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General summary 

 
The formation of spatial memories has been proposed to proceed in two stages. 

In the initial stage, which occurs during active navigation in a new environment, 

hippocampal cell assemblies are activated to encode spatial information. The 

activation of encoding assemblies is accompanied by low frequency theta band 

neuronal oscillations. In the second stage, which occurs during rest or sleep, 

hippocampal assemblies activated during the encoding phase are reactivated to 

consolidate the newly formed but labile memory traces. These reactivations are 

accompanied by high frequency neuronal rhythms. In Buszaki’s (1989) two-stage 

model of spatial learning, theta rhythms are proposed to provide a mechanism to bind 

sequential hippocampal place-cell assemblies over time; while the high-frequency 

oscillations are hypothesized to potentiate and consolidate the sequential activation of 

cell assemblies.  These oscillatory mechanisms are well-established in animal models, 

but evidence in the human hippocampus is lacking. In the current thesis, I aimed to 

bridge this gap between animal and human models of spatial memory formation. I 

used non-invasive magnetoencephalography (MEG) recordings, and a virtual Morris 

water maze (vMWM) task to investigate whether human hippocampal low and high 

frequency oscillations play roles in different stages of spatial leaning.  

 

In Chapter One, I briefly review research on the functions of hippocampal 

rhythms and put forward the research questions I aimed to address in the thesis. In 

Chapter Two, I review evidence and make the case that MEG is a suitable technique 

for addressing these questions. Based on this, in Chapter Three, using MEG I 

examined whether low frequency human hippocampal theta oscillations play a role in 

spatial encoding during virtual navigation. Consistent with previous work, the results 

showed left hippocampal theta power increase during goal-directed navigation, 

supporting the contention that MEG can reliably detect and localize human 

hippocampal signals. Further, my analyses showed that right hippocampal theta 

oscillations were modulated by environmental novelty and were correlated with 

navigation performance, providing strong support for the idea that theta plays an 

important role in environmental encoding during navigation. In Chapter Four, I 

analysed the same MEG dataset to examine high frequency gamma activity during the 
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inter-trial rest periods. The results confirmed significantly increased right 

hippocampal high-gamma during the inter-trial period in the new environment relative 

to the familiar one; and that gamma was positively correlated with theta power 

measured during navigation; and also with subsequent navigation performance in the 

familiar environment. In Chapter Five, I examined theta and high-gamma 

oscillations in a group of age-matched females, and compared these to the male data 

described in chapters three and four.  Since there are clear and well-established gender 

differences in spatial behaviour, this study was designed to determine if these are 

reflected in the neurophysiological measurements. Consistent with the previous 

literature, the behavioural results showed clear gender differences. Males scored 

higher on a psychometric test of spatial ability, were faster in navigating the vMWM, 

and showed significant speed improvements in familiar versus new maze 

environments, while females did not improve. The MEG analyses confirmed 

corresponding gender differences in both the theta and gamma rhythms, strongly 

reinforcing the functional importance of these two rhythms in spatial learning. In the 

concluding Chapter Six, I summarize the results and discuss how they contribute to 

our understanding of the neurophysiological mechanisms of memory formation in the 

human brain. I conclude that MEG provides sensitive, reliable, and behaviourally-

relevant measurements of human hippocampal function during spatial navigation. 

Consequently, MEG is a crucially important technique for bridging the gap between 

animal and human models of hippocampal function.  Future developments in MEG 

sensor technology are likely to further enhance its sensitivity and utility in this regard.    
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Chapter one 

 

Introduction: Rhythms of the hippocampus 
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   The	
   chapter	
   will	
   start	
   with	
   a	
   brief	
   discussion	
   on	
   the	
   definition	
   of	
   brain	
  

rhythms	
   and	
   the	
   reason	
   why	
   they	
   are	
   important	
   for	
   cognition	
   and	
   why	
   they	
  

interest	
   neuroscientists.	
   Then	
   two	
  prominent	
   hippocampal	
   local	
   field	
   potential	
  

(LFP)	
  rhythms,	
  i.e.,	
  theta	
  and	
  ripple	
  oscillations	
  will	
  be	
  discussed.	
  Findings	
  from	
  

animal	
   studies	
   about	
   the	
   two	
  oscillations	
  will	
   be	
   briefly	
   reviewed,	
   followed	
  by	
  

the	
   findings	
   from	
   human	
   research.	
   Finally,	
   the	
   research	
   questions	
   I	
   aim	
   to	
  

address	
  in	
  this	
  thesis	
  will	
  be	
  put	
  forward.	
   	
  

 

Brain rhythms 

 

    Brain rhythms (or oscillations, used interchangeably) refer to periodic neuronal 

activities in the central nervous system. Neuronal oscillations can be observed at the 

level of single neurons. For instance, a neuron can rhythmically generate action 

potentials (X. J. Wang, 2010). Neuronal oscillations can also be observed at a larger 

scale in LFP recordings within the brain or electroencephalographic (EEG) / 

magnetoencephalographic (MEG) recordings outside the brain. The LFP is the linear 

sum of the membrane potential in the extracellular space around neurons, and reflects 

the activity of a neuron population. It has been shown that individual neurons in 

isolation are not capable of operating complex cognitive processing (Quiroga, 2013). 

To do so, they need to form cell assemblies as a functional network through 

synchronous activity (the ‘cell assembly hypothesis’, put forward by Hebb (1949); 

Harris et al. (2003) tested this idea experimentally). Thus, the brain rhythms at the 
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level of the LFP are thought to be of critical importance to cognition (Colgin, 2016).  

 

Rhythms of the hippocampus 

 

    The hippocampus is a brain region buried deep in the medial temporal lobe and 

is important for spatial navigation and memory (Buzsaki & Moser, 2013; O'Keefe & 

Nadel, 1978). It is one of the most intensively studied brain areas, partly because 

relative to other neocortical areas, it has a relatively simplified architecture, where 

principal neurons are neatly arranged in layers and the somatic and dendritic laminae 

are well defined (Andersen et al., 2006). Thus, it is relatively accessible to recordings 

of single neurons and the local field potential (LFP). In fact, the hippocampus is the 

structure in which some of the general principles of modern neuroscience (e.g., 

cross-frequency coupling) have been studied and established (Andersen et al., 2006). 

In addition, the hippocampus is vulnerable to pathological processes and pervasive 

mental disorders associated with Alzheimer’s disease, epilepsy, schizophrenia, 

anxiety and stress (Matthew, 2006; Morris, 2006). Therefore, an understanding of 

hippocampal functions is a crucial step in the effort to provide treatments of these 

brain diseases and dysfunctions.  

 

    Rhythms are a prominent feature of hippocampal activity and different rhythms 

are observed during different behavioral states (Sirota & Buzsaki, 2005). Two 

distinctive behavioral states of animals are a “preparatory” state and a “consummatory” 
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state (see Buzsaki, 2015 for a review). Preparatory actions are related to active 

exploration and goal-directed behaviors, during which, a slow frequency theta band 

oscillation (4 – 12 Hz in rodents; in humans, the frequency range might be lower 

(Jacobs, 2014)) is the dominant LFP in the hippocampal formation (Buzsaki, 2002). 

The consummatory state includes awake immobility and sleep, and refers to the 

behavioral state in which an action such as explorative ambulation has been 

completed. During this behavioral state, a high frequency ripple oscillation (110 – 250 

Hz in rodents; human version of ripple oscillations are slower, see Axmacher et al., 

2008; Bragin et al., 1999) is the most dominant LFP (Buzsaki, 2015). A consensus is 

emerging on the functional importance of the two oscillations in memory, with theta 

rhythm being involved in memory encoding during navigation (Fig. 1) and ripple 

rhythm being associated with replay and memory consolidation during rest/sleep (Fig. 

2). These two rhythms are thus proposed to constitute the neurophysiological 

mechanisms for a two-stage model of memory formation (Buzsaki, 1989, 2015), 

which posits that memory formation proceeds through two functionally distinct stages 

(i.e., encoding and consolidation stages) which occur during active navigation and 

rest/sleep phase respectively.1 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 The rodent hippocampus also exhibits other frequency band oscillations, notably a 25 – 100 Hz 

rhythm. There is less agreement on the functional role of this rhythm (Colgin, 2016; Colgin & Moser, 

2010). Therefore, this chapter mainly focuses on theta and ripple oscillations. 
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Figure 1. Theta sequences in the hippocampus during spatial memory encoding. Successive 

locations (depicted by colored ovals) in the trajectory are represented by temporally ordered 

spikes of different place cell2 ensembles (depicted by short colour bars) in the hippocampus 

within individual theta cycles. For individual place cell ensembles (depicted by a short colour 

bar) representing a place field (depicted by the oval with the same colour as the short colour 

bar), spikes occur at progressively earlier theta phases across successive theta cycles as the 

rodent is approaching the place field. As a result of this, spikes at early and late theta phases 

represent earlier and later locations, respectively, in the trajectory. The low frequency theta 

oscillations are thought to provide a timing mechanism for place cell firing and thus are 

thought to be important for spatial encoding.  

From Colgin (2016). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 A place cell is a type of pyramidal neuron within the hippocampus. It fires when a rodent enters a 

specific location in its environment. Different place cells were found to have different firing locations. 

These different firing locations are called the place fields of their corresponding place cells (please 

refer to O’Keefe, 1976).  
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Figure 2. Replay during sharp-wave ripples when a rodent rests at the end of the linear track. 

a. spikes from successively activated place cells (depicted by short colour bars) as a rodent 

passes through the cells’ place fields (depicted by squares in the corresponding colour) in a 

particular trajectory on a linear track. b. The top panel shows an example of a sharp wave–

ripple event (raw recording) recorded during subsequent rest at the end of the linear track and 

a bandpass filtered (150–300 Hz, ripple oscillations) version of the sharp wave–ripple is 

shown immediately below the raw recording. Spikes from the place cell ensemble temporally 

activated during navigation are shown to reactivate during the sharp wave–ripple event. This 

replay mechanism is found to be related to memory consolidation. Thus, ripple oscillations 

are thought to be associated with consolidation.  

From Colgin (2016). 
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The hippocampal theta rhythm in rodents 

 

    The theta rhythm (4 – 12 Hz in rats) is a low frequency oscillation. Besides the 

hippocampus, a theta rhythm can also be observed in some other cortical and 

subcortical areas, such as entorhinal cortex, cingulate gyrus, prefrontal cortex and 

amygdala (Leung & Borst, 1987; Mitchell & Ranck, 1980; Pare ́ & Collins, 2000). 

Subcortical nuclei including the medial septum diagonal band of Broca (MS-DBB) 

and fornix are believed to be the pacemakers of theta oscillations (Aggleton et al., 

1995; Green & Ardunini, 1959), because lesions of these structures abolish theta 

rhythms in the hippocampus.  

 

    A basic observation is that hippocampal theta power increases when rats are 

behaving, e.g., when free running, running on a track or on a running wheel or 

treadmill (Buzsaki et al., 1983; Fox et al., 1986; Skaggs et al., 1996; see Hasselmo, 

2005 for a review). Thus, theta rhythm is believed to be closely related to behaviours 

described as “voluntary” movements (Vanderwolf, 1968) or preparatory and 

exploratory movements (Buzsaki, 2015). Studies have further found that both 

frequency and power of hippocampal theta, as well as the firing rate of place cells 

increase as a function of movement velocity (Hinman et al., 2011; Slawinska & 

Kasicki, 1998); hippocampal theta frequency and power are also sensitive to 

environmental novelty (Jeewajee et al., 2008; Lever et al., 2009; Penley et al., 2013; 

Wells et al., 2013). Since theta is associated with movements used to acquire sensory 
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information from external world, it has been proposed as a mechanism for 

coordinating multimodal sensory information for learning (see Colgin, 2016 for a 

review). Studies have shown that odor discrimination performance is poor if sniffing 

is slower than the theta range of about 6 – 9 Hz (Kepecs et al., 2007); and 

hippocampal theta oscillations are not phase-locked to whisking measured via the 

mystacial electromyogram if rats are simply whisking in air instead of actively 

acquiring tactile information (Berg et al., 2006). Please note that hippocampal theta 

rhythm is distinct from a so-called ‘hippocampal respiration rhythm’, which couples 

to nasal respiration and is caused by the olfactory bulb (Nguyen Chi et al., 2016). This 

mechanism may aid the information exchange between olfactory and memory system.  

 

    Evidence for the specific importance of hippocampal theta phase in spatial 

learning came from O'Keefe and Recce (1993). They found that as a rat was entering 

the field, place cell firing consistently began near the peak of theta waves, recorded at 

the CA1 pyramidal layer, but then shifted systematically to progressively earlier 

phases of the LFP theta rhythm as the rat traversed the place field. The phase angle of 

spiking was highly correlated with the rat’s location but not with the velocity of the 

rat. The phenomenon, termed ‘phase precession’, has since been extensively 

replicated (e.g., Dragoi & Buzsaki, 2006; Foster & Wilson, 2007; Skaggs et al., 1996). 

Phase precession suggests that the hippocampal theta rhythm provides a temporal 

‘code’ for encoding an animal’s location. As a result, the sequential locations and 

their distances can be computed from the velocity-independent theta phase and the 
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velocity-dependent firing rates of place cell (Buzsaki, 2006). Thus, the temporal code 

of theta rhythm has been proposed to play an important role in formation of a 

cognitive map of an environment, allowing the association of individual locations 

within an environment (Hasselmo & Eichenbaum, 2005; Jensen & Lisman, 2000; 

Redish & Touretzky, 1998, see Hasselmo & Stern, 2014 for a review).   

 

    Phase coding is important because it also provides a mechanism for encoding 

new information and retrieving previously stored information without causing 

confusion (see Hasselmo, 2005 for a review). Physiological data (Brankack et al., 

1993; Kamondi et al., 1998) have shown that when information was being encoded at 

one phase of local field theta rhythm, the dendrites were depolarized by input from 

entorhinal cortex, while there were only small spikes in the cell bodies in the 

pyramidal layer, and transmission from CA3 was weak (Wyble et al., 2000). This was 

hypothesized to create an optimal setting for encoding and preventing interference 

from retrieval (Hasselmo et al., 2002). At the opposite phase, cell bodies were 

depolarized by input from hippocampal CA3 region, when synaptic currents from 

entorhinal cortex were weak and dendrites were hyperpolarized, thereby allowing 

retrieval of a previously established pattern and preventing new encoding. The 

separation of theta phase for encoding and retrieval has been further supported by the 

evidence (Holscher et al., 1997; Hyman et al., 2003) that stimulation at a certain phase 

of theta rhythm causes long-term potentiation (LTP), an important mechanism for 

synaptic plasticity and a candidate mode for memory storage at the cellular-molecular 
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level (Buzsaki, 2002). Conversely, stimulation at the opposite phase causes long-term 

depression (LTD).  

