises all activities in a strict order relation for

which it holds that whenever the first activity is part of a trace, the second is too. The

second relation contains all remaining activities. However, the application of the execution

semantics properties is restricted to sound models. For this reason the focus is on a basic

evaluation of the control flow properties and the extension of the analysis to cover more

fine-grained properties is subject to future work.

Definition 5.9 (Behavioral profile) Let P = (N , E,λ,τ, A) be a process model and �P the

respective weak order relation. Then, the behavioral profileB P is a 4-tuple

(  P ,  −1
P ,+P ,‖ P)

such that

•   P ⊆ A× A with ∀(ax , a y) ∈  P : (ax , a y) ∈�P ∧(a y , ax) /∈�P is the strict order

relation;

•   −1
P ⊆ A× A with ∀(ax , a y) ∈  P : (ax , a y) /∈�P ∧(a y , ax) ∈�P is the inverse strict

order relation;

• +P ⊆ A× A with ∀(ax , a y) /∈  P : (ax , a y) ∈�P ∧(a y , ax) /∈�P is the exclusive order

relation; and

• ‖ P ⊆ A× A with ∀(ax , a y) ∈  P : (ax , a y) ∈�P ∧(a y , ax) ∈�P is the interleaving

order relation.

Table 5.5 outlines the behavioral profiles for the process models from the example. In

accordance with the set of possible traces from Table 5.4 the behavioral profile of process A

shows that the activities α4 and α5 constitute alternatives. Moreover, the activities α1 and

α2 are carried out in parallel. Similarly, β4 and β5 are also considered as simultaneously

executed activities, because they are part of an inclusive block and thus they can be
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TABLE 5.5: Behavioral profiles for the university admission process models

Process A Process B

α1 α2 α3 α4 α5 α6 β1 β2 β3 β4 β5

α1 + ‖         β1 +        

α2 ‖ +         β2   −1 +      

α3   −1   −1 +       β3   −1   −1 +    

α4   −1   −1   −1 + +   β4   −1   −1   −1 + ‖

α5   −1   −1   −1 + +   β5   −1   −1   −1 ‖ +

α6   −1   −1   −1   −1   −1 +

executed in parallel. All remaining activities are in a strict order or inverse strict order

relation, respectively.

For each of the four relations in the behavioral profile there is one behavior property.

The absolute strict order property Π  and the absolute inverse strict order property Π −1

are counterparts of the graph position properties. For an activity a they return the number

of activities that are executed before or after a, but not in parallel. Similarly, the absolute

exclusive order property Π+ and the absolute interleaving order property Π‖ represent

counterparts of the graph neighborhood properties. Thus, they return the number of

parallel or alternatively executed activities.

Definition 5.10 (Behavior properties) Let P = (N , E,λ,τ, A) be a process model and

B P = (  P ,  −1
P ,+P ,‖ P) its behavioral profile. For a given activity a, the absolute strict

order Π , inverse strict order Π −1 , exclusive order Π+ and interleaving order Π‖ properties

are defined as:

Π (a) = |{ax |(a, ax) ∈  P}|

Π −1(a) = |{ax |(a, ax) ∈  −1
P }|

Π+(a) = |{ax |(a, ax) ∈ +P ∧ a 6= ax}|

Π‖(a) = |{ax |(a, ax) ∈‖ P}|
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TABLE 5.6: Execution semantics properties for the university admission example

Π  π  σ.π  Π −1 π −1 σ.π −1 Π+ π+ σ.π+ Π‖ π‖ σ.π‖

α3 3 .75
1

2 .4
.93

0 0
1

0 0
1

β2 3 .75 1 .3 0 0 0 0

α6 0 0
0

5 1
0

0 0
1

0 0
1

β1 4 1 0 0 0 0 0 0

Lastly, Table 5.6 presents the property values for the activities from the example. Like

the graph position properties, the strict and inverse strict order property similarities show

that α3 and β2 are located at similar positions, whereas α6 and β1 are totally dissimilar.

As none of the four activities is carried out in parallel with or alternatively to any other

activity the exclusive and the interleaving similarities indicate that they are equal with

regard to these properties.

5.1.4 Suitability Analysis

In order to extend the one-dimensional, label-based classification of activity pairs, the final

step is to evaluate which of the property similarity functions are suited to enhance the

classification. This is the case, if a similarity function reliably separates non-corresponding

from corresponding activity pairs. That is, it needs to assign corresponding and non-

corresponding activity pairs to different ranges on the interval [0, 1]. For this reason, the

correlation between the similarity values yielded by the functions and the classification of

activity pairs as corresponding or non-corresponding is empirically examined next.

First, each of the similarity functions was applied to all activity pairs from the two de-

velopment datasets. Here, the set of all corresponding and the set of all non-corresponding

activity pairs for both datasets are considered as representative samples for both classes.

At this point, it should be noted that five of the process models in the UA dataset are not

sound. As soundness is a necessary prerequisite for computing the execution semantics

properties, these properties can only be determined for six out of the 36 model pairs on

UA. Due to this restriction these properties are only examined on BR.



168 ANALYZING STRUCTURE AND BEHAVIOR

TABLE 5.7: p-values of the Kolmogorov–Smirnov test for BR and UA

Dataset σ.π→a σ.πa→ σ.π•a σ.πa• σ.π•a• σ.π↓R σ.π•R•

BR .001 .004 .994 .581 .699 .016 .002

UA .000 .000 .281 .155 .367 .967 .155

Dataset σ.π  σ.π −1 σ.π+ σ.π‖

BR .000 .000 .111 .994

UA - - - -

To assess whether the similarity functions separate non-corresponding from corre-

sponding activity pairs the respective value distributions within these sets are compared

for each of the functions. As shown in Table 3.4 only 4.4% of the activity pairs on BR

are correspondences and 2% on UA. Accordingly, there are roughly 22 times more non-

corresponding activity pairs than correspondences on BR and even almost 50 times more

on UA. As the huge imbalance of non-corresponding and corresponding activity pairs

would distort the analysis 100 activity pairs were randomly selected per class and dataset.

Next, for each dataset and similarity function a two-sided Kolmogorov-Smirnov test [43]

at a significance level of 0.01 was conducted. The neutral hypothesis of this test is that

the examined data samples come from the same distribution. It is rejected, if the p-value

yielded by the test is lower than the significance level. With regard to the classification

of activity pairs, the test can hence be used to analyze whether the similarity functions

assign different values to non-corresponding and corresponding activity pairs. That is,

the rejection of the neutral hypothesis for a certain similarity function is considered as

an indicator for the suitability of the similarity. Conversely, a similarity function is not

suited for activity pair classification, if the neutral hypothesis is accepted. Table 5.7

summarizes the p-values yielded for each similarity function and dataset. Bold values

highlight p-values that are below the significance level.

As the table reveals there are only two similarity functions (σ.π→a, and σ.πa→) for

which the null hypothesis is rejected on both datasets. Moreover, the null hypothesis is only

rejected on BR for σ.π•R•, σ.π , and σ.π −1 . From this analysis, these five similarities

are considered as candidates for the extension of the label-based classification.
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While the analysis gave evidence that only five of the similarity functions yield different

value distributions for corresponding and non-corresponding activity pairs, it does not

allow to judge how well the sets of non-corresponding and corresponding activity pairs

can be separated with regard to these functions. Hence, in order to further substantiate

the analysis, the information gain is computed for each of the functions per dataset. The

information gain is a well-established measure from statistics [44] and can be used to

examine the goodness of the separation achieved by the similarity functions. For all of the

similarity functions the ratio of all corresponding and non-corresponding activity pairs

in a dataset serves as a reference point. This ratio is encoded in terms of the Shannon

entropy [307, 308]. It can be seen as the worst case scenario where all activity pairs are

classified equally and thus no separation is achieved. For each similarity function it is

then investigated how well it can improve this classification. Therefore, a threshold ϑ is

introduced that splits the interval of [0, 1] into the two intervals [0,ϑ) and [ϑ, 1]. Each of

the activity pairs is assigned to one of the intervals according to the value yielded by the

similarity function. For both intervals the Shannon entropy is calculated again and based

on these values the information gain provides information to which extent the initial

ratio was improved. In the worst case the ratio of corresponding and non-corresponding

activity pairs is equal to the initial ratio. Here, the information gain takes a value of 0

which indicates that the similarity function in combination with the threshold value does

not separate corresponding from non-corresponding activity pairs. On the contrary, the

higher the information gain the better the separation. Note that the information gain

depends on the initial entropy value and is thus not bound to a specific interval. Instead,

it is a relative measure which allows to compare different classifications.

The information gain for the similarity functions is determined for each dataset inde-

pendently. Additionally, all different similarity scores yielded by a function were considered

as threshold values. For each of these threshold values the information gain is computed

and the highest score is selected. Table 5.8 summarizes the information gains for each

similarity function. Moreover, it introduces the information gain of the bag-of-words simi-

larity σ.$ as a baseline. In this regard, HAM is used as a word similarity and stemming

and pruning are not applied.



170 ANALYZING STRUCTURE AND BEHAVIOR

TABLE 5.8: Information gain for the selected attributes on BR and UA

Dataset σ.$ σ.π→a σ.πa→ σ.π•R• σ.π  σ.π−1
 

BR .041 .010 0.004 .000 .011 .008

UA .018 .006 0.006 .000 - -

Table 5.8 shows that σ.$ yields the highest and σ.π•R• the lowest information gain,

while the remaining similarity functions rank in between. In comparison to the bag-of-

words similarity, all the property similarity functions yield low information gains. On BR

σ.π  is the property similarity with the highest information gain but it only achieves

25% of the bag-of-words similarity. Likewise, σ.π→a and σ.πa→ only achieve 33% on

BR. Considering the low effectiveness values achieved by the bag-of-words similarity (cf.

Chapter 4) and the relatively low information gain of the property similarities, this analysis

shows that none of the property functions is suited to improve the one dimensional, label-

based classification. To convey a better intuition for this result Fig. 5.4 visualizes the

distribution of the similarity values for three similarity functions in terms of box plots.

Here, σ.$ represents the highest, σ.π→a a medium, and σ.π•R• the lowest information

gain. The figure clearly confirms the analysis results as the distributions for the property

similarities do not differ as strongly as the distributions for σ.$.

BR UA

σ.$
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FIGURE 5.4: Box plots for corresponding (c) and non-corresponding (n) activity pairs
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5.2 Patterns for Activity Cluster Detection

The previous section examined the extension of the pairwise classification of activities. The

basic strategy in this regard is to classify each activity pair separately. However, as outlined

in Sections 3.1 and 3.4 model collections might contain complex correspondences. That is,

an activity or a set of activities corresponds to a set of activities in another process model.

In fact, it cannot be ruled out that the matching techniques introduced so far, detect such

complex correspondences, but they do not explicitly address complex correspondences.

Moreover, the challenge analysis in Section 4.6 revealed that the label-based matching

techniques struggle with identifying such correspondences.

To enhance the detection of complex correspondences, some matching techniques

from prior research exploit structural relations between activities from the same process

model to identify candidates for such complex correspondences. In this regard, Branco et

al. [16] rely on the assumption that such candidates can be inferred from RPST fragments.

Yet, their evaluation indicates that the RPST is unsuited to detect sets of activities in a

process model that are part of complex correspondences. Another approach that relies on

the same assumption is presented by Ling et al. [204]. Similarly, Dijkman et al. [116]

propose a post-processing step in which elementary correspondences are extended by

subsequently adding neighbors of activities to these elementary correspondences. The

evaluation in [116] shows that the post-processing step has a positive, but marginal effect

on the effectiveness.

This section takes on the ideas from prior research and examines the nature of sets of

activities that are part of complex correspondences. In alignment with the definitions in

Section 3.1 such sets of activities are referred to as corresponding activity clusters in the

following. In particular, the investigation in this section aims to derive structural patterns

of corresponding activity clusters. Similar to the state of the art the idea is to reuse the

identified patterns to derive candidates for complex correspondences before, during, or

after the matching process.

To reveal such structural patterns a categorizing qualitative analysis [45] was carried

out based on the two development datasets. More precisely, all corresponding activity
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clusters contained in these two datasets constituted the analysis unit. Based on the

assumption that RPST fragments are an indicator for corresponding activity clusters

[16, 204], the initial set of structural patterns comprised the three non-trivial RPST

fragment types: bond, polygon, and rigid (cf. Section 5.1.2). In a first iteration occurrences

of these patterns were marked. Afterwards, all activity clusters that were not marked in

the first iteration, were iteratively analyzed. That is, additional structural patterns were

derived and their occurrences were marked until every activity cluster was assigned to a

pattern. The final, consolidated pattern catalog contains eight patterns that are introduced

in the following. In this regard, the patterns are illustrated based on BPMN models. Note

that the development datasets actually contain Petri Net models. However, to keep the

examples concise, BPMN was used here.

Polygon. The first category is the polygon pattern and refers to eponymous RPST frag-

ments. As introduced in Subsection 5.1.2, a polygon is a maximal sequence of nodes in

the process model. However, there is one limitation. That is, the polygon pattern refers to

polygon fragments that only contain trivial fragments. An example is shown on the left

side of Figure 5.5.

Sequence. Compared to the polygon pattern the sequence pattern is more general. Like a

polygon a sequence is a connected sub-graph of the process model in which there is only

one path leading from the first activity in the sequence to the last activity in the sequence.

All other nodes in the sequence lie on this path and do not have any other edges that

connect them to nodes outside the sequence. But, in contrast to a polygon, a sequence is

not maximal. That is, there is at least one other activity in the process model that needs

to be added in order to transform the sequence into a polygon. The difference between

polygons and sequences is shown in Figure 5.5. The sequence on the right side in the

figure consists of the activities d and e. Adding activity c to this sequence, results in the

c
a

b
d e c

a

b
d e

FIGURE 5.5: Examples of the polygon (left) and the sequence pattern (right)
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polygon shown on the left side. Unlike the sequence, the polygon cannot be extended

by another activity in a way that the result is still a sequence or a polygon. Although

sequences subsume polygons, they are treated separately here.

Path. The path pattern corresponds to the definition of path introduced in Section 5.1.1.

It is similar to the sequence pattern insofar that it also represents sub-graphs where all

activities are on a path from the start to the end node. Yet, contrary to sequences the

nodes on the path have edges that connect them to nodes that are not part of the path. As

a result, the behavioral characteristics of such a sub-graph differ from those of a sequence

or a polygon. In more detail, if the first activity of a sequence (polygon) occurs in a trace

of a process model, it is followed by all activities that are part of the sequence (polygon)

in the same order as they occur in the sequence (polygon). This does not hold for the

path pattern. First, not all activities in a sub-graph adhering to the path pattern need to

occur in the same traces. The left side of Figure 5.6 shows the sub-graph {a, b} where the

traces that contain a only partly overlap with the traces that contain b. The reason is the

alternative block that leads to two traces for the entire process model: a 7→ b 7→ d 7→ e

and a 7→ c 7→ d 7→ e. While a occurs in both traces, b is only part of the first. Second, if all

activities of the sub-graph occur in the same traces, other activities might occur in between

them. This is shown on the right side of Figure 5.6 where there is the corresponding

activity cluster {a, b, c} that adheres to the path pattern. Here, the entire process model

also has two traces: a 7→ b 7→ c 7→ d 7→ e and a 7→ c 7→ b 7→ d 7→ e. As a consequence of

the parallel block, c occurs either between a and b or between b and d in the traces.

Bond. The bond pattern describes sub-graphs that correspond to bond-fragments in the

RPST of the process model. As outlined in Subsection 5.1.2 a bond is a set of at least

two other RPST fragments that share the same boundary nodes. The upper left corner

of Figure 5.7 shows a respective example. The corresponding activity cluster {b, c, d}

a
b

c
d e a

b

c
d e

FIGURE 5.6: Examples of the path pattern
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FIGURE 5.7: Examples of the bond (upper left corner) and the partial bond pattern (rest)

comprises all activities that lie between the exclusive gateways. Furthermore, each activity

is on a different path that connects these gateways.

Partial bond. The partial bond pattern describes connected sub-graphs that consist of

nodes which are all part of the same bond fragment. In contrast to the bond pattern,

not all activities of the bond are part of the sub-graph, but the activities have to occur

in more than one sub-fragment of the bond and there must be a connected sub-graph

containing all the activities from the cluster and maybe nodes of other types, but no

other activities. A first example of a partial bond is presented in the upper right corner of

Figure 5.7. The activities b, c, and d occur in a bond, but only b and b are part of the

corresponding activity cluster. The other two examples in Figure 5.7 constitute sub-graphs

where only parts of the sub-fragments of the bonds occur in the partial bond. In the the

lower left corner activities b and d are part of a partial bond and are also part of different

sub-fragments of the bond. Here, both activities are connected to the split. Likewise,

the example in the lower right corner outlines a case where activities c and e form a

partial bond. As outlined in the context of the model transformation rules for the RPST

calculation (Section 5.1.2), activity e implicitly comprises a parallel gateway. Thus, this

gateway together with activities b and d is considered to be part of a connected sub-graph.

Fragment sequence. The fragment sequence pattern characterizes sub-graphs of a process

model where all activities of at least two non-trivial RPST fragments are part of the sub-

graph. Furthermore, the fragments must be arranged in sequence so that they either share

a boundary node or are connected by an edge or a trivial RPST fragment, respectively.

Two examples of this pattern are shown in Figure 5.8. The sub-graph on the left side
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a
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d e a

b

c

d

e

FIGURE 5.8: Examples of the fragment sequence pattern

comprises a bond fragment that the activities b and c belong to and a polygon containing

the activities d and e. The exclusive join gateway connects both fragments. Similarly,

the two bond fragments on the right side constitute a fragment sequence. Both bond

fragments are connected by a trivial fragment that connects the exclusive join gateway of

the first bond with the exclusive split gateway of the second bond.

