
Chapter 1

Introduction

Let f be a smooth, real-valued function that is compactly supported on Rn and consider the

following inequalities:

‖∇f‖Lp(Rn) ≤ Cp‖∆1/2f‖Lp(Rn) (1.1)

‖∇2f‖Lp(Rn) ≤ Cp‖∆f‖Lp(Rn). (1.2)

The second is commonly known as the Calderón–Zygmund inequality. Here the constant Cp may

depend on p and the dimension n, but not on f . Both inequalities are valid for all 1 < p <∞.

Note here that ∆ =
∑
j ∂

2
j is the Laplacian on Rn, while ∇2 is shorthand for ∂j∂k.

Inequalities such as these, often referred to as ‘Lp-estimates’, along with their analogues

(when the space Lp(Rn) is replaced by other function spaces) have been thoroughly studied in

the harmonic analysis literature, motivated in part by their connections with partial differential

equations. We shall restrict our attention to three particular classes of function spaces.

When one considers p below 1, inequalities (1.1) and (1.2) are valid for p ≤ 1 once we

replace the Lp(Rn) spaces and their norms by the Hardy spaces Hp(Rn) and their respective

norms. Another natural extension is to replace Lp(Rn) by weighted spaces Lp(w), and it is well

understood that the corresponding inequalities in this situation hold for the full range 1 < p <∞

precisely when the function w belongs to a family of so-called ‘Muckenhoupt weights’, denoted

by Ap. Another class of function spaces that bears some connection to the Ap classes is the

class of Morrey spaces Lp,λ(Rn), and the corresponding inequalities hold for these spaces for



2

the full range of 1 < p <∞ and 0 < λ < n. A standard reference for the results on Hardy and

weighted spaces is the monograph [101]. For the results on Morrey spaces see [34, 86].

Our goal in this thesis is to replace the Laplacian −∆ in (1.1) and (1.2) by operators of

the form

L = −∆ + V on Rn, n ≥ 1,

where V is a non-negative and locally integrable function, and determine to what extent are

the inequalities still valid. Historically, an operator of the form −∆ + V has been referred to

as a Schrödinger operator, and V its potential. This operator plays a fundamental role in non-

relativistic quantum mechanics. It is also studied in the field of partial differential equations,

and has applications to spectral and scattering theory. See [20, 23, 56, 89, 90, 92, 96, 97].

By replacing f by (−∆)−1/2g in (1.1) and f by (−∆)−1g in (1.2), the inequalities (1.1)

and (1.2) can be interpreted as the Lp(Rn) boundedness of the operators ∇(−∆)−1/2 and

∇2(−∆)−1 respectively. These operators are also commonly referred to as the first- and second-

order Riesz transforms respectively. These objects belong to a class of operators called Calderón–

Zygmund operators.

A Calderón–Zygmund operator is an operator that is bounded on L2(Rn) and whose

kernel satisfies certain smoothness and decay properties. The Calderón–Zygmund theory of

singular integrals was initiated in the 50s to systematically study such objects. Since then it

has undergone a rich development and we refer the reader to [101] and [60] for complete details

and historical references.

Broadly speaking, one shows that such operators are of weak type (1, 1) – that is, they

map L1(Rn) into the larger space L1,∞(Rn) – through the Calderón–Zygmund decomposition,

and then invoke interpolation to obtain the boundedness on Lp(Rn) for all 1 < p < 2. For the

range 2 < p <∞, a family of techniques referred to as ‘good-λ’ inequalities are often used.

One drawback of this approach is that the regularity of the kernel is required. Another

limitation is that the boundedness given is the full range of 1 < p < ∞. It is known however
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that there are operators that do not satisfy either of these restrictions. Some examples include

elliptic operators in divergent form, operators on irregular domains, and operators on manifolds.

Of relevance to us are the Riesz transforms associated to the Schrödinger operator L = −∆+ V .

Depending on the smoothness and size of V , the first-order Riesz transforms ∇L−1/2, V 1/2L−1/2

and the second-order Riesz transforms ∇2L−1, V L−1 may not be Calderón–Zygmund opera-

tors. Therefore new techniques are needed. For the convenience of the reader we list the main

operators studied in this thesis below. See also Chapter 2 for further details.

Underlying operator: L = −∆ + V, V ≥ 0

First-order Riesz transforms: ∇L−1/2 =
1√
π

∫ ∞
0

∇e−tL dt√
t

V 1/2L−1/2 =
1√
π

∫ ∞
0

V 1/2e−tL
dt√
t

Second-order Riesz transforms: ∇2L−1 =

∫ ∞
0

∇2e−tL dt

V L−1 =

∫ ∞
0

V e−tL dt

Table 1: Main operators considered

Having dispensed with this brief overview we turn now to a more focussed description of

the results in this thesis. The rest of this chapter will be devoted to explaining our results in

their historical and mathematical context. We shall proceed as follows.

• In Section 1.1 we describe the known results in the literature and formulate our objectives

as several key questions.

• The main results of this thesis are presented in Section 1.2 in the context of these

objectives.

• We explain the key techniques and ideas behind the proofs in Section 1.3.

• We describe the organisation of the thesis in Section 1.4.

In this thesis we restrict our attention to non-negative potentials, and so we limit our survey

accordingly. A body of literature also exists for other Schrödinger-type operators, including say,



4

those with negative potentials and those that have magnetic components but we do not describe

them here. We refer the reader to the survey [96], and also [10, 21, 22] for examples of more

recent work and the references therein.

1.1 Known results

The study of Lp(Rn) estimates for the Schrödinger operator L = −∆ + V has attracted many

authors. Under the assumption that V is a non-negative polynomial, J. Nourrigat [82] stud-

ied L2(Rn) boundedness of ∇2L−1. This was extended to Lp(Rn), for 1 < p < ∞, both by

J. Zhong [110] and by D. Guibourg [62] independently. In particular Zhong showed that when V

is a non-negative polynomial, the operators ∇L−1/2 and ∇2L−1 are Calderón–Zygmund opera-

tors. For the case p = 1, the operators ∆L−1 and V L−1 are known to be bounded on L1(Rn)

whenever V ≥ 0 (see either [73] or [58]), and as a consequence it follows that the operator ∇2L−1

is weak (1, 1).

It is natural to ask the following.

Question 1. For which V ≥ 0 and which p ≥ 1 do the following inequalities hold?

‖∇f‖Lp + ‖V 1/2f‖Lp ≤ Cp‖(−∆ + V )1/2f‖Lp ∀f ∈ C∞0 , (1.3)

‖∇2f‖Lp + ‖V f‖Lp ≤ Cp‖(−∆ + V )f‖Lp ∀f ∈ C∞0 . (1.4)

Here C∞0 denotes the space of all functions on Rn that are smooth and compactly supported.

A consequence of (1.3) is the boundedness of ∇L−1/2 and V 1/2L−1/2 on Lp(Rn), and simil-

iarly (1.4) imply the boundedness of ∇2L−1 and V L−1. Note also that if (1.4) holds for some p

then (1.3) holds for 2p (see [12]).

For the range 1 < p ≤ 2, a complete answer for (1.3) is given in the following.

Theorem 1.1 ([46, 94]). Assume that n ≥ 1 and 0 ≤ V ∈ L1
loc(Rn). Then (1.3) holds for

each p ∈ (1, 2 ].
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The expression 0 ≤ V ∈ L1
loc(Rn) denotes that V is a non-negative and locally integrable

function on Rn. The validity of (1.3) at the endpoint p = 2 follows from the definition of L. For

the other endpoint, A. Sikora [94] showed ∇L−1/2 is weak (1, 1). Independently, the authors

in [46] showed that the operators ∇L−1/2 and V 1/2L−1/2 map the Hardy space H1
L(Rn) into

L1(Rn) (see Section 1.1.3 for the definition of these Hardy spaces). In both cases, interpolation

gives (1.3) for the range 1 < p < 2. In light of this, it is therefore of interest to find conditions

on V ensuring that (1.3) and (1.4) hold for p > 2.

A pivotal work in this area was done by Z. Shen [93] in 1995. In that article the author

gives a systematic study of Lp(Rn) estimates for the operator −∆ +V in the situation where V

satisfies a so-called reverse Hölder inequality :

( 1

|B|

∫
B

V q
)1/q

≤ C
( 1

|B|

∫
B

V
)

(1.5)

for every ball B. If V satisfies (1.5) for some q > 1, then we say that V belongs to the class

of reverse Hölder weights of exponent q, and write V ∈ Bq (when q = ∞ we take the left-hand

side of (1.5) to be the essential supremum of V on B). We remark that these classes form a

decreasing scale in the sense that Bq ⊂ Bp whenever q > p. One motivation for the introduction

of these classes is that they give a generalisation for the polynomial potentials which have already

been studied in the literature. In fact if V is a non-negative polynomial then V satisfies (1.5)

with exponent q = ∞. Other examples include the functions V (x) = |x|−α, for which V ∈ Bq

whenever α ∈ (−∞, n/q).

The class of reverse Hölder potentials will be of central focus in this thesis. We summarise

the results of relevance to (1.3) and (1.4) from [93] in the following statement. We adopt the

notation

q∗ :=


nq

n− q
, q < n;

∞, q ≥ n.
(1.6)

Theorem 1.2 ([93] Theorems 0.3, 5.10, 0.5, 0.8). Let L = −∆ + V on Rn with n ≥ 3. Assume

that V ∈ Bq for some q > 1.



6

(a) If q ≥ n/2 then (1.4) holds for all p ∈ (1, q ].

(b) If q ≥ n/2 then (1.3) holds for all p ∈ (1, 2q ].

(c) If q ∈ [n/2, n) then ∇L−1/2 is bounded on Lp(Rn) for p ∈ (1, q∗].

(d) If q ∈ [n,∞ ] then ∇L−1/2 is a Calderón–Zygmund operator, and hence bounded on Lp(Rn)

for all p ∈ (1,∞).

The author of [93] also shows that the ranges in (a) and (c) are sharp. Note the connection

between higher regularity (in the sense that, say the operator ∇L−1/2 approaches a Calderón–

Zygmund operator) with the increasing reverse Hölder exponent. We emphasise also the depen-

dence of the intervals of boundedness on the reverse Hölder exponent q.

Shen’s article was a source of influence for many subsequent authors in this area of

research. A key idea was the introduction of the “critical radius” function (see also Definition 2.2)

γ(x) = sup
{
r > 0 :

r2

|B(x, r)|

∫
B(x,r)

V (y) dy ≤ 1
}
, (1.7)

modelled on a similar tool used in [110] in the study of polynomial potentials. This tool has been

a cornerstone in later investigations on Schrödinger operators with reverse Hölder potentials.

Examples include [28, 29, 30, 49, 51, 53, 63, 76], some of which we touch upon in later sections.

We direct also the reader to Section 1.3 for a discussion of (1.7) and its role in this thesis. Before

closing this section we mention another important contribution in this direction of research.

Throughout [93] there was a dimensional restriction of n ≥ 3. This restriction was removed

more recently by P. Auscher and B. Ben-Ali [12] using different methods.

Theorem 1.3 ([12]). Let L = −∆ + V on Rn with n ≥ 1 and V ∈ Bq for some q > 1.

(a) There exists ε > 0 such that (1.4) holds for every p ∈ (1, q + ε). That is,

‖∇2f‖Lp + ‖V f‖Lp ≤ Cp‖Lf‖Lp , ∀f ∈ C∞0 .

(b) There exists ε > 0 such that (1.3) holds for every p ∈ (1, 2q + ε). That is,

‖∇f‖Lp + ‖V 1/2f‖Lp ≤ Cp‖L1/2f‖Lp , ∀f ∈ C∞0 .
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(c) If q ≥ n/2 then there exists ε > 0 such that for every p ∈ (1, q∗ + ε),

‖∇f‖Lp ≤ Cp‖L1/2f‖Lp , ∀f ∈ C∞0 .

Here q∗ has been defined in (1.6).

Note that q∗ ≥ 2q if and only if q ≥ n/2 so item (c) improves over item (b) for the gradient

part in this situation. In a sense the results of [12] gives a complete answer to Question 1 in the

context of reverse Hölder weights. Hence the question of the validity of (1.3) and (1.4), in the

range p > 2 for classes of potentials beyond the reverse Hölder classes, is open.

As in the classical situation of (1.1) and (1.2), once the Lp estimates have been resolved,

it is natural to inquire about corresponding estimates in other function spaces.

1.1.1 Weighted spaces

Historically one motivation for the Ap classes is the characterisation of all the non-negative

measures µ on Rn for which the Hardy–Littlewood maximal function M satisfies

∫
Rn
|Mf(x)|p dµ(x) ≤ C

∫
Rn
|f(x)|p dµ(x), ∀f ∈ C∞0 (Rn), (1.8)

for some p ∈ (1,∞). The operator M is defined by

Mf(x) = sup
B3x

1

|B|

∫
B

|f(y)| dy, x ∈ Rn, (1.9)

where the supremum is taken over all balls containing x. A complete characterisation was given

by Muckenhoupt [80]: estimate (1.8) holds if and only if dµ(x) = w(x) dx where w satisfies the

so-called ‘Ap-condition’

( 1

|B|

∫
B

w
)1/p( 1

|B|

∫
B

w1−p′
)1/p′

<∞, (1.10)

for all balls B (here p′ is the conjugate exponent of p, defined by the relationship 1/p+1/p′ = 1).

In this case we say that w belongs to the class of Muckenhoupt weights Ap and write w ∈ Ap.

We note that the class A1 can be defined using (1.10) with p = 1, but we set A∞ to be the

union of all Ap with 1 ≤ p <∞.
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These weights have been extensively studied and many of their properties are now well

known and considered an established part of the harmonic analysis canon. An important prop-

erty that is of relevance to us is the connection with reverse Holder weights: if w is an A∞

weight then it satisfies a reverse Hölder inequality (1.5) for some q > 1. A converse statement

is also true, so that in this sense the class of all Muckenhoupt weights in fact coincides with the

class of all reverse Hölder weights. We refer to [59] for a treatise on the subject.

It has been known since [35] that Calderón–Zygmund operators are bounded on weighted

Lp spaces with Ap weights. The study of operators with Ap weights continues to be active area

of research, motivated both by its traditional place within harmonic analysis, and also by its

connection with boundary value problems.

We are interested in estimates related to the Schrödinger operator. For which V ≥ 0,

p ≥ 1, and w ∈ L1
loc(Rn) do the following hold?

‖∇f‖Lp(w) + ‖V 1/2f‖Lp(w) ≤ Cp‖(−∆ + V )1/2f‖Lp(w) ∀f ∈ C∞0 , (1.11)

‖∇2f‖Lp(w) + ‖V f‖Lp(w) ≤ Cp‖(−∆ + V )f‖Lp(w) ∀f ∈ C∞0 . (1.12)

Prior results in this direction can be found in [6, 30, 75, 98], which we now describe. We shall

employ the following notation, first introduced in [16]. For w ∈ A∞ and 1 ≤ p0 < q0 ≤ ∞ we set

Ww(p0, q0) :=
{
p ∈ (p0, q0) : w ∈ Ap/p0 ∩ B(q0/p)′

}
.

(i) When V is a non-negative and locally integrable function, B.T. Anh [6] showed that (1.11)

holds for each w ∈ A∞ and p ∈ Ww(1, 2). This is the weighted counterpart to Theorem 1.1.

The result for ∇L−1/2 was also obtained independently by L. Song and L. Yan [98]. It was

also shown in [6] that the first-order Riesz transforms ∇L−1/2 and V 1/2L−1/2 are weak

(1, 1) with respect to the measure w dx with w ∈ A1 ∩ B2.

(ii) Specializing to reverse Hölder potentials, when V ∈ Bq with q ≥ n, recall from Theorem 1.2

above that ∇L−1/2 is a Calderón–Zygmund operator, and hence is bounded on Lp(w) for

each p ∈ (1,∞) and w ∈ Ap.
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In [75] the authors show that if V ∈ Bq, with q > max {n/2, p} and p ∈ (1,∞), then V L−1

is bounded on Lp(w) for w1−p′ ∈ Ap′/q′ . We observe that this is equivalent to w ∈ A∞ and

p ∈ Ww(1, q). It is a straightforward consequence that the estimate for ∇2L−1 follows from

that of V L−1. Indeed, from the boundedness of ∇2(−∆)−1 on Lp(w) for each p ∈ (1,∞)

and w ∈ Ap, we have

∥∥∇2L−1f
∥∥
Lp(w)

.
∥∥−∆L−1f

∥∥
Lp(w)

=
∥∥f − V L−1f

∥∥
Lp(w)

. ‖f‖Lp(w) . (1.13)

In summary when V ∈ Bq for some q > n/2 with n ≥ 3 then (1.12) holds for all w ∈ A∞

and p ∈ Ww(1, q).

Note that the results here are subsumed by the results in the next item.

(iii) B. Bongioanni, E. Harboure, and O. Salinas [30] introduced a new class of weights AL∞,

modelled on the classical A∞ weights, but adapted to the Schrödinger operator in a certain

sense. These weights are defined as those w ∈ L1
loc(Rn) for which

( 1

|B|

∫
B

w
)1/p( 1

|B|

∫
B

w1−p′
)1/p′

≤ C
(

1 +
r

γ(x)

)θ
(1.14)

for some θ ≥ 0 and every ball B = B(x, r). Note that γ is the function defined in (1.7).

In this case we say that w ∈ ALp .

Observe that when θ = 0 they coincide with the A∞ classes, but in general they form a

larger class of weights. To see this let V ≡ 1 and take w(x) = (1 + |x|)−(n+ε) where ε > 0.

Then w /∈ A∞ but satisfies (1.14) for any θ ≥ ε.

It was shown in [30] that, as in the classical situation, if w is a member of AL∞ then it

satisfies a certain reverse Hölder inequality. This inequality is similar to (1.5) but with the

extra growth term involving γ as in (1.14). Inspired by this result we introduce the reverse

Hölder classes BLq for q > 1, adapted to L in Definition 5.3, which as far as we are aware

has not appeared elsewhere in the literature. This allows us to introduce the following

notation. Given w ∈ AL∞ and 1 ≤ p0 < q0 ≤ ∞ we set

WL
w(p0, q0) :=

{
p ∈ (p0, q0) : w ∈ ALp/p0 ∩ B

L
(q0/p)′

}
.
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In their article [30] the authors proved that the Riesz transform ∇L−1/2 is bounded

on Lp(w) for each p ∈ (1, q∗), and weight w with w1−p′ ∈ ALp′/(q∗)′ (equivalently w ∈ AL∞

and p ∈ WL
w(1, q∗) in our notation), and satisfies a weighted weak (1, 1) estimate for

weights w with w(q∗)′ ∈ AL1 .

A further study of these weights was undertaken by L. Tang in [104, 105, 106]. The author

obtains, amongst other results, the boundedness of the operators V 1/2L−1/2 and V L−1,

as well as another proof of the result for ∇L−1/2.

Theorem 1.4 ([106]). Let L = −∆ + V on Rn with n ≥ 3. Assume that V ∈ Bq for

some q > n/2. Then

(a) V 1/2L−1/2 is bounded on Lp(w) for each p ∈ (1, 2q) and weight w with w1−p′ ∈ ALp′/(2q)′

(equivalently w ∈ AL∞ and p ∈ WL
w(1, 2q)),

(b) V L−1 is bounded on Lp(w) for each p ∈ (1, q) and weight w with w1−p′ ∈ ALp′/q′

(equivalently w ∈ AL∞ and p ∈ WL
w(1, q)).

Let us summarise the situation for weighted estimates for the Schrödinger operator with

a reverse Hölder potential (that is, items (ii) and (iii)). When V ∈ Bq for some q > n/2

with n ≥ 3, results for the operators ∇L−1/2, V 1/2L−1/2 and V L−1 are known for AL∞ (and

therefore also A∞) weights. We display this information in the table below.

Operator: V 1/2L−1/2 ∇L−1/2 V L−1 ∇2L−1

w ∈ A∞ Ww(1, 2q) Ww(1, q∗) Ww(1, q) Ww(1, q)

w ∈ AL∞ WL
w(1, 2q) WL

w(1, q∗) WL
w(1, q) ?

Table 2: Known results for weighted spaces

We will show in this thesis that it is valid to place WL
w(1, q) in the entry marked “ ? ”.

Unfortunately in contrast with the A∞ situation, the calculation in (1.13) is of limited

use in passing from estimates for V L−1 to estimates for ∇2L−1 for AL∞ weights because the
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mapping properties of ∇2(−∆)−1 for these weights are not clear. In spite of this, since the A∞

weights are a special case of the AL∞ weights, one might conjecture that a corresponding result

holds for ∇2L−1 as in item (ii) above. This leads us to the main objective of this section.

Question 2. Let L = −∆ + V on Rn with n ≥ 3. Assume that V ∈ Bq for some q > n/2. For

which w ∈ AL∞ and which p > 1 does the following inequality hold?

∥∥∇2L−1f
∥∥
Lp(w)

≤ Cp ‖f‖Lp(w) , ∀f ∈ C∞0 (Rn).

We shall give an answer to this question in Theorem 1.7 (see also Theorem 5.1). Our techniques

are different to those of [30] and [106]. The purpose of Chapter 5 is to develop these techniques

and apply them to give the proof of this result.

Next we turn to a class of spaces that bears some connection with Ap weights.

1.1.2 Morrey spaces

Let p ∈ [1,∞) and λ ∈ (0, n). A function f is said to belong to the Morrey space Lp,λ(Rn) if

‖f‖Lp,λ := sup
B

(
rλB
|B|

∫
B

|f − fB |p
)1/p

<∞.

These spaces were introduced by C.B. Morrey [79] to study the regularity of partial differential

equations. Some of their properties were investigated in the 1960s by G. Stampacchia [99] and

S. Campanato [33]. See [87] for a survey of some of these properties. Recently these spaces

have garnered much attention in the study of non-linear equations. See for example [78] and

the references therein. They are related to the Lebesgue spaces and the Sobolev spaces in their

two parameters p and λ measuring size and smoothness respectively. For the limiting cases it

is clear that when λ = n the resulting Morrey space coincides with the space Lp(Rn), and for

λ = 0 the resulting space is BMO, the space of bounded mean oscillation introduced in [71].

It is well known that classical singular integral operators such as the Hardy–Littlewood

maximal function and Calderón–Zygmund operators are bounded on the Morrey spaces Lp,λ(Rn)
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for all p ∈ (1,∞) and λ ∈ (0, n). See [86] and [34]. However operators that fall outside the

Calderón–Zygmund class have received less attention in the literature on Morrey spaces.

We are interested in estimates for the Schrödinger operator on these spaces. More pre-

cisely we seek to answer: for which V ≥ 0, p ≥ 1 and λ ∈ (0, n), do the following hold?

‖∇f‖Lp,λ + ‖V 1/2f‖Lp,λ ≤ Cp‖(−∆ + V )1/2f‖Lp,λ ∀f ∈ C∞0 , (1.15)

‖∇2f‖Lp,λ + ‖V f‖Lp,λ ≤ Cp‖(−∆ + V )f‖Lp,λ ∀f ∈ C∞0 . (1.16)

We observe again that when V ∈ Bn, the Riesz transform ∇L−1/2 is a Calderón–Zygmund

operator and therefore falls within the scope of the classical results obtained in [34]. That is,

the gradient part of (1.15) holds for all p ∈ (1,∞) and λ ∈ (0, n). When V ∈ B∞ then the

operators V L−1 and ∇2L−1 may not be of Calderón–Zygmund type, but the authors in [75]

show nonetheless that (1.16) holds for all p ∈ (1,∞) and λ ∈ (0, n).

Within this context we seek to establish the range of p and λ for which (1.15) and (1.16)

holds when V is a reverse Hölder potential with q < n. We are motivated by the fact that

taking λ = n returns us to the situation of (1.3) and (1.4), where results are already known.

Recall that in those Lp estimates there was an upper restriction on p that depended on the

reverse Hölder exponent q, and so one expects a corresponding restriction to be transferred

to the Morrey space scale in the p parameter. It would be of interest to uncover any lower

restriction on the parameter λ. We ask the following question.

Question 3. Let n ≥ 1 with V ∈ Bq for some q > 1. For which p > 1 and λ ∈ (0, n) do the

inequalities (1.15) and (1.16) hold?

We give a rather complete picture of this setting in Theorem 6.2.

1.1.3 Hardy spaces

For 0 < p <∞ the tempered distribution f is said to belong to the Hardy space Hp(Rn) if the

so-called “square function”

Sf(x) =
(∫ ∞

0

∫
|x−y|<t

∣∣t2∆et
2∆f(y)

∣∣2dy dt

tn+1

)1/2

, x ∈ Rn (1.17)
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satisfies Sf ∈ Lp(Rn). The study of these spaces began in [102] in the early 1960s. Real variable

methods were introduced in [57], and since then, the theory of Hardy spaces has undergone a

rich development. We refer the reader to the monograph [101] for an exposition on this subject.

For p below 1 these spaces are the natural continuation of the Lp(Rn) spaces because

firstly it can be shown that Lp coincides with Hp for p > 1, and secondly, on replacing Lp by Hp

then (1.1) and (1.2) holds for all 0 < p <∞.

In the context of Schrödinger operators, we are interested in answers to the following.

For which V ≥ 0 and p ≤ 1 do the following hold?

‖∇f‖Hp + ‖V 1/2f‖Hp ≤ Cp‖(−∆ + V )1/2f‖Hp ∀f ∈ C∞0 (1.18)

‖∇2f‖Hp + ‖V f‖Hp ≤ Cp‖(−∆ + V )f‖Hp ∀f ∈ C∞0 (1.19)

Part of the interest in the Hp spaces stems from their role in partial differential equations and in

harmonic analysis. However it is known that there are many situations in which these classical

spaces are not directly applicable. For instance the classical Riesz transforms ∇(−∆)−1/2 are

bounded from Hp(Rn) to Lp(Rn) (and even Hp(Rn) to Hp(Rn)). In fact, ∇(−∆)−1/2f ∈ Lp is

one criterion for membership of f in Hp. See [101] and [60]. Unfortunately given an arbitrary

differential operator L, its associated Riesz transform ∇L−1/2 may not necessarily be bounded

from H1 to L1. This may happen, for example, when L is an elliptic operator in divergence

form with complex coefficients (see the discussion in [67] and also [11, 27, 66] for results on the

intervals of boundedness of ∇L−1/2 on Lp(Rn)).

The notion of a Hardy space adapted to an operator was introduced to address some of

these deficiencies. Given an operator L and in analogy with (1.17) we say that f ∈ Hp
L(Rn)

provided the associated square function

SLf(x) =
(∫ ∞

0

∫
|x−y|<t

∣∣t2Le−t2Lf(y)
∣∣2dy dt

tn+1

)1/2

, x ∈ Rn

satisfies SLf ∈ Lp(Rn). Depending on L, these spaces may or may not coincide with the

classical Hardy spaces. Nevertheless under suitable conditions on L, the spaces Hp
L(Rn) may still

interpolate with Lp(Rn). This is useful in applications. For instance the proof of Theorem 1.1
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given in [46] takes advantage of this fact. These spaces were initially introduced (for operators

whose heat kernels satisfy suitable pointwise bounds) in [14, 47, 48], and were further developed

(for more general classes of operators) in [19, 65, 67]. We refer the reader to these articles for the

details and relevant references as well as some historical notes on the evolution of these ideas.

For some recent applications of these Hp
L spaces to partial differential equations we refer the

reader to [43].

Our focus is on the case L = −∆ + V , the Schrödinger operator with a non-negative

potential V . The development of the Hardy spaces adapted to this operator has been taken up

independently, on the one hand as a consequence of the theory mentioned above (see in particular

[65] and [70]), and on the other hand by J. Dziubański and J. Zienkiewicz [51, 52, 53]. In the

latter articles, the authors focus on situations with stronger conditions on the potential, namely

where V is a reverse Hölder potential. We note that they give certain atomic decompositions

for the spaces, and one advantage of these decompositions is they allow direct comparisons with

the classical Hp. We note also that both spaces coincide for the range n/(n + 1) < p ≤ 1.

In fact combining these results gives us the following: when V ∈ Bq for some q > n/2, then

Hp(Rn) ( Hp
L(Rn) for every p ∈ (n/(n+ pL), 1 ] where pL = min {1, 2− n/q}. See Section 7.1.1

for the details.

In [65] and [70] the authors show that under the condition that V is non-negative and

locally integrable, the Riesz transform ∇L−1/2 is bounded from Hp
L(Rn) to Lp(Rn) for all

p ∈ (0, 1 ], and bounded from Hp
L(Rn) into Hp(Rn) for p ∈ (n/(n + 1), 1 ]. On restricting the

class of potentials to the reverse Hölder potentials then the relationship between Hp(Rn) and

Hp
L(Rn) mentioned in the previous paragraph gives us stronger conclusions. Indeed if V ∈ Bq

for some q > n/2, then the gradient part of (1.18) holds for every p ∈ (n/(n+ pL), 1 ].

Our aim is to give parallel results for the second-order Riesz transforms ∇2L−1 and V L−1

(when V is a reverse Hölder potential) on these spaces, which as far as we are aware, has not

appeared in the literature. We wish to answer the following question.



15

Question 4. Let L = −∆ + V on Rn with n ≥ 1. Assume that V ∈ Bq for some q > 1. For

which p ≤ 1 is the following inequality valid?

∥∥∇2L−1f
∥∥
Hp
≤ Cp ‖f‖Hp , ∀f ∈ C∞0 .

Our main result in this direction is Theorem 1.9, which is proved in Chapter 7.

1.2 Main results

In this section we give the main results of this thesis, namely Theorems 1.5–1.9, framed as

answers to the questions raised in the previous section. Before we address these questions we

present a result in the general setting of non-negative potentials that demonstrates the estimates

(1.3), (1.11), and (1.15) are intimately related. This is captured in the following result for the

first-order Riesz transforms.

Theorem 1.5. Fix s > 2. Let n ≥ 1 and L = −∆ + V on Rn with 0 ≤ V ∈ L1
loc(Rn). Then

the following are equivalent.

(a) Estimate (1.3) holds for each p ∈ (1, s). That is,

‖∇f‖Lp + ‖V 1/2f‖Lp ≤ Cp‖L1/2f‖Lp , ∀f ∈ C∞0 .

(b) Estimate (1.11) holds for each w ∈ A∞ and each p ∈ Ww(1, s).That is,

‖∇f‖Lp(w) + ‖V 1/2f‖Lp(w) ≤ Cp‖L1/2f‖Lp(w), ∀f ∈ C∞0 .

(c) Estimate (1.15) holds for each p ∈ (1, s) and λ ∈
(n
s
p, n
)

. That is,

‖∇f‖Lp,λ + ‖V 1/2f‖Lp,λ ≤ Cp‖L1/2f‖Lp,λ , ∀f ∈ C∞0 .

The proof of this is split over two theorems. The equivalence (a) ⇐⇒ (b) is contained in

Theorem 4.1, while the equivalence (a) ⇐⇒ (c) is contained in Theorem 6.1. It is easy to see

that on taking w ≡ 1 and λ = n, that we have (b) =⇒ (a) and (c) =⇒ (a) respectively. The

hard work is in demonstrating (a) =⇒ (b) and (b) =⇒ (c), which are given in Chapters 4 and 6.
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An extra statement may be added to this collection of equivalences. It involves a weighted weak

type (1, 1) estimate. The reader is directed to Theorems 4.1 and 4.2.

Once the work of obtaining the Lp estimate is done (item (a)) then the Theorem grants

us the estimates on weighted spaces and Morrey spaces immediately. Items (a) and (b) also

generalise item (i) in Section 1.1.1.

The result also gives us a new counterpart to both Theorem 1.1 and Section 1.1.1 item (i),

but for Morrey spaces. Indeed, if we let s → 2, and taking into account Theorem 1.1, then we

obtain a result as follows.

Theorem 1.6. Let n ≥ 1 and 0 ≤ V ∈ L1
loc(Rn). Then (1.15) holds for each p ∈ (1, 2) and

λ ∈
(n

2
p, n
)

.

Note the upper restriction on p and the lower restriction on λ, both governed by the auxiliary

parameter s. On taking s→∞ we obtain boundedness for the full range of p ∈ (1,∞), w ∈ Ap,

and λ ∈ (0, n). This happens, as we have seen for example when V is a non-negative polynomial,

or when V is a reverse Hölder potential of order at least n. In fact in the latter case, ∇L−1/2 is

a Calderón–Zygmund operator, which returns us to the classical situation.

We mention one other application to reverse Hölder potentials. If we take V ∈ Bq for

some q > 1, and n ≥ 1, then combining this with the result of [12] (specifically Theorem 1.3)

we can recover the weighted results of Section 1.1.1 items (ii) and (iii) for the first-order Riesz

transforms. In fact there is an improvement because the dimensional restriction of n ≥ 3 is

removed.

We now devote our attention to reverse Hölder potentials, and in particular address Ques-

tions 2, 3, and 4. With respect to the weighted Lebesgue spaces we give an answer to Question 2

in the following result.

Theorem 1.7. Let L = −∆ + V on Rn with n ≥ 3. Assume that V ∈ Bq for some q > n/2.

Then the operator ∇2L−1 is bounded on Lp(w) for each w ∈ AL∞ and p ∈ WL
w(1, q).
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This result extends the one for ∇2L−1 and A∞ weights and completes the picture for the first-

and second-order Riesz transforms on weighted spaces with both A∞ and AL∞ weights, at least

for the range q > n/2. The proof of Theorem 1.7 is given in Theorem 5.1.

For Morrey spaces we answer Question 3 in the following result.

Theorem 1.8. Let L = −∆ + V on Rn with n ≥ 1 and assume V ∈ Bq for some q > 1. Then

we have the following.

(a) Estimate (1.15) holds for each p ∈ (1, 2q) and λ ∈
( n

2q
p, n
)

.

(b) If q ≥ n/2 then ∇L−1/2 is bounded on Lp,λ(Rn) for each p ∈ (1, q∗) and λ ∈
( n
q∗
p, n
)

.

(c) If n ≥ 2 and q ≥ n/2 then (1.16) holds for each p ∈ (1, q) and λ ∈
(n
q
p, n
)

.

The proof of this is in Theorem 6.2. Items (a) and (b) are obtained using Theorem 1.5 and the

results of [12] in Theorem 1.3. Note the lower restriction on λ and upper restriction on p, which

as far as can tell appears to be the first result of its kind. If q → ∞ then item (c) recovers

the result from [75]. If q ≥ n then q∗ = ∞ and so item (b) gives the result for 1 < p < ∞

and 0 < λ < n, which recovers the classical situation (that is, ∇L−1/2 is a Calderón–Zygmund

operator) of [34]. We remark that our results improve over those in [75] in giving a restricted

range on the parameters p and λ, which is as expected. Indeed boundedness cannot happen

for λ going all the way to 0 because this implies boundedness on BMO.

For the Hardy spaces we give an answer to Question 4 in the following theorem.

Theorem 1.9. Let L = −∆+V on Rn with n ≥ 3. Assume that V ∈ Bq with q > max {2, n/2}.

Then the following holds.

(a) The operators ∇2L−1 and V L−1 are bounded from Hp
L(Rn) into Lp(Rn) for each p ∈ (0, 1].

(b) The operator ∇2L−1 is bounded from Hp
L(Rn) into Hp(Rn) for each p ∈

(
n
n+1 , 1

]
.

(c) The operator ∇2L−1 is bounded from Hp(Rn) into Hp(Rn) for each p ∈
(

n
n+pL

, 1
]

where

pL = min {1, 2− n/q}.
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Parts (a) and (b) are proved in Theorem 7.1. Item (c) is a corollary of item (b) and is proved in

Corollary 7.2. Theorem 1.9 extends the result mentioned in Section 1.1.3 for the first-order Riesz

transforms ∇L−1/2 to the second-order Riesz transforms ∇2L−1 for reverse Hölder potentials.

Item (c) gives an answer to Question 4.

We give some remarks about the condition q > max {2, n/2} in our results. The require-

ment q > 2 is a technical constraint used in two instances. The first is in the construction of

the Hp
L(Rn) spaces, which in our work uses L2-convergence of atomic sums (see Section 7.1.1).

The other instance is the L2(Rn) boundedness of the operators ∇2L−1 and V L−1, which we

recall is valid when q > 2. The careful reader will observe that our techniques and our heat

kernel estimates will still follow through for the range q < 2, with suitable modifications, once

an alternative construction of Hp
L(Rn) is available. For the time being however, the range n = 3

and 3/2 < q < 2 remains open.

This result also admits extensions to weighted Hardy spaces for items (a) and (b), with

Hp
L(w) and Hp(w) where w ∈ A1 ∩ B(2/p)′ . See Theorem 7.12. However item (c) remains open

in this setting.

To conclude this section we also offer a result for ∇L−1/2 for a class of potentials V

slightly larger than the reverse Hölder classes. This larger class, denoted (DKα,θ,σ), is defined

in Definition 8.1. We prove that the Riesz transform ∇L−1/2 in this setting is bounded on

Lp(Rn) for some interval of p that is larger than (1, 2]. The result is Theorem 8.3 and its proof

is given in Chapter 8. Theorem 1.5 then gives corresponding results on the weighted spaces and

the Morrey spaces.

1.3 Key ideas and techniques behind the proofs

1.3.1 Overview

The basis of our techniques lies in two principles.
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(i) The operator L = −∆ + V may be viewed as a ‘local perturbation’ of −∆.

(ii) Representation formulae for L through its heat semigroup:

L−1/2 =
1√
π

∫ ∞
0

e−tL
dt√
t

and L−1 =

∫ ∞
0

e−tLdt. (1.20)

These are rooted in two major areas of influence for us: the work of [93] and a new framework

for studying operators beyond the Calderón–Zygmund class, begun in [45].

As mentioned earlier Shen’s work was the starting point of many subsequent lines of

research by other authors. Two key ideas in Shen’s work were perturbation and estimates on

the fundamental solution for L. Recall that the auxiliary function γ was introduced (see (1.7))

and used to determine the ‘local’ and the ‘global’ regions. In the global regions (for scales larger

than γ) estimates on the kernels related to L typically have stronger decay properties. Shen

proved that whenever V ∈ Bn/2 with n ≥ 3, then the fundamental solution ΓL(x, y) of L satisfies

|ΓL(x, y)| ≤ CN(
1 + |x−y|

γ(x)

)N 1

|x− y|n−2 (1.21)

for any N > 0, and CN is a constant depending on the dimension n, on the potential V , and

on N . Comparing this with the fundamental solution of −∆, given by

Γ∆(x, y) =
Cn

|x− y|n−2
,

one sees that ΓL has stronger decay whenever |x− y| > γ(x).

On the other hand, in the local regions (for scales less than γ) the operator L behaves

like −∆ in the following sense. When |x− y| ≤ γ(x) and V ∈ Bn/2, then

|ΓL(x, y)− Γ∆(x, y)| ≤ C
(
|x− y|
γ(x)

)2−n/q
1

|x− y|n−2 . (1.22)

These two ideas were utilised in later works including those mentioned in [63] and [30]. For

instance the following estimates, proved in [93], on the kernel K∗L(x, y) of the adjoint of the

Riesz transform (∇L−1/2)∗

|K∗L(x, y)| ≤ CN(
1 + |x−y|

γ(x)

)N 1

|x− y|n−1

{∫
B(y, 14 |x−y|)

V (z)

|z − y|n−1 dz +
1

|x− y|

}
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for any x 6= y, and

|K∗L(x, y)−K∗∆(x, y)|

≤ C

|x− y|n−1

{∫
B(y, 14 |x−y|)

V (z)

|z − y|n−1 dz +
1

|x− y|

(
|x− y|
γ(x)

)2−n/q}
(1.23)

whenever |x− y| ≤ γ(x) were crucial in [30] in obtaining the results for ∇L−1/2 on weighted

spaces. Typical strategies taken in the study of such operators involve decomposing them into

their local and global parts. For the local parts one further splits them into two operators,

a local version of the classical operators whose boundedness are typically guaranteed, and a

difference operator which is where estimates such as (1.22) and (1.23) play an important role.

For the global parts one uses the stronger decay in the kernels. An explicit discussion of the

idea of perturbation can be found in the recent articles [1, 25].

In our work we retain Shen’s notion of perturbation, but replace estimates on the funda-

mental solutions by estimates on the heat kernel pt(x, y) of L. The kernel pt(x, y) is the integral

kernel of the operator e−tL (which forms a semigroup family of operators in the time variable t),

and appears for us through the representation formulae in (1.20). For non-negative potentials

it is well known [96] that the heat kernel satisfies

0 ≤ pt(x, y) ≤ ht(x, y) =
1

(4πt)n/2
e−|x−y|

2/4t, (1.24)

for each x, y ∈ Rn and t > 0. Here ht(x, y) is the heat kernel of the Laplacian −∆ (see also (2.1)).

There are two advantages to working with heat kernels rather than fundamental solu-

tions. Firstly they are stronger estimates in the sense that one can recover estimates on the

fundamental solutions once estimates on the heat kernels are known. This may be done through

the representation formula in (1.20) because ΓL is the integral kernel of L−1. The second ad-

vantage is they allow us to utilise the machinery begun in [45] in treating operators outside the

Calderón–Zygmund class. We briefly survey these developments before explaining how they are

used in our proofs.

A new paradigm was started in [45] and subsequently there were two strands of de-

velopment. The first was in extending the Calderón–Zygmund theory of singular integrals to
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systematically handle operators with no kernel regularity (or even not possessing any kernels at

all). These ideas were developed further in articles such as [11, 13, 16, 26, 27, 38] and also [12].

The other strand concerned function spaces built from the underlying operator. Already men-

tioned and of relevance to us are the Hardy spaces (see for example [19, 47, 65, 67] amongst

others), but also other function spaces including the BMO and Besov spaces [48, 32]. Some

cornerstones of this new framework include generating a theory that is intrinsically linked to

the properties of the underlying operator and building averaging processes from this operator.

This paradigm offers an elegant and unifying perspective on operator theory in harmonic analy-

sis. Within this viewpoint, the classical Calderón–Zygmund theory is intimately connected with

properties of the Laplacian and harmonic functions.

In this framework, the heat semigroup and the heat kernel plays an important role. For

instance to study Riesz transforms associated to an operator L on Lp(Rn) (and also on the

weighted Lp spaces) for p < 2, working through the ideas of [45] one is led, in practice, to

studying estimates on the derivatives ∇xpt(x, y), where pt(x, y) is the heat kernel of L. While

pointwise bounds may be much too strong a demand, it often suffices to work with weighted

norm versions such as the following:

∫
|∇xpt(x, y)|2 ec|x−y|

2/t dx ≤ C

t1+n/2
. (1.25)

We refer the reader to [38] where this inequality is applied (using the method of [45]) to obtain

weak (1, 1) estimates for the Riesz transform on a manifold. For the case p > 2, one applies (1.25)

in the good-λ machinery developed in [11, 13, 16]. See Lemma 3.1 of [13], as well as Lemma 4.8

of this thesis and its proof. The derivation of (1.25) in [38] was modelled on a technique that

originated in [61]. See also [39, 40, 46].

Estimate (1.25) is known to hold for Schrödinger operators with non-negative potentials

(see Lemma 3.1) and therefore a similar approach can be applied to these operators. However for

the second-order Riesz transform one needs a corresponding estimate for the second derivatives
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of the heat kernel. We adapt a technique from [43] to obtain, whenever V ∈ Bq with q > 2,∫ ∣∣∇2
xpt(x, y)

∣∣2 ec|x−y|2/t dx ≤ C

t2+n/2
e−c(1+t/γ(y)2)

δ

(1.26)

for some constants C, c, δ > 0. See Proposition 3.7 for the full statement of the result. The main

idea is to use a weighted version of the Calderón–Zygmund inequality (Lemma 3.11) to transfer

estimates involving mixed derivatives ∇2 to estimates involving the Laplacian ∆ and the

potential V , and from there utilise the (reverse Hölder) properties of V .

Comparing (1.25) and (1.26), one observes the extra exponential decay in the latter in

the time variable t, for the scale t > γ(y). This extra decay in the kernel estimates is a feature

of Schrödinger operators with reverse Hölder potentials, and has been manifested not only in

estimates for the fundamental solutions as we saw earlier in (1.21), but also in estimates on the

heat kernel. For instance in contrast with the case of non-negative potentials in (1.24), it was

shown by K. Kurata [74] that when V ∈ Bq with q ≥ n/2,

pt(x, y) ≤ C

tn/2
e−c|x−y|

2/t e−c(1+t/γ(x)2)
δ

. (1.27)

A similar estimate was obtained independently in [49]. See Propositions 3.3 and 3.2 of this

thesis. In Chapter 3 we show that it is possible to carry over this extra decay to estimates

on the time derivatives (Proposition 3.4), an analogous version of (1.25) (Proposition 3.6), and

finally the second derivative estimates (1.26). While this extra decay is not needed in the results

of Chapters 4, 6, and 7, it is crucial for the results in Chapter 5.

As a sidenote, we mention that although pointwise bounds on spatial derivatives of the

heat kernel ∇xpt(x, y) may be a highly non-trivial matter in general, we do show that for

Schrödinger operators with reverse Hölder potentials it is possible to obtain such bounds pro-

vided the reverse Hölder exponent is sufficiently large (Proposition 3.5).

1.3.2 Techniques used in each main result

We move on to specifics of each main result. Let us first describe the case p ≤ 1. The proof of

Theorem 1.9, and of the other results in Chapter 7, uses the same strategies as in the study of the
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first-order Riesz transform ∇L−1/2 in [65, 70], and the second-order results in [43]. These works

show that elements of the spaces Hp
L(Rn) may be expressed as sums of localised representative

functions called atoms or molecules. See Section 7.1.1, and in particular Definition 7.4. These

atomic and molecular characterisations allow us to reduce the study of operators on Hp
L(Rn) to

studying their behaviour on single atoms or molecules. The main technical tool is Lemma 7.5

and the estimate (1.26) (and suitable adaptations in Section 7.1.2) through the representation

formulae (1.20) allow us to apply this Lemma to the operators ∇2L−1 and V L−1. The last item

of Theorem 1.9 follows as a consequence of the first two items, via the atomic characterisation

of Hp
L(Rn) given in [52] (see Definition 7.6).

In Section 7.2 we give weighted extensions to items (a) and (b) of Theorem 1.9. That

is, we show that similar estimates hold for the weighted Hardy spaces Hp
L(w), where w is a

Muckenhoupt weight. The techniques are similar to the unweighted case, and rely firstly on the

structural properties of the spaces (already developed in [98, 108, 109]), and secondly on the

heat kernel estimate (1.26). The results are summarised in Theorem 7.12.

The proofs of Theorems 1.5, 1.7, and 1.8 involve good-λ inequalities. A typical good-λ

inequality for suitable non-negative functions F and G is the following: for each 0 < ε < 1 there

exists C > 0 and δ depending on ε such that for every λ > 0,

∣∣{x ∈ Rn : F (x) > 2λ and G(x) ≤ δλ}
∣∣ ≤ Cε∣∣{x ∈ Rn : F (x) > λ}

∣∣. (1.28)

This estimate gives us a comparison of the (Lebesgue) measure of the level sets of F and G.