 

    A causal relationship between hippocampal theta and learning and memory has 

been established by a series of studies. Silencing the theta rhythm by inactivation of 

its pacemaker (MS-DBB or fornix) impaires rat’s performance and disrupted 

sequenced firing of place cell assemblies (Ennaceur et al., 1996; Givens & Olton, 

1994; Y. Wang et al., 2015). However, stimulation of the fornix at a theta rhythm 

recovers both hippocampal theta rhythm and spatial navigation performance 

(McNaughton et al., 2006).  

 

    Since the theta rhythm also appears in other brain areas as mentioned above, 

theta-range synchrony has been proposed as a mechanism for brain-wide integration, 

which can drive plastic changes in short- and long-range synaptic connections to 

create integrated representations of experiences (Benchenane et al., 2010). Neuronal 

firing in brain areas such as cingulate cortex (Colom et al., 1988), amygdala (Pare & 

Gaudreau, 1996), entorhinal cortex (Frank et al., 2001), striatum (Berke et al., 2004) 

and prefrontal cortex (Hyman et al., 2011; Hyman et al., 2005) have been found to be 

phase-locked to hippocampal theta rhythms. Moreover, theta phase synchronization 

(coherence) has also been found between brain regions such as the hippocampus and 

the prefrontal cortex during learning, especially at choice points after task rule 

acquisition (Benchenane et al., 2010) during a working memory task (Jones & Wilson, 
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2005). The increased coherence has been proposed to reflect binding of 

cortico-hippocampal pathways into temporary functional units for information 

integration (Young & McNaughton, 2009). 

 

The hippocampal ripple rhythm in rodents  

 

    The hippocampal ripple rhythm (140 – 200 Hz in rats, Csicsvari et al., 1999; 120 

– 180 Hz in mice, Buzsaki et al., 2003) is a high frequency LFP oscillation generated 

in CA1 pyramidal layer and is often observed to be superimposed on an irregular 

large amplitude sharp-wave (Buzsaki et al., 1992; Buzsaki et al., 1983). The complex 

is termed “sharp-wave ripple (SPW-R)” and is one of the most robust examples of 

cross-frequency coupling in the brain (Buzsaki & Lopes da Silva, 2012). Although 

sharp waves and ripple rhythms are coupled, they are two separate neurophysiological 

events (Buzsaki, 2015; Colgin, 2016). Previous experiments support the view that 

sharp waves are generated in CA3 and propagated to CA1, while the ripple 

oscillations are generated locally in CA1 (Buzsaki et al., 1983; Sullivan et al., 2011). 

Some other brain areas also exhibit SPW-R-like events, such as olfactory cortex 

(Manabe et al., 2011; Narikiyo et al., 2014), and the amygdala (Ponomarenko, 

Korotkova, et al., 2003).  

 

    The SPW-R has often been observed when rats have little or no interaction with 

the environment, such as during awake immobility or sleep (Buzsaki & Lopes da 
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Silva, 2012). It has been hypothesized to be the neurophysiological mechanism 

underlying memory consolidation (Buzsaki, 1989; Buzsaki et al., 1996), partly 

because SPW-R meets many criteria for induction of long-term potentiation (LTP) 

(Buzsaki, 2015), a model of synaptic plasticity, which can potentiate the weak 

synaptic changes brought about by inputs from entorhinal cortex during exploration to 

make them stronger. The high frequency oscillation during SPW-R events also 

resembles the tetanic stimulation with high frequency electrical pulses, which are 

usually used to induce LFP. King et al. (1999) have demonstrated that the naturally 

occurring SPW-Rs could indeed induce LTP between CA3 and CA1 neurons. More 

convincing evidence of SPW-Rs in memory consolidation come from the studies 

which have shown that neuronal activation during SPW-Rs is biased by recent 

hippocampal network pattern in the preparatory theta states (i.e., hippocampal 

“replay”, see Buzsaki, 2015; Carr et al., 2011 for reviews). 

 

    Buzsaki (1986) found that neurons which were most active during running would 

also activate strongly during SPW-R event in non-REM sleep after running, even 

though they were silent during SPW-R event in non-REM sleep before running. Place 

cells with overlapping place fields which showed high correlations during running 

also showed higher correlation during post-run sleep compared to pre-run sleep 

(Wilson & McNaughton, 1994); the temporal order of place cell firing during running 

was also preserved (Qin et al., 1997; Skaggs & McNaughton, 1996). Moreover, 

studies have found that the occurrences of SPW-Rs during non-REM (REM: rapid eye 
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movement) sleep after exploration were positively correlated with previous waking 

experience during exploration (Buzsaki, 1985; Ponomarenko, Korotkova, et al., 2003; 

Ponomarenko, Lin, et al., 2003). A similar replay phenomenon has also been observed 

in awake immobility after active navigation (Csicsvari et al., 2007; Foster & Wilson, 

2006; Jackson et al., 2006), except that the order of place cell reactivation was the 

reverse of that during running. Further, Diba and Buzsaki (2007) have found that 

while at the end of the track after running, the order of place cell replay during awake 

SPW-R events was reverse to that of running, forward place cell firing occurred at the 

starting position of the track before running, indicating a role of forward replay in 

planning the upcoming trajectories. The difference between sleep replay and awake 

replay during SPW-R event may be due to the influence of sensory stimulation during 

awake immobility in contrast to the more isolated state of sleep (Buzsaki, 2015). A 

recent study (Gupta et al., 2010) has demonstrated that besides consolidating previous 

learning experience, replay during SPW-R event may also have a potential role in 

active construction of the cognitive map.  

 

    A causal relationship between SPW-R and memory consolidation has been 

established by silencing the hippocampal SPW-Rs. Studies (Ego-Stengel & Wilson, 

2010; Girardeau et al., 2009) have found that interrupting the SPW-Rs by stimulation 

of the ventral hippocampal commissure during SPW-R event in post-learning sleep 

significantly impaired learning performance compared with controlled stimulation 

outside of SPW-R event during post-learning sleep. A recent study (van de Ven et al., 
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2016) further elucidated the role of SPW-Rs in consolidation of recently learnt 

information, because interrupting SPW-Rs during post-learning sleep only impaired 

the newly formed memory but not the memory which had already been consolidated.   

 

    While the evidence reviewed above refers to activity within the hippocampus, 

researchers have also found SPW-R events can participate in a system consolidation 

process in which the encoded information in the hippocampus is transferred to 

neocortex for permanent storage (Diekelmann & Born, 2010) by cross-frequency 

oscillatory coupling (Sirota & Buzsaki, 2005). During slow wave sleep, the 

hippocampal ripples are phase-locked to around the troughs of the thalamocortical 

sleep spindles (7 – 14 Hz or 12 – 18 Hz, depending on the experiment), which 

together are modulated by the depolarized up-state of thalamocortical slow 

oscillations (0.5 – 1.5 Hz) (Molle et al., 2006; Siapas & Wilson, 1998; Sirota et al., 

2003). This observation suggests that cross-frequency coupling between the 

hippocampus and neocortex may provide a temporally fine-tuned pathway for 

information transfer. However, the available physiological evidence about system 

level consolidation is limited to the sleep state. Future studies are required to 

investigate whether systems consolidation occurs during awake immobility.  

 

The hippocampal theta rhythm in humans  

 

    Since the theta rhythm plays such an important role in navigation and memory in 
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rodents, there is considerable interest in whether there is a comparable rhythm in 

humans and if so, whether it possesses the same functional properties reported in 

rodents. The studies reviewed below mainly focus on findings from experiments using 

virtual navigation tasks (Lever et al., 2014), analogous to the tasks used in rodent 

studies.  

 

    Using intracranial electroencephalographic (iEEG) recordings, Kahana et al. 

(1999) reported for the first time that navigation-related theta rhythm (4 – 8 Hz) in 

several regions such as temporal lobe, and the frequency of theta rhythm occurrence 

was modulated by complexity of the virtual maze. Similar effects have been reported 

in later research (Caplan et al., 2001; Caplan et al., 2003). Later, using iEEG 

recordings with electrodes implanted in the hippocampus, Ekstrom et al. (2005) 

reported movement-related theta in the hippocampus during virtual spatial navigation. 

With the development of whole-head magnetoencephalography (MEG) and 

sophistication of source localization techniques, studies using MEG (Cornwell et al., 

2008; de Araujo et al., 2002; Kaplan et al., 2012) have also reported hippocampal 

theta power increases after virtual navigation.   

 

    An iEEG study (Watrous, Lee, et al., 2013) has reported that the human 

hippocampal theta is more transient and in a lower frequency range (centered around 

3 Hz) compared to the rat theta rhythm (centered around 8 Hz). However, a recent 

study (Bohbot et al., 2017) reported clear evidence of 7 – 9 Hz rhythmicity in raw 
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intra-hippocampus EEG traces during real as well as virtual movement in the human 

brain. Moreover, Watrous et al. (2011) have found that hippocampal theta power 

increased as movement speed increased and compared with viewing background, 

there was more theta power when viewing landmarks such as stores. An MEG study 

by Kaplan et al. (2012) has reported increased theta power change 3  in novel 

compared to familiar environments, implying that, as with rodents, hippocampal theta 

might play a role in encoding new environment. With iEEG recordings, Park et al. 

(2014) have reported that hippocampal theta was sensitive to environmental novelty, 

although this environmental effect was confounded by learning object locations 

within the environment.  

 

The role of theta phase has been has been investigated in humans as well. Jacobs 

et al. (2007) found that during spatial navigation individual neurons in the 

hippocampus phase-locked to various phases theta and delta rhythm, but were only 

active at the trough of gamma oscillations (30 – 90 Hz).  Later, Rutishauser et al. 

(2010) have reported that single neuron phase-locking to local theta rhythm during 

encoding was related to better memory formation, providing important evidence for 

phase coding hypothesis in human brain. Recently, in a working memory paradigm, 

Zhang and Jacobs (2015) have shown that human theta oscillations were traveling 

waves, i.e., theta phase shifted consistently in a posterior-anterior direction along the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 The study only reported the theta power change as a function of environmental novelty at the MEG 

sensor level.  
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longitudinal axis of the hippocampus. This result suggests that neurons at different 

locations of the hippocampus can experience different theta phases simultaneously; 

therefore, this might provide a neurophysiological basis for neurons to signal future 

and past events by activating at different phases (Dragoi & Buzsaki, 2006; Lubenov & 

Siapas, 2009).  

  

    Consistent with the rodent literature, human theta oscillations also seem to play a 

role in whole brain integration, supporting complex cognitive processing. In a virtual 

taxi game task, by using low frequency theta phase synchronization as a measure of 

network functional connectivity, Watrous, Tandon, et al. (2013) reported that  

successful memory retrieval corresponded to greater global connectivity among 

various brain regions, including medial temporal lobe (MTL), prefrontal cortex and 

parietal cortex, with MTL acting as the hub of those interactions. Kaplan et al. (2014) 

have found that after spatial learning, when cued with the object whose location the 

participant would navigate to in the subsequent retrieval phase, there was more theta 

phase coupling between the prefrontal cortex and the medial temporal lobe compared 

to baseline.  

 

    Deep brain stimulation has provided mixed results about the role of the 

hippocampal theta rhythm. Suthana et al. (2012) have found that stimulating 

entorhinal cortex while participants were learning locations of landmarks reset the 

phase of the hippocampal theta rhythm and resulted in better spatial performance 
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relative to no stimulation. However, direct stimulation of the hippocampus did not 

exert any significant effects. In an effort to replicate this study, Jacobs et al. (2016) 

have found that instead of improving memory performance, electrical stimulation of 

entorhinal cortex or hippocampus impaired memory performance significantly. 

Nevertheless, both sets of results implicate the human hippocampus in memory 

process.  

 

Hippocampal ripple rhythm in humans 

 

    Compared to theta oscillations, human hippocampal LFP ripple oscillations are 

less studied (Bragin et al., 1999). One line of this work is to find out whether there is 

an equivalent of ripple oscillations in the healthy human brain, since medial temporal 

lobe epilepsy also generates high frequency neural activities. Studies have shown that 

there exists a human homologue of ripples, but the frequency range is lower, with 

frequencies in the range of 80 – 160 Hz (Bragin et al., 1999; Staba et al., 2004; Staba 

et al., 2002, see Bragin et al., 2010 for a review); pathological high frequency 

oscillations (pHFOs), in contrast, are in the range of 250 – 600 Hz. Other distinctions 

between normal ripples and pHFOs are that ripples reflect inhibitory postsynaptic 

potentials (IPSPs) on the soma of the pyramidal cells (Bragin et al., 1999), while 

pHFOs reflect synchronized firing of abnormally bursting neurons instead of 

inhibitory field potentials (Engel et al., 2009). Recently, Le Van Quyen et al. (2008) 

observed cellular correlates of human ripples, which were similar to that observed in 
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vivo in the rodents, with pyramidal cells firing preferentially at the highest amplitude 

of the ripple and interneurons discharging earlier than pyramidal cells.  

 

    Having established a human analogue of ripples, researchers began to explore 

their functional role, motivated by the model of rodent ripples participating in 

memory consolidation via a replay mechanism (Tambini et al., 2010). The first 

experiment examining the functional role of human ripple was conducted by 

Axmacher et al. (2008) in a verbal memory task. With intracranial depth electrodes 

implanted in the hippocampus and the rhinal cortex contralateral to the seizure onset 

zone, they have observed ripple oscillations (80 – 140 Hz) when the participants 

napped after learning a list of words.  The occurrence of rhinal ripples was correlated 

with the number of successfully recalled words in the post-nap retrieval task. Using a 

similar correlational strategy, with MEG recordings and a virtual Morris water maze 

task, Cornwell et al. (2014) have found the power of bilateral hippocampal high 

frequency oscillations (80 – 140 Hz) during a 5-minute resting period after initial 

spatial learning correlated with rate of the initial learning but not with subsequent 

navigation performance. The results of the above experiments suggest that human 

ripples may play a role in memory consolidation, but they do not provide direct 

evidence of replay by showing the brain region used for encoding accompanied by 

theta oscillations is reactivated during awake immobility or sleep accompanied by 

high frequency oscillations. Moreover, in the two studies, no control condition was 

investigated, therefore it is possible that ripples are only a trait marker related to 
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general cognitive ability rather than a learning-specific phenomenon.  