Arbitrarily connected sub-graph. The arbitrarily connected sub-graph comprises all

connected sub-graphs that do not adhere to one of the other patterns. Figure 5.9 depicts

two examples of this category which are extensions of the partial bond in Figure 5.7. On

the left side the partial bond that comprises the activities b and d is extended by adding

activity a. This way, it does not adhere to the partial bond pattern anymore. Instead, it

is now classified as an arbitrarily connected sub-graph. Accordingly, on the right side

activity e is added to the partial bond consisting of the activities c and d. As a result an

arbitrarily connected sub-graph is yielded.

Disconnected sub-graph. The last identified pattern is the disconnected sub-graph pattern.

A sub-graph characterized by this pattern comprises activities that cannot be connected

without adding other activities from the process model to the sub-graph. Such a sub-graph

is shown in Figure 5.10. This sub-graph comprises the activities a, d, and e. While there

is an edge that connects d and e, the two gateways and at least activity b or c must be

added in order to also connect a to these activities.

Rigid. Initially, the rigid pattern as the last representative of the non-trivial RPST fragments

was part of the pattern catalog. As there were no occurrences within the development

a
b

e
f

c

d
a

b

d
f

c

d
e

FIGURE 5.9: Examples of the arbitrarily connected sub-graph pattern
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a
b

c
d e

FIGURE 5.10: Example of the disconnected sub-graph pattern

datasets, it was removed from the catalog. Nevertheless, from a theoretical point of view

rigids are subsumed by the arbitrarily connected sub-graph pattern.

The pattern catalog covers a broad variety of structural relations between activities in

corresponding activity clusters. Some patterns can be considered as strict, whereas others

are rather inaccurate. In this regard, the bond and the polygon patterns are strict patterns.

That is because they require clusters to correspond to an RPST fragment and thus rely on a

clear criterion. On the contrary, the disconnected sub-graph pattern is the most inaccurate

pattern as there are no structural relations that can be used to detect respective activity

clusters. All remaining patterns can be classified as connected sub-graphs that do not

represent an RPST fragment and thus they rank in between the other patterns. However,

their strictness differs. For example, the fragment sequence can be considered as rather

strict as it comprises clusters that can be inferred from the RPST. In contrast, arbitrarily

connected sub-graphs instead are very inaccurate as they only require nodes to span a

connected sub-graph.

In order to utilize a pattern for the detection of candidates of complex correspondences,

it is desirable that many sets of activities that adhere to the pattern actually constitute

corresponding activity clusters. In this context, the strictness of a pattern is an important

criterion because it can be assumed that the more precise a pattern is, the smaller the

number of activity sets that adhere to the pattern. To illustrate this assumption, the num-

bers of non-trivial RPST fragments, connected sub-graphs, and sub-graphs are determined

(including connected and disconnected sub-graphs) in the development datasets. In the

BR dataset there are 211 non-trivial RPST fragments and in the UA dataset 229. On the

contrary, BR contains 125, 321 distinct connected sub-graphs and UA 5, 535, 807, 993. Fi-

nally, there are even 52, 969, 801 sub-graphs in the BR dataset and 281, 760, 613, 146, 367

in the UA dataset. This explosion of the amount of potential candidates substantiates that

patterns need to be strict in order to limit the number of potential candidates.
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TABLE 5.9: Absolute (abs), relative (rel), and cumulative (cul) frequencies of the patterns

BR UA

Pattern abs rel cul abs rel cul

Polygon 2 .035 .035 0 .000 .000

Bond 6 .105 .140 1 .019 .019

Fragment Sequence 6 .105 .245 0 .000 .019

Sequence 5 .088 .333 9 .170 .189

Path 9 .158 .491 1 .019 .208

Partial Bond 7 .123 .614 13 .245 .453

Arbitrarily Connected Sub-Graph 15 .263 .877 11 .208 .661

Disconnected Sub-Graph 7 .123 1.00 18 .340 1.00

Σ 57 1.00 53 1.00

With that in mind, the extent to which corresponding activity clusters rely on strict pat-

terns is examined next. Here, Table 5.9 presents the absolute and the relative frequencies

of the patterns within the datasets. The relative frequency can be interpreted as a recall

value, i.e., how many of the truly existing activity clusters are retrieved, if all activity

sets that adhere to such a pattern are selected. Furthermore, the patterns are arranged

in descending order with respect to their strictness and the cumulative frequencies are

shown.

According to the table, only a small portion of the corresponding activity clusters corre-

sponds to RPST fragments in the development datasets. In total, 14% of all corresponding

activity clusters adhere to one of these two patterns on BR and on UA only 1.9%. The fact

that each of the datasets contains more than 200 RPST fragments, shows that applying

these patterns does not only result in a small recall, but also in a small precision. Thus,

the results confirm the evaluation results from [16] that the RPST is an unreliable means

for the detection of corresponding activity clusters.

Relaxing the strictness of the patterns by considering the fragment sequence, the

sequence and the path pattern does not lead to large improvements in the cumulative

frequency. That is, on BR it is only lifted to 49.1% and to 20.8% on UA. In contrast to
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these rather strict patterns, a large portion of corresponding activity patterns adhere to

inaccurate patterns. That is 50.9% of the corresponding activity clusters are characterized

by rather inaccurate patterns on BR and 79.2% on UA. In this regard, on UA a surprisingly

large amount of 34% of all corresponding activity clusters does not even constitute a

connected sub-graph. These results outline that in order to detect all corresponding

activity clusters an enormous amount of potential candidates, i.e., all sub-graphs, need

to be considered. Thus, the analysis indicates that structural relations cannot reliably be

exploited to detect complex correspondences.

5.3 Alignment Consistency

The analysis in this section reposes on the assumption that the relative positions of

activities in a process model are similar to the relative positions of their corresponding

counterparts in a different model. Accordingly, an alignment where the relative positions

of the correspondences resemble each other is referred to as a consistent alignment. The

alignment for the university admission processes from the running example is consistent

(cf. Figure 3.1). Here, α1 and α2 correspond to β1, α3 to β2, as well as α4 and α5 to β3,

β4, and β5. In the first process α1 and α2 are in a parallel block which is followed by α3

which is succeeded by an alternative block that contains α4 and α5. The correspondences

of these activities in the second process show the same ordering. That is, β1 is the first

activity in the process which is followed by β2 which is connected to the cluster containing

β3, β4, and β5.

In this manner, some matching techniques from related work consider relations be-

tween corresponding activities. Leopold et al. [194] optimize alignments based on

constraints. Some of these constraints impose the requirement that correspondences have

to have similar control flow relations in both processes. For example, if an activity a1 is

in strict order with a2 in a process and a′1 is in strict order with a′2 in another process,

matching a1 to a′1 and a2 to a′2 satisfies the constraint. Similar approaches are proposed

in [162, 201]. Yet, in [194] such constraint slightly improve the effectiveness, whereas

they have a negative impact in [162].
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These ideas are related to the work by Smirnov et al. [309] who derive action patterns

from process models in a model collection. Such patterns capture control flow constraints

between generic actions, e.g., that making a decision typically requires an assessment to

be carried out beforehand. Once those patterns are derived, they can be reused when new

models are created to verify that the new model satisfies common practices. Furthermore,

the area of process similarity search comprises approaches that investigate the consistency

of models. For instance, in [146] the graph edit distance for alignment construction [116]

is adapted to process similarity search and compared to a measure that analyzes possible

execution traces. Another approach that relies on traces is the trace index similarity [310].

In contrast, the workflow similarity in [311] is based on the number of corresponding

nodes and edges, like the edit distance [116]. The measure in [312] considers the depth

of activities in process trees. An overview of similarity measures is provided in [147].

Similar to many of these approaches, the relative position of activities is investigated in

the following. Yet, in contrast to the similarity measures, the process model matching and

thus non-corresponding nodes are disregarded, as the goal is to examine the consistency

of alignments rather than that of process models.

In particular, the order relation score is introduced. It measures the consistency of an

alignment by checking whether the ordering of activities in one process model is similar to

that of their corresponding counterparts in the other model. There are different variants

of this score which rely on one of the three position property functions, π→a, πa→, and

π↓R from Section 5.1. Note that the execution semantics properties π  and π −1 are

neglected here, as they require models to be sound, which is a limiting factor. Moreover,

in the analysis in Section 5.1 they performed similar to the other three properties.

For each of these three position functions πx a respective order relation score δx is

defined. Basically, the order relation score δx is defined with regard to a set of alignments.

To calculate the score, an alignment score γx is computed for each alignment in the

set. That is, for each pair of distinct correspondences from an alignment (c1, c2) with

c1, c2 ∈ A ∧ c1 6= c2 ∧ c1 = (a1, a′1)∧ c2 = (a2, a′2), it is checked whether the order of the

activities a1, a2 from the first process is equal to the order of the activities a′1, a′2 from

the second process. Therefore, a test is carried out which examines if πx(a1)−πx(a2)
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and πx(a′1)−πx(a′2) have the same sign, or at least one is 0: then the correspondence

pair yields 1, otherwise 0. Next, the sum of all values is averaged over the number of

correspondence pairs to yield γx . In other words, the alignment score is the percentage of

all pairs of distinct correspondences from an alignment for which the respective activities

have the same relative order in a process model. Finally, to compute the order relation

score δx , the scores yielded for the alignments are averaged.

Definition 5.11 (Order relation score) Given a set of alignmentsA ∗ and a position prop-

erty π : A→ [0, 1] the order relation score δ is defined as:

δ(A ∗) :=
1
|A ∗|

∑

A∈A ∗
γ(A )

with

γ(A ) :=

∑

c1∈A

∑

c2∈A\{c1}
γc(c1, c2)

|A | · (|A | − 1)

where c1 = (a1, a′1), c2 = (a2, a′2) and

γc(c1, c2) :=







1 [π(a1)−π(a2)] · [π(a′1)−π(a
′
2)]≥ 0

0 else

To test if the assumption holds, the order relation score is determined for each de-

velopment dataset and each position property function. In this regard, all gold standard

alignments are considered to compute the scores. As Table 5.10 shows, high values are

yielded for all scores on both datasets with δ→a resulting in the highest values. This

indicates, that for a high percentage of correspondence pairs, the respective activities

have the same ordering in their process models. However, there are also exceptions

which partly arise from m:n-correspondences: consider a process model pair for which

the alignment contains one complex correspondence consisting of a1, a2 from the first and

of a′1, a′2 from the second process. In this case, the complex correspondence is represented

by four elementary correspondences (a1, a′1), (a1, a′2), (a2, a′1), and (a2, a′2). Respectively,

there are six pairs of distinct correspondences. Further, let the position of a1 (a′1) be

smaller than that of a2 (a′2). In this case, the order relation does not hold for the pair

((a1, a′2), (a2, a′1)) as the activities occur in reverse order. Thus, the score is not 1, but
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TABLE 5.10: Order relation scores of the gold standards on BR and UA

Dataset δ→a δa→ δ↓R

BR .92 .81 .85

UA .93 .89 .81

.83. Nevertheless, the high values suggest that the effect of m:n-correspondences and the

exceptions is rather small.

The analysis is further refined in order to examine whether a high order relation score

is a distinctive characteristic of the true alignments or if it is an arbitrary characteristic

that holds for any (or at least many other) alignments. Therefore, a diverse range of

alignments was simulated. These alignments can be interpreted as results of different

matchers. In particular, 1,000 sets of alignments were randomly generated for both

development datasets. Each set of alignments comprises one alignment per model pair

in the model collection. To simulate the full range of matcher results the generation

was controlled such that the micro f-measures of the sets were equally distributed over

the interval [0,1]. Then, the collection order relation score was computed for each set

of alignments and position property function. Finally, the correlation between all pairs

of scores and the micro f-measure was examined in order to assess whether the order

relation scores systematically differ for sets of alignments with a different quality. To this

end, Spearman’s rank correlation coefficient (ρ) [313] was applied and the results are

presented in Table 5.11.

The coefficients show a strongly positive correlation between all variables on both

datasets. The findings are significant for all variable pairs as all p-values are much smaller

TABLE 5.11: Correlation coefficients on BR and UA

BR UA

Fµ δ→a δa→ δ↓R Fµ δ→a δa→ δ↓R

Fµ - .97 .95 .95 - .97 .97 .88

δ→a .97 - .96 .96 .97 - .98 .91

δa→ .95 .96 - .94 .97 .98 - .89

δ↓R .95 .96 .94 - .88 .91 .89 -
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FIGURE 5.11: Scatter plots for the order relation scores vs the micro f-measure

than .001. Thus, it can be concluded that the alignment scores are connected to the micro

f-measure. That is, high scores indicate a high micro f-measure. Additionally, alignments

of a low micro f-measure typically yield low order relation scores. This relation also holds

in the reverse direction. However, the results also reveal that the scores are strongly

correlated among themselves. Thus, it is only meaningful to consider one of the scores.

In this regard, the start distance-based score δ→a yields the highest score for the gold

standards and also shows the strongest correlation to the micro f-measure Fµ. Hence, it is

proposed as a means to investigate how well alignments proposed by a matcher preserve

the order between the corresponding activities. This decision is also supported by the

scatterplots in Figure 5.11. These diagrams show that the range of score values is the

largest for δ→a and the smallest for δa→. Consequently, δ→a has the highest discriminative

power to separate sets of alignments with low f-measures from those with high f-measures.

In the remainder of this thesis, the term order relation score is used to refer to the start

distance-based variant.

5.4 The Order Preserving Bag-of-Words-Technique

The analyses of the behavioral perspective revealed that sets of alignments which are close

to the objective truth, i.e., for which a high micro f-measure is yielded, are likely to take

higher order relation score values than those sets which differ greatly from the objective

truth. Consequently, the order relation score can be used to solve the configuration

problem. That is by considering it as an approximation for the effectiveness of matcher



5.4 THE ORDER PRESERVING BAG-OF-WORDS-TECHNIQUE 183

results, it can be used to estimate the matcher quality without knowing the true alignments

and thus making human intervention obsolete while maximizing the effectiveness. In

other words the goal is to select features of BOT so that the resulting configuration

outperforms the default configuration, comes close to the maximum effectiveness, and

does not require the manual provision of training alignments.

As already pointed out in Chapter 4, the problem of matcher configuration has been

recognized as a central challenge in schema and ontology matching [171, 269, 270].

Accordingly, several approaches have been proposed to deal with the configuration prob-

lem, see [171, 269] for an overview. Basically, such approaches can be divided into

two classes. The first class comprises approaches that rely on human intervention. For

example, Peukert et al. [314] developed a software tool that assists users in manually

assembling and refining schema matchers. In the context of process model matching,

the manual provision of domain ontologies was proposed in [160]. The other class of

approaches addresses the automated configuration. Here, eTuner [315] assesses the

quality of different matchers based on a set of schema pairs which it automatically derives

from a given schema. Additionally, ontology matchers are viewed as individual agents

that negotiate in order to reach an agreement on alignments [316]. Complementary to

these works, the Order Preserving Bag-of-Words Technique (OPBOT) which is introduced

in the following addresses the configuration of process model matchers and uses process

specific control flow information to achieve this.

In this context, the prediction framework for process model matching by Weidlich et

al. [197] (cf. Section 3.3.3) is closely related to OPBOT. The rationale of this framework

is to use a set of alignments identified by experts to train a prediction model. This model

correlates process model properties and process similarity measures to the effectiveness

of matchers. Once the model has been trained, it can be used to select the most promising

matcher for a given model pair. However, in contrast to OPBOT which is an applicable

matching technique and which utilizes the empirically verified order relation score, the

framework constitutes a generic architecture for which a set of prediction means has been

proposed, but no evidence was given towards their applicability. Moreover, the framework

does not contain any specific matchers.
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FIGURE 5.12: The OPBOT match workflow

As explained, the idea behind OPBOT is to automate the search for a BOT config-

uration that yields an effectiveness close to that of the optimal BOT configuration. A

straightforward search strategy is to simply exploit the strong correlation between the

order relation score δ→a and the micro f-measure Fµ. That is, all possible configurations

are considered and for each configuration δ→a is computed. Then, the configuration

with the highest score δ→a is proposed. Besides being computationally expensive, this

strategy is prone to select outliers as the order relation score is an approximation of the

effectiveness. This can be illustrated with regard to the scatter plots in Figure 5.11. These

plots show that for a certain order relation score value different micro f-measures might

be observed and that the range of possible micro f-measures overlaps for different score

values. For instance, on BR for δ→a = .7 the micro f-measures span the interval [.44,

.64], and for δ→a = .75 the interval [.48, .8]. Consequently, the configuration with the

higher score δ→a might actually have a lower effectiveness, e.g., Fµ = .64 at δ→a = .7

vs. Fµ = .48 at δ→a = .75. Thus, OPBOT’s search strategy must minimize the chance of

selecting outliers while still maximizing the chance of detecting the optimal configuration.

With that in mind, different search strategies were developed and evaluated on the

development datasets. The final strategy is depicted in Figure 5.12. On an abstract

level, it is based on ideas from the general match workflow from schema matching [140]

(cf. Section 3.1). That is it simultaneously executes different BOT configurations and
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combines their results. Moreover, it processes the entire model collection at once. The

reason is that looking for configurations per model pair is prone to select poorly performing

configurations due to the limited extent of data. On the contrary, performing the search

based on all model pairs in a model collection has the advantage that the influence of

outliers is diminished. In the following, each step of OPBOT’s workflow is described.

Activity pair extraction: At the beginning the entire model collection is processed to

extract all activity pairs from the model collection. In this regard, all models are loaded

and all activity labels are normalized. Then, the list of all activity pairs is constructed.

Similarity calculation: As explained above, considering the whole space of configura-

tions entails the risk of favoring outliers. Thus, this space is reduced in this step by

selecting promising BOT features. Therefore, the optimal BOT configurations on the

development datasets are considered (cf. Table 4.10). In both configurations filtering is

enabled and PSA is selected to stem words. Accordingly, the other values for these features

are neglected. The optimal configurations differ with regard to the word similarity, the use

of pruning and the threshold. For the pruning feature both options, i.e., the application of

MaxPF and the deactivation of pruning, are considered. With regard to the word similarity

function, the range of possible functions was limited by only regarding one syntactical,

one paradigmatic, and one syntagmatic similarity function. From all corresponding word

similarity combinations, the one was chosen for which OPBOT yielded the best results

on the development datasets. As a result, LEV was selected as a syntactical, LIN as a

paradigmatic, and 2CS as a syntagmatic word similarity. Lastly, the range of possible

threshold values was also reduced to minimize the risk of detecting outliers. Here, the

evaluation results from Chapter 4 were considered to select an interval for which it can be

assumed that it contains the optimal threshold for these three word similarities. Hence,

the range of threshold values was limited to the interval of [.6, 1] for LEV and LIN. For

2CS it was limited to the interval of [.7, 1]. Figure 5.13 summarizes the reduced space of

possible BOT configurations.