They allow us to control various norms of F by that of G. This has direct applications for

operators, where one tries in practice to control the operator under study by another (maximal)

operator whose mapping properties are known. For instance if fB is the average of f over the

ball B and setting

M#f(x) = sup
B3x

1

|B|

∫
B

|f − fB | , (1.29)
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then taking F = Mf (whereM is the Hardy–Littlewood operator defined in (1.9)) andG = M#f

in (1.28) gives us the following well known Fefferman–Stein sharp inequality [57]:

‖Mf‖Lp ≤ Cp
∥∥M#f

∥∥
Lp
, (1.30)

which is valid for all 0 < p < ∞. Now if T is a Calderón–Zygmund operator then it can be

shown that for almost every x ∈ Rn,

M#(Tf)(x) ≤ C
(
M
(
|f |2

)
(x)
)1/2

. (1.31)

Since the operator M
(
|·|2
)1/2

is bounded on Lp(Rn) for all p > 2, then the conjunction of (1.30)

and (1.31) leads to the conclusion that T is bounded on Lp(Rn) for all p > 2.

One can also obtain weighted versions of (1.28) and (1.30) by replacing the Lebesgue

measure dx by wdx, where w ∈ A∞. This allows us to obtain the boundedness of operators on

Lp(w). In particular combining these weighted versions of (1.28) and (1.30) with (1.31) gives

the boundedness of Calderón–Zygmund operators on Lp(w) for all 1 < p <∞ and w ∈ Ap.

However, recall that singular integrals associated to Schrödinger operators fall outside

the Calderón–Zygmund class, with one consequence being that boundedness on Lp for such

operators may hold only for a strict subset of (1,∞). Therefore we need appropriate extensions

of the good-λ techniques that can account for this. This was done in [13] and [11], inspired by

the techniques in [77]. In these works the authors gave some good-λ inequalities for M and some

ad hoc sharp functions,

M#
A f(x) = sup

B3x

( 1

|B|

∫
B

|f −ABf |p0
)1/p0

, (1.32)

where the AB is some suitably chosen averaging operator over the ball B that is related to

the operator T under investigation. The first advantage is this allows one to obtain analogues

of (1.31) with the exponent of 2 replaced by p0, which can be any fixed number between 1 and∞.

The second advantage is that the good-λ inequalities involve two parameters, and therefore allow

for an upper restriction on p in (1.30) that is strictly less than∞. As a consequence the methods

produce intervals of boundedness that can be a strict subset of (1,∞).
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In [16] these inequalities were extended in several directions: from unweighted measures

to weighted measures with A∞ weights, and from operators to functions. They appear as follows:

under suitable conditions on non-negative functions F and G, there exists K0 ≥ 1 and C > 0

such that for each K ≥ K0, δ ∈ (0, 1), w ∈ Bs′ , and all λ > 0

w
(
{x ∈ Rn : MF (x) > Kλ and G(x) ≤ δλ}

)
≤ C

( 1

Kq
+

δ

K

)1/s

w
(
{x ∈ Rn : MF (x) > λ}

)
. (1.33)

The two parameters are K and δ. See Theorem 4.4 for the full statement of this result, which

is reproduced from [16]. This was used in [18] to study Riesz transforms on manifolds and

the method was adapted in [6] to study the first-order Riesz transforms associated to magnetic

Schrödinger operators.

Our observation in Chapter 4 is that the a priori Lp(Rn)-boundedness of ∇L−1/2 and

the pointwise bounds on the heat kernel of L are enough to allow the same approach to work,

and allows us also to prove the implication (a) =⇒ (b) in Theorem 1.5. We also use the same

machinery combined with (1.26) to obtain results for the second-order Riesz transforms with

reverse Hölder potentials (Theorem 4.3).

We now discuss the techniques of Chapter 5 and the proof of Theorem 1.7. As mentioned

earlier, in [30] the authors introduced and studied some new weight classes AL∞ adapted to

L = −∆ + V . These weights are locally (within the region defined by γ) like the Muckenhoupt

weights A∞, but have larger growth outside γ. The techniques employed were in a similar spirit

to that of [93] and depended heavily on kernel estimates, particularly the regularity as seen

in (1.23), and on the comparison between operators associated to L with operators associated

to −∆.

The article [106] brought methods that were closer in essence with classical harmonic

analysis and Calderón–Zygmund theory in the sense of [100]. The author introduced two maxi-
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mal operators adapted to L (with a parameter η > 0),

ML
η f(x) = sup

B3x

1(
1 + rB

γ(xB)

)η 1

|B|

∫
B

|f(y)| dy (1.34)

and

M#,L
η f(x) = sup

B3x
rB≤γ(xB)

1

|B|

∫
B

|f − fB |+ sup
B3x

rB>γ(xB)

1(
1 + rB

γ(xB)

)η 1

|B|

∫
B

|f | , (1.35)

generalising the Hardy–Littlewood maximal operator and the Fefferman–Stein sharp maximal

operator (1.29) respectively. The author obtained the following key facts for these operators.

The first is an analogue of (1.30), valid for all 0 < p <∞, w ∈ AL∞, and all η > 0 :

∥∥ML
η f
∥∥
Lp(w)

≤ Cp
∥∥M#,L

η f
∥∥
Lp(w)

. (1.36)

This was proved using good-λ inequalities similar to that in (1.28). The second is the following

analogue of (1.31),

M#,L
η (Tf)(x) ≤ C

(
ML

η

(
|f |s
)
(x)
)1/s

. (1.37)

Here T is an operator associated to L, and examples are (adjoints of) ∇L−1/2, V 1/2L−1/2

and V L−1. The exponent s depends on T . As before, (1.36) and (1.37) leads to the boundedness

of T for s < p <∞.

Since these estimates rely on classical techniques, and in particular some kind of kernel

regularity, there is a restriction on the type of operators that can be handled. It is natural

to wonder whether we can bring the flexibility of the machinery from [16] to the study of

these weights. Three observations serve as motivation. The first is that with respect to AL∞

weights, the operator ∇2L−1 has remained untreated in the literature (Question 2). Secondly

the techniques of Chapter 4 are able to handle the operator ∇2L−1 for A∞ weights (notably

Theorem 4.3). The third observation is that the AL∞ weights behave ‘locally’ like the A∞

weights.

The task of adapting the machinery from [16] to AL∞ weights is carried out in Chapter 5.

The first step is an adaptation of the good-λ result of [16] in Theorem 4.4, and this is done in
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Theorem 5.10. There we extend (1.33) toAL∞ weights under suitable conditions on F and G. The

reader may observe that besides replacing the maximal operator M by ML
η , the assumptions

remain unchanged in the local scale. The key difference is that in the global scale (for balls

B(x, r) with radii that exceed a fixed multiple of γ) we impose the condition

1(
1 + r

γ(x)

)η 1

|B(x, r)|

∫
B(x,r)

F (y) dy ≤ G(z), ∀ z ∈ B(x, r).

The second step is to use this to extend the maximal criterion in Theorem 4.6 to Theorem 5.16.

Finally we prove Theorem 1.7 by applying this criterion with the kernel estimate (1.26). In

contrast to the proof of Theorem 4.3, here the extra decay for the heat kernel estimates in the

scale t > γ(x) plays a decisive role.

We remark that our techniques allow us to take the study of operators with AL∞ weights

in the direction of [13, 16, 45] discussed earlier, and as a consequence we can recover some

of the results in [30] and [106]. For example estimate (1.36) can be obtained by choosing F

and G appropriately in Theorem 5.10 (see Section 5.2.1). While our main application is to

the operator ∇2L−1, we believe the same method can also be applied to the first-order Riesz

transforms ∇L−1/2 and V 1/2L−1/2, but we do not give these details in this thesis.

We now explain the techniques behind our Morrey space results. Recall that depending

on V , the Riesz transforms in Theorem 1.8 may not be of Calderón–Zygmund type. One

approach to studying singular integrals on Morrey spaces may be to follow the route of the Lp

case. For instance one may attempt to obtain an analogue of (1.30):

‖Mf‖Lp,λ ≤ Cp
∥∥M#f

∥∥
Lp,λ , 1 < p <∞, 0 < λ < n. (1.38)

Then combining this with the pointwise bound of (1.31) already established allows us to obtain

results for Calderón–Zygmund operators. One method of proving (1.38) is to first obtain a local

version of (1.28) with F = Mf and G = M#f and then pass from this to the Morrey norm.

This is what is done in [107] for some generalisations of the Morrey spaces.
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However, since we are working with operators beyond the Calderón–Zygmund theory, the

classical sharp operator M# and (1.31) may not be sufficient. Motivated by the success of the

new paradigm for Lp(Rn) and Lp(w) spaces discussed earlier in this section, the question arises

naturally of whether we can bring these techniques to the study of operators on Morrey spaces.

The answer is yes, and follows directly from a principle that has been implicit in the literature

on Morrey spaces since at least [34]. We formulate it here as follows.

Principle 1.10. Results for weighted Lesbesgue spaces with A∞ weights lead naturally to cor-

responding results for Morrey spaces.

This idea was introduced first in [34] through the key observation that if 1B is the indicator

function of a ball B, and M is the Hardy–Littlewood maximal operator, then the function

(M1B)δ is an A1 weight for any δ ∈ (0, 1). This, combined with the decomposition

M1B ≈ 1B +

∞∑
j=0

2−jn12j+1B\2jB ,

allowed them to obtain firstly a simple proof of the boundedness of the maximal function:

‖Mf‖Lp,λ ≤ Cp ‖f‖Lp,λ 1 < p <∞, 0 < λ < n,

and secondly, new proofs for the boundedness of Riesz potentials (originally given in [2]) and

of Calderón–Zygmund operators on Morrey spaces. In [42] these ideas were continued and used

to give a simple proof of (1.38) which was then applied to give estimates for fractional maximal

operators and for commutators. We give an explicit formulation of the calculation used in these

results in Lemma 6.3.

We observe that in the proofs of the above results, no other properties of the operators

are used besides their boundedness on weighted spaces. In other words, if an inequality holds

on the weighted spaces for a certain range of p and collection of weights then it should imply

a corresponding inequality for the Morrey spaces for a certain range of p and λ. This is a

quantitative version of Principle 1.10. An explicit statement of this was first given in [9] in the

context of Morrey spaces on spaces of homogeneous type. We give a special case of their result
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for Rn in the following.

Theorem 1.11 ([9]). Let F and G be non-negative Borel measurable functions on Rn. Set

A(α)
1 = {w ∈ A1 : ‖w‖∞ ≤ 1 and A1,w ≤ α}

where ‖w‖∞ = inf {t > 0 : |{x ∈ Rn : w(x) > t}| = 0} and A1,w is the infimum of all the con-

stants C > 0 for which Mw ≤ Cw almost everywhere. Suppose that for every α ≥ 1, there

exists c(α) > 0 such that the following inequality holds.

∫
Rn
F (x)w(x) dx ≤ c(α)

∫
Rn
G(x)w(x) dx, ∀w ∈ A(α)

1 . (1.39)

Then there exists C1, α0 > 0 both depending only on n such that

‖F‖L1,λ ≤ C1c(α0) ‖G‖L1,λ , 0 < λ < n. (1.40)

We can apply this to the study of operators in the following fashion: if T is an operator and

(1.39) holds with F = |Tf |p, G = |f |p, for some fixed p ∈ (0,∞) and any f from a suitable class

of test functions, then through (1.40) T can be extended to a bounded operator on Lp,λ(Rn)

for all 0 < λ < n. This gives us a way to obtain results for operators on Morrey spaces that

have no kernel regularity. In particular the machinery developed in the aforementioned works

[13, 16, 17, 38, 45] can be made available through this principle. This forms our approach in

this thesis.

Before proceeding we remark here that for completeness’ sake, Section 6.1 provides proofs

of some of these ideas. It contains the calculation mentioned earlier (Lemma 6.3) as well as a

proof of a version of Theorem 1.11 with simpler hypotheses (Proposition 6.5). However we

do give a new application of these ideas to the study of ‘fractional type’ operators, which are

modelled on the classical Riesz potentials (−∆)−α/2. The work here is inspired by [17], where

as an application of the ideas in [16], the authors give some criterion for the study of fractional

type operators on the weighted Lebesgue spaces. These are applied to the fractional powers

of divergence form elliptic operators with complex coefficients. Our result is an adaptation of
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theirs and is given in Theorem 6.11. In Section 6.3 we apply this to Schrödinger operators and

divergence form operators.

It is natural to wonder if the class A1 can be relaxed in the hypotheses for (1.39). We

do this in Theorem 6.15. Motivated by the results in Section 1.1.1, we show that if (1.39) holds

(with |F |p and |G|p in place of F and G respectively) for some fixed numbers 1 ≤ p0 < p <

q0 ≤ ∞ and all weights w ∈ Ap/p0 ∩ B(q0/p)′ , then the Morrey inequality (1.40) holds for all

pn/q0 < λ < n. This is a refinement of Theorem 1.11 (and Proposition 6.5) in the sense that

weakening the hypothesis to admit a larger collection of weights leads to a tightening of the range

of Morrey spaces in the conclusion. The proof of this result utilises a new characterisation of

the Morrey spaces given in the recent work of D.R. Adams and J. Xiao [4, 5]. There the authors

characterise the Morrey spaces and their preduals in terms of Hausdorff capacity and A1 weights

(see expression (6.6)).

With this result in hand, we can prove our main results for the Schrödinger operators.

We combine Theorem 6.15 with the results from Chapter 4 to give the proof of Theorem 1.8

and the implication (b) =⇒ (c) in Theorem 1.5. The details can be found in Section 6.3.

We also give another quantitative version of Principle 1.10 in Theorem 6.16, an extrapo-

lation result for Morrey spaces, which as far as we are aware is a first of its kind. The concept of

extrapolation for A∞ weights is well known (see [91]): if a weighted inequality holds on Lp0(w)

for some p0 ∈ [1,∞) and all w ∈ Ap0 , then it holds for all p ∈ (1,∞) and w ∈ Ap. In [16] it was

shown that the range of exponents need not be all of (1,∞) (this is reproduced in Proposition 4.9

of this thesis). We use these ideas for extrapolation on Lp(w) spaces with Ap weights to obtain

a similar principle for Morrey spaces: we show that an inequality on the Morrey spaces for a

fixed pair of parameters (p0, λ0) propagates to a certain range of (p, λ).

Finally, it is interesting to ask to what extent a converse to Principle 1.10 holds. That

is, whether results on Morrey spaces lead to corresponding results for weighted Lebesgue spaces

with Ap weights. However we have not obtained any results in this direction here.
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We end this section with some comments on the proof of the main result in Chapter 8,

which is Theorem 8.3. In this result we give Lp(Rn) estimates for the Riesz transform ∇L−1/2

associated to the Schrödinger operator L = −∆ + V with V belonging to a class that is slightly

more general than the reverse Hölder class studied throughout the rest of the thesis. This

class was introduced in [54] and [50] and is defined, roughly speaking, by three aspects: there

is a collection of slowly varying cubes covering Rn that determines the ‘local’ regions; within

these cubes the potential V satisfies a certain estimate involving the classical heat semigroup et∆;

outside these cubes the heat kernel of L satisfies extra decay. We refer the reader to Definition 8.1

and the remarks following for more precise details. We mention also that we impose the condition

∥∥√t∇e−tL∥∥
Lp→Lp ≤ Cp,

but since this is necessary for ∇L−1/2 to be Lp-bounded, this is relatively harmless.

Although the good-λmethods of [11, 13, 16] have been successfully applied to Lp estimates

such as divergence form elliptic operators and to the Laplace–Beltrami operator on a manifold,

it is not clear if the same approach can work for the Schrödinger operator. This is in spite of the

fact that weighted (and even Morrey) estimates can follow through, as some of the earlier parts

of this thesis shows. It appears the main obstacle here is that while these operators satisfy the

so-called conservation property e−tL(1) = 1, this property is completely lacking for Schrödinger

operators in general. However in [13] section 4, these methods are adapted to give Lp estimates

for local Riesz transfoms ∇(−∆ + a)−1/2, with a > 0. Since the operator −∆ + a is a special

case of the Schrödinger operators studied thoughout this thesis, results in this direction may be

indeed possible.

Instead we return in a sense to [93] and employ techniques in the spirit of that work.

In [50] the authors give a Riesz transform characterisation of the Hardy space H1
L associated

to these operators. Our approach is to adapt their argument which proceeds as follows. The

main point is to control the adjoint of ∇L−1/2 by the maximal operator M
(
|·|s
)1/s

for some

suitable s > 1. We split our analysis into the local and global regions, where locality is defined
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by the cubes in the definition of V . In the global regions we use the extra decay in the heat

kernel (again from the definition of V ), while in the local regions we base our analysis on a

comparison between the heat kernel pt(x, y) of L with the classical heat kernel ht(x, y) of −∆,

through the well known perturbation formula

et∆ − e−tL =

∫ t

0

e(t−s)∆V e−sL ds.

We direct the reader to Chapter 8 for the details.

1.4 Organisation of the thesis

We describe the structure of the rest of this thesis. In Chapter 2 we give some basic defini-

tions and preliminary facts concerning the Schrödinger operator, reverse Hölder classes, and

Muckenhoupt weights. We also fix some notation that will be used throughout the thesis.

In Chapter 3 we collect together the various estimates on the heat kernel of the Schrödinger

operator with a non-negative potential. The main result is Proposition 3.7 but we attempt to

be exhaustive for the class of reverse Hölder potentials. Accordingly, we also give estimates

for the first derivatives in Proposition 3.6, as well as pointwise bounds on the time derivatives

(Proposition 3.4), and pointwise bounds on the gradient of the heat kernel when the potential

is smooth enough (Proposition 3.5).

The results for weighted Lebesgue spaces, Morrey spaces, and Hardy spaces are given in

Chapters 4, 5, 6 and 7 respectively.

Our study of weighted spaces is divided over two chapters. Chapter 4 is concerned with

Muckenhoupt weights. We prove the equivalence of the first two items in Theorem 1.5 which

is contained in Theorem 4.1 and 4.2. We also give a proof for weighted estimates for the

second-order Riesz transforms in Theorem 4.3. The second objective of this chapter is to lay a

foundation for the next chapter.

Chapter 5 continues the study of weights but with a class larger than that of the Mucken-

houpt weights. We develop the machinery needed by adapting the techniques from the previous
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chapter, before applying this to prove Theorem 1.7 which is contained in Theorem 5.1.

In Chapter 6 we study Morrey spaces. The first goal of this chapter is to develop the theme

of applying weighted estimates to obtain estimates for Morrey spaces (Sections 6.1 and 6.2)

culminating in Theorem 6.15, which is the main result of these sections. The second goal is to

apply this to Schrödinger operators: the proof of the equivalence between the first and last items

in Theorem 1.5 (Theorem 6.1), and also results for the second-order Riesz transforms when we

specialise to the reverse Hölder class (Theorem 6.2). Lastly we give some further applications

of Theorem 6.15.

Chapter 7 is devoted to Hardy spaces. We give the proof of Theorem 1.9 in the first part

of the chapter. In the second part we extend some of these results to weighted Hardy spaces.

We conclude this thesis with Chapter 8 where we give the result for the Riesz transform

associated to a more general class of potentials.
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Chapter 2

Some preliminaries

2.1 Schrödinger operators

In this section we give the definition of the Schrödinger operator via forms and introduce the

semigroup associated to this operator. For more on forms, operators and semigroups we refer

the reader to [41, 64, 84, 96].

Let n ≥ 1 and V be a non-negative locally integrable function on Rn. We define the

form QV by

QV (u, v) :=

∫
Rn
∇u · ∇v +

∫
Rn
V uv

with domain

D(QV ) =
{
u ∈W 1,2(Rn) :

∫
Rn
V |u|2 <∞

}
.

It is well known that this symmetric form is closed. It was also shown by Simon [95] that this

form coincides with the minimal closure of the form given by the same expression but defined

on C∞0 (Rn). In other words, C∞0 (Rn) is a core of the form QV .

Let us denote by L the self-adjoint operator associated with QV . Its domain is

D(L) :=
{
u ∈ D(QV ) : ∃ v ∈ L2(Rn) with QV (u, ϕ) =

∫
vϕ, ∀ϕ ∈ D(QV )

}
.

We write formally L := −∆ + V .
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We now introduce the heat kernel associated to L. Consider the following parabolic

equation

( ∂
∂t

+ L
)
u(x, t) = 0, (x, t) ∈ Rn × (0,∞).

We are interested in the fundamental solution Γ(x, y, t) of this equation. That is, Γ satisfies, for

each y ∈ Rn

( ∂
∂t

+ L
)

Γ(x, y, t) = 0, ∀x ∈ Rn, x 6= y, t > 0,

lim
t→0

Γ(x, y, t) = δ(x− y).

This fundamental solution is called the heat kernel of L. We use the notation pt(x, y) in place

of Γ(x, y, t). The heat kernel generates a semigroup family of integral operators associated to L,

which we shall denote by
{
e−tL

}
t>0

and refer to as the heat semigroup associated to L. That

is, pt(x, y) is the integral kernel associated to e−tL in the following sense.

e−tLf(x) =

∫
Rn
pt(x, y) f(y) dy.

We denote by ht(x, y) the heat kernel of −∆ in Rn. When n ≥ 3 for each x, y ∈ Rn and t > 0

it is well known that

ht(x, y) =
1

(4πt)n/2
e−|x−y|

2/4t. (2.1)

This is the integral kernel of the semigroup generated by −∆. That is,

et∆f(x) =

∫
Rn
ht(x, y)f(x) dy.

We also record the following fact, which will be used in Section 3.2.2 :

( ∂
∂t

+ L
)−1

f(x, t) =

∫ t

0

e−(t−s)Lf(x, s) ds =

∫
Rn

∫ t

0

pt−s(x, y)f(y, s) ds dy. (2.2)

That is, the integral kernel of
( ∂
∂t

+ L
)−1

is pt−s(x, y)1(0,t)(s).

A useful formulation of the semigroup property is:

p2t(x, y) =

∫
Rn
pt(x, u) pt(u, y) du = e−tLpt(·, y)(x). (2.3)
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for any x, y ∈ Rn and t > 0. Indeed,∫
p2t(x, y)f(y) dy = e−2tLf(x) = e−tLe−tLf(x)

=

∫
pt(x, u)e−tLf(u) du

=

∫
pt(x, u)

(∫
pt(u, y)f(y) dy

)
du

=

∫ (∫
pt(x, u) pt(u, y) du

)
f(y) dy

=

∫
e−tLpt(x, y)f(y) dy.

The following perturbation formula holds as a consequence of perturbation for semigroups of

operators (see for example [85]). It is used in the proof of Theorem 8.3.

et∆ − e−tL =

∫ t

0

e(t−s)∆V e−sLds =

∫ t

0

es∆V e−(t−s)Lds. (2.4)

This gives

ht(x, y)− pt(x, y) =

∫ t

0

∫
Rn
ht−s(x, z)V (z)ps(z, y) dz ds =

∫ t

0

∫
Rn
hs(x, z)V (z)pt−s(z, y) dz ds.

We remark that we can interchange the role of −∆ and L in (2.4).

2.2 Notation

We collect here some standard notation we shall employ throughout this thesis.

If k ∈ Z+ we write ∂k to mean the derivative in the k-th variable
∂

∂xk
, and ∂2

k to mean

the second derivative in the k-th variable
∂2

∂x2
k

. At times we will abuse notation and write ∇

and ∇2 for ∂j and ∂j∂k respectively. For α ∈ R we use the notation [α] to mean the greatest

integer not exceeding α.

On Rn the classical Riesz transforms ∂j(−∆)−1/2 for j ∈ {1, . . . , n} are given (for-

mally) by

∂j(−∆)−1/2 =
1√
π

∫ ∞
0

∂je
t∆ dt√

t
.

The second-order Riesz transforms for j, k ∈ {1, . . . , n} are given by

∂j∂k(−∆)−1 =

∫ ∞
0

∂j∂ke
t∆ dt.
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We will often write ∇(−∆)−1/2 and ∇2(−∆)−1 in place of ∂j(−∆)−1/2 and ∂j∂k(−∆)−1/2.

The first-order Riesz transforms associated to L are ∂jL
−1/2 for j ∈ {1, . . . , n} and

V 1/2L−1/2. The second-order Riesz transforms are ∂j∂kL
−1 for j, k ∈ {1, . . . , n} and V L−1. We

will often write ∇L−1/2 and ∇2L−1 as shorthand for ∂jL
−1/2 and ∂j∂kL

−1 respectively.

The following well known representation formulae will be used regularly:

L−α/2 =
1

Γ(α/2)

∫ ∞
0

e−tL
dt

t1−α/2
, α > 0,

∇L−1/2 =
1√
π

∫ ∞
0

∇e−tL dt√
t
,

∇2L−1 =

∫ ∞
0

∇2e−tL dt.

Similar formulae hold for V 1/2L−1/2 and V L−1. One can arrive at these via functional calculus

or spectral theory (see [64]).

Our underlying measure space, unless otherwise noted, will be Rn with the Lebesgue

measure. Given a measurable set E ⊂ Rn we write |E| to mean the Lebesgue measure of E.

The notation
∫
E
f(x) dx will mean the Lebesgue integral of f over E. At times we often drop

the dx to simplify notation. We also use the notation

∫
E

f :=
1

|E|

∫
E

f

to mean the average of f over the measurable set E. Given a measure space (X,µ) and

1 ≤ p < ∞, we denote by Lp(X,µ) the Banach space of complex valued functions on X

that are p-integrable. That is we say that f ∈ Lp(X,µ) if the Lp(X,µ)-norm of f ,

‖f‖Lp(X) =
(∫

X

|f |p dµ
)1/p

is finite. When X = Rn and dµ = dx and we will often write Lp in place of Lp(Rn). If dµ = wdx

for some locally integrable function w, then we write Lp(w) instead. When we use the expressions

almost everywhere or almost every x (abbreviated “a.e.” or “a.e.x”) we mean that the properties

to which they refer hold except on a set of measure zero. Given normed spaces
(
X, ‖·‖X

)
and(

Y, ‖·‖Y
)
, the expression T : X → Y will mean that T is a bounded mapping or operator
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(or admits a bounded extension) from X into Y . In this case we write ‖T‖X→Y to mean the

operator norm of T , defined as ‖T‖X→Y := inf{C > 0 : ‖Tx‖Y ≤ C ‖x‖X}. When Y = X we

will simply say that T is ‘bounded on X’.

When we refer to a ball centred at x ∈ Rn with radius r > 0, we mean the open set

B(x, r) := {y ∈ Rn : |x− y| < r}. When we mention ‘a ball B’ we mean that a ball with a

designated centre xB and radius rB has been chosen and fixed. By a cube Q = Q(xQ, lQ) in

Rn we mean a cube centred at xQ with sidelength lQ, and with sides parallel to the coordinate

axes. If λ > 0 then we write λB = B(xB , λrB) (respectively λQ = Q(xQ, λlQ)) to mean the ball

with the same centre as B but with radius dilated by a factor of λ (respectively a cube with the

same centre as Q but with sidelength dilated by a factor of λ). We define the distance between

two subsets E,F ⊂ Rn as dist(E,F ) := inf{|x− y| : x ∈ E, y ∈ F}. The notation 1E will be

used to denote the indicator or characteristic function of the set E: 1E(x) = 1 if x ∈ E and 0

if x /∈ E.

Given a function γ : Rn → (0,∞), we define balls associated to γ by B(x, γ(x)). We shall

use the notation Bγ(x) := B(x, γ(x)). When we mention a ball Bγ we mean that a ball with a

designated centre xB and radius γ(xB) has been fixed. That is, Bγ := B(xB , γ(xB)).

We will often discretise the space Rn into concentric annuli centred at a fixed ball B as

follows:

Uj(B) :=


B, j = 0;

2jB\2j−1B, j ≥ 1.

(2.5)

We can replace B by the balls Bγ or a cube Q, with the obvious modifications.

Given a number p ∈ (0,∞] we shall use the notation p′ to denote the conjugate exponent

of p. That is, p and p′ satisfy the relationship

1

p
+

1

p′
= 1. (2.6)

More explicitly, p′ = p/(p − 1) if p 6= 1. When p = 1 we set p′ = ∞, and when p = ∞ we
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set p′ = 1. We also write p∗ to denote the Sobolev exponent of p. This is defined as

p∗ :=


np

n− p
, p < n;

∞, p ≥ n.

Finally we follow the convention that the symbol C in a string of inequalities will mean a

constant that may change over the course of the inequalities, but does not depend on the essential

variables under focus. The symbol . will mean the same thing but with the C suppressed.

2.3 The reverse Hölder class

In this section we define the class of potentials that is the focus of this thesis, and give a list of

their known properties. These properties originated in [93].

Definition 2.1 (Reverse Hölder class). Let 1 < q <∞. We say that a non-negative and locally

integrable function V belongs to the reverse Hölder class of order q if there exists C > 0 such

that (∫
B

V q
)1/q

≤ C
∫
B

V

for all balls B. In this case we write V ∈ Bq. We say that V ∈ B∞ if there exists C > 0 such

that for all balls B

V (x) ≤ C
∫
B

V a.e. x ∈ B.

For all 1 < s < q, it is easily seen that Bs ⊃ Bq. Furthermore, V (x)dx is a doubling measure.

That is, there is a constant C0 > 1 such that

∫
2B

V (x) dx ≤ C0

∫
B

V (x) dx.

It follows that for each λ ≥ 1 there exists n0 > 0 and C > 0 such that

∫
λB

V (x) dx ≤ Cλn0

∫
B

V (x) dx. (2.7)

In fact we can take n0 = log2 C0.
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Definition 2.2 (Critical radius). For V ≥ 0 we define the critical radius associated to V at x

by the following expression.

γ(x) = γ(x, V ) := sup
{
r > 0 : r2

∫
B(x,r)

V ≤ 1
}
. (2.8)

As an example if V (x) = |x|2 then γ(x) ∼ 1

1 + |x|
.

Lemma 2.3 ([93] Lemmas 1.2 and 1.8). If n ≥ 1 and V ∈ Bq for some q > 1 then there exists

C > 0 such that the following holds:

(a) for each λ > 1 and all balls B,

r2
B

∫
B

V ≤ Cλn/q−2(λrB)2

∫
λB

V ,

(b) for all balls B satisfying rB ≥ γ(xB),

r2
B

∫
B

V ≤ C
( rB
γ(xB)

)σ
where σ = n0 − n+ 2.

Lemma 2.4 ([93] estimates 1.6 and 1.7). Let V ∈ Bq. Then the following holds.

(a) If q > n/2 then there exists C = C(n, q, V ) such that for any ball B,

∫
B

V (x)

|xB − x|n−2 dx ≤
C

rn−2
B

∫
B

V (x) dx.

(b) If q ≥ n then there exists C > 0 such that for any ball B,

∫
B

V (x)

|xB − x|n−1 dx ≤
C

rn−1
B

∫
B

V (x) dx.

The next property states that the function γ is slowly varying.

Lemma 2.5 ([93] Lemma 1.4). Let V ∈ Bq with q ≥ n/2. Then there exists C0 > 0 and κ0 ≥ 1

with

C−1
0 γ(x)

(
1 +
|x− y|
γ(x)

)−κ0

≤ γ(y) ≤ C0 γ(x)
(

1 +
|x− y|
γ(x)

) κ0
κ0+1

. (2.9)
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In particular if x, y ∈ B(xB , λγ(xB)) for some λ > 0, then

γ(x) ≤ Cλγ(y) (2.10)

where Cλ = C2
0 (1 + λ)

2κ0+1
κ0+1 .

A consequence of (2.10) is that Rn admits a covering with ‘critical balls’ that has bounded

overlap.

Lemma 2.6 ([51]). Let V ∈ Bq with q ≥ n/2. Let γ : Rn → (0,∞) be as defined in (2.8).

Then there exists a countable collection of critical balls
{
Bγ
j

}
j

=
{
B
(
xBj , γ(xBj )

)}
j

satisfying

the following properties.

(i)
⋃
jB

γ
j = Rn.

(ii) For every σ ≥ 1 there exists constants C and N such that
∑
j 1σBγ

j
≤ CσN .

Remark 2.7. We only require the following dilation. Set σ = C2κ/(κ+1) where C and κ are

from (2.9). Then there exists C and Ñ such that
∑
j 1σBγ

j
≤ CσÑ and it follows from (2.9)

that for each j, ⋃
x∈Bγ

j

Bγ(x) ⊆ B̃γ
j

where B̃γ
j = σBγ

j .

2.4 Muckenhoupt weights

The class of Muckenhoupt weights will play an important role throughout this thesis. We

introduce them here and give some of their well known properties. Some standard references for

these weights include [59, 60, 101].

Definition 2.8 (Muckenhoupt weights). Let p ∈ (1,∞) and p′ be its conjugate exponent as

defined in (2.6). For a non-negative and locally integrable function w, we say that w ∈ Ap if

there exists C > 0 such that for all balls B

(∫
B

w
)(∫

B

w1−p′
)p−1

≤ C.
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We say that w ∈ A1 if there exists C > 0 such that for all balls B

∫
B

w ≤ Cw(x) a.e. x ∈ B.

We also define A∞ :=
⋃

1≤p<∞
Ap.

Some well known properties concerning the class of Muckenhoupt weights and the class of reverse

Hölder weights are summarised in the following. For their proofs see [16] Proposition 2.1 (or the

standard references mentioned at the start of this section).

Proposition 2.9. One has

(a) 1 ≤ p1 ≤ p2 <∞ =⇒ A1 ⊂ Ap1 ⊂ Ap2 .

(b) 1 < p1 ≤ p2 ≤ ∞ =⇒ Bp1 ⊃ Bp2 ⊃ B∞.

(c) Let p ∈ (1,∞). Then w ∈ Ap ⇐⇒ w1−p′ ∈ Ap′ .

(d) w ∈ Ap for some 1 < p <∞ =⇒ w ∈ Ap0 for some p0 such that 1 < p0 < p.

(e) w ∈ Bq for some 1 < q <∞ =⇒ w ∈ Bq0 for some q0 such that q < q0 <∞.

(f) Let p, q ∈ [1,∞). Then w ∈ Ap ∩ Bq ⇐⇒ wq ∈ Aq(p−1)+1.

(g) A∞ =
⋃

1<q≤∞
Bq.

We also define the following sets of exponents associated to a fixed weight, first introduced

in [16]. For w ∈ A∞ and 1 ≤ p0 < q0 ≤ ∞ we set

Ww(p0, q0) :=
{
p ∈ (p0, q0) : w ∈ Ap/p0 ∩ B(q0/p)′

}
.

If we define rw := inf {r > 1 : w ∈ Ar} and sw := sup {s > 1 : w ∈ Bs} . then we have

Ww(p0, q0) =
(
p0rw ,

q0

s′w

)
.

The case w ≡ 1 corresponds to the Lebesgue measure on Rn so that in this situation we have

W1(p0, q0) = (p0, q0). If q0 = ∞ then Ww(p0,∞) =
{
p ∈ (p0, q0) : w ∈ Ap/p0

}
. Note also that
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these sets can be empty. See for instance [16] Remark 4.3. For more information on these sets

of exponents we refer the reader to [16] Section 4.

The following describes the doubling property for Muckenhoupt weights.

Lemma 2.10 ([59]). Let w ∈ Ap for some p ≥ 1. Then for any ball B, there exists C > 0 such

that

w(2B) ≤ Cw(B).

More generally for each λ > 1,

w(λB) ≤ Cλnpw(B).

where C is independent of λ and B.

Lemma 2.11 ([59]). Let w ∈ Ap ∩ Bq for some p ≥ 1 and q > 1. Then there exist C1, C2 > 0

such that

C1

(
|E|
|B|

)p
≤ w(E)

w(B)
≤ C2

(
|E|
|B|

)1−1/q

for any ball B and measurable subset E ⊂ B.



Chapter 3

Heat kernel estimates

The heat kernel and the heat semigroup associated to L = −∆ + V play a crucial role in our

techniques. In this chapter we present various estimates involving the heat kernels of Schrödinger

operators and their derivatives. In the first section (Section 3.1) we summarise the known

estimates for the heat kernel associated to L when V is non-negative and locally integrable.

Then in Section 3.2 we specialise to reverse Hölder potentials and give our improvements on

these estimates.

The main result of this chapter is Proposition 3.7 which is new. It plays an important

role in the results of the subsequent chapters.

The following observation will be useful throughout the rest of the chapter: for any c > 0

there exists C > 0, depending only on c and n, such that for every y ∈ Rn and t > 0,

∫
Rn
e−c

|x−y|2
t dx ≤ C tn/2.

3.1 Non-negative potentials

It is known that since V is non-negative and locally integrable, by the Feynman–Kac formula

the heat kernel of L admits the following so-called Gaussian upper bound (see [96]):

0 ≤ pt(x, y) ≤ (4πt)−n/2e−
|x−y|2

4t . (3.1)

However while pointwise bounds on the derivatives of the heat kernel are generally not available,

we do have the following weighted integral estimates. These often suffice in the analysis of
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singular integrals associated to L.

Lemma 3.1. Let L = −∆ + V on Rn, n ≥ 1 with 0 ≤ V ∈ L1
loc(Rn). Then the heat kernel

pt(x, y) of L satisfies the following.

For each p ∈ [1, 2] there exists positive constants αp, Cp and c such that for all y ∈ Rn,

and t > 0,

(∫
|∇xpt(x, y)|peαp

|x−y|2
t dx

)1/p

≤ Cp
t1/2+n/(2p′)

, (3.2)(∫ ∣∣V 1/2(x) pt(x, y)
∣∣peαp |x−y|2t dx

)1/p

≤ Cp
t1/2+n/(2p′)

. (3.3)

For each k ∈ N there exists Ck > 0, c > 0 satisfying

∣∣∣ ∂k
∂tk

pt(x, y)
∣∣∣ ≤ Ck

tn/2+k
e−c
|x−y|2
t (3.4)

for every x, y ∈ Rn, and t > 0.

Proof. We show (3.2). The estimate for p = 2 is known. See Lemma 2.5 of [6] (and also [46]).

We shall obtain the estimate below 2. Fix p ∈ [1, 2) and a constant αp ∈ (0, α2/2). Applying

Hölder’s inequality with exponents 2/p and (2/p)′ = 2/(2− p) gives

∫
Rn
|∇xpt(x, y)|p eαp

|x−y|2
t dx =

∫
Rn
|∇xpt(x, y)|p epαp

|x−y|2
t e−(p−1)αp

|x−y|2
t dx

≤
(∫

Rn
|∇xpt(x, y)|2 e2αp

|x−y|2
t dx

) p
2
(∫

Rn
e
−2αp

p−1
2−p

|x−y|2
t dx

) 2−p
2

.

Now since 2αp < α2 the first factor is bounded by a constant multiple of (t−n/2−1)p/2. Also

since p ∈ (1, 2) then (p− 1)/(2− p) > 0 so that the second integral is bounded by a multiple of

(tn/2)1−p/2. Therefore we obtain

∫
Rn
|∇xpt(x, y)|p eαp

|x−y|2
t dx .

( 1

tn/2+1

)p/2
(tn/2)1−p/2 =

1

tnp/2+p/2−n/2

as required.

The estimate (3.3) can be obtained in a similar fashion and we omit the details. For

the estimate on the time derivatives (3.4) we refer the reader to estimate (3.1) of [46] and the

references therein.
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One can improve the ranges for p above 2 in these estimates if V satisfies further conditions.

We turn to this in Section 3.2.

3.2 Potentials from the reverse Hölder class

Under the extra condition that V belongs to a reverse Hölder class the pointwise bounds in (3.1)

can be improved. These improvements were obtained independently by separate authors and

we recall both of these results here. Throughout the rest of this chapter the function γ is the

“critical radius” function defined in Definition 2.2.

Proposition 3.2 ([49] Proposition 2). Assume that V ∈ Bq for some q ≥ n/2 and n ≥ 3. Then

for each N > 0, there exists CN > 0 and c > 0 such that

0 ≤ pt(x, y) ≤ CN
tn/2

e−
|x−y|2
ct

(
1 +

√
t

γ(x)
+

√
t

γ(y)

)−N
. (3.5)

Proposition 3.3 ([74] Theorem 1). Assume that V ∈ Bq with q ≥ n/2 for n ≥ 3, or q > 1 for

n = 2. Then there exists C0, c0, c > 0, 0 < δ < 1 such that for all x, y ∈ Rn and t > 0,

pt(x, y) ≤ C0

tn/2
e−c0

|x−y|2
t e

−c
(

1+
t

γ(x)2

)δ
. (3.6)

We remark that δ depends on the constant κ0 in Lemma 2.5.

Our aim in this section is to show that this improvement (specifically the extra decay

in (3.6)) can be carried over to estimates on various derivatives of the heat kernel. These

estimates will be indispensable throughout the rest of this thesis. We first give a list of these

estimates, before giving the proofs.

The first is an improvement over the time derivative estimates of (3.4).

Proposition 3.4 (Time derivatives). Assume that V ∈ Bq with q ≥ n/2 for n ≥ 3, or q > 1

for n = 2. Let δ be the constant from (3.6). Then there exists c = c(δ) > 0 and c1 > 0 such that

for each k ∈ N there exists Ck > 0 satisfying

∣∣∣ ∂k
∂tk

pt(x, y)
∣∣∣ ≤ Ck

tn/2+k
e−c1

|x−y|2
t e

−c
(

1+
t

γ(x)2

)δ
(3.7)

for every x, y ∈ Rn, and t > 0.
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This will be proved in Section 3.2.1. Similar estimates can be found in [49] where the improve-

ment factor is similar to (3.5).

Next we show that for potentials with enough regularity, one can obtain pointwise bounds

on the first derivatives of the heat kernel.

Proposition 3.5 (Gradient bounds). Let L = −∆ +V on Rn with n ≥ 3. Assume that V ∈ Bq

with q ≥ n. Then the heat kernel pt(x, y) of L satisfies

∣∣∇xpt(x, y)
∣∣ ≤ C

tn/2+1/2
e−c
|x−y|2
t e

−c
(

1+

√
t

γ(x)

)δ
. (3.8)

This is proved in Section 3.2.2.

For q < n, pointwise bounds are not available. However we do have the following weighted

estimate. It is an improvement over estimates (3.2) and (3.3). We remind the reader that the

Sobolev exponent q∗+ has been defined in Section 2.2.

Proposition 3.6 (First derivatives). Assume that V ∈ Bq with q ≥ n/2 for n ≥ 3, or q > 1

for n = 2. Let δ be the constant from (3.6). Set q+ := sup {q > n/2 : V ∈ Bq}. Then for each

p ∈ [1, q∗+) there exists positive constants αp, Cp, c such that for all y ∈ Rn, and t > 0,

(∫
|∇xpt(x, y)|p eαp

|x−y|2
t dx

)1/p

≤ Cp
t1/2+n/(2p′)

e
−c
(

1+
t

γ(y)2

)δ
. (3.9)

Also for each p ∈ [1, 2q+) there exists positive constants αp, Cp, c such that for all y ∈ Rn,

and t > 0,

(∫ ∣∣V 1/2(x)pt(x, y)
∣∣peαp |x−y|2t dx

)1/p

≤ Cp
t1/2+n/(2p′)

e
−c
(

1+
t

γ(y)2

)δ
. (3.10)

Note that αp also depends on q+. The proof of this result can be found in Section 3.2.3.

The following is the main result of this chapter. It gives the technical estimates behind

the results for the second-order Riesz transforms ∇2L−1 and V L−1 in Chapters 4, 7, and 6. It

will be proved in Section 3.2.4.

Proposition 3.7 (Second derivatives). Assume that V ∈ Bq with q ≥ n/2 for n ≥ 3, or q > 1

for n = 2. Let δ be the constant from (3.6). Set q+ := sup {q > n/2 : V ∈ Bq}. Then for each
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p ∈ [1, q+) there exists βp, Cp, c > 0 such that for all y ∈ Rn, and t > 0,

(∫ ∣∣∇2
xpt(x, y)

∣∣p eβp |x−y|2t dx
)1/p

≤ Cp
t1+n/(2p′)

e
−c
(

1+
t

γ(y)2

)δ
, (3.11)(∫

|V (x)pt(x, y)|p eβp
|x−y|2
t dx

)1/p

≤ Cp
t1+n/(2p′)

e
−c
(

1+
t

γ(y)2

)δ
. (3.12)

3.2.1 Time derivative bounds

In this section we obtain the proof of Proposition 3.4. Our approach is to work with a holomor-

phic extension of the heat semigroup to an appropriate sector in the complex plane, and then

invoke Cauchy’s integral formula. This holomorphic extension is contained in

Lemma 3.8 ([53] Corollary 6.2). The semigroup
{
e−tL

}
has a unique holomorphic extension

on L2(eη|x−y|dx) for every η > 0 and y ∈ Rn in the sector Σπ/4 := {ξ ∈ C : |arg ξ| < π/4}.

Moreover there exists constants C, c > 0 such that

‖e−zL‖L2(eη|x−y|dx)→L2(eη|x−y|dx) ≤ Cecη
2<z

for every y ∈ Rn, z ∈ Σπ/4, and η > 0.

Proof of Proposition 3.4. In the following we shall write pz(x, y) to mean the integral kernel of

the operator e−zL. Our aim is to obtain the following pointwise bounds on this integral kernel,

which is an extension of (3.6) to complex times.

Lemma 3.9. Assume that the conditions in Proposition 3.4 hold. Then there exists C, c > 0

such that for all x, y ∈ Rn and z ∈ Σπ/5, one has

|pz(x, y)| ≤ C

(<z)n/2
e
−c
(

1+
<z
γ(x)2

)δ
e−c
|x−y|2
<z . (3.13)

Let us demonstrate how (3.13) readily leads to (3.7). Fix x, y ∈ Rn and t > 0. We shall

apply Cauchy’s integral formula to pz(x, y) in the disk

Γ(t) := {ξ ∈ C : |ξ − t| ≤ t/2} .
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Observe that Γ(t) ⊂ Σπ/5. Hence pz(x, y) is holomorphic over Γ(t), and so for each k ∈ N,

Cauchy’s integral formula gives

∂k

∂tk
pt(x, y) =

k!

2πi

∫
Γ(t)

pz(x, y)

(z − t)k+1
dz.

Using (3.13) and noting that when z ∈ Γ(t) one has t/2 ≤ <z ≤ 3t/2 and |z − t| = t/2, we get

∣∣∣ ∂k
∂tk

pt(x, y)
∣∣∣ ≤ Ck ∫

Γ(t)

e−c
|x−y|2
<z e

−c
(

1+
<z
γ(x)2

)δ |dz|
(<z)n/2(t/2)k+1

≤ Ck
tn/2+k+1

e−c1
|x−y|2
t e

−c
(

1+
t

2γ(x)2

)δ ∫
Γ(t)

|dz|

≤ Ck
tn/2+k

e−c1
|x−y|2
t e

−c2−δ
(

1+
t

γ(x)2

)δ
which is (3.7).