 

    Researchers have also examined whether there is cross-frequency coupling 

between the hippocampus and other neocortical areas to transfer the information from 

the hippocampus to neocortex for long-term storage. Clemens et al. (2011) have 

shown that at the timescale of milliseconds, parahippocampal ripples were tightly 

phase-locked to the troughs of sleep spindles from the parietal lobe and 

parahippocampus. Staresina et al. (2015) have reported that hippocampal sleep 

spindles clustered hippocampal ripples in their troughs, which together were 

modulated by the up-state (around 160 degrees’ phase angle) of hippocampal slow 

oscillations. These findings provide potential neurophysiological mechanisms of a 

temporally-structured frame for the transfer of memory trances. However, fewer 

studies have directly shown hierarchical phase-amplitude coupling after learning of a 

hippocampus-dependent task. With this aim, Molle et al. (2009) used scalp EEG 

recordings to investigate the influence of learning on sleep oscillations and sleep 

spindles in humans. They found that learning induced a discrete increase in amplitude 

during the depolarizing up-state (in an interval 500 – 800 ms following the negative 

peak and 450 – 200 ms before the negative peak) of the slow oscillation as compared 

to the non-learning condition. Spindle activity was clearly modulated by the slow 

oscillation phase and reduced during the down-state (30 – 110°) and enhanced during 

the up-state (220 – 320°). As compared with the non-learning control condition, after 

learning, spindle activity was enhanced at the transition into and during the up- states. 
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The researchers did not directly investigate human ripples in this experiment, since 

these are not readily accessible in EEG recordings.  

 

Research questions to be addressed in the current thesis 

 

The broad aim of this thesis is to investigate whether the two-stage model of 

spatial memory (Buzsaki, 1989, 2015), based on electrophysiological studies of the 

rodent hippocampus, can be translated to the human hippocampus. Navigating in a 

new environment is an essential activity in daily life. How to find a way in the new 

environment and to build an internal representation is crucial for human activities. 

Theories based on animal models of the hippocampus posit that memorizing new 

spatial information needs to undergo two stages, and that hippocampal theta and high 

frequency oscillations are the two dominant neuronal rhythms supporting cognitive 

processes during the two stages (Buzsaki, 1989, 2015). In the first stage, which often 

occurs during active navigation, new information is encoded accompanied by low 

frequency hippocampal theta oscillations. Memories are typically not imprinted 

immediately in the brain, but rather require repetition and reinforcement for 

consolidation (Skinner, 1938; Sutton & Barto, 1998). Thus, in the second stage, which 

happens when animals have finished exploration and are quietly resting or sleeping, 

the activated place cell assemblies during navigation will be reactivated accompanied 

by high frequency oscillations to strengthen the otherwise labile memory traces. In the 

current thesis, I aimed to investigate whether human hippocampal low frequency theta 
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and high frequency gamma oscillations 4  play similar roles in encoding and 

consolidation of new spatial information as reported in rodent studies.    

 

    Human hippocampal rhythms can be studied with invasive recordings in the 

hippocampus of the pre-surgery patients. However, opportunities for recordings from 

the brains of these patients are very limited. Due to the fact that the skull, scalp and 

cerebrospinal fluid (CSF) are almost transparent to magnetic fields, identifying and 

localizing hippocampal signals from the sensor signals non-invasively recorded by 

magnetoencephalography (MEG) provides a promising avenue to study human 

hippocampal rhythms by routine experimentation. However, it is still debated whether 

MEG can detect the signals from the human hippocampus, although a small but 

increasing body of evidence show that the MEG-recorded signals indexes 

neurophysiological mechanisms that are functionally comparable to those measured 

with invasive recordings in the hippocampus of humans (e.g., Bohbot et al., 2017; 

Ekstrom et al., 2005; Jacobs et al., 2016; Kahana et al., 1999) and animals (e.g., 

Buzsaki, 2002; Dragoi & Buzsaki, 2006; O'Keefe & Recce, 1993).  

 

In the present thesis, I had the following objectives. First, I aimed to review 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

4	
   Different researchers use different terminologies to refer to human analogue of ripple oscillations. 

Axmacher et al. (2008) termed 80 – 140 Hz as ripples, while Cornwell et al. (2014) termed the same 

frequency band as fast/high gamma. I used high-gamma oscillations/rhythms in the following chapters 

in this thesis to refer to 80 – 140 Hz frequency band in humans.	
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evidence and to make the case that MEG can reliably detect the signals from the 

human hippocampus. Second, I aimed to confirm that MEG can detect and localise 

hippocampal activities in healthy humans performing a virtual Morris water maze task, 

and to investigate the role of human hippocampal theta in environmental encoding 

and aimed to relate these oscillations to navigation performance. Third, I aimed to 

investigate whether hippocampal high frequency gamma oscillations during the 

inter-trial rest period play a role in memory consolidation, and aimed to investigate 

the relationship between hippocampal theta during navigation and high-gamma during 

inter-trial rest period and the relationship between high-gamma and navigation 

performance. Fourth, I aimed to examine whether the two rhythms would reflect the 

well-established behavioural differences between males and females in spatial 

navigation.  

 

Organization of the thesis 

 

    The remainder of the thesis is organized as follows. Chapter two reviews 

evidence that MEG is capable of investigating neuronal oscillations from the human 

hippocampus. Chapter three replicates left hippocampal activation during 

goal-directed navigation in a vMWM task reported by a previous study and further 

investigates a new potential role of hippocampal theta rhythms in environment 

encoding during navigation. Chapter four examines the functional relevance of 

hippocampal high-gamma oscillations in replay of newly encoded environment during 
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inter-trial rest period. Chapter five compares theta and high-gamma rhythms of males 

and females during navigation and rest period to test whether the difference of the two 

hippocampal rhythms could reflect the behavioural differences of the two groups in 

environmental learning during navigation, thereby reinforcing the functional 

importance of the two rhythms. Chapter six concludes the thesis by summarizing the 

main results and their theoretical significance, and indicates some future directions for 

MEG research on human hippocampal function.    
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Abstract 

 

Hippocampal rhythms are believed to support crucial cognitive processes including 

memory, navigation and language. Due to the location of the hippocampus deep in the 

brain, studying hippocampal rhythms using non-invasive magnetoencephalography 

(MEG) recordings has generally been assumed to be difficult or impossible. However, 

with the advent of whole-head MEG systems and development of advanced source 

localization techniques, simulation and empirical studies have provided good 

evidence that human hippocampal signals can be sensed by MEG and reliably 

reconstructed by source localization algorithms. This paper systematically reviews the 

simulation and empirical evidence and indicates the current state-of-the-art of the 

capacities and limitations of MEG “deep source imaging” of the human hippocampus.   

 

Keywords: Magnetoencephalography (MEG), hippocampus, deep source imaging 
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Introduction 

 

    The hippocampus is an important brain region for various cognitive processes, 

including spatial navigation (Buzsaki & Moser, 2013; O'Keefe & Nadel, 1978), 

memory (Horner & Doeller, 2017), and language comprehension (Piai et al., 2016). 

Neuronal oscillations are believed to be important mechanisms for these processes 

(Colgin, 2016) and it is thus of great importance to understand the functions of 

hippocampal rhythms. At the present time, there are several different methods 

available to investigate the function of the human hippocampus. fMRI is frequently 

used in experimental studies of hippocampal function in healthy humans; however 

due to its temporal resolution (on the order of seconds, Buckner & Logan, 2001), 

rapid rhythmic neuronal activities cannot be resolved with this technique. The scalp 

electroencephalogram (EEG) provides high temporal resolution on a timescale of 

milliseconds. However, source reconstruction of the EEG is complicated by the fact 

that electrical signals are vulnerable to distortions by skull, skin and cerebrospinal 

fluid (CSF) (Cohen, 2017; Lopes da Silva, 2010). Intracranial EEG (iEEG) provides 

both excellent spatial and temporal resolution, but it depends on very limited 

opportunities to obtain recordings from surgical patients.  

 

    Compared to scalp EEG, magnetoencephalography (MEG) has an advantage in 

identifying brain currents giving rise to the signals (Hari et al., 2000) recorded from 

MEG sensors outside the brain, because the skull, skin and CSF are almost 
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transparent to magnetic fields. This advantage allows MEG to contribute to 

comprehending and exploiting both regional and large-scale neural dynamics by 

clarifying the nature of spontaneous and event-related brain activities and by the 

elucidation of the mechanisms underlying inter-regional connectivity (Baillet, 2017). 

Due to its non-invasive nature, MEG may provide an avenue to study the function of 

neuronal dynamics of the human hippocampus by routine experimentation. 

Accordingly, it would play an important role in connecting the human data with 

animal and computational models of electrophysiology in health and disease (Baillet, 

2017). However, whether MEG can reliably detect hippocampal signals has been a 

topic of debate, due to the following considerations. First, magnetic signals decay 

rapidly with distance, so signals from the hippocampus are thus assumed to be 

strongly attenuated relative to signals from the neocortex (Hillebrand & Barnes, 2002; 

Moses et al., 2011). Second, some widely used source localization techniques such as 

minimum norm estimation are strongly biased towards the neocortical surface and 

away from deep brain regions (Attal & Schwartz, 2013). Third, some studies (Mikuni 

et al., 1997; Oishi et al., 2002) have reported variable and limited ability of MEG to 

detect interictal spiking in the hippocampus of epileptic patients observable with 

intracranial electrodes or electrocorticography (ECoG) grids. Fourth, the folded nature 

of the hippocampal morphology may lead to signal cancelation (Mikuni et al., 1997).  

 

    However, with the advent of whole-brain MEG systems and increasing 

sophistication of source localization algorithms, a number of laboratories have 
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reported detection of hippocampal signals with MEG (e.g., Backus et al., 2016; 

Cornwell et al., 2008; Moses et al., 2009). A series of simulation studies (e.g., Attal & 

Schwartz, 2013; Meyer et al., 2017; Stephen et al., 2005) have been carried out to 

systematically investigate the feasibility of and limits on MEG measurements of 

hippocampal activity with known ground truth about the whether the source is the 

hippocampus or not. The present review aims to integrate and synthesize the findings 

of the major simulation and empirical studies of MEG measurements of hippocampal 

activity. The reviews begin with a brief introduction of the anatomy and cellular 

architecture of the hippocampus, followed by a brief introduction to MEG. Simulation 

studies and empirical studies are then reviewed.  

 

Anatomy of the hippocampus 

 

    The hippocampus is one of several related brain regions that together constitute a 

functional system called the hippocampal formation (Amaral & Lavenex, 2006). The 

constituent areas include the dentate gyrus, hippocampus proper, subicular complex 

(subiculum, presubiculum, and parasubiculum), and entorhinal cortex (Insausti, 1993). 

The hippocampus proper has three subfields: CA1, CA2 and CA3 (CA is short for 

cornu ammonis; “Ammon's horn”, referring to the ram-headed god Amun of Egyptian 

mythology). Some researchers further subdivide CA3 into CA3 and CA4 regions. The 

basic morphology of the mammalian hippocampus proper is an elongated, curved and 

rod-like structure (Insausti, 1993) (Fig. 1A). The hippocampus proper consists of one 
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layer of principal neurons (e.g., pyramidal neurons) (Forster et al., 2006), which are 

neatly arranged in parallel with the dendrites aligned perpendicularly to the surface of 

the hippocampus proper (Fig. 1B). Due to the geometric configuration of pyramidal 

neurons with the dendrites facing one direction and the soma another, the electrical 

fields from such cells can extend over long distances and can induce substantial ionic 

flow in the extracelluar medium (Lorente de No, 1947). In principle, then, the 

synchronized activation of this type of cells could produce signals measurable at a 

distance by MEG and EEG (Murakami & Okada, 2006).   
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Figure 1. Anatomical and cellular architecture of the hippocampus. A. Subfields of the 

hippocampal formation. B. Principal neurons in the hippocampal proper (CA regions) and the 

dentate gyrus.  

Figure 1A is reproduced from Parkin (1996).  Figure 1B was reproduced from Rolls (2010). 

 

MEG  

 

    MEG is a technique for measurement of human brain function via detection and 

interpretation of magnetic fields emanated from the brain with millisecond temporal 

A

B
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resolution (Hämäläinen et al., 1993; Ioannides, 2006). Compared with Earth’s 

magnetic field and urban magnetic noise, the magnetic field magnitude of the brain is 

about a factor of 1 million to 1 billion smaller (Vrba & Robinson, 2001). To detect 

such small magnetic fields, highly sensitive magnetic detectors are needed in 

conjunction with noise reduction techniques. Current technology is based on the 

superconducting quantum interference device (SQUID) coupled with flux 

transformers bathed in cryogen, and contained within a magnetically shielded room 

(MSR) to increase the overall magnetic field sensitivity1 (Fagaly, 2006). The flux 

transformer pickup coils can have various configurations and different commercial 

MEG companies employ different types. There are three main types of coil 

configurations: magnetometers with a single loop of wire, axial gradiometers and 

planar gradiometers with two or more magnetometers combined with opposite 

orientation and with a certain distance between coils (called baselines) (Fig. 2). 

Different coil configurations have different performances in terms of noise reduction 

and sensitivity to depth below the scalp (Fig. 3). In general, axial magnetometers with 

a baseline of 3 – 8 cm give optimum signal-to-noise ratios (SNRs) compared to 

magnetometers (the baseline of magnetometers can be regarded as infinite) and planar 

gradiometers (the baseline of planar gradiometers is about 1.4 – 1.6 cm) and the order 

of the sensitivity to signals in depth is magnetometers, axial gradiometers and planar 

gradiometers (Lopes da Silva, 2010).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 New sensing technology is emerging and maturing, such as non-cryogenic HyQUID detectors and 

optically pumped magnetometers, see Baillet (2017).  
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Figure 2. Flux transformer pick up coils. (a) magnetometer; (b) first-order series planar 

gradiometer (c) first-order parallel planar gradiometer (d) first-order symmetric series axial 

gradiometer (e) first-order asymmetric series axial gradiometer; (f) first-order symmetric 

parallel axial gradiometer (g) second-order series axial gradiometer.  

Figure 2 is reproduced from Hämäläinen et al. (1993).  