To prepare the search through the reduced space of possible configurations, a similarity

matrix is determined in this step. For each of the activity pairs in the model collection there
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FIGURE 5.13: The feature model for the reduced space of BOT configurations

is exactly one column in the matrix. Additionally, there is one row per BOT configuration.

In total there are six configurations as each word similarity is combined with each of

the two pruning options. As the determination of similarity scores is independent of the

threshold value, no specific threshold value is selected for the configurations in this step.

To fill the matrix each model pair is processed by each of the BOT configurations. In

this regard, the similarity values for the activity pairs are set to the score yielded by the

bag-of-words similarity. Moreover, all activity pairs with equal labels that were identified

in the filtering step have a similarity score of 1. The similarity value is set to 0 for activity

pairs that were removed during filtering.

Threshold determination: Based on the similarity matrix from the previous step, the

alignments are constructed for each BOT configuration. That is, the thresholds are

optimized by computing the collection order relation score δ→a. Here, the set of distinct

similarity scores that are larger than or equal to the according minimal threshold (ϑmin = .6

for LEV and LIN; ϑmin = 0.7 for 2CS) are considered as possible threshold values for each

row or configuration, respectively. Then, for each threshold value the order relation score

δ→a is computed by considering all activity pairs with a similarity value larger than or

equal to the threshold value as correspondences. For each configuration the value with the

highest score is selected as the threshold, as it is predicted to yield the best effectiveness.

Afterwards, the six configurations are ranked in descending order with regard to their

order relation score δ→a. Finally, per configuration the similarity score for activity pairs is

set to 0, if the score is smaller than the optimized threshold.

Alignment construction: The last step, is to create a set of alignments that contains

one alignment for each process model pair from the collection. This is accomplished
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by combining the results of the top two configurations from the previous step. Again,

considering two configurations is done to minimize the risk of favoring outliers. In more

detail, for each activity pair the maximum similarity score yielded by one of the two

top-ranked configurations is determined. Then, all pairs with a maximum similarity score

different from 0 are proposed as correspondences and added to the alignments.

5.5 Evaluation and Analysis

This section presents the evaluation results of OPBOT in order to conclude the verification

of Sub-hypothesis H3. Here, the effectiveness of OPBOT is assessed with regard to the

development and the evaluation datasets. Following, the general validity of the order

relation score δ→a is examined by investigating its correlation to the f-measure on the

evaluation datasets and its portability to matcher selection is assessed.

5.5.1 Effectiveness on the Development Datasets

To investigate the effectiveness of OPBOT, the primary focus is on its relative performance.

In other words, the question is how does it perform in comparison to BOT? Here, the

comparison to the configuration with the maximum effectiveness (BOTMAX) allows to

assess how well the optimization implemented through OPBOT’s search strategy works.

Moreover, contrasting OPBOT to the default configuration (BOTALL) outlines the improve-

ment that is gained by automatically configuring BOT rather than optimizing it on a few

model collections. Finally, the effectiveness achieved by the semi-manual configuration

approach is considered to investigate, if and to which degree OPBOT unburdens experts

from providing training data. First, the focus is on the effectiveness of OPBOT, the maxi-

mum and the default BOT configurations, as well as the best performing matchers from

the contests [19, 20]. Table 5.12 presents their results.

OPBOT improves the results of the default configuration on both datasets. With regard

to the micro f-measure, OPBOT achieves (.520 vs. .452 Ò=) 115% of the effectiveness

of BOTALL on BR and (.442 vs. .403 Ò=) 110% on UA. Moreover, OPBOT is close to the

optimum on BR as it achieves (.520 vs. .534 Ò=) 97% of the effectiveness of BOTMAX
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TABLE 5.12: Effectiveness of OPBOT, BOT, and the contest matchers [19, 20] on BR and UA

Dataset Matcher prµ reµ Fµ prM reM F M

BR

OPBOT .613 .452 .520 .583 .469 .499

BOTMAX .652 .452 .534 .633 .467 .511

BOTALL .657 .344 .452 .615 .329 .382

RMM/NSCM - - - .68 .33 .45

pPalm-DS .502 .422 .459 .499 .429 .426

UA

OPBOT .598 .350 .442 .578 .357 .412

BOTMAX .406 .486 .442 .443 .511 .453

BOTALL .380 .403 .428 .455 .386 .382

RMM/NSCM - - - .37 .39 .38

and even (.442 vs. .442 Ò=) 100% on UA. These evaluation results show that the use of

information from the behavioral perspective supports the optimization of the effectiveness

of label-based matching techniques.

The comparison to the best approaches from the matching contests [19, 20] provides

further evidence towards the improvements gained by OPBOT. As Table 5.12 reveals,

OPBOT achieves higher micro and macro f-measures than the best techniques from the

contests on both datasets.

Finally, on the development datasets OPBOT indeed makes the provision of training

alignments obsolete. On both datasets the semi-manual configuration achieved the highest

average micro f-measure using when nine process models were manually aligned and used

for training (cf. Table 4.13). For this training dataset size the average micro f-measure of

Fµ = .50 is smaller than that of OPBOT (Fµ = .52) on BR. Likewise, on UA OPBOT yields a

higher effectiveness than the semi-manual configuration approach (Fµ = .44> Fµ = .42).

Thus, in favor of the Sub-hypothesis H3 these results show that control flow information

can be used to maximize the effectiveness of label-based matching techniques.
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5.5.2 Effectiveness on the Evaluation Datasets

The evaluation results on the development datasets confirm that the strong correlation

between δ→a and Fµ can be exploited to automatically configure BOT. Yet, as the order

relation score δ→a was derived from the analysis of these datasets, the general validity of

the evaluation results is limited. This leads to the question whether the order relation

score δ→a and OPBOT can be applied successfully on other model collections. Thus, to

substantiate the findings, OPBOT is assessed on the evaluation datasets next. The respec-

tive results are summarized in Table 5.13 where OPBOT is contrasted to the maximum and

the default BOT configurations as well as the best performing matcher from the process

model matching contest in 2015 [20].

On AW OPBOT performs better than the default configuration BOTALL as it achieves a

relative performance of (.463 vs. .397 Ò=) 117%. With regard to the optimal configuration

BOTMAX its relative performance is only (.463 vs. .582Ò=) 80%. This low value is attributed

to the reduction of the possible BOT configurations. That is, on AW the best results for

BOT are yielded for configurations where the filtering is disabled. However, OPBOT only

considers configurations where filtering is enabled. In comparison to the best configuration

with filtering which achieves a micro f-measure of .481 OPBOT’s relative performance is

(.463 vs. .481 Ò=) 96% and hence is clearly improved. OPBOT’s relative performance in

comparison to the optimal configuration BOTMAX is (.625 vs. .692 Ò=) 90% on SR. But, its

effectiveness is lower than that of the default configuration BOTALL because it amounts to

(.625 vs. .658 Ò=) 95%. Moreover, OPBOT also performs slightly worse than AML-PM in

terms of the micro f-measure (.625 vs. .677).

TABLE 5.13: Effectiveness of OPBOT, BOT, and the contest matcher [20] on SR and AW

SR AW

prM reµ Fµ prµ reµ Fµ

OPBOT .599 .653 .625 .730 .339 .463

BOTALL .774 .572 .658 .959 .251 .397

BOTMAX .887 .568 .692 .616 .552 .582

AML-PM .786 .595 .677 - - -
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To conclude the evaluation of OPBOT, it is compared to the semi-manual configuration

approach. On SR this approach yields the highest average micro f-measure for a training

dataset size of six and nine. Despite the lower relative performance of OPBOT with regard

to the default and maximum BOT configuration, it still makes the provision of training

data obsolote, as its micro f-measure is virtually identical to that of the semi-manual

configuration (Fµ = .63 vs. Fµ = .625). On AW OPBOT’s effectiveness is exceeded

by the semi-manual configuration, if at least two model pairs are provided for training

(Fµ = .46 < Fµ = .47). Again, the reason is that OPBOT neglects the option to turn

off filtering. In case that the semi-manual training of BOT also discards this option, the

maximum average micro f-measure of Fµ = .44 is yielded for a training set size of nine

model pairs. This value is below the effectiveness of OPBOT.

Overall, the analysis results confirmed that OPBOT’s search strategy is able to detect

high performing configurations within the restricted configuration space. Thus, the results

verify that the use of control flow information in process model matchers has a positive

impact on the effectiveness. But, they also show that OPBOT’s effectiveness is in general

limited by the effectiveness of the restricted configuration space.

5.5.3 General Validity of the Order Relation Score

In the previous evaluation OPBOT was treated as a black box. Consequently, the evidence

towards the general validity of the order relation score δ→a is limited. Thus, the analysis

from Section 5.3 is repeated on AW and SR, i.e., the order relation scores for the gold

standard alignments and the correlation to the micro f-measure are investigated again. On

AW the order relation score for the gold standard is a bit lower than on the development

datasets (δ→a = .86), but the correlation between δ→a and Fµ is still very strong (ρ = .97

with p� .01). With regard to SR’s gold standard the order relation score is much lower

(δ→a = .77) and the correlation is only moderate (ρ = .54 with p � .01). Unlike the

other datasets where all process models refer to the same higher level process, SR contains

model pairs where correspondences exist but appear in different contexts, and other pairs

without any correspondences. The latter strongly impacts the order relation score as
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the alignment score is 0 for all model pairs without correspondences. To investigate the

magnitude of this effect, all six model pairs without correspondences in the gold standard

were removed from the dataset. Based on the remaining model pairs the order relation

score for the gold standard and the correlation were determined again. The result is that

both scores are strongly improved (δ→a = .93 and ρ = .81 with p � .01). Thus, the

strong correlation between δ→a and Fµ is confirmed and further evidence towards Sub-

hypothesis H3 is given. Yet, the successful exploitation of control flow information and in

particular of δ→a seems to be limited to situations where the models share similarities.

5.5.4 Portability to Matcher Selection

Last, the applicability of the order relation score in the context of matcher selection

is examined. That is, the order relation score is used to estimate and compare the

effectiveness of different matching techniques rather than of different configurations of

the same technique. To this end, the results of the twelve matchers that participated

in the second contest [20] were considered. These results are publicly available30 for

BR and SR. Based on the results an order relation score was computed per matching

technique and dataset. Then, for both datasets the matching techniques were ranked in

descending order with regard to the determined score. In order to assess the goodness of

this ranking, the top k matchers in this ranking were compared to the top k matchers with

respect to the micro f-measure Fµ. However, to avoid distortion, the model pairs without

correspondences on SR were excluded in this analysis. On BR the top performing matcher

(k = 1) also yields the highest micro f-measure. In contrast, the best performing matcher

on SR is not the best ranked matcher with regard to the order relation score. Moreover, on

both datasets the top three matchers in the order relation score ranking (k = 3) comprise

two of the three best performing matchers and the top five (k = 5) three of the five best

performing matching techniques. Although the best performing matching technique was

not ranked first on SR, the top ranked matcher with regard to the order relation score still

achieves a relative performance of 89% compared to the best performing matcher on this

30https://ai.wu.ac.at/emisa2015/contest.php, accessed: 13/01/2017

https://ai.wu.ac.at/emisa2015/contest.php
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dataset. The maximum relative performance among the top three was 98% and among

the top five 100%. Overall, the results confirm that the order relation score can be applied

in the context of matcher selection and thus Sub-hypothesis H3 is further substantiated.

Additionally, the fact that the matchers were developed by other researchers strengthens

the validity of the findings. With the comfirmation of the portability of the score to

matcher selection the verification of Sub-hypothesis H3 concludes.

5.6 Summary

This chapter dealt with sub-hypothesis H3 and investigated, if the incorporation of behav-

ioral information captured in the process models improves the effectiveness of label-based

matching techniques. To this end, three different approaches were pursued.

The first approach was to define similarity functions that in contrast to the label

similarities from Chapter 4 are based on activity properties that refer to the behavioral

perspective. In this regard, a set of property functions was introduced. This set comprised

functions that consider paths in the models, those that repose on the decomposition

of process models into hierarchies of fragments, and those that evaluate the execution

semantics captured in the process models. Afterwards, the respective similarity functions

were evaluated with regard to their suitability to enhance the effectiveness of the label-

based classification. The empirical analysis of these similarities on the development

datasets falsified that the incorporation of these similarities improves the label-based

matching. That is, by showing that these similarities do not separate corresponding from

non-corresponding activity pairs on the development datasets, it was verified that the

similarities are not universally applicable for process model matching.

Subsequently, a second approach was examined. Here, the problem of identifying

complex correspondences was tackled. In particular, the idea was to identify sets of

activities within a process model where the activities refer to the same purpose and are

thus likely to form a corresponding activity cluster that is part of complex correspon-

dences. Therefore, a qualitative analysis was carried out to investigate whether structural

dependencies can be exploited to identify such activity clusters. In this regard, it was
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shown that the structural relations within such activity clusters are too diverse, in order

to be reliably exploited. While only a small share of corresponding activity clusters within

the development datasets can be identified based on strict criteria, the majority of these

clusters is characterized by rather versatile structural patterns. Thus, in order to detect

all corresponding activity clusters, a very large set of non-corresponding activity clusters

needs to be retrieved as well. Again, the analysis falsified the assumption that structural

relations can generally be applied to derive candidates for complex correspondences.

In contrast to these two analyses, the investigation of the third approach revealed a

way to exploit the behavioral perspective for matching. In more detail, the third approach

is based on a measure for the consistency of the structural relations that exist between the

corresponding activities within an alignment. In other words, it is based on the assumption

that structural relations between activities from a process model also hold between their

corresponding counterparts in another model. To investigate this concept, the order

relation score was introduced. For each alignment it measures the ratio of pairs of distinct

correspondences from the alignment where the relative position of the activities from the

first model is similar to that of the activities within the second model. With respect to

a set of alignments it is the average of all alignment scores. Moreover, there are three

different variants of the score which measure the position of an activity with regard to the

start node, the end node, and the RPST. All three variants take high values for the gold

standard alignments from the development datasets. This observation was considered

as evidence towards the assumption. To refine the evidence, it was investigated, if high

order relation scores are a typical characteristic of the objective ground truth, i.e., the

gold standard alignments. The corresponding analysis revealed that the degree to which

sets of alignments differ from the set of gold standard alignments in terms of the micro

f-measure has a strong positive correlation to the order relation score. However, the

results also indicated a strong correlation between the three variants of the order relation

score. Hence, only one of the variants should be considered. As the start distance order

relation score δ→a yields the highest value for the gold standard alignments and has the

strongest correlation to the micro f-measure, it was suggested as a means to improve

label-based matching.
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The order relation score was then used to design the Order Preserving Bag-of-Words

Technique. The basic idea of OPBOT is to search the configuration space of BOT for a

configuration that is estimated to have a high effectiveness. In particular, OPBOT applies

six different BOT configurations to all activity pairs in a process model collection. These

configurations differ with regard to the word similarity function and the pruning option.

For each configuration it optimizes the threshold based on the similarity scores yielded

by the configuration. That is, it iterates over a set of candidate values and proposes the

value for which the highest order relation score is yielded as the optimal threshold for

the configuration. Once the thresholds of the configurations were optimized, OPBOT

combines the results of the two configurations with the highest order relation score

and constructs a set of alignments that contains one alignment per model pair in the

collection. By selecting the configurations which best reflect the characteristics of the

model collection OPBOT achieves a domain adaptation of BOT. However, in contrast to

the default configuration of BOT its application is limited to situations where an entire

model collection can be analyzed.

The evaluation on all datasets verifies both: OPBOT’s and the order relation score’s

validity. That is, it was shown that OPBOT achieves a high relative performance on the

datasets that is close to the performance of the best BOT configuration. Additionally, it

outperforms the default BOT configuration in most cases and also makes the manual

provision of training data obsolete. Especially the results on the evaluation datasets

substantiate the applicability of the score and OPBOT, because these datasets were not

used for the development of both concepts. Although the results provide evidence that

confirms Sub-hypothesis H3, the analysis revealed two limitations. First, the reduction

of the search space can be too strict and can limit the effectiveness of OPBOT as better

performing configurations are excluded from the search. However, the reduction is

essential to balance the chance of detecting the best configuration with the chance to

detect outliers. Second, the applicability of the order relation score π→a is limited to

alignments between model pairs that share some similarities, because the score is distorted

if there are no similarities between the models. Nevertheless, the additional analysis

of the score on the evaluation datasets confirmed the general validity of the score for
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models that share similarities. In this regard, further evidence was given through the

examination of the score in the context of matcher selection. Here, the score was used to

rank the matchers from the second matching contest in 2015 [20] and it was shown that

the top-ranked matchers yield a high performance in comparison to the best performing

matcher from the contest. In summary, these evaluation and analysis results substantiated

that control flow information is suited to improve the effectiveness of label-based matching

techniques as postulated by Sub-hypothesis H3.
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6
Learning From Expert Feedback

H4: The effectiveness of matching techniques is improved by the utilization

of expert feedback.