We turn to the

Proof of Lemma 3.9. We claim that (3.13) follows from the following weighted estimate: there

exists C, c, ε > 0 such that for every y ∈ Rn, η > 0, and z ∈ Σπ/5,

∫
Rn
|pz(x, y)|2 eη|x−y| dx ≤ Ceεη

2<z

(<z)n/2
e
−c
(

1+
<z
γ(y)2

)δ
. (3.14)

Assume this estimate for the moment. Then the semigroup property, the Cauchy-Schwarz

inequality, and estimate (3.14) give

|pz(x, y)| eη|x−y| =
∣∣∣∫

Rn
pz/2(x, u) pz/2(u, y) du

∣∣∣ eη|x−y|
≤
∫
Rn
|pz/2(x, u)||pz/2(u, y)| eη|x−u|eη|u−y| du

≤
∥∥pz/2(x, ·) eη|x−·|

∥∥
L2

∥∥pz/2(·, y) eη|·−y|
∥∥
L2

≤ Ce4εη2<z

(<z)n/2
e
−c
(

1+
<z
γ(x)2

)δ
.

Now fix ε0 ∈ (0, 1/4ε) and choose η = ε0 |x− y| /<z. Then our estimate becomes

|pz(x, y)| ≤ C

(<z)n/2
e(4εε20−ε0)

|x−y|2
<z e

−c
(

1+
<z
γ(x)2

)δ
.

Since 4εε20 − ε0 < 0, this establishes (3.13).
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Hence our proof of Lemma 3.9 will be complete provided we show (3.14). Accordingly

fix x, y ∈ Rn, η > 0, z ∈ Σπ/5 and set t := <z. Then the semigroup property implies that

pz(x, y) =
(
e−(z− t

10 )Lp t
10

(·, y)
)
(x).

Since z ∈ Σπ/5 then z − t
10 ∈ Σπ/4, and hence by Lemma 3.8

∥∥pz(·, y) eη|·−y|
∥∥
L2 =

(∫
Rn

∣∣e−(z− t
10 )Lp t

10
(·, y)(x)

∣∣2eη|x−y| dx)1/2

≤ Cecη
2t
∥∥p t

10
(·, y) eη|·−y|

∥∥
L2 .

The bounds for the heat kernel from (3.6) give

∥∥p t
10

(·, y) eη|·−y|
∥∥
L2 ≤

C

tn/2
e
−c10−δ

(
1+

t
γ(y)2

)δ(∫
Rn
e−20c0

|x−y|2
t eη|x−y| dx

)1/2

.

We shall prove that for any θ > 0 there exists Cθ > 0 and cθ > 0 such that for all η > 0

and t > 0,

∫
Rn
e−θ

|x−y|2
t eη|x−y| dx ≤ Cθ tn/2 ecθη

2t. (3.15)

Combining (3.15) with the previous two estimates will give (3.14).

We shall obtain (3.15) by considering two cases: (i) η
√
t ≥ 1, and (ii) η

√
t < 1. Fix a

constant c ≥ 8/θ. In the first case we write

∫
Rn
e−θ

|x−y|2
t e−η|x−y| dx ≤ 2

∫
B(y,2cηt)

eη|x−y| dx+

∞∑
j=2

∫
Uj(B(y,cηt))

e−θ
|x−y|2
t e−η|x−y| dx

≤ 2e2cη2t |B(y, 2cηt)|+
∞∑
j=2

e−θ
c2

4 4jη2te2jcη2t
∣∣B(y, 2jcηt)

∣∣ .
Now using that θc ≥ 8 we have that eη

2t(c2j−θ4jc2/8) ≤ 1, and hence

∫
Rn
e−θ

|x−y|2
t e−η|x−y| dx ≤ Ctn/2e3cη2t + C

∞∑
j=0

e−θ
c2

8 4jη2t(2jcηt)n

≤ Ctn/2e3cη2t + C
tn/2

(η2t)n

∞∑
j=2

2−nj

≤ Ctn/2ecθη
2t

where in the next to last line we have used the fact that η2t ≥ 1.
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For the second case, with the same c ≥ 8θ, we write

∫
Rn
e−θ

|x−y|2
t e−η|x−y| dx ≤ 2e2cη

√
t
∣∣B(y, 2c

√
t)
∣∣+

∞∑
j=2

∫
Uj(B(y,c

√
t))

e−θ
|x−y|2
t e−η|x−y| dx

≤ Ctn/2 +

∞∑
j=2

e−θ
c2

4 4je2jcη
√
t
∣∣B(y, 2jc

√
t)
∣∣

≤ Ctn/2 + Ctn/2
∞∑
j=2

e−θ
c2

8 4j (2j
√
t)n

≤ Ctn/2 ≤ Ctn/2ecθη
2t.

In the second line we have used that η
√
t < 1.

This completes the proof of (3.15), and hence also of Lemma 3.9.

3.2.2 Pointwise gradient bounds

In this section we obtain the proof of Proposition 3.5. Before turning to the details, we address

some notational matters. In this section we will be working with “parabolic cylinders”. We

define the open parabolic cylinder Q(x, t, r) by

Q(x, t, r) =
{

(y, s) ∈ Rn × (0,∞) : |x− y| < r and t− r2 < s < t
}

which in simple terms, describes the open cylinder in the half space Rn×(0,∞), with centre (x, t)

at the top, radius r, and height r2. It may be helpful to note that Q(x, t, r) = B(x, r)×(t−r2, t).

When we speak of the ‘cylinder Q’ we shall mean a cylinder Q(xQ, tQ, rQ) with fixed centre

(xQ, tQ) and radius rQ. Given λ > 0 and a cylinder Q(x, t, r) we define the dilated cylinder by

λQ = Q(x, t, λr). We also write Q to mean the closure of Q.

Proof of Proposition 3.5. The main idea is to exploit the local gradient estimates of solutions

to the operator
∂

∂t
−∆, which are themselves well known. To do so we study the construction

ũ := u+
( ∂
∂t
−∆

)−1

(u1QV )

where u is a solution to
( ∂
∂t

+L
)
u = 0 in the parabolic cylinder Q. It follows then, that ũ is a

solution to
( ∂
∂t
−∆

)
ũ = 0 in Q. Hence we may pass from bounds on ∇ũ to bounds on ũ. We
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also need bounds on the gradients of the kernel of
( ∂
∂t
−∆

)−1

but since this involves the usual

heat kernel of −∆ it is readily calculated. Lastly we need the reverse Hölder properties of V to

finish the estimates.

We first obtain local estimates for the parabolic Schrödinger operator. These local esti-

mates will be used to obtain full gradient bounds. More precisely we shall first prove:

Lemma 3.10. Let L = −∆ + V with n ≥ 3. Assume that V ∈ Bn. Let Q = Q(xQ, tQ, rQ)

be the open parabolic cylinder centred (xQ, tQ), with radius rQ, height r2
Q, and Q is its closure.

Suppose that u satisfies

( ∂
∂t

+ L
)
u(x, t) = 0, ∀ (x, t) ∈ Q.

Then there exists C > 0 and k > 0 independent of Q such that

sup
(x,t)∈ 1

2Q

|∇xu(x, t)| ≤ C

rQ

(
1 +

rQ
γ(xQ)

)k
sup

(x,t)∈Q
|u(x, t)| . (3.16)

Proof. Construct the following

ũ(x, t) := u(x, t) +
( ∂
∂t
−∆x

)−1

(u1QV )(x, t)

= u(x, t) +

∫
Rn

∫ t

0

ht−s(x, y)u(y, s)V (y)1Q(y, s) ds dy.

The second line follows from (2.2) applied to the case L = −∆. Let us see that
( ∂
∂t
−∆

)
ũ = 0

in Q. Given (x, t) ∈ Q we have

( ∂
∂t
−∆x

)
ũ(x, t) =

( ∂
∂t
−∆x

)
u(x, t) +

( ∂
∂t
−∆x

)( ∂
∂t
−∆x

)−1

(u1QV )(x, t)

=
∂

∂t
u(x, t)−∆xu(x, t) + u(x, t)V (x)1Q(x, t)

=
∂

∂t
u(x, t)−∆xu(x, t) + u(x, t)V (x)

=
( ∂
∂t

+ L
)
u(x, t) = 0

because by assumption u satisfies the parabolic Schrödinger equation in Q. Hence according

to [55] Chapter 2.3, Theorem 9 on page 61, ũ satisfies the following local gradient estimate in Q:

max
(x,t)∈ 1

2Q
|∇xũ(x, t)| ≤ C

rn+3
Q

‖ũ‖L1(Q) (3.17)
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After rearranging u = ũ−
( ∂
∂t
−∆

)−1

(u1QV ) , we have

sup
1
2Q

|∇u| ≤ sup
1
2Q

|∇ũ| + sup
1
2Q

∣∣∣∇( ∂
∂t
−∆

)−1

(u1QV )
∣∣∣ =: I + II.

Now since

‖ũ‖L1(Q) . |Q| sup
Q

|ũ| . r2
Q |B(xQ, rQ)| sup

Q

|ũ| ,

then by (3.17) we have

I .
1

rQ
sup
Q

|ũ|

.
1

rQ
sup
Q

{
|u|+

∣∣∣( ∂
∂t
−∆

)−1

(u1QV )
∣∣∣}

.
1

rQ
sup
Q

|u|+ 1

rQ
sup

(x,t)∈Q

∫
Rn

∫ t

0

ht−s(x, y) |u(y, s)|V (y)1Q(y, s) ds dy

=: I1 + I2.

Now for each (x, t) ∈ Q

∫
Rn

∫ t

0

ht−s(x, y) |u(y, s)|V (y)1Q(y, s) ds dy

=

∫
B(xQ,rQ)

∫ t

tQ−r2Q
ht−s(x, y) |u(y, s)|V (y) ds dy

=
1

(4π)n/2

∫
B(xQ,rQ)

∫ t

tQ−r2Q

e
−
|x−y|2
4(t−s)

(t− s)n/2
|u(y, s)|V (y) ds dy

. sup
Q

|u|
∫
B(xQ,rQ)

V (y)

∫ t

tQ−r2Q

e
−
|x−y|2
4(t−s)

(t− s)n/2
ds dy.

Since

∫ t

tQ−r2Q

e
−
|x−y|2
4(t−s)

(t− s)n/2
ds .

∫ ∞
0

e−
|x−y|2

4t

tn/2
ds .

1

|x− y|n−2

we obtain

I2 .
1

rQ
sup
Q

|u| sup
(x,t)∈Q

∫
B(xQ,rQ)

V (y)

|x− y|n−2 dy.

We can estimate this using the fact that V ∈ Bn/2. Indeed by Lemma 2.4 part (a),

sup
(x,t)∈Q

∫
B(xQ,rQ)

V (y)

|x− y|n−2 dy .
1

rn−2
Q

∫
B(xQ,rQ)

V (y) dy.
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This then gives

I . I1 + I2 .
1

rQ
sup
Q

|u|
(

1 +
1

rn−2
Q

∫
B(xQ,rQ)

V
)
.

Let us turn to the second term II.

II = sup
(x,t)∈ 1

2Q

∣∣∣∫
B(xQ,rQ)

∫ t

tQ−r2Q
∇xht−s(x, y)u(y, s)V (y) ds dy

∣∣∣
≤ sup

(x,t)∈ 1
2Q

∫
B(xQ,rQ)

∫ t

tQ−r2Q
|∇xht−s(x, y)| |u(y, s)|V (y) ds dy

. sup
Q

|u| sup
(x,t)∈ 1

2Q

∫
B(xQ,rQ)

∫ t

tQ−r2Q

e
−
|x−y|2
8(t−s)

(t− s)n+1
2

V (y) ds dy.

In the third line we have used that since z2/8 ≤ ez2/8 for all z ∈ R, then

|∇xht(x, y)| =
|x− y|

2t
ht(x, y) ≤ 4√

t
e
|x−y|2

8t ht(x, y) =
4

(4π)n/2
e−
|x−y|2

8t

(t− s)n+1
2

.

Next, a change of variable r = t− s gives

∫ t

tQ−r2Q

e
−
|x−y|2
8(t−s)

(t− s)n+1
2

ds =

∫ t−tQ+r2Q

0

e−
|x−y|2

8s
ds

s
n+1
2

≤
∫ ∞

0

e−
|x−y|2

8s
ds

s
n+1
2

=

∫ |x−y|2
0

+

∫ ∞
|x−y|2

 e−
|x−y|2

8s
ds

s
n+1
2

= J1 + J2.

We have firstly that

J1 .
∫ |x−y|2

0

( s

|x− y|2
)n/2 ds

s
n+1
2

=
1

|x− y|n

∫ |x−y|2
0

ds

s1/2
.

1

|x− y|n−1

and secondly that

J2 ≤
∫ ∞
|x−y|2

ds

s
n+1
2

.
1

|x− y|n−1 .

Now, using Lemma 2.4 part (b), we have

sup
(x,y)∈ 1

2Q

∫
B(xQ,rQ)

V (y)

|x− y|n−1 dy .
1

rn−1
Q

∫
B(xQ,rQ)

V (y) dy.
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Inserting these into II gives

II .
( 1

rn−1
Q

∫
B(xQ,rQ)

V
)

sup
Q

|u| .

Collecting these estimates we have

I + II .
1

rQ
sup
Q

|u|
(

1 +
1

rn−2
Q

∫
B(xQ,rQ)

V
)

+ sup
Q

|u| 1

rn−1
Q

∫
B(xQ,rQ)

V

=
1

rQ
sup
Q

|u|
(

1 +
2

rn−2
Q

∫
B(xQ,rQ)

V
)
,

and hence

sup
1
2Q

|∇u| . 1

rQ

(
1 +

1

rn−2
Q

∫
B(xQ,rQ)

V
)

sup
Q

|u| .

Finally using items (a) and (b) of Lemma 2.3 we can show that

(
1 +

1

rn−2
Q

∫
B(xQ,rQ)

V
)
.

(
1 +

rQ
γ(xQ)

)k
where k = max {σ, 1} and σ is the constant from Lemma 2.3 (b). From this one can obtain the

desired result. This completes the proof of Lemma 3.10.

We now turn to the full gradient bounds. Fix x, y ∈ Rn and t > 0 with x 6= y. We

shall show (3.8) for pt(x, y). Set u(z, s) := ps(z, y) for each s > 0 and z 6= y. We also define

the cylinder Q by setting xQ = x, tQ = t, and rQ is a number satisfying 0 < r2
Q < t. Then

clearly (x, t) ∈ 1
2Q and u is a weak solution of

∂

∂t
+ L in Q. Therefore by the local estimates

of Lemma 3.10 and the bounds of the heat kernel in (3.6), we have

∣∣∇xpt(x, y)
∣∣ ≤ sup

(z,s)∈ 1
2Q

|∇zu(z, s)|

≤ 1

rQ

(
1 +

rQ
γ(xQ)

)k
sup

(z,s)∈Q
|u(z, s)|

=
1

rQ

(
1 +

rQ
γ(x)

)k
sup

(z,s)∈Q
|ps(z, y)|

.
1

rQ

(
1 +

rQ
γ(x)

)k
sup

(z,s)∈Q

1

sn/2
e−c0

|z−y|2
s e

−c
(

1+
s

γ(z)2

)δ
. (3.18)
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We shall estimate (3.18) over two cases, depending on the size of t in comparison to the size

of γ(x)2. Suppose firstly that t ≤ γ(x)2. Then we set rQ := t/2 and observe that

(
1 +

rQ
γ(x)

)k
≤
(

1 +
1√
2

)k
≤ C

so that (3.18) becomes

∣∣∇xpt(x, y)
∣∣ . 1

t1/2
sup

(z,s)∈Q

1

sn/2
e−c0

|z−y|2
s . (3.19)

For the time variable, we mention that when (z, s) ∈ Q then s ≈ t. Indeed,

t ≥ s ≥ t− r2
Q = t− t/2 = t/2.

Now if |x− y|2 > 2t then for each z ∈ B(x, rQ),

|z − x| ≥ |x− y| − rQ = |x− y| −
√

t
2 ≥ |x− y| −

|x−y|
2 = |x−y|

2

so that

1

sn/2
e−c0

|z−y|2
s .

1

tn/2
e−c
|x−y|2
t .

On the other hand if |x− y|2 ≤ 2t then e−2 ≤ e−|x−y|
2/t. In either, case we further reduce

estimate (3.19) to

∣∣∇xpt(x, y)
∣∣ . 1

tn/2+1/2
e−c
|x−y|2
t . (3.20)

Finally, we may introduce the extra decay term by observing the inequality t ≤ γ(x)2 implies

e−2δ ≤ e−
(

1+
t

γ(x)2

)δ
,

so that (3.20) can be further improved to

∣∣∇xpt(x, y)
∣∣ . 1

tn/2+1/2
e−c
|x−y|2
t e

−c
(

1+
t

γ(x)2

)δ
.

This gives (3.8) for the case t ≤ γ(x)2.

We turn to the case t > γ(x)2. Set r2
Q := γ(x)2/2. Then (z, s) ∈ Q implies that s ≈ t

and γ(z) ≤ C1γ(x), with C1 > 1. Indeed, the inequality

t ≥ s ≥ t− r2
Q = t− γ(x)2/2 > t− t/2 = t/2,
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and the definition of rQ implies that B(x, rQ) ⊆ Bγ(x), so that by (2.10), one has γ(z) ≤ C1γ(x)

for every z ∈ B(x, rQ), where C1 = 4C0. Combining these facts, one has for each (z, s) ∈ Q,

e
−c
(

1+
s

γ(z)2

)δ
≤ e−c

′
(

1+
t

γ(x)2

)δ
.

Then we further estimate (3.18) by

∣∣∇xpt(x, y)
∣∣ . 1

γ(x)

(
1 + 1√

2

)k 1

tn/2
e
−c′
(

1+
t

γ(x)2

)δ
sup

(z,s)∈Q
e−c0

|z−y|2
s

=
1√
t

( √t
γ(x)

) 1

tn/2
e
−c′
(

1+
t

γ(x)2

)δ
sup

(z,s)∈Q
e−c0

|z−y|2
s

.
1

tn/2+1/2
e
−c′′
(

1+
t

γ(x)2

)δ
sup

(z,s)∈Q
e−c0

|z−y|2
s . (3.21)

Finally we may estimate the Gaussian term in a similar fashion to the previous case. Namely,

if |x− y|2 > 2t then whenever z ∈ B(x, rQ), we have

|z − x| ≥ |x− y| − rQ = |x− y| − γ(x)√
2

≥ |x− y| −
√

t
2 ≥ |x− y| −

|x−y|
2 = |x−y|

2 ,

so that

1

sn/2
e−c0

|z−y|2
s .

1

tn/2
e−c
|x−y|2
t .

On the other hand if |x− y|2 ≤ 2t then e−2 ≤ e−|x−y|
2/t. In either case we further reduce

estimate (3.21) to

∣∣∇xpt(x, y)
∣∣ . 1

tn/2+1/2
e−c
|x−y|2
t e

−c′′
(

1+
t

γ(x)2

)δ
(3.22)

which gives (3.8) for the case t > γ(x)2.

This completes the proof of Proposition 3.5.

3.2.3 Weighted Sobolev bounds: first derivatives

In this section we give the proof of Proposition 3.6. We will consider three separate cases: p = 2,

p < 2, and p > 2.
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We first obtain the case p = 2. Let c0 be the constant in (3.6), and choose α2 ∈ (0, 2
3c0).

We shall proceed as in [46] with some slight modifications. Let ϕ ∈ C∞0 (Rn) with 0 ≤ ϕ ≤ 1,

support in B(0, 2), |∇ϕ| ≤ 1, and ϕ ≡ 1 on B(0, 1). Define for each R ≥ 1,

ϕR(·) := ϕ
( ·
R

)
.

Then it follows that |∇ϕR| . 1/R.

Fix y ∈ Rn, t > 0, R ≥ 1, and set

IR(t, y) :=

n∑
k=1

∫
Rn
|∂kpt(x, y)|2 eα2

|x−y|2
t ϕR(x) dx.

Then one has

IR(t, y) = I1
R(t, y)− I2

R(t, y)

where

I1
R(t, y) :=

n∑
k=1

∫
Rn
∂kpt(x, y) ∂k

[
pt(x, y) eα2

|x−y|2
t ϕR(x)

]
dx

I2
R(t, y) :=

n∑
k=1

∫
Rn
∂kpt(x, y) pt(x, y) ∂k

[
eα2
|x−y|2
t ϕR(x)

]
dx.

Let us study the first term. Since ϕR has compact support then

pt(·, y) eα2
|·−y|2
t ϕR(·) ∈ D(QV ).

Therefore since both V and ϕR are non-negative,

I1
R(t, y) ≤ I1

R(t, y) +

n∑
k=1

∫
Rn
V (x) pt(x, y)2eα2

|x−y|2
t ϕR(x) dx

= QV
(
pt(·, y) , pt(·, y) eα2

|·−y|2
t ϕR(·)

)
=

∫
Rn
Lpt(x, y) pt(x, y) eα2

|x−y|2
t ϕR(x) dx

=

∫
Rn

∂

∂t
pt(x, y) pt(x, y) eα2

|x−y|2
t ϕR(x) dx.

Now using the bounds on the heat kernel (3.6) and on its time derivative (3.7) we have

I1
R(t, y) ≤ C

tn+1
e
−c
(

1+
t

γ(y)2

)δ ∫
Rn
e−(c0−α2)

|x−y|2
t ϕR(x) dx.
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Since α2 < c0 and ϕR ≤ 1 we can control the integral by a multiple of tn/2 and obtain

I1
R(t, y) ≤ C

tn/2+1
e
−c
(

1+
t

γ(y)2

)δ
. (3.23)

For the second term we have

I2
R(t, y) =

n∑
k=1

∫
Rn
∂kpt(x, y) pt(x, y) eα2

|x−y|2
t

[
∂kϕR(x) +

2α2

t
(xk − yk)ϕR(x)

]
dx

≤
n∑
k=1

C√
t

∫
Rn
|∂kpt(x, y)||pt(x, y)| e2α2

|x−y|2
t ϕR(x) dx

+

n∑
k=1

∫
Rn
|∂kpt(x, y)||pt(x, y)| eα2

|x−y|2
t |∂kϕR(x)| dx

=: I2.1
R (t, y) + I2.2

R (t, y). (3.24)

To estimate the first term we use the Cauchy-Schwarz inequality, the heat kernel bounds (3.6),

and that 2c0 > 3α2 to obtain

I2.1
R (t, y) ≤

n∑
k=1

C√
t

∥∥pt(·, y)e
3α2

2
|·−y|2
t ϕR

∥∥
L2

∥∥|∂kpt(·, y)| e
α2

2
|·−y|2
t ϕR

∥∥
L2

≤ Ce
−c
(

1+
t

γ(y)2

)δ
tn/2+1/2

n∑
k=1

∥∥e− (2c0−3α2)
2

|·−y|2
t
∥∥
L2

∥∥|∂kpt(·, y)| e
α2

2
|·−y|2
t ϕR

∥∥
L2

≤ C√
tn/2+1

√
IR(t, y) e

−c
(

1+
t

γ(y)2

)δ
. (3.25)

Combining (3.23), (3.24), and (3.25), with the inequality
√
AB ≤ ε

2
A +

1

2ε
B, valid for all

ε,A,B > 0, we obtain

IR(t, y) ≤ Ce−c
(

1+
t

γ(y)2

)δ (
1

tn/2+1
+

1√
tn/2+1

√
IR(t, y)

)
+ I2.2

R (t, y)

≤ Ce−c
(

1+
t

γ(y)2

)δ (
1 + 2ε

tn/2+1
+

1

2ε
IR(t, y)

)
+ I2.2

R (t, y).

Choosing ε large enough therefore gives

IR(t, y) ≤ C

tn/2+1
e
−c
(

1+
t

γ(y)2

)δ
+ C I2.2

R (t, y).

Now using that |∇ϕR| . 1/R we see that

I2.2
R (t, y) ≤ C

R

{ n∑
k=1

∫
Rn
|∂kpt(x, y)| |pt(x, y)| eα2

|x−y|2
t dx

}1/2

−→ 0
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as R→∞. Hence by Fatou’s Lemma,

∫
Rn
|∇xpt(x, y)|2 eα2|x−y|2/t dx ≤

∫
Rn

lim inf
R→∞

{
|∇xpt(x, y)|2 eα2

|x−y|2
t ϕR(x)

}
dx

≤ lim inf
R→∞

∫
Rn
|∇xpt(x, y)|2 eα2

|x−y|2
t ϕR(x) dx

= lim inf
R→∞

IR(t, y)

≤ lim inf
R→∞

{ C

tn/2+1
e
−c
(

1+
t

γ(y)2

)δ
+ I2.2

R (t, y)
}

≤ C

tn/2+1
e
−c
(

1+
t

γ(y)2

)δ
.

This proves (3.9) for p = 2.

To obtain (3.10) for p = 2, we observe that

∫
Rn
V (x) pt(x, y)2eα2

|x−y|2
t ϕR(x) dx = QV

(
pt(·, y) , pt(·, y) eα2

|·−y|2
t ϕR

)
− I1

R(t, y).

Since both terms have been estimated we can apply the same computations as in (3.9) and

yield (3.10). This completes the proof of Proposition 3.6 for the case p = 2.

Next we turn to the case p < 2. Let p ∈ [1, 2) and fix αp ∈ (0, α2/4). Applying Hölder’s

inequality with exponents 2/p and (2/p)′ = 2/(2− p) gives

∫
Rn
|∇xpt(x, y)|p eαp

|x−y|2
t dx

=

∫
Rn
|∇xpt(x, y)|p e2pαp

|x−y|2
t e−(2p−1)αp

|x−y|2
t dx

≤
(∫

Rn
|∇xpt(x, y)|2 e2pαp

|x−y|2
t dx

) p
2
(∫

Rn
e
−

2(2p−1)
2−p αp

|x−y|2
t dx

)1− p2

Since 4αp < α2 we can control the first term by a constant multiple of

[
1

tn/2+1
e
−c
(

1+
t

γ(y)2

)δ]p/2
,

and since (2p − 1)/(2 − p) > 0 we can bound the second integral by a multiple of (tn/2)1−p/2.

Therefore

∫
Rn
|∇xpt(x, y)|p eαp

|x−y|2
t dx ≤ C

tp/2+(p−1)n/2
e
− cp2

(
1+

t
γ(y)2

)δ
.

which gives (3.9) for p ∈ [1, 2). Similar calculations gives (3.10) for the same range of p.
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We now consider the case 2 < p < q∗+. We shall make use of the following estimate, valid

for each q ∈ (2, q∗+),

‖∇pt(·, y)‖q ≤
Cq

t1/2+n/2q′
e
−c
(

1+
t

γ(y)2

)δ
∀ y ∈ Rn, t > 0. (3.26)

Assume this estimate for the moment. We shall show how an interpolation between (3.26) and

the estimate (3.9) for p = 2 yields (3.9) for all p ∈ (2, q∗+). Indeed for each p ∈ (2, q∗+) set

(recall that q∗+ =∞ if and only if q+ ≥ n)

q :=


p+ q∗+

2
if q∗+ <∞,

2p if q∗+ =∞

and αp := α2(q − p)/(q − 2). Note that p and q satisfy

p = 2
(q − p
q − 2

)
+ q
(p− 2

q − 2

)
, 0 <

q − p
q − 2

< 1, 1 <
q − 2

q − p
<∞.

Applying Hölder’s inequality with exponents

q − 2

q − p
and

(q − 2

q − p

)′
=
q − 2

p− 2

we obtain ∫
Rn
|∇xpt(x, y)|p eαp

|x−y|2
t dx

=

∫
Rn
|∇xpt(x, y)|2

q−p
q−2 eαp

|x−y|2
t |∇xpt(x, y)|q

p−2
q−2 dx

≤
(∫

Rn
|∇xpt(x, y)|2 eα2

|x−y|2
t dx

) q−p
q−2
(∫

Rn
|∇xpt(x, y)|q dx

) p−2
q−2

.

Estimate (3.9) for the case p = 2 allows us to control the first term by a multiple of

[
t
n
2 +1
]− q−pq−2 e

−2c q−pq−2

(
1+

t
γ(y)2

)δ
,

while estimate (3.26) allows us to control the second by a multiple of

[
t
q
2 +

n(q−1)
2

]− p−2
q−2

e
−cq p−2

q−2

(
1+

t
γ(y)2

)δ
.

Combining these estimates we obtain∫
Rn
|∇xpt(x, y)|p eαp

|x−y|2
t dx ≤ C

tp/2+(p−1)n/2
e
−pc
(

1+
t

γ(y)2

)δ
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which is (3.9).

It remains to obtain (3.26). Firstly observe that the semigroup property (2.3) implies

∇xp2t(x, y) = ∇xe−tLpt(·, y)(x). (3.27)

Now recall from Theorem 1.3 that under our assumptions on L = −∆ + V the Riesz transform

∇L−1/2 is bounded on Lq(Rn) for every q ∈ (1, q∗+). This implies that for each q ∈ (1, q∗+)

∥∥∇e−tL∥∥
q→q ≤

Cq√
t
.

Indeed by the analyticity of the semigroup
{
e−tL

}
t>0

(see [85] p74, Theorem 6.13)

∥∥√t∇e−tLf∥∥
q

=
∥∥√t∇L−1/2L1/2e−tLf

∥∥
q
.
∥∥√tL1/2e−tL

∥∥
q
. ‖f‖q .

Hence from (3.27)

‖∇p2t(·, y)‖q =
∥∥∇e−tLpt(·, y)

∥∥
q
.

1√
t
‖pt(·, y)‖q . (3.28)

Now using the bounds (3.6), we have

‖pt(·, y)‖qq ≤
C

tqn/2
e
−qc
(

1+
t

γ(y)2

)δ ∫
Rn
e−qc

|x−y|2
t dx ≤ C

t(q−1)n/2
e
−qc
(

1+
t

γ(y)2

)δ
.

Combining this with (3.28) gives1 (3.26).

Finally to obtain (3.10) for p ∈ (2, 2q+) we may argue in a similar fashion as above,

except in place of (3.26) we use

∥∥V (·)1/2pt(·, y)
∥∥
q
≤ Cq
t1/2+n/2q′

e
−c
(

1+
t

γ(y)2

)δ
∀ y ∈ Rn, t > 0

which follows similarly from the heat kernel bounds (3.6), and the boundedness of V 1/2L−1/2

on Lq(Rn) for all q ∈ (1, 2q+) (see Theorem 1.3).

This concludes the proof of Proposition 3.6.

3.2.4 Weighted Sobolev bounds: second derivatives

In this section we give the proof of Proposition 3.7. We shall first obtain the Proposition for

p ∈ (1, q+). The case p = 1 can then be obtained by Hölder’s inequality (we omit the details

1We remark that for n ≥ 3 we can also use Proposition 3.5 to obtain (3.26) when q+ ≥ n.
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for this case). Fix p ∈ (1, q+). Let αp be the constant in Proposition 3.6, c1 be the constant in

Proposition 3.4, and c0 the constant in (3.6). Pick β ∈ (0,min {αp, pc1, pc0}) and set βp = β/2.

We shall require the following by-parts inequality that is in some sense based on the

Calderón–Zygmund inequality. It is inspired by a similar inequality in [43] but valid only on

certain domains of Rn. The following applies to Rn and we defer its proof to the end of this

section.

Lemma 3.11. Let p ∈ (1,∞) and f ∈ W 2,p(Rn). Then there exists C = C(p, n) such that for

each 1 ≤ j, k ≤ n one has

‖φ∂j∂kf‖Lp ≤ C
(∥∥f |∇2φ|

∥∥
Lp

+
∥∥|∇f ||∇φ|∥∥

Lp
+
∥∥φ∆f

∥∥
Lp

)
for every φ ∈ C∞0 (Rn).

We will prove (3.11) by using a family of weight functions {wt,R(·, y)}R ⊂ C
∞
0 (Rn) that

forms a smooth cutoff of eβ|x−y|
2/t, and then applying an approximation argument. Accordingly

fix t > 0 and let ϕ ∈ C∞0 (Rn) be a function satisfying the following (for some fixed constant C):

supp ϕ ⊂ B(0, 2
√
t), ϕ ≡ 1 on B(0,

√
t), |ϕ| ≤ 1, |∇ϕ| ≤ C/

√
t,

∣∣∇2ϕ
∣∣ ≤ C/t.

Now for each R ≥ 1 set ϕR := ϕ( ·R ). Then ϕR satisfies:

ϕR ≡ 1 on B(0, R
√
t), |ϕR| ≤ 1, |∇ϕR| ≤

C√
t
,

∣∣∇2ϕ
∣∣ ≤ C√

t
.

Now define

wt,R(x, y) := ϕR
(
|x− y|

)
e
βp
|x−y|2
pt .

Then supp wt,R(x, y) ⊂ B(y, 2R
√
t) and one can show easily that

|∇xwt,R(x, y)| ≤ C√
t
e
β
|x−y|2
pt and

∣∣∇2
xwt,R(x, y)

∣∣ ≤ C

t
e
β
|x−y|2
pt . (3.29)

Next define for each t > 0, y ∈ Rn and R ≥ 1,

JR(t, y) :=
∥∥wt,R(·, y)

∣∣∇2pt(·, y)
∣∣∥∥
p
.
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We apply Lemma 3.11 with f := pt(·, y) and φ := wt,R(·, y). Note that pt(·, y) ∈ W 2,p(Rn). To

see this recall firstly that ∇2L−1 is bounded on Lp(Rn) for p ∈ (1, q+) (from Theorem 1.3), and

secondly that
∂

∂t
pt(·, y) ∈ Lp(Rn) (due to the pointwise bounds (3.7) on the time derivative of

the heat kernel of L). Therefore one has

∥∥∇2pt(·, y)
∥∥
p

=
∥∥∥−∇2L−1 ∂

∂t
pt(·, y)

∥∥∥
p
.
∥∥∥ ∂
∂t
pt(·, y)

∥∥∥
p
< ∞

so that ∇2pt(·, y) ∈ Lp(Rn). Hence by Lemma 3.11, for each t > 0, y ∈ Rn, and R ≥ 1, we

obtain

JR(t, y) .
∥∥|∇2wt,R(·, y)|pt(·, y)

∥∥
p

+
∥∥|∇wt,R(·, y)||∇pt(·, y)|

∥∥
p

+
∥∥wt,R(·, y)∆pt(·, y)

∥∥
p

=: J1
R(t, y) + J2

R(t, y) + J3
R(t, y).

To estimate the first term we use the bounds of our constructed weight functions (3.29), the

bounds on the heat kernel in (3.6), and that β − pc0 < 0:

J1
R(t, y)p =

∫
Rn

∣∣∇2
xwt,R(x, y)

∣∣p pt(x, y)p dx

≤ C

tp+pn/2
e
−pc
(

1+
t

γ(y)2

)δ ∫
Rn
e(β−pc0)

|x−y|2
t dx

≤ C

tp+(p−1)n/2
e
−pc
(

1+
t

γ(y)2

)δ
.

For the second term J2
R we observe that since q∗+ ≥ q+ then Proposition 3.6 applies. Therefore

because β ≤ αp we may combine (3.9) with (3.29) to obtain

J2
R(t, y)p =

∫
Rn
|∇xwt,R(x, y)|p |∇xpt(x, y)|p dx

≤ C

tp/2

∫
Rn
|∇xpt(x, y)|p eβ

|x−y|2
t dx

≤ C

tp+(p−1)n/2
e
−pc
(

1+
t

γ(y)2

)δ
.

Now for the third term

J3
R(t, y) = ‖wt,R(·, y)(L− V )pt(·, y)‖p

≤ ‖wt,R(·, y)Lpt(·, y)‖p + ‖wt,R(·, y)V pt(·, y)‖p
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=: J3.1
R (t, y) + J3.2

R (t, y).

Using the pointwise bounds on the time derivative of the heat kernel (3.7) and that |wt,R(x, y)| ≤

eβp|x−y|
2/t we have

J3.1
R (t, y)p =

∫
Rn

∣∣∣ ∂
∂t
pt(x, y)

∣∣∣pwt,R(x, y)p dx

≤ C

tp+pn/2
e
−pc
(

1+
t

γ(y)2

)δ ∫
Rn
e(βp−pc1)

|x−y|2
t dx

≤ C

tp+(p−1)n/2
e
−pc
(

1+
t

γ(y)2

)δ
,

where in the last line we have used that βp − pc1 < 0. For the final term J3.2
R (t, y) we employ

the reverse Hölder properties of V , and the improved decay inherent in the heat kernel of L,

namely (3.6). Indeed one has

J3.2
R (t, y)p =

∫
Rn
V (x)ppt(x, y)pwt,R(x, y)p dx

≤ C

tpn/2
e
−pc
(

1+
t

γ(y)2

)δ ∫
Rn
V (x)pe(βp−pc0)

|x−y|2
t dx

=
C

tpn/2
e
−pc
(

1+
t

γ(y)2

)δ ∞∑
j=0

∫
Uj(B(y,

√
t))

V (x)pe−β0
|x−y|2
t dx

where β0 := pc0 − βp > 0. Now for each j ≥ 1,

∫
Uj(B(y,

√
t))

V (x)pe−β0
|x−y|2
t dx ≤ e−β022j

∫
B(y,2j

√
t)

V (x)p dx

≤ Ce−β04j
∣∣B(y, 2j

√
t)
∣∣( ∫

B(y,2j
√
t)

V (x) dx
)p

≤ Ce−β04j2jntn/2
(

2j(n0−n)

∫
B(y,

√
t)

V (x) dx
)p

=
Ce−β04j2j(n+n0p−np)

tp−n/2

(
t

∫
B(y,

√
t)

V (x) dx
)p
.

In the second inequality we have used that V ∈ Bp because p < q+ and hence Bp ⊃ Bq. In the

next to last line we have used that V dx is a doubling measure (see (2.7)). Next we remark that

if
√
t ≤ γ(y), then by Lemma 2.3 (a) and the definition of γ in (2.8), one has

t

∫
B(y,

√
t)

V (x) dx ≤ C
( √t
γ(y)

)2−n/q
≤ C
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since q > n/2. On the other hand if
√
t > γ(y), then Lemma 2.3 (b) implies that

t

∫
B(y,

√
t)

V (x) dx ≤ C
( √t
γ(y)

)σ
≤ C

( √t
γ(y)

)|σ|
.

In either case we can bound

e
− pc2
(

1+
t

γ(y)2

)δ(
t

∫
B(y,

√
t)

V (x) dx
)p

by a fixed constant independent of t and y. Therefore it follows that

J3.2
R (t, y)p ≤ C

tp+(p−1)n/2
e
−pc
(

1+
t

γ(y)2

)δ(
t

∫
B(y,

√
t)

V (x) dx
)p{

1 +

∞∑
j=1

e−β04j2j(n+n0p−np)
}

≤ C

tp+(p−1)n/2
e
− pc2
(

1+
t

γ(y)2

)δ
.

Collecting the estimates for J1
R, J2

R and J3
R we obtain

JR(t, y) ≤ C

t1+n/(2p′)
e
−c
(

1+
t

γ(y)2

)δ
with C, c independent of R. Therefore

(∫
Rn

∣∣∇2
xpt(x, y)

∣∣p eβ |x−y|2t dx
)1/p

= sup
R≥1

JR(t, y) ≤ C

t1+n/(2p′)
e
−c
(

1+
t

γ(y)2

)δ
.

This establishes (3.11).

To prove (3.12) we simply note that

(∫
|V (x)pt(x, y)|p eβp

|x−y|2
t dx

)1/p

= sup
R≥1

J3.2
R (t, y) ≤ C

t1+n/(2p′)
e
−c
(

1+
t

γ(y)2

)δ
which follows from our previous estimates.

This concludes the proof of Proposition 3.7, save for the proof of Lemma 3.11 which was

deferred. We turn to this now.

Proof of Lemma 3.11. Fix p ∈ (1,∞), f ∈ W 2,p(Rn) and j, k ∈ {1, 2, ..., n}. Let φ ∈ C∞0 (Rn).

Then the product rule gives the following

φ∂j∂kf = ∂j(φ∂kf)− ∂jφ∂kf

= ∂j(∂k(φf)− f∂kφ)− ∂jφ∂kf



68

= ∂j∂k(φf)− ∂j(f∂kφ)− ∂jφ∂kf

= ∂j∂k(φf)− f∂j∂kφ− ∂jf∂kφ− ∂jφ∂kf.

Taking Lp norms gives

‖φ∂j∂kf‖p ≤ ‖∂j∂k(φf)‖p + ‖f∂j∂kφ‖p + ‖∂jf∂kφ‖p + ‖∂jφ∂kf‖p . (3.30)

Note that the left hand side is finite because f ∈ W 2,p(Rn) and φ ∈ C∞0 (Rn). Let us consider

each term on the right hand side in turn.

Firstly by noting that |∂jφ| ≤
(∑

k |∂kφ|
2)1/2 ≤ |∇f | for every j ∈ {1, ..., n}, we have

‖∂jf∂kφ‖p + ‖∂jφ∂kf‖p ≤ 2
∥∥|∇f | |∇φ|∥∥

p
. (3.31)

Similarly |∂j∂kφ| ≤
(∑

j

∑
k |∂j∂kφ|

2)1/2
= |∇2φ| for every j, k ∈ {1, ..., n}, so that

‖f∂j∂kφ‖p ≤
∥∥f |∇2φ|

∥∥
p
. (3.32)

Next since φf ∈ W 2,p(Rn) then by the Calderón–Zygmund inequality (1.2) (see also [100]

Chapter 3, Proposition 3) on Rn,

‖∂j∂k(φ f)‖p ≤
∥∥|∇2(φ f)|

∥∥
p
≤ Cp ‖∆(φ f)‖p .

Now direct computations give

∆(φ f) =

n∑
j=1

∂2
j (φ f) =

n∑
j=1

∂j
(
φ∂jf + f∂jφ

)
=

n∑
j=1

(
∂jφ∂jf + φ∂2

j f + ∂jf∂jφ+ f∂2
jφ
)

= φ

n∑
j=1

∂2
j f + f

n∑
j=1

∂2
jφ+ 2

n∑
j=1

∂jφ∂jf

= φ∆f + f∆φ+ 2∇φ · ∇f .

By Cauchy-Schwarz,

|∆(φ f)| ≤ |φ∆f |+ |f∆φ|+ 2 |∇φ||∇f | ≤ |φ∆f |+ |f ||∇2φ|+ 2|∇φ||∇f | .
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Hence

‖∂j∂k(φ f)‖p ≤ Cp ‖φ∆f‖p + Cp
∥∥f |∇2φ|

∥∥
p

+ 2Cp
∥∥|∇φ| |∇f |∥∥

p
. (3.33)

Inserting (3.31), (3.32), and (3.33) into (3.30) we obtain

‖φ∂j∂kf‖p ≤ Cp ‖φ∆f‖p + Cp
∥∥f |∇2φ|

∥∥
p

+ Cp
∥∥|∇φ| |∇f |∥∥

p
,

and in fact

∥∥φ|∇2f |
∥∥
p
≤

n∑
j,k=1

‖φ∂j∂kf‖p ≤ C
(
‖φ∆f‖p +

∥∥f |∇2φ|
∥∥
p

+
∥∥|∇φ||∇f |∥∥

p

)
,

where C depends on p and the dimension n. This ends the proof of Lemma 3.11.
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Chapter 4

Weighted Lebesgue spaces I: Muckenhoupt weights

This chapter studies the first- and second-order Riesz transforms associated to the Schrödinger

operator L = −∆+V on weighted Lebesgue spaces with weights belonging to the Muckenhoupt

class A∞. We are interested in the conditions on p and w ∈ A∞ for which the following

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w) , ∀ f ∈ L∞c (Rn)

holds. Here T is one of the operators ∇L−1/2, V 1/2L−1/2, ∇2L−1 or V L−1.

In this chapter we combine the techniques in [13] and [18] to show that for non-negative

potentials, boundedness of the first-order Riesz transforms on Lp(Rn) for p above 2 is equivalent

to their boundedness on the weighted spaces, for a certain range of p and w. This is encapsulated

in the following two theorems, which are the main results of this chapter. Recall that the notation

for the sets Ww(p0, q0) was defined in Section 2.4.

Theorem 4.1. Let n ≥ 1 and L = −∆ + V on Rn with 0 ≤ V ∈ L1
loc(Rn). Fix s > 2. Then

the following are equivalent.

(a) ∇L−1/2 is bounded on Lp(Rn) for each p ∈ (1, s)

(b) ∇L−1/2 is bounded on Lp(w) for each w ∈ A∞ and each p ∈ Ww(1, s).

(c) ∇L−1/2 is bounded from L1(w) to L1,∞(w) for each w ∈ A1 ∩ Bs′ .

Theorem 4.2. Let n ≥ 1 and L = −∆ + V on Rn with 0 ≤ V ∈ L1
loc(Rn). Fix s > 2. Then

the following are equivalent.
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(a) V 1/2L−1/2 is bounded on Lp(Rn) for each p ∈ (1, s)

(b) V 1/2L−1/2 is bounded on Lp(w) for each w ∈ A∞ and each p ∈ Ww(1, s).

(c) V 1/2L−1/2 is bounded from L1(w) to L1,∞(w) for each w ∈ A1 ∩ Bs′ .

On specialising to reverse Hölder potentials, these same techniques in conjunction with the heat

kernel estimates we obtained in Chapter 3 (particularly Proposition 3.7) allow us to also obtain

boundedness for the second-order Riesz transforms ∇2L−1 and V L−1.

Theorem 4.3. Let L = −∆ +V on Rn with n ≥ 2, and suppose that V ∈ Bq for some q > n/2.

Set q+ := sup
{
q > n

2 : V ∈ Bq
}

. Then the following holds.

(a) For each w ∈ A∞, the operators V L−1 and ∇2L−1 are both bounded on Lp(w) for all

p ∈ Ww(1, q+).

(b) For each w ∈ A1 ∩ Bq′+ the operators V L−1 and ∇2L−1 map L1(w) into L1,∞(w).

We note here that the first conclusion recovers the results in [75] (see also Section 1.1.1 item (ii)).

The second conclusion is new.

This chapter is organised as follows. Section 4.1 gives the main technical tools required

to prove our results, with the key result here being Theorem 4.6. We apply this to give the

proofs of Theorems 4.1 and 4.2 in Section 4.2, and the proof of Theorem 4.3 in Section 4.3.

4.1 Main tools

We give here the main tools we use to prove boundedness on weighted spaces, which are taken

from [16]. The first is a maximal type theorem, which will also play a role in Section 6.1.1. In

the following M is the Hardy–Littlewood maximal function defined in (1.9).