 

 

 

Figure 3. A. Signal-to-noise ratio (y-axis with arbitrary units) of MEG sensors as a function 

of the length of the baseline of the flux transformer pick up coils (x-axis). B. Sensitivity of 

different types of flux transformer pick up coils (y-axis with arbitrary units) as a function of 
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depth under the scalp (x-axis). The hippocampus is about 5 cm beneath the scalp.  

Figure 3A is reproduced from Vrba and Robinson (2001). Figure 3B is reproduced from 

Lopes da Silva (2010). 

 

    From the measured data on the scalp, we typically wish to infer the 

spatiotemporal dynamics of neural activities at the source level, a process referred to 

as source localization. This is an ill-posed problem, because given a certain 

topography at the sensor level, there are an infinite number of configurations at the 

source level that could produce the measured magnetic fields (Baillet, 2017). 

However, by adding prior information and constraints, such as the anatomy from 

magnetic resonance imaging (MRI), and head geometry, the problem can be solved 

with source localization algorithms (Gorodnitsky et al., 1995; Im et al., 2005; 

Ioannides et al., 1990; Mattout et al., 2006; Wolters et al., 2006). To estimate sources 

from MEG scalp signals, the general procedure is to solve the forward and inverse 

problems sequentially (Attal et al., 2012; Hämäläinen et al., 1993).  The forward 

solution computes the gain matrix composed of the contribution of each brain source 

to the external sensors, and with the head geometry modelled using realistic (e.g., 

Fuchs et al., 1998; Nolte, 2003) or spherical head models (e.g., Sarvas, 1987). 

Therefore, it answers the question of ‘what would activity at the scalp look like, given 

activation of dipole sources in the brain’ (Cohen, 2014). The inverse solution then 

computes the current sources from the topographical pattern of activity seen in the 

data by considering the topographical patterns generated by forward solutions.  
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    MEG inverse solutions can be roughly categorized into two classes: equivalent 

current dipole fitting and distributed-source imaging methods (Hämäläinen & Hari, 

2002). Distributed-source imaging methods can be subdivided into nonadaptive 

distributed-source imaging methods, including minimum norm estimation (MNE) and 

its variants such as low-resolution electromagnetic tomography (LORETA); and 

adaptive distributed-source imaging methods, such as beamforming (Cohen, 2014). 

As previously mentioned, it has been conventionally assumed that MEG is insensitive 

to signals from deep sources in the brain (Moses et al., 2011), because neuromagnetic 

signals decay strongly as a function of distance and some source localization 

algorithms have a strong bias towards the neocortex.  

 

MEG and the hippocampus: Simulation studies 

 

    Simulation studies (Table 1) have been directed to two broad questions.  First, 

can hippocampal activation be reliably detected by MEG sensors and if so, can this 

activity be dissociated from other signals and noise? Second, can hippocampal 

activation be localized by source localization algorithms, especially in the presence of 

concurrent sources in the cerebral cortex?  
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Studies Summary 

Chupin et al. (2002) This study evaluated the relative contributions of hippocampal and 

neocortical regions to MEG sensor signals. 

Stephen et al., (2005) This study investigated whether MEG was able to differentiate 

between hippocampal activity and neocortical activity and between 

hippocampal activity and parahippocampal activity.  

Attal et al., 2007  

Attal & Schwartz, 2013  

Attal et al, 2012 (a review) 

In these studies, simulations were performed to determine the 

detectability of the activation from deep sources including the 

hippocampus by MEG sensors; the performances of different 

depth- weighted minimum norm inverse operators in deep source 

localization were compared.   

Quraan et al., 2011 

Mills et al., 2012 

The study investigated the ability of beamforming technique to 

localize the hippocampal signals with different strengths in 

presence of different strengths of neocortical activation.  

Meyer et al., 2017 Using Bayesian model comparison, this study investigated which 

model (one containing cortical surface and one containing both 

cortical surface and the hippocampus) provided a more likely 

explanation of the dataset with simulated hippocampal activity. The 

performances of different inverse operators were compared as well.  

 

Table 1. MEG simulation studies of the human hippocampus  

 

    An early study (Chupin et al., 2002) was carried out to evaluate the relative 

contribution of hippocampal and neocortical regions to MEG sensor signals from a 

forward problem point of view. This work simulated the activation of hippocampal 

and neocortical patches one after the other based on different current dipole moment 

densities estimated in those regions from animal models (Murakami & Okada, 2006; 
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Okada et al., 1996). The MEG gain matrices (MEG fields) relating to the 

hippocampus and neocortical areas were computed in a spherical head model in 

accordance with a CTF whole-head 151-channel system configuration (with 

first-order axial gradiometers).  Results showed that average cortical activation 

increased linearly as a function of patch size, whereas hippocampal fields reached a 

plateau (saturation) for patches greater than about 2 cm2. This might be due to the 

geometry of the hippocampus, causing partial cancellation of the signal when large 

areas of the hippocampus are activated. The cortical magnetic fields were larger than 

the hippocampal fields, but the hippocampal fields (a mean of about 100 fT) were 

significantly larger than intrinsic MEG device noise level (10 fT at 10 Hz) and 

averaged brain background activity (a few tens of fT). These results show that 

although the hippocampus is farther away from the sensors relative to the neocortex, 

physiologically reasonable activations can result in magnetic fields large enough to be 

detected by MEG sensors. It may be that the higher current densities in the 

hippocampus relative to the neocortex compensate for the greater distance away from 

MEG sensors (Attal et al., 2007).  

 

    Stephen et al. (2005) explored whether MEG is able to differentiate between 

activity in different subfields of the hippocampus and superficial neocortex and 

between activity in the hippocampus and the parahippocampus, when activated 

sequentially and concurrently. The simulated signals were embedded in real 

background brain activities recorded using a 122-channel Elekta system (with planar 



 57 

gradiometers) from five epileptic patients in the resting state. They found that at the 

sensor level, the addition of real background brain activity to the simulated activity 

could significantly change the waveform of the simulated activity relative to that 

modelled without background activity. To determine the discriminability of the 

simulated sources at the sensor level, root mean square error (RMSE) values were 

computed (derived from RMSE = ||1-Csim||; with ‘|| ||’ being the Euclidean form; Csim 

defined as the correlation value at each channel between the simulated waveform with 

background activities and that without background activities; the auto-correlation at 

each channel of the noise-free waveform = 1). They hypothesized that if two sources 

can be differentiated, for instance CA1 and parahippocampus, the RMSE of CA1 with 

versus without background activity should be significantly smaller than RMSE of 

parahippocampus with background activity versus CA1 without background activity. 

If a significant difference was found, they tested whether a double dissociation was 

achieved. For instance, whether RMSE of parahippocampus with background activity 

versus without was also significantly less than RMSE of CA1 with background 

activity vs. parahippocampus without background activity. If a double dissociation 

did not occur, it suggested weak differentiability but with significant differences in 

the waveform patterns.  

 

    The results showed that activation of the hippocampus with one subfield or all 

subfields could be differentiated from activation from superficial neocortex and 

doubly dissociated. Parahippocampal activation could be differentiated from 
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hippocampal activation when the two regions were simulated sequentially. 

Simultaneous activation of parahippocampus and hippocampus could also be 

differentiated from single hippocampal or parahippocampal activation in isolation, but 

no double dissociation was achieved in either case. At the source space, dipole fitting 

was used for source location. To avoid biasing the results with known source 

locations, and to ensure the global minimum was reached, searches with random 

starting parameters were carried out across the whole brain. Results demonstrated that 

hippocampal sources and superficial cortical sources could both be located and 

differentiated, with 73% of all sources within a 10 mm error range and the mean 

amplitude-peak time difference between modeled peak and the simulated peak being 

1.1 ms. When all the subfields of the hippocampus and dentate gyrus were simulated 

simultaneously, there was partial cancellation. However, hippocampal sources could 

only be differentiated from parahippocampal sources when the two regions activated 

sequentially and could not be resolved when activation overlapped in time.  

 

    Attal and colleagues (Attal et al., 2007; Attal et al., 2012; Attal & Schwartz, 

2013) performed simulation studies based on realistic anatomical and 

electrophysiological models to explore the detectability of MEG for deep sources, 

such as the hippocampus, the amygdala, and thalamus, and to compare the 

performance of different depth weighted minimum norm inverse operators (one depth 

weighted MNE and two noise-normalized depth weighted MNE algorithms). As in 

Chupin et al. (2002), to mimic the activations of different areas, different values of 
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current dipole moment density in different regions of interest were based on animal 

models to calculate the simulated MEG fields on a 151-channel sensor array (axial 

gradiometers) for each region of interest. Simulation of activation from each region of 

interest in seven participants was performed for patch sizes ranging from 1 – 5 cm2 

for surface patches and 1 – 5 cm3 for volume patches sequentially or concurrently. As 

expected, the simulated MEG fields for subcortical areas were ten times lower than 

that for neocortex, but were strong enough to overlap parts of the distribution of the 

MEG field of neocortex, especially for the hippocampus and the amygdala. Then, the 

simulated fields were added to individual resting state MEG data, which were then 

inverted with a forward spherical head model and three inverse operators (depth 

weighted MNE (wMNE), dynamic statistical parametric mapping (dSPM) and 

standardized low-resolution electromagnetic tomography (sLORETA)), to localize the 

sources. DLEg (the Euclidian distance of a solution’s gravity center from the 

reconstructed source location to the true location) and DLEm (the Euclidian distance 

of a solution’s maximum from the reconstructed source location to the true location) 

were used to assess the ability of the three operators.  

 

    With a single subcortical activation, DLEg showed better results using wMNE 

than the two noise-normalized depth-weighted MEG inverse operators (dSPM and 

sLORETA) with errors less than 8 mm in the majority of the hippocampus and the 

amygdala. Conversely, the better DLEm was obtained by dSPM and sLORETA, but 

the spatial patterns for the two inverse operators were not the same. sLORETA had a 
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lower DLEg in the deeper central regions, such as the thalamus, whereas dSPM had a 

very good estimation over the hippocampus but strong errors in the thalamus. For 

concurrent activation of two sources, one in the hippocampus and one in the visual 

cortex, when the two activations had little overlap (25%), hippocampal generators 

were well estimated by the three inverse operators, but only dSPM maintained the 

local maximum in the hippocampus. With increasing overlap of the activation of the 

two areas, the performance of all of the methods decreased. wMNE had good 

detection of hippocampal activation when the overlap was up to 50%, whereas 

sLORETA and sSPM had good estimation of hippocampal activation even when the 

two sources were simultaneously activated, but created a local maximum in the 

thalamus (a deep ghost source).  

 

    The researchers further computed point-spread functions (PSF) to quantify the 

distortion of the source reconstruction by the inverse operators, namely, the spread of 

hippocampal sources to other cortical and subcortical areas. The resulting PSF maps 

of hippocampal sources showed that highest values were localized in the medial 

(parahippocampus and entorhinal cortex) and lateral temporal lobe. Compared to 

wMNE PSF map, sLORETA PSF map of hippocampal sources showed a significant 

decrease in PSF value in the neocortex but still significant values in the 

parahippocampal areas; however, the deeper regions in the thalamus and the nearest 

amygdala part showed a PSF value increase. dSPM PSF map of hippocampal sources 

showed small values in the neocortex and other subcortical structures. To quantify the 



 61 

distortion that is induced from other source locations, cross-talk functions (CTF) were 

computed. The three inverse operators returned very similar CTF maps, and the 

strongest values of the CTF maps were located in the lateral temporal lobe, especially 

in the superior temporal sulcus (STS), which suggests the activity of STS is most 

likely to influence the reconstructed hippocampal sources.  

 

    Beamforming source localization methods are increasing in popularity, due to an 

intrinsic ability to attenuate signals from outside the region of interest (Mills et al., 

2012). Quraan and colleagues (Quraan et al., 2011) have simulated the ability of 

beamformers to localize hippocampal activation. In one set of simulations, activations 

placed in the anterior part of bilateral hippocampi with respect to each of 15 

participants’ hippocampi were added to uncorrelated random Gaussian noise at 

typical levels in an MEG system. Each source was simulated in the tangential 

orientation as a 50 ms segment of a 10 Hz sinusoid with a physiologically realistic 

range of amplitudes ranging from 10 – 40 nAm, Group average results showed that 

beamforming was able to localize the hippocampus at all simulated strengths. At 40 

nAm, the average localization error was 7.5 mm and went up to 10 mm at 10 nAm. 

Only a small systematic bias was found for the x, y, z coordinate errors 

(Xerror=Xreconstructed-Xsimulated).   

 

    To represent the real case scenario, in the second set of simulations, the 

simulated hippocampal activation was added to real visual evoked fields (VEFs) 
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acquired with a 151-channel CTF system (axial gradiometers), but temporally 

displaced from the visual activation. When the simulation strength was greater than or 

equal to 30 nAm, the simulated field was visible on the sensor level global field 

power (GFP) plot; but disappeared when the simulation strength was at or below 20 

nAm. However, beamforming was able to localize the hippocampal activation at all 

simulated source strengths and the localization varied by a maximum of 7 mm among 

the four group averages of different activation strengths. However, lower simulated 

hippocampal activation resulted in less focal localizations. At 10 nAm, artifactual 

peaks appeared outside the hippocampus. The researchers also tested the influence of 

other factors such as trial number and participant number on localization accuracy. 

Overall, more trials and participants resulted in more accurate source localization. 

Analyses which aimed to investigate whether there was any systematic localization 

bias in the presence of low brain noise were performed as in the first simulation. A 

localization bias was found in the lateral direction toward the MEG sensors. Thus, 

noise can introduce systematic bias to reconstructed hippocampal sources.  

 

    In the third set of simulations, the simulated source was added to temporally 

overlapping visual evoked fields (VEFs). At strengths of 40 nAm, hippocampal 

activation was detected as the strongest activation across the whole brain, but at 30 

nAm, the visual source was stronger (although the hippocampal activation was still 

visible). At 20 and 10 nAm, the hippocampal signal was no longer visible due to 

leakage from the visual sources. To remove leakage from the visual source, condition 
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subtraction was used. That is, the source localization image of the experimental 

condition was subtracted from that of the control condition which evoked similar 

basic sensory responses but not the same degree of hippocampal activation. Using this 

subtraction method, hippocampal activation was clearly detected even at 10 nAm. 

However, at the individual participant level, in the presence of both low and high 

brain noise, hippocampal activation could be detected in only 2 or 3 out of 15 

participants even with condition subtraction.  