From an abstract point of view, process model matching techniques constitute classifiers

that evaluate information related to an activity pair in order to decide whether the activity

pair corresponds or not. A first strategy to design such classifiers is referred to as rote

learning [317]. This means that knowledge required for making decisions is statically

implemented in the classifier. Many process model matchers including BOT rely on this

strategy. That is, they comprise a set of predefined rules that are evaluated during runtime,

e.g., to compute a similarity score based on the labels. Then, the outcome is used to

classify the activity pair as corresponding or not. Yet, evidence from the analyses in the

previous chapters as well as from related work suggests that such universal classifiers

197
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yield a low effectiveness. With regard to BOT, this can be traced back to the assessment

of word similarity that relies on universal similarity measures which do not necessarily

reflect the domain characteristics of model collections (cf. Chapter 4). Another strategy

is to design matchers in a way that they learn from observation which is also called

unsupervised learning [317]. Such approaches evaluate the data they need to process and

then automatically derive knowledge from it. In this regard, two strategies were examined

in the previous chapters. First, some word similarities are based on word co-occurrences

in the model collections or exploit semantic relations in a dictionary. But, these similarities

yielded varying results (cf. Chapter 4). Second, OPBOT falls into this category, as it

analyzes control flow information to learn which BOT configurations yield the best results.

Although its effectiveness is generally higher and more stable than the effectiveness of

the default BOT configuration, its effectiveness is still bound by the word similarities (cf.

Chapter 5).

With that in mind, this chapter focuses on the confirmation of Sub-hypothesis H4

and examines the idea of supervised learning which characterizes approaches that derive

knowledge from additional data provided by teachers or supervisors, respectively [318].

In particular, this chapter relies on the interaction with experts to collect feedback on

automatically determined alignments. Algorithms that rely on interaction are generally

seen as more powerful than rule-based algorithms [319, 320]. The advantage is that

in addition to the use of universal rules and information from other knowledge sources

matchers can also learn from experts who manually perform the task the matcher was

designed for. This way the matcher has a baseline which it can use to adjust the decision

making process in a way that it emulates the decision making process of the experts. Based

on these considerations feedback collection is viewed as the manual process of correcting

an automatically determined alignment. In particular, this chapter examines strategies to

analyze such feedback to improve the effectiveness of BOT and OPBOT, respectively. To

this end, the Adaptive Bag-of-Words Technique (ADBOT) is introduced and evaluated in

order to give evidence towards Sub-hypothesis H4.

In the following, the specific approach to feedback collection pursued in this thesis

is outlined in Section 6.1. Afterwards, two strategies to learn from the feedback are
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presented. First, the adaptation of word similarities is explored in Section 6.2. Second,

the transitivity of alignments as a means to automatically infer alignments from already

known alignments is studied in Section 6.3. Based on the according analyses results,

Section 6.4 introduces ADBOT. Subsequently, ADBOT is evaluated and contrasted to

BOT, OPBOT, and the state-of-the-art matchers in Section 6.5. This section also deals

with strategies to minimize the workload for experts while maximizing the effectiveness.

Finally, Section 6.6 summarizes the findings to verify Sub-hypothesis H4.

6.1 The Process of Feedback Collection

In the context of process model matching Weidlich et al. [197] propose to derive a predic-

tion model for the quality of matchers from a set of manually provided alignments. Yet,

their work does not go beyond the introduction of a generic framework (cf. Section 3.3.3).

In addition to this idea, there is a body of works in the field of schema and ontology

matching that deals with the integration of experts into the matching process. Basically,

these works can be assigned to one of three aspects: the user interface, the process of

feedback collection, and the analysis of feedback. Regarding the design of user interfaces,

guidelines to support experts in understanding and creating alignments were investigated

in [321, 322]. Specific tools that assist users in creating alignments and applying matchers

include amongst others COMA++ [323], PROMPT [324], and AMC [314], an overview

is provided in [139]. The process of feedback collection was investigated by McCann

et al. [325] who discuss different types of feedback ranging from the verification of

attribute classifications over the analysis of domain constraints to the verification of corre-

spondences. Additionally, [326] propose a generic model for representing feedback and

examine a couple of challenges related to feedback collection including the identification

of inconsistencies, the validation of feedback, and clustering of users. Jeffery et al. [327]

introduce an approach to order correspondences for the validation by experts and to

control the amount of feedback that is collected. Lastly, approaches that analyze feedback

to improve the effectiveness include [328] where partial alignments, potentially provided

by experts, are analyzed to reduce the search space. That is, additional correspondences
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might only be identified in the contexts of correspondences from the partial alignment, or

corresponding schema fragments are first derived from the partial alignment and then

refined. Furthermore, Duan et al. [329] present an ontology matching technique that

iteratively completes an alignment between two ontologies. Therefore, it uses correspon-

dences provided by users in each iteration to adjust the weights of an aggregated similarity

score. Moreover, Agreementmaker [330] incorporates the capability to tune algorithms

based on gold standard alignments that are provided by experts.

This chapter builds upon these ideas and focuses on the analysis of feedback to improve

the effectiveness of process model matching techniques. Hence, this chapter also abstracts

from the particular user interface that is employed to collect feedback. In this regard,

a basic assumption is that feedback is provided by experts when needed and that this

feedback represents the objective ground truth. However, the strategies that are examined

here depend on the specific process that is employed to collect feedback. The reason is

that this process defines the type of feedback that is collected and thus determines what

kind of additional information can be exploited.

In this regard, the author of this thesis in cooperation with other researchers introduced

a framework for the design of feedback collection tasks in the context of process model

matching in [25]. This framework is the result of a discussion on how to relate, combine,

and slice aspects with regard to feedback collection. It provides guidance to systematically

study feedback collection for process model matching and on an abstract level comprises

three aspect groups that need to be considered when collecting feedback. While the

question and the answer group comprise aspects that determine the information that is

collected, the answer quality group focuses on measures to ensure high quality feedback.

As this chapter abstracts from quality aspects, the latter group is ignored in the following.

A detailed overview of the aspects in the question and the answer group is provided in

Table 6.1.

Question group. This group defines which tasks an expert needs to carry out in order to

provide feedback. It also comprises options to provide experts with additional information.
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TABLE 6.1: Conceptual overview of design options for feedback collection tasks

Groups Aspects Options

Question

Task description
Correspondence

identification

Activity cluster

identification

Activity

annotation

Representation Whole process Process fragment Activity label

Documentation Additional None

Answer

Modality Fixed Free Combination

Range Binary Numeric Semantic

Direction Unidirectional Bidirectional

The task description is the essential aspect in this group and defines what kind of

feedback should be collected. Here, experts might be asked to identify correspondences or

to identify activity clusters. While the former option can be used to yield (a sub-set of)

the objective ground truth, the latter addresses the grouping of activities within a process

model to derive candidates for complex correspondences. Alternatively, experts could be

asked to annotate activities within a process model in order to yield a richer description of

the activities. In this regard, experts might be provided with a set of harmonized labels,

semantic annotations, or reference processes that serve as a basis for the annotation.

In contrast, the representation is related to the design of the user interface. It is used

to control the complexity of the task and defines the context that is provided to the expert.

Here, the whole process models, fragments of the models, or only the activity labels might

be presented to the user.

Similar to the representation, the documentation provides the opportunity to support

experts with additional information, such as a short explanation, process handbooks, or

glossaries. In case such documentation is not available or is believed to unnecessarily

increase the complexity of the task, no documentation might be provided.

Answer group. Whereas the question group refers to the task presentation, the answer

group comprises options to specify the information collected from the experts.

The modality addresses the degree of freedom an expert has when providing answers.

That is, a user might be restricted to provide answers from a fixed set of options. In
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contrast, no options might be defined beforehand and the experts are able to provide free

text answers. Additionally, it is possible to combine both variants.

Next, it might be of interest to collect detailed information regarding the relation

between two activities or an activity and its annotation. The basic variant is to ask experts

for a binary decision where a relation is confirmed to hold or not. In addition, a numeric

degree might be used to characterize the extent to which a relation holds and provides an

option to collect more fine-grained information. Lastly, the relations might be described

semantically, e.g., by providing classes of relations like “unrelated”, “subsumes”, or “equal”.

Furthermore, the direction of a relation might be restricted. In this regard, the relation

might be expected to be unidirectional or bidirectional.

This framework and in particular the question and answer groups describe an exten-

sive number of scenarios for feedback collection. Without considering specific ways to

implement the options, the two groups already span a space of (34 × 22 =) 324 different

scenarios. As this number goes beyond the scope of this thesis, one specific scenario is cho-

sen and examined in the following. In particular, the view by Bellahsene and Duchateau

[269] is adopted here. Based on [28] they define the interaction between a matcher and

a user in the context of schema matching as the confirmation or rejection of a relation

between two elements [269]. This means that an automatically determined alignment

is presented to experts and they are asked to confirm or to oppose classifications made

by the matching technique. In this context, experts might find correspondences to hold

(true positives) or to be falsely suggested (false positives). Similar, experts might identify

additional correspondences that were overlooked by the matcher (false negatives) or

confirm that activities do not correspond (true negatives).

With regard to the framework, this way of feedback collection can be characterized

as follows. The task for experts is the correspondence identification. Although the user

interface is not considered here, it is assumed that the experts are presented with the

whole process models. The alignment proposed by the matching technique can be seen as

additional information that is provided to the experts who are asked to make a binary

decision, i.e., does an activity pair correspond or not. Accordingly, the modality is fixed

and the identified correspondence relations are bidirectional.
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FIGURE 6.1: The process of feedback collection

The respective process of feedback collection is summarized in Figure 6.1. It is based

on ideas from the semiautomatic schema matching process [139]. The rationale of the

process is to iteratively match process model pairs from the model collection and to utilize

knowledge gained during previous iterations. First, the expert selects a process model

pair that should be matched. Then, the matcher automatically matches the model pair

and proposes an alignment. In the next step the alignment is presented to the expert who

subsequently corrects the proposed alignment. As explained above, the expert therefore

adds missing correspondences and removes activity pairs that are not corresponding. The

results of this step can then be analyzed by the matcher to adapt its matching process

in order to achieve a better effectiveness in the subsequent iterations. To this end, the

matcher might investigate the true alignment identified by the expert, or the modifications

the expert carried out to transform the proposed alignment into the true alignment.

Once an iteration is completed, a new iteration is triggered. The process stops when

all process model pairs are aligned. However, this might be impractical in situations

where the alignments between the process models are only an intermediate result that

further analysis builds upon. In such situations, the feedback might be used to increase the

effectiveness and might be collected until the effectiveness of the matcher reaches a certain

level. Once this level is reached, all remaining model pairs are matched automatically

without asking experts to manually correct the alignments.
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In the following sections, the focus is on strategies to adjust the matching process

by analyzing the results of the feedback collection. That is, strategies are examined that

adapt word similarities and transitively infer correspondences from known alignments.

6.2 Word Similarity Adaptation

BOT and OPBOT primarily classify activity pairs as corresponding or not by applying

the bag-of-words similarity σ.$. At heart, it works by extracting the sets of individual

words from the labels of the two activities that are compared. Subsequently, it computes

a similarity score based on a word similarity function σ.w for each pair of words that

consists of a word from the first and a word from the second label. Once all pairs of words

were compared, the maximum similarity score from the previous step is determined for

each word in each label. The similarity score for the activity pair is then equal to the

average of these maximum scores. If this score is higher than or equal to a threshold, the

activities are considered similar and are suggested as correspondences. All activity pairs

with a score lower than the threshold are classified as non-corresponding.

While the quality of the bag-of-words similarity is also impacted by the stemming and

the pruning function, it effectively depends on the word similarity σ.w. On the one hand,

it was shown in Chapter 4 that the effect of stemming and pruning is marginal concerning

the effectiveness. On the other hand, in line with [225, 271, 272] it was argued that

universal word similarity measures do not necessarily represent the domain characteristics

of the model collections. However, developing measures that reflect the characteristics

of a certain model collection is expensive and time consuming. Moreover, it needs to be

repeated for each model collection. With that in mind, the following strategy aims to

achieve such a domain adaptation for the word similarities. Note that in agreement with

the argumentation, stemming and pruning are not considered and thus both features are

disabled in all BOT configurations in the following.

Instead of requiring experts to design a word similarity measure, the strategy uses

expert feedback to adjust the universal similarity measures. The rationale of the approach

is to learn from misclassifications which were identified during the feedback collection,
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i.e., the false positives and false negatives, and which were caused by the bag-of-words

similarity. That is, it is assumed that in each iteration, the same BOT configuration is

applied to identify the alignment. This alignment is then corrected by the experts and

their modifications are subsequently used to adapt the word similarity measure that is part

of the BOT configuration. As a consequence, later iterations benefit from the adjustments

carried out in earlier iterations. With regard to the bag-of-words similarity, a false positive

occurs, if the similarity score of an activity pair is higher than or equal to the threshold,

but it actually does not correspond and was thus removed from the proposed alignment

by the expert. Conversely, a false negative is an activity pair for which the similarity

score is lower than the threshold, but it constitutes a correspondence and was added to

the alignment by the expert. Accordingly, these misclassifications can be traced back to

the word similarity σ.w. That is, for a false positive the average of the maximum word

similarity scores was too high and for a false negative too low. In order to improve the

assessment of the word similarities accordingly, the word similarity adaptation algorithm

in Algorithm 6.1 is applied in each iteration to analyze the feedback.

The input of this algorithm is a binary relation A mc ⊆ A× A that represents the

modifications carried out by the experts to transform the proposed alignment into the

true alignment. That is, it contains the false positives and the false negatives.

Then, the algorithm consists of two coarse-grained steps. First, the word pairs (W P)

for which the similarity score needs to be adapted and the specific correction values

(cor rect) are determined (lines 3 to 15). The set of word pairs W P as well as the matrix

cor rect that stores the correction values are set up at the beginning of the algorithm

(lines 1 and 2). Initially, the correction values are set to 0 for each possible word pair.

Second, based on the results from the first step, the word similarity σ.w is updated (lines

16 to 25). The reason for the separation of these two steps is that the determination of

the word pairs for which the similarity needs to be adjusted depends on the old similarity

values. As each activity pair is processed separately in this step, updating the similarity

for a word pair distorts the detection of word pairs and correction values for other pairs.

The identification of word pairs based on the modifications works as follows. The

algorithm iterates over each of the false positives and negatives (lines 3 to 15). In this
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Algorithm 6.1: Word similarity adaptation algorithm
Input: A mc

1 W P = ;;

2 correct = initialize();

3 foreach (a, a′) ∈A mc do

4 if notCausedB yF il tering(a, a′) then

5 $= tok(norm(λ(a)));

6 $′ = tok(norm(λ′(a′)));

7 similari t y = σ.$($,$′);

8 foreach (w, w′) ∈ maxWordPairs($,$′) do

9 if w 6= w′ then

10 W P =W P ∪ (w, w′);

11 cor rect(w, w′) = cor rect(w, w′) + ϑ− similari t y;

12 end

13 end

14 end

15 end

16 foreach (w, w′) ∈W P do

17 σ.w(w, w′) = σ.w(w, w′) + cor rect(w, w′);

18 if σ.w(w, w′)> 1 then

19 σ.w(w, w′) = 1;

20 end

21 if σ.w(w, w′)< 0 then

22 σ.w(w, w′) = 0;

23 end

24 σ.w(w, w′) = σ.w(w′, w)

25 end

regard, it first examines whether the misclassification can be traced back to the bag-of-

words similarity or not by applying the notCausedB yF il tering function (line 4). As

BOT applies a filtering step in which correspondences are determined based on label

equality and in which the set of potential correspondences is reduced accordingly, not all

activity pairs are classified based on the bag-of-words similarity. Respectively, there can

be false positives with equal labels, but which do not correspond according to the expert.
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Moreover, there can be false negatives where one of the activities has an equally labeled

counterpart in the other process model and thus the activity pair was considered to not

correspond, but it was identified by the expert as a correspondence. If one of these two

conditions applies the notCausedB yF il tering function returns f alse and the activity

pair is not processed, as the misclassification is not caused by the bag-of-words similarity.

For all other activity pairs, the algorithm determines the bag-of-words similarity (lines

5 to 7). Here, the word similarity σ.w which was applied by the BOT configuration to

previously propose the alignment is utilized. Next, the function maxWordPairs is applied

(line 8) to determine the set of word pairs that need to be adapted with regard to the

current activity pair. For each word w in the union of the two bag-of-words it yields a word

pair (w, w′) consisting of the word w and the word w′ from the other bag-of-words that

yielded the maximum word similarity score for w. The respective set of word pairs thus

comprises all word pairs that contributed to the misclassification of the activity pair. Note

that the word similarity function is a symmetric function where for any word pair (w, w′)

it holds that σ.w(w, w′) = σ.w(w′, w). Thus, in order to ensure a consistent management

of word pairs at this point, each word pair (w, w′) is arranged alphabetically, i.e., w occurs

before w′ in a dictionary. Then, the algorithm iterates over the determined set of word

pairs (line 8 to 13). If the word pair consists of two different words (line 9) the word pair

(w, w′) is added to W P (line 10). Moreover, the correction value cor r(w, w′) for this word

pair is updated (line 11). Therefore, the algorithm subtracts the overall similarity score

for the activity pair from the threshold and adds the respective difference to the stored

correction value. The difference between the threshold and the overall similarity score

characterizes the degree to which the similarity of the activities was misjudged. In case

of a false positive the difference is negative and decreasing the word similarity by this

difference for each of the determined word pairs will result in a similarity score that better

reflects the similarity assessment of the expert. Analogously, the difference is positive

for a false negative and increasing the word similarities respectively will lead to a higher

overall similarity score. Note that if a word pair contributes to several misclassifications,

its correction value is the sum of all differences yielded for the respective activity pairs.
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Once the first step is finished, the word similarity values are updated by iterating over

all word pairs in W P (lines 16 to 25). For each word pair the correction value is added to

the word similarity score (line 17). Here, a word pair that predominantly contributed

to false positives will have a negative correction value as its similarity was generally

overestimated. Thus, its new word similarity score will be lower. In contrast, a word pair

that predominantly contributed to false negatives will have a positive correction value.

This indicates that its similarity was underestimated and its similarity score needs to be

higher. In order to ensure that the word similarity σ.w is bound to the interval [0, 1], the

new word similarity value is modified, if the update leads to a value outside this interval

(lines 18 to 23). That is, if the value is larger than 1, it is set to 1. Additionally, if it is

smaller than 0, it is set to 0. Moreover, σ.w is a symmetric function that yields the same

similarity score for two words independent of the ordering of the words. Thus, the new

similarity value for the word pair (w, w′) is also assigned to the pair (w′, w) (line 24).