Theorem 4.4 ([16] Theorem 3.1). Fix q ∈ (1,∞), ξ ≥ 1, s ∈ (1, q), v ∈ Bs′ . Assume that

F,G,H1, H2 are non-negative measurable functions on Rn such that for each ball B there exist

non-negative functions GB and HB such that

F (x) ≤ GB(x) +HB(x), a.e. x ∈ B, (4.1)
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B

Hq
B

)1/q

≤ ξ(MF (x) +MH1(x) +H2(y)), ∀x, y ∈ B, (4.2)∫
B

GB ≤ G(x), ∀x ∈ B. (4.3)

Then there exists K0 = K0(n, ξ) ≥ 1 and C = C(q, n, ξ, v, s) such that the following holds: for

each λ > 0, K ≥ K0, and δ ∈ (0, 1),

v
(
{x ∈ Rn : MF (x) > Kλ and G(x) ≤ δλ}

)
≤ C

( ξq
Kq

+
δ

K

)1/s

v
(
{x ∈ Rn : MF (x) > λ}

)
.

As a consequence, if r ∈ (1, q/s ] and F ∈ L1(Rn), then

‖MF‖Lr(v) ≤ C
(
‖G‖Lr(v) + ‖MH1‖Lr(v) + ‖H2‖Lr(v)

)
. (4.4)

The next tool is a weak type criterion.

Theorem 4.5 ([18] Theorem 3.3). Fix 1 ≤ p0 < q0 ≤ ∞ and w ∈ A∞. Let T be a sublinear

operator defined on D, a subspace of Lq0(Rn), and {AB}B be a family of operators indexed by

balls acting from L∞c (Rn) into D. Assume that T and {AB}B satisfy the following (recall that

the sets Uj(B) have been defined in (2.5)).

(i) There exists q ∈ Ww(p0, q0) such that T maps Lq(w) continuously into Lq,∞(w).

(ii) For each j ≥ 0 there exists a constant αj such that for any ball B and f ∈ L∞c (Rn)

supported in B,

(∫
Uj(B)

|ABf |q0
)1/q0

≤ αj
(∫

B

|f |p0
)1/p0

. (4.5)

(iii) There exists p such that w ∈ Bp′ with the following property: for each j ≥ 2, there is a

constant αj such that for any ball B and f ∈ L∞c (Rn) supported in B,

(∫
Uj(B)

|T (I −AB)f |p
)1/p

≤ αj
(∫

B

|f |p0
)1/p0

. (4.6)

(iv) The constants {αj}j from (ii) and (iii) satisfy
∑
j αj2

jDw <∞, where Dw is the doubling

constant of w dx.
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Under these hypotheses, if w ∈ A1 ∩ B(q0/p0)′ then T is weak (p0, p0) with respect to wdx.

That is, for each f ∈ L∞c (Rn),

‖Tf‖Lp0,∞(w) ≤ C ‖f‖Lp0 (w) .

We next give a particular case of Theorem 4.4 and Theorem 4.5. Our aim is to apply this to

the operators ∇L−1/2, V 1/2L−1/2, V L−1.

Theorem 4.6. Let 1 ≤ p0 < q0 ≤ ∞ and T be a linear operator. Suppose that for each

q̃ ∈ (p0, q0) there exists a family of operators {AB}B indexed by balls, and a collection of scalars

{αj}∞j=0 such that the following holds.

(i) T is bounded on Lq̃(Rn).

(ii) For every ball B and f ∈ L∞c (Rn) supported in B,

(∫
Uj(B)

|ABf |q̃
)1/q̃

≤ αj
(∫

B

|f |p0
)1/p0

, ∀j ≥ 0 (4.7)

(∫
Uj(B)

|T (I −AB)f |q̃
)1/q̃

≤ αj
(∫

B

|f |p0
)1/p0

, ∀j ≥ 2. (4.8)

Here the sets Uj(B) have been defined in (2.5).

(iii) The constants {αj}j satisfy
∑
j αj2

jn <∞.

Then we have the following.

(a) If w ∈ A∞ then T extends to a bounded operator on Lp(w) for all p ∈ Ww(p0, q0).

(b) If w ∈ A1 ∩ B(q0/p0)′ and in addition
∑
j αj2

jDw < ∞ (where Dw is the doubling order

of w), then T maps Lp0(w) into Lp0,∞(w).

Proof. The ideas in the proof originate from [24] and were applied in [18] to study weighted

norm inequalities of Riesz transforms associated to the Laplace Beltrami operator on doubling

manifolds. The proof we describe here follows closely that of [18] Theorem 1.2 (i). We remark

also that the spirit of the proof is akin to that of [13] section 3.1.
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We first prove (a). Fix w ∈ A∞ and p ∈ Ww(p0, q0). Denote by T ∗ the dual operator to T .

We first observe that the Lp(w) boundedness of T is equivalent to the Lp
′
(w1−p′) boundedness

of T ∗ (see Remark 4.7 (a)). We shall apply Theorem 4.4 to obtain the latter.

Firstly there exists numbers p1 and q1 such that

p0 < p1 < p < q1 < q0 and w ∈ Ap/p1 ∩ B(q1/p)′

holds. See Remark 4.7 (b). It follows from Remark 4.7 (c) that

w1−p′ ∈ Ap′/q′1 ∩ B(p′1/p
′)′ .

Now we apply Theorem 4.4 to the following data. For each f ∈ L∞c (Rn) set

F := |T ∗f |q
′
1 , H1 =H2 := 0, v :=w1−p′ ,

s :=
p′1
p′
, r :=

p′

q′1
, q :=

p′1
q′1
.

Let q̃ = q1 and {AB}B and {αj}j be as in the hypotheses. We will check that Theorem 4.4

conditions (4.1), (4.2) and (4.3) hold with

GB := 2q
′
1−1 |(I −AB)∗T ∗f |q

′
1 and HB := 2q

′
1−1 |A∗BT ∗f |

q′1

and G is a fixed constant multiple of M
(
|f |q

′
1
)
, with M the Hardy–Littlewood maximal function.

We first check condition (4.1). By noting that (I −A∗B) = (I −AB)∗ one has

F (x) = |T ∗f(x)|q
′
1 = |(I −AB)∗T ∗f(x) +A∗BT

∗f(x)|q
′
1

≤ 2q
′
1−1 |(I −A∗B)T ∗f(x)|q

′
1 + 2q

′
1−1 |A∗BT ∗f(x)|q

′
1

= GB(x) +HB(x).

We have used that |a+ b|r ≤ 2r−1 |a|r + 2r−1 |b|r, which is valid for all r ≥ 1 and a, b ∈ R. We

now check condition (4.2). We first write

(∫
B

Hq
B

)1/q

=
(∫

B

2p
′
1−p

′
1/q
′
1 |A∗BT ∗f |

p′1
)q′1/p′1

.
(∫

B

|A∗BT ∗f |
p′1
)q′1/p′1

.
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To estimate the integral we apply duality to R := T ∗, S := A∗B with some g ∈ Lp1(B, dx/ |B|)

with norm 1 (Remark 4.7 (d)) to obtain for each x ∈ B,

(∫
B

Hq
B

)1/qq′1
.
(∫

B

|A∗BT ∗f |
p′1
)1/p′1

≤
∫
B

|T ∗f | |ABg|

≤
∞∑
j=0

2jn
∫
Uj(B)

|T ∗f | |ABg|

≤
∞∑
j=0

2jn
(∫

2jB

|T ∗f |q
′
1

)1/q′1
(∫

Uj(B)

|ABg|q1
)1/q1

≤M
(
|T ∗f |q

′
1
)
(x)1/q′1

∞∑
j=0

2jn
(∫

Uj(B)

|ABg|q1
)1/q1

.

Now from condition (ii) estimate (4.7) with exponent q̃ = q1, we have for each j ≥ 0

(∫
Uj(B)

|ABg|q1
)1/q1

≤ αj
(∫

B

|g|p0
)1/p0

≤ αj
(∫

B

|g|p1
)1/p1

= αj .

Where we have used Hölder’s inequality (since p1 > p0) and the normalisation of g. It follows

then that for each x ∈ B,

(∫
B

Hq
B

)1/qq′1
.M

(
|T ∗f |q

′
1
)
(x)1/q′1

∞∑
j=0

αj2
jn .M

(
|T ∗f |q

′
1
)
(x)1/q′1

so that (4.2) holds with H1 = H2 = 0. We check condition (4.3). We first write

(∫
B

GB

)1/q′1
=
(∫

B

2q
′
1−1 |(I −AB)∗T ∗f |q

′
1 dx

)1/q′1
.
(∫

B

|(I −AB)∗T ∗f |q
′
1 dx

)1/q′1
.

We apply duality again now with R := I, S := (I − AB)∗T ∗ and g ∈ Lq1(B, dx/ |B|) with

norm 1. Then for each x ∈ B,

(∫
B

GB

)1/q′1
.
∫
B

|f | |T (I −AB)g|

≤
∞∑
j=0

2jn
∫
Uj(B)

|f | |T (I −AB)g|

≤
∞∑
j=0

2jn
(∫

2jB

|f |q
′
1

)1/q′1
(∫

Uj(B)

|T (I −AB)g|q1
)1/q1

≤M
(
|f |q

′
1
)
(x)1/q′1

∞∑
j=0

2jn
(∫

Uj(B)

|T (I −AB)g|q1
)1/q1

.
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To estimate the summands we observe that since q1 ∈ (p0, q0), we may apply (4.8) with expo-

nent q̃ = q1 to obtain for j ≥ 2,

(∫
Uj(B)

|T (I −AB)g|q1
)1/q1

≤ αj
(∫

B

|g|p0
)1/p0

≤ αj
(∫

B

|g|q1
)1/q1

= αj .

We have used Hölder’s inequality (because q1 > p0) and the normalisation of g. For j = 0, 1 we

use hypothesis (i) with exponent q̃ = q1 to give∫
Uj(B)

|T (I −AB)g|q1 . 1

|B|

∫
Rn
|(I −AB)g|q1 . 1

|B|

{∫
B

|g|q1 +

∞∑
k=0

∫
Uk(B)

|ABg|q1
}
.

For the summands we use the approach as before, namely applying (4.7) for k ≥ 0 and Hölder’s

inequality to get

(∫
Uk(B)

|ABg|q1
)1/q1

≤ αk
(∫

B

|g|p0
)1/p0

≤ αk
(∫

B

|g|q1
)1/q1

= αk.

Collecting these estimates we have for j = 0, 1,∫
Uj(B)

|T (I −AB)g|q1 .
∫
B

|g|q1 +

∞∑
k=0

2kn
∫
Uk(B)

|ABg|q1 .
∫
B

|g|q1 +

∞∑
k=0

αq1k 2kn

which is finite because
∑
k αk2kn is. Finally we can estimate GB :

(∫
B

GB

)1/q′1
. M

(
|f |q

′
1
)
(x)1/q′1

{ ∞∑
j=2

αj2
jn + C

}
. M

(
|f |q

′
1
)
(x)1/q′1 =: G(x)1/q′1 .

This finishes the proof of (4.3).

Theorem 4.4 allows us to conclude that

∥∥M |T ∗f |q′1∥∥
Lr(v)

≤ C
∥∥M |f |q′1∥∥

Lr(v)
(4.9)

where we recall that r = p′/q′1 and v = w1−p′ . The Lp
′
(v) boundedness of T ∗ then follows

because

‖T ∗f‖q
′
1

Lp′ (v)
≤
∥∥M |T ∗f |q′1∥∥

Lr(v)
≤ C

∥∥M |f |q′1∥∥
Lr(v)

≤ C ‖f‖q
′
1

Lp′ (v)
.

The first inequality holds by domination of the maximal function. Indeed for almost every x ∈ Rn

and any δ ≥ 1,

|g(x)| ≤ sup
B3x

∫
B

|g| ≤ sup
B3x

(∫
B

|g|δ
)1/δ

= M(|g|δ)(x)1/δ.
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Therefore

‖T ∗f‖q
′
1

Lp′ (v)
=
(∫
|T ∗f |p

′
v
)q′1/p′

≤
(∫

M
(
|T ∗f |q

′
1
)p′/q′1v)q′1/p′ =

∥∥M |T ∗f |q′1∥∥
Lr(v)

.

The second inequality is the conclusion of the maximal theorem (4.9). The final inequality

follows from the boundedness of the maximal function (M |·|δ)1/δ on weighted spaces Lp(w) for

any p > δ:

∥∥M |f |q′1∥∥
Lr(v)

=
(∫

M
(
|f |q

′
1
)p′/q′1v)q′1/p′ ≤ C(∫ |f |p′ v)q′1/p′ = C ‖f‖q

′
1

Lp′ (v)

because p′ > q′1. By duality we obtain therefore that T is bounded on Lp(w).

We now prove (b). Fix a weight w ∈ A1 ∩ B(q0/p0)′ . We shall apply Theorem 4.5 to T

and AB as given in Theorem 4.6.

Let us check Theorem 4.5 (i). We first explain why, for our weight w, the set Ww(p0, q0)

is non-empty. Since w ∈ B(q0/p0)′ by Proposition 2.9 (e) there exists q such that (q0/p0)′ <

(q0/q)
′ < ∞ with w ∈ B(q0/q)′ . This means that 1 < q0/q < q0/p0 and hence p0 < q < q0. In

particular q/p0 > 1 and so by Proposition 2.9 (a) we have the containment A1 ⊂ Aq/p0 . We

have shown that p0 < q < q0 and w ∈ Aq/p0 ∩ B(q0/q)′ so that q ∈ Ww(p0, q0). It now follows

from conclusion (a) that T is bounded on Lq(w) and hence maps Lq(w) into Lq,∞(w). Next

we observe that Theorem 4.5 (ii) is contained in hypothesis (ii) of Theorem 4.6. Let us turn to

Theorem 4.5 (iii). By Proposition 2.9 (e) there exists p′ ∈ (q′0, p
′
0) such that w ∈ Bp′ . Hence

p ∈ (p0, q0) and Theorem 4.5 (iii) holds by hypothesis (iii) of Theorem 4.6. Since we chose αj

such that
∑
j αj2

jDw <∞ we see that condition (iv) of Theorem 4.5 is also satisfied.

The Theorem now lets us conclude that

‖Tf‖Lp0,∞(w) ≤ C ‖f‖Lp0 (w)

which was to be proved.

Remark 4.7. The following facts are well known but we give the details here for the reader’s

convenience.
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(a) Fix p ∈ (1,∞) and let w be a weight and that w1−p′ ∈ L1
loc(Rn). Let T be a linear operator

and T ∗ be its adjoint with respect to dx. We explain why the boundedness of T on Lp(w)

is equivalent to the boundedness of T ∗ on Lp
′
(w1−p′) (see also [16] remark 4.5).

First assume that T is bounded on Lp(w). One has

‖T ∗f‖Lp′ (w1−p′ ) =

∫
|T ∗f |p

′
w1−p′dx =

∫
|w−1T ∗f |p

′
w dx .

By duality there exists g ∈ Lp(w) with norm 1 such that

∫
|w−1T ∗f |p

′
w dx ≤

∣∣∣∫ w−1T ∗f g w dx
∣∣∣ =

∣∣∣∫ T ∗f g dx
∣∣∣ ≤ ∫ |f | |Tg| dx .

Hölder’s inequality with respect to wdx gives

∫
|f | |Tg| dx =

∫ ∣∣fw−1
∣∣ |Tg| w dx

≤
(∫ ∣∣fw−1

∣∣p′ w dx)1/p′(∫
|Tg|p w dx

)1/p

= ‖f‖Lp′ (w1−p′ ) ‖Tg‖Lp(w) .

Using that T is bounded on Lp(w) and that ‖g‖Lp(w) = 1 we obtain

‖T ∗f‖Lp′ (w1−p′ ) ≤ C ‖f‖Lp′ (w1−p′ ) .

To prove the other direction, we remark that if T ∗ is bounded on Lp
′
(w1−p′), then the

previous proof implies T is bounded on Lp(w(1−p′)(1−p)) ≡ Lp(w).

(b) Fix w ∈ A∞ and p ∈ Ww(p0, q0). The latter condition implies that w ∈ Ap/p0 ∩B(q0/p)′ . By

Proposition 2.9 (d) there exists p1 such that 1 < p/p1 < p/p0 and w ∈ Ap/p1 . This implies

p0 < p1 < p. By Proposition 2.9 (e) there exists q1 such that (q0/p)
′ < (q1/p)

′ < ∞ and

w ∈ B(q1/p)′ . This implies that p < q1 < q0. Hence w ∈ Ap/p1 ∩ B(q1/p)′ .

(c) Given p1 < p < q1 the equivalence

w ∈ Ap/p1 ∩ B(q1/p)′ ⇐⇒ w1−p′ ∈ Ap′/q′1 ∩ B(p′1/p
′)′

follows from [16] Lemma 4.4.
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(d) We recall we may estimate the Lp norms by using duality with Lp
′
:

‖f‖p = sup
‖g‖p′=1

|〈f, g〉| = sup
‖g‖p′=1

∣∣∣∫ f g
∣∣∣ .

Hence if T is a sublinear operator, by the same token

‖Tf‖p = sup
‖g‖p′=1

|〈Tf, g〉| = sup
‖g‖p′=1

|〈f, T ∗g〉| .

If S and R are sublinear operators and B is a ball, then writing Lp(X) := Lp (B, dx/ |B|)

we have

(∫
|SRf |p

)1/p

= ‖SRf‖Lp(X) = sup
‖g‖

Lp
′
(X)

=1

|〈SRf, g〉X |

= sup
‖g‖

Lp
′
(X)

=1

|〈Rf, S∗g〉X | ≤
∫
B

|Rf | |S∗g| dx,

where the inner product 〈, 〉X is the L2(X) inner product. That is, 〈u, v〉X =
∫
B
uv dx.

4.2 First Order Riesz Transforms

In this section we give the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Proof of (a) ⇒ (b). We invoke Theorem 4.6 with T = ∇L−1/2, p0 = 1,

q0 = s and

AB = I − (I − e−r
2
BL)m

where m > n/2 is an integer. Then condition (i) of Theorem 4.6 holds from our hypothesis (a).

We shall show that condition (ii) holds for any q, p0 ≥ 1 (and any m ≥ 1), with αj = C4−jm for

j ≥ 0. Here C is a constant independent of j and B. To see this we expand for each j ≥ 0,

AB =

m∑
k=1

(
m
k

)
(−1)ke−kr

2
BL.

Therefore for each x ∈ Rn one has

|ABf(x)| ≤
m∑
k=1

(
m
k

)∣∣e−kr2BLf(x)
∣∣.
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Now for each j ≥ 2, x ∈ Uj(B), y ∈ B, we observe that |x− y| ≥ 2jrB/4. Hence for each k ≥ 1,

the Gaussian bounds (3.1) on the heat kernel of L imply that

sup
x∈Uj(B)

∣∣e−kr2BLf(x)
∣∣ ≤ sup

x∈Uj(B)

∫
B

∣∣pkr2B (x, y)
∣∣ |f(y)| dy

≤ sup
x∈Uj(B)

(kr2
B)−n/2e−c4

j

∫
B

|f |

. e−c4
j

∫
B

|f | .

These bounds give for each j ≥ 2, q ≥ 1, and p0 ≥ 1,

(∫
Uj(B)

|ABf |q dx
)1/q

.
(∫

Uj(B)

e−c4
j
(∫

B

|f |
)q
dx
)1/q

≤ e−c4
j

∫
B

|f | ≤ e−c4
j
(∫

B

|f |p0
)1/p0

(4.10)

by Hölder’s inequality. The same approach gives for j = 0, 1

(∫
Uj(B)

|ABf |q
)1/q

.
(∫

B

|f |p0
)1/p0

.

Next we show that hypothesis (a) leads to condition (iii) of Theorem 4.6. Condition (iii) is

contained in the conclusion of the following lemma, whose proof we postpone to the end of the

section.

Lemma 4.8. Let L = −∆ +V on Rn with n ≥ 1 and 0 ≤ V ∈ L1
loc(Rn). Assume that for some

q > 2 there exists Cq > 0 such that

∥∥√t∇e−tL∥∥
q→q ≤ Cq. (4.11)

Then for each p ∈ [1, q) there exists Cp > 0 such that for each m ≥ 1, j ≥ 2 and any p0 ≥ 1,

(∫
Uj(B)

∣∣∇L−1/2(I − e−r
2
BL)mf

∣∣p)1/p

≤ Cp4−jm
(∫

B

|f |p0
)1/p0

. (4.12)

for all balls B and f ∈ L1(B).

Hence our proof of (iii) will be complete provided we show how (a) leads to estimate (4.11).

Indeed for each t > 0 and q ∈ (1, s), by the Lq(Rn) boundedness of ∇L−1/2,

∥∥√t∇e−tLf∥∥
q

=
∥∥√t∇L−1/2L1/2e−tLf

∥∥
q
.
∥∥√tL1/2e−tLf

∥∥
q
.
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Now by the analyticity of
{
e−tL

}
t>0

([85] p74, Theorem 6.13), one therefore obtains

∥∥√tL1/2e−tLf
∥∥
q
. ‖f‖q

as required. To complete the proof of (a) ⇒ (b), we remark that since m ≥ n/2 our constants

αj satisfy
∑
j αj2

jn <∞.

Proof of (a) ⇒ (c). To prove this implication we invoke Theorem 4.6 again, and appeal

this time to the second conclusion with almost the same datum as the previous case. The

exception is that we take m > Dw/2, where Dw is the doubling order of w instead.

Proof of (b) ⇒ (a). Simply take w ≡ 1 and observe that W1(1, s) = (1, s).

Proof of (c) ⇒ (a). For this implication we apply the following extrapolation result due

to Auscher and Martell.

Proposition 4.9 ([16] Corollary 4.10). Let 0 < p0 < q0 ≤ ∞. Suppose that there exists

q ∈ [ p0 , q0 ] (with q <∞ if q0 =∞) such that

T : Lq(w)→ Lq,∞(w), ∀w ∈ Aq/p0 ∩ B(q0/q)′ . (4.13)

Then for all p ∈ (p0, q0) we have

T : Lp(w)→ Lp,∞(w), ∀w ∈ Ap/p0 ∩ B(q0/p)′ . (4.14)

We apply this Proposition to T = ∇L−1/2 with p0 = 1 and q0 = s. Hence from hypothesis (c),

condition (4.13) holds for q = 1. We conclude therefore that

∇L−1/2 : Lp(w)→ Lp,∞(w), ∀w ∈ Ap ∩ B(s/p)′ (4.15)

for every p ∈ (1, s). This implies, by setting w ≡ 1, that ∇L−1/2 is weak(p, p) for each p ∈ (1, s)

and hence by interpolation is bounded on Lp(Rn) for every p ∈ (1, s), which is (a).

Proof of Theorem 4.2. The proof of Theorem 4.2 follows that of Theorem 4.1 with V 1/2L−1/2

in place of ∇L−1/2. The main modification is that in place of Lemma 4.8 we use the following.
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Lemma 4.10. Let L = −∆ + V on Rn with n ≥ 1 and 0 ≤ V ∈ L1
loc(Rn). Assume that for

some q > 2 there exists Cq > 0 such that

∥∥√tV 1/2e−tL
∥∥
Lq→Lq ≤ Cq . (4.16)

Then for each p ∈ [1, q) there exists Cp > 0 such that for each m ≥ 1, j ≥ 2(∫
Uj(B)

∣∣V 1/2L−1/2(I − e−r
2
BL)mf

∣∣p)1/p

≤ Cp4−jm
∫
B

|f | (4.17)

for all balls B and f ∈ L1(B).

The proof of this lemma is almost the same as the proof for Lemma 4.8 and we omit the

details.

Proof of Lemma 4.8. It is known that (4.12) holds for p = 2 ([6] Proposition 2.4). Hence (4.12)

holds for all p ∈ [1, 2). To see this we simply apply Hölder’s inequality (with exponents 2/p and

its conjugate 2/(2− p)) to the left hand side of (4.12), and then invoke the estimate for p = 2.

It remains to prove (4.12) for p ∈ (2, q). The argument given here follows that of [13] p944.

The first step is to show that (4.11) leads to the following: there exists C > 0 such that

for all y ∈ Rn and t > 0,

‖∇pt(·, y)‖q ≤
C

t1/2+n/2−n/2q . (4.18)

Firstly, the semigroup property (2.3) implies that ∇xp2t(x, y) = ∇xe−tLpt(x, y) . Therefore

by (4.11),

‖∇xp2t(·, y)‖q =
∥∥∇xe−tLpt(·, y)

∥∥
q
.

1√
t
‖pt(·, y)‖q .

Now using the Gaussian upper bounds (3.1) for pt(x, y), we obtain

‖pt(·, y)‖qq ≤
C

tqn/2

∫
e−q|x−y|

2/ctdx ≤ C

tnq/2−n/2
,

and combining this with the previous estimate gives (4.18).

The second step is to obtain the following weighted estimate for p ∈ (2, q): there exists

γp > 0 and Cp > 0 such that for all y ∈ Rn and t > 0,

∥∥∇pt(·, y)eγp|·−y|
2/t
∥∥
p
≤ Cp
t1/2+n/2−n/2p . (4.19)
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This is known to hold for p = 2 (see Lemma 3.1). We shall obtain (4.19) by interpolating

between the case p = 2 and estimate (4.18). Fix p ∈ (2, q) and let γ2 be the constant from the

case p = 2. Define γp := γ2(q − p)/(q − 2). Note that

p = 2
q − p
q − 2

+ q
p− 2

q − 2
, 0 <

q − p
q − 2

< 1, 1 <
q − 2

q − p
<∞ .

We apply Hölder’s inequality with exponents (q−2)/(q−p) and ((q−2)/(q−p))′ = (q−2)/(p−2)

to obtain

∫
|∇xpt(x, y)|p eγp|x−y|

2/tdx

=

∫
|∇xpt(x, y)|2

q−p
q−2 eγp|x−y|

2/t |∇xpt(x, y)|q
p−2
q−2 dx

≤
(∫
|∇xpt(x, y)|2 eγ2|x−y|

2/tdx
) q−p
q−2
(∫
|∇xpt(x, y)|q dx

) p−2
q−2

≤ C
(
t−1−n/2) q−pq−2

(
t−q/2−nq/2+n/2

) p−2
q−2

= Ct−p/2−np/2+n/2

and the required estimate follows.

In the third and final step we prove that the weighted estimate (4.19) for some p ∈ (2, q)

leads to (4.12) for the same p. Fix a ball B, f ∈ L1(B), m ≥ 1, and p ∈ (2, q). Then for each

j ≥ 2, y ∈ B and x ∈ Uj(B) one has |x− y| ≥ 2jrB/4. This combined with (4.19) gives

∫
Uj(B)

|∇xpt(x, y)|p dx =

∫
Uj(B)

|∇xpt(x, y)|p eγp|x−y|
2/te−γp|x−y|

2/tdx

≤ e−c4
jr2B/t

∥∥∇xpt(·, y)eγp|·−y|
2/t
∥∥p
p

≤ C

tp/2+np/2−n/2 e
−c4jr2B/t .

Next we write

∇L−1/2(I − er
2
BL)mf =

∫ ∞
0

grB (t)∇e−tLf dt

where gr : R+ → R is a function such that (see [13] p931)

∫ ∞
0

|gr(t)| e−c4
jr2/t dt√

t
≤ Cm4−jm.
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By Minkowski’s inequality and the previous estimate,

(∫
Uj(B)

∣∣∇L−1/2(I − e−r
2
BL)mf

∣∣pdx)1/p

=
1

|2jB|1/p
∥∥∥∫ ∞

0

grB (t)∇e−tLf dt
∥∥∥
Lp(Uj(B))

≤ 1

|2jB|1/p

∫ ∞
0

|grB (t)|
∫
B

|f(y)|
(∫

Uj(B)

|∇xpt(x, y)|p dx
)1/p

dy dt

≤ C

|2jB|1/p

∫ ∞
0

|grB (t)|
∫
B

|f(y)| dy e−c4
jr2B/t

t1/2+n/2−n/2p dt

= C
(∫ ∞

0

|grB (t)| |B|
|2jB|1/p

1

tn/2(1−1/p)
e−c4

jr2B/t
dt√
t

)(∫
B

|f |
)

≤ C2−jn/p
(∫ ∞

0

|grB (t)|
( rB√

t

)n(1−1/p)

e−c4
jr2B/t

dt√
t

)(∫
B

|f |
)
.

By absorbing
(
2jrB/

√
t
)n(1−1/p)

into another exponential with some constant c′ < c, and ap-

plying Hölder’s inequality with any p0 ≥ 1, we obtain

(∫
Uj(B)

∣∣∇L−1/2(I − e−r
2
BL)mf

∣∣pdx)1/p

≤ C
∫ ∞

0

|grB (t)| e−c
′4jr2B/t

dt√
t

∫
B

|f |

≤ C4−jm
∫
B

|f | ≤ C4−jm
(∫

B

|f |p0
)1/p0

.

This gives (4.12) and our proof of Lemma 4.8 is complete.

4.3 Second order Riesz Transforms

In this section we study the second-order Riesz transforms ∇2L−1 and V L−1 associated to

L = −∆ + V under the additional condition that V belongs to some reverse Hölder class. Our

main task is to give the proof of Theorem 4.3.

Firstly the weighted estimates in Proposition 3.7 allow us to obtain an analogue of

Lemma 4.8.

Lemma 4.11. Let L = −∆ + V on Rn with n ≥ 2. Set q+ := sup
{
q > n

2 : V ∈ Bq
}

. Then for

each j ≥ 2, m ≥ 1, p ∈ (1, q+), ball B, and f ∈ L1(B) we have

(∫
Uj(B)

|∇2L−1(I − e−r
2
BL)mf |p

)1/p

≤ Ce−c4
j

∫
B

|f | , (4.20)
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Uj(B)

|V L−1(I − e−r
2
BL)mf |p

)1/p

≤ Ce−c4
j

∫
B

|f | . (4.21)

Proof. We first prove (4.21). The first step is to write, using the binomial theorem,

V L−1(I − e−r
2
BL)m =

m∑
k=0

(
m
k

)
(−1)k

∫ ∞
0

V e−(kr2B+t)L dt

=

m∑
k=0

(
m
k

)
(−1)k

∫ ∞
0

V e−tL1(kr2B ,∞)(t) dt

=

∫ ∞
0

hrB (t)V e−tL dt

where

hr(t) :=

m∑
k=0

(−1)k
(
m
k

)
1(kr2B ,∞)(t).

Now observing that
∑m
k=0(−1)k

(
m
k

)
= 0 we can write

hr(t) =

m∑
k=0

(−1)k
(
m
k

)
1(mr2,∞)(t) +

m∑
k=0

(−1)k
(
m
k

)
1(kr2,mr2](t)

=

m∑
k=0

(−1)k
(
m
k

)
1(kr2,mr2](t) .

Therefore

|hr(t)| ≤
m∑
k=0

(
m
k

)
1(0,mr2](t) ≤ 2m1(0,mr2](t) .

Now by Minkowski’s inequality,

∥∥V L−1(I − e−r
2
BL)mf

∥∥
Lp(Uj(B))

=
∥∥∥∫ ∞

0

hrB (t)V e−tLf dt
∥∥∥
Lp(Uj(B))

≤
∫ ∞

0

|hrB (t)|
∥∥V e−tLf∥∥

Lp(Uj(B))
dt

≤
∫ ∞

0

|hrB (t)|
∫
B

|f(y)| ‖V (·)pt(·, y)‖Lp(Uj(B)) dy dt .

Next for each y ∈ B and t > 0, by estimate (3.12),

‖V (·)pt(·, y)‖Lp(Uj(B)) ≤
(∫

Uj(B)

|V (x)pt(x, y)|p eβp
|x−y|2

t e−βp
|x−y|2

t dx
)1/p

≤ sup
x∈Uj(B)

e−βp
|x−y|2

t

∥∥V (·)pt(·, y)eβp
|·−y|2
t

∥∥
Lp(Rn)

.
1

t1+n/2−n/2p e
−c4jr2B/t .
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Therefore one has

(∫
Uj(B)

∣∣V L−1(I − e−r
2
BL)mf

∣∣p)1/p

=
1

|2jB|1/p
‖V L−1(I − e−r

2
BL)mf‖Lp(Uj(B))

.
(∫ ∞

0

|hrB (t)| |B|
|2jB|1/p

e−c4
jr2B/t

t1+n/2−n/2p dt
)(∫

B

|f |
)

.
(∫ mr2B

0

|B|
|2jB|1/p

e−c4
jr2B/t

t1+n/2−n/2p dt
)(∫

B

|f |
)
.

Since

|B|
|2jB|1/p

≈ rnB
(2jnrnB)1/p

≈
r
n(1−1/p)
B

2jn/p
= 2−jn(2jrB)n(1−1/p),

then it follows that for some ε > 0

|B|
|2jB|1/p

1

tn/2(1−1/p)
. 2−jn

(2jrB√
t

)n(1−1/p)

≤
(2jrB√

t

)n(1−1/p)

. eε4
jr2B/t .

Collecting these estimates we obtain

(∫
Uj(B)

∣∣V L−1(I − e−r
2
BL)mf

∣∣p)1/p

.
(∫ mr2B

0

e−c
′4jr2B/t

dt

t

)(∫
B

|f |
)

. e−c4
j/m
(∫ mr2B

0

t

4jr2
B

dt

t

)(∫
B

|f |
)

. e−c4
j/m

∫
B

|f |

provided m > 0.

The proof of (4.20) is similar but uses (3.11) in place of (3.12) and we omit the details.

We are now ready to give the

Proof of Theorem 4.3. The proofs of (a) and (b) are contained in the conclusions of Theorem 4.6

provided we can show conditions Theorem 4.6 (i)-(iii) hold for the following: p0 = 1, q0 = q+,

T one of ∇2L−1 or V L−1, and AB = I − (I − e−r2BL)m for m large enough. We need to take

m > n/2 for conclusion (a), and m > Dw/2 for conclusion (b), where Dw is the doubling order

of the chosen weight w.

From the work of [93] and also [12] (see Theorems 1.2 and 1.3) we know that the operators

∇2L−1 and V L−1 are bounded on Lp(Rn) for all p ∈ (1, q+), and hence Theorem 4.6 (i) holds.
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The proof of condition (ii) can be found in the proof of Theorem 4.1, and condition (iii) is

contained in Lemma 4.11.



Chapter 5

Weighted Lebesgue spaces II: weights adapted to the Schrödinger

operator

In this chapter we extend the results from Chapter 4 to weighted spaces with weights adapted

to the Schrödinger operator. These weights were introduced in [30] and further investigated in

[104, 105, 106]. These weights form a larger class of weights than the A∞ class. See Definition 5.2

below.

The main result of this chapter is

Theorem 5.1. Let L = −∆+V on Rn with n ≥ 3. Assume that V ∈ Bs for some s > n/2. Then

the operators ∇2L−1 and V L−1 are bounded on Lp(w) for each p ∈ (1, s) and w1−p′ ∈ ALp′/s′ .

We give some brief remarks on this result. Firstly, the condition w1−p′ ∈ ALp′/s′ can be equiv-

alently expressed as w ∈ ALp ∩ BL(s/p)′ . Another formulation (see Section 1.1.1 (iii) and also

Theorem 1.7) of the hypothesis p ∈ (1, s) and w1−p′ ∈ ALp′/s′ is the statement: w ∈ AL∞ and

p ∈ WL
w(1, s). Note also that the result for V L−1 is known [106] but the result for ∇2L−1 is

new. Unlike the situation for A∞ weights, we are not able to pass from the result for V L−1 to

∇2L−1 easily. See the calculation in (1.13) and item (iii) in Section 1.1.1 of this thesis. Finally

the techniques developed in this chapter also allow us to give new proofs of boundedness of the

first-order Riesz transforms ∇L−1/2 and V 1/2L−1/2 (which are known to hold in [30, 106]), but

we do not give the details here.

This chapter is organised as follows. In Section 5.1 we give the appropriate definitions

and collect some useful estimates related to these weights. In Section 5.2 we develop the good-λ
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techniques needed to prove the main result, and also give some applications of these techniques.

The proof of Theorem 5.1 is given in Section 5.3. In the final section we give an alternate proof

of Theorem 5.1 for the operator V L−1, using the approach in [30].

5.1 Weights adapted to Schrödinger operators

In this section we define weights adapted to Schrödinger operators and give some of their prop-

erties. Throughout this chapter we use the following notation. For a given ball B and a number

θ ≥ 0, we set

ψθ(B) :=
(

1 +
rB

γ(xB)

)θ
.

Here γ : Rn → (0,∞) is the auxiliary weight function defined in Definition 2.2. Observe that

for any λ ≥ 1, we have ψθ(B) ≤ ψθ(λB) ≤ λθψθ(B). We will also often interchange balls with

cubes. In this case if Q is a cube, the expression for ψθ(Q) is the same as above but with rB

replaced by lQ (the sidelength of Q), and xB replaced by xQ (the centre of Q).

The following maximal operator was first defined in [31, 106] and will be an essential tool

throughout this chapter. For each θ ≥ 0, we set

ML
θ f(x) := sup

B3x

1

ψθ(B)

∫
B

|f(y)| dy.

We mention here that f is pointwise controlled byML
θ f . Indeed, for any f ∈ L1

loc(Rn) and θ ≥ 0,

we have for almost every x,

|f(x)| ≤ 2θML
θ f(x). (5.1)

To see this, we let r ≤ γ(x) and observe that

∫
B(x,r)

|f | ≤ ψθ(B(x, r))ML
θ f(x) ≤ 2θML

θ f(x).

Now let r → 0 and apply Lebesgue’s differentiation theorem (see [100]) to obtain (5.1).

Definition 5.2 (Weights adapted to the Schrödinger operator). Let w be a non-negative locally

integrable function. For p ∈ (1,∞) and θ ≥ 0, we say that w ∈ AL,θp if there exists C =
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C(w, θ, p) > 0 such that for all balls B,

(∫
B

w
)1/p(∫

B

w1−p′
)1/p′

≤ Cψθ(B).

We say that w ∈ AL,θ1 if there exists C = C(w, θ) > 0 such that for all balls B∫
B

w ≤ C ψθ(B)w(x) a.e. x ∈ B.

For p ∈ [1,∞) we set

ALp :=
⋃
θ≥0

AL,θp .

We also define AL∞ :=
⋃

1≤p<∞
ALp .

By taking θ = 0 we see that these weights contain the A∞ weights. That is, Ap ⊂ AL,θp for

every p ∈ [1,∞) and every θ > 0. However the inclusion is proper. For example let V ≡ 1 and

take w(x) = 1+ |x|ε with ε > n(p−1). Then w is a member of ALp but w does not belong to Ap.

We also introduce a class of reverse Hölder weights adapted to the Schrödinger operator.

As far as we are aware, these classes have not been explicitly defined elsewhere in the literature.

Definition 5.3 (Reverse Hölder weights adapted to the Schrödinger operator). Let w be a non-

negative locally integrable function. For q ∈ (1,∞) and θ ≥ 0, we say that w ∈ BL,θq if there

exists C = C(w, q, θ) > 0 such that for all balls B,

(∫
B

wq
)1/q

≤ C ψθ(B)
(∫

B

w
)
.

We say that w ∈ BL,θ∞ if there exists C = C(w, θ) > 0 such that for all balls B,

w(x) ≤ Cψθ(B)
(∫

B

w
)
, a.e. x ∈ B.

For q ∈ (1,∞ ] we set

BLq :=
⋃
θ≥0

BL,θq .

We remark that in the definitions one can interchange balls by cubes and obtain the same classes

of weights.

The next property of the BLq classes is an analogue of Lemma 2.11.
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Lemma 5.4. Let w ∈ BL,θs′ for some θ ≥ 0 and 1 ≤ s ≤ ∞. Then there exists Cw > 0 such that

for any cube Q and measurable E ⊂ Q,

w(E)

w(Q)
≤ Cw ψθ(Q)

(
|E|
|Q|

)1/s

.

Proof. If s′ <∞ then by Hölder’s inequality with exponents s′ and s,

w(E)

w(Q)
=
|Q|
w(Q)

1

|Q|

∫
E

w ≤ |Q|
w(Q)

(∫
Q

ws
′
)1/s′

(
|E|
|Q|

)1/s

≤ Cw
|Q|
w(Q)

ψθ(Q)
(∫

Q

w
)( |E|
|Q|

)1/s

= Cwψθ(Q)

(
|E|
|Q|

)1/s

.

If s′ =∞ then the same conclusion holds.

As in the classical situation these two weight classes are intimately connected. It was

shown in [30] that if w ∈ ALp for some p ∈ [1,∞), then w ∈ BL,θq for some q > 1 and θ ≥ 0

(see [30] Lemma 5). We give a more explicit statement of this connection in the next result,

itself modelled on [12] Proposition 11.1.

Lemma 5.5. Let w ≥ 0 be a measurable function. Then the following are equivalent.

(a) w ∈ AL∞.

(b) For all σ ∈ (0, 1), wσ ∈ BL1/σ.

(c) There exists σ ∈ (0, 1) such that wσ ∈ BL1/σ.

Proof. If wσ ∈ BL1/σ for some σ ∈ (0, 1), then the self improvement property of these classes (see

Lemma 5.6 (v) below) implies that wσ ∈ BL1/σ+ε for some ε > 0. Therefore w ∈ BL1+σε, which

implies that w ∈ AL∞. Hence we have (c) =⇒ (b) =⇒ (a).

We now show (a) =⇒ (b). Let w ∈ AL∞ and σ ∈ (0, 1). Then w ∈ BL,θr for some r > 1

and θ ≥ 0 (by [30] Lemma 5). Therefore for any α > 1 and cube Q, the set

EQ :=

{
x ∈ Q : wσ(x) > α

∫
Q

wσ
}
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satisfies, by Lemma 5.4,

w(EQ)

w(Q)
≤ Cψθ(Q)

( |EQ|
|Q|

)1/r′

.

Then it follows that

|EQ| =
1

α

∫
EQ

αdx <
1

α

∫
EQ

wσ∫
Q
wσ

dx ≤ |Q|
α
.

Hence we obtain that

w(EQ) ≤ C α−1/r′ψθ(Q)w(Q).

We choose α such that Cα−1/r′ψθ(Q) = 1/2 (note that α > 1). Next, observe that for each

x ∈ Q\EQ we have w(x) ≤
(
α
∫
Q
wσ
)1/σ

. Therefore

∫
Q

w dx =

∫
EQ

w dx+

∫
Q\EQ

w dx

≤ 1

2

∫
Q

w dx+
(
α

∫
Q

wσ
)1/σ

∫
Q\EQ

dx

≤ 1

2

∫
Q

w dx+ α1/σ |Q|
(∫

Q

wσ
)1/σ

.

Rearranging this statement gives us

∫
Q

w dx ≤ 2α1/σ
(∫

Q

wσ
)1/σ

= 2r
′/σ+1 Cr

′/σ ψθr′/σ(Q)
(∫

Q

wσ
)1/σ

.

That is, wσ ∈ BL,θr
′

1/σ ⊂ BL1/σ.

We now describe some further properties of these weights. The reader may find it useful

to compare these with those in Proposition 2.9 (and also Remark 4.7 (b) and (c)).

Lemma 5.6. One has

(i) For each θ ≥ 0, if 1 ≤ p1 ≤ p2 <∞ then AL,θ1 ⊂ AL,θp1 ⊂ A
L,θ
p2 .

(ii) For each θ ≥ 0, if 1 < p1 ≤ p2 ≤ ∞ then BL,θp1 ⊃ B
L,θ
p2 ⊃ B

L,θ
∞ .

(iii) For each 1 ≤ p ≤ ∞ and θ ≥ 0, w ∈ AL,θp if and only if w1−p′ ∈ AL,θp′ .

(iv) If w ∈ ALp for some p ∈ (1,∞) then there exists p0 ∈ (1, p) with w ∈ ALp0 .
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(v) If w ∈ BLq for some q ∈ (1,∞) then there exists q0 ∈ (q,∞) with w ∈ BLq0 .

(vi) For each r ∈ (1,∞), wr ∈ AL∞ ⇐⇒ w ∈ BLr .

(vii) Suppose wσ ∈ ALσ(s−1)+1 for some σ ∈ (0,∞) and s ∈ [1,∞). Then w ∈ ALs if and only

if w ∈ AL∞.

(viii) For each 1 ≤ p ≤ ∞ and 1 ≤ q <∞, we have

wq ∈ ALq(p−1)+1 ⇐⇒ w ∈ ALp ∩ BLq .

(ix) Suppose p0 < p < q0 and w ∈ ALp/p0 ∩ B
L
(q0/p)′

. Then there exists p1 and q1 such that

p0 < p1 < p < q1 < q0 and w ∈ ALp
p1

∩ BL( q1
p

)′ .
(x) Given p0 < p < q0, we have

w ∈ ALp
p0

∩ BL( q0
p

)′ ⇐⇒ w1−p′ ∈ ALp′
q′0

∩ BL(p′0
p′

)′ .
Proof. The proofs of (i), (ii) and (iii) follow easily from the definition of the ALp and BLq classes.

For the proof of (iv) see [30] and also [104] Proposition 2.1 (iii). Property (v) is the self-

improvement property of the BLq classes mentioned in [30]. Property (vi) is a restatement of

Lemma 5.5. Indeed by replacing 1/σ by r and wσ by w in Lemma 5.5 we obtain (vi).

The proofs of the next two properties are adapted from [59] and [72].

Proof of (vii). We note that ALs ⊂ AL∞ for every s ≥ 1, and so necessity is clear. It

suffices to consider the converse. Let w ∈ AL∞. Suppose firstly that 0 < σ < 1. Since w ∈ AL∞

then by Lemma 5.5 (or property (vi) above) we have wσ ∈ BL,θ1/σ for some θ ≥ 0. This means

that for any ball B,

(∫
B

w
)σ

=
(∫

B

(wσ)1/σ
)σ
≤ C ψθ(B)

∫
B

wσ .

Let r := σ(s− 1) + 1. Then since wσ ∈ ALr ,

(∫
B

w
)(∫

B

w−1/(s−1)
)s−1

≤ C ψθ/σ(B)
(∫

B

wσ
)1/σ(∫

B

w−1/(s−1)
)s−1
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= C ψθ/σ(B)
(∫

B

wσ
)1/σ(∫

B

(wσ)−1/(r−1)
)(r−1)/σ

≤ C ψ(r+1)θ/σ(B) .

That is, w ∈ AL,(r+1)θ/(sσ)
s ⊂ ALs . Suppose now that 1 ≤ σ < ∞. Let B be a ball and

r := σ(s− 1) + 1. Note wσ ∈ ALr implies that wσ ∈ AL,θr for some θ ≥ 0. Since σ ≥ 1 we may

apply Hölder’s inequality with exponents σ and σ′ to get

(∫
B

w
)(∫

B

w−1/(s−1)
)s−1

≤
(∫

B

wσ
)1/σ(∫

B

w−1/(s−1)
)s−1

=
(∫

B

wσ
)1/σ(∫

B

(wσ)−1/(r−1)
)(r−1)/σ

≤ C ψrθ/σ(B) .

We have shown that w ∈ AL,θr/(σs)s ⊂ ALs . This concludes the proof of (vii).