 

    In a follow-up study, Mills et al. (2012) compared the accuracy of localizing 

hippocampal activation using different subtraction methods: post-localization 

subtraction (used in Quraan et al., 2011), and pre-localization subtraction. 

Pre-localization was done by first subtracting the sensor data of the two conditions 

and beamforming was performed on the difference sensor data to localize the source. 

In situations of hippocampal activation embedded in either low or high brain noise, 

pre-localization outperformed post-localization subtraction method in terms of source 

localization accuracy and the ability to detect weak hippocampal activation.  

Applying the pre-localization method to empirical data acquired with a 151-channel 

CTF system while participants were performing a transverse patterning task (shown to 

activate the hippocampus using other imaging modalities; e.g., Driscoll, 2003; 

Meltzer et al., 2008) at the individual level, hippocampal activation could be detected 

in up to six out of fourteen participants, compared to only two participants using 

post-localization subtraction. These researchers noted that the main drawback of 
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sensor data subtraction is that it is susceptible to changes in head position which 

would limit the localization accuracy. Thus, for the ideal situation, the experimental 

and control conditions should be interleaved in one experimental run so that the head 

movement and MEG-MRI co-registration error is the same.  

 

    Recently, Meyer et al. (2017) used Bayesian model comparison to examine MEG 

sensitivity to hippocampal activity. A single dipole perpendicular to the surface of the 

hippocampal curvature or cortical surface was simulated in either the hippocampus or 

the cortical areas with a 300 ms segment of a sinusoidal waveform of 20 Hz and a 

dipole moment of 20 nAm. Gaussian white noise was added to simulated MEG fields. 

Then the researchers inverted the data using two different realistic forward models, 

one which included both the cortical surface and the hippocampus and one which only 

included cortical surface and with three inverse operators, namely, minimum norm 

estimation (MNE), empirical Bayes beamformer (EBB) and multiple sparse priors 

(MSP). Free energy (Friston et al., 2006) was used as an index to quantify the model 

evidence of a given forward model with a given inverse operator. Free energy rewards 

the model that fits the data appropriately and penalizes models that are 

overly-complex. The researchers hypothesized if the simulation was in the 

hippocampus, the combined model with cortical areas and the hippocampus would 

outperform the model with only cortical areas (and would return a higher free energy 

value), because if using the cortical model, one needed a more complex combination 

of cortical sources to fit the data equally well. Results showed for all the three inverse 
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operators, the combined model had a higher free energy value than the cortical model, 

but only the free energy value obtained from EBB and MSP inverse operators reached 

significance.  

 

    The source images echoed these results. When the correct model was used, the 

source maps of EBB and MSP were accurate and focal. When the wrong model was 

used, the source maps of EBB and MSP showed an increase in spatial spread and 

decrease in accuracy of the peak location. MNE returned the most diffuse source map 

with the peak outside the hippocampus, but the general pattern was similar across the 

three inverse operators. An alternative measure — dipole localization error (DLE) – 

was concordant with the results using free energy values and the cortical model gave 

higher DLE values than the combined model.  

 

    The researchers further simulated a medial cortical area, only 2.14 mm from the 

hippocampus, to see whether the model comparison would return false positive results. 

The two models did not return significantly different results. These researchers also 

tested the influence of signal-to-noise ratio (SNR) and MEG-MRI co-registration 

error on the model comparison. It was shown that poor SNR was less harmful to the 

ability to differentiate models than co-registration error. When the co-registration 

error was greater than 3 mm, the model comparison could not return accurate results.  
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Interim summary 

 

    Based on the results of simulation studies reviewed above, we can begin to 

answer the questions posed in the previous section. Magnetic fields emanating from 

the hippocampus can be detected by MEG sensors (by both planar gradiometers and 

axial gradiometers). Cancellation occurs when hippocampal subfields and dentate 

gyrus were activated together but is only partial. Whether the hippocampal magnetic 

fields are visible or not on the global field power plot depends on the strengths of 

background brain ‘noise’, including whether there are strong magnetic fields from 

cortex (e.g., visual area). However, whether the signal is visible at the sensor level or 

not, source localization algorithms can localize hippocampal sources at the group 

level. SNR at the sensor level does not reflect the ability to localize weak 

hippocampal sources (Meyer et al., 2017), in line with results from other quantitative 

fields that small signals embedded in high noise backgrounds can be detected at high 

confidence levels (Quraan et al., 2011). A variety of source localization algorithms 

such as dipole fitting, depth-weighted MNE, and beamforming can be used to localize 

hippocampal sources. Condition subtraction can increase the ability to detect 

hippocampal activation, especially for beamforming. At the individual level, 

MEG-MRI co-registration errors strongly influence localization accuracy. If these 

co-registration errors are not systematic across participants, and the head movement is 

reasonably low (less than 5mm in any direction), group averaging can alleviate the 

influence of co-registration errors and increase accuracy of localization of the 
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hippocampal sources.  

 

MEG and the hippocampus: Empirical studies 

 

    Hippocampal sources have now been reported by a number of MEG studies 

(Table 2). The empirical studies (unlike simulation studies) do not have a known 

ground truth. Therefore, common reports of hippocampal activation from MEG 

studies and other techniques/methods (e.g., iEEG, fMRI, lesion studies and animal 

studies) using the same/similar paradigm provide validation that hippocampal 

activation can indeed be detected by MEG. These experimental paradigms used to 

elicit hippocampal activation in MEG studies include memory encoding (e.g., 

Crespo-Garcia et al., 2016), retrieval (e.g., Guderian & Duzel, 2005) and integration 

(e.g., Backus et al., 2016), spatial navigation (e.g., Cornwell et al., 2008), violation 

detection (e.g., Garrido et al., 2015), and transverse patterning (e.g., Moses et al., 

2009).   

 

    As described in chapter one, hippocampal low frequency theta oscillations 

during virtual navigation are of considerable interest because of the linkages to classic 

studies in rodents (e.g., Buzsaki et al., 1983; Fox et al., 1986; O'Keefe & Recce, 1993) 

showing that when animals are actively exploring the environment, there is a striking 

increase in theta power in the hippocampus. Theta oscillations are believed to provide 

a timing mechanism for place cell firing (Colgin, 2016; O'Keefe & Recce, 1993) and 
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are thought to play an important role in learning (Burgess & O'Keefe, 2011; Buzsaki 

& Moser, 2013; Lever et al., 2014). Subsequently, iEEG studies (e.g., Bohbot et al., 

2017; Ekstrom et al., 2005; Jacobs et al., 2009; Vass et al., 2016; Watrous et al., 2013) 

have reported a comparable low frequency theta power increase in the human 

hippocampus during virtual, real or mental navigation.  

 

    Using a whole-head MEG system with 275 first-order axial gradiometers, 

Cornwell et al. (2008) recorded neuromagnetic responses of the brain of normal 

healthy participants while they were performing a virtual version of Morris water 

maze task (Morris, 1984), which has been used extensively to elicit the hippocampal 

theta oscillations in rodent studies (e.g., Olvera-Cortes et al., 2012; Olvera-Cortes et 

al., 2004). In the virtual water maze task, participants are required to find a hidden 

platform fixed in a goal location in hidden platform condition and to randomly swim 

in a control condition. Beamforming was used to localize hippocampal theta signals. 

It was found that hippocampal theta power in the hidden platform condition was 

significantly stronger than that in the random swimming condition, in agreement with 

what has been found by human iEEG studies and animal studies in a similar 

behavioural context. Recently, Meyer et al. (2016) recorded participants’ brain 

responses using a whole-head MEG system with 275 axial gradiometers during a 

spatial navigation task which has been shown to activate the hippocampus. They 

tested how well the sensor level signals could be predicted by the lead fields 

computed based on two different generative forward models respectively: one that 
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had MRI-derived correct anatomy and one that contained MRI-derived anatomy but 

with rotated hippocampi. They found that the lead field computed from the model 

with rotated hippocampi explained significantly less MEG sensor data than that 

computed from the correct model.  

 

    Comparison of source reconstructed images of patients with the hippocampus 

removed with that of normal controls in a hippocampus-dependent task offers a way 

to evaluate the validity of using MEG to detect hippocampal signals in empirical 

experiments. In an auditory oddball paradigm (a deviant sound embedded in a series 

of standard sounds) shown with iEEG (Halgren et al., 1980) to activate the 

hippocampus, Ioannides et al. (1995) and Okada et al. (1983) successfully localized 

hippocampal activity using MEG recordings. In addition, Ioannides et al. (1995) 

compared the source localization image of the patient with hippocampus and 

amygdala removed with normal participants. They found no activation in the 

hippocampus and amygdala complex in the MEG source image of the patient, while 

clear hippocampal activities were seen in normal participants responding to the 

deviant sound. These findings support that contention that MEG can reliably detect 

hippocampal signals, and argue against the possibility that the reconstructed 

hippocampal signals are artefactual.   

 

    Simultaneous iEEG and MEG recordings also support the idea that MEG can 

measure hippocampal activity. In an intensive reading task, with the depth electrodes 
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placed in the hippocampus of four patients with epilepsy, Dalal et al. (2013) 

simultaneously recorded MEG and iEEG data. Results showed that depth EEG in the 

theta frequency range (4 – 8 Hz) from the hippocampus was strongly correlated at 

zero lag with MEG sensor signals over the temporal lobe. In another study, with a 

whole-head MEG system with 248 magnetometers, MEG signals were acquired while 

participants were performing an associative memory task, Crespo-Garcia et al. (2016) 

found that the power of low frequency (2 – 3 Hz) oscillations in the mid-posterior 

hippocampi reconstructed by beamforming was significantly larger than that in the 

pre-trial interval, and the increased hippocampal power was negatively correlated 

with subsequent memory accuracy, indicating that local suppression of low-frequency 

activity is essential for more efficient processing of detailed information. These 

results were corroborated by results from simultaneously recorded iEEG data. Note 

that the direction of correlation with behavioral performance is opposite to what has 

been found for higher frequency 4 – 8 Hz in other studies (e.g., Cornwell et al., 2008; 

Kaplan et al., 2012), suggesting that there might be different subsequent memory 

effects for lower and higher low frequency oscillations.  

 

    Findings from parallel MEG/fMRI provide further validation for using MEG to 

detect hippocampal signals. Although fMRI signals are blood oxygen level-dependent 

(BOLD) signals related to neuronal activities (Ogawa et al., 1990) and MEG directly 

measures the magnetic fields induced by neuronal activities, the origin of at least 

some of the signals of the two imaging modalities are likely to originate from 
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comparable underlying physiological processes (i.e., post-synaptic current flow; Hall 

et al., 2014). Moreover, a number of studies (e.g., Brookes et al., 2005; 

Muthukumaraswamy & Singh, 2008; Singh et al., 2002) have shown a close spatial 

relationship between MEG-derived signals such as oscillatory power in multiple 

frequency bands with BOLD. Further, it was found that the use of fMRI based priors 

to solve the MEG inverse problem would return higher model evidence in a Bayesian 

framework for fMRI constrained MEG source reconstruction (Henson et al., 2010). 

All these lines of evidence support the contention that fMRI and MEG have some 

spatial concordance (Hall et al., 2014). On this logic, using parallel fMRI and MEG 

recordings during a virtual spatial navigation task, Kaplan et al. (2012) reported fMRI 

observed increased hippocampal activation during movement initiation periods versus 

stationary periods. Constructing the time series of this location from MEG sensor data 

using beamforming revealed that there was a theta power increase during movement 

initiation periods, supporting the idea that hippocampal theta supports volitional 

navigation.  

 

    In a study of functional connectivity in the resting state (Cousijn et al., 2015), 

independent component analysis (ICA) was used to identify networks in resting state 

fMRI data and MEG theta band activity reconstructed by beamforming. ICA of MEG 

theta band activity and fMRI data identified similar left and right lateralized 

hippocampal networks. Moreover, the spatial patterns of regions coactivated with the 

hippocampal network for fMRI and MEG was found to be highly correlated (r = 0.54). 
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Further analyses showed that intrahippocampal theta obtained from MEG was 

negatively correlated with hippocampal-prefrontal cortex coactivation obtained from 

fMRI, in agreement with the idea that hippocampal theta plays an important role in 

hippocampal-prefrontal integration (Benchenane et al., 2010). While the exact 

relationship between MEG and fMRI signals is a complicated topic (Hall et al., 2014) 

and beyond the scope of this paper, the point here is hippocampal activities reported 

by both fMRI and MEG argue strongly that hippocampal activities can be detected by 

MEG.     

 

Article Task MEG system Forward model Inverse model 

Backus et al., 2016 Memory integration Whole-head system 

with 275 axial 

gradiometers 

Single shell head 

model 

Beamforming 

Breier et al. (1998) 

Breier et al. (1999) 

Memory recognition 

Auditory verbal and 

non-verbal Memory  

148 magnetometers  Spherical head model Dipole fitting 

Campo et al. (2012) 

Campo et al. (2005) 

Working memory 148 magnetometers  Spherical head model Multiple sparse 

priors (MSP) 

Cornwell et al. (2012) 

Cornwell et al. (2008) 

Cornwell et al. (2014) 

Cornwell et al. (2010) 

Spatial navigation 275 axial gradiometers Spherical head model Beamforming 

Cousijn et al. (2015) Resting state 102 magnetometers and 

204 planar gradiometers 

Spherical head model Beamformer and 

Independent 

component analysis 

(ICA) 
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Crespo-Garcia et al. 

