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Summary

The main aim of this thesis is to obtain estimates for Riesz transforms associated to the

Schrödinger operator with non-negative potentials on various function spaces over the Euclidean

spaces. Our results concern the first- and second-order Riesz transforms on the weighted Lp

spaces, the Hardy spaces, and the Morrey spaces. We describe our main results briefly in the

following.

We show that the Lp boundedness of the first-order Riesz transforms within a range of

exponents is equivalent, firstly to their boundedness on the weighted Lp spaces within a specific

range of both p and (Muckenhoupt) weights, and secondly to their boundedness on the Morrey

spaces Lp,λ within a specific range of parameters p and λ.

On specialising to the case where the potential satisfies a reverse Hölder inequality up to

some exponent, we show that the second-order Riesz transforms are bounded on three classes of

function spaces: the weighted Lebesgue spaces, the Hardy spaces associated to the Schrödinger

operator, and the Morrey spaces, again within a specific range of parameters; this time depending

on the reverse Hölder exponent. This is achieved through some new estimates on the heat kernel

(associated to the Schrödinger operator) that we derive within this context. These estimates

involve the time and the spatial derivatives and have extra global decay over the usual Gaussian.

In this setting we also study a class of weights that generalise the Muckenhoupt weights

and are adapted to the Schrödinger operator in a certain sense. We develop some new good-λ es-

timates that provide a systematic framework for investigating operators lacking kernel regularity

on Lp spaces with these weights.
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