Proof of (viii). We first show the =⇒ direction . Assume that wq ∈ ALq(p−1)+1. Then

wq ∈ AL∞, and by property (vi) above w ∈ BLq . If in addition w ∈ AL∞, then applying property

(vii) with σ = q and s = p we obtain w ∈ ALp . We now prove the converse ⇐= direction.

Assume that w ∈ ALp ∩ BLq . Then w ∈ BLq and this implies, by property (vi), that wq ∈ AL∞.

Hence (wq)1/q = w ∈ ALp , and property (vii) with σ = 1/q and p = σ(s − 1) + 1 gives

wq ∈ ALs ≡ ALq(p−1)+1.

Proof of (ix). Firstly, property (iv) implies there exists p1 such that

1 <
p

p1
<

p

p0
and w ∈ ALp

p1

.

This implies p0 < p1 < p. Secondly, property (v) implies there exists q1 such that

(q0

p

)′
<
(q1

p

)′
<∞ and w ∈ BL( q1

p

)′ .
This implies p < q1 < q0.

Proof of (x). The proof is almost the same as that of Lemma 4.4 from [16]. We give the

details here for convenience. Set q =
(
q0
p

)′( p
p0
− 1
)

+ 1. Using properties (iii) and (viii), we have

w ∈ ALp
p0

∩ BL( q0
p

)′ ⇐⇒ w

(
q0
p

)′
∈ AL( q0

p

)′( p
p0
−1
)

+1
≡ ALq ⇐⇒ w

(
q0
p

)′
(1−q′) ∈ ALq′
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and

w1−p′ ∈ ALp′
q′0

∩ BL(p′0
p′

)′ ⇐⇒ w
(1−p′)

(p′0
p′

)′
∈ AL(p′0

p′

)′( p′
q′0
−1
)

+1
.

Direct computations show

(q0

p

)′
(1− q′) = (1− p′)

(p′0
p′

)′
and q′ =

(p′0
p′

)′( p′
q′0
− 1
)

+ 1.

The following weak type property of the operator ML is implicit throughout [106], but we

supply a proof here.

Lemma 5.7. For each η ≥ 0, the operator ML
η is weak type (p, p) for every p ∈ [1,∞).

Proof. We observe thatML
η is controlled pointwise by M , the Hardy–Littlewood maximal func-

tion. Indeed, for each x and ball B containing x, we have

1

ψη(B)

∫
B

|f | ≤
∫
B

|f | ≤Mf(x).

Hence the weak type properties of M carry over to ML
η , since

{
x ∈ Rn :ML

η f(x) > λ
}
⊆ {x ∈ Rn : Mf(x) > λ} .

Therefore

∣∣{x ∈ Rn :ML
η f(x) > λ

}∣∣ ≤ ∣∣{x ∈ Rn : Mf(x) > λ}
∣∣ ≤ Cp

λp
‖f‖pLp .

In fact the weak (p, p) bound of ML
η is controlled by that of M .

The main mapping property of the operator ML we will require is the following.

Lemma 5.8 ([106] Theorem 2.2). Let p ∈ (1,∞) and θ ≥ 0. Then for each w ∈ AL,θp there

exists C > 0 such that

∥∥ML
p′θf

∥∥
Lp(w)

≤ C ‖f‖Lp(w) .

Proof. A proof of this can be found in [106] Theorem 2.2. See also [104] Lemma 2.2.
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Remark 5.9. As a consequence of Lemma 5.8, if p > s, w ∈ AL,θp/s and η = (p/s)′θ then the

operator ML
η

(
|·|s
)1/s

is bounded on Lp(w). In fact, since ML
η is bounded on Lp/s(w) for each

w ∈ ALp/sθ, then we have

∥∥ML
η

(
|f |s
)1/s∥∥p

Lp(w)
=

∫ (
ML

η |f |
s)p/s

w .
∫
|f |p w .

5.2 A new good-λ inequality

The main result of this section is the following extension of Theorem 4.4 to AL∞ weights. It is

the key technical tool of this chapter and is also of independent interest.

Theorem 5.10. Fix η > 0, q ∈ (1,∞ ], ξ ≥ 1, s ∈ [1,∞), and ν ∈ BLs′ . Assume that F ,G,

and H are non-negative functions on Rn such that for each ball B with rB ≤ 12
√
nγ(xB), there

exist non-negative functions HB and GB with

F (x) ≤ HB(x) +GB(x) a.e. x ∈ B, (5.2)∫
B

GB ≤ G(x), ∀x ∈ B, (5.3)

(∫
B

Hq
B

)1/q

≤ ξ
(
ML

ηF (x) +H(y)
)
, ∀x, y ∈ B (5.4)

and for each ball B with rB > 12
√
nγ(xB),

1

ψη(B)

∫
B

F ≤ G(x), ∀x ∈ B . (5.5)

Then there exists C = C(n, q, ν, ξ, s, η, γ) > 0 and K0 = K0(m, η, ξ, γ) ≥ 1 with the following

property: for each λ > 0, K ≥ K0, and δ ∈ (0, 1),

ν
({
x ∈ Rn :ML

ηF (x) > Kλ, G(x) ≤ δλ
})
≤ C

( ξq
Kq

+
δ

K

)1/s

ν
({
x ∈ Rn :ML

ηF (x) > λ
})
. (5.6)

As a consequence, for all r ∈
(
0, q/s

)
, we have

∥∥ML
ηF
∥∥
Lr(ν)

≤ C
(
‖G‖Lr(ν) + ‖H‖Lr(ν)

)
(5.7)

provided
∥∥ML

ηF
∥∥
Lr(ν)

<∞. If r ≥ 1 then (5.7) holds provided F ∈ L1(Rn).
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Remark 5.11. We mention that the term H is an error term, which is useful in applications.

For instance it allows us to consider commutators (see Theorem 3.16 in [16] for the case of A∞

weights). However we do not give any results in this direction in this thesis.

Proof of Theorem 5.10. The proof is an adaptation of the proof of Theorem 4.4 (found in [16]

Theorem 3.1). We begin by mentioning that it will suffice to consider the case G = H. Indeed

if we set G̃ := G + H, then (5.3) holds with G̃ in place of G and (5.4) holds with G̃ in place

of H. Henceforth we shall assume that H = G.

We shall first demonstrate (5.6). Fix λ > 0 and set

Ωλ :=
{
x ∈ Rn :ML

ηF (x) > λ
}

Eλ :=
{
x ∈ Rn :ML

ηF (x) > Kλ, 2G(x) ≤ δλ
}
.

Note that Ωλ is an open set, and hence the Whitney decomposition lemma (see [60]) allows us

to decompose it into a family of pairwise disjoint cubes Q = {Qj}j , with Ωλ = ∪jQj , and such

that 4Qj meets Ωcλ for every j. Our aim is to show the following estimate: there exists C > 0

such that for every j for which Eλ ∩Qj is not empty,

ν(Eλ ∩Qj) ≤ C
( ξq
Kq

+
δ

K

)1/s

ν(Qj) . (5.8)

Then since Eλ ⊂
⋃
j Eλ ∩Qj , we may sum over all the disjoint cubes in Q to obtain

ν(Eλ) ≤
∑
j

ν(Eλ ∩Qj) ≤ C
( ξq
Kq

+
δ

K

)1/s∑
j

ν(Qj) = C
( ξq
Kq

+
δ

K

)1/s

ν(Ωλ) .

which is (5.6).

We proceed with the proof of (5.8). We shall consider two regimes.

J0 :=
{
j : Qj ∈ Q and lQj ≤ 2γ(xQj )

}
J∞ :=

{
j : Qj ∈ Q and lQj > 2γ(xQj )

}
.

We first study the case j ∈ J0. For each such j we define Bj to be the ball with the same

centre as Qj but with radius rBj =
√
n

2 lQj . (That is, Bj is the ‘smallest’ ball concentric with
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and containing Qj). Our task will be to show that for each j ∈ J0 with Eλ ∩Qj non-empty, the

following estimate holds:

|Eλ ∩Qj | ≤ C
( ξq
Kq

+
δ

K

)
|Qj | (5.9)

with C depending only on q, n , η, γ, and the weak type bounds ofML
η . (We remark here that

if q =∞ then the first term ξq/Kq is taken to be zero in inequality (5.9)). Once (5.9) is proven

we may obtain (5.8) as follows. Recall that since ν ∈ BLs′ , then there exists θ ≥ 0 for which

ν ∈ BL,θs′ . We then apply Lemma 5.4 to ν, and to the sets Eλ ∩QJ ⊂ Qj , to obtain

ν(Eλ ∩Qj) ≤ Cν ψθ(Qj)

(
|Eλ ∩Qj |
|Qj |

)1/s

ν(Qj) ≤ C
( ξq
Kq

+
δ

K

)1/s

ν(Qj) . (5.10)

Note we have used that ψθ(Qj) ≤ 3θ since j ∈ J0. This gives estimate (5.8).

We proceed with obtaining (5.9). We shall need a localisation lemma whose proof we

postpone to the end of the section.

Lemma 5.12. Fix η > 0. Then there exists K̃0 > 1 depending only on n, η, and the growth

function γ, with the following property: for each f ∈ L1
loc(Rn), each λ > 0, each K ≥ K̃0, and

each ball B̃ for which there exists x̃ ∈ B̃ with ML
η f(x̃) ≤ λ,

{
x ∈ B̃ :ML

η f(x) > Kλ
}
⊂
{
x ∈ Rn :ML

η

(
f13B̃

)
> (K/K̃0)λ

}
.

Now recall that 4Qj meets Ωcλ. This means that there exists xj ∈ 4Qj ⊂ 4Bj with

ML
ηF (xj) ≤ λ. (5.11)

Hence applying Lemma 5.12 to the ball 4Bj and F implies that there exists K̃0 ≥ 1 so that, for

all K ≥ K̃0,

{
x ∈ 4Bj :ML

ηF (x) > Kλ
}
⊂
{
x ∈ Rn :ML

η

(
F112Bj

)
(x) > (K/K̃0)λ

}
(5.12)

Now we observe that the hypotheses (5.2), (5.3), and (5.4) may be applied to the ball 12Bj

(since j ∈ J0) and hence 12Bj satisfies

r12Bj = 12rBj = 6
√
n lQj ≤ 12

√
nγ(xQj ) = 12

√
nγ
(
x12Bj

)
. (5.13)
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Combining (5.2) with (5.12), and the fact that ML
η is sublinear,

|Eλ ∩Bj | ≤
∣∣{x ∈ Rn :ML

ηF (x) > Kλ} ∩Bj
∣∣

≤
∣∣{x ∈ 4Bj :ML

ηF (x) > Kλ}
∣∣

≤
∣∣∣{x ∈ Rn :ML

η

(
F112Bj

)
> (K/K̃0)λ

}∣∣∣
≤
∣∣∣{x ∈ Rn :ML

η

(
G12Bj112Bj

)
(x) > (K/2K̃0)λ

}∣∣∣
+
∣∣∣{x ∈ Rn :ML

η

(
H12Bj112Bj

)
(x) > (K/2K̃0)λ

}∣∣∣ . (5.14)

Now recall that Eλ ∩Qj is assumed to be not empty. Hence there exists x̃j ∈ Qj ⊂ Bj with

G(x̃j) ≤
δ

2
λ. (5.15)

Let cp be the weak (p, p) bound of ML
η (from Lemma 5.7). Applying assumption (5.3), valid

because of (5.13), we obtain

∣∣∣{x ∈ Rn :ML
η

(
G12Bj112Bj

)
(x) > (K/2K̃0)λ

}∣∣∣ ≤ c12K̃0

Kλ

∫
12Bj

G12Bj

≤ c12K̃0

Kλ
|12Bj | G(x̃j)

≤ 12nc1K̃0

K
|Bj | δ . (5.16)

Next suppose that q <∞. We apply (5.4) — again since (5.13) holds — to get

∣∣{x ∈ Rn :ML
η

(
H12Bj112Bj

)
(x) > (K/2K̃0)λ

}∣∣ ≤ (2K̃0cq
Kλ

)q ∫
12Bj

Hq
12Bj

≤
(2K̃0cq
Kλ

)q
ξq
(
ML

ηF (xj) +G(x̃j)
)q |12Bj |

≤ (4K̃0cq)
q 12n

ξq

Kq
|Bj | , (5.17)

where the points xj and x̃j satisfy (5.12) and (5.15) respectively. We insert now estimates (5.16)

and (5.17) into (5.14) to arrive at

|Eλ ∩Qj | ≤ |Eλ ∩Bj | ≤ C
( ξq
Kq

+
δ

K

)
|Qj |

where C depends on q, n, K̃0 and the weak type bounds of ML
η . This gives (5.9) for the case

q <∞, and hence from (5.10) we get (5.8) for those cubes Qj with j ∈ J0.
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If q =∞, then firstly notice that

∥∥ML
η

(
H12Bj112Bj

)∥∥
L∞
≤
∥∥H12Bj112Bj

∥∥
L∞
≤ ξ

(
ML

ηF (xj) +G(x̃j)
)
≤ 2ξλ.

Therefore it follows that whenever K ≥ 4ξK̃0, then

{
x ∈ Rn :ML

η

(
H12Bj112Bj

)
(x) > (K/2K̃0)λ

}
= ∅.

So we set K0 = 4ξK̃0 ≥ 1, and for each K ≥ K0 we may proceed as before with estimates (5.16)

and (5.17) to obtain the following variant of (5.9):

|Eλ ∩Qj | ≤ C
( δ
K

)1/s

|Qj | .

Before concluding the proof of the case j ∈ J0, we remark that taking the choice K0 = 4ξK̃0

will allow us to cover both of the situations q <∞, and q =∞.

We turn to the proof of (5.8) for the case j ∈ J∞. We shall require the following

decomposition lemma.

Lemma 5.13 ([106] Lemma 3.1). For any cube Q with lQ > 2γ(xQ) there exists a finite collec-

tion of disjoint subcubes {Qk}Nk=1 such that Q = ∪Nk=1Qk with the following property: for every

k ∈ {1, ..., N}, there exists xk ∈ Qk with

1
2 lQk ≤ γ(xk) ≤ 2

√
nC0 lQk ,

where C0 is the constant from Lemma 2.5.

Recall that when j ∈ J∞ the cube Qj satisfies lQj > 2γ(xQj ). Hence we may apply Lemma

5.13 to Qj and obtain a finite collection of disjoint subcubes {Qj,k}
Nj
k=1, with Qj = ∪Njk=1Qj,k,

such that for each k ∈ {1, ..., Nj} there exists xj,k ∈ Qj,k with

1
2 lQj,k ≤ γ(xj,k) ≤ 2

√
nC0 lQj,k . (5.18)

We observe that this implies γ(xj,k) ≈ γ(xQj,k) with constants depending only on n and C0,

where xQj,k is the centre of the cube Qj,k. Indeed, since xj,k, xQj,k ∈ Qj,k then xQj,k ∈
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B(xj,k,
√
n

2 lQj,k) ⊆
√
nBγ(xj,k) and hence by (2.10) we have γ(xQj,k) ≤ C2

0 (1 +
√
n)2γ(xj,k).

The other inequality can be obtained similarly.

Now for each j and k we set Bj,k to be the ball concentric with Qj,k but with radius

√
n

2 lQj,k . That is, Bj,k is the smallest ball concentric with, and containing Qj,k. We claim the

following property holds, whose proof we defer to the end of this section.

Lemma 5.14. There exists α ≥ 1, depending only on n, η and C0, with the following property:

for every cube Qj,k for which Eλ ∩Qj,k is non-empty, one has

Eλ ∩Qj,k ⊂
{
x ∈ Qj,k :ML

η

(
F1αBj,k

)
(x) > Kλ

}
(5.19)

rαBj,k > 12
√
nγ
(
xαBj,k

)
. (5.20)

Let us fix k and assume that Eλ ∩Qj,k is not empty, since otherwise there is nothing to prove

for the cube Qj,k. This implies that there exists a point x̃j,k ∈ Qj,k ⊂ αBj,k with

G
(
x̃j,k

)
≤ δ

2λ, (5.21)

Let c1 be the weak (1, 1) bound of ML
η . Then (5.19) gives

|Eλ ∩Qj,k| ≤
∣∣{x ∈ Qj,k :ML

η

(
F1αBj,k

)
(x) > Kλ

}∣∣ ≤ c1
Kλ

∫
αBj,k

F

≤ c1
Kλ
|αBj,k| ψη(αBj,k)G(x̃j,k) ≤ C

δ

K
|Qj,k| . (5.22)

In the third inequality we have applied hypothesis (5.5) – since the ball αBj,k satisfies (5.20) –

and in the final inequality we used (5.21), the doubling property for the Lebesgue measure, and

that

ψη(αBj,k) ≤ αη ψη(Bj,k) ≤ C,

which follows from (5.18). We remark that the constant C in (5.22) depends only on n, η, C0

and is independent of j and k.

In a similar fashion to estimate (5.10), we apply Lemma 5.4 to ν ∈ BL,θs′ and the sets

Eλ ∩Qj,k ⊂ Qj,k and evoke (5.22) to obtain

ν(Eλ ∩Qj,k) ≤ Cν ψθ(Qj,k)

(
|Eλ ∩Qj,k|
|Qj,k|

)1/s

ν(Qj,k) ≤ C
( δ
K

)1/s

ν(Qj,k)
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where C depends on n, C0, η and ν. Summing this over k gives

ν(Eλ ∩Qj) ≤
Nj∑
k=1

ν(Eλ ∩Qj,k) ≤ C
( δ
K

)1/s
Nj∑
k=1

ν(Qj,k) ≤ C
( ξq
Kq

+
δ

K

)1/s

ν(Qj)

which gives (5.8) for j ∈ J∞. Note that when q = ∞ we end the estimate at the second

inequality. This concludes the proof of (5.8), and hence of (5.6).

Since (5.6) holds we may prove (5.7) using the same approach as the final part of the

proof of Theorem 3.1 from [16], pp. 20-21. In fact the proof is identical but withML
η in place of

the Hardy–Littlewood maximal operator M , and BL,θs′ in place of Bs′ . We omit the details.

We end this section with the proofs of the lemmata that were deferred during the proof

of Theorem 5.10.

Proof of Lemma 5.12. This proof is an adaptation of the localisation lemma from [11]. Let

x ∈ B̃ with ML
η f(x) > Kλ. Then there exists a ball B containing x with

1

ψη(B)

∫
B

|f | > Kλ.

Note that B ⊂ B(x, 2rB) ⊂ 3B so that |B| ≥ 3−n |B(x, 2rB)|.

From Lemma 2.5, since x ∈ B then γ(xB) ≤ C1γ(x), where C1 = 4C2
0 . This gives

(because C0 ≥ 1)

ψη(B) ≥
(

1 +
rB

4C2
0γ(x)

)η
≥ (8C2

0 )−η
(

1 +
2rB
γ(x)

)η
= (8C2

0 )−ηψη
(
B(x, 2rB)

)
.

Therefore

∫
B(x,2rB)

|f | >
∫
B

|f | > Kλ|B|ψη(B) ≥ Kλ |B(x, 2rB)|
3n

ψη
(
B(x, 2rB)

)
(8C2

0 )η
.

This implies

1

ψη(B(x, 2rB))

∫
B(x,2rB)

|f | > K

K̃0

λ (5.23)

where K̃0 = 3n8ηC2η
0 . Now since K ≥ K̃0, then in fact

1

ψη(B(x, 2rB))

∫
B(x,2rB)

|f | > λ
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and this combined with the point x̃ from the hypothesis implies that x̃ /∈ B(x, 2rB), for

otherwise this contradicts ML
η f(x̃) ≤ λ. This final fact implies that B(x, 2rB) ⊂ 3B̃, and

combining this with (5.23) gives

1

ψη(B(x, 2rB))

∫
B(x,2rB)

|f |13B̃ =
1

ψη(B(x, 2rB))

∫
B(x,2rB)

|f | > K

K̃0

λ.

This last step ensures ML
η

(
f13B̃

)
(x) > (K/K̃0)λ.

Proof of Lemma 5.14. Let x ∈ Eλ ∩Qj,k. Then it follows that

G(x) ≤ δ
2λ, (5.24)

ML
ηF (x) > Kλ. (5.25)

The latter property ensures that there exists a ball B containing x such that

1

ψη(B)

∫
B

F > Kλ. (5.26)

Then we necessarily have

rB ≤ 12
√
nγ(xB). (5.27)

Suppose otherwise. Then hypothesis (5.5) applies to B. Combining this with (5.24) and (5.26),

we arrive at the statement

Kλ <
1

ψη(B)

∫
B

F ≤ G(x) ≤ δ

2
λ,

which is impossible, since K ≥ 1 and δ ∈ (0, 1). Therefore the ball B necessarily satisfies (5.27).

Next we claim that there exists α ≥ 1, depending only on C0, n and η, such that (5.20)

holds and

B ⊂ αBj,k. (5.28)

Let us demonstrate this claim. This will involve repeated application of (2.10). Firstly (5.27)

implies B ⊂ 12
√
nBγ , so that

γ(xB) ≤ C1 γ(x), (5.29)
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where C1 = C2
0 (1 + 12

√
n)2. Secondly since both x, xj,k ∈ Qj,k, then the distance between x

and xj,k is at most the diameter of Qj,k. That is,

|x− xj,k| ≤ diam(Qj,k) =
√
n lQj,k .

It follows that x ∈ B
(
xj,k,

√
n lQj,k

)
⊂ 2
√
nBγ(xj,k), and hence

γ(x) ≤ C2 γ(xj,k) (5.30)

where C2 = C2
0 (1 + 2

√
n)2. We now combine (5.29) and (5.30) with (5.18) and (5.27) to obtain

rB ≤ 12
√
nγ(xB) ≤ 12

√
nC1 γ(x) ≤ 12

√
nC1 C2 γ(xj,k) ≤ α0

√
n

2 lQj,k = α0 rBj,k ,

where α0 = 48C0C1C2
√
n. Therefore it follows that B ⊂ (1 + 2α0)Bj,k. Next we set α̃ to be a

number such that

rα̃Bj,k > 12
√
nγ
(
xQj,k

)
.

Note that this number exists because we recall that γ(xQj,k) ≈ γ(xj,k) ≈ lQj,k ≈ rBj,k with

constants depending on C0 and n. In fact, γ(xQj,k) ≥ C3γ(xj,k) where C3 = C2
0 (1 +

√
n)2, so

that α̃
√
n

2 lQj,k > 12
√
nC3 γ(xj,k), which holds provided α̃ ≥ 43

√
nC0C3 by (5.18). On choosing

α = max {1 + 2α0, α̃}, the estimate (5.20) and the claim (5.28) both hold.

Finally to obtain the inclusion (5.19), we see that (5.28) with (5.26) implies

1

ψη(B)

∫
B

F1αBj,k =
1

ψη(B)

∫
B

F > Kλ.

It necessarily follows that

ML
η (F1αBj,k)(x) > Kλ,

and as a consequence (5.19) holds.

5.2.1 Applications

In this section we give some applications of Theorem 5.10.
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We give here a proof of a Fefferman–Stein type inequality (1.36), which was first given

and proved in [106], Theorem 2.1. For f ∈ L1
loc(Rn) and x ∈ Rn, set

M#,L
η f(x) := sup

B3x
rB≤γ(xB)

∫
B

|f − fB |+ sup
B3x

rB>γ(xB)

1

ψη(B)

∫
B

|f | .

Then the following holds for each η > 0, p ∈ (0,∞), and w ∈ AL∞.

∥∥ML
η f
∥∥
Lp(w)

≤ Cp
∥∥M#,L

η f
∥∥
Lp(w)

.

To see this we apply Theorem 5.10 to any s ∈ [1,∞), and

F = |f | , H = 0, G = 2(1 + 12
√
n)ηM#,L

η f,

q =∞, ν = w, r = p.

Now let B be a ball with rB ≤ 12
√
nγ(xB). We have

F = |f | ≤ |f − fB |+ |fB | =: GB +HB .

Then (5.4) holds because

(∫
B

Hq
B

)1/q

= |fB | ≤ ψη(B)ML
η f ≤ (1 + 12

√
n)ηML

η f .

Next we check (5.3). If rB ≤ γ(xB) then

∫
B

GB =

∫
B

|f − fB | ≤ M#,L
η f ≤ G.

If γ(xB) < rB ≤ 12
√
nγ(xB), then

∫
B

GB ≤ 2 |f |B ≤ 2ψη(B)M#,L
η f ≤ 2(1 + 12

√
n)ηM#,L

η f = G.

Finally we check (5.5). If rB > 12
√
nγ(xB), we have

1

ψη(B)

∫
B

F =
1

ψη(B)

∫
B

|f | ≤ M#,L
η f ≤ G

and we are done.

The following application is an adaptation of [16] Theorem 3.1 for AL∞ weights.
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Theorem 5.15. Let 1 ≤ p0 < q0 ≤ ∞ and E ,D be vector spaces such that D ⊂ E. Let T, S

be operators such that S acts from D into the set of measurable functions, and T is sublinear

acting from E into Lp0(Rn). Let {AB}B be a family of operators indexed by balls on Rn, acting

from D into E. Assume the following: for any η > 0 there exists C1, C2 > 0 such that for each

ball B with rB ≤ 12
√
nγ(xB), f ∈ D, and x ∈ B,

(∫
B

|T (I −AB)f |p0
)1/p0

≤ C1ML
η

(
|Sf |p0

)
(x)1/p0 , (5.31)

(∫
B

|TABf |q0
)1/q0

≤ C1ML
η

(
|Tf |p0

)
(x)1/p0 , (5.32)

and for all balls B with rB > 12
√
nγ(xB), f ∈ D, and x ∈ B,

1

ψη(B)

∫
B

|Tf |p0 ≤ C2ML
η

(
|Sf |p0

)
(x). (5.33)

Let p0 < p < q0 (with p = q0 if q0 <∞) and w ∈ ALp/p0 ∩B
L
(q0/p)′

. Then there exists C > 0 such

that

‖Tf‖Lp(w) ≤ C ‖Sf‖Lp(w) , ∀ f ∈ D. (5.34)

We can take E = Lp0 and D to be a class of ‘nice’ functions such as L∞c , L
p0 ∩ L2, C∞0 etc.

Proof of Theorem 5.15. We first consider the case q0 < ∞. Let p0 < p ≤ q0, f ∈ D and

w ∈ ALp/p0 ∩B
L
(q0/p)′

. Then there exists θ ≥ 0 such that w ∈ AL,θp/p0 . We shall apply Theorem 5.10

with

s =
q0

p
, q =

q0

p0
, r =

p

p0
> 1,

ξ = Cp01 2p0−1, ν = w, η =
(
p
p0

)′
θ = pθ

p−θ ,

F = |Tf |p0 , H = 0, G = C3ML
η

(
|Sf |p0

)
,

where C3 = max
{
Cp01 2p0−1, C2

}
.

Let B be a ball with rB ≤ 12
√
nγ(xB). We will check that conditions (5.2), (5.3), and

(5.4) hold for this ball. Firstly (5.2) follows easily because by sublinearity of T ,

|Tf |p0 ≤ 2p0−1 |T (I −AB)f |p0 + 2p0−1 |TABf |p0 =: GB +HB .
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Next we check (5.3). For each x ∈ B, by hypothesis (5.31),∫
B

GB = 2p0−1

∫
B

|T (I −AB)f |p0

≤ 2p0−1Cp01 ML
η

(
|Sf |p0

)
(x)

≤ C3ML
η

(
|Sf |p0

)
(x) = G(x).

Thirdly we check (5.4). For each x ∈ B, by hypothesis (5.32),

(∫
B

Hq
B

)1/q′

= 2p0−1
(∫

B

|TABf |q0
)p0/q0

≤ 2p0−1Cp01 ML
η

(
|Tf |p0

)
(x) = ξML

η

(
|Tf |p0

)
(x).

Finally we check (5.5). For any ball B with rB > 12
√
nγ(xB), by (5.33), then

1

ψη(B)

∫
B

F =
1

ψη(B)

∫
B

|Tf |p0 ≤ C2ML
η

(
|Sf |p0

)
(x) ≤ C3ML

η

(
|Sf |p0

)
(x) = G(x).

Since w ∈ BL(q0/p)′ = BLs′ then the conclusion of Theorem 5.10 gives

‖Tf‖p0Lp(w) ≤ 2η
∥∥ML

ηF
∥∥
Lp/p0 (w)

≤ C ‖G‖Lp/p0 (w) = C
∥∥ML

η (|Sf |p0)
∥∥
Lp/p0 (w)

≤ C ‖Sf‖p0Lp(w) ,

which is (5.34). The first inequality holds from the pointwise control of the maximal operator

ML
η (see (5.1)). The last inequality follows from the boundedness of the operator ML

η on

Lp/p0(w). Indeed Lemma 5.8 applies in this situation since p > p0, w ∈ AL,θp/p0 , and η = (p/p0)′θ.

If q0 =∞ then we can apply Theorem 5.10 as before with p0 < p <∞ and w ∈ ALp/p0 to

conclude the proof of the theorem.

The next application is an extension of Theorem 4.6 to AL∞ weights, and is the main tool

used in the proof of Theorem 5.1.

Theorem 5.16. Let 1 ≤ p0 < q0 ≤ ∞ and T be a linear operator. Assume that for each

q̃ ∈ (p0, q0) and η > 0 there exists a family of operators {AB}B indexed by balls and a collection

of scalars {αj}∞j=0 such that the following holds.

(i) T is bounded on Lq̃(Rn).

(ii) For every ball B with rB ≤ 12
√
nγ(xB), and every f ∈ L∞c (Rn) supported in B,

(∫
Uj(B)

|ABf |q̃
)1/q̃

≤ αj
(∫

B

|f |p0
)1/p0

, ∀j ≥ 0 (5.35)
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Uj(B)

|T (I −AB)f |q̃
)1/q̃

≤ αj
(∫

B

|f |p0
)1/p0

, ∀j ≥ 2. (5.36)

(iii) There exists C̃ > 0 such that for every ball B with rB > 12
√
nγ(xB) and f ∈ L∞c (Rn),

( 1

ψη(B)

∫
B

|T ∗f |q̃
′)1/q̃′

≤ C̃ML
η

(
|f |q̃

′)
(x)1/q̃′ , ∀x ∈ B. (5.37)

(iv)
∑
j αj2

j(n+η) <∞.

Let p ∈ (p0, q0) and w ∈ ALp/p0∩B
L
(q0/p)′

. Then T extends to a bounded operator on Lp(w).

Proof of Theorem 5.16. The proof is an adaptation of the proof of Theorem 4.6 (a). We fix

p ∈ (p0, q0) and w ∈ ALp/p0 ∩ B
L
(q0/p)′

. Denote by T ∗ the adjoint of T . Then it will suffice to

prove that T ∗ is bounded on Lp
′
(w1−p′), because this is equivalent to the Lp(w) boundedness

of T (see Remark 4.7 (a)). We shall apply Theorem 5.10 to T ∗.

Firstly, by Lemma 5.6 property (ix), there exists numbers p1 and q1 such that

p0 < p1 < p < q1 < q0 and w ∈ ALp
p1

∩ BL( q1
p

)′ .
Then it follows from property (x) of Lemma 5.6 that

w1−p′ ∈ ALp′
q′1

∩ BL(p′1
p′

)′ .
Next there exists θ ≥ 0 such that

w1−p′ ∈ AL,θ
p′

q′1

.

We now apply Theorem 5.10 to the following datum. For each f ∈ L∞c (Rn) we set

s :=
p′1
p′
, q :=

p′1
q′1
, r :=

p′

q′1
, η := r′θ,

F := |T ∗f |q
′
1 , H := 0, ν := w1−p′ .

Let q̃ = q1. Take {AB}B and {αj}j to be as in the hypotheses. We shall show that

conditions (5.2)–(5.5) hold with

GB := 2q
′
1−1 |(I −AB)∗T ∗f |q

′
1 and HB := 2q

′
1−1 |A∗BT ∗f |

q′1 ,
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and G is a fixed constant multiple of ML
η

(
|f |q

′
1
)

(with the constant to be specified later).

We first check condition (5.2). By noting that (I −A∗B) = (I −AB)∗, one has

F (x) = |T ∗f(x)|q
′
1 = |(I −AB)∗T ∗f(x) +A∗BT

∗f(x)|q
′
1

≤ 2q
′
1−1 |(I −A∗B)T ∗f(x)|q

′
1 + 2q

′
1−1 |A∗BT ∗f(x)|q

′
1

= GB(x) +HB(x)

where we have used that |a+ b|r ≤ 2r−1 |a|+ 2r−1 |b|r valid for all r ≥ 1 and a, b ∈ R.

We now check condition (5.4). Let B be a ball with rB ≤ 12
√
nγ(xB). We first write

(∫
B

Hq
B

)1/q

=
(∫

B

2p
′
1−p

′
1/q
′
1 |A∗BT ∗f |

p′1
)q′1/p′1

.
(∫

B

|A∗BT ∗f |
p′1
)q′1/p′1

.

To estimate the integral we apply duality to R := T ∗, S := A∗B with some g ∈ Lp1(B, dx/ |B|)

with norm 1 (Remark 4.7(d)), to obtain for each x ∈ B,

(∫
B

Hq
B

)1/qq′1
.
(∫

B

|A∗BT ∗f |
p′1
)1/p′1

≤
∫
B

|T ∗f | |ABg| ≤
∞∑
j=0

2jn
∫
Uj(B)

|T ∗f | |ABg|

≤
∞∑
j=0

2jnψη(2jB)
( 1

ψη(2jB)

∫
2jB

|T ∗f |q
′
1

)1/q′1
( 1

ψη(2jB)

∫
Uj(B)

|ABg|q1
)1/q1

. ML
η

(
|T ∗f |q

′
1
)
(x)1/q′1

∞∑
j=0

2j(n+η)
(∫

Uj(B)

|ABg|q1
)1/q1

. (5.38)

In the last line we have used that since rB ≤ 12
√
nγ(xB), then

ψη(2jB) ≤ 2jη ψη(B) ≤ 2jη (1 + 12
√
n)η (5.39)

valid for every j ≥ 0. Now from (5.35) with exponent q̃ = q1, we have for each j ≥ 0,

(∫
Uj(B)

|ABg|q1
)1/q1

≤ αj

(∫
B

|g|p0
)1/p0

≤ αj

(∫
B

|g|p1
)1/p1

= αj ,

where we have used Hölder’s inequality (with exponents p1/p0 and (p1/p0)′) and the the nor-

malisation of g. Inserting this estimate into (5.38) gives, for each x ∈ B,

(∫
B

Hq
B

)1/qq′1
. ML

η

(
|T ∗f |q

′
1
)
(x)1/q′1

∞∑
j=0

αj2
j(n+η) ≤ C1ML

η

(
|T ∗f |q

′
1
)
(x)1/q′1

by hypothesis (iv). Hence (5.4) holds with H = 0 and ξ = C1.



111

Next we check condition (5.3). Let B be a ball with rB ≤ 12
√
nγ(xB). We first write

(∫
B

GB

)1/q′1
=
(∫

B

2q
′
1−1 |(I −AB)∗T ∗f |q

′
1 dx

)1/q′1
.
(∫

B

|(I −AB)∗T ∗f |q
′
1 dx

)1/q′1
.

We apply duality again now with R := I, with S := (I−AB)∗T ∗ , and with g ∈ Lq1(B, dx/ |B|)

of norm 1. Then for each x ∈ B,

(∫
B

GB

)1/q′1
.
∫
B

|f | |T (I −AB)g| ≤
∞∑
j=0

2jn
∫
Uj(B)

|f | |T (I −AB)g|

≤
∞∑
j=0

2jnψη(2jB)
( 1

ψη(2jB)

∫
2jB

|f |q
′
1

)1/q′1
( 1

ψη(2jB)

∫
Uj(B)

|T (I −AB)g|q1
)1/q1

. ML
η

(
|f |q

′
1
)
(x)1/q′1

∞∑
j=0

2j(n+η)
(∫

Uj(B)

|T (I −AB)g|q1
)1/q1

, (5.40)

where in the last line we have used (5.39) again. Now for each j ≥ 2, estimate (5.36) with

exponent q̃ = q1 gives

(∫
Uj(B)

|T (I −AB)g|q1
)1/q1

≤ αj

(∫
B

|g|p0
)1/p0

≤ αj

(∫
B

|g|q1
)1/q1

= αj , (5.41)

where we have used Hölder’s inequality (with exponents q1/p0 and (q1/p0)′) and the normalisa-

tion of g. For j = 0, 1 we use hypothesis (i) with q̃ = q1 to give∫
Uj(B)

|T (I −AB)g|q1 . 1

|B|

∫
Rn
|(I −AB)g|q1 . 1

|B|

{∫
B

|g|q1 +

∞∑
k=0

∫
Uk(B)

|ABg|q1
}
.

For the summands we use the approach as before, namely applying (5.35) for k ≥ 0, and Hölder’s

inequality to get

(∫
Uk(B)

|ABg|q1
)1/q1

≤ αk

(∫
B

|g|p0
)1/p0

≤ αk

(∫
B

|g|q1
)1/q1

= αk.

Collecting these estimates we have for j = 0, 1,∫
Uj(B)

|T (I −AB)g|q1 .
∫
B

|g|q1 +

∞∑
k=0

2kn
∫
Uk(B)

|ABg|q1 .
∫
B

|g|q1 +

∞∑
k=0

αq1k 2kn,

(5.42)

which is finite because the expression
∑
k αk2k(n+η) is finite. Inserting (5.41) and (5.42)

into (5.40) gives

(∫
B

GB

)1/q′1
. ML

η

(
|f |q

′
1
)
(x)1/q′1

{ ∞∑
j=2

αj2
j(n+η) + C

}
≤ C2ML

η

(
|f |q

′
1
)
(x)1/q′1 (5.43)
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for each x ∈ B.

Now let G(x) := C3ML
η

(
|f |q

′
1
)
(x)1/q′1 , where C3 = max

{
C̃, C2

}
. Here C̃ is the con-

stant from hypothesis (iii), and C2 is the constant from (5.43). With this choice of G, firstly

estimate (5.43) implies that (5.3) holds, and secondly estimate (5.37) implies that (5.5) holds.

We have shown that (5.2)–(5.5) holds. Therefore, since ν ∈ BL(p′1/p′)′ ≡ B
L
s′ , then Theo-

rem 5.10 allows us to conclude that

∥∥ML
η

(
|T ∗f |q

′
1
)∥∥
Lr(ν)

≤ C
∥∥ML

η

(
|f |q

′
1
)∥∥
Lr(ν)

(5.44)

for some C > 0, depending only on ν, q, n, ξ, s, η, γ, C3, and hence only on w, p, p1,

q1, C1, C2, C̃. Recalling that r = p′/q′1 and ν = w1−p′ , we observe that the Lp
′
(w1−p′)

boundedness of T ∗ now follows, because

‖T ∗f‖q
′
1

Lp′ (ν)
≤ 2η

∥∥ML
η

(
|T ∗f |q

′
1
)∥∥
Lr(ν)

≤ C
∥∥ML

η

(
|f |q

′
1
)∥∥
Lr(ν)

≤ C ‖f‖q
′
1

Lp′ (ν)
. (5.45)

The first inequality in (5.45) holds by the pointwise control of the operator ML
η (see (5.1)).

The second inequality in (5.45) follows from the conclusion (5.44) above. The final inequality

in (5.45) follows from the boundedness of the maximal operatorML
η

(
|·|q
′
1
)1/q′1 on Lp

′
(ν). Indeed,

Remark 5.9 applies in this situation because firstly p′ > q′1, secondly ν = w1−p′ ∈ AL,θp′/q′1 , and

lastly η = r′θ = (p′/q′1)′θ.

By duality, (5.45) implies the boundedness of T on Lp(w).

5.3 Proof of the main result

In this section we give the proof of the main result of this chapter, namely Theorem 5.1.

Proof of Theorem 5.1. The proof is similar to the proofs of Theorems 4.1 and 4.3, but we apply

Theorem 5.16 in place of Theorem 4.6.

We first consider the operator ∇2L−1. We apply Theorem 5.16 to T = ∇2L−1, p0 = 1,

q0 = s, and AB = e−r
2
BL. Fix q̃ ∈ (1, s) and η > 0. We shall show that conditions (i)-(iv) of

Theorem 5.16 hold. For simplicity we shall write q to denote q̃ throughout the rest of this proof.
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Firstly the Lq(Rn) boundedness of T holds from Theorem 1.3 (a), and so Theorem 5.16 (i)

holds easily. Next we check conditions Theorem 5.16 (ii) and (iv). Fix a ball B and a function

f ∈ L∞c (Rn) supported in B. Recall from the proof of Theorem 4.1, estimate (4.10), that we

have (via the Gaussian upper bounds (3.1) on the heat kernel of L)

(∫
Uj(B)

|ABf |q
)1/q

≤ βj
∫
B

|f | , (5.46)

with βj = C1e
−c14j if j ≥ 0. Note that the constants C1, c1 depend on q and n only. Next we

recall from Lemma 4.11, and in particular estimate (4.20), that

(∫
Uj(B)

∣∣∇2L−1(I − e−r
2
BL)f

∣∣q)1/q

≤ C2 e
−c24j

∫
B

|f | , ∀j ≥ 2. (5.47)

Let us take αj = Ce−c4
j

for j ≥ 0, where C = max {C1, C2} and c = min {c2, c3}. Then

Theorem 5.16 (iv) is satisfied, and by (5.46) and (5.47), conditions (5.35) and (5.36) are also

satisfied. This proves (ii) and (iv).

Finally we turn to condition (iii) of Theorem 5.16. Let f ∈ L∞c (Rn) and fix a ball B

with rB > 12
√
nγ(xB). We write

f =

∞∑
j=0

f1Uj(B) =:

∞∑
j=0

fj .

Then

( 1

ψη(B)

∫
B

|T ∗f |q
′)1/q′

≤
∞∑
j=0

( 1

ψη(B)

∫
B

|T ∗fj |q
′)1/q′

. (5.48)

To estimate the terms for j = 0, 1, we use that T ∗ is bounded on Lq
′
(Rn) by Theorem 1.3, and

that ψη(2B) ≤ 2η ψη(B) to obtain, for any x ∈ B,

( 1

ψη(B)

∫
B

|T ∗fj |q
′)1/q′

≤ C
( 1

ψη(B) |B|

∫
B

|fj |q
′)1/q′

= C
(ψη(2B) |2B|
ψη(B) |B|

)1/q′( 1

ψη(2B)

∫
2B

|f |q
′)1/q′

≤ CML
η

(
|f |q

′)
(x)1/q′ (5.49)

Note that C depends on n, q and η. To estimate the terms for j ≥ 2, we first write

|T ∗fj(y)| =
∣∣∣∫ ∞

0

∫
Uj(B)

∇2
zpt(z, y) f(z) dz dt

∣∣∣
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≤
(∫

Uj(B)

|f |q
′)1/q′

∫ ∞
0

(∫
Uj(B)

∣∣∇2
zpt(z, y)

∣∣q dz)1/q

dt (5.50)

by Hölder’s inequality. Next, using that ψη(2jB) ≤ 2jη ψη(B) we have for any x ∈ B,

(∫
Uj(B)

|f |q
′)1/q′

=
(
ψη(2jB)

∣∣2jB∣∣)1/q′( 1

ψη(2jB)

∫
Uj(B)

|f |q
′)1/q′

≤
(
ψη(B) |B|

)1/q′
2j(n+η)/q′ML

η

(
|f |q

′)
(x)1/q′ . (5.51)

Therefore using (5.50) and (5.51) we obtain, for each j ≥ 2,

( 1

ψη(B)

∫
B

|T ∗fj |q
′)1/q′

≤ 1

ψη(B)1/q′

(∫
Uj(B)

|f |q
′)1/q′(∫

B

(∫ ∞
0

∥∥∇2pt(·, y)
∥∥
Lq(Uj(B))

dt
)q′

dy
)1/q′

≤ 2j(n+η)/q′ |B|1/q
′
ML

η

(
|f |q

′)
(x)1/q′ I(j, q, B) (5.52)

where

I(j, q, B) :=
(∫

B

(∫ ∞
0

∥∥∇2pt(·, y)
∥∥
Lq(Uj(B))

dt
)q′

dy
)1/q′

.

Now we estimate the final term in (5.51) by using the heat kernel bounds in Proposition 3.7.

For each j ≥ 2 and y ∈ B, we have |z − y| ≥ 2j−2rB . Hence for all t > 0 estimate (3.11) gives

∥∥∇2pt(·, y)
∥∥
Lq(Uj(B))

=
∥∥∇2pt(·, y) eβq|·−y|

2/t e−βq|·−y|
2/t
∥∥
Lq(Uj(B))

≤ e−c4
jr2B/t

∥∥∇2pt(·, y) eβq|·−y|
2/t
∥∥
Lq(Uj(B))

≤ C

t1+n/2q′
e−c4

jr2B/t e−c(1+t/γ(y)2)
δ

≤ C

t1+n/2q′
e−c4

jr2B/t e−c(1+t/r2B)
δ

. (5.53)

In the last step we used that since rB > 12
√
nγ(xB), then for each y ∈ B, by Lemma 2.5,

γ(y) ≤ C0γ(xB)
(

1 +
rB

γ(xB)

)
< C0

(
1

12
√
n

+ 1
)
rB = C ′rB .

Estimate (5.53) gives us

I(j, q, B) ≤ C

∫ ∞
0

e−c4
jr2B/te−c(1+t/r2B)

δ dt

t1+n/2q′
= C

{
Ij + IIj

}
(5.54)
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where

Ij :=

∫ 2jr2B

0

e−c4
jr2B/te−c(1+t/r2B)

δ dt

t1+n/2q′
,

IIj :=

∫ ∞
2jr2B

e−c4
jr2B/te−c(1+t/r2B)

δ dt

t1+n/2q′
.

To estimate the first term we observe that since t ≤ 2jr2
B then e−c4

jr2B/t ≤ e−c2j , so that

Ij ≤ Ce−c2
j

∫ 2jr2B

0

( t

4jr2
B

)1+n/2q′ dt

t1+n/2q′

≤ Ce−c2
j

4j(1+n/2q′)r
2+n/q′

B

∫ 2jr2B

0

dt

=
Ce−c2

j

2j(1+n/q′)r
n/q′

B

≤ Ce−c2
jδ

r
n/q′

B

(5.55)

since 0 < δ < 1. To estimate the second term we observe now that t ≥ 2jr2
B implies that

e−c(1+t/r2B)
δ

≤ e−c2jδ , and hence

IIj ≤
∫ ∞

2jr2B

e−c(1+t/r2B)
δ dt

t1+n/2q′
≤ Ce−c2

jδ

∫ ∞
2jr2B

dt

t1+n/2q′
≤ Ce−c2

jδ

2jn/2q′r
n/q′

B

≤ Ce−c2
jδ

r
n/q′

B

. (5.56)

By collecting (5.55) and (5.56) into (5.54), and then inserting the result into (5.52), gives for

each j ≥ 2,

( 1

ψη(B)

∫
B

|T ∗fj |q
′)1/q′

≤ C 2j(n+η)/q′ e−c2
jδ

ML
η

(
|f |q

′)
(x)1/q′ (5.57)

for any x ∈ B. Finally on combining (5.57) with (5.49) into (5.48) we have, for every x ∈ B,

( 1

ψη(B)

∫
B

|T ∗f |q
′)1/q′

≤ CML
η

(
|f |q

′)
(x)1/q′

{
1 +

∞∑
j=2

2j(n+η)/q′e−c2
jδ
}
≤ C4ML

η

(
|f |q

′)
(x)1/q′

which gives us (5.37) with C̃ = C4.