(2016) 

Item-place encoding 148 magnetometers Realistic anatomical 

and 

electrophysiological 

model  

Beamforming 

Engels et al. (2016) Resting state 102 magnetometers and 

204 planar gradiometers 

Spherical head model Beamforming 

Fuentemilla et al., 2014 Autobiographical and 

Semantic retrieval  

 

275 axial gradiometers Single shell head 

model 

Beamforming 

Guderian et al. (2009) 

Guderian and Duzel 

(2005) 

Memory encoding 

Memory retrieval  

148 magnetometers Not reported Minimum-norm 

current–density 

reconstruction 

Hamada et al. (2004) Oddball task 80 axial gradiometers Spherical head model Dipole fitting 

Hanlon et al. (2003) 

Hanlon et al. (2005) 

Hanlon et al. (2011) 

Transverse patterning 122 planar 

gradiometers; 

275 axial gradiometers 

Spherical head model; 

Not reported in the 

paper of 2011 

Dipole fitting; 

standardized Low 

Resolution 

Electromagnetic 

Tomography 

(sLORETA)  

Hopf et al. (2013) Transverse patterning 151 axial gradiometers Not reported Beamforming 

Ioannides et al. (1995) Oddball task 7 second-order 

gradiometers  

Spherical head model Magnetic field 

tomography (MFT) 

Kirsch et al. (2003) Eyebink conditioning 122 planar gradiometers  Not reported  Dipole fitting 

Kaplan et al. (2012) Spatial navigation 275 axial gradiometers Single shell model 

head model 

Beamforming 

Leirer et al. (2010) Transverse patterning 148 magnetometers Spherical head model Dipole fitting 

Garrido et al. (2015) Sequence violation  275 axial gradiometers Single shell model 

head model 

Beamforming 
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Martin et al. (2007) Transverse patterning 

Oddball task 

102 magnetometers and 

204 planar gradiometers 

Spherical head model Dipole fitting 

Moses et al. (2009) Transverse patterning 151 axial gradiometers Not reported Beamforming 

Nishitani et al. (1998) 

Nishitani et al. (1999) 

Nishitani (2003) 

Oddball task 

Emotional picture 

discrimination 

122 planar gradiometers Spherical head model Dipole fitting 

Papanicolaou et al. (2002) Memory retrieval 148 magnetometers  Spherical head model Dipole fitting 

Poch et al. (2011) Delayed 

match-to-sample task 

275 axial gradiometers Single-shell head 

model 

Beamforming 

Riggs et al. (2009) Scene recognition 151 axial gradiometers Not reported Beamforming 

Taylor et al. (2012) 

Taylor et al. (2011) 

Working memory 

Face recognition 

151 axial gradiometers Spherical head model Beamforming 

Tesche et al. (1996) 

Tesche (1997) 

Tesche and Karhu (1999) 

Tesche and Karhu (2000) 

Oddball task 

Mental calculation 

and picture viewing 

Sensorimotor 

integration 

Working memory 

122 planar gradiometers 

 

Single compartment 

boundary element 

conductor model  

 

Signal-space 

projection (SSP) 

 

Zouridakis et al. (1998) Word recognition  148 magnetometers Spherical head model Dipole fitting 

 

Table 2. Empirical MEG studies of the human hippocampus.  

 

Conclusions 

 

    Taken together, the evidence reviewed above strongly supports the contention 

that MEG can reliably detect signals from the hippocampus. We can draw on three 

converging lines of evidence:  
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(1) Physiological considerations. The principle neurons in the hippocampus 

are neatly aligned with the dendrites facing one direction and the soma 

another (Lorente de No, 1947), such that the signals produced by 

synchronization of those neurons can be detected by MEG (Murakami & 

Okada, 2006); the current dipole moment density in the hippocampus is 

several times larger than that in the neocortex, such that it can generate 

signals strong enough to be sensed by MEG sensors (Attal et al., 2007); 

although the geometry of the hippocampal formation is folded, signal 

cancellation is partial and occurs only when all hippocampal subfields and 

dentate gyrus are activate simultaneously (Stephen et al., 2005);  

 

(2) Simulation studies. Simulation studies show that hippocampal signals can 

be sensed by MEG sensors even with quite different pickup coil 

configurations, such as axial versus planar gradiometers. Various source 

localization algorithms can be used to reconstruct hippocampal sources 

from MEG data, as long as the algorithm can suppress the strong signals 

from other brain regions including the neocortex. In this sense, 

beamforming does a good job of suppressing the signal outside the region 

of interest without compromising the signal from the region of interest. 

Compared to source image reconstructed by MNE, the source image 

reconstructed by beamforming is more focal and the peak better localized 

to the hippocampus (Meyer et al., 2017) and compared to dipole fitting or 
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MSP, no priors about activation locations need to be specified for 

beamforming. Although this review mainly focused on evaluating 

detecting hippocampal signals with MEG in cognitive experiments, 

another good piece of evidence in favor of beamforming came from a 

recent study (Hillebrand et al., 2016) which used MEG and iEEG to detect 

the interictal spike discharges in epileptic patients. It was found that the 

time series of the virtual sensor in the hippocampi reconstructed by 

beamforming accurately matched the spike discharges identified in 

recordings from depth electrodes placed in hippocampi. A consideration, 

as shown in Quraan et al. (2011), is that beamforming cannot completely 

suppress strong signals from the neocortex, but condition subtraction can 

alleviate the leakage. Thus, researchers need to consider appropriate 

control condition during experimental design, as well as other factors such 

as the number of trials to increase the length of the covariance matrix 

(Brookes et al., 2008). 

 

(3) Empirical studies. A range of empirical studies have successfully shown 

that MEG can reliably detect and localize the hippocampal signals in 

various experimental paradigms which have already been shown 

hippocampal activation using other modalities and methods. Simultaneous 

iEEG and MEG recordings, and parallel MEG and fMRI studies both 

provide good evidence that MEG is capable of detecting hippocampal 
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signals. A lack of hippocampal signals from MEG data for the patient with 

removed hippocampus and amygdala complex supports the conclusion that 

hippocampal signals reconstructed in normal participants are not 

artefactual (Ioannides et al., 1995).  It is to be noted that at this stage, in 

empirical studies hippocampal detection by MEG still heavily rely on 

group averages. As shown in Meyer et al. (2017), co-registration error is 

important for accurate hippocampal source reconstruction. Group 

averaging can alleviate this problem if the co-registration error is not 

systematic across participants.  
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Abstract 

 

Low frequency theta band oscillations (4 – 8 Hz) are thought to provide a timing 

mechanism for hippocampal place cell firing and to mediate the formation of spatial 

memory. In rodents, hippocampal theta has been shown to play an important role in 

encoding a new environment during spatial navigation, but a similar functional role of 

hippocampal theta in humans has not been firmly established. To investigate this 

question, we recorded healthy participants’ brain responses with a 160-channel 

whole-head MEG system as they performed two training sets of a virtual Morris water 

maze task. Environment layouts (except for platform locations) of the two sets were 

kept constant to measure theta activity during spatial learning in new and familiar 

environments. In line with previous findings, left hippocampal/parahippocampal theta 

showed more activation navigating to a hidden platform relative to random swimming. 

Consistent with our hypothesis, right hippocampal/parahippocampal theta was 

stronger during the first training set compared to the second one. Notably, theta in this 

region during the first training set correlated with spatial navigation performance 

across individuals in both training sets. These results strongly argue for the functional 

importance of right hippocampal theta in initial encoding of configural properties of 

an environment during spatial navigation. Our findings provide important evidence 

that right hippocampal/parahippocampal theta activity is associated with 

environmental encoding in the human brain.  

 

Keywords 

Virtual reality, hippocampus, magnetoencephalography, spatial navigation, theta 

rhythm 

 

  



	
   98 

Introduction 

 

    The hippocampal formation (HF) represents an environment via the firing of 

‘place cells’ (O’Keefe & Nadel, 1978; Muller, 1996) and ‘grid cells’1 (Moser et al., 

2008, 2015; Jacobs et al., 2013). The HF is also thought to play a critical role in 

encoding new information into memory, via neurophysiological processes modulated 

by a slow sinusoidal rhythm—theta oscillations. The theta rhythm is a prominent 

mode of hippocampal activity and has been extensively characterized in studies of 

spatial navigation and memory with invasive electrophysiological recordings in 

animals (e.g., O’Keefe and Nadel, 1978; Wang et al., 2015; Zhang et al., 2016; 

Agarwal et al., 2016). In rodents, hippocampal theta oscillations have been shown to 

play an important role in encoding a new environment during spatial navigation 

(Jeewajee, et al., 2008; Penley et al., 2013). In humans, previous fMRI studies (e.g. 

Wolbers & Buchel, 2005; Doeller et al., 2008) have linked activation of the 

hippocampus to environmental novelty processing and learning, but the 

electrophysiological mechanisms are yet to be fully understood (e.g. Park et al., 2014; 

Rutishauser et al., 2010; Suthana et al., 2012; Staudigl & Hanslmayr, 2013). In this 

study, we investigated whether and how human hippocampal theta rhythm contributes 

to environment encoding.  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 There is no consensus concerning what brain regions are encompassed by the term ‘hippocampal 

formation’. Some researchers include entorhinal cortex while some don’t.  
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    Theta rhythms (~4 – 8 Hz) associated with spatial navigation have been observed 

with intracranial EEG (iEEG) in epileptic patients (e.g. Caplan et al., 2001, 2003; 

Ekstrom et al., 2005; Vass et al., 2016), but the invasive nature of these methods has 

meant there have been limited opportunities to systematically explore cognitive 

correlates of human hippocampal theta oscillations. Non-invasive 

magnetoencephalography (MEG) source imaging provides a window for examining 

the function of neuronal signals from deep brain structures, such as the hippocampus 

(e.g. Tesche and Karhu, 2000; Cornwell et. al., 2008a, 2010, 2012; Riggs et al, 2009; 

Attal & Schwartz 2013; Guitart-Masip el al., 2013; Fuentemilla et al., 2010, 2014; 

Cousijn et al., 2015; Backus et al., 2016), the amygdala (e.g. Hung et al., 2010; 

Cornwell et al., 2008b) and the thalamus (Attal & Schwartz, 2013) in both healthy 

and patient populations. Perhaps most compelling is work (Dalal et al., 2013) showing 

that MEG-reconstructed hippocampal activity highly correlates (i.e., zero phase delay) 

with simultaneous depth recordings of hippocampal electrical activity, allowing 

unprecedented validation of MEG deep source reconstruction. Using MEG deep 

source imaging techniques, Cornwell et al. (2008a) found greater theta activity in the 

left anterior hippocampus and parahippocampus during goal-directed navigation 

relative to aimless movements in a virtual reality environment. In another recent MEG 

experiment, Kaplan et al. (2012) reported that hippocampal theta power increased 

during the self-initiation of virtual movement, and that hippocampal theta oscillations 

during a pre-retrieval planning phase predicted subsequent memory performance.  

Such experiments indicate that MEG source imaging can play a crucial role in 
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bridging the gap between animal models and human research to determine what 

aspects of hippocampal function are common across species and what aspects are 

unique to the human brain. 

 

In this study, we extended this work using MEG to address an important 

theoretical question, i.e., whether and how the human hippocampal theta rhythm 

contributes to environmental encoding, as has been reported in rodents (e.g. Jeewajee 

et al., 2008; Penley et al., 2013). We recorded healthy male participants’ brain 

responses during navigation of a virtual Morris water maze, a computer-simulated 

task modeled after one extensively used for testing hippocampal-dependent spatial 

navigation in rodents (Morris, 1984). The experimental design was adapted from that 

of Cornwell et al. (2008a), in which there were two conditions (hidden platform 

condition vs. random swimming condition). We expanded this design with an 

additional training set with the environmental layout constant across training sets to 

allow us to determine whether hippocampal theta rhythms are sensitive to 

environmental encoding as reported in animal literature (please refer to Fig. 1 for the 

overview of the experimental design). In the hidden platform condition, the 

environment consisted of a virtual pool with four visual cues (objects with abstract 

patterns) attached to the surrounding walls. In the random swimming condition, the 

virtual pool was the same as that in the hidden platform condition, except that there 

were no visual cues attached to the walls. The motivation for removing visual cues 

was to investigate whether hippocampal theta oscillations had a general role in 
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environmental encoding; and if so, it should be modulated by novelty of both a 

cue-rich environment as in the hidden platform condition and environment without 

cues as in the control condition. In the hidden platform condition, participants needed 

to find the hidden platform as quickly as possible, while in the random swimming 

condition, the task was swimming aimlessly non-stop. To avoid the possibility that 

the contrast between the first and second training set was confounded with learning of 

a specific location, we changed the hidden platform location in the second training set.  

This paradigm offered a way to replicate findings of Cornwell et al. (2008a) with a 

different whole-head magnetometer (a KIT MEG system in the present experiment vs. 

a CTF MEG system in Cornwell et al., 2008a), while investigating a new potential 

cognitive function of right hippocampal theta oscillations.   

 

 

Figure 1. Overview of experimental design. There were two training sets in this task, each of 

which contained 20 hidden platform trials and 20 random swimming trials. Within each 

training set, the two conditions were alternatively presented (4 trials of hidden platform 

condition, 4 trials of random swimming condition, 4 trials of hidden platform condition, …). 

Hidden platform location differed between the two sets and was counterbalanced across 
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participants. Environment layouts in each condition were kept constant so that the first 

training set was in a new environment and the second one was in a familiar environment. 

Participants were instructed to find the hidden platform as quickly as possible in the hidden 

platform condition and to swim non-stop in the random swimming condition. 

 

    I made three predictions. First, left hippocampal theta activity should be greater 

in the hidden platform condition relative to the random swimming condition, as 

reported in Cornwell et al. (2008a), since the left hippocampus is thought to be a 

binding ‘device’ (e.g. Mitchell et al., 2000; Kessels et al., 2004). Second, right 

hippocampal theta activity should be greater in the new vs. familiar environment 

contrast in both conditions, as previous studies has shown that right hippocampal 

activation is associated with processing of a new configuration vs. a familiar one 

(Duzel et al., 2003) and with environmental novelty detection (Doeller et al., 2008). 

Third, right hippocampal theta activity during encoding in the first training set should 

be significantly associated with behavioral performance in both training sets, because 

if right hippocampal theta is for environmental encoding, and since good formation of 

configural knowledge of an environment (i.e., formation of a cognitive map of the 

space) would facilitate participant to choose an efficient path to move to any place in 

that particular environment (Wolbers & Hegarty, 2010), we should expect the 

magnitude of environment encoding-related right hippocampal theta correlated with 

navigation performance in both training sets where the environment was the same.  
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Methods 

 

Participants. Eighteen right-handed healthy male participants (mean age = 29 years; 

range = 18-39 years) participated in the present experiment and were included in the 

final data analyses. Two additional participants were excluded from the final data 

analyses due to excessive head movement during the MEG recording session. All 

participants had normal or corrected-to-normal vision. Inclusion criteria were: (1) no 

past or current psychiatric disorders; (2) no current use of psychoactive medications 

by self-report. Participants were also screened for dental work, metallic implants, a 

cardiac pacemaker, metal rods, and other magnetic material permanently fixed to their 

body. All procedures were approved by the Human Research Ethics Committee of 

Macquarie University.  

 

Virtual Morris water maze. This task was adapted from Cornwell et al. (2008a) (Fig. 