To investigate the effect of the word similarity adaptation, the following experiment is

carried out based on the development datasets. In the experiment different configurations

of BOT are used to determine alignments for process models. Here, in all configurations

stemming and pruning are disabled. In order to achieve a broad evaluation of the adap-

tation algorithm, the three word similarity measures that are part of OPBOT (LEV, LIN,

and 2CS) as well as five different threshold values (.5, .6, .7, .8, and .9) are applied.

Consequently, 15 different BOT configurations are used.

For each of the two datasets all process model pairs are matched following the process

for feedback collection from Figure 6.1. In this regard, the gold standards are used to

simulate the expert feedback and the process is executed for each of the BOT configurations

separately. That is, in each iteration a model pair from the dataset is matched by the

respective BOT configuration. The proposed alignment is then stored to compute the

effectiveness once all process model pairs have been matched. Moreover, it is compared to

the gold standard for the model pair and all misclassifications are determined. The falsely

classified activity pairs are then passed to the word similarity adaptation algorithm to

adjust the word similarity applied by the respective BOT configuration. In this regard, the

threshold that was set for the BOT configuration will be used to determine the correction
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value. Once the algorithm is done, the next iteration of the process is carried out. That

is, the next model pair is processed by the BOT configuration using the updated word

similarity. This way the word similarity is adjusted stepwise until the whole model

collection is matched. Note that by storing the alignment in each iteration, it is ensured

that the alignments which are used to compute the effectiveness at the end only depend

on the adaptation that was achieved before the model pair was processed. All adaptations

in later iterations do not impact the assessment of the effectiveness for the alignments.

A factor that influences the word similarity adaptation is the order in which the process

model pairs are matched. That is because the order of model pairs determines the order of

the similarity adapations. Thus, to examine the degree to which the ordering influences the

adaptation, 100 orders were randomly generated for each of the model collections. Each

of these random orders was processed by each of the 15 BOT configurations. Consequently,

a total of 1,500 separate runs was carried out for each dataset.

As a first indicator for the effect of the word adaptation Table 6.2 shows the maximum

micro f-measure that was observed for each dataset. That is, the table reports the best

result that was observed for any of the 1,500 runs. Additionally, the best micro f-measure

yielded by any of the 15 BOT configurations without the feedback collection is used as a

baseline, i.e., when the word similarity was not adapted. The order of the model pairs is

irrelevant for the latter case, i.e., a specific BOT configuration yields the same effectiveness

for all orderings. As the table reveals, the adaptation can have a strong positive impact

on the effectiveness. On BR the maximum micro f-measure based on the word similarity

adaptation amounts to (.458 vs. .656 Ò=) 143% of the micro f-measure for the best BOT

configuration without the adaptation. The effect on UA is similar, i.e., .405 vs. .594 Ò=

TABLE 6.2: Maximum effectiveness of BOT configurations with and without adaptation

Dataset σ.w ϑ adaptation prµ reµ Fµ

BR
2CS .8 not applied .538 .399 .458

LEV .8 applied .751 .582 .656

UA
LEV .7 not applied .597 .307 .405

LEV .8 applied .646 .550 .594
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146%. In both cases this is due to an increase in the precision and more important in the

recall. With regard to the recall, the adaptation achieves a relative performance of (.399

vs. .582 Ò=) 146% on BR and of (.307 vs. .550 Ò=) 179% on UA.

While these results show the potential of the adaptation, they only consider the

maximum effectiveness and thus draw an optimistic picture. To refine the analysis,

Table 6.3 summarizes the improvements that were achieved for each of the 15 BOT

configurations. Here, for each BOT configuration the micro f-measure that was yielded

when the adaptation was not applied served as a baseline. In this context, the improvement

for a BOT configuration gained in a certain run is the difference between the baseline and

the micro f-measure that was achieved in this run. Accordingly, a positive value indicates

that the adaptation of the word similarities improved the overall micro f-measure. As

100 runs were carried out for each of the BOT configurations, the table summarizes the

improvements in terms of the maximum, the minimum, and the average improvement for

each of the 15 configurations.

TABLE 6.3: Improvements of the micro f-measure

Average Maximum Minimum

Dataset ϑ LEV LIN 2CS LEV LIN 2CS LEV LIN 2CS

.5 .09 .13 .13 .12 .15 .15 .06 .09 .10

.6 .17 .18 .14 .20 .20 .16 .14 .14 .12

BR .7 .22 .21 .15 .26 .24 .17 .19 .17 .13

.8 .25 .22 .15 .29 .25 .18 .21 .18 .12

.9 .26 .22 .17 .29 .26 .19 .22 .18 .14

.5 .11 .09 .17 .14 .11 .20 .08 .05 .15

.6 .10 .14 .18 .14 .18 .21 .07 .10 .15

UA .7 .13 .17 .18 .16 .21 .22 .09 .13 .15

.8 .17 .19 .15 .20 .23 .19 .14 .15 .12

.9 .24 .23 .15 .28 .28 .19 .19 .17 .12
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A first interesting result is that for each BOT configuration the micro f-measures were

always improved regardless of the order in which the model pairs were matched. That

is because the minimum values are all positive. Yet, the actual impact of the adaptation

varies. On BR the difference to the baseline varies between .06 and .29. The situation

is similar on UA where the improvements fall into the interval [.05, .28]. To this end,

the variance can partly be explained by the different ordering of the model pairs. Here,

the average difference between the maximum and the minimum effectiveness per BOT

configuration is .06 on BR and .07 on UA. However, the results also show that the

improvement depends on the word similarity and the threshold. To better understand

the impact of these two features, Figure 6.2 outlines the distribution of the effectiveness

values yielded by all configurations with a certain threshold or a certain word similarity.

That means the distribution for each of the five different threshold values is based on 300

runs per dataset, i.e., 100 different orderings of the model pairs per word similarity. In

contrast, the distribution for each word similarity relies on 500 runs, i.e., 100 different

orderings of the model pairs per threshold value.

BR UA
prμ reμ Fμ prμ reμ Fμ

prμ reμ Fμ prμ reμ Fμ

FIGURE 6.2: Overview of the effectiveness for the thresholds and word similarities
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The figure shows that in each dataset the distributions of the micro f-measures are

similar for all the three word similarities. However, there are differences with regard to

the precision and recall values. That is, for LEV and LIN the precision takes higher values

than the recall. For 2CS it is the other way around. In contrast to the word similarities

the differences in the effectiveness are larger for the different threshold values. On both

datasets an increase in the threshold is connected with an increase in the precision and

a decrease in the recall. Moreover, the best micro f-measures are on average yielded

for a threshold value of .7 or .8. This observation shows that the overall effectiveness

achieved by adapting the word similarities depends on the quality of the respective BOT

configuration.

While these analysis results address the overall effectiveness of the word similarity

adaptation approach, the average f-measure yielded for each model pair with and without

the adaptation are contrasted in Figure 6.3. As the figure reveals, the word adaptation

achieves an improvement for the majority of the model pairs. On BR the f-measure is

improved for 29 model pairs and on UA for 30. On both datasets there are more than 20

model pairs for which the f-measure with the adaptation is lower than .3 and can be lifted

to approximately .5. However, the figure also shows that the micro f-measure is decreased

for some of the model pairs and on average seems to be located at approximately .5 for

all pairs. According to this result, model pairs for which a high effectiveness is already

achieved without the similarity adaptation should be matched at the beginning when

the effect of the word similarity adaptation is low and the high effectiveness can still be

achieved.

In summary the results demonstrate that due to the positive impact on the effectiveness,

the word similarity adaptation can be considered as a means to adjust the bag-of-words

similarity in a way that it better reflects the domain characteristics of a certain model

collection. Thus, the algorithm constitutes a lightweight supervised WSD approach that

adjusts similarity values, but does not learn semantic relations between words. The

results also revealed two problems that influence the improvements in the effectiveness.

First, the effect can vary strongly depending on the specific ordering of the model pairs,

the threshold and the word similarity. Second, the adaptation algorithm might lead to
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FIGURE 6.3: Average f-measure yielded per model pair with and without the adaptation

situations where the micro f-measure for a model pair is actually decreased compared to

the effectiveness yielded without the adaptation. Thus, a matching technique that utilizes

the word similarity adaptation algorithm should also incorporate strategies to mitigate

these effects.

6.3 Transitivity

The second strategy to improve the effectiveness of matchers through expert feedback

applies a well-known property in mathematics: transitivity. Generally speaking, transitivity

can be interpreted in the following way: if two things are equal to the same thing, they are

also equal to one another. In mathematical terms a binary relation R ⊆ X × X is transitive,

if ∀x1, x2, x3 ∈ X : [(x1, x2) ∈ R∧ (x2, x3) ∈ R]⇒ (x1, x3) ∈ R [331].

Accordingly, the idea is here to decide whether an activity pair (a′, a′′) corresponds

or not by analyzing the true alignments that were already discovered during feedback

collection. In particular, the idea is to search these true alignments for an activity a
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that corresponds to a′ as well as to a′′. If such an activity a exists, it is considered as

evidence towards the correspondence relation between (a′, a′′). An example of such

transitive correspondences is shown in Figure 6.4. This example comprises three activities,

“accept applicant” from process A, “approve aptitude” from process B, and “offer place at

university” from process C. Because all three activities depict the task of determining, if

an applicant is qualified for a certain course of study, each of the activities corresponds

to both other activities. Accordingly, transitivity holds between these correspondences.

Consequently, the alignments between process A and B as well as process A and C might

be used to automatically infer the alignment between process B and C. Of course, any

other constellation where two of the alignments are known is also conceivable.

In order to investigate to which degree transitivity exists in model collections, the

gold standard alignments of the two development datasets are examined in the following.

Moreover, the global clustering coefficient χ ∈ [0,1] [332], also referred to as the graph

transitivity index, is used as a means to measure the extent to which transitivity holds in

the datasets. In graph theory, it provides information on the degree to which nodes tend

to form clusters within a graph. It is also of interest for the analysis of social networks

[333, 334] where it provides information on the existence of groups whose members

share a certain relation, e.g., groups of friends.

The global clustering coefficient relies on a graph representation of the data where the

nodes represent the elements and the edges are the relations between the elements. In the

context of business process model matching this graph contains one node per activity in

the model collection and the edges depict the correspondences that exist in the collection.

From such a graph, the set of triplets is derived in order to compute the global clustering

coefficient. Here, a triplet is a 3-tuple that consists of three distinct nodes from the graph.
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Accordingly, an activity triplet contains three distinct activities from the model collection.

Yet, as the goal is to examine how likely it is for three activities to transitively correspond,

only those triplets that consist of activities from different process models are considered.

The reason is that correspondences exist between different process models. Thus, triplets

with activities from the same model contain at least two activities that do not correspond

and can hence be ignored.

Definition 6.1 (Activity triplets) Let {P i}ki=1 with P i = (N i, Ai, E i,λi, τi) be a collection

of k ∈ N≥2 process models. Then, the set of activity triplets A3 is defined as

A3 = {(a, a′, a′′)|(a, a′, a′′) ∈ Ax × Ay × Az ∧ 1≤ x , y, z ≤ k ∧ x 6= y 6= z 6= x}

Given the set of activity triplets, the global clustering coefficient is defined as the ratio

of the number of transitive activity triplets and the number of potentially transitive triplets.

A transitive triplet is a triplet where each activity corresponds to both other activities. That

is, a transitive triplet comprises three activities that correspond to each other. By contrast,

potentially transitive triplets are all triplets for which at least one activity corresponds to

both other activities. This means, a potentially transitive triplet satisfies the condition of

the transitivity. Thus, the global clustering coefficient is the percentage of cases where the

transitivity condition is fulfilled and transitivity actually holds. Consequently, if the global

clustering coefficient is 1 all correspondences transitively inferred from the existence of

two other correspondences truly exist. The lower the coefficient is the more often will a

transitively inferred correspondence be incorrect, as the number of cases increases where

transitivity is falsely concluded.

Definition 6.2 (Global clustering coefficient) Let {P i}ki=1 with P i = (N i, Ai, E i,λi, τi)

be a collection of k ∈ N≥2 process models and A3 be the set of activity triplets. Further, let

{A j}lj=1 be a set of l ∈ N>2 alignments where there is at most one alignment for a model

pair, i.e., ∀A x ,y ∈ {A j} : x 6= y⇔¬[dom(A x) = dom(A y)∧ cod(A x) = cod(A y)]∧

¬[dom(A x) = cod(A y)∧ cod(A x) = dom(A y)]. Lastly, letA ∗ =
l
⋃

j=1
A j ∪A −1

j denote

the set of all correspondences where a correspondence relation between two activities a and a′
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is expressed by the two activity pairs (a, a′) and (a′, a). Then, the global clustering coefficient

χ is defined as

χ =
|{(a, a′, a′′)|(a, a′, a′′) ∈ A3 ∧ |{(a, a′), (a, a′′), (a′, a′′)} ∩A ∗|= 3}|
|{(a, a′, a′′)|(a, a′, a′′) ∈ A3 ∧ |{(a, a′), (a, a′′), (a′, a′′)} ∩A ∗| ≥ 2}|

The values of the global clustering coefficient for the development datasets are pre-

sented in Table 6.4. On BR it is .479, meaning that not even half of the potentially

transitive activity triplets are actually transitive. On UA it is even lower (.274) and only

slightly more than one fourth of the potentially transitive activity triplets is transitive.

These results suggest that transitivity does not hold within the datasets.

Nevertheless, a closer inspection of the results revealed two problems related to

the global clustering coefficient. First, it does not correctly represent situations where

transitivity includes complex and elementary correspondences. An example for this

problem is shown in Figure 6.5. Here, there are three fragments of different process

models which depict the task of making a decision whether to accept or to reject a

student’s application. While accepting and rejecting are distinct activities in process B

and process C, process A only contains one general activity which subsumes the two

activities. Consequently, the activities β1, β2 ,γ1 and γ2 correspond to activity α, but β1

only corresponds to γ1, and β2 only to γ2.

The graph representation of this example as well as of the respective transitive and

potentially transitive activity triplets are depicted in Figure 6.6. The graph includes four

potentially transitive activity triplets (α,β1,γ1), (α,β1,γ2), (α,β2,γ1) and (α,β2,γ2), but

only (α,β1,γ1) and (α,β2,γ2) are transitive. Here, the global clustering coefficient χ

yields a rather low value of 0.5.

TABLE 6.4: Results of the global clustering coefficient analysis on BR and UA

Number of Triplets

Dataset potentially transitive transitive χ

BR 2686 1286 .479

UA 2770 760 .274
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FIGURE 6.5: Example for transitive elementary and complex correspondences

The second problem related to the global clustering coefficient is that it does not

necessarily reflect the observed effectiveness. Despite the low coefficient value in the

example from Figures 6.5 and 6.6, transitively inferring activities might actually result in a

high effectiveness depending on which alignment is inferred as outlined in Figure 6.7. In

the example, there are three scenarios. In the first scenario, process B and C are matched

based on the alignments between process A and B as well as between process A and C.

Applying transitivity to detect correspondences results in the correspondences: (β1,γ1),

(β1,γ2), (β2,γ1) and (β2,γ2). In this case, the recall is 1 and the precision 0.5 as the

true correspondences (β1,γ1) and (β2,γ2) are found, but the non-corresponding activity

pairs (β1,γ2) and (β2,γ1) are also suggested. In the second scenario, process A and C

are matched and therefore the alignments between process A and B as well as between

process B and C are used. Here, the two correspondences (α,γ1) and (α,γ2) are suggested.

As these correspondences constitute the true alignment, the recall and the precision is 1.

The same can be observed in the third scenario where process A and B are matched. This

shows that the actual effectiveness yielded by transitively inferring correspondences can

be different from what the global clustering coefficient suggests.
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FIGURE 6.6: Potentially transitive activity triplets for the example
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FIGURE 6.7: Possible matching scenarios in the example

As a consequence of these shortcomings, the analysis is refined by calculating the

local clustering coefficient χ ∈ [0, 1] [335]. In contrast to the global clustering coefficient,

the local cluster coefficient separately computes a score χ(a) ∈ [0,1] for each activity.

In this regard, it does not rely on all potentially transitive activity triplets the activity is

part of. Instead, for a given activity a it only considers those triplets (a, a′, a′′) where

a corresponds to a′ and to a′′. This means, the local clustering coefficient focuses on

the scenarios where a is the evidence for a correspondence relation between a′ and a′′

and it measures how often this evidence leads to the identification of a correspondence

that exists. Consequently, the higher the score χ(a) is, the more reliable it is to use

correspondences that contain a to transitively infer correspondences. The local clustering

coefficient is the average of the activity coefficients yielded for all activities in the model

collection. However, for an activity there might not be any triplet where the activity

corresponds to both of the other two activities. Here, the determination of χ(a) would

require a division by 0. Thus, the adapted version by [336] is applied. That is, the activity

clustering coefficient χ(a) is set to a value of 0, if no activity triplets were determined.

Further, the average of the coefficients is corrected based on the ratio of all such activities.