Therefore Theorem 5.16 applies and we obtain the required result for T = ∇2L−1. We

can obtain the result for the operator V L−1 in a similar manner but with estimate (3.12) in

place of (3.12), and (4.21) in place of (4.20). We omit these details, but we refer the reader to

the next section for a different proof.

5.3.1 An alternate proof of the estimate for V L−1

In this section we give an alternate proof of Theorem 5.1 for the operator V L−1 that utilises

the techniques of [30]. This proof does not seem to work for the operator ∇2L−1.
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We first require a definition of the localised AL,loc∞ weights, first defined in [30]. It is clear

that these include the AL∞ weights.

Definition 5.17. Let w be a non-negative locally integrable function. For p ∈ (1,∞) we say

that w ∈ AL,locp if there exists C = C(w, p) such that for all balls B with rB ≤ γ(xB),

(∫
B

w
)1/p(∫

B

w1−p′
)1/p′

≤ C.

We say that w ∈ AL,loc1 if there exists C = C(w) such that for all balls B with rB ≤ γ(xB),

∫
B

w ≤ Cw(x), a.e. x ∈ B.

We also set AL,loc∞ :=
⋃

1≤p<∞
AL,locp .

We next define certain maximal operators related to these weights. Special cases of these

operators were previously introduced in [30]. For each s ≥ 1 we define a localised maximal

operator associated to γ as follows.

Mloc
s f(x) := sup

B3x

( 1

|B|

∫
B∩Bγ(x)

|f(y)|s dy
)1/s

.

Given a sequence α := {α(k)}∞k=0 ∈ l1(Rn) we set

Gαs f(x) :=

∞∑
k=0

α(k)
(∫

2kBγ(x)

|f(y)|s dy
)1/s

.

Then the following result holds.

Lemma 5.18. Fix s ≥ 1 and θ ≥ 0. Let Ñ be the constant in Remark 2.7. Then for each p > s,

(a) the operator Mloc
s is bounded on Lp(w) if and only if w ∈ AL,locp/s ,

(b) if α satisfies
∑
k α(k)2k(θ/s+Ñ/p) < ∞ for every ε > 0, then the operator Gαs is bounded

on Lp(w) for each w ∈ AL,θp/s.

Proof. For the proof of part (a) we note that the authors in [30] show that for each p ∈ (1,∞)

the operatorMloc
1 is bounded on Lp(w) if and only if w ∈ AL,locp (see Theorem 1 and Remark 1
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in [30]). It follows easily then that Mloc
1 is bounded on Lp/s(w) if and only if w ∈ AL,locp/s for

each p > s. Therefore

∥∥Mloc
s (f)

∥∥p
Lp(w)

=
∥∥Mloc

1

(
|f |s
)∥∥p
Lp/s(w)

.
∥∥|f |s∥∥p

Lp/s(w)
= ‖f‖pLp(w) .

We turn to the proof of (b). The argument given here essentially follows that given in esti-

mate (20) of [30].

Let
{
Bγ
j

}
j

be the covering of Rn given in Lemma 2.6, and let
{
B̃γ
j

}
j

be the dilation of

this covering specified in Remark 2.7. Then one may use this covering to write

‖Gαs f‖Lp(w) =
(∫

Rn

∣∣∣∣ ∞∑
k=0

α(k)
(∫

2kBγ(x)

|f(y)|s dy
)1/s

∣∣∣∣pw(x) dx
)1/p

≤
∞∑
k=0

α(k)
(∫

Rn

(∫
2kBγ(x)

|f(y)|s dy
)p/s

w(x) dx
)1/p

≤
∞∑
k=0

α(k)
{∑

j

∫
Bγ
j

(∫
2kBγ(x)

|f(y)|s dy
)p/s

w(x) dx
}1/p

=:

∞∑
k=0

α(k)
{∑

j

I(j, k)
}1/p

.

Now for each j and x ∈ Bγ
j we have 2kBγ(x) ⊂ 2kB̃γ

j for all k ≥ 0. Also by (2.10), x ∈

Bγ
j implies that γ(x) ≈ γ(xBγ

j
), and hence |Bγ(x)| ≈

∣∣Bγ
j

∣∣. Since
∣∣B̃γ

j

∣∣ = σn
∣∣Bγ

j

∣∣, then∣∣2kB̃γ
j

∣∣ ≈ ∣∣2kBγ(x)
∣∣. This combined with Hölder’s inequality with exponents p/s and p/(p−s)

gives for each j, k, and x ∈ Bγ
j ,

(∫
2kBγ(x)

|f(y)|s dy
)p/s

.
(∫

2kB̃γ
j

|f(y)|s dy
)p/s

=
(∫

2kB̃γ
j

|f(y)|s w(y)s/pw(y)−s/pdy
)p/s

≤
(∫

2kB̃γ
j

|f(y)|p w(y) dy
)(∫

2kB̃γ
j

w(y)−s/(p−s)
)(p−s)/s

.

Since w ∈ AL,θp/s then

I(j, k) ≤
w(Bγ

j )∣∣2kB̃γ
j

∣∣(
∫

2kB̃γ
j

w(y)−s/(p−s)dy
)(p−s)/s(∫

2kB̃γ
j

|f(y)|p w(y) dy
)

≤
(∫

2kB̃γ
j

w(y) dy
)(∫

2kB̃γ
j

w(y)−s/(p−s)dy
)(p−s)/s ∫

2kB̃γ
j

|f(y)|p w(y) dy
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.

(
1 +

2k σ rBγ
j

γ
(
xBγ

j

) )θp/s ∫
2kB̃γ

j

|f(y)|p w(y) dy

= (1 + 2kσ)θp/s
∫

2kB̃γ
j

|f(y)|p w(y) dy .

Collecting these estimates for j and k and using the bounded overlap of the family 2kB̃γ
j we

obtain

‖Gαs f‖Lp(w) .
∞∑
k=0

α(k)

{∑
j

(1 + 2kσ)θp/s
∫

2kB̃γ
j

|f(y)|p w(y) dy

}1/p

=

∞∑
k=0

α(k)(1 + 2kσ)θ/s
{∑

j

∫
2kB̃γ

j

|f(y)|p w(y) dy

}1/p

. ‖f‖Lp(w)

∞∑
k=0

α(k)(1 + 2kσ)θ/s2kÑ/p

. ‖f‖Lp(w)

∞∑
k=0

2k(θ/s+Ñ/p),

and using the hypothesis that
∑
k 2k(θ/s+Ñ/p) <∞ we are done.

We now give the main result of this section. It coincides with Theorem 5.1 for the V L−1

operator.

Theorem 5.19. Let n ≥ 3 and L = −∆+V on Rn, and assume that V ∈ Bq for some q > n/2.

Then the operator V L−1 is bounded on Lp(w) for each p ∈ (1, q), θ ≥ 0 and w1−p′ ∈ AL,θp′/q′ .

Proof of Theorem 5.19. Set T := V L−1. We shall obtain the theorem by studying the dual

operator T ∗ = L−1V . Our strategy is to split T ∗ into its ‘local’ and ‘global’ parts, and show

that they can be controlled by the two maximal operatorsMloc and Gα for a suitable α = {α(k)}.

More precisely we split T ∗f(x) = T ∗0 f(x) + T ∗∞f(x) where

T ∗0 f(x) :=

∫
Bγ(x)

∫ ∞
0

V (y) pt(y, x) dt f(y) dy,

T ∗∞f(x) :=

∫
Rn\Bγ(x)

∫ ∞
0

V (y) pt(y, x) dt f(y) dy.

We shall prove that there exists C > 0 such that for almost every x the following hold

|T ∗0 f(x)| ≤ CMloc
q′ f(x), (5.58)

|T ∗∞f(x)| ≤ C Gαq′f(x). (5.59)
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Here α(k) = e−c2
kδ

, for some c > 0 fixed, and δ is the constant in Proposition 3.7. By

Lemma 5.18 this shows that T ∗ is bounded on Lp(w) for all p > q′ and all w ∈ AL,θp/q′ for

any θ ≥ 0. By duality (combining Remark 4.7 (a) and Lemma 5.6 (iii)) this gives the Lp(w)-

boundedness of T for each p ∈ (1, q), θ ≥ 0, and w1−p′ ∈ AL,θp′/q′ .

We first show (5.59). We write

T ∗∞f(x) =

∞∑
j=1

∫
Uj(Bγ(x))

∫ ∞
0

V (y) pt(y, x) dt f(y) dy

≤
∞∑
j=1

∣∣2jBγ(x)
∣∣1/q′ (∫

Uj(Bγ(x))

|f(y)|q
′
dy
)1/q′

×

(∫
Uj(Bγ(x))

∣∣∣∫ ∞
0

V (y) pt(y, x) dt
∣∣∣qdy)1/q

.

Now for each j ≥ 1, and y ∈ Uj(Bγ(x)) we have that |x− y| > 2j−1γ(x). Let βq be the constant

from Proposition 3.7. Then by (3.12),

(∫
Uj(Bγ(x))

V (y) pt(y, x)q dy
)1/q

=
(∫

Uj(Bγ(x))

V (y) pt(y, x)qeβq|x−y|
2/te−βq|x−y|

2/t dy
)1/q

≤ e−c4
jγ(x)2/t

(∫
Rn
V (y) pt(y, x)qeβq|x−y|

2/t dy
)1/q

≤ C

t1+n/2q′
e−c4

jγ(x)2/te−c(1+t/γ(x)2)
δ

.

Therefore

(∫
Uj(Bγ(x))

∣∣∣∫ ∞
0

V (y) pt(y, x) dt
∣∣∣qdy)1/q

≤
∫ ∞

0

(∫
Uj(Bγ(x))

V (y) pt(y, x)qdy
)1/q

dt

≤ C
∫ ∞

0

e−c4
jγ(x)2/te−c(1+t/γ(x)2)

δ dt

t1+n/2q′

=: C
{
Ij + IIj

}
,

where

Ij :=

∫ 2jγ(x)2

0

e−c4
jγ(x)2/te−c(1+t/γ(x)2)

δ dt

t1+n/2q′
,

IIj :=

∫ ∞
2jγ(x)2

e−c4
jγ(x)2/te−c(1+t/γ(x)2)

δ dt

t1+n/2q′
.

To estimate the first term we observe that since t ≤ 2jγ(x)2 then e−c4
jγ(x)2/t ≤ e−c2

j

. Hence

Ij ≤ Ce−c2
j

∫ 2jγ(x)2

0

( t

4jγ(x)2

)1+n/2q′ dt

t1+n/2q′
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≤ Ce−c2
j

4j(1+n/2q′)γ(x)2+n/q′

∫ 2jγ(x)2

0

dt

=
Ce−c2

j

2j(1+n/2q′)γ(x)n/q′
≤ Ce−c2

jδ

γ(x)n/q′

since 0 < δ < 1. To estimate the second term we observe now that t ≥ 2jγ(x)2 implies

that e−c(1+t/γ(x)2)
δ

≤ e−c2jδ . Hence

IIj ≤
∫ ∞

2jγ(x)2
e−c(1+t/γ(x)2)

δ dt

t1+n/2q′

≤ Ce−c2
jδ

∫ ∞
2jγ(x)2

dt

t1+n/2q′

≤ Ce−c2
jδ

2jn/2q′γ(x)n/q′
≤ Ce−c2

jδ

γ(x)n/q′
.

Collecting these estimates for j ≥ 1 gives

|T ∗∞f(x)| ≤ C
∞∑
j=1

∣∣2jBγ(x)
∣∣1/q′ e−c2

jδ

γ(x)n/q′

(∫
Uj(Bγ(x))

|f(y)|q
′
dy
)1/q′

≤ C
∞∑
j=1

2jn/q
′
e−c2

jδ
(∫

2jBγ(x)

|f(y)|q
′
dy
)1/q′

≤ C
∞∑
j=1

e−c
′ejδ
(∫

2jBγ(x)

|f(y)|q
′
dy
)1/q′

= C Gαq′f(x)

with α(j) = e−c
′2jδ . This gives (5.59).

We now consider estimate (5.58). Write

T ∗0 f(x) =
∑
j≤0

∫
Uj(Bγ(x))

∫ ∞
0

pt(y, x)V (y) dt f(y) dy

≤
∑
j≤0

∣∣2jBγ(x)
∣∣ ( ∫

Uj(Bγ(x))

|f(y)|q
′
dy
)1/q′

×

(∫
Uj(Bγ(x))

∣∣∣∫ ∞
0

V (y) pt(y, x) dt
∣∣∣qdy)1/q

.

Now for each j ≤ 0 we have 2jBγ(x) ⊆ Bγ(x) and hence

(∫
2jBγ(x)

|f(y)|q
′
dy
)1/q′

≤ Mloc
q′ f(x).

Also if y ∈ 2jBγ(x)\2j−1Bγ(x) then by the heat kernel bounds (3.6),

(∫
Uj(Bγ(x))

∣∣∣∫ ∞
0

V (y) pt(y, x) dt
∣∣∣qdy)1/q
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≤
∫ ∞

0

(∫
Uj(Bγ(x))

V (y)qpt(y, x)qdy
)1/q

dt

≤ C
(∫

2jBγ(x)

V (y)qdy
)1/q

∫ ∞
0

e−c4
jγ(x)2/te−c(1+t/γ(x)2)

δ dt

tn/2
.

Since V ∈ Bq then Lemma 2.3 (a) applied to the ball Bγ(x) with λ = 2−j ≥ 1 gives

(∫
2jBγ(x)

V (y)qdy
)1/q

≤ C
∫

2jBγ(x)

V (y) dy

= C
(
2jγ(x)

)−2(
2jγ(x)

)2 ∫
2jBγ(x)

V (y) dy

≤ C
(
2jγ(x)

)−2
(2jγ(x)

γ(x)

)2−n/q
γ(x)2

∫
Bγ(x)

V (y) dy

≤ C2−jn/qγ(x)−2.

Next we write for each j ≤ 0,

∫ ∞
0

e−c4
jγ(x)2/te−c(1+t/γ(x)2)

δ dt

tn/2
≤
∫ 4jγ(x)2

0

e−c4
jγ(x)2/t dt

tn/2
+

∫ ∞
4jγ(x)2

dt

tn/2
=: Ij + IIj .

Then

Ij ≤ C

∫ 4jγ(x)2

0

( t

4jγ(x)2

)n/2 dt

tn/2
= C 2j(2−n) γ(x)2−n

and since n ≥ 3,

IIj ≤
C(

4jγ(x)2
)n/2−1

= C 2j(2−n) γ(x)2−n.

Collecting these estimates we obtain

|T ∗0 f(x)| ≤ CMloc
q′ f(x)

∑
j≤0

2j(2−n/q−n)γ(x)−n
∣∣2jBγ(x)

∣∣
≤ CMloc

q′ f(x)
∑
j≤0

2j(2−n/q)

≤ CMloc
q′ f(x)

with the sum being convergent because q > n/2.

This concludes the proof of estimate (5.58) and the theorem.
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Chapter 6

Morrey spaces and Muckenhoupt weights

Let p ∈ [1,∞) and λ ∈ (0, n). A function f is said to belong to the Morrey space Lp,λ(Rn) if

‖f‖Lp,λ := sup
B

(
rλB

∫
B

|f − fB |p
)1/p

<∞.

It is possible to take λ ∈ (−∞, n ] in the definition, but outside the range of (0, n) the spaces

coincide with other well known spaces. When λ ∈ (−n, 0) the Morrey spaces coincide with the

Lipschitz spaces of order λ. For λ < 0 the spaces are also commonly known as the Morrey-

Campanato spaces. We also have Lp,0 = BMO and Lp,n = Lp. Some standard references for

these spaces include [33, 86, 87, 99].

In this chapter we study the Riesz transforms associated to Schrödinger operators on the

Morrey spaces. The main results of this chapter are the following two theorems.

Theorem 6.1. Fix s > 2. Let n ≥ 1 and L = −∆ + V on Rn with 0 ≤ V ∈ L1
loc(Rn). Then

the following are equivalent.

(a) The operator ∇L−1/2 is bounded on Lp(Rn) for each p ∈ (1, s).

(b) The operator ∇L−1/2 is bounded on Lp,λ(Rn) or each p ∈ (1, s) and each λ ∈
(n
s
p, n
)

.

We mention that a corresponding result also holds for the operator V 1/2L−1/2 but we do not

give it here.

Next we specialise to the case that V is a reverse Hölder potential. Note that q∗ has been

defined in Section 2.2 (see also (1.6)).
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Theorem 6.2. Let n ≥ 1 and suppose V ∈ Bq for some q ≥ n/2. Then the following holds.

(a) The operator ∇L−1/2 is bounded on Lp,λ(Rn) for all p ∈ (1, q∗) and λ ∈
( n
q∗
p, n
)

.

(b) The operator V 1/2L−1/2 is bounded on Lp,λ(Rn) for all p ∈ (1, 2q) and λ ∈
( n

2q
p, n
)

.

(c) If n ≥ 2 then the operators ∇2L−1 and V L−1 are bounded on Lp,λ(Rn) for each p ∈ (1, q)

and λ ∈
(n
q
p, n
)

.

We direct the reader to the discussion in Sections 1.1.2 and 1.2 for a comparison of the above

two results with the known results from the literature.

The first objective of this chapter is to develop the techniques needed to prove these re-

sults. This involves a principle that allows us to obtain Morrey space estimates from weighted Lp

estimates, with weights from the Muckenhoupt class (Theorem 6.15). The second objective is

to apply this to prove Theorem 6.2 and Theorem 6.1.

This chapter is organised as follows. The first section gives an exposition of the main

technique in [9, 34, 42]. This is encapsulated in Lemma 6.3. We then show how this can be used

to obtain Morrey estimates from weighted estimates. We also apply these to give a new maximal

theorem (Theorem 6.11) for fractional type operators on Morrey spaces in the spirit of [17]. The

next two sections form the main parts of this chapter, and may be read independently of the

first. Section 6.2 applies the ideas in [4, 5] to improve upon some of the results from the first

section, while Section 6.3 applies the results from Sections 6.1 and 6.2 to prove Theorems 6.2

and 6.1.

6.1 From Muckenhoupt weights to Morrey spaces I

The following appears in [34, 42] in the proof of their main results but is not explicitly stated.

Lemma 6.3. Let δ ∈ (0, 1), λ ∈
(
n(1 − δ), n

)
, and B be a ball in Rn. Assume that h is a

non-negative function for which h(M1B)δ ∈ L1(Rn). Then there exists C = C(n, λ, δ) > 0
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such that

∫
Rn
h(x)

(
M1B(x)

)δ
dx ≤ C |B| r−λB ‖h‖L1,λ .

Proof. We shall need the following estimate: there exists C = C(n) > 0 such that for every

ball B,

M1B(x) ≤ C
rnB

(|x− xB | − rB)n
. (6.1)

Indeed,

M1B(x) = sup
B̃3x

∫
B̃

1B(y) dy = sup
B̃3x

|B ∩ B̃|
|B̃|

.

Now the quantity |B ∩ B̃| is maximised when B̃ covers B, so that |B ∩ B̃| = |B| ≈ rnB . The

quantity |B̃| is minimised when B̃ just touches B (recall that B̃ must also contain x). In this

case we have |B̃| ≈ (|x− xB | − rB)n. Hence for each ball B̃ containing x, we have

|B ∩ B̃|
|B̃|

≤ C
rnB

(|x− xB | − rB)n
.

which gives (6.1).

With estimate (6.1) in hand, then for each j ≥ 2 and x ∈ Uj(B), one has |x− xB |−rB ≥

2j−2rB , so that

(
M1B(x)

)δ ≤ C
rnδB

(|x− xB | − rB)nδ
≤ C2−jnδ .

This combined with the fact that
(
M1B

)δ ≤ 1, gives

∫
Rn
h(x)

(
M1B(x)

)δ
dx =

∫
2B

h(x)
(
M1B(x)

)δ
dx+

∞∑
j=2

∫
Uj(B)

h(x)(M1B(x))δ dx

.
∫

2B

h(x) dx+

∞∑
j=2

2−jnδ
∫
Uj(B)

h(x) dx

. |B| r−λB ‖h‖L1,λ

{
1 +

∞∑
j=2

2−j(nδ+λ−n)
}

. |B| r−λB ‖h‖L1,λ .

Note that the sum is convergent in the last line because the hypotheses on λ and δ ensure

nδ + λ− n > 0.
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We illustrate the usefulness of this Lemma by giving some applications. These applications are

based on the well known fact (due to Coifman and Rochberg [36]) that (M1B)δ is an A1 weight

whenever δ ∈ (0, 1). We record this here.

Lemma 6.4 ([59], Theorem 3.4 p158). Let µ be any Borel measure such that Mµ <∞ almost

everywhere. Let δ ∈ (0, 1). Then (Mµ)δ ∈ A1, with constant depending on n and δ.

In particular (M1B)δ is an A1 weight for each ball B and δ ∈ (0, 1). Note also that we

have µ ≤ (Mµ)δ ≤ ‖µ‖∞.

Our first application is to show that estimates in weighted spaces with Muckenhoupt

weights imply estimates in Morrey spaces. A more general version of this appears in Theorem 3.1

of [9] (see Theorem 1.11 in Chapter 1).

Proposition 6.5. Let p ∈ (0,∞) and F and G be a pair of functions satisfying the following

property: for each w ∈ A1 there exists C0 = C0(w, p) > 0 such that

‖F‖Lp(w) ≤ C0 ‖G‖Lp(w) . (6.2)

Then it follows that for each λ ∈ (0, n) there exists C1 = C1(p, λ, n) > 0 such that

‖F‖Lp,λ ≤ C1 ‖G‖Lp,λ .

A straightforward consequence of this result is that if T is an operator bounded on Lp(w) for

every p ∈ (1,∞) and w ∈ Ap, then it is bounded on Lp,λ for each p ∈ (1,∞) and λ ∈ (0, n). In

particular this applies to the Hardy–Littlewood maximal function and to Calderón–Zygmund

operators, which recovers the results in [34, 86].

Proof of Proposition 6.5. Fix a ball B and δ ∈
(
1 − λ/n, 1

)
. Then by Lemma 6.4 we have

that (M1B)δ ∈ A1. The hypothesis (6.2) gives∫
B

|F |p ≤
∫
B

|F |p (M1B)δ ≤ C

∫
|G|p (M1B)δ.

Now we apply Lemma 6.3 with h := |G|p to obtain∫
B

|F |p ≤ C |B| r−λB
∥∥|G|p∥∥L1,λ = C |B| r−λB ‖G‖

p
Lp,λ .
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Since the constant C depends on n, λ, δ, C0, and is independent of B we obtain

rλB

∫
B

|F |p ≤ C ‖G‖pLp,λ .

Taking supremum over all balls gives the required result.

A corresponding weak type result is also possible. For p ≥ 1 and λ ∈ (0, n) we define the weak

Morrey space Lp,λ∞ (Rn) as

Lp,λ∞ (Rn) := {f ∈ L1
loc(Rn) : ‖f‖Lp,λ∞ <∞},

where

‖f‖Lp,λ∞ := inf
{
C > 0 : αp sup

B

( rλB
|B|
∣∣{x ∈ B : |f(x)| > α}

∣∣) ≤ C}.
Proposition 6.6. Suppose F and G are a pair of measurable functions such that for some

p ∈ (0,∞) and any w ∈ A1, there exists C0 = C0(w, p) > 0 such that

‖F‖Lp,∞(w) ≤ C0 ‖G‖Lp(w) .

Then it follows that for each λ ∈ (0, n) there exists C1 = C1(p, λ, n) > 0 such that

‖F‖Lp,λ∞ ≤ C1 ‖G‖Lp,λ .

Proof. Fix a ball B and δ ∈
(
1−λ/n, 1

)
. Then (M1B)δ ∈ A1 and we can apply the inequality

in the hypothesis to obtain

∣∣{x ∈ B : |F (x)| > α}
∣∣ =

∫
{x:|F (x)|>α}

1B(x) dx

≤
∫
{x:|F (x)|>α}

(M1B)δ dx

≤ Cp

αp

∫
Rn
|G|p (M1B)δ dx .

Now since δ > 1− λ/n, applying Lemma 6.3 to h = |G|p, we have∫
Rn
|G|p (M1B)δ dx ≤ Cr−λB |B| ‖G‖

p
Lp,λ .

Therefore

αp
rλB
|B|
∣∣{x ∈ B : |F (x)| > α}

∣∣ ≤ C ‖G‖pLp,λ ,

and taking supremum over all balls gives the result as required.
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6.1.1 An application to fractional powers

Our next application of Lemma 6.3 concerns fractional type operators on Morrey spaces, which

are modelled on the classical Riesz potentials. These potentials are the collection of opera-

tors (−∆)−α/2, for α ∈ (0, n), defined as

(−∆)−α/2f(x) :=
1

Γ (α/2)

∫ ∞
0

et∆f(x)
dt

t1−α/2

which, up to a constant multiple, is equivalent to the operator

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−α
dy .

A related operator is the fractional maximal operator

Mαf(x) := sup
B3x

rαB

∫
B

|f | .

The two operators Iα and Mα are intimately related. On the one hand we have pointwise control

Mαf . Iα(|f |), and on the other hand, while the converse does not hold pointwise, one has norm

equivalence. This is contained in the following result, first obtained by B. Muckenhoupt and

R. Wheeden.

Theorem 6.7 ([81] Theorem 1). Let α ∈ (0, n), p ∈ (0,∞) and w ∈ A∞. Then

‖Iαf‖Lp(w) ≈ ‖Mαf‖Lp(w) .

Hence the boundedness of Iα on weighted spaces follows immediately from that of Mα. This is

given in

Theorem 6.8 ([81] Theorem 3). Let α ∈ (0, n), p ∈ (1, nα ), 1/p− 1/q = α/n. Then

Mα : Lp(wp) −→ Lq(wq) ⇐⇒ w ∈ A
1+

1
p′
∩ Bq.

Estimates for these operators on Morrey spaces have been obtained by several authors.

Soon after the result by Muckenhoupt and Wheeden, D.R. Adams obtained the following esti-

mates for the operators (−∆)−α/2.
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Theorem 6.9 ([2] Theorem 3.1). Let α ∈ (0, n) and λ ∈ (0, n). Suppose that p and q satisfy

p ∈
(
1, λ/α

)
and 1/p− 1/q = α/λ. Then (−∆)−α/2 is bounded from Lp,λ(Rn) into Lq,λ(Rn).

We remark that if we take λ = n, then we recover the Sobolev embedding theorem on Lp(Rn).

Independently the following was attributed to S. Spanne, first stated by J. Peetre in [87].

Theorem 6.10 (S. Spanne, unpublished). Let α ∈ (0, n), p ∈
(
1, n/α

)
and λ ∈ (αp, n). Suppose

that q and µ satisfy 1/p− 1/q = α/n and (n− λ)/p = (n− µ)/q. Then (−∆)−α/2 is bounded

from Lp,λ(Rn) into Lq,µ(Rn).

In the late 1980s Chiarenza and Frasca gave simpler proofs of both results. See [34] Theorem 2

and its Corollary. They state Adams’ result with an equivalent formulation:

α ∈ (0, n), p ∈
(

1,
n

α

)
, λ ∈ (αp, n),

1

p
− 1

q
=
α

λ
.

They also show Spanne’s result actually follows from Adams’ result. See also Remark 6.12 (vi)

below.

The main goal of this section is to generalise Adams’ result, Theorem 6.9, to ‘non-integral’

operators that are of ‘fractional type’. This is motivated by the study in [17]. Typical examples

of such operators are L−α/2 with α ∈ (0, n), where L is a Schrödinger operator or an elliptic

operator in divergence form. This is contained in the following, which is a variant of Theorem 2.2

from [17]. We will give applications of this in Section 6.3.

Theorem 6.11. Let α ∈ (0, n) and 1 ≤ p0 < s0 < q0 ≤ ∞ be numbers such that 1/p0 − 1/s0 =

α/n. Suppose that T is a bounded sublinear operator from Lp0(Rn) to Ls0(Rn), and that {AB}B

is a family of operators indexed by balls acting from L∞c (Rn) into Lp0(Rn). Assume that there

exists C0 > 0 such that

(∫
B

|T (I −AB)f |s0
)1/s0

≤ C0Mαp0

(
|f |p0

)
(x)1/p0 , (6.3)

(∫
B

|TABf |q0
)1/q0

≤ C0

{
M
(
|Tf |s0

)
(x)1/s0 +Mαp0

(
|f |p0

)
(y)1/p0

}
, (6.4)

for each f ∈ L∞c (Rn), ball B ⊂ Rn, and every x, y ∈ B.
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Let p0 < p < q < q0 and λ ∈
(
p
(
n
q0

+ α
)
, n
)

be such that 1/p − 1/q = α/λ. Then T is

bounded from Lp,λ(Rn) to Lq,λ(Rn).

Remark 6.12. (i) In the case q0 =∞, the left hand side of (6.4) is the essential supremum

of |TAB | over B.

(ii) If L is an operator with Gaussian upper bounds on its heat kernel then Theorem 6.11 is

satisfied with T = L−α/2, AB = I − (I − e−r2BL)m, p0 = 1, q0 = ∞, and m > 0 large

enough. We shall give the details for this fact in the context of the Schrödinger operator

with non-negative potentials within the proof of Theorem 6.17.

(iii) Theorem 6.11 generalises Adams’ result because by Remarks (i) and (ii), with p0 = 1,

q0 = ∞, and T = (−∆)−α/2, we can obtain that T is bounded from Lp,λ to Lq,λ, where

p ∈ (1, n/α), λ ∈ (αp, n), and 1/p− 1/q = α/λ.

(iv) The fact that the set
(
1− λ/n, 1− q/q0

)
is not empty and contained in (0, 1) is crucial to

the proof, because for each ball B and δ ∈
(
1− λ/n, 1− q/q0

)
we obtain the following two

desirable properties:

(1) δ > 1− λ/n =⇒
∑
j 2−j(δn+λ−n) <∞, and

(2) δ < 1 − q/q0 =⇒ (M1B)δ(q0/q)
′ ∈ A1 because δ(q0/q)

′ < 1. This is equivalent

to (M1B)δ ∈ A1 ∩ B(q0/q)′ .

(v) We mention that the conditions of Theorem 6.11 are the same as that in [17] Theorem 2.2,

but the conclusion is different in sense that direct extension of the result from [17] leads

to a conclusion that generalises Spanne’s result. Instead we modify the proof to obtain a

generalisation of Adams’ result. In fact Spanne’s result is a consequence of Adams’:

Corollary 6.13. Under the same conditions as Theorem 6.11 and assuming that p0 < p <

q < q0, λ ∈
(
p (n/q0 + α) , n

)
, 1/p − 1/q = α/n and µ satisfying (n − λ)/p = (n − µ)/q,

then T is bounded from Lp,λ(Rn) to Lq,µ(Rn).
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To see this, it is sufficient to show that if p0 < p < q < q0, λ ∈ (p(n/q0 + α), n), and

1/p−1/q1 = α/λ, then whenever q2 and µ satisfies (n−λ)/p = (n−µ)/q2 and 1/p−1/q2 =

α/n, then one has Lq1,λ ⊆ Lq2,µ. This holds by Hölder’s inequality and the following two

facts: (a) q1 > q2, and (b) µ = λq2/q1. Property (a) follows from 1/p − 1/q1 = α/λ and

1/p− 1/q2 = α/n in tandem with n > λ. To see (b) we observe that the conditions on q2

gives µ = n(λ − αp)/(n − αp). Note also that q1 = pλ/(λ − αp) and q2 = pn/(n − αp).

Combining these three equalities gives (b).

Proof of Theorem 6.11. Our aim is to show that, under the conditions of Theorem 6.11, one has

the following norm control on the operator T .

‖Tf‖Lq,λ .
∥∥Mαp0

(
|f |p0

)1/p0∥∥
Lq,λ . (6.5)

This suffices to give the conclusion of the theorem by a classical result for fractional maximal

operators on Morrey spaces due to G. Di Fazio and M.A. Ragusa.

Lemma 6.14 ([42] Lemma 4). Let α ∈ (0, n) and p ∈
(
1, n/α

)
. Suppose that λ and q satisfy

λ ∈ (αp, n) and 1/p− 1/q = α/λ. Then Mα is bounded from Lp,λ(Rn) into Lq,λ(Rn).

Let us explain how (6.5) leads to our result. Our conditions on the parameters implies the

following

αp0 ∈ (0, n), p/p0 ∈
(

1,
n

αp0

)
, λ ∈ (αp, n),

1

p/p0
− 1

q/p0
=
αp0

λ
.

Hence Lemma 6.14 implies that Mαp0 maps Lp/p0,λ to Lq/p0,λ, and we obtain

∥∥Mαp0

(
|f |p0

)1/p0∥∥
Lq,λ = sup

B

(
rλB

∫
B

(
Mαp0 |f |

p0
)q/p0)1/q

=
∥∥Mαp0

(
|f |p0

)∥∥1/p0

Lq/p0,λ

. ‖fp0‖1/p0Lp/p0,λ = ‖f‖Lp,λ .

The rest of the proof is devoted to obtaining estimate (6.5). We shall follow the strategy of

Theorem 2.2 in [17] and apply the good-λ result of Theorem 4.4 with modifications to suit our

purposes.
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We first consider the case q0 < ∞. Fix f ∈ L∞c (Rn) and set F := |Tf |s0 ∈ L1(Rn).

Sublinearity of T then gives for each ball B,

F ≤ 2s0−1 |T (I −AB)f |s0 + 2s0−1 |TABf |s0 =: GB +HB .

We apply Theorem 4.4 with

G := 2s0−1Cs0
(
Mαp0 |f |

p0
)s0/p0

, H1 := 0, H2 := 2s0−1G,

ξ := 22(s0−1)Cs0 , r :=
q0

s0
.

We check condition (4.2). By (6.4) we obtain, for each x and y in B,

(∫
B

Hr
B

)1/r

= 2s0−1
(∫

B

|TABf |q0
)s0/q0

≤ 2s0−1
{
C0M

(
|Tf |s0

)
(x)1/s0 + C0Mαp0

(
|f |p0

)
(y)1/p0

}s0
≤ 22(s0−1)Cs00

{
M
(
|Tf |s0

)
(x) +Mαp0

(
|f |p0

)
(y)s0/p0

}
= ξ

{
MF (x) +H2(y)

}
.

Next we check condition (4.3). By (6.3) we obtain, for each x ∈ B,∫
B

GB = 2s0−1

∫
B

|T (I −AB)f |s0 ≤ 2s0−1Cs00 Mαp0

(
|f |p0

)
(x)s0/p0 = G(x).

Now from our hypotheses on n, λ, q, q0 the set
(
1−λ/n, 1−q/q0

)
is non-empty and is contained

in (0, 1). Fix δ ∈
(
1−λ/n, 1−q/q0

)
. Then for any ball B, we have (M1B)δ(q0/q)

′ ∈ A1 (because

δ < 1− q/q0 is equivalent to δ(q0/q)
′ < 1). Now recall that by [16] Proposition 2.1 (vii),

(M1B)δ(q0/q)
′
∈ A1 ⇐⇒ (M1B)δ ∈ A1 ∩ B( q0

q

)′
and hence by [16] Proposition 2.1 (iv), there exists s ∈ (1, q0/q) such that (M1B)δ ∈ Bs′

(because (q0/q)
′ < s′). Now let us take q/s0 in place of p in Theorem 4.4. From our hypotheses

on q, s0, q0, s we see that 1 < q/s0 < r/s. Indeed, s < q0/q implies r/s > (q0/s0)/(q0/q) = q/s0,

and the three conditions 1/p−1/q = α/λ, 1/p0−1/s0 = α/n, and λ < n implies 1/p0−1/s0 <

1/p− 1/q. Rearranging this gives

1

s0
− 1

q
>
p− p0

pp0
> 0,
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so that q > s0. Therefore, with q/s0 in place of p, and with w := (M1B)δ, Theorem 4.4 gives

‖Tf‖s0Lq(w) ≤
(∫

Rn
M
(
|Tf |s0

)q/s0
w
)s0/q

= ‖MF‖Lq/s0 (w)

≤ C ‖G‖Lq/s0 (w) = C
∥∥Mαp0

(
|f |p0

)s0/p0∥∥
Lq/s0 (w)

= C
∥∥Mαp0

(
|f |p0

)1/p0∥∥s0
Lq(w)

.

For each ball B, one therefore has

(∫
B

|Tf |q
)1/q

≤
(∫

Rn
|Tf |q (M1B)δ

)1/q

.
(∫

Rn
Mαp0

(
|f |p0

)q/p0
(M1B)δ

)1/q

.

Since δ > 1−λ/n, then Lemma 6.3 applied to h = Mαp0

(
|f |p0

)q/p0
and then taking supremum

over all balls gives

‖Tf‖Lq,λ .
∥∥Mαp0

(
|f |p0

)1/p0∥∥
Lq,λ ,

which is estimate (6.5).

Let us turn to the case q0 = ∞. We fix δ ∈
(
1 − λ/n, 1

)
. Then (M1B)δ ∈ A1 for any

ball B. Hence (M1B)δ ∈ Bs′ for some 1 < s < ∞. We apply Theorem 4.4 again and see that

the proof follows the same argument with r =∞. Condition (4.1) can be checked as follows:

(∫
B

Hr
B

)1/r

= ess supB 2s0−1 |TABf |s0

≤ 22(s0−1)Cs00

{
M
(
|Tf |s0

)
(x) +Mαp0

(
|f |p0

)
(y)s0/p0

}
= ξ

{
MF (x) +H2(y)

}
for each x, y ∈ B. We also take, as before, q/s0 in place of p. It is trivial that 1 < q/s0 < r/s.

The rest of the proof is the same as before and we obtain estimate (6.5) as required.

6.2 From Muckenhoupt weights to Morrey spaces II

D.R. Adams and J. Xiao [4, 5] give a new characterisation of Morrey spaces and their preduals in

terms of Hausdorff capacity and A1 weights. For α ∈ (0, n ] the α-Hausdorff capacity of Ω ⊂ Rn

is defined to be

Λ(∞)
α (Ω) := inf

{∑
j

rαBj : Ω ⊆
⋃
j

Bj

}
.
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From this capacity one can define, for p ∈ [1,∞), the Choquet-p integral of f ∈ C∞0 (Rn) as

∫
Rn
|f |p dΛ(∞)

α :=

∫ ∞
0

Λ(∞)
α ({x ∈ Rn : |f(x)| > t}) dt.

We refer the reader to [3] for more on the Choquet integral. Next we set

A(n−λ)
1 :=

{
w ∈ A1 :

∫
Rn
w dΛ

(∞)
n−λ ≤ 1

}
.

We can now give the characterisation of the Morrey spaces from [4, 5]: for each p ∈ (1,∞) and

λ ∈ (0, n) we have

Lp,λ(Rn) =
{
f ∈ Lploc : sup

w∈A(n−λ)
1

(∫
Rn
|f |p w

)1/p

<∞
}
. (6.6)

These new characterisations allow us to transfer information from Ap weights to Morrey

spaces. The next result is a more refined version of Proposition 6.5, in the sense that the

hypotheses are weakened to allow a larger class of weights.

Theorem 6.15 (Ap boundedness gives Morrey space boundedness). Let 1 ≤ p0 < q0 ≤ ∞

and assume that F and G are measurable functions for which the following holds: for some

p ∈ (p0, q0) and all w ∈ Ap/p0 ∩ B(q0/p)′ , there exists C = C(p, w) > 0 such that,

‖F‖Lp(w) ≤ Cp ‖G‖Lp(w) .

Then there exists C = C(p, n, λ) such that

‖F‖Lp,λ ≤ C ‖G‖Lp,λ , ∀ λ ∈
(
n
q0
p, n
)
.

In the next result we use ideas from the extrapolation of Lp(w) spaces with Ap weights to

obtain an extrapolation theorem for Morrey spaces. We show that an inequality for a fixed pair

of parameters (p0, λ0) automatically propagates to a range of (p, λ).

Theorem 6.16 (Extrapolation for Morrey spaces). Assume that for some p0 ∈ [1,∞) and some

λ0 ∈ (0, n) the following holds.

‖f‖Lp0,λ0 ≤ C0 ‖g‖Lp0,λ0 .
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Then for each p ∈
(
p0, np0/λ0

)
and λ = pλ0/p0 there exists C = C(p, p0, λ0) > 0 such that

‖f‖Lp,λ ≤ C ‖g‖Lp,λ .

Before presenting the proofs of the above two results, we collect together some useful

facts. The first is the main result of [83]. Let α ∈ (0, n). Then there exists C = C(α, p, n), such

that for each p > α/n, ∫
(Mf)p dΛ(∞)

α ≤ C
∫
|f |p dΛ(∞)

α . (6.7)

The next so-called ‘quasi-Hölder’ inequality can be found in [5] in the proof of Theorem 18.∫
w1−θ

0 wθ1 dΛ(∞)
α ≤ C

(∫
w0 dΛ

(∞)
n−α0

)1−θ(∫
w1dΛ

(∞)
n−α1

)θ
(6.8)

where α = (n− α0)(1− θ) + (n− α1)θ.

Proof of Theorem 6.15. For each w ∈ A(n−λ)
1 and θ ∈

(
1 − λ/n, (q0 − p)/p0

)
(this set is not

empty due to our hypotheses on p0, q0, p, λ), we construct the weight wθ :=
(
Mw1/θ

)θ
. Then

combining the fact that w ∈ L1
loc(Rn) and that 0 < θ < 1 with Lebesgue’s Differentiation

Theorem gives

w(x) ≤ wθ(x), a.e. x ∈ Rn. (6.9)

One also has the following:

wθ ∈ A p
p0
∩ B( q0

p

)′ . (6.10)

This holds because our hypothesis on θ imply that θ(q0/p)
′ < 1, and so w

(q0/p)
′

θ ∈ A1. Hence

w
(q0/p)

′

θ ∈ A(q0/p)′(p/p0−1)+1 which is equivalent to (6.10), by Proposition 2.9 (f). Next, there

also exists a constant cθ > 0 such that

wθ
cθ
∈ A(n−λ)

1 . (6.11)

Indeed since wθ ∈ A1, and since (6.7) applies (because 1 − λ/n < θ), then there exists C1 =

C1(θ, n, λ) such that∫
wθ dΛ

(∞)
n−λ =

∫ (
Mw1/θ

)θ
dΛ

(∞)
n−λ ≤ C1

∫
w dΛ

(∞)
n−λ ≤ C1.
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The last inequality holds because w ∈ A(n−λ)
1 . Taking cθ = C1 gives us (6.11).

Now combining the facts (6.9), (6.10), and (6.11) one has for such w and θ, and each

f ∈ C0(Rn),

1

cθ

∫
|F |p w ≤ 1

cθ

∫
|F |p wθ ≤ C

∫
|G|p

(wθ
cθ

)
≤ C sup

ν∈A(n−λ)
1

∫
|G|p ν = C ‖G‖pLp,λ .

The first inequality follows from (6.9), and the second from the hypothesis on F and G. Taking

supremum over all w ∈ A(n−λ)
1 gives

‖F‖pLp,λ ≤ cθ C ‖G‖pLp,λ

as required.

Proof of Theorem 6.16. Fix p ∈
(
p0, np0/λ0

)
and let λ = pλ0/p0. We aim to show that there

exists some C > 0 such that for any w ∈ A(n−λ)
1 ,

‖f‖Lp(w) ≤ C ‖g‖Lp,λ .

Taking supremum over all such w will give the desired result.

Now since w ∈ A(n−λ)
1 , then in particular w ∈ Ap/p0 and so by duality there exists

h ∈ L(p/p0)′(w) with norm 1 such that ‖f‖p0Lp(w) = ‖f‖p0Lp0 (hw). Next for each 0 < s < 1 one

has hw ≤
(
M(hw)1/s

)s ∈ A1. Now provided we show

(
M(hw)1/s

)s ∈ A(n−λ0)
1 (6.12)

then the result follows. Indeed (6.12) and our hypothesis on f and g imply that

∫
|f |p

(
M(gw)1/s

)s ≤ C ‖g‖p0Lp0,λ0 ,

and since λ0 = λp0/p and p > p0, then by Hölder’s inequality,

‖g‖Lp0,λ0 ≤ ‖g‖Lp,λ .

Putting these estimates together yields

‖f‖p0Lp(w) = ‖f‖p0Lp0 (gw) ≤ C ‖g‖p0Lp0,λ0 ≤ C ‖g‖p0Lp,λ .
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It remains to check (6.12). Let s > 1− λ0/n. By (6.7) we have

∫ (
M(hw)1/s

)s
dΛ

(∞)
n−λ0

.
∫
hw dΛ

(∞)
n−λ0

.

We apply (6.8) with

α0 = 0, α1 = λ0, θ =
p0

p
, w0 = hp/(p−p0)w, w1 = w.

Then it follows that

∫
hw dΛ

(∞)
n−λ0

=

∫ (
hp/(p−p0)w

)1−p0/p
wp0/p dΛ

(∞)
n−λ0

.
(∫

hp/(p−p0)w dΛ(∞)
n

)1−p0/p(∫
w dΛ

(∞)
n−λ

)p0/p
=
(∫

h(p/p0)′w dΛ(∞)
n

)1/(p/p0)′(∫
w dΛ

(∞)
n−λ

)p0/p
.

This can be controlled by the constant 1 because, firstly w ∈ A(n−λ)
1 , and secondly

(∫
h(p/p0)′w dΛ(∞)

n

)1/(p/p0)′

=
(∫

h(p/p0)′w dx
)1/(p/p0)′

= 1

by our choice of h. This concludes the proof of (6.12).

6.3 Applications

In this section we give applications of the results from the previous two sections to some differ-

ential operators.

6.3.1 Schrödinger operators

Here we present the proofs of the results in mentioned in the introduction to this chapter.

Proof of Theorem 6.1. We show that (a) implies (b). From Theorem 4.1 we see that (a) implies

that ∇L−1/2 is bounded on Lp(w) for all p ∈ (1, s) and w ∈ Ap ∩ B(s/p)′ . We then apply

Theorem 6.15 with F =
∣∣∇L−1/2f

∣∣, G = f , p0 = 1, and q0 = s to obtain (b).