1). PsychoPy software (Peirce, 2007; 2008) was used to present a first-person 

perspective viewpoint of two virtual circular pools filled with opaque water. The two 

pools had the same size and geometry, with the diameter of the pools being 80 virtual 

units. One pool contained four visual cues fixed to the walls of the square room 

surrounding the pool, and the other had no visual cues. The pool with visual cues 

contained a hidden platform and the participants’ task was to navigate to the hidden 

platform as quickly as possible. If the hidden platform was not found within 25s, it 

became visible and participants were instructed to swim to it to finish the trial. If the 
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pool with no cue objects (random swimming condition) was presented, the task was to 

swim aimlessly non-stop for 15s. Environment layouts in each condition were the 

same for both training sets. Images were projected (InFocus Model IN5108; InFocus, 

Portland) onto a screen at a viewing distance of about 1 m. 

 

Trial structure. There were two training sets in the experiment, each containing 40 

trials (20 hidden platform trials, 20 aimless swimming control trials). Four trials were 

grouped as a block to be presented, so that in each training set, there were 5 blocks of 

hidden platform condition and 5 blocks of random swimming condition. Blocks of the 

two conditions were alternately presented (i.e., block 1 of hidden platform condition 

preceded block 1 of random swimming condition, followed by block 2 of hidden 

platform condition, which came before block 2 of random swimming condition,…, 

followed by block 5 of hidden platform condition, which went before block 5 of 

random swimming condition).  Within each training set, the position of the hidden 

platform across blocks was fixed, but different between the two training sets and was 

counterbalanced across participants to avoid learning effect of a specific location 

between training sets. Environment layout was the same in the two training sets in 

each condition. During the inter-trial interval of 4.5 - 5.5s duration (randomly jittered) 

participants viewed a blank gray screen. There was a 3-minute break between the two 

training sets.  

 

Task. Participants used a button box with three fingers (index, middle, ring fingers) 
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of their right hand to move forward or to turn left or right in the pools.  Movement 

speed in this task was constant.  They used the visual environment of the pool (wall 

cues or no cues) to determine whether they needed to search for a hidden platform or 

swim randomly. They were instructed to try their best to find the hidden platform as 

quickly as possible in the hidden platform condition. Thus, in the hidden platform, 

they would learn the hidden platform location trial by trial and would gradually take 

an optimal path to reach it. They were also told to look at the projected screen at all 

times and to swim non-stop until the trial finished. Participants began each trial facing 

the wall of the pool at one of three starting points (three starting points from the four 

positions in North, South, East, and West in pseudo-random order). Participants did 

not start from the quadrant of the hidden platform location and were observed 

throughout the experiment on a computer monitor outside the shielded room. 

Participants were monitored to ensure that they did not stop swimming for more than 

1s at a time, and were attending to the visual display at all times. Path lengths to reach 

the platform from starting position were recorded for each trial. Before the start of the 

second training set, participants were told that the hidden platform was in a new 

position. 

 

Data acquisition. Before MEG recordings, fiducial positions, marker coil positions 

and head shape were measured with a pen digitizer (Polhemus Fastrack, Colchester, 

VT). Neuromagnetic data were measured using a whole-head MEG system (Model 

PQ1160R-N2, KIT, Kanazawa, Japan) in a magnetically shielded room (Fujihara Co. 
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Ltd., Tokyo, Japan) with participants in a supine position. The MEG system consisted 

of 160 coaxial first-order gradiometers with a 50 mm baseline (Kado et al., 1999). 

Continuous MEG data were acquired during each training set at a sampling rate of 

1000 Hz. Head positions were obtained from five head marker coils attached to an 

elasticized cap placed on each participant’s head, and were measured before and after 

each recording. Maximum head movement tolerance was 4 mm in any direction. 

High resolution T1-weighted anatomical brain images were acquired on a 3T Siemens 

Magnetom Verio scanner with a 12-channel head coil at Macquarie University 

Hospital. Those anatomical images were obtained using 3D GR\IR scanning sequence 

with the following parameters: repetition time, 2000 ms; echo time, 3.94 ms; flip 

angle, 9 degrees; slice thickness, 0.93 mm; field of view, 240 mm; image dimensions, 

512 × 512 × 208. 

 

Data analyses. Data analyses included two steps: (1) localization of brain activity 

using the synthetic aperture magnetometry (SAM) beamformer implemented in the 

BrainWave Matlab toolbox (Version 3.0; http://cheynelab.utoronto.ca/brainwave) and 

(2) group analyses of volumetric beamformer images using Analysis of Functional 

NeuroImages (AFNI; Cox, 1996; http://afni.nimh.nih.gov). 

 

Source analysis. SAM (Robinson & Vrba, 1999) was used to estimate source activity 

in the theta frequency band (4 – 8 Hz). SAM estimates source signals at each brain 

voxel while suppressing signals from other locations by calculating optimum spatial 
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filters or beamformer weights at the location of interest using the signal covariance 

matrix from the sensor array (Hillebrand et. al., 2005).  

    In the current experiment, raw MEG data were epoched into 5 s windows 

including a 1s pretrial baseline period and 4 s following the onset of each trial (4 s 

was the fastest time from the starting point to the hidden platform, among all trials 

and participants). Magnetic fields were modeled with a single sphere head model 

derived from each participant’s structural MRI to fit the inner skull surface of each 

participant’s MRI (Sarvas, 1987). Covariance matrices were calculated from 

unaveraged 1 s active time windows locked to trial onset and 1 s pretrial baseline 

windows for each condition separately within a training set after applying a 4 – 8 Hz 

bandpass filter. Total covariance window length was 40 s for each condition (20 trials 

x 2 s). The source space was sampled into a three-dimensional grid of 4 mm3 voxels 

with an equivalent current dipole source at each location. 

 

    Since beamformer weights increase with depth, and the sensor level noise 

remains constant throughout the volume, the raw source power at each voxel of the 

brain must be normalized (Cheyne et al., 2007). In our analyses, beamformer outputs 

were normalized by the dual-state imaging method (Hillebrand et al., 2005), which is 

a standard way of beamformer analyses. In this method, normalization is carried out 

using real brain noise, a so-called control state and the state being normalized is called 

the active state, so that the resulting brain volumes represent the voxel-wise relative 

power difference between the two states. In the current study, we used pseudo-F SAM 
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images to represent the percentage change of the brain signal between the two states 

(active state and control state). In the case of event-related synchronization, the 

pseudo-F value is derived from the formula A/C -1, in which A is the source power in 

the active state (in our study, active state was post trial onset window) and C is the 

source power in the control state (in our study, the control state was pre-trial window). 

For event-related desychronization, the formula is 1-1/(A/C)=1-C/A. Therefore, the 

pseudo-F SAM volumes for each participant contain a power ratio value in each voxel 

across the whole brain. The term ‘pseudo-F’ is used is because the ratio of source 

power of active state over control state resembles the F-ratio. But the estimates of 

variance in the calculation are based on sensor noise level instead of between-state 

(active and control states) variability. Thus, it does not conform to the true F 

distribution. 

 

    In the current study, the 1s active windows were advanced in 250 ms increments 

(one lower bound theta cycle) with 75% overlap up to the 4 s (e.g. 0 – 1 s, 0.25 – 1.25 

s, 0.5 – 1.5 s, etc.), which was the fastest time from the starting point to the hidden 

platform among all trials and participants. The sliding window method (as opposed to 

simply analyzing the average power change of the entire post trial onset window of 4 

s) increases the detectability of theta power changes, given their transient nature (< 

500 ms in some cases; Arai, et al., 2014; Wyble, 2004; Kaplan et al., 2012; Sakimoto 

et al. 2013; Foster et al., 2013). This analysis produced pseudo-F SAM volumetric 

images to represent the percentage change of the theta power between the active 
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window and baseline window (i.e. pseudo-F values) for each condition. 

 

Group statistics. Individual SAM images were normalized to a Talairach brain 

template in AFNI to allow for group analysis in a standardized space. Normalized 

SAM images of 4 – 8 Hz theta power (pseudo-F values) were analyzed with 2 

(conditions: hidden platform condition vs. random swimming condition) ×  2 

(training sets: first vs. second) repeated measures ANOVAs. We chose three time 

windows of interest (1 – 2 s, 1.25 – 2.25 s, 1.5 – 2.5 s) based on the reported latencies 

of increased theta power in the study of Cornwell et al. (2008a). Additional time 

windows (0 – 1 s, 0.25 – 1.25 s, ..., 0.75 – 1.75 s, 1.75 – 2.75 s, ... , 2.75 – 3.75 s) 

were explored in post-hoc analyses. 

 

    Given our a priori hypothesis that the hippocampus and parahippocampal 

cortices would generate theta oscillations during spatial navigation and environmental 

learning (Cornwell et. al., 2008a; Park et al., 2014), a small-volume correction was 

performed over a mask containing both left and right hippocampi and 

parahippocampal cortices based on an automated Talairach atlas in AFNI.  A cluster 

alpha of 0.05 was set as the threshold for statistical significance. A cluster size 

criterion was determined by Monte Carlo simulations conducted in the AFNI program 

3dClustSim, an adaption of the program AlphaSim. This correction method has been 

employed by previous MEG beamformer studies (e.g. Mueller et al., 2012, 2013; Keil 

et al., 2012, 2015; Meltzer et al., 2013). Briefly, this correction method determines a 



	
   110 

minimum cluster size (i.e. minimum number of continuous voxels) given a certain 

threshold that is required for significance (for a full description, refer to 

http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.html). In the present 

study, for our a priori comparison in the three time windows of interest, Monte Carlo 

simulations were iterated 10,000 times, with the voxel threshold being set at p < 0.01 

and adjusted alpha threshold set at 0.05/3=0.017 (to correct for multiple comparisons 

across three time windows of interest). This requires a minimum of 21 continuous 

voxels in bilateral hippocampi and parahippocampi to be significant. For post-hoc 

comparisons, the voxel threshold was set at p < 0.01 and the adjusted alpha threshold 

at 0.05/9=0.006 (another six time windows except the primary three time windows of 

interest), requiring at least 30 continuous voxels to achieve significance. 

 

Time frequency representations (TFRs). TFRs were constructed from source 

waveforms at the peak location of goal oriented navigation related left hippocampus 

and environmental encoding related right hippocampus determined by the ANOVA 

results on the pseudo-F images to show right hippocampal theta power change 

relative to the baseline window across the 4 s post trial onset window. This was 

accomplished using a five-cycle Morlet wavelet transformation (Tallon-Baudry et al., 

1997) of single trial source activity over a frequency range of 3 – 50 Hz in 1 Hz steps 

using the formula: 

 

Wavelets were normalized so that the total energy was 1, with the normalization 
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factor A being equal to:	
   . 

To be specific, we reconstructed the activity of the peak voxel we specified, with 

beamformer covariance matrices being computed from -1 – 4 s (the whole epoch). A 

convolution of the complex wavelet with the beamformed MEG signal of each trial 

was derived and then averaged across all the trials. The magnitude of this convolution 

was converted to percentage change in power relative to the pre-trial baseline 

(Isabella et al., 2015). We did not show TF plots of the peak voxel of goal-oriented 

navigation related left hippocampus, because Cornwell et al. (2008a) has shown the 

evolution of goal-oriented navigation related theta power change across time.  

 

Post-hoc analyses. To confirm the robustness of our results, we did a cross validation 

analysis. Participants were randomly split into two subsamples and separate 2 

(conditions: hidden platform vs. random swimming) × 2 (training sets: first vs. 

second) within subject ANOVAs were performed with the beamformer volumetric 

images for each subsample for each time window.  Moreover, in light of evidence 

that human hippocampal theta may extend below 4 Hz (Jacobs, 2014), we carried out 

secondary beamformer analyses using a 1 – 4 Hz bandpass filter to determine whether 

slower oscillatory power showed a similar pattern across conditions.  We also 

performed an analysis encompassing a broad frequency range of 1 – 8 Hz.  All other 

analytic steps were the same as above for these alternative frequency windows.   
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Correlation analysis. For those regions showing significant effects of environmental 

encoding in the group-level contrasts, individual cluster means of theta power (4 – 8 

Hz, pseudo-F values) in the hidden platform condition in the first training set were 

extracted and correlated respectively with individual spatial navigation performance 

indexed by average path length in the hidden platform condition in each training set, 

using Pearson correlation implemented in IBM SPSS software (version 22) to test our 

third hypothesis.  

 

Post-hoc correlation analyses. To explore whether in the familiar environment, right 

hippocampal theta correlated with navigation performance, we extracted cluster 

means of theta power (pseudo-F values) in the hidden platform condition in the 

second training set and correlated respectively with individual average path length in 

the hidden platform condition in each training set. The previous work (Cornwell et al., 

2008a) found no significant association between theta elicited by goal-oriented spatial 

navigation related left anterior hippocampus and behavioural performance (Cornwell 

et al., 2008). To confirm this, we also extracted individual cluster means of theta 

power (pseudo-F values) in the hidden platform condition in each training set from 

the anterior hippocampal/parahippocampal region showing significant activation in 

the hidden platform vs. random swimming condition contrast, and computed 

correlations with average path length in the corresponding training set. 

 

    Finally, we performed a voxel-wise correlation between the theta power in both 
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training sets and the average path length in training set one and two respectively 

across the whole brain to investigate whether the correlation was lateralized to right 

hippocampus/parahippocampus, and whether the correlation was only restricted to the 

first training set in the initial stage of learning. The threshold was set at p < 0.005 

(uncorrected).  

 

Results 

 

Spatial navigation performance. Path length from the starting point to the hidden 

platform location was measured as an index of spatial navigation performance. 

One-way repeated measures ANOVA showed that path lengths were significantly 

different across five blocks (four trials per block) in each training set: F(4, 68) = 

12.601, p < 0.001, η2  = 0.825 (run one); F(4, 68) = 10.949, p < 0.001, η2 = 0.784 

(run two). The decrease in path length over training (Fig. 2A) demonstrates a clear 

spatial learning effect, consistent with previous studies using the virtual Morris water 

maze task (e.g. Cornwell et al., 2008a, 2010). Collapsed across blocks, average path 

length was significantly shorter in the second training set (run two) than the first (run 

one) (t (17) = 2.329, p = 0.032, Cohen’s d = 0.29) (Fig. 2B). Figure 3 shows some 

sample path trajectories in hidden platform condition and random swimming 

condition at the early and late spatial learning.  
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Figure 2. A. Average path length from the starting point to the hidden platform across 5 

blocks (4 trials per block) in training set one and two. B. Average path length in the two 

training sets. 