Definition 6.3 (Local clustering coefficient) Let {P i}ki=1 with P i = (N i, Ai, E i,λi, τi) be

a collection of k ∈ N≥2 process models. Further, let A∗ =
k
⋃

i=1
Ai denote the set of all activities

and A3 be the set of activity triplets in the model collection. Moreover, let {A j}lj=1 be a set

of l ∈ N>2 alignments where there is at most one alignment for a model pair, i.e., ∀A x ,y ∈

{A j} : x 6= y ⇔ ¬[dom(A x) = dom(A y) ∧ cod(A x) = cod(A y)] ∧ ¬[dom(A x) =

cod(A y) ∧ cod(A x) = dom(A y)]. Lastly, let A ∗ =
l
⋃

j=1
A j ∪A −1

j denote the set of all
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TABLE 6.5: The local clustering coefficients on BR and UA

Dataset χ

BR .842

UA .745

correspondences where a correspondence relation between two activities a and a′ is expressed

by the two activity pairs (a, a′) and (a′, a). Based on the activity clustering coefficient

χ(a) :=







0 |{a′|(a, a′) ∈A ∗}| ≤ 2
|{(a,a′,a′′)|(a,a′,a′′)∈A3∧{(a,a′),(a,a′′),(a′,a′′)}⊆A ∗}|
|{(a,a′,a′′)|(a,a′,a′′)∈A3∧{(a,a′),(a,a′′)}⊆A ∗| else

the local clustering coefficient is defined as

χ =
�

1−
|{a|a ∈ A∗ ∧ |{a′|(a, a′) ∈A ∗}| ≤ 2}|

|A∗|

�−1

·
1
|A∗|

∑

a∈A∗
χ(a)

Table 6.5 reports the local clustering coefficients for both development datasets. While

the coefficient is .842 on BR, it is .745 on the UA. These high values show that the relia-

bility of transitively inferring correspondence is high, but there are exceptions in which

a correspondence might be falsely proposed, as e.g., in the case of complex correspon-

dences. Overall, the results suggest that transitivity is a suitable strategy to discover

correspondences. Further evidence in this regard is given by the evaluation of ADBOT

which incorporates transitivity and is introduced in the next section.

6.4 The Adaptive Bag-of-Words Technique

The Adaptive Bag-of-Words Technique (ADBOT) relies on the word similarity adaptation

algorithm and transitivity. At heart, ADBOT’s design follows the process of feedback

collection from Section 6.1 as outlined in Figure 6.8. In addition to the abstract process,

ADBOT initially prepares BOT configurations. That is, following OPBOT’s matching process

ADBOT analyzes the model collection in order to configure three BOT configurations. The

decision to rely on three configurations is motivated by the observation that the overall

effectiveness achieved by adapting the word similarities is also determined by the quality
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FIGURE 6.8: The ADBOT workflow

of the BOT configuration, i.e., by the threshold and the word similarity (cf. Section 6.2).

Thus, three configurations are used here to increase the chance of yielding a strong

improvement. Moreover, the idea is to achieve a high quality in early iterations when

only a small amount of feedback has been analyzed and the domain adaptation is low. In

each iteration, ADBOT relies on the BOT configurations and on the true alignments that

were already discovered in order to determine the alignment for the model pair selected

by the expert. Finally, ADBOT analyzes the results from the manual correction of the

proposed alignment. Here, it uses the word similarity adaptation algorithm to adjust the

BOT configurations. Moreover, it stores the true alignment to establish a knowledge base

that can be exploited to transitively infer alignments. In the following each of the three

steps is explained in more detail.

Prepare BOT Configurations (Figure 6.9). As outlined above, three BOT configurations

are used in order to increase the chance of yielding a high effectiveness. In this regard, each

BOT configuration applies filtering and discards stemming as well as pruning. Moreover,

the configurations utilize different word similarities. To this end, there is one configuration

for each of the three similarities that OPBOT uses (LEV, LIN, and 2CS). To prepare these

configurations, OPBOT’s search strategy is reused.

In this regard, ADBOT first extracts the activity pairs from the model collection. Then,

for each of the BOT configurations it computes the similarity scores for all pairs. Based

on the similarity values it determines the threshold for which the highest order relation
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score is yielded. Here, for all configurations all distinct similarity values that are equal

to or higher than .7 are considered as possible threshold values. Note that uniformly

considering .7 as the minimum threshold is based on the observation that the micro

f-measures resulting from the word similarity adaptation tend to be highest for those

threshold values (cf. Section 6.2). Finally, ADBOT ranks the BOT configurations according

to their order relation score. Here, a rank of 1 is assigned to the best configuration with

regard to the order relation score. Note that in contrast to OPBOT the configurations are

ranked at this stage, but alignments are not proposed.

Determine Alignment (Figure 6.10). ADBOT’s matching strategy considers correspon-

dences that are transitively inferred to be more reliable than those that are determined

based on BOT configurations. As a consequence, the first step is to check the transitivity.

That is, for the process model pair (P ′, P ′′) that needs to be matched, the number of

process models P is determined for which the true alignments between P and P ′ as well

as between P and P ′′ are known. In case there is at least one such process model, ADBOT

uses transitivity to match the process models. In this regard, ADBOT classifies an activity

pair (a′, a′′) as corresponding, if in the determined models from the previous step there

is at least one activity a which corresponds to a′ and to a′′. If no models were found in

the first step, the process models are matched by the BOT configuration with the highest

rank, i.e., which is predicted to yield the best effectiveness.

Analyze Results (Figure 6.11). The last of the three steps in ADBOT is carried out to

learn from the feedback that the experts provided. To this end, the technique first stores
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the alignment determined by the experts in order to transitively infer alignments from it

in subsequent iterations. Then, it adapts the word similarities of each of the three BOT

configurations. If a BOT configuration was not used in the current iteration to determine

the proposed alignment, the configuration is applied to the process model pair and its

result is compared to the alignment defined by the expert. The derived modifications are

then used to carry out the adaption. In addition to this step, the last two steps aim to

further improve the matching based on the BOT configurations. In particular, they aim to

refine the automatic configuration based on the order relation score from the preparation

workflow. First, the true alignments that have been discovered so far are used to determine

the thresholds. This means, the true alignments are used as a baseline to assess the

effectiveness of the BOT configurations. Here, for each of the three configurations all

observed similarity values larger than .7 are considered as possible new threshold values

and the threshold value for which the highest micro f-measure is yielded is selected as

the new threshold. Then, the second step compares the determined effectiveness of the

three resulting configurations in order to rank the BOT configurations. In this regard, the

configuration with the highest micro f-measure is now ranked first. Note that in the last

two steps empty alignments, i.e., those that do not contain any correspondences, are not

considered. The reason is that regardless of the word similarity for such alignments the
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FIGURE 6.11: The analysis sub-workflow

best threshold is 1, as no other threshold value leads to the identification of more non-

corresponding activity pairs than this value. However, for other alignments a threshold of

1 is typically too restrict and thus empty alignments might distort the re-configuration,

especially in early iterations. As a consequence, the first re-configuration is carried out

when the first non-empty true alignment was discovered.

6.5 Evaluation and Analysis

This section assesses the effectiveness of ADBOT in order to give further evidence that

expert feedback can be exploited to improve matching techniques. In this regard, the

effectiveness is separately studied on the development and the evaluation datasets. Ad-

ditionally, various analyses refine the insights from the effectiveness evaluation. First,

strategies to sort model pairs in order to maximize ADBOT’s effectiveness are studied.

Second, the reduction of expert workload is investigated. Third, transitivity is examined

with regard to the evaluation datasets in order to give evidence towards its general validity.

Last, relations between model collection characteristics and the improvements achieved

through the analysis of expert feedback are investigated in order to better understand the

limitations of the feedback analysis.
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6.5.1 Effectiveness on the Development Datasets

So far, this chapter has independently studied the word similarity adaptation algorithm

and transitivity on the development datasets. In this regard, it was shown that the

word similarity adaptation algorithm has a positive impact on the effectiveness and

that transitivity is a reliable means to infer correspondences. ADBOT incorporates both

strategies as well as a continuous re-configuration of the BOT configurations inspired

by OPBOT’s search strategy. In order to examine the combination of these strategies,

ADBOT is evaluated with regard to the development datasets. Like the word similarity

adaptation algorithm, ADBOT’s effectiveness depends on the order in which the model

pairs are matched. That is, the order impacts the word similarity adaptation, determines

the knowledge base used to transitively infer correspondences and influences the re-

configuration of the BOT configurations . Thus, the 100 random orders from the analysis

in Section 6.2 are reused here. To this end, for each development dataset the results for

the run that yielded the minimum and that yielded the maximum micro f-measure are

considered. Furthermore, the average micro and macro level effectiveness measures are

reported. Additionally, the maximum micro f-measure for the word similarity adaptation

algorithm (cf. Table 6.2) serves as a baseline to investigate whether the re-configuration

and transitivity further improve the effectiveness. Moreover, ADBOT is contrasted to

BOT’s default (BOTALL) and optimal configuration (BOTMAX), to OPBOT as well as to the

best performing matchers from the contests [19, 20].

As shown in Table 6.6 the maximum and average micro f-measures for ADBOT are

higher than the maximum micro f-measure for the word similarity adaptation algorithm

(.675, .743 vs. .656) on BR. This result shows that the integration of the transitivity and

the re-configuration of the BOT configurations can yield further improvements. Here,

the improvements are due to an overall increase in the recall. On average it is .777

and the recall for the minimum and maximum micro f-measure differ only slightly. In

contrast, the order in which the model pairs are matched, impacts the precision which

on average is .598 and its absolute difference to the minimum and the maximum runs is

approximately .1. In comparison to BOT and OPBOT as well as to the two state-of-the-art
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TABLE 6.6: Effectiveness of ADBOT and other matchers on BR

Approach prµ reµ Fµ prM reM F M

ADBOT (Min) .496 .771 .603 .547 .790 .606

ADBOT (Avg) .598 .777 .675 .655 .776 .667

ADBOT (Max) .701 .791 .743 .701 .791 .708

Word Similarity Adaptation (Max) .751 .582 .656 .742 .549 .584

OPBOT .613 .452 .520 .583 .469 .499

BOTALL .657 .344 .452 .615 .329 .382

BOTMAX .652 .452 .534 .633 .467 .511

RMM/NSCM - - - .68 .33 .45

pPalm-DS .502 .422 .459 .499 .429 .426

matchers ADBOT clearly improves the effectiveness. All of these four matchers yield a

micro f-measure that is lower than ADBOT’s minimum micro f-measure. Here, BOTMAX

comes closest by yielding a relative performance of (.534 vs. .603 Ò=) 88.6% with regard

to the minimum f-measure of ADBOT and (.534 vs. .743 Ò=) 71.9% with regard to the

maximum. The micro recall of the other matcher ranges from (.344 vs .777 Ò=) 44.3%

to (.452 vs .777 Ò=) 58.2% with regard to ADBOT’s average recall. For RMM/NSCM the

macro recall is (.33 vs .776 Ò=) 42.5% of ADBOT’s average macro recall. On average the

precision of ADBOT is similar to those of the five matchers.

On UA the maxmimum micro f-measure of ADBOT is virtually equal to the maximum

of the word similarity adaptation (.596 vs. .594). However, ADBOT improves the micro

recall (.685 vs. .550) while it sacrifices precision (.527 vs. .646). Similar to BR, the

micro recalls of the minimum and maximum runs differ only slightly and the average is

.677. On the contrary, the precision varies strongly. This confirms the observation from

BR that ADBOT improves the recall, but its precision depends on the order in which the

model pairs are matched. While even the minimum micro f-measure improves the micro

f-measure of BOTALL (.428 vs. .403), OPBOT and BOTMAX might indeed yield a higher

micro f-measure (.428 vs. .442). Yet, on average ADBOT outperforms both matchers (.496
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TABLE 6.7: Effectiveness of ADBOT and other matchers on UA

Approach prµ reµ Fµ prM reM F M

ADBOT (Min) .315 .667 .428 .411 .703 .487

ADBOT (Avg) .393 .677 .496 .493 .685 .526

ADBOT (Max) .527 .685 .596 .569 .675 .581

Word Similarity Adaptation (Max) .646 .550 .594 .667 .540 .558

OPBOT .598 .350 .442 .578 .357 .412

BOTALL .429 .380 .403 .455 .386 .382

BOTMAX .406 .486 .442 .443 .511 .453

RMM/NSCM - - - .37 .39 .38

vs. .442). This can again be traced back to the improvement in the micro recall. Here,

OPBOT achieves (.35 vs .677 Ò=) 51.7% of ADBOT’s average micro recall and BOTMAX

(.486 vs .677 Ò=) 65.1%. Additionally, RMM/NSCM’s macro level effectiveness is lower

than ADBOT’s, as on average ADBOT yields a higher precision, recall, and f-measure.

With regard to the macro f-measure RMM/NSCM only achieves (.38 vs .526 Ò=) 72.2%.

In summary, the results show that the analysis of expert feedback can strongly improve

the effectiveness of matching techniques. Moreover, the inclusion of transitivity and

re-configuration can further increase the effectiveness of the word similarity adaptation

as shown on BR. However, the magnitude of the improvement is bound by the ordering

of the model pairs. ADBOT’s effectiveness is typically higher than that of fully automated

techniques from related work as well as from this thesis due to a huge increase in the

recall. Yet, depending on the model pair ordering the precision of ADBOT might drop

to a level at which the overall effectiveness of an automated technique is higher due to

its higher precision. To examine the general validity of these findings, the next section

repeats the analysis on the evaluation datasets.
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6.5.2 Effectiveness on the Evaluation Datasets

In addition to the analysis of the development datasets this section assesses ADBOT’s

effectiveness with regard to the evaluation datasets. Similar to the previous analyses 100

random orderings of the model pairs were generated for each dataset. To characterize

the effectiveness of ADBOT the runs that yielded the minimum and maximum micro

f-measure as well as the average of the micro precision, recall, and f-measure are reported.

Moreover, BOTALL, BOTMAX, and OPBOT serve together with the best matcher from the

second contest [20] for the SR dataset as a baseline. The respective effectiveness values

for both datasets are presented in Table 6.8. Note that the word similarity adaptation

was not evaluated separately, as the focus is on providing evidence towards ADBOT’s

effectiveness.

On SR the improvements that ADBOT achieves are low. That is, compared to BOTALL,

BOTMAX, and ADBOT the maximum micro f-measure is slightly higher (.625, .692, .658

vs. .711). On average ADBOT’s micro f-measure is lower than that of BOTALL and BOTOPT

(.692, .658 vs. .654). Moreover, the minimum micro f-measure is lower than that of the

fully automated techniques (.595). Overall, ADBOT’s recall is generally similar to that

of BOTALL and BOTOPT, but the precision varies greatly. On this dataset AML-PM can be

outperformed by the maximum micro f-measure (.68 vs. .711), but AML-PM generally

seems to perform slightly better because the average micro f-measure of ADBOT is lower

than the micro f-measure of ADBOT (.68 vs. .654). The reason for the marginal and

sometimes even negative improvements on SR is that in this dataset each process model

is matched only once and transitivity can thus not be exploited. Moreover, the process

models originate from different business areas and thus the vocabulary is more diverse

than in the other datasets. Consequently, the impact of the word similarity adaptation is

low too. This shows that the improvement through feedback can only be exploited, if the

obtained knowledge can actually be reused. A more detailed discussion of this problem is

presented at the end of this section.
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TABLE 6.8: Effectiveness of ADBOT and other matchers on SR and AW

SR AW

Approach prµ reµ Fµ prµ reµ Fµ

ADBOT (Min) .595 .595 .595 .877 .707 .783

ADBOT (Avg) .797 .563 .654 .855 .840 .847

ADBOT (Max) .854 .608 .711 .908 .891 .899

OPBOT .599 .653 .625 .730 .339 .463

BOTALL .774 .572 .658 .959 .251 .397

BOTMAX .887 .568 .692 .616 .552 .582

AML-PM .786 .595 .677 - - -

On AW the effectiveness of ADBOT is drastically higher than this of BOTALL, BOTMAX,

and OPBOT. Here, BOTALL achieves (.397 vs .847 Ò=) 46.9% of ADBOT’s average micro f-

measure, BOTMAX (.582 vs .847 Ò=) 68.7%, and OPBOT (.463 vs .847 Ò=) 54.7%. Moreover,

ADBOT’s maximum f-measure reaches a value of .899. While the precision ranges in

between that of OPBOT and BOT, the recall is strongly improved. Compared to the

average micro recall, BOTALL yields only (.251 vs .840 Ò=) 29.9%, BOTMAX (.552 vs .840

Ò=) 65.7%, and OPBOT (.339 vs .840 Ò=) 40.4%.

Overall, the evaluation on the development datasets further confirms that expert

feedback is a suitable means to improve the effectiveness of matching techniques. However,

the results also show that the improvements differ depending on the order in which the

model pairs are matched. This is especially a problem on the SR dataset where the

improvements are rather small and might even be negative.

6.5.3 Maximization of the Effectiveness Improvements

According to the evaluation results from the previous sections, the order of the model

pairs impacts the extent of the improvements and the overall effectiveness. Thus, it is

essential to find a way to order model pairs such that the improvements are maximized.

With that in mind, three strategies are examined to order model pairs.
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The first strategy is referred to as the equal labels ordering. It is inspired by the

observation that the word similarity adaptation lifts the effectiveness for most of the

model pairs. Yet, there are a few exceptions where effectiveness is sacrificed (Section 6.2).

Accordingly, the idea is to order the pairs in a way that the model pairs for which the

effectiveness is generally high are matched at an early stage where the adaptation is low

and the effectiveness for these model pairs is still high. Here, the number of equally

labeled activity pairs is used as an indicator for the effectiveness. The rationale is that

if there are many equally labeled activity pairs within a model pair, the effectiveness

achieved by BOT is estimated to be high. To this end, for each model pair the number

of equally labeled activity pairs is determined and normalized by the minimum number

of activities in these two models. With regard to this indicator the model pairs are then

sorted in descending order.

The second strategy builds upon the first one and aims to additionally boost the use

of transitivity. Thus, it is referred to as the transitivity ordering. To obtain an ordering

based on this strategy, the model pairs are sorted using the equal labels ordering first.

From this ordering the top ranked model pair is removed and added as the first model

pair to the transitivity ordering. Then, the next step is to choose one of the two models in

this pair in order to match it with the remaining models. This way a set of alignments is

established that can be used to transitively infer alignments between the remaining model

pairs. Hence, for each of the two models in the selected pair the remaining model pairs in

the equal label ordering that contain the model are selected. For the two resulting sets of

model pairs the maximum position in the equal label ordering is determined. Finally, all

model pairs in the set of model pairs with the smaller maximum position are removed

from the equal labels ordering and added to the transitivity ordering in the same order

they initially occurred in the equal label ordering. The set of model pairs with the smaller

maximum position is chosen, because it is estimated to yield the higher effectiveness.