For the converse if (b) holds, then (a) follows simply by taking λ = n and recalling that

Lp,n(Rn) = Lp(Rn).
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Proof of Theorem 6.2. We prove (a) and (b). We recall that in [93, 12] (see also Theorems

1.2 and 1.3 in Chapter 1 of this thesis) the operators ∇L−1/2 and V 1/2L−1/2 are bounded on

Lp(Rn) for p ∈ (1, q∗) and p ∈ (1, 2q) respectively. Applying Theorem 4.1 and Theorem 4.2 to

these operators, with s = q∗ and s = 2q respectively gives firstly the boundedness of ∇L−1/2 on

Lp(w) for p ∈ (1, q∗), w ∈ Ap ∩ B(q∗/p)′ , and secondly the boundedness of V 1/2L−1/2 on Lp(w)

for p ∈ (1, 2q), w ∈ Ap ∩ B(2q/p)′ . Next we may apply Theorem 6.15, firstly to F =
∣∣∇L−1,2

∣∣
and G = f with p0 = 1 and q0 = q∗, and secondly to F = V 1/2L−1/2 and G = f with p0 = 1

and q0 = 2q.

We prove (c). To do this we combine Theorem 6.15 with Theorem 4.3. Indeed from

Theorem 4.3 we know that V L−1 and ∇2L−1 are both bounded on Lp(w) for each p ∈ (1, q)

and w ∈ Ap ∩ B(q/p)′ . Hence for each such p and w one has, for each f ∈ C∞0 (Rn),

∥∥∇2L−1f
∥∥
Lp(w)

≤ C ‖f‖Lp(w) .

Theorem 6.15 applied to F :=
∣∣∇2L−1f

∣∣, G := f , p0 = 1, and q0 = q gives

∥∥∇2L−1f
∥∥
Lp,λ ≤ C ‖f‖Lp,λ

for each λ ∈
(
np/q, n

)
.

Recall earlier in Remark 6.12 (iii) that conditions (6.3) and (6.4) are satisfied with p0 = 1,

q0 =∞, T = L−α/2, and AB = e−r
2
BL whenever L admits Gaussian upper bounds on its heat

kernel. We shall now give the details of this fact, which will be contained in the proof of the

following result.

Theorem 6.17. Let L = −∆ + V on Rn with n ≥ 1 and 0 ≤ V ∈ L1
loc(Rn). Let α ∈ (0, n),

p ∈
(
1, n/α

)
, and λ ∈ (αp, n) with 1/p− 1/q = α/λ. Then L−α/2 is bounded from Lp,λ(Rn) to

Lq,λ(Rn).

Proof. Recall that under our assumptions on V the heat kernel of L satisfies the Gaussian upper

bound (3.1). This implies the pointwise control |L−α/2f | . Iα |f | by the Riesz potential Iα and

hence Theorem 6.17 can be obtained as a consequence of Adams’ result for the Riesz potential Iα
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(Theorem 6.9). However we shall prove this result by utilising the machinery we have developed

in this chapter, namely Theorem 6.11.

We first state a boundedness result for L−α/2 on the Lp(Rn) spaces, which follows from

the boundedness of the classical Riesz potentials.

Lemma 6.18. Let L = −∆ + V on Rn with n ≥ 1 and 0 ≤ V ∈ L1
loc(Rn). Let α ∈ (0, n) and

p ∈
(
1, n/α

)
, with 1/p− 1/q = α/n. Then L−α/2 is bounded from Lp(Rn) to Lq(Rn).

Proof. From the Gaussian upper bounds for the heat kernel of L, it is easy to show the following

pointwise bounds.

|L−α/2f(x)| ≤ C Iα
(
|f |
)
(x), a.e. x ∈ Rn. (6.13)

The conclusion of the lemma for L−α/2 then follows from the corresponding result for Iα, which

can be found in Chapter 5 of [100].

Let us show (6.13). Firstly,

∣∣L−α/2f(x)
∣∣ =

∣∣∣∣ 1

Γ(α/2)

∫ ∞
0

∫
Rn
pt(x, y)f(y) dy

dt

t1−α/2

∣∣∣∣
≤ 1

Γ(α/2)

∫
Rn
|f(y)|

∫ ∞
0

|pt(x, y)| dt

t1−α/2
dy

=
1

Γ(α/2)

∫
Rn
k(x, y) |f(y)| dy

where

k(x, y) =

∫ ∞
0

|pt(x, y)| tα/2−1 dt .

Our task is to show that k(x, y) ≤ C |x− y|α−n. Write k(x, y) = k0(x, y) + k∞(x, y) where

k0(x, y) =

∫ |x−y|2
0

|pt(x, y)| dt

t1−α/2
≤
∫ |x−y|2

0

e−|x−y|
2/t dt

t1+(n−α)/2
.

If we assume that x 6= y and let s = t/|x− y|2, we have

k0(x, y) ≤
∫ 1

0

|x− y|2e−1/s ds

|x− y|2+n−αs1+(n−α)/2
=

1

|x− y|n−α

∫ 1

0

e−1/s ds

s1+(n−α)/2

≤ Cn,α
|x− y|n−α

∫ 1

0

ds =
Cn,α

|x− y|n−α
.
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We also have

k∞(x, y) ≤
∫ ∞
|x−y|2

e−|x−y|
2/t dt

t1+(n−α)/2
≤
∫ ∞
|x−y|2

dt

t1+(n−α)/2

= Cn,α

[ 1

t(n−α)/2

]|x−y|2
∞

=
Cn,α

|x− y|n−α
.

Finally we note that if x = y the estimate holds trivially.

Now set T = L−α/2, AB = e−r
2
BL, p0 = 1 and q0 =∞ and s0 = s = n/(n−α). Then

Lemma 6.18 implies that L−α/2 is bounded from L1(Rn) into Ls(Rn). Fix f ∈ L∞c (Rn) and a

ball B. We first show (6.4). From the bounds (3.1) we have, for any x ∈ B,

|e−r
2
BLL−α/2f(x)| ≤

∞∑
j=0

∫
Uj(B)

|pr2B (x, y)| |L−α/2f(y)| dy

≤
∞∑
j=0

∣∣2jB∣∣ ( ∫
Uj(B)

|pr2B (x, y)|s
′
dy
)1/s′(∫

2jB

|L−α/2f(y)|sdy
)1/s

.
∞∑
j=0

e−4j2jn
(∫

2jB

|L−α/2f(y)|sdy
)1/s

≤M
(
|L−α/2f |s

)
(x)1/s.

Next we show (6.3). For each j ≥ 0 set fj := f1Uj(B). Then we write

(∫
B

|L−α/2(I − e−r
2
BL)f |s

)1/s

≤
∞∑
j=0

(∫
B

|L−α/2(I − e−r
2
BL)fj |s

)1/s

. (6.14)

For the terms j = 0, 1 we use the L1(Rn)→ Ls(Rn) boundedness of L−α/2 (from Lemma 6.18)

and the Gaussian bounds (3.1) to obtain

(∫
B

|L−α/2(I − e−r
2
BL)fj(x)|sdx

)1/s

.
1

|B|1/s

∫
Rn
|(I − e−r

2
BL)fj(x)| dx

.
1

|B|1/s

∫
Rn
|fj(x)| dx =

1

|B|1/s

∫
2B

|f(x)| dx

. rn−n/sB

∫
2B

|f(x)| dx = rαB

∫
2B

|f(x)| dx .

For j ≥ 2 we use the following identity (from integration by parts),

L−α/2(I − e−r
2
BL) =

1

Γ(α/2)

∫ ∞
0

e−tL(I − e−r
2
BL)

dt

t1−α/2

=
1

Γ(α/2)

∫ ∞
0

∫ t+r2B

t

− ∂

∂s
e−sL ds

dt

t1−α/2
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=
1

Γ(α/2)

∫ ∞
0

∫ t+r2B

t

Le−sL ds
dt

t1−α/2
,

and apply Minkowski’s inequality and the bounds on the time derivative of the heat kernel (3.4)

to obtain

(∫
B

|L−α/2(I − e−r
2
BL)fj(x)|sdx

)1/s

.
∫ ∞

0

∫ t+r2B

t

(∫
B

|Le−sLfj(x)|sdx
)1/s

ds
dt

t1−α/2

≤
∫ ∞

0

∫ t+r2B

t

∫
Uj(B)

(∫
B

∣∣∣ ∂
∂s
ps(x, y)

∣∣∣sdx)1/s

|f(y)| dy ds dt

t1−α/2

.
∫ ∞

0

∫ t+r2B

t

e−4jr2B/s
ds

sn/2+1

dt

t1−α/2

∫
Uj(B)

|f(y)| dy .

To complete the estimates we split the integral∫ ∞
0

∫ t+r2B

t

e−4jr2B/s
ds

sn/2+1

dt

t1−α/2
= Ij + IIj ,

where

Ij =

∫ 4jr2B

0

∫ t+r2B

t

e−4jr2B/s
ds

sn/2+1

dt

t1−α/2

.
∫ ∞

0

∫ t+r2B

t

( s

4jr2
B

)n/2+1 ds

sn/2+1

dt

t1−α/2

. (2jrB)α−n4−j ,

and

IIj =

∫ ∞
4jr2B

∫ t+r2B

t

e−4jr2B/s
ds

sn/2+1

dt

t1−α/2
≤ r2

B

∫ ∞
4jr2B

dt

tn/2+2−α/2 . (2jrB)α−n4−j .

We remark that both estimates follow because α ∈ (0, n). Collecting these estimates into (6.14)

we obtain for any x ∈ B,

(∫
B

|L−α/2(I − e−r
2
BL)f |s

)1/s

≤
∞∑
j=0

4−j(2jrB)α
∫

2jB

|f | . Mα

(
|f |
)
(x)

which is (6.3).

6.3.2 Elliptic operators in divergence form

The following section is mostly taken from [15]. We refer the reader to that article for a more

complete treatment.
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Let A = (aj,k)j,k be an n × n matrix of complex and L∞ valued coefficients defined on

Rn. We assume that this matrix satisfies the following ellipticity (or ‘accretivity’) condition:

there exists 0 < π ≤ Π <∞ such that

π |ξ|2 ≤ <A(x) ξ · ξ and
∣∣A(x) ξ · ζ

∣∣ ≤ Π |ξ| |ζ| ,

for all ξ, ζ ∈ Cn and almost every x ∈ Rn. Note that ξ · ζ = ξ1ζ1 + · · ·+ ξnζn is the usual inner

product on Cn, and hence A(x)ξ · ζ =
∑
j,k aj,k(x)ξkζj .

Associated with this matrix we define the second-order divergence form operator

Lf = −div (A∇f),

which is understood in the standard weak sense as a maximal accretive operator on L2(Rn)

with domain D(L) by means of a sesquilinear form. The operator −L generates a C0-semigroup{
e−tL

}
t>0

of contractions on L2(Rn). We set

p− = p−(L) = inf{p ≥ 1 : e−tL is bounded uniformly on Lp(Rn) for all t > 0},

p+ = p+(L) = sup{p <∞ : e−tL is bounded uniformly on Lp(Rn) for all t > 0},

and also

q− = q−(L) = inf
{
q ≥ 1 :

√
t∇e−tL is bounded uniformly on Lp(Rn) for all t > 0

}
,

q+ = q+(L) = sup
{
q <∞ :

√
t∇e−tL is bounded uniformly on Lp(Rn) for all t > 0

}
.

The following are known results concerning the Riesz transform and fractional powers associated

to L = −div (A∇).

Theorem 6.19 ([15]). The operator ∇L−1/2 is bounded on Lp(w) for each p ∈ (q−, q+) and w ∈

Ww(q−, q+).

Theorem 6.20 ([17]). Let p, q, α satisfy p− < p < q < p+ and α/n = 1/p − 1/q. Then the

operator L−α/2 is bounded from Lp(wp) to Lq(wq) for each w ∈ A
1+

1
p−
− 1
p
∩ B

q
(p+
q

)′ .
Sections 6.1 and 6.2 allow us to extend these results to Morrey spaces readily.
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Theorem 6.21. The operator ∇L−1/2 is bounded on Lp,λ(Rn) for each p ∈ (q−, q+) and

λ ∈
(
np/q+, n

)
.

Proof. We combine Theorem 6.19 with Theorem 6.15 with p0 = q− and q0 = q+.

Theorem 6.22. Let p, q, α, and λ satisfy p− < p < q < p+, λ ∈
(
p
(
n
p+

+ α
)
, n
)

and

α/λ = 1/p− 1/q. Then the operator L−α/2 is bounded from Lp,λ(Rn) to Lq,λ(Rn).

Proof. We remark that L−α/2 satisfies conditions (6.3) and (6.4) by Lemma 3.2 in [17], with

α ∈ (0, n), p0 = p−, q0 = p+, and s0 satisfying 1/p0 − 1/s0 = α/n. Then we may apply

Theorem 6.11 to obtain the desired conclusion.
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Chapter 7

Hardy spaces and Schrödinger operators

In this chapter we are interested in studying the second-order Riesz transforms∇2L−1 and V L−1

(and their commutators with BMO functions) associated to the Schrödinger operator in the

range p ≤ 1. This will involve both the classical Hardy spaces Hp(Rn) and the Hardy spaces

Hp
L(Rn) associated to L = −∆ + V (see Section 7.1.1 for a definition). We mention that the

results for the first order Riesz transform ∇L−1/2 under the condition that V is non-negative

and locally integrable are known [65, 70]. See the discussion in Section 1.1.3.

The main results of this chapter are the following theorem and its corollary.

Theorem 7.1. Let L = −∆+V on Rn with n ≥ 3. Assume that V ∈ Bq with q > max {2, n/2}.

Then the following holds.

(a) The operators ∇2L−1 and V L−1 are bounded from Hp
L(Rn) into Lp(Rn) for each p ∈ (0, 1].

(b) The operator ∇2L−1 is bounded from Hp
L(Rn) into Hp(Rn) for each p ∈

(
n/(n+ 1), 1

]
.

Under reverse Hölder conditions on V , our result admits a straightforward consequence. The

atomic characterisation given in [52] (see Definition 7.6 below) allow us to state the range of

boundedness on the classical Hardy spaces.

Corollary 7.2. Let L = −∆+V on Rn with n ≥ 3. Assume that V ∈ Bq with q > max {2, n/2}.

Then the operator ∇2L−1 is bounded from Hp(Rn) to Hp(Rn) for each p ∈
(
n/(n + pL), 1

]
,

where pL = min {1, 2− n/q}.
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The proof of this Corollary is given at the end of Section 7.1.1.

We also study the commutator between the operator ∇2L−1 and a BMO function b,

which is defined as

[b,∇2L−1]f := ∇2L−1(bf)− b∇2L−1f.

The commutator [b, V L−1] of V L−1 and b is defined similarly. Commutators of a singular

integral operator with BMO functions are also objects that arise naturally in harmonic analysis

and partial differential equations. They were introduced in [37] and were further studied in [69]

and [88].

In [63] the authors show that when V ∈ Bq with q ≥ n/2 and n ≥ 3, the commutators

[b,∇2L−1] and [b, V L−1] as defined above are bounded on Lp(Rn) for all p ∈ (1, q ]. Here we

give an estimate for the endpoint p = 1.

Theorem 7.3. Let L = −∆+V on Rn with n ≥ 3. Assume that V ∈ Bq with q > max {2, n/2}.

Let b ∈ BMO. Then the commutators [b,∇2L−1] and [b, V L−1] map H1
L(Rn) into L1,∞(Rn).

We give some remarks on results for the commutators of the first-order Riesz transforms

∇L−1/2 and V 1/2L−1/2 with a BMO function b. When V is a non-negative and locally integrable

function the boundedness of [b,∇L−1/2] and [b, V 1/2L−1/2] on Lp(Rn) for p ∈ (1, 2] can be

obtained as a consequence of the results in [6]. When V ∈ Bq with q ≥ n/2, it is shown in [63]

that the range of boundedness of [b, V 1/2L−1/2] can be improved to (1, 2q], while the range for

[b,∇L−1/2] can be improved to (1, q∗]. Note that q∗ is defined in Section 2.2. Similar endpoint

estimates to Theorem 7.3 for the first-order Riesz transforms are proved in [7].

In [98] the authors introduce the notion of a weighted Hardy space Hp
L(w) associated

to an operator L. The standard reference for the classical counterparts of these spaces, the

weighted Hardy spaces Hp(w), is the monograph [103]. We give an extension of Theorem 7.1 to

these weighted spaces Hp
L(w) in section 7.2.

This chapter is organised as follows. Section 7.1 presents the proofs of the unweighted

results. Section 7.1.1 collects together the required definitions and properties of the Hardy
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spaces Hp
L(Rn) and gives the proof of Corollary 7.2. We give some kernel estimates that will be

needed throughout the rest of the chapter in Section 7.1.2, before moving on to the proofs of

Theorems 7.1 and 7.3. Section 7.2 gives the extensions to weighted Hardy spaces.

7.1 Unweighted Hardy spaces

In this section we give the proofs of Theorem 7.1, Theorem 7.3 and Corollary 7.2. We begin

with describing the constructions of the Hardy spaces under consideration before turning to the

proofs of the main results.

7.1.1 Hardy spaces associated to Schödinger operators

We give a brief survey on the Hardy spaces adapted to the Schrödinger operator L = −∆ + V .

Unless otherwise noted, we will assume the potential V is a non-negative and locally integrable

function. The material in this section can be found in more complete form in [65, 44, 70], where

more general classes of operators are treated. See also [43]. For a description of the classical

Hardy spaces and their properties see [101] (we can also take L = −∆ throughout this section).

Firstly we set

H2(Rn) := {Lu ∈ L2(Rn) : u ∈ L2(Rn)}. (7.1)

For each f ∈ L2(Rn), we define the area integral function of f associated to L as

SL(f)(x) :=
(∫ ∞

0

∫
|x−y|<t

∣∣t2Le−t2Lf(y)
∣∣2dy dt

tn+1

)1/2

, x ∈ Rn. (7.2)

For each p ∈ (0, 1] we define the Hardy space Hp
L(Rn) associated to L as the completion of

{
f ∈ H2(Rn) : ‖SL(f)‖Lp(Rn) <∞

}
in the metric ‖f‖HpL := ‖SL(f)‖Lp .

Next we introduce the notion of (p, 2,M)-atoms for L.

Definition 7.4 (Atoms for Hp
L). Let 0 < p ≤ 1 and M ∈ N. A function a ∈ L2(Rn) is called

a (p, 2,M)-atom for L associated to the ball B if for some b ∈ D(LM ) we have
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(i) a = LMb,

(ii) supp Lkb ⊆ B for each k = 0, 1, . . . ,M ,

(iii)
∥∥(r2

BL)kb
∥∥

2
≤ r2M

B |B|1/2−1/p
for each k = 0, 1, . . . ,M .

Let M > n
2

(
1
p −

1
2

)
. Then it follows that for each f ∈ Hp

L(Rn) there exists a sequence {aB}B

of (p, 2,M)-atoms for L, and a sequence of scalars {λB}B ⊂ C, such that

f =
∑
B

λBaB and
∑
B

|λ|p ≤ ‖f‖pHpL .

The convergence is in both Hp
L(Rn) and L2(Rn).

These atoms allow us to reduce the study of operators on Hp
L(Rn) to studying their

behaviour on single atoms. This is recorded in the following fact, and will be crucial in the proof

of Theorem 7.1 (a).

Lemma 7.5. Let 0 < p ≤ 1 and fix an integer M > n
2

(
1
p −

1
2

)
. Assume that T is a linear

operator (resp. non-negative sublinear) operator that maps L2(Rn) continuously into L2,∞(Rn)

satisfying the following property: there exists C > 0 such that for each (p, 2,M)-atom a,

‖Ta‖Lp(Rn) ≤ C.

Then T extends to a bounded linear (resp. sublinear) operator from Hp
L(Rn) to Lp(Rn). Fur-

thermore, there exists C ′ > 0 such that

‖Tf‖Lp(Rn) ≤ C
′ ‖f‖HpL(Rn)

for every f ∈ Hp
L(Rn).

For a proof of this Lemma we refer the reader to [65] Lemma 4.3 or [44] Lemma 3.15.

Next we describe the Hardy spaces adapted to the Schrödinger operator defined and

studied by Dziubański and Zienkiewicz in the series of papers [51, 52, 53]. These will turn out

to be equivalent to the spaces Hp
L defined earlier for a certain range of p. We will use this fact

to give the proof of Corollary 7.2 at the end of this section.
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For each p ∈ (0, 1] we define (note the calligraphic H) the space HpL(Rn) as the comple-

tion of

{
f ∈ L1

c(Rn) : ‖MLf‖Lp <∞
}

in the metric ‖f‖HpL = ‖MLf‖Lp . Here L1
c(Rn) is the space of compactly supported functions

on Rn, and the operator ML is defined as

MLf(x) := sup
t>0

∣∣e−tLf(x)
∣∣ .

When V ∈ Bq with q ≥ n/2 and n ≥ 3, the authors in [52] give a special atomic characterisation

of HpL(Rn). In the following γ is the function defined in Definition 2.2.

Definition 7.6 (Special L atoms). A function a is called a special L-atom associated to the

ball B = B(xB , rB) if rB ≤ γ(xB) and

(i) supp a ⊆ B,

(ii) ‖a‖L∞ ≤ |B|
−1/p

,

(iii)
∫
a(x) dx = 0 whenever rB ≤ 1

4γ(xB).

Let pL := min {1, 2− n/q}. Then the authors show that when p ∈ (n/(n + pL), 1], each

f ∈ HpL(Rn) has a special atomic decomposition f =
∑
B λBaB where the aB are special

L-atoms.

Recall that in the atomic characterisation for the classical Hp(Rn) spaces, the cancellation

condition is required for all balls [101]. Comparing this with Definition 7.6 (iii) above, we

therefore have the following strict inclusion,

Hp(Rn) ( HpL(Rn), p ∈
(

n
n+pL

, 1
]
. (7.3)

It is also known (see [70], Section 6) that

Hp
L(Rn) = HpL(Rn), p ∈

(
n
n+1 , 1

]
. (7.4)

We end this section with the proof of Corollary 7.2.
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Proof of Corollary 7.2. We simply observe that pL ≤ 1 and hence n/(n + pL) ≥ n/(n + 1).

Therefore (7.3) and (7.4) gives

Hp(Rn) ( HpL(Rn) = Hp
L(Rn), p ∈

(
n

n+pL
, 1
]
.

Combining this with Theorem 7.1 (b) we obtain the corollary.

7.1.2 Some kernel estimates

We collect here the heat kernel estimates that we will use throughout the rest of this chapter.

The following is an extension of Proposition 3.7 to time derivatives on the heat kernel.

Proposition 7.7. Assume V ∈ Bq with q ≥ n/2 for n ≥ 3 or q > 1 for n = 2. Let δ be the

constant from (3.6). Set q+ = sup {q > n/2 : V ∈ Bq}. Then for each p ∈ [1, q+) and k ∈ Z+

there exists ξ = ξ(k, p) > 0 and Ck,p > 0 such that

(∫
Rn

∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣peξ |x−y|2t dx
)1/p

≤ Ck,p
t1+n/(2p′)+k

e
−c
(

1+
t

γ(x)2

)δ
, (7.5)

(∫
Rn

∣∣∣V (x)
∂k

∂tk
pt(x, y)

∣∣∣peξ |x−y|2t dx
)1/p

≤ Ck,p
t1+n/(2p′)+k

e
−c
(

1+
t

γ(x)2

)δ
. (7.6)

for every y ∈ Rn and t > 0.

Proof. We shall make use of the commutativity property of the semigroup e−tL to see that for

each k ≥ 1,

∂k

∂tk
e−2tL = (−2L)ke−2tL = 2ke−tL

∂k

∂tk
e−tL.

In particular this implies∫
Rn

∂k

∂tk
p2t(x, y)f(y) dy =

∂k

∂tk
e−2tLf(x) = 2ke−tL

∂k

∂tk
e−tLf(x)

= 2k
∫
Rn
pt(x,w)

∂k

∂tk
e−tLf(w) dw

= 2k
∫
Rn
pt(x,w)

∫
Rn

∂k

∂tk
pt(w, y)f(y) dy dw

= 2k
∫
Rn

(∫
Rn
pt(x,w)

∂k

∂tk
pt(w, y) dw

)
f(y) dy,

giving the identity

∂k

∂tk
p2t(x, y) =

∫
Rn
pt(x,w)

∂k

∂tk
pt(w, y) dw (7.7)
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for each x, y ∈ Rn.

Now fix k ≥ 1 and p ∈ [1, q+). We first estimate (7.5). Let ξ be a constant such

that 0 < ξ < min
{
βp/2, pc1/4

}
where c1 is the constant in the time derivative bounds of

Proposition 3.4 and βp is the constant in Proposition 3.7. Then using (7.7) we have for each

y ∈ Rn and t > 0,

∫
Rn

∣∣∣∇2
x

∂k

∂tk
p2t(x, y)

∣∣∣peξ |x−y|2t dx = 2k
∫
Rn

∣∣∣∣∫
Rn
∇2
xpt(x,w)

∂k

∂tk
pt(w, y) e

ξ
|x−y|2
pt dw

∣∣∣∣pdx.
Now for each w ∈ Rn the triangle inequality gives

e
ξ
|x−y|2
pt ≤ e

2ξ
|x−w|2
pt e

2ξ
|w−y|2
pt = e

2ξ
|x−w|2
pt e

−2ξ
|w−y|2
pt e

4ξ
|w−y|2
pt .

Therefore for each x, y ∈ Rn, by Hölder’s inequality with exponent p and p′,

∣∣∣∣∫
Rn
∇2
xpt(x,w)

∂k

∂tk
pt(w, y) e

ξ
|x−y|2
pt dw

∣∣∣∣p
≤
(∫

Rn

∣∣∇2
xpt(x,w)

∣∣p e2ξ
|x−w|2

t e−2ξ
|w−y|2

t dw
)(∫

Rn

∣∣∣ ∂k
∂tk

pt(w, y)
∣∣∣p′e4p′ξ

|w−y|2
pt dw

)p/p′
.

Using that ξ < pc1/4 the time derivative bounds of Proposition 3.4 give

∫
Rn

∣∣∣ ∂k
∂tk

pt(w, y)
∣∣∣p′e4p′ξ

|w−y|2
pt dw ≤ Ck,p

tnp′/2+kp′

∫
Rn
e−p

′(c1−4ξ/p)
|w−y|2

t dw ≤ Ck,p
tnp′/2p+kp′

since p′ − 1 = p′/p. Note that the constant Ck,p is independent of y. We therefore obtain

∫
Rn

∣∣∣∇2
x

∂k

∂tk
p2t(x, y)

∣∣∣peξ |x−y|2t dx ≤ Ck,p
tn/2+kp

∫
Rn

(∫
Rn

∣∣∇2
xpt(x,w)

∣∣p e2ξ
|x−w|2

t dx
)
e−2ξ

|w−y|2
t dw

≤ Ck,p
e
−cp
(

1+
t

γ(x)2

)δ
tn/2+kp+np/2p′

∫
Rn
e−2ξ

|w−y|2
t dw

≤ Ck,p
e
−cp
(

1+
t

γ(x)2

)δ
tp+kp+np/2p′

,

where we have applied (3.11) in the second inequality because 2ξ < βp. This concludes the proof

of estimate (7.5).

We can obtain (7.6) in the same way, but we use (3.12) in place of (3.11).

These estimates allow us to obtain the following decay estimates, which will be crucial

in the subsequent sections.
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Lemma 7.8. Assume V ∈ Bq with q > max {2, n/2} and n ≥ 3. Then for each k ∈ N ∪ {0},

there exists Ck, c > 0 such that

(∫
|x−y|≥

√
s

∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣2dx)1/2

≤ Ck
t1+n/4+k

e−cs/t, (7.8)

(∫
|x−y|≥

√
s

∣∣∣V (x)
∂k

∂tk
pt(x, y)

∣∣∣2dx)1/2

≤ Ck
t1+n/4+k

e−cs/t, (7.9)

for each y ∈ Rn and s, t > 0.

Proof. Since q > 2 we may apply Proposition 7.7 with p = 2. Let ξ be the constant in Proposi-

tion 7.7. Then by (7.5),

(∫
|x−y|≥

√
s

∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣2dx)1/2

=
(∫
|x−y|≥

√
s

∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣2eξ |x−y|2t e−ξ
|x−y|2
t dx

)1/2

≤ sup
|x−y|≥

√
s

e−ξ
|x−y|2
t

(∫
Rn

∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣2eξ |x−y|2t dx
)1/2

≤ C

t1+n/4+k
e−ξs/t.

Estimate (7.9) can be obtained similarly but with (7.6) in place of (7.5).

We also record corresponding estimates for the first spatial derivative. These are needed in the

proofs of Theorem 7.1 (b) and Theorem 7.12 (b).

Lemma 7.9. Assume n ≥ 1 and 0 ≤ V ∈ L1
loc(Rn). Then for each k ∈ N ∪ {0}, there

exists Ck, c > 0 such that

∫
|x−y|≥

√
s

∣∣∣∇x ∂k
∂tk

pt(x, y)
∣∣∣ dx ≤ Ck

t1/2+k
e−cs/t, (7.10)

for each y ∈ Rn and s, t > 0.

Proof. We first observe that a similar argument to the proof of Proposition 7.7, but with (3.2)

in place of (3.11), and with the time derivative bounds in (3.4) in place of Proposition 3.4, give

the following estimates: for each p ∈ [1, 2] and k ∈ N ∪ {0}, there exists ξ = ξ(k, p) > 0

and Ck,p > 0 such that

(∫
Rn

∣∣∣∇x ∂k
∂tk

pt(x, y)
∣∣∣peξ |x−y|2t dx

)1/p

≤ Ck,p
t1/2+n/(2p′)+k

. (7.11)
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Note that the case k = 0 is simply the estimate in (3.2).

Now we combine (7.11) for p = 2 with the Cauchy-Schwarz inequality to obtain

∫
|x−y|≥

√
s

∣∣∣∇x ∂k
∂tk

pt(x, y)
∣∣∣ dx

≤
(∫

Rn

∣∣∣∇x ∂k
∂tk

pt(x, y)
∣∣∣2eξ |x−y|2t dx

)1/2(∫
|x−y|≥

√
s

e−ξ
|x−y|2
t dx

)1/2

≤ Ck
t1/2+k

e−cs/t

as desired.

7.1.3 Proof of the main result

In this section we prove Theorem 7.1.

Proof of Theorem 7.1 (a). We show that Lemma 7.5 holds for each of the operators ∇2L−1

and V L−1, for all 0 < p ≤ 1. More precisely let M > n
2

(
1
p −

1
2

)
be an integer and aB be a

(p, 2,M)-atom for L associated to the ball B = B(xB , rB).

We first consider the operator ∇2L−1. By Lemma 7.5 it suffices to show that

∥∥∇2L−1aB
∥∥
Lp
≤ C (7.12)

with C independent of aB .

Since 0 < p ≤ 1 we may apply Hölder’s inequality with exponents 2/p and 2/(2 − p)

to obtain

∥∥∇2L−1aB
∥∥p
Lp

=

∞∑
j=0

∥∥∥∣∣∇2L−1aB
∣∣p∥∥∥

L1(Uj(B))

≤
∞∑
j=0

∣∣2jB∣∣1−p/2 ∥∥∇2L−1aB
∥∥p
L2(Uj(B))

≤ |B|1−p/2
∞∑
j=0

2jn(1−p/2)
∥∥∇2L−1aB

∥∥p
L2(Uj(B))

. (7.13)

Since q > 2 the operator ∇2L−1 is bounded on L2(Rn), and hence for j = 0, 1, 2,

∥∥∇2L−1aB
∥∥
L2(Uj(B))

≤ C ‖aB‖L2 ≤ C |B|1/2−1/p
. (7.14)
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Now for each j ≥ 3 we note that

dist
(
Uj(B), B

)
≥ 2j−1rB − rB ≥ 2j−2rB .

Then using the identity

L−1 =

∫ ∞
0

e−tLdt,

we obtain

∥∥∇2L−1aB
∥∥
L2(Uj(B))

≤
∥∥∥∫ r2B

0

∇2e−tLaB dt
∥∥∥
L2(Uj(B))

+
∥∥∥∫ ∞

r2B

∇2e−tLaB dt
∥∥∥
L2(Uj(B))

=: Ij + IIj .

We first estimate term Ij . Using estimate (7.8) with k = 0 we have

∥∥∇2e−tLaB
∥∥
L2(Uj(B))

=
(∫

Uj(B)

∣∣∣∫
B

∇2
xpt(x, y) aB(y) dy

∣∣∣2dx)1/2

≤
∫
B

|aB(y)|
(∫
|x−y|≥2j−2rB

∣∣∇2
xpt(x, y)

∣∣2 dx)1/2

dy

≤ C ‖aB‖L1

e−c4
jr2B/t

t1+n/4
. (7.15)

In the following let α be a number satisfying n
2

(
1
p −

1
2

)
< α < M . Then (7.15) gives

Ij ≤
∫ r2B

0

∥∥∇2e−tLaB
∥∥
L2(Uj(B))

dt

≤ C ‖aB‖L1

∫ r2B

0

e−c4
jr2B/t

dt

tn/4+1

≤ C |B|1−1/p
∫ r2B

0

( t

4jr2
B

)α dt

tn/4+1

≤ C2−2jα |B|1/2−1/p
. (7.16)

In the last line we used that α > n/4, which is valid because p ≤ 1 implies that n
2

(
1
p −

1
2

)
≥ n

4 .

We turn to the term IIj . For this estimate we apply L-cancellation to transfer powers

of L to powers of t−1 increasing the decay as t → ∞. More precisely we write aB = LMbB for

some bB ∈ D(LM ), and obtain

e−tLaB = e−tLLMbB = LMe−tLbB = (−1)M
∂M

∂tM
e−tLbB .
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Now we apply (7.8) with k = M to obtain the extra powers of t−1. This gives

∥∥∥∇2 ∂
M

∂tM
e−tLbB

∥∥∥
L2(Uj(B))

=
(∫

Uj(B)

∣∣∣∣∫
B

∇2
x

∂M

∂tM
pt(x, y) bB(y) dy

∣∣∣∣2dx)1/2

≤
∫
B

|bB(y)|
(∫
|x−y|≥2j−2rB

∣∣∣∇2
x

∂M

∂tM
pt(x, y)

∣∣∣2dx)1/2

dy

≤ C ‖bB‖L1

e−c4
jr2B/t

tM+n/4+1
. (7.17)

Then, with α as before, we use 7.17 to get

IIj ≤
∫ ∞
r2B

∥∥∥∇2 ∂
M

∂tM
e−tLbB

∥∥∥
L2(Uj(B))

dt

≤ C ‖bB‖L1

∫ ∞
r2B

e−c4
jr2B/t

dt

tM+n/4+1

≤ Cr2M
B |B|1−1/p

∫ ∞
r2B

( t

4jr2
B

)α dt

tM+n/4+1

≤ C2−2jα |B|1/2−1/p
. (7.18)

In the last line we used that α < M + n/4.

Collecting estimates (7.14), (7.16) and (7.18) into (7.13) we obtain

∥∥∇2L−1aB
∥∥p
Lp
≤ C+ |B|1−p/2

∞∑
j=3

2jn(1−p/2)
{
Ij + IIj

}p ≤ C+C

∞∑
j=3

2−j(2αp−n(1−p/2)) ≤ C,

with the sum converging because α > n
2

(
1
p −

1
2

)
. Therefore (7.12) holds.

Turning to the operator V L−1 we observe that we can repeat the proof to obtain

∥∥V L−1aB
∥∥
Lp
≤ C

using (7.9) in place of (7.8).

Proof of Theorem 7.1 (b). The proof we give here follows the same strategy as in [68] Propo-

sition 5.6. We utilise a certain characterisation of Hp(Rn) for p ≤ 1 given there on p38: for

each p ∈ (0, 1], ε > 0, and N ∈ N ∪ {0} with N ≥
[
n
(

1
p − 1

)]
, we call m ∈ L2(Rn) a

(p, 2, N, ε)-molecule for Hp(Rn) associated to a ball B if

(a)
∫
Rn x

αm(x) dx = 0 for all multi-indices 0 ≤ |α| ≤ N ,
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(b) ‖m‖L2(Uj(B)) ≤ 2−jε
∣∣2jB∣∣1/2−1/p

for all j = 0, 1, . . . .

Then one may characterise the classical Hp(Rn) as follows

Hp(Rn) =
{∑

j

λjmj : {λj} ∈ lp, mj are (p, 2, N, ε)−molecules
}

with

‖f‖Hp ≈ inf
{(∑

j

|λj |p
)1/p}

, (7.19)

where the infimum being taken over all decompositions f =
∑
j λjmj and the sum converging

the space of tempered distributions S ′.

We shall show that for each p ∈ (n/(n+ 1), 1] and M > n
2

(
1
p −

1
2

)
, the operator ∇2L−1

maps (p, 2,M)-atoms for Hp
L to multiples of (p, 2, 0, ε)-molecules for Hp with some ε > 0. Fix

a (p, 2,M)-atom aB for L associated to a ball B = B(xB , rB). Set mB := ∇2L−1. Since

p > n/(n+ 1) then we may take N = 0 in the above cancellation condition (a). Then we aim

to show that there exists C > 0 and ε > 0 such that

‖mB‖L2(Uj(B)) ≤ C 2−jε
∣∣2jB∣∣1/2−1/p

, (7.20)∫
Rn
mB(x) dx = 0, (7.21)

for all j ≥ 0.

Before we prove (7.20) and (7.21) we explain how these imply the estimate

∥∥∇2L−1f
∥∥
Hp
≤ C ‖f‖HpL .

Since f ∈ Hp
L(Rn) there is a sequence of (p, 2,M)-atoms {aB}B for L and constants {λB}B such

that f =
∑
B λBaB in L2(Rn) and

‖f‖HpL ≈
(∑
B

|λB |p
)1/p

. (7.22)

Now since the sum converges in L2(Rn) we have

∇2L−1f =
∑
B

λB
(
∇2L−1aB

)
=:

∑
B

λBmB .
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By (7.20) and (7.21) each mB is a (p, 2, 0, ε)-molecule and hence this last sum converges

in L2(Rn), and hence also in S ′. Therefore
∑
B λBmB ∈ Hp(Rn) and furthermore

∥∥∇2L−1f
∥∥
Hp

=
∥∥∥∑
B

λBmB

∥∥∥
Hp
≤
(∑
B

|λB |p
)1/p

≈ ‖f‖HpL

from (7.19) and (7.22).

Having these facts in hand we now proceed to estimate (7.20). We recall from the proof

of Theorem 7.1 (a) that for any α with n
2

(
1
p −

1
2

)
< α < M we have from estimates (7.14),

(7.16), and (7.18) that there exists C > 0 with

‖mB‖L2(Uj(B)) =
∥∥∇2L−1aB

∥∥
L2(Uj(B))

≤ C 2−2jα |B|1/2−1/p

= C 2−j(2α+n/2−n/p) ∣∣2jB∣∣1/2−1/p
. (7.23)

Since α > n
2

(
1
p −

1
2

)
then 2α+ n/2− n/p > 0 and we obtain (7.20) with ε = 2α+ n/2− n/p.

We now prove the moment condition (7.21). To do so we shall need the following result.

It is implicit in [70] but we give a proof here for completeness.

Lemma 7.10. Assume that f ∈ L1(Rn) and ∂kf ∈ L1(Rn) for some 1 ≤ k ≤ n. Then

∫
Rn
∂kf(x) dx = 0. (7.24)

Proof of Lemma 7.10. It is clear that (7.24) holds for any function in C∞0 (Rn). It turns out

that integrability of f and of its derivative are also enough for (7.24) to hold. The idea of the

proof is to apply a smooth partition of unity to split f into smooth and compactly supported

pieces.

Let {φj}∞j=0 ⊂ C
∞
0 (Rn) be a partition of unity subordinate to the cover {Bj}j such that

each Bj = B(xj , rj) is a ball and

⋃
j

Bj = Rn,
∑
j

12Bj ≤ N,
∑
j

φj(x) = 1, 0 ≤ φj ≤ 1,

supp φj ⊂ 2Bj , φj = 1 on Bj , |φj(x)|+ |∇φj(x)| ≤ C.
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We also use {ηj}j ⊂ C
∞
0 (Rn) with supp ηj ⊂ 4Bj and ηj = 1 on 2Bj . By the dominated

convergence theorem this lets us write∫
Rn
∂kf =

∑
j

∫
Rn
∂k(φjf).

For each j ≥ 0 we have ∫
Rn
∂k(φjf) =

∫
Rn
ηj∂k(φjf).

We then apply the divergence theorem on a ball containing 4Bj to the vector field

(0, . . . , 0, ηj(φjf) , 0 . . . , 0) ,

with the non-zero entry occurring in the kth component. This gives∫
Rn
ηj∂k(φjf) = −

∫
Rn

(φjf)∂kηj = 0

because supp φjf ⊂ 2Bj and ∂kηj = 0 on 2Bj .

By Lemma 7.10, to show that∫
Rn
∂k∂lL

−1aB(x) dx = 0

for each 1 ≤ k, l ≤ n, it suffices to show that the functions ∂kL
−1aB and ∂k∂lL

−1aB are

integrable. We note that ∂k∂lL
−1aB ∈ L1(Rn) follows from (7.23). Indeed,

∥∥∂k∂lL−1aB
∥∥
L1 ≤

∥∥∇2L−1aB
∥∥
L1 =

∞∑
j=0

∥∥∇2L−1aB
∥∥
L1(Uj(B))

≤
∞∑
j=0

|B|1/2
∥∥∇2L−1aB

∥∥
L2(Uj(B))

≤ C |B|1/2
∞∑
j=0

2−jε
∣∣2jB∣∣1/2−1/p

= C |B|1−1/p
∞∑
j=0

2−j(ε+n/p−n/2)

≤ C |B|1−1/p
,

with the sum being convergent since ε + n/p − n/2 = 2α > 0. To check ∂kL
−1aB ∈ L1(Rn)

we write ∥∥∂kL−1aB
∥∥
L1 ≤

∥∥∇L−1aB
∥∥
L1 =

∞∑
j=0

∥∥∇L−1aB
∥∥
L1(Uj(B))

.
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For j ≥ 3,

∥∥∇L−1aB
∥∥
L1(Uj(B))

≤
∥∥∥∫ r2B

0

∇e−tLaB dt
∥∥∥
L1(Uj(B))

+
∥∥∥∫ ∞

r2B

∇e−tLaB dt
∥∥∥
L1(Uj(B))

=: Ij + IIj .

Let β be a number satisfying 0 < β < M − 1
2 . Then using (7.10) with k = 0, we have

Ij ≤
∫ r2B

0

∥∥∇e−tLaB∥∥L1(Uj(B))
dt

=

∫ r2B

0

∫
Uj(B)

∣∣∣∣∫
B

∇xpt(x, y)aB(y) dy

∣∣∣∣ dx dt
≤
∫ r2B

0

∫
B

|aB(y)|
∫
|x−y|≥2j−2rB

|∇xpt(x, y)| dx dy dt

≤ C ‖aB‖L1

∫ r2B

0

e−c4
jr2B/t

dt√
t

≤ C |B|1−1/p
∫ r2B

0

( t

4jr2
B

)β dt√
t

≤ 4−jβ |B|1−1/p+1/n
. (7.25)

For the second term we use L-cancellation and estimate (7.10) with k = M to obtain

IIj ≤
∫ ∞
r2B

∥∥∥∇ ∂M

∂tM
e−tLbB

∥∥∥
L1(Uj(B))

dt

≤
∫ ∞
r2B

∫
B

|bB(y)|
∫
|x−y|≥2j−2rB

∣∣∣∇x ∂M
∂tM

pt(x, y)
∣∣∣ dx dy dt

≤ C ‖bB‖L1

∫ ∞
r2B

e−c4
jr2B/t

dt

tM+1/2

≤ Cr2M
B |B|1−1/p

∫ ∞
r2B

( t

4jr2
B

)β dt

tM+1/2

≤ C4−jβ |B|1−1/p+1/n
. (7.26)

The last line holds because 0 < β < M − 1
2 . For j = 0, 1, 2 we use that the Riesz trans-

form ∇L−1/2 is bounded on L2(Rn), and that the fractional power L−1/2 maps L2n/(n+2)(Rn)

into L2(Rn). The latter holds because the heat kernel of L has Gaussian upper bounds, and

hence fractional powers of L satisfies the same mapping properties of the classical Riesz poten-

tials (−∆)−α/2. We refer the reader to Lemma 6.18 for a precise statement of this fact. More
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precisely we have

∥∥∇L−1aB
∥∥
L2(8B)

=
∥∥∇L−1/2L−1/2aB

∥∥
L2(8B)

≤ C
∥∥L−1/2aB

∥∥
L2 ≤ C ‖aB‖L2n/(n+2) .

Now we apply Hölder’s inequality with exponents s := (n+ 2)/n and s′ := (n+ 2)/2 to obtain

‖aB‖2/sL2/s ≤ ‖aB‖
2/s
L2 |B|1/s

′
≤ |B|1−2/ps

,

and therefore

∥∥∇L−1aB
∥∥
L1(8B)

≤ C |B|1/2
∥∥∇L−1aB

∥∥
L2(8B)

≤ C |B|1−1/p+1/n
.

Collecting these estimates for j ≥ 0 we obtain for some 0 < β < M − 1
2 ,

∥∥∇L−1aB
∥∥
L1 ≤ C + C |B|1−1/p+1/n

∞∑
j=3

4−jβ ≤ C |B|1−1/p+1/n
.

We have shown that ∂kL
−1aB ∈ L1(Rn) for each 1 ≤ k ≤ n, and hence by Lemma 7.10, estimate

(7.21) holds.

The proof of Theorem 7.1 (b) is therefore complete.

7.1.4 Commutators

In this section we give the proof of Theorem 7.3. We shall employ the following result which is

a slight variation of Theorem 1.2 from [7] taking into account Remark 3.2 of the same paper.

Proposition 7.11 ([7]). Let L be a non-negative self adjoint operator satisfying the Davies–

Gaffney condition. That is, L generates an analytic semigroup {e−tL}t>0 and there exists

C1, C2 > 0 such that for all bounded open subsets U1, U2 ⊂ Rn,

∣∣〈e−tLf1, f2〉
∣∣ ≤ C1exp

(
−C2

dist(U1, U2)2

t

)
‖f1‖L2 ‖f2‖L2 (7.27)

for all fi ∈ L2(Ui), i = 1, 2 and all t > 0.

Let p ∈ (0, 1] and M >
[
n
2

(
1
p − 1

)]
. Assume that T is a bounded operator on L2(Rn)

such that for some M0 >
n
2

(
1
p −

1
2

)
and C > 0,

‖TaB‖L2(Uj(B)) ≤ C4−jM0 |B|1/2−1/p
(7.28)
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for each (p, 2,M)-atom aB for L associated to a ball B and all j ≥ 0. Then T is bounded from

Hp
L(Rn) to Lp(Rn). Furthermore if T satisfies (7.28) for p = 1 and is of weak type (1, 1) then

for all b ∈ BMO, the commutator [b, T ] is bounded from H1
L(Rn) into L1,∞(Rn).