The diameter of the virtual pool was 80 virtual units.  

Error bar represents standard errors. * represents p < 0.05. 

 

 

Figure 3. Sample path trajectories of one participant in one trial in the beginning and end of 

spatial training respectively in hidden platform condition (upper panel A & B) and in random 
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swimming condition (lower panel C & D). 

 

Theta rhythm associated with environmental encoding. A 2 (conditions: hidden 

platform condition vs. random swimming condition) × 2 (training sets: first vs. 

second) repeated measures ANOVA was performed for theta power at the source 

level in each of our time windows of interest. 

 

    In two of our main time windows of interest (1 – 2 s, 1.25 – 2.25 s), we found 

main effects of condition in the anterior hippocampus and parahippocampus (1 - 2 s: 

F =8.4, p < 0.05, small volume corrected across time, 43 voxels, η2 = 0.506, peak 

voxel at left parahippocampus x = -26 y = -13 z = -20; 1.25 – 2.25 s: F= 8.4, p < 0.05, 

small volume corrected across time, 29 voxels, η2  = 0.392, peak voxel at left 

parahippocampus x= -22 y= -17 z = -24 (Fig. 3A & 3B). In the time window of 1.5 – 

2.5s, we also found activation in the anterior left hippocampus (peak voxel at left 

hippocampus x = -30, y = -13, Z = -16), but it could not survive multiple comparison 

correction across time. These results are highly consistent with the findings by 

Cornwell et al. (2008a), showing that anterior left hippocampal/parahippocampal 

theta was stronger during navigation to the hidden platform relative to swimming 

aimlessly in the virtual pool. There was a slight difference in the timing between the 

present study and Cornwell et al. (2008a), where the peak difference of the similar 

comparison was during 1 – 2s and 1.5 –  2.5s.  
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    No main effect of condition was found in other regions of the hippocampus or 

parahippocampus.   

 

Figure 3. A. The whole brain images of main effect of condition in the time window of 1 – 2s 

as an example. The local maximum was in left parahippocampal gyrus (Talairach coordinates 

x=-26 y=-13 z=-20) (small volume corrected). B. Cluster mean of theta power (i.e. pseudo-F 

values: the percentage change of theta power in the active window relative to the baseline 

window) of anterior left hippocampus/parahippocampus showing main effect of condition in 

each condition and each training set in the time window of 1 – 2 s. C. The whole brain images 

of main effect of training set in the time window of 1.25 – 2.25s.  The local maximum was 

in the right hippocampus (Talairach coordinates x=18 y=-21 z=-8) (small volume corrected). 

D. Cluster mean of theta power (i.e. pseudo-F values: theta power percentage change relative 



	
   117 

to the baseline) of right hippocampal/parahippocampal activation region showing main effect 

of training set in each condition and each training set in the time window of 1.25 – 2.25 s.  

    We also found that in the 1.25 – 2.25 s time window, there was a main effect of 

training set with the peak in the right hippocampus (F = 8.4, p < 0.05, small volume 

corrected across time, 31 voxels, η2 = 0.453, peak voxel at right hippocampus: x = 18 

y = -21 z = -8) (Fig. 3C & 3D). This suggests that right hippocampal theta power 

decreased as participants became familiar with the structure of the environment, in 

line with previous work showing that hippocampal activation was most prominent 

during the initial learning phase and decayed after performance had approached 

ceiling level (Wolbers & Buchel, 2005). Time frequency plots also confirmed that 

during 1 – 2.25s, there was a transient increase in the hidden platform codnition vs. 

random swimming condition (Fig. 4) and during 1.25 – 2.25 s, there was a transient 

decrease in the second training set (Fig. 5). This transience is in line with the idea that 

theta power change is transient (e.g. Kaplan et al., 2012). No other parts of the 

hippocampus/parahippocampus were found to show a significant main effect of 

training set. Moreover, no left hemispheric effects were observed even at lower p 

thresholds (p = 0.05 uncorrected).  
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Figure 4. Time frequency plots (4 – 50 Hz) of the peak voxel of goal-orientated navigation 

related left hippocampus. This is replication of Cornwell et al. (2008). Left and right panel 

represent time frequency plots of the group average of left hippocampus in the hidden 

platform condition and random swimming condition respectively. The black rectangular 

shows the time window showing a decrease of theta band in the familiar environment relative 

to the new one revealed by SAM beamformer analysis (1 – 2s, 1.25 – 2.25s, 4 – 8 Hz).  
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Figure 5. Time frequency plots (4 – 50 Hz) of the peak voxel of the environmental encoding 

related right hippocampus. The upper panel presents time frequency plots of the group 

average in the first (new environment) and the second (familiar environment) training set. 

The lower panel presents time frequency plots of one individual participant in the first (new 

environment) and the second (familiar environment) training set. The black rectangular shows 

the time window showing a decrease of theta band in the familiar environment relative to the 

new one revealed by SAM beamformer analysis (1.25 – 2.25s, 4 – 8 Hz).  

 

    No significant interactions between condition and training set were found. 

Exploratory post-hoc tests of other time windows apart from the primary windows of 
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interest (1 – 2 s, 1.25 – 2.25 s, 1.5 – 2.5 s) showed no statistically significant results.  

 

    For other activated brain regions, we only presented those in the new vs. familiar 

environment contrast, because the hidden platform vs. random swimming contrast 

was our replication result, and Cornwell et al. (2008a) has already reported those, 

which were similar to those in the present study. For new vs. familiar environment 

contrast, when the original voxel threshold was p < 0.005 (uncorrected), there were 

right hippocampus, left middle cingulate gyrus (peak voxel: x = -2, y = -25, z = 44). 

When the voxel threshold was set at p < 0.001 (uncorrected), only right hippocampus 

survived.  

 

Split half analyses (cross validation) of the data are shown in Fig. 6. The results 

were similar in both subsamples and also similar to the results of the overall analysis 

reported above. The local maxima of main effect of condition were in the anterior left 

hippocampus/parahippocampus (p < 0.05, small volume corrected). The local 

maximum of the main effect of training set was in the right hippocampus (p < 0.05, 

small volume corrected). These results confirm the robustness of our main results.  
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Figure 6. Whole brain images of split half analyses (p<0.05, small volume corrected). The 

upper panel showed the results of the first half of the participants. There was a main effect of 

condition in 1.25 – 2.25s and main effects of condition in 0.5 – 1.5s and 0.75 – 1.75s (we only 

showed images of 0.75 – 1.75s for an example). The lower panel shows the results of the 

second half of the participants. There was a main effect of condition in 1.25 – 2.25s and main 

effects of condition in 1 – 2s, 1.25 –2.25s and 1.5 – 2.5s (we only showed images of 1 – 2s for 

an example).  

 

    The post hoc analyses for the frequency range of 1 – 4 Hz and 1 – 8 Hz did not 

show significant results.  

 

Correlations between behavioral performance and theta source power. To test 

the third hypothesis, the cluster mean of pseudo-F values of environment 

encoding-related right hippocampal theta in the first training set in the time window 



	
   122 

of the significant main effect of training set (1.25 – 2.25 s) was correlated with 

average path lengths in training set one and two respectively. We found a negative 

correlation between average path length in training set one and the pseudo-F value of 

right hippocampus in the same training set (r = -0.5, p = 0.035) (7A). We also found 

that path length in the second training set correlated significantly with pseudo-F value 

of right hippocampus in the first training set (r = -0.57, p = 0.014) as well (Fig. 7B). 

This result suggests that stronger right hippocampal theta during initial encoding of an 

environment is associated with better navigation performance (indexed by shorter 

average path length) in an environment both initially when it is new and subsequently 

when it is familiar. This finding is in line with previous reports that higher theta is 

associated with better performance (e.g. Staudigl & Hanslmayr, 2013; Kaplan et al., 

2012).  
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Figure 7. A. Cluster mean of theta power (i.e. pseudo-F values: theta power percentage 

change relative to the baseline) of environmental encoding related right hippocampal theta for 

each participant in the hidden platform condition in the first training set plotted against his 

average path length in the same condition in the same training set. B. Cluster mean of theta 

power (pseudo-F values) of environment layout encoding related right hippocampal theta for 

each participant in the hidden platform condition in training set one plotted against his 

average path length in the same condition in the second training set. C. Whole brain images 

of the correlation between theta power in the first training set in the hidden platform in the 

time window of 1.25 – 2.25s and average path length in the first training set, with the local 

maximum being in the right parahipp/hippocampus (Talairach coordinates x = 14, y = -5, z = 

-16). D. Whole brain images of the correlation between theta power in the first training set in 

the hidden platform in the time window of 1.25 – 2.25s and average path length in the second 

A. B. 
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training set, with the local maximum being in the right parahippocampus/hippocampus 

(Talairach coordinates x = 14, y = -5, z = -16). 

 

    For the post hoc analyses, we did not find significant correlations between right 

hippocampal theta in the second training set with average path length in either 

training set. These results suggest that hippocampus may function prominently only at 

the early stage of learning (Wolbers & Büchel, 2005). For the correlation between 

theta power in the hidden platform condition in the goal-oriented navigation related 

anterior left hippocampus/parahippocampus and average path length, no significant 

correlation was found as well, in line with previous findings from Cornwell et al. 

(2008a). 

 

    Finally, to investigate whether the correlation was only lateralized to the right 

hippocampus/parahippocampus and whether the correlation was only restricted to the 

first training set in the initial stage of learning, we then did a voxel-wise correlation 

between theta power in both training set with average path length in both training set 

respectively across the whole brain. We found there right 

hippocampal/parahippocampal theta in the first training set correlated with path 

length in both training sets (p < 0.005, uncorrected, local maxima were in the right 

hippocampus/parhippocampus: x = 14, y = -5, z = -16 and x = 14, y = -5, z = -16 for 

correlation between theta power in the first training set and average path length in the 

first training set and for correlation between theta power in the first training set and 
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average path length in the second training set respectively) (Fig. 6C & 6D). No 

correlation between theta from other parts of the hippocampus and parahippocampus 

and path length were found under the threshold of p < 0.005. For the correlation 

between theta power in the second training set and path length in both training sets, 

when p < 0.005, no single voxel in the bilateral hippocampi and parahippocampi was 

found to show correlation. The whole brain voxel-wise correlation confirmed that the 

correlation was only lateralized to right hippocampus and only occurred between right 

hippocampal theta in the initial encoding phase and navigation performance in both 

new and familiar environments.  

 

Discussion 

 

We investigated whether human hippocampal theta oscillations have a functional 

role in environmental encoding during spatial navigation in a virtual Morris water 

maze task. First, consistent with previous findings, we found that left anterior 

hippocampal/parahippocampal theta was stronger while navigating to the hidden 

platform relative to swimming randomly in a virtual pool. Second, in line with our 

hypotheses, we found evidence that right hippocampal/parahippocampal theta was 

stronger in the new relative to the familiar environment and the magnitude of right 

hippocampal/parahippocampal theta elicited during navigation in the new 

environment correlated with navigation performance in both the new and familiar 

environments. 
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    The finding that anterior left hippocampal/parahippocampal theta was stronger in 

the hidden platform condition relative to the random swimming condition is 

consistent with the results of Cornwell et al. (2008a) who used a very similar 

experimental paradigm. These results confirm the robustness and specificity of 

anterior left hippocampal theta oscillations during goal-oriented spatial navigation in 

the human brain. The striking consistency of results between these two studies using 

different MEG systems with two independent cohorts of participants provides support 

for the contention that noninvasive MEG recordings of hippocampal theta are robust 

and reliable. Taken together with a small but growing body of MEG studies of the 

hippocampal theta rhythm (e.g. Riggs et al., 2009; Fuentemilla et al., 2010, 2014; 

Poch et al., 2011; Backus et al., 2016), our results also provide important 

confirmation of the hypothesis that the MEG-recorded theta rhythm indexes 

neurophysiological mechanisms that are functionally comparable to those previously 

measured with invasive recordings in the hippocampus of humans (e.g. Kahana et al., 

1999; Caplan et al., 2001, 2003; Ekstrom et al., 2003, 2005; Jacobs et al., 2007; Vass 

et al., 2016) and animals (e.g. O’Keefe & Dostrosky, 1971; Harris et al., 2002; Mehta 

et al., 2002; Agarwal et al., 2016; Zhang et al., 2016). Importantly, the virtual Morris 

water maze task used in our experiment and that of Cornwell et al. (2008a) provided a 

behavioral context for spatial navigation that is highly comparable to the Morris water 

maze used to elicit and study theta oscillations in the extensively characterized rodent 

model (e.g. Kelemen et al., 2005; Olvera-Cortes, et al., 2004; 2012). The capability to 
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reliably and noninvasively measure hippocampal theta in humans now allows us to 

bridge the gap between animal and human models of hippocampal function, by 

systematically and rigorously characterizing the cognitive functions of the human 

theta rhythm in routine experimentation that does not rely on limited opportunities to 

invasively study human patients.  

 

    Our new finding that right hippocampal theta activation was greater in the first 

training set than in the second one in both hidden platform condition (cue rich 

environment) and random swimming condition (environment without cues), suggests 

an important role for the right hippocampus in encoding an environment in general. 

Since environmental layout was constant across training sets, we show that right 

hippocampal theta power was strongest when the requirement for environmental 

encoding was strongest (in the first training set), in line with the idea that 

hippocampal activation was prominent in the initial learning phase and decreased 

when performance improved (Wolbers & Buchel, 2005) and with the finding that 

right hippocampus was more active in processing new configuration/environment 

relative to familiar configuration/environment (Duzel et al., 2003; Doeller et al., 

2008). This function of human right hippocampal theta in new environmental 

encoding is consistent with results from animal research (e.g. Jeewajee et al., 2008; 

Penley et al., 2013; see Burgess & O’Keefe, 2011 for a review) and provides a direct 

link between the human and animal studies. Our MEG results are also consistent with 

the fMRI results of Igloi et al. (2010), showing a time-dependent decrease in right 
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hippocampal activity during learning in a spatial navigation task.  In addition, 

Kaplan et al. (2012) reported MEG theta changes (at the sensor level) when 

participants encoded a new environment during spatial navigation.  

 

    Notably, we found that stronger right hippocampal theta power during the first 

training set was correlated with better navigation performance in both the first and 

second training sets. These associations bolster the conclusion that right hippocampal 

theta plays a functional role in encoding configural properties of an environment. 

Those who exhibited relatively greater right hippocampal theta