That is because a smaller position corresponds to a higher equal labels indicator. Once

the model pairs were added, the top ranked model pair from the remaining pairs in the

equal label ordering is chosen and the same procedure is applied. This step is repeated as

long as the equal label ordering contains model pairs.
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Whereas the first two strategies result in a static ordering which is determined indepen-

dent of the matching results, the third strategy is dynamic. It is based on the order relation

score δ→a and hence called the order relation ordering. Like the transitivity ordering it is

based on the equal labels ordering. At the beginning, it selects the top ranked model pair

in the equal labels ordering and completes the first iteration of the process of feedback

collection. That is, the model pair is matched, the alignment is corrected by the experts,

and the results are analyzed. After this iteration the alignments for the remaining model

pairs are computed and the model pair is chosen for which the alignment yields the

highest order relation score. The rationale is that the order relation score is an indicator

for the effectiveness and that the alignment with the highest score is likely to yield the

highest effectiveness. If there are several model pairs for which the highest order relation

score is yielded, the one with the smallest position in the equal labels ordering is selected.

Then, the respective alignment is proposed to the expert and the next iteration of feedback

collection is triggered. After each iteration the alignments for the remaining model pairs

are re-calculated and the one with the highest order relation score is proposed to the

expert.

To assess the ordering strategies, for each dataset ADBOT matched the model pairs

in the respective orders. Based on the results the effectiveness was determined for

each combination of the datasets and ordering strategies. Moreover, the runs with the

maximum and the minimum micro f-measure from the 100 random runs serve as a

baseline to examine the degree to which the strategies maximize ADBOT’s effectiveness.

Table 6.9 summarizes the results.

On all datasets the equal labels ordering yields very high micro f-measures compared

to the maximum micro f-measures from the random orderings. Whereas on BR and UA

it even outperforms the maximum, on SR and AW it yields a lower effectiveness which,

however, is close to the maximum. Here, the most notable result is yielded on UA where

ADBOT now achieves a relative micro f-measure of (.60 vs .68Ò=) 113.3% compared to the

maximum random run. The transitivity ordering results in the highest effectiveness on BR.

Yet, compared to the equal labels ordering it performs worse on UA and AW. Moreover,

on SR it results in the same effectiveness as on this dataset each model is only aligned
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TABLE 6.9: Comparison of strategies for the ordering of model pairs

BR UA SR AW

Ordering prµ reµ Fµ prµ reµ Fµ prµ reµ Fµ prµ reµ Fµ

Random (Min) .50 .77 .60 .32 .67 .43 .60 .60 .60 .88 .71 .78

Random (Max) .70 .79 .74 .53 .69 .60 .85 .61 .71 .91 .89 .90

Equal Labels .74 .81 .78 .64 .71 .68 .90 .55 .68 .93 .86 .89

Transitivity .78 .79 .78 .53 .65 .58 .90 .55 .68 .90 .84 .87

Order Relation .61 .73 .66 .46 .69 .55 .89 .55 .68 .88 .86 .87

once and the transitivity ordering does not change the equal labels ordering here. Lastly,

the ordering based on the order relation score yields micro f-measures that are higher

than the minimum f-measures from the random runs. But, it also results in the lowest

effectiveness of all three strategies on BR, UA, and AW. On SR the micro f-measure is equal

to the other two strategies, at a slightly higher recall and a marginally lower precision.

Overall, the results suggest that the three strategies can be used to maximize the

effectiveness of ADBOT. Here, the equal labels ordering on average achieves the highest

micro f-measure and is thus proposed as a strategy to optimize ADBOT’s effectiveness.

6.5.4 Reduction of Expert Workload

The basic idea to reduce the workload for experts is to continue collecting feedback until

no further improvements are expected. This can basically be implemented by assessing

the effectiveness of ADBOT for the discovered alignments after each iteration. Once the

effectiveness of ADBOT has not significantly changed for a few iterations, the feedback

collection is turned off, i.e., the remaining activity pairs are matched automatically and

there is no further interaction with the experts.

To examine whether such a strategy can actually be exploited, the effect of collecting

feedback for only a subset of these model pairs is investigated. With regard to a certain

ordering of model pairs this is done by turning off the feedback collection after a certain

iteration i. Thus, for an ordering of length n there are n− 1 scenarios, e.g., if there are

five model pairs, feedback collection might be turned off after the first, the second, the



232 LEARNING FROM EXPERT FEEDBACK

third, or the fourth iteration of the feedback collection process. Then, for each of the

n− 1 scenarios the overall micro f-measure that ADBOT achieves for all model pairs is

measured. This includes the alignments that were determined during feedback collection

as well as those that were computed after the feedback collection was turned off.

In the following all four datasets are considered. For each of the datasets the 100

random orderings as well as the equal labels ordering are investigated. As each ordering

contains 36 model pairs there are 35 different scenarios for turning off the feedback

collection. Thus, in total ADBOT is applied (101× 35=) 3535 times per dataset.

Based on these runs the effect of stopping the feedback collection is studied. That

is, for stopping feedback after a certain iteration i ∈ [1,35] three micro f-measures are

determined per dataset. First, the maximum and the minimum micro f-measures yielded

by any of the random runs are considered. Moreover, the f-measure that ADBOT achieves

for the equal labels ordering is investigated. Then, the development of these three micro

f-measures is studied, in order to understand how the amount of feedback that is used to

adjust ADBOT influences the overall effectiveness. For each dataset Figure 6.12 presents

the curves for the development of the three f-measures. Note that in the diagrams the

micro f-measures yielded by BOT and OPBOT are used as a baseline.

The first observation pertains the SR dataset. In contrast to the other datasets the

development of the micro f-measures is quite stable. This confirms the observation that

ADBOT only achieves little improvements on this dataset.

For the other three datasets there are two interesting results. The first result refers

to the number of iterations that are needed to lift ADBOT’s effectiveness above that of

BOT and OPBOT. On BR the equal labels ordering leads to an improvement after twelve

model pairs. Whereas the minimum f-measure for the random runs exceeds that of BOT

and OPBOT after nine iterations, the maximum f-measure is already better after the first

iteration. On UA the maximum f-measure of the random runs is also already higher than

that of BOT and OPBOT when feedback is only collected for one model pair. While the

minimum f-measure never exceeds the one of OPBOT on this dataset, eleven iterations

need to be completed in order to improve the f-measure based on the equal labels ordering.

Lastly, on AW the maximum f-measure is higher than that of BOT and OPBOT after two
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FIGURE 6.12: Micro f-measures for stopping to collect feedback after a certain iteration

and the minimum after three iterations. For the equal labels ordering six iterations need to

be completed. Note that due to the nature of the equal labels ordering, it yields low micro

f-measures for low iteration numbers. Here, model pairs for which a high effectiveness

can be yielded without feedback analysis are matched at the beginning. As for these

models the experts only need to perform a few modifications, only a few adjustments to

the word similarities are made and accordingly the improvements are rather small. Yet,

the results show that the amount of feedback needed to improve the effectiveness can be

reduced to a few iterations.

The second result refers to the maximum effectiveness. On all datasets all curves level

off between 15 and 20 iterations. That means, in order to achieve a close-to-the-maximum

effectiveness, feedback does not need to be collected for all model pairs. Instead, it is

sufficient to turn off feedback after 50% of the model pairs were matched. Note that

here close-to-the-maximum refers to the maximal effectiveness that can be yielded for the

specific ordering, not for any ordering.

These results show that the positive impact of feedback collection is almost immediate

and that the maximum effectiveness can be achieved by collecting feedback for about 50%
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of the model pairs. Thus, the results confirm that it is possible to reduce the workload

for experts. Moreover, they provide further evidence towards the positive impact of the

feedback analysis.

6.5.5 Transitivity in the Evaluation Datasets

The next analysis addresses the transitivity in the evaluation datasets. Yet, as each process

model in the SR dataset is aligned to exactly one process model, transitivity cannot be

examined here. Thus, the focus is on the AW dataset. To check the degree to which

transitivity exists the global χ and the local clustering coefficient χ were computed as

defined in Section 6.3. Here, the local clustering coefficient is improved (AW: χ = .918

vs. BR: χ = .842, UA: χ = .745). Moreover, the global clustering coefficient is strongly

increased (χ = .724 vs. BR: χ = .479, UA: χ = .274). Hence, both values indicate

that transitivity holds within the gold standard of the AW dataset. Accordingly, further

evidence is provided that transitivity holds between correspondences in a model collection

and can reliably be used to determine correspondences.

6.5.6 Limitations of the Feedback Analysis

The evaluation revealed that the improvements turn out differently across the datasets.

Here, the largest improvement in comparison to BOT and OPBOT could be observed on

AW. By contrast, on the SR dataset the average micro f-measure for ADBOT was similar

to the micro f-measure of BOT and only slightly better than that of OPBOT. Thus, the

question arises: under which circumstances does ADBOT yield high improvements? To

examine this question, the improvements for a dataset are measured in terms of the

indicator IF . It is defined as the difference of ADBOT’s micro f-measure in combination

with the equal labels ordering and the maximum micro f-measure yielded by BOTALL and

OPBOT.

A prerequisite for the improvements is that the knowledge gained through user feed-

back can actually be reused. This on the one hand pertains the word similarity adaptation

algorithm. In order to yield improvements based on this component, the word pairs for
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TABLE 6.10: Model collection characteristics vs. improvements gained by analyzing feedback

Dataset Iw Ic IF

AW 3.547 3.918 .427

BR 4.295 3.374 .255

UA 3.605 2.978 .233

SR 1.159 1.000 .022

which the similarity is adjusted must reappear in other process model pairs. To examine

the extent to which word pairs reappear in different model pairs within the datasets, the

indicator Iw is used here. To compute this indicator, all distinct word pairs that occur in

a model collection are considered. To this end, the set of word pairs is determined by

iterating over the set of all model pairs in a collection and by considering all possible

activity pairs in these model pairs. For each activity pair all word pairs that contain a

word from the first activity’s bag-of-words and one from the bag-of-words of the second

activity are added to the set of word pairs, if they are not already in the set. Note that

two word pairs that contain the same words in a different ordering are considered equal.

For each of the determined word pairs, the number of process model pairs they occur

in is determined. Then, the indicator Iw is the average of these numbers. Consequently,

the higher the indicator value, the more likely it is that a word pair for which the word

similarity score has been adapted reappears and the adapted similarity value can be used.

That means, the higher the indicator value the more likely it is that the derived knowledge

can be reused.

The second part of ADBOT’s matching process is based on transitivity. Here, the local

clustering coefficients already revealed that transitivity holds across the datasets except

for SR where each process model occurs only once in the list of model pairs. In addition

to the local clustering coefficients, the indicator Ic is considered here. It is based on all

activities for which there is at least one correspondence in the dataset. In particular, it is

defined as the average number of correspondences these activities are part of. Hence, the

higher the value for the indicator the more often an activity can be reused to transitively

infer correspondences.
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For each dataset Table 6.10 presents the three indicator values. Here, the datasets

are sorted in descending order with regard to the improvement indicator IF . The table

shows a positive correlation between Ic and IF . That means, the more often activities

are part of correspondences, the larger is the improvement. Although Iw and IF are not

correlated that strongly, the three datasets AW, BR and UA for which strong improvements

in the micro f-measure were yielded are characterized by high values for Iw. In contrast,

a value of 1.159 on SR shows that word pairs in this dataset tend to occur in only one

process model pair and thus the word similarity adaptation algorithm can only yield

small improvements. While these results are not statistically significant they show that

the improvements gained through feedback analysis depend on the degree to which the

derived knowledge can be reused. Consequently, a successful application of ADBOT is

limited to situations where the vocabulary used in different models overlaps and where

process models are aligned to more than one other process model.

6.6 Summary

This section dealt with Sub-hypothesis H4 and examined the analysis of expert feedback

to improve the effectiveness of matching techniques. As a first step in this regard, options

to collect feedback were discussed. Here, a framework for designing feedback collection

tasks in the context of process model matching was presented. This framework was

developed by the author of this thesis in cooperation with other researchers [25]. It

categorizes the questions that are asked to collect feedback and the answers that are

expected. From this framework the specific process of feedback collection was derived. It

serves as a basis for the analysis strategies and at heart works by automatically detecting

an alignment and then asking experts to correct it. Based on the feedback of the experts,

a matching technique can then adjust its matching process to better reflect the domain

characteristics of the model collection.

Next, the chapter examined two strategies to learn from the expert feedback. On the

one hand, the option to adapt the word similarities was investigated. Here, the analysis on

the development datasets showed that feedback can be used to adapt the word similarities
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applied by a BOT configuration in a way that the overall effectiveness of the configuration

is improved. However, it was also revealed that the improvements depend on the order

in which the process models are matched and on the word similarity that is adapted as

well as the threshold parameter. Moreover, the adaptation improves the effectiveness for

most of the model pairs, but exceptions have to be considered where the f-measure is

sacrificed. On the other hand, the transitivity of alignments within a model collection was

analyzed. In this regard, the examination of the development datasets showed that an

activity a which is aligned to two other activities a′ and a′′ is a reliable evidence for the

correspondence relation between a′ and a′′. However, it was shown that this strategy is

limited by some exceptions which can partly be explained by the existence of complex

correspondences.

Based on these two strategies ADBOT was introduced. This matching technique

follows the process of feedback collection as introduced in the beginning of the chapter. It

comprises three BOT configurations for which the underlying word similarities are adapted

in each iteration of the feedback collection process. Moreover, at the beginning OPBOT’s

search strategy is applied to adjust the thresholds of these configurations and to rank

them. During the collection of feedback the discovered alignments are used to estimate

the effectiveness and to re-adjust the thresholds and the ranking of the configurations. In

each iteration the process models are then matched by the best BOT configuration, or if

possible, the correspondences are inferred transitively.

In addition to the examination of the two strategies, the final analysis of ADBOT’s

effectiveness further confirmed Sub-hypothesis H4. That is, improvements were obtained

on all four datasets. Yet, depending on the order in which the model pairs are matched,

ADBOT’s effectiveness varied. Thus, strategies to maximize the effectiveness by ordering

the model pairs were examined. Here, it was revealed that sorting model pairs according

to the share of equally labeled activity pairs is a promising strategy. That is, with this

ordering the effectiveness of ADBOT could be pushed close to or even beyond the maximum

effectiveness that has been observed for any random ordering. Next, it was shown that the

workload for experts can be minimized. In this context, empirical observation suggested

that feedback for only a small share of the model pairs is sufficient to yield improvements
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in comparison to automated strategies. Additionally, turning off the feedback collection

after approximately 50% of the model pairs already results in a close-to-the-maximum

effectiveness. Thus, experts are not required to correct all alignments. Furthermore, the

finding that transitivity holds between alignments in a model collection was confirmed

through an investigation of the AW dataset. Finally, the analysis also showed that the

feedback analysis is limited to situations where the knowledge derived from it can be

reused. With regard to ADBOT this is the case when the vocabulary used in different

models overlaps and when several process models need to be aligned to each other. All

findings verify the positive effect of analyzing expert feedback on the effectiveness and

thus confirm Sub-hypothesis H4.



7
Discussing the Results

This chapter concludes the thesis. It summarizes the contributions of this thesis in

Section 7.1. Then, it discusses the threats to validity which limit the findings in Section 7.2.

Finally, the chapter presents directions for future research in Section 7.3.

7.1 Summary of the Contributions

The contributions to the field of process model matching and BPM are manifold. On an

abstract level the contributions fall in one of two categories. On the one hand, there

are the matching techniques: BOT, OPBOT, and ADBOT. They build on each other, they

are applicable in different contexts, and in comparison to the state of the art they yield

a high effectiveness. According to the ISR framework [22], these matching techniques

constitute a contribution to the business environment where they help to implement the

239
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business need. On the other hand, this thesis contains many analyses that examine many

different matching propositions. That is they explicate the challenges related to process

model matching as well as the suitability of strategies to tackle these problems. The

according results do not only justify the design decisions underlying the three matching

techniques, but – even more important – foster future research which can build on them.

Thus, as demanded by the ISR framework this thesis also enriches the scientific knowledge

base. In the following, the particular contributions arising from the verification of the

sub-hypotheses are summarized.

Sub-hypothesis H1: The identification of correspondences between business process models

is a challenge for organizations which is not sufficiently supported by existing approaches.

To confirm this hypothesis, an overview of the use cases for process model matching

techniques showcased the practical applications and verified the business need. Addition-

ally, the state of the art on process model matching was analyzed based on a systematic

literature review. In this regard, it was revealed that matching techniques from related

work are generally designed to be applicable in a broad variety of scenarios. Yet, the

effectiveness of matching techniques is rather low and the validity of design decisions

as well as of assumptions has rarely been studied. These shortcomings motivated the

research in this thesis, but also provide guidance for further research.

Sub-hypothesis H2: Label-based matching techniques yield a varying and generally insuffi-

cient effectiveness. In the context of this sub-hypothesis, the Bag-of-Words Technique was

developed based on an analysis of the development datasets that incrementally studied

the effects of different design decisions. Here, it was shown that treating labels as sets

of words is a promising approach to the label-based comparison of activities. In this

regard, the unification of words through stemming and of the level of abstraction through

pruning was considered, but the proposed approaches have only a marginal impact on

the effectiveness. The analyses of BOT showed that the effectiveness of this approach

is bound by the similarity measures used to compare the words in the labels. It was

argued that for a successful application, measures that reflect the domain characteris-

tics of model collections are needed, but typically not available. This finding is backed
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up by the knowledge acquisition bottleneck which has been discussed in the literature

[225, 271, 272]. Further evidence was given by assessing BOT’s effectiveness on the

evaluation datasets and comparing it to state-of-the-art matchers. It was shown that the

configuration which maximizes BOT’s effectiveness varies across all datasets and performs

better than the state-of-the-art matchers. Moreover, it was shown that the results of

the suggested default configuration are comparable to the state-of-the-art matchers. To

improve the effectiveness of the default configuration, a semi-manual configuration ap-

proach was studied. This study revealed that sometimes a huge manual effort is necessary

to yield a high-performing configuration and thus the default configuration might directly

be applied. Lastly, a qualitative analysis of BOT’s misclassifications substantiated the

finding that the comparison of the domain-specific vocabulary in model collections is not

sufficiently supported by common word similarity measures.