We shall apply this Proposition to T being either ∇2L−1 or V L−1, by obtaining estimate (7.28)

for p = 1 and M0 = M − 1, where M is any integer satisfying M > n
4 + 1. It is clear that (7.27)

is satisfied by L = −∆ + V with 0 ≤ V ∈ L1
loc(Rn) (see Section 5 of [7]).

Proof of Theorem 7.3. To begin, fix an integer M > n
4 + 1 and let aB be a (1, 2,M)-atom for L

associated to a ball B. We first show that (7.28) holds for the operator ∇2L−1 for every j ≥ 0.

We begin with j ≥ 3. Perform the following decomposition

∇2L−1aB = ∇2L−1(I − e−r
2
BL)MaB +∇2L−1

(
I − (I − e−r

2
BL)M

)
aB .

Hence to show (7.28) for j ≥ 3 it suffices to show the following two estimates

∥∥∇2L−1(I − e−r
2
BL)MaB

∥∥
L2(Uj(B))

≤ C 4−jM0 |B|−1/2
, (7.29)∥∥∇2L−1

(
I − (I − e−r

2
BL)M

)
aB
∥∥
L2(Uj(B))

≤ C 4−jM0 |B|−1/2
, (7.30)

with M0 > n/4.

Let us first check (7.29). The binomial theorem gives

∇2e−tL(I − e−r
2
BL)M =

M∑
k=0

(−1)k
(
M
k

)
∇2e−(t+kr2B)L.

Now for each k = 0, 1, . . . ,M , on making a change of variable we obtain

∫ ∞
0

∇2e−(t+kr2B)Ldt =

∫ ∞
0

1(kr2B ,∞)(t)∇2e−tLdt .

Therefore

∇2L−1(I − e−r
2
BL)MaB =

∫ ∞
0

grB (t)∇2e−tLaB dt,

where

gr(t) =

M∑
k=0

(−1)k
(
M
k

)
1(kr2,∞)(t) .
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Now noting that
∑M
k=0(−1)k

(
M
k

)
= 0 we have

gr(t) =

M∑
k=0

(−1)k
(
M
k

)
1(Mr2,∞)(t) +

M∑
k=0

(−1)k
(
M
k

)
1(kr2,Mr2](t) =

M∑
k=0

(−1)k
(
M
k

)
1(kr2,Mr2](t) .

It follows that

|gr(t)| ≤
∣∣∣ M∑
k=0

(−1)k
(
M
k

)
1(0,Mr2](t)

∣∣∣ ≤ 2M1(0,Mr2)(t) .

We proceed with estimating (7.29). For j ≥ 3 by Minkowski’s inequality,

∥∥∇2L−1(I − e−r
2
BL)MaB

∥∥
L2(Uj(B))

=
∥∥∥∫ ∞

0

grB (t)∇2e−tLaB dt
∥∥∥
L2(Uj(B))

≤
∫ ∞

0

|grB (t)|
∥∥∇2e−tLaB

∥∥
L2(Uj(B))

dt .

For each t > 0 by Minkowski’s inequality again, and estimate (7.8) with k = 0 ,

∥∥∇2e−tLaB
∥∥
L2(Uj(B))

≤
∫
B

|aB(x)|
(∫
|x−y|≥2j−2rB

∣∣∇2
xpt(x, y)

∣∣2 dx)1/2

dy ≤ C

t1+n/4
e−c4

jr2B/t

since ‖aB‖L1 ≤ 1. Therefore

∥∥∇2L−1(I − e−r
2
BL)MaB

∥∥
L2(Uj(B))

≤ C
∫ ∞

0

|grB (t)| e−c4
jr2B/t

dt

tn/4+1

≤ C
∫ Mr2B

0

e−c4
jr2B/t

dt

tn/4+1

≤ C4−jMr−2M
B

∫ Mr2B

0

tM−n/4−1dt .

Recalling that M > n
4 + 1 we see that the integral is convergent and dominated by Cr

2M−n/2
B .

Finally

∥∥∇2L−1(I − e−r
2
BL)MaB

∥∥
L2(Uj(B))

≤ C4−jMr
−n/2
B ≤ C4−j(M−1) |B|−1/2

and the proof of (7.29) is complete.

To study (7.30) we observe that

I − (I − e−r
2
BL)M =

M∑
k=1

βke
−kr2BL

where βk = (−1)k+1
(
M
k

)
. Next by using the L-cancellation of aB = LMbB for some bB ∈ D(LM ),

we obtain

∇2L−1
(
I − (I − e−r

2
BL)M

)
aB =

M∑
k=1

βk∇2L−1(LMe−kr
2
BL)bB .
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Therefore estimate (7.30) will follow once we show

∥∥∇2L−1(LMe−kr
2
BL)bB

∥∥
L2(Uj(B))

≤ C4−jM0 |B|−1/2
(7.31)

for each k = 1, 2, . . . ,M with C independent of k. Fix 1 ≤ k ≤ M and write via a change of

variable

∇2L−1(LMe−kr
2
BL)bB =

∫ ∞
0

∇2LMe−(t+kr2B)LbB dt = (−1)M
∫ ∞
kr2B

∇2 ∂
M

∂tM
e−tLbB dt .

Applying this identity and Minkowski’s inequality gives

∥∥∇2L−1(LMe−kr
2
BL)bB

∥∥
L2(Uj(B))

≤
∫ ∞
kr2B

∥∥∥∇2 ∂
M

∂tM
e−tLbB

∥∥∥
L2(Uj(B))

dt .

By estimate (7.8) with k = M one has

∥∥∥∇2 ∂
M

∂tM
e−tLbB

∥∥∥
L2(Uj(B))

≤
∫
B

|bB(y)|
(∫
|x−y|≥2j−2rB

∣∣∣∇2 ∂
M

∂tM
pt(x, y)

∣∣∣2dx)1/2

dy

≤ C r2M
B

tM+n/4+1
e−c4

jr2B/t

because ‖bB‖L1 ≤ r2M
B . Therefore for each j ≥ 3, noting that r2

B ≤ kr2
B because k ≥ 1, and

applying the previous calculation we have

∥∥∇2L−1(LMe−kr
2
BL)bB

∥∥
L2(Uj(B))

≤ C r2M
B

∫ ∞
r2B

e−c4
jr2B/t

dt

tM+n/4+1
.

Finally by noting that t > r2
B , we have

∥∥∇2L−1(LMe−kr
2
BL)bB

∥∥
L2(Uj(B))

≤ Cr2M−n/2
B

∫ ∞
r2B

e−c4
jr2B/t

dt

t1+M

≤ Cr2M−n/2
B

∫ ∞
r2B

( t

4jr2
B

)M−1 dt

tM+1

= Cr
2−n/2
B 4−j(M−1)

∫ ∞
r2B

dt

t2

≤ C4−j(M−1) |B|−1/2

and the proof of estimate (7.31) for each k ≥ 1 is complete, which as mentioned earlier implies

estimate (7.30). This together with (7.29) shows that ∇2L−1 satisfies (7.28) for each j ≥ 3 with

M0 = M − 1.
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We are left to check (7.28) for j = 0, 1, 2. However this follows from the L2(Rn) bound-

edness of ∇2L−1. ∥∥∇2L−1aB
∥∥
L1(Uj(B))

≤ C ‖aB‖L2 ≤ C |B|1/2−1/p

and (7.28) follows readily.

Finally we mention that one can show (7.28) for the operator V L−1 in a similar fashion

but applying (7.9) in place of (7.8).

7.2 Weighted Hardy spaces

In this section we give the extensions of Theorems 7.1 (a) and 7.1 (b) to weighted Hardy

spaces adapted to L. The study of such spaces originated in [98], and was further developed

in the work of [8, 109, 108]. In these papers the authors study the Schrödinger operator with

an arbitrary non-negative potential and obtained results for the first-order Riesz transform

associated to such operators. Here we obtain results for the second-order Riesz transforms

under the extra condition that the potential belongs to a reverse Hölder class. In this section

we give a proof of the following result.

Theorem 7.12. Let L = −∆+V on Rn with n ≥ 3. Assume that V ∈ Bq with q > max {2, n/2}.

Then the following holds.

(a) The operators ∇2L−1 and V L−1 are bounded from Hp
L(w) into Lp(w) for each p ∈ (0, 1]

and each w ∈ A1 ∩ B(2/p)′ .

(b) The operator ∇2L−1 is bounded from Hp
L(w) into Hp(w) for each p ∈

(
n/(n + 1), 1

]
and

each w ∈ A1 ∩ B(2/p)′ .

7.2.1 Weighted Hardy spaces associated to Schrödinger operators

We first define the weighted Hardy spaces Hp
L(w) associated to the Schrödinger operator where

w is an A∞ weight. The constructions given here are similar their unweighted counterparts.

Further details can be found in [98, 8, 109].
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Recall the definitions of H2(Rn) from (7.1), and of the area function SL associated to L

in (7.2). Given w ∈ A∞ and p ∈ (0, 1] we define the weighted Hardy space Hp
L(Rn) associated

to L as the completion of

{
f ∈ H2(Rn) : ‖SL(f)‖Lp(w) <∞

}
in the metric ‖f‖HpL(w) := ‖SL(f)‖Lp(w).

As in Definition 7.4 we define the notion of atoms for Hp
L(w).

Definition 7.13 (Atoms for Hp
L(w)). Let 0 < p ≤ 1 and M ∈ N. A function a ∈ L2(Rn) is

called a (w, p, 2,M)-atom for L associated to the ball B if for some b ∈ D(LM ) we have

(i) a = LMb,

(ii) supp Lkb ⊆ B for each k = 0, 1, . . . ,M ,

(iii)
∥∥(r2

BL)kb
∥∥

2
≤ r2M

B |B|1/2 w(B)−1/p for each k = 0, 1, . . . ,M .

Then the following decomposition of the weighted Hardy spaces hold (see [109]). Let M >

n
2

(
1
p −

1
2

)
and w ∈ A1. Then it follows that for each f ∈ Hp

L(Rn) there exists a sequence {aB}B

of (w, p, 2,M)-atoms for L, and a sequence of scalars {λB}B ⊂ C, such that

f =
∑
B

λBaB and
∑
B

|λ|p ≤ ‖f‖pHpL(w) .

The convergence is in both Hp
L(w) and L2(Rn).

We also have an analogous version of Lemma 7.5.

Lemma 7.14. Let 0 < p ≤ 1, w ∈ A∞, and fix an integer M > n
2

(
1
p −

1
2

)
. Assume that T

is a linear operator (resp. non-negative sublinear) operator that maps L2(Rn) continuously into

L2,∞(Rn) satisfying the following property: there exists C > 0 such that for each (w, p, 2,M)-

atom a

‖Ta‖Lp(w) ≤ C.
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Then T extends to a bounded linear (resp. sublinear) operator from Hp
L(w) to Lp(w). Further-

more, there exists C ′ > 0 such that

‖Tf‖Lp(w) ≤ C
′ ‖f‖HpL(w)

for ever f ∈ Hp
L(Rn).

We refer the reader to [8] and [109] for further details.

7.2.2 Proof of the weighted result

In this section we give the proof of Theorem 7.12

Proof of Theorem 7.12 (a). We remark that the argument for this result is similar to the argu-

ment given in the proof of the unweighted version of Theorem 7.1 (a) with some modifications.

We shall show that Lemma 7.14 holds for each of the operators ∇2L−1 and V L−1 for

p ∈ (0, 1]. More precisely let M > n
2

(
1
p −

1
2

)
be an integer and aB be a (w, p, 2,M)-atom for

Hp
L(w) associated to a ball B.

We first consider the operator ∇2L−1. It will suffice to show that

∥∥∇2L−1aB
∥∥
Lp(w)

≤ C (7.32)

with C independent of aB .

Since p ≤ 1 we may apply Hölder’s inequality with exponents 2/p and 2/(2−p) to obtain

∥∥∇2L−1aB
∥∥p
Lp(w)

=

∞∑
j=0

∫
Uj(B)

∣∣∇2L−1aB
∣∣p w(x) dx

≤
∞∑
j=0

(∫
2jB

w2/(2−p)
)1−p/2 ∥∥∇2L−1aB

∥∥p
L2(Uj(B))

=

∞∑
j=0

∣∣2jB∣∣1−p/2 (∫
2jB

w2/(2−p)
)1−p/2 ∥∥∇2L−1aB

∥∥p
L2(Uj(B))

≤ C
∞∑
j=0

w(2jB)

|2jB|p/2
∥∥∇2L−1aB

∥∥p
L2(Uj(B))

≤ C
∞∑
j=0

2jn(1−p/2) w(B)

|B|p/2
∥∥∇2L−1aB

∥∥p
L2(Uj(B))

. (7.33)
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The second inequality follows because w ∈ B(2/p)′ . The last inequality follows from the doubling

property of w (Lemma 2.10), since w ∈ A1. Since q > 2 the operator ∇2L−1 is bounded

on L2(Rn), and hence for j = 0, 1, 2,

∥∥∇2L−1aB
∥∥
L2(Uj(B))

≤ C ‖aB‖L2 ≤ C |B|1/2 w(B)−1/p. (7.34)

We have used the doubling property of w in the last inequality. Now for each j ≥ 3 we note

that

dist(Uj(B), B) ≥ 2j−1rB − rB ≥ 2j−2rB .

Then using the identity

L−1 =

∫ ∞
0

e−tLdt

we obtain

∥∥∇2L−1aB
∥∥
L2(Uj(B))

≤
∥∥∥∫ r2B

0

∇2e−tLaB dt
∥∥∥
L2(Uj(B))

+
∥∥∥∫ ∞

r2B

∇2e−tLaB dt
∥∥∥
L2(Uj(B))

=: Ij + IIj .

Now let α be a number satisfying n
2

(
1
p −

1
2

)
< α < M . Using (7.15) we obtain

Ij ≤
∫ r2B

0

∥∥∇2e−tLaB
∥∥
L2(Uj(B))

dt

≤ C ‖aB‖L1

∫ r2B

0

e−c4
jr2B/t

dt

tn/4+1

≤ C |B|1/2 ‖aB‖L2

∫ r2B

0

( t

4jr2
B

)α dt

tn/4+1

≤ C2−2jα |B|1/2 w(B)−1/p. (7.35)

In the last line we used that α > n/4 , which is valid because p ≤ 1 implies that n
2

(
1
p−

1
2

)
≥ n

4 .

We turn to the term IIj . For this estimate we apply L-cancellation to transfer powers

of L to powers of t−1 increasing the decay as t → ∞. More precisely we write aB = LMbB for

some bB ∈ D(LM ) and obtain

e−tLaB = e−tLLMbB = LMe−tLbB = (−1)M
∂M

∂tM
e−tLbB .
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Then, with α as before, we use (7.17) to get

IIj ≤
∫ ∞
r2B

∥∥∥∇2 ∂
M

∂tM
e−tLbB

∥∥∥
L2(Uj(B))

dt

≤ C ‖bB‖L1

∫ ∞
r2B

e−c4
jr2B/t

dt

tM+n/4+1

≤ C |B|1/2 ‖bB‖L2

∫ ∞
r2B

( t

4jr2
B

)α dt

tM+n/4+1

≤ C2−2jαr2M−2α
B |B|w(B)−1/p

∫ ∞
r2B

dt

tM+n/4+1−α

≤ C2−2jα |B|1/2 w(B)−1/p. (7.36)

In the last line we used that α < M + n/4.

Collecting estimates (7.34), (7.35) and (7.36) into (7.33) we obtain

∥∥∇2L−1aB
∥∥p
Lp(w)

≤ C + C
w(B)

|B|p/2
∞∑
j=3

2jn(1−p/2)
{
Ij + IIj

}p
≤ C + C

∞∑
j=3

2−j(2αp−n(1−p/2)) ≤ C,

with the sum converging because α > n
2

(
1
p −

1
2

)
. Therefore (7.32) holds.

The corresponding estimate for the operator V L−1 may be proved similarly with (7.9) in

place of (7.8). This concludes the proof of Theorem 7.12 (a).

Proof of Theorem 7.12 (b). The strategy for the proof follows that of Theorem 7.1 (b). The

key step is to obtain a suitable molecular characterisation of Hp(w) and then show that ∇2L−1

maps appropriate (w, p, 2,M)-atoms for Hp
L(w) to such molecules. One such characterisation is

given in [109], which is an extension of the case p = 1 given in [98].

For each p ∈
(
n/(n+1), 1

]
, w ∈ A1, and ε > 0, we say that m ∈ L2(Rn) is a (w, p, 2, 0, ε)-

molecule for Hp(w) associated to the ball B if

(a)
∫
Rn m(x) dx = 0,

(b) ‖m‖L2(Uj(B)) ≤ 2−jε
∣∣2jB∣∣1/2 w(2jB)−1/p for all j = 0, 1, 2, . . . .

Then the following holds.
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Theorem 7.15 ([109] Theorem 4.4). Let p ∈
(
n/(n + 1), 1

)
, w ∈ A1 ∩ B(2/p)′ and ε > n/2.

Then

Hp(w) =
{∑

j

λjmj : {λj} ∈ lp, mj are (w, p, 2, 0, ε)−molecules
}

and

‖f‖Hp(w) ≈ inf
{(∑

j

|λj |p
)1/p}

,

with the infimum being taken over all decompositions f =
∑
j λjmj.

With this characterisation of Hp(w) in hand, it will suffice to show that for each p ∈
(
n/(n+1), 1

]
and M > n

(
1
p −

1
2

)
the operator ∇2L−1 maps (w, p, 2,M)-atoms for Hp

L(w) to (w, p, 2, 0, ε)-

molecules for Hp(w) for some ε > n/2. Accordingly, fix a (w, p, 2,M)-atom aB associated to a

ball B and set mB = ∇2L−1. We aim to show

‖mB‖L2(Uj(B)) ≤ C 2−jε
∣∣2jB∣∣1/2 w(2jB)−1/p, j ≥ 0, (7.37)∫

Rn
mB(x) dx = 0, (7.38)

for some ε > n/2.

We first obtain (7.37). Recall from the proof of Theorem 7.12 (a), that for any n/4 <

α < M + n/4 the estimates (7.34), (7.35), and 7.36 give

‖mB‖L2(Uj(B)) =
∥∥∇2L−1aB

∥∥
L2(Uj(B))

≤ C2−2jα |B|1/2 w(B)−1/p, (7.39)

for each j ≥ 0. In particular we can pick α satisfying n
(

1
p −

1
2

)
< α < M since p ≤ 1 implies

n
(

1
p −

1
2

)
> n/4. Next we note that since w ∈ A1 then Lemma 2.11 applied to B ⊂ 2jB gives

|B|
|2jB|

≤ C w(B)

w(2jB)
.

Therefore

|B|1/2 w(B)−1/p ≤ C
∣∣2jB∣∣1/2 w(B)1/2−1/p w(2jB)−1/2

= C
∣∣2jB∣∣1/2 w(2jB)−1/p w(B)1/2−1/p w(2jB)1/p−1/2

≤ C 2jn(1/2−1/p)
∣∣2jB∣∣1/2 w(2jB)−1/p,
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where in the last step we have used the doubling property of w (Lemma 2.10). Therefore (7.39)

becomes

‖mB‖L2(Uj(B)) ≤ C 2−j(2α+n/2−n/p) ∣∣2jB∣∣1/2 w(2jB)−1/p,

and hence (7.37) holds with ε = 2α + n/2 − n/p. We observe that ε > n/2, because p ≤ 1

implies 2α+ n/2− n/p > n
(

1
p −

1
2

)
≥ n/2.

We now turn to the moment condition (7.38). By Lemma 7.10 to show that

∫
Rn
∂k∂lL

−1aB(x) dx = 0

for each 1 ≤ k, l ≤ n, it suffices to show that the functions ∂kL
−1aB and ∂k∂lL

−1aB are

integrable. We note that ∂k∂lL
−1aB ∈ L1(Rn) follows from (7.39). Indeed,

∥∥∂k∂lL−1aB
∥∥
L1 ≤

∥∥∇2L−1aB
∥∥
L1 =

∞∑
j=0

∥∥∇2L−1aB
∥∥
L1(Uj(B))

≤
∞∑
j=0

|B|1/2
∥∥∇2L−1aB

∥∥
L2(Uj(B))

≤ C |B|1/2
∞∑
j=0

2−2jα |B|1/2 w(B)−1/p

= C |B|w(B)−1/p
∞∑
j=0

2−2jα

≤ C |B|w(B)−1/p,

the sum being convergent since 2α > 0. To check ∂kL
−1aB ∈ L1(Rn) we write

∥∥∂kL−1aB
∥∥
L1 ≤

∥∥∇L−1aB
∥∥
L1 =

∞∑
j=0

∥∥∇L−1aB
∥∥
L1(Uj(B))

.

A similar calculation to that in (7.25) and (7.26) gives, for each j ≥ 3,

∥∥∇L−1aB
∥∥
L1(Uj(B))

≤ C4−jβ |B|1+1/n
w(B)−1/p,

for any β satisfying 0 < β < M − 1/2. For j = 0, 1, 2, as in Theorem 7.1 (b), we use that L−1/2

maps L2n/(n+2)(Rn) into L2(Rn) (see Lemma 6.18). Then

∥∥∇L−1aB
∥∥
L2(8B)

=
∥∥∇L−1/2L−1/2aB

∥∥
L2(8B)

≤ C
∥∥L−1/2aB

∥∥
L2 ≤ C ‖aB‖L2n/(n+2) .
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Now we apply Hölder’s inequality with exponents s := (n+ 2)/n and s′ := (n+ 2)/2 to obtain

‖aB‖2/sL2/s ≤ ‖aB‖
2/s
L2 |B|1/s

′
≤ |B|w(B)−2/ps,

and therefore

∥∥∇L−1aB
∥∥
L1(8B)

≤ C |B|1/2
∥∥∇L−1aB

∥∥
L2(8B)

≤ C |B|1+1/n
w(B)−1/p.

Collecting our terms for each j ≥ 0 we obtain

∥∥∇L−1aB
∥∥
L1 ≤ |B|

1+1/n
w(B)−1/p

{
C + C

∞∑
j=3

4−jβ
}
≤ C |B|1+1/n

w(B)−1/p.

This concludes the proof of (7.38), and hence Theorem 7.12 (b).
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Chapter 8

A class of potentials beyond the reverse Hölder class

We end this thesis with an application of Theorem 1.5. We obtain boundedness of the Riesz

transform ∇L−1/2 on Lp(Rn) for suitable p for a class of potentials slightly more general than

the reverse Hölder class studied throughout the rest of the thesis. We direct the reader to

Theorem 8.3 below for a precise statement of the result. Theorem 1.5 then allows us to obtain

boundedness on the weighted Lebesgue spaces and Morrey spaces with no extra effort.

These potentials, defined in Definition 8.1 below, were introduced in [50] and [54]. There

the authors give atomic and Riesz transform characterisations of the Hardy space H1
L(Rn)

associated to L = −∆ + V , with V a potential from this new class.

We are interested in studying these Riesz transforms on the Lp(Rn) spaces. Let us

remind the reader that the Lp(Rn)-boundedness of the Riesz transform ∇L−1/2 is known to

hold for all 1 < p ≤ 2, assuming only that V is non-negative and locally integrable. We mention

also that the following condition is a necessary condition for Lp(Rn)-boundedness of the Riesz

transform ∇L−1/2:

∥∥∇e−tL∥∥
Lp→Lp ≤

Cp√
t
. (Gp)

It is of interest to find sufficient conditions on the potential V ensuring boundedness for p > 2.

The reverse Hölder class studied throughout the rest of this thesis is one such class for which

this boundedness is known to be valid. Our aim is to show that for suitable potentials in the

new class, the Lp(Rn) boundedness for p above 2 also holds.



174

Before stating our main result we first describe some notation we will use throughout the

rest of this chapter. For a given cube Q we write d(Q) := sup{|x − y| : x, y ∈ Q} to mean the

diameter of Q, and l(Q) to mean the sidelength of Q. For β ≥ 1 we use βQ to mean the cube

concentric with Q but with β times the sidelength. Given such a β we also use the notation

Uj,β(Q) := βjQ\βj−1Q for j ≥ 1 and U0,β(Q) := Q. When β = 2 we drop the subscript for β

and write Uj(Q) in place of Uj,2(Q).

The following potentials were introduced in [50, 54]. The letters (D) and (K) were also

used in those papers.

Definition 8.1. Let L = −∆ + V on Rn with V non-negative and locally integrable. We say

that V belongs to the class (DK) of order (α, θ, σ) for some α > 1, θ > 0, and σ > 0, if there

exists constants C0, C1, C2 > 0 and a countable collection of cubes Q = {Qj}j with parallel sides

and disjoint interiors satisfying
∣∣Rn\⋃j Qj∣∣ = 0, and the following properties:

α4Qi ∩ α4Qj 6= ∅ =⇒ d(Qi) ≤ C0 d(Qj), ∀Qi, Qj ∈ Q, (Oα)

and for each cube Q ∈ Q and x ∈ Rn,

sup
y∈αQ

e−2kd(Q)2L(1)(x) ≤ C1

k1+θ
, ∀ k ∈ N, (Dθ)∫ 2t

0

es∆(1α3QV )(x) ds ≤ C2

( t

d(Q)2

)σ
, ∀ 0 < t ≤ d(Q)2. (Kσ)

In this case we shall write V ∈ (DKα,θ,σ).

Remark 8.2. (i) Condition (Oα) implies that the collection of cubes Q has slowly varying

diameters. In particular, the collection of dilates α4Q =
{
α4Qj

}
j

has bounded overlap.

(ii) Condition (Dθ) is a decay condition on the heat kernel of the Schrödinger operator. This

extra decay allows us to handle the global singularities of singular integrals associated to L.

(iii) Condition (Kσ) captures the extent to which L is a local perturbation of −∆. This allows

us to handle the local singularities of singular integrals associated to L.
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(iv) This class of potentials generalise the reverse Hölder class in the following sense. Suppose

that V ∈ Bq for some q ≥ n/2 and n ≥ 3. If we define {Qj}j to be the maximal cubes on

Rn for which d(Q)2
∫
Q
V ≤ 1, then (Dθ), (Kσ), and (Oα) holds for some θ, σ, α. We refer

the reader to Section 8 of [54] for the details.

(v) It is not known whether conditions (Oα), (Dθ), and (Kσ) imply (Gp).

We can now state the main result of this chapter.

Theorem 8.3. Let L = −∆ + V on Rn, n ≥ 1 with V non-negative and locally integrable.

Assume further that V ∈ (DKα,θ,σ) for some σ ∈
(
n+2

4 , n+1
2

)
, θ > 1, and α > 1. Assume

also that (Gp) holds for each p ∈
(
1, n

n+1−2σ

)
. Then ∇L−1/2 is bounded on Lp(Rn) for each

p ∈
(
1, n

n+1−2σ

)
.

Before we begin the proof we mention that by combining this with our results from

Chapters 4 and 6 (specifically Theorems 4.1 and 6.1) we can obtain the following consequence.

Corollary 8.4. Under the assumptions of Theorem 8.3 the following holds.

(a) ∇L−1/2 is bounded on Lp(w) for each w ∈ A∞ and each p ∈ Ww

(
1, n

n+1−2σ

)
.

(b) ∇L−1/2 is bounded on Lp,λ(Rn) for each p ∈
(
1, n

n+1−2σ

)
and each λ ∈

(
(n+ 1− 2σ)p, n

)
.

Proof of Theorem 8.3. The spirit of the following argument is adapted from [50]. Our strategy is

to show that the adjoint of ∇L−1/2 is controlled pointwise by the maximal operator M
(
|·|p
′)1/p′

for the appropriate range of p. To do so we exploit the principle that L is a local perturbation

of −∆, with the region of locality determined by the cubes in Q. We shall split our analysis into

‘local’ and ‘global’ regions. In the global region we use the extra decay given by condition (Dθ),

while in the local region we base our analysis on a comparison between the heat kernel pt(x, y)

of e−tL with the classical heat kernel ht(x, y) of et∆ (as defined in (2.1)), via the perturbation

formula (2.4). The theorem then follows by duality.

We turn to the details. Set RL := ∇L−1/2 and R∆ := ∇(−∆)−1/2. We aim to show that
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for almost every x ∈ Rn and each p ∈
(
1, n

n+1−2σ

)
we have

|R∗Lf(x)| . M
(
|f |p

′)
(x)1/p′ . (8.1)

Now for almost every x there exists a unique cube Q ∈ Q with x ∈ Q. Hence the following

decomposition of R∗L is well defined:

R∗Lf = R∗L,globf + (R∗L,loc −R∗∆,loc)f +R∗∆,locf,

where

RL,globf(x) :=

∫ ∞
d(Q)2

∇e−tLf(x)
dt√
t
,

RL,locf(x) :=

∫ d(Q)2

0

∇e−tLf(x)
dt√
t
,

R∆,locf(x) :=

∫ d(Q)2

0

∇et∆f(x)
dt√
t
,

with Q the unique cube from Q containing x. Note that we have ommitted the constant 1/
√
π

which should appear on the right hand side of the above formulae – see Section 2.2.

We first study the global operator R∗L,glob. Write

R∗L,globf(x) =

∫
Rn
kglob(y, x)f(y) dy, where kglob(y, x) :=

∫ ∞
d(Q)2

∇ypt(y, x)
dt√
t
.

Then by Hölder’s inequality

∣∣R∗L,globf(x)
∣∣ ≤ ∞∑

j=0

∣∣2jQ∣∣ ( ∫
Uj(Q)

|f(y)|p
′
dy
)1/p′(∫

Uj(Q)

|kglob(y, x)|p dy
)1/p

.M
(
|f |p

′)
(x)1/p′

∞∑
j=0

2jn/p
′
d(Q)n/p

′
‖kglob(·, x)‖Lp(Uj(Q)) .

We shall prove that the series is uniformly bounded with respect to x and Q. That is, for some

Cp > 0 independent of x and Q,

Σ(x,Q, p) :=

∞∑
j=0

2jn/p
′
d(Q)n/p

′
‖kglob(·, x)‖Lp(Uj(Q)) ≤ Cp. (8.2)

We first consider j = 0, 1, 2. Let us point out that condition (Gp) for p ∈
(
1, n

n+1−2σ

)
implies that

‖∇pt(·, x)‖Lp .
1

t1/2+n/(2p′)
(8.3)
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for the same range of p. This can be seen from the argument in Lemma 4.8. See in particular

inequality (4.18). Estimate (8.3) combined with Minkowski’s inequality implies

‖kglob(·, x)‖Lp(Uj(Q)) ≤ ‖kglob(·, x)‖Lp(4Q) ≤
∫ ∞
d(Q)2

‖∇pt(·, x)‖Lp(4Q)

dt√
t

.
∫ ∞
d(Q)2

dt

t1+n/(2p′)
. d(Q)−n/p

′
.

Next for j ≥ 3 we decompose

‖kglob(·, x)‖Lp(Uj(Q)) ≤
∫ ∞
d(Q)2

‖∇pt(·, x)‖Lp(Uj(Q))

dt√
t

=

∞∑
k=0

∫ 2k+1d(Q)2

2kd(Q)2
‖∇pt(·, x)‖Lp(Uj(Q))

dt√
t
.

Using the semigroup property (2.3), we have for each k ≥ 0 and 2kd(Q)2 ≤ t ≤ 2k+1d(Q)2,

∇ypt(y, x) =

∫
Rn
∇ypt−2k−1d(Q)2(y, z) p2k−1d(Q)2(z, x) dz.

Applying (Gp) with p ∈
(
1, n

n+1−2σ

)
we obtain (see (8.3) and also the proof of Lemma 4.8)

‖∇pt(·, x)‖Lp(Uj(Q)) ≤
∫
Rn

(∫
Uj(Q)

∣∣∇ypt−2k−1d(Q)2(y, z)
∣∣p dy)1/p

p2k−1d(Q)2(z, x) dz

.
exp
(
−c 4jd(Q)2

t−2k−1d(Q)2

)
(
t− 2k−1d(Q)2

)1/2+n/(2p′)

∫
Rn
p2k−1d(Q)2(z, x) dz.

Since 2kd(Q)2 ≤ t ≤ 2k+1d(Q)2 implies that 2k−1d(Q)2 ≤ t − 2k−1d(Q)2 ≤ 2k+1d(Q)2 we

obtain

‖∇pt(·, x)‖Lp(Uj(Q)) .
e−c

′22j−k(
2kd(Q)2

)1/2+n/(2p′)

∫
Rn
p2k−1d(Q)2(z, x) dz.

Noting that for each k ≥ 0, ∫ 2k+1d(Q)2

2kd(Q)2

dt√
t

= 2k/2 d(Q)2
(
2
√

2− 2
)
,

we have that

‖kglob(·, x)‖Lp(Uj(Q)) .
∞∑
k=0

e−c
′22j−k

2kn/(2p′)d(Q)n/p′

∫
Rn
p2k−1d(Q)2(z, x) dz.

For k = 0, 1, 2 we use the Gaussian bounds on the heat kernel of L. For k ≥ 3 we use

that k/2 < k−1 < k and combine this with (Dθ). Together these allow us to obtain (for j ≥ 3)

‖kglob(·, x)‖Lp(Uj(Q)) . d(Q)−n/p
′
{
e−c

′4j +

∞∑
k=3

e−c
′22j−k

2kn/(2p′)
1

k1+θ

}
.
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Therefore returning to (8.2) we have

Σ(x,Q, p) . 1 +

∞∑
j=3

{
2jn/p

′
e−c

′4j +

∞∑
k=3

2n/p
′(j−k/2)e−c

′22j−k 1

k1+θ

}
.

Thus estimate (8.2) follows once we show that

Σ2 :=

∞∑
j=3

∞∑
k=3

2n/p
′(j−k/2)e−c

′22j−k 1

k1+θ
< Cp. (8.4)

We split the sum into

Σ2 =

∞∑
j=3

 j∑
k=3

+

∞∑
k=j+1

2n/p
′(j−k/2)e−c

′22j−k 1

k1+θ
=: Σ2.1 + Σ2.2 .

For the first term, for each k ≤ j we have that e−c
′22j−k ≤ e−c′2. Then

Σ2.1 .
∞∑
j=3

j∑
k=3

e−c
′′2j 1

k1+θ
.

∞∑
j=3

je−c
′′2j < C.

For the second term, since θ > 1,

Σ2.2 .
∞∑
j=3

∞∑
k=j+1

1

k1+θ
≤

∞∑
j=3

j−(1+θ)/2
∞∑

k=j+1

k−(1+θ)/2 < C.

Combining these two estimates gives (8.4)

Next turn to the localised operator R∗L,loc −R∗∆,loc. We write

(R∗L,loc −R∗∆,loc)f(x) =

∫
Rn
kloc(y, x)f(y) dy

where

kloc(y, x) :=

∫ d(Q)2

0

(
∇ypt(y, x)−∇yht(y, x)

) dt√
t
.

We split the domain of integration over α-dilates of Q and apply Hölder’s inequality to obtain

∣∣(R∗L,loc −R∗∆,loc)f(x)
∣∣ ≤ ∞∑

j=0

∣∣αjQ∣∣ ( ∫
Uj,α(Q)

|f(y)|p
′
dy
)1/p′(∫

Uj,α(Q)

|kloc(y, x)|p dy
)1/p

.M
(
|f |p

′)
(x)1/p′

∞∑
j=0

d(Q)n/p
′
αjn/p

′
‖kloc(·, x)‖Lp(Uj,α(Q)) .

We aim to show that the series is uniformly bounded in x and Q. That is, for some Cp > 0

independent of x and Q,

∞∑
j=0

d(Q)n/p
′
αjn/p

′
‖kloc(·, x)‖Lp(Uj,α(Q)) ≤ Cp. (8.5)
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We first consider the terms j ≥ 3. Now

‖kloc(·, x)‖Lp(Uj,α(Q)) ≤
∥∥∥∫ d(Q)2

0

|∇pt(·, x)| dt√
t

∥∥∥
Lp(Uj,α(Q))

+
∥∥∥∫ d(Q)2

0

|∇ht(·, x)| dt√
t

∥∥∥
Lp(Uj,α(Q))

≤
∫ d(Q)2

0

‖∇pt(·, x)‖Lp(Uj,α(Q))

dt√
t

+

∫ d(Q)2

0

‖∇ht(·, x)‖Lp(Uj,α(Q))

dt√
t

=: J1 + J2 .

To handle these terms we use (Gp) and the following fact: there exists C = C(α, n) > 0

such that for every x ∈ Q, y ∈ Uj,α(Q) and j ≥ 3, one has |x− y| ≥ Cαjd(Q). To see

note that the distance between the cubes Q and αj−1Q is at least αj−1l(Q)/2− l(Q)/2. Since

l(Q) = d(Q)/
√
n, with α > 1, and j ≥ 3, then for all such x and y,

|x− y| ≥ d(Q)
2
√
n

(αj−1 − 1) ≥
(
α3−1

2α3
√
n

)
αj d(Q) = Cαjd(Q),

with C = (α2 − 1)/(2α3
√
n). Fix ε > n/(2p′). Then for each j ≥ 3, it follows that

J1 .
∫ d(Q)2

0

e−cα
2jd(Q)2/t

t1+n/(2p′)
dt

.
∫ d(Q)2

0

( t

α2jd(Q)2

)ε dt

t1+n/(2p′)

=
1

α2jεd(Q)2ε

∫ d(Q)2

0

dt

t1+n/(2p′)−ε

. d(Q)−n/p
′
α−2jε.

For J2 we use the well known bounds on |∇ht| to obtain, in a similar fashion

J2 . d(Q)−n/p
′
α−2jε

with the same ε. Then the estimates for J1 and J2 allow us to conclude that

‖kloc(·, x)‖Lp(Uj,α(Q)) . d(Q)−n/p
′
α−2jε, ∀ j ≥ 3. (8.6)

We turn to the terms corresponding to j = 0, 1, 2 in (8.5). We shall show that

‖kloc(·, x)‖Lp(Uj,α(Q)) . d(Q)−n/p
′

j = 0, 1, 2. (8.7)

From the perturbation formula (2.4) we have for each x ∈ Q, y ∈ Rn and t > 0

kloc(y, x) = −
∫ d(Q)2

0

∫ t

0

∫
Rn
∇yht−s(y, z)V (z) ps(z, x) dz ds

dt√
t
.
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Then

|kloc(y, x)| ≤
∫ d(Q)2

0

∫ t

0

∫
Rn
|∇yht−s(y, z)| V (z) ps(z, x) dz ds

dt√
t

= k1
loc(y, x) + k2

loc(y, x) + k3
loc(y, x),

where

k1
loc(y, x) :=

∫ d(Q)2

0

∫ t/2

0

∫
α3Q

|∇yht−s(y, z)|V (z)ps(z, x) dz ds
dt√
t
,

k2
loc(y, x) :=

∫ d(Q)2

0

∫ t

t/2

∫
α3Q

|∇yht−s(y, z)|V (z)ps(z, x) dz ds
dt√
t
,

k3
loc(y, x) :=

∫ d(Q)2

0

∫ t

0

∫
Rn\α3Q

|∇yht−s(y, z)|V (z)ps(z, x) dz ds
dt√
t
.

Then it follows that

‖kloc(·, x)‖Lp(α2Q) ≤
∥∥k1

loc(·, x)
∥∥
Lp(α2Q)

+
∥∥k2

loc(·, x)
∥∥
Lp(α2Q)

+
∥∥k3

loc(·, x)
∥∥
Lp(α2Q)

. (8.8)

To study the first term in (8.8) we observe that s ∈ (0, t/2) implies that t− s ∈ (t/2, t),

and hence the well known bounds on |∇ht−s| give

|∇yht−s(y, z)| .
1

tn/2+1/2
e−c
|y−z|2
t

for any y, z ∈ Rn. Hence for any z ∈ Rn,

‖∇ht−s(·, z)‖Lp(α2Q) . t−1/2−n/(2p′).

This estimate gives, for each x ∈ Q,

∥∥k1
loc(·, x)

∥∥
Lp(α2Q)

≤
∫ d(Q)2

0

∫ t/2

0

∫
α3Q

‖∇ht−s(·, z)‖Lp(α2Q) V (z)ps(z, x) dz ds
dt√
t

.
∫ d(Q)2

0

∫ t/2

0

∫
α3Q

V (z)ps(z, x) dz ds
dt

t1+n/(2p′)

≤
∫ d(Q)2

0

∫ t/2

0

es∆(1α3QV )(x) ds
dt

t1+n/(2p′)
.

Applying (Kσ) and that σ > n/(2p′) we obtain

∥∥k1
loc(·, x)

∥∥
Lp(α2Q)

.
∫ d(Q)2

0

( t

d(Q)2

)σ dt

t1+n/(2p′)
. d(Q)−n/p

′
.
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We turn to the second term in (8.8). From the well known bounds on |∇ht| we obtain,

‖∇ht−s(·, z)‖Lp(α2Q) . (t− s)−1/2−n/(2p′), ∀ z ∈ Rn, t > s,

so that for each x ∈ Q,

∥∥k2
loc(·, x)

∥∥
Lp(α2Q)

≤
∫ d(Q)2

0

∫ t

t/2

∫
α3Q

‖∇ht−s(·, z)‖Lp(α2Q) V (z)ps(z, x) dz ds
dt√
t

.
∫ d(Q)2

0

∫ t

t/2

∫
α3Q

V (z)ps(z, x) dz
ds

(t− s)1/2+n/(2p′)

dt√
t

≤
∫ d(Q)2

0

∫ t

t/2

∫
α3Q

V (z)hs(z, x) dz
ds

(t− s)1/2+n/(2p′)

dt√
t

=

∫ d(Q)2

0

∫ t

t/2

es∆(1α3QV )(x)
ds

(t− s)1/2+n/(2p′)

dt√
t

=

∫ d(Q)2

0

∫ t/2

0

e(t−r)∆(1α3QV )(x)
dr

r1/2+n/(2p′)

dt√
t
,

where in the last line we made a change of variable r := t − s. Since r < t/2 and by the

semigroup property (2.3),

e(t−r)∆(1α3QV )(x) = e(t−2r)∆er∆(1α3QV )(x)

=

∫
Rn
ht−2r(x, y)er∆(1α3QV )(y) dy

≤ ess supy∈Rn e
r∆(1α3QV )(y).

To continue we require the following technical estimate.

Lemma 8.5. Suppose f ≥ 0 and for some δ > 0, the following holds

∫ t

0

f(s) ds ≤
( t
R

)δ
, 0 < t ≤ R.

Then for each 0 < ε < δ, there exists C = C(ε, δ) > 0 such that

∫ t

0

f(s)
ds

sε
≤ C t

δ−ε

Rδ
.

Proof. We compute

∫ t

0

f(s)
ds

sε
=

∞∑
k=0

∫ 2−kt

2−k−1t

f(s)
ds

sε
≤

∞∑
k=0

2(k+1)ε

tε

∫ 2−kt

0

f(s) ds
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≤
(2

t

)ε ∞∑
k=0

2kε
(2−kt

R

)δ
= 2ε

tδ−ε

Rδ

∞∑
k=0

2k(ε−δ) = C
tδ−ε

Rδ
.

where C = 2δ/(2δ−ε − 1).

Since σ > 1/2 + n/(2p′), we can apply Lemma 8.5 with

f(r) := er∆(1α3QV )(y), R := d(Q)2, ε :=
1

2
+

n

2p′
,

to obtain

∥∥k2
loc(·, x)

∥∥
Lp(α2Q)

. ess supy∈Rn

∫ d(Q)2

0

∫ t/2

0

er∆(1α3QV )(y)
dr

r1/2+n/(2p′)

dt

t1/2

. d(Q)−2σ

∫ d(Q)2

0

dt

t1+n/(2p′)−σ

. d(Q)−n/p
′
.

We turn to the last term in (8.8). Firstly note that for 0 < s < t < d(Q)2, z /∈ α3Q,

and y ∈ α2Q we have

t− s ≤ d(Q)2 − s ≤ d(Q)2 and |y − z| ≥
(
α3−α2

2
√
n

)
d(Q) = Cd(Q),

so that for all such z, y, t, s,

|∇yht−s(y, z)| .
exp
(
−c |y−z|

2

t−s
)

(t− s)n/2+1/2
.

exp
(
−c |y−z|

2

t−s
)

|y − z|n+1 .
exp
(
−c |y−z|

2

d(Q)2

)
d(Q)n+1

.

Therefore

∥∥k3
loc(·, x)

∥∥
Lp(α2Q)

. 1
d(Q)n+1

∫ d(Q)2

0

∫ t

0

∫
Rn\α3Q

∥∥e−c|·−z|2/d(Q)2
∥∥
Lp(α2Q)

V (z)ps(z, x) dz ds
dt√
t

. 1
d(Q)1+n/p′

∫ d(Q)2

0

∫ t

0

∫
Rn\α3Q

V (z)ps(z, x) dz ds
dt√
t

≤ 1
d(Q)1+n/p′

∫ d(Q)2

0

∫ ∞
0

∫
Rn
V (z)ps(z, x) dz ds

dt√
t
.

To proceed we recall the following fact, which appears to be well known. We refer the

reader to [54] and the references there for a proof.

Lemma 8.6 ([54] Lemma 3.10). Assume that 0 ≤ V ∈ L1
loc(Rn). Then for each f ∈ L1(Rn),

one has ∫
Rn

∫ ∞
0

V (x) e−tL
(
|f |
)
(x) dt dx ≤ ‖f‖L1 .
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Now by the semigroup property (2.3) and Lemma 8.6,

∫ ∞
0

∫
Rn
V (z)ps(z, x) dz ds =

∫ ∞
0

∫
Rn
V (z)e−(s/2)L

(
ps/2(·, x)

)
(z) dz ds

≤
∥∥ps/2(·, x)

∥∥
L1(Rn)

≤ 1 .

This immediately gives

∥∥k3
loc(·, x)

∥∥
Lp(α2Q)

. d(Q)−n/p
′
.

Inserting these estimates in (8.8) yields (8.7).

Gathering (8.7) and (8.6) we then obtain

∞∑
j=0

d(Q)n/p
′
αjn/p

′
‖kloc(·, x)‖Lp(Uj,α(Q)) . 1 +

∞∑
j=3

αj(n/p
′−2ε).

Recalling that ε > n/(2p′), we see the series is convergent and hence (8.5) follows.

Finally, it is well known that the classical Riesz transform satisfies for every p > 1,

|R∗∆,locf(x)| .M
(
|f |p

′)
(x)1/p′ , a.e. x.

Combining this with our previous estimates we obtain, for each p ∈
(
1, n

n+1−2σ

)
and for almost

every x ∈ Rn,

|R∗Lf(x)| ≤ |R∗L,globf(x)|+ |(R∗L,loc −R∗∆,locf)(x)|+ |R∗∆,locf(x)| . M
(
|f |p

′)
(x)1/p′ ,

which is (8.1). This completes the proof of Theorem 8.3.
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[59] J. Garćıa-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related topics,
North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam,
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