Sub-hypothesis H3: The optimization of the effectiveness of label-based matching tech-

niques is enabled by the analysis of control flow information. Control flow information

that is captured in process models has been widely exploited by matching techniques in

prior research. Yet, the usefulness of this information for the identification of correspon-

dences has not been studied. Thus, three approaches to integrate this information into

matching techniques were empirically analyzed on the development datasets. First, it

was revealed that comparing control flow properties of activities is not suited to identify

correspondences. That is, for none of the control flow similarities considered in this

thesis, it could be observed that they yield values which are unique to corresponding

or non-corresponding activity pairs. Second, a common assumption in the literature is

that complex correspondences can be derived from the graph structure of the process

models. However, the analysis of this proposition showed that according approaches face

two problems. They rule out a significant amount of actual complex correspondences

and in turn yield an extensive number of potential candidates which are actually not

corresponding. Third, the use of control flow information to investigate the consistency

of alignments was investigated. In this regard, the most important finding with regard to

Sub-hypothesis H3 was revealed. The analysis suggested that control flow information
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is suited to analyze the consistency of alignments. An alignment is consistent, if the

control flow relations between the activities from the first model resemble the relations

between their corresponding counterparts in the second model. In particular, the order

relation score δ→a was introduced. It was shown that the values yielded by applying

this score to alignments are positively correlated to the effectiveness of the alignments.

Besides providing guidance for the development of matchers in future work the finding

was used to design the Order Preserving Bag-of-Words Technique. OPBOT estimates

the effectiveness of different BOT configurations by computing order relation scores for

the alignments that they propose for a given model collection. By combining the most

promising results it improves the effectiveness of BOT’s default configuration. However,

whereas the default BOT configuration can directly be applied to a model pair, OPBOT

relies on the analysis of an entire model collection and is thus only applicable in situations

where such a collection exists. The suitability of OPBOT’s search strategy was verified by

evaluating its effectiveness on all datasets. Yet, the evaluation also showed that OPBOT’s

effectiveness is limited by the reduced configuration space it considers. Additionally, it

could be demonstrated that the automatic configuration of BOT implemented by OPBOT

makes the semi-manual configuration approach studied in Chapter 4 obsolete. The reason

is that in most cases OPBOT yielded a higher quality than a BOT configuration that is

trained on alignments that were manually provided for 25% of the model pairs in a

collection. Then, the analysis of the order relation score on the evaluation datasets gave

further evidence to the general validity of the finding that control flow information is

suitable to investigate the consistency of alignments. Finally, it was shown that the idea

of estimating the effectiveness of matching techniques based on the order relation score

is portable to the more general problem of matcher selection.

Sub-hypothesis H4: The effectiveness of matching techniques is improved by the utilization

of expert feedback. While the effectiveness of BOT and OPBOT is bound by the degree

to which the word similarities reflect the domain characteristics of the model collection,

the Adaptive Bag-of-Words Technique is based on the idea that the effectiveness can be

improved, if feedback provided by experts is analyzed and used to adjust the matcher to the
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domain characteristics. In this context, different ways to collect feedback were discussed

and one particular approach was selected. This approach consists in iteratively matching

model pairs from a model collection. For each pair the automatically determined alignment

is presented to the expert who corrects the alignment. These corrections are then used to

adapt the matching process. Here, evidence from the development datasets suggested

that such feedback can be exploited to adapt word similarities and to transitively infer

correspondences. Consequently, both strategies were integrated into ADBOT. It comprises

three BOT configurations for which it adapts the word similarities and it also stores the

true alignments derived from the expert feedback. In each iteration of the feedback

collection process it matches a model pair by using the best ranked BOT configuration, or

by transitively inferring the alignment from the already discovered alignments, if that is

possible. Additionally, it uses OPBOT’s search to initially set up the BOT configurations

and later refines the configurations based on the feedback. The final evaluation showed

that ADBOT outperforms BOT, OPBOT, and the state-of-the-art matchers. In this regard,

strategies to determine an order in which the model pairs are matched were proposed.

While all strategies maximize ADBOT’s effectiveness, the equal labels ordering lead to the

best effectiveness on average. Furthermore, it was revealed that feedback does not need

to be collected for all model pairs in order to obtain improvements in the effectiveness.

Instead, only a few iterations are sufficient to yield improvements and collecting feedback

for about 50% of the model pairs results in a close-to-the-maximum effectiveness. In

comparison to BOT and OPBOT the examined strategies are limited to situations where

experts are available to correct automatically determined alignments. Moreover, the

analysis of the datasets revealed that it is necessary that the knowledge which is gained

by learning from the feedback can actually be reused.

In summary, the thesis revealed that little evidence towards design decisions is given

in the literature and that the state-of-the-art matching techniques yield a generally low

effectiveness. It was then demonstrated that the effectiveness of fully automated matching

techniques is typically limited by the degree to which the underlying assessment of the

label similarity reflects the domain characteristics of the model collection. However,

it was also shown that automatically configuring label-based matching techniques by
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examining control flow relations between activities constitutes a strategy to optimize the

effectiveness. Additionally, evidence was provided that the analysis of expert feedback

allows to adjust matching techniques to the domain characteristics and to increase the

effectiveness. Thus, the findings verify the main research hypothesis:

H0: The adaptation of business process model matching techniques to model

collections is necessary to ensure a high effectiveness and the analysis of the

control flow as well as of expert feedback provides means to implement this

adaptation.

7.2 Threats to Validity

The validity of the contributions that the previous section summarized is limited by a

few threats. Such threats typically concern the internal and the external validity of the

findings [337]. Moreover, threats in empirical research are also related to the construct

and the conclusion validity of the results [338, 339]. In the following, all four types will

be discussed.

In general, the conclusion validity refers to the degree to which the relationship

between the treatment and the outcome holds [338]. In the context of this thesis, this

refers to the degree to which the effectiveness of the matching techniques can actually be

traced back to their design. In this regard, the research approach underlying this thesis

was designed to minimize the threats to the conclusion validity. Instead of solely relying

on the evaluation of matching techniques to verify their effectiveness, the research design

explicitly incorporated empirical analyses to foster the understanding of the challenges

related to business process model matching as well as of the impacts of various design

decisions.

In this connection, the internal validity pertains the causality of a relationship between

the treatment and the outcome [338]. Similar to the conclusion validity the internal

validity was also addressed by the research design. That is, established qualitative and

quantitative methods were applied to conduct the analyses. Moreover, throughout the

thesis these research methods were made explicit, so that the analyses results and their
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limitations are comprehensible. Additionally, three of the four empirical datasets are

publicly available, so that the analyses can be repeated. Lastly, following established

guidelines [37], development and evaluation data was separated. This way, a more

realistic assessment of the effects of design decisions and the effectiveness of the matching

techniques was ensured and the threat of drawing overly optimistic pictures was limited

with regard to the findings.

The construct validity is determined by the degree to which the chosen constructs

reflect the cause and the outcome [338]. Accordingly, in this thesis the construct validity

is threatened by how the effectiveness of the matching techniques is measured. Here, an

established setup from comparative evaluations of process model matching techniques

[19, 20] as well as from the field of schema and ontology matching [26–29] has been

applied. However, the use of a binary gold standards compromises the construct validity.

That is, these gold standards define whether correspondence relations between activities

hold or not. Hence, the standards suggest that there is a ground truth which represents

the commonly shared perception of experts. Yet, in line with [24], the author of this thesis

in collaboration with other researchers found that the perception of experts regarding the

correspondence relations between activities is more diverse than a binary gold standards

suggests [25]. To mitigate this threat there were four different datasets used in this thesis.

Each of the datasets comprised a gold standard which was created by different experts.

Thus, overall the gold standards reflect the opinion of a broad variety of experts.

Finally, the external validity is concerned with the degree to which the results can

be generalized [338]. The need for process model matching techniques arises from the

existence of model collections that comprise hundreds or thousands of models. With that

in mind, the use of 144 model pairs cannot be regarded as an exhaustive evaluation. This

number of model pairs most notably limits the degree to which real-life situations are

reflected. In this regard, the most serious limitation is the use of three out of four datasets

which consist of process models that all refer to the same abstract process. Yet, as outlined

in the literature analysis, this is a problem for all works in this field. Additionally, it was

shown that the size of the empirical data in this thesis constitutes a comprehensive dataset

collection in comparison to other works in the field. With the two evaluation datasets
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that were developed in the context of this thesis, the author also aimed to improve the

situation. Nevertheless, the author of this thesis acknowledges that a broader dataset

collection is required to further substantiate the external validity of the findings.

7.3 Future Research

The research in this thesis provides the basis for further research on process model

matching and related fields. First, the results showed that the use of universal knowledge

sources in order to assess the similarity of activities based on their labels is likely to yield a

poor effectiveness. However, the results also demonstrated that by designing more flexible

techniques which are adaptive towards model collection characteristics, the assessment

of the domain characteristics can be improved and the effectiveness of matchers can be

lifted. In line with these observations, the author sees the improvement of the flexibility

of matchers as a promising research direction. Here, more sophisticated linguistic models

might be used as a basis for unsupervised and supervised methods that aim to adjust

matching techniques to the characteristics of model collections.

Second, as discussed in Section 7.2 there are threats that limit the external and the

construct validity of the results presented in this thesis. Consequently, future work should

address the respective issues by improving the evaluation setup. Regarding the external

validity the size of the data and the coverage of matching scenarios needs to be extended.

This warrants a more reliable assessment of the general validity of matching techniques.

However, there are two major challenges related to the extension of experimental data

collections. On the one hand, real-world models or even entire model collections are

needed. This requires the willingness of organizations to share their models and collections.

In this regard, emphasis should be put on covering a broad range of scenarios where

models are compared within and across functional areas in an intra- as well as an inter-

organizational context. Another way to collect such data is to rely on models created

by students in the context of business process lectures. This strategy is supported by

experiments which revealed that students and experts perform similar when analyzing

business process models [40]. Again, it should be taken care that the models cover a
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diverse range of scenarios. If not bound to contractual obligations researchers should also

share their data collections to ensure availability of versatile model collections. In this

context, a first promising step are initiatives like the model matching contests [19, 20]

or the BPM Academic Initiative31 which aim to provide empirical datasets to researchers.

On the other hand, in addition to the models the extension of empirical data requires the

creation of new gold standards. Here, it is conceivable to outsource the collection of gold

standards to crowd-workers who performed similar to experts in experiments [25].

The construct validity is limited due to the use of binary gold standards. In this

regard, more fine-grain gold standards should be created that better reflect semantic

relationships between activities and the diverse points of view that experts may have.

Additionally, different gold standards for the model collections could be introduced that

refer to a variety of use cases. Here, crowd-sourcing is a promising alternative to ensure

the availability of assessor time. Linked to the introduction of non-binary gold standards

is the demand to conduct research on the perception of experts, in order to foster the

understanding of the nature of correspondence relations. This will not only inform a more

realistic evaluation of matchers, but also the design of better matching techniques.

In prior research many approaches that rely on process model matchers abstract from

the use of matchers and consider the results to be given. In this regard, integrating process

model matchers into these approaches is related to a couple of challenges. First, the result

quality of the matchers might impact the quality of the overall approach. Second, these

approaches are typically automated and might be extended in order to collect feedback that

can be used to improve the quality of the matching techniques and thus of the approaches.

Third, the existence of complex correspondences which contain sub-graphs that are not

necessarily connected has often been overlooked. Accordingly, future research needs to

address these challenges in order to prepare these approaches for practical application.

Finally, process model matching has focussed on the design of matching techniques

that automate the matching process. Involving experts into this process has however

not been studied in the field of process model matching. Thus, research in this regard

should focus on assisting experts in understanding relations between process models

31http://bpmai.org/download/index.html, accessed: 13/01/2017

http://bpmai.org/download/index.html
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and in manually identifying correspondences. Furthermore, the interpretation of the

results of matching techniques needs to be studied in order to ease the application of the

techniques.
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TABLE A.1: References identified during the literature search with topic classification and first
source of occurrence (part I)

Reference Topic First Source

[340] Querying Springer

[341] Similarity Search IEEE Explore

[342] Similarity Search IEEE Explore

[160] Model Matching [116]

[343] Similarity Search Google Scholar

[344] Similarity Search Springer

[161] Model Matching [116]

[345] Similarity Search IEEE Explore

[116] Model Matching Matching Contest

[180] Pattern Matching IEEE Explore

[346] Similarity Search ACM Digital

[347] Process Querying ACM Digital

[348] Similarity Search IEEE Explore

[7] Similarity Search Springer

[349] Pattern Matching IEEE Explore

[350] Similarity Search IEEE Explore

[189] Model Matching ACM Digital

[351] Process Annotation ACM Digital

[154] Modeling Support IEEE Explore

[352] Process Querying ACM Digital

[353] Process Annotation ACM Digital

[162] Model Matching Matching Contest

[354] Clone Detection Google Scholar

[190] Model Matching IEEE Explore

[191]
Process Model Matching IEEE Explore

[192]
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TABLE A.2: References identified during the literature search with topic classification and first
source of occurrence (part II)

Reference Topic First Source

[355] Similarity Search IEEE Explore

[177] Similarity Search IEEE Explore

[16] Process Model Matching Matching Contest

[153] Modeling Support Google Scholar

[194] Process Model Matching Springer Link

[178] Similarity Search IEEE Explore

[182] Business-IT Alignment ACM Digital

[197] Process Model Matching Springer Link

[198] Process Model Matching Matching Contest

[201] Process Model Matching Springer Link

[19] Process Model Matching Matching Contest

[202] Process Model Matching Emeral Insight

[179] Similarity Search IEEE Explore

[204] Process Model Matching Springer Link

[205] Process Model Matching Springer Link

[356] Similarity Search IEEE Explore

[150] Clone Detection ACM Digital

[357] Similarity Search IEEE Explore

[181] Modeling Support Springer Link

[176] Process Model Matching Springer Link

[175] Process Model Matching Springer Link

[20] Process Model Matching Matching Contest
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Acronyms

2G Bigram Similarity.

3G Trigram Similarity.

4G Quadrigram Similarity.

2CS Two Words Contextual Similarity.

3CS Three Words Contextual Similarity.

4CS Four Words Contextual Similarity.

5CS Five Words Contextual Similarity.

7PMG Seven Process Modeling Guidelines.

ADBOT Adaptive Bag-of-Words Technique.

AN Activity-Noun labeling style.

AW Alma Web.

BOT Bag-of-Words Technique.

BPEL Web Services Business Process Execution Lan-

guage.

BPM Business Process Management.

BPMN Business Process Model and Notation.

BPR Business Process Reengineering.

BR Birth Registration.
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CoPF Co-occurrence Pruning Function.

DES descriptive labeling style.

EPC Event Driven Process Chain.

EQL Equal String Similarity.

ERP Enterprise Resource Planning.

FreqPF Frequency Pruning Function.

H/S Hirst-St.Onge Similarity.

HAM Normalized Hamming Similarity.

IS Information Systems.

ISR Information Systems Research.

J/C Jiang-Conrath Similarity.

J/W Jaro Winkler Measure.

JWI MIT Java Wordnet Interface.

L/C Leacock-Chodorow Similarity.

LCS Longest Common Sub-Sequence Similarity.

LESK Lesk Similarity.

LEV Levenshtein Similarity.

LIN Lin Similarity.

MaxPF Maximum Pruning Function.

NA No-Action labeling style.
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OPBOT Order Preserving Bag-of-Words Technique.

PR Precision Recall.

PSA Porter Stemming Algorithm.

RES Resnik Similarity.

ROC Receiver Operating Characteristic.

RPST Refined Process Structure Tree.

SR SAP Reference Model.

SUB Sub-String Similarity.

UA University Admission.

UML Unified Modeling Language.

VO Verb-Object labeling style.

W/P Wu-Palmer Similarity.

WFMS Workflow Management Systems.

WSA WordNet Stemming Algorithm.

WSD Word Sense Disambiguation.
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Symbols

a Activity.

ap Activity pair.

A Set of activities.

A Alignment.

A Sequence of alignments.

$ Bag-of-words.

O∞ Set of bag-of-words.

+ Exclusive order relation.

‖ Interleaving order relation.

B Behavioral profile.

  Strict order relation.

χ Global clustering coefficent.

χ Local clustering coefficent.

cod Co-domain of a function.

c Correspondence.

a→ End distance of an activity.

→ a Start distance of an activity.

dom Domain of a function.
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E Set of edges.

E Set of events.

FN Set of false negatives.

F P Set of false positives.

F F-measure.

F M Macro fmeasure.

Fµ Micro fmeasure.

f rag Fragment.

F Set of fragment.

G Set of gateways.

λ Label function.

L Set of labels.

ι Lane assignment function.

L Set of lanes.

match Matching process.

N Natural numbers.

•a• Neighborhood of an activity.

a• Downstream neighborhood of an activity.

•a upstream neighborhood of an activity.

n Node.

N Set of nodes.

norm Normalization function.

δ Order relation score of a model collection.
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γ Order relation score of an alignment.

→ Path.
∗
→ Set of paths.

Θ Set of places.

P Powerset.

pr Precision.

prM Macro precision.

prµ Micro precision.

P Process model.

P Sequence of pair of process models.

M P Pair of process models.

Π Absolute property function.

π Normalized property function.

prune Pruning function.

re Recall.

reM Macro recall.

reµ Micro recall.

R Refined process structure tree.

act Activity function for the RPST.

depth Depth function for the RPST.

↓ R RPST distance of an activity.

•R• RPST neighborhood of an activity.

σ. Similarity function.

σ.$ Bag-of-words similarity function.

σ.λ Label similarity function.

σ.π Property similarity function.

σ.w Word similarity function.
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ρ Spearman’s rank correlation coefficient.

s Stem of a word.

st Stemming function.

supp Support of a function.

ϑ Threshold.

tok Tokenization function.

θ Trace.

Θ Set of traces.

T Set of transitions.

A3 Set of activity triplets.

T N Set of true negatives.

T P Set of true positives.

τ Type function.

T Set of types.

�P Weak order relation.

w Word.

W Set of words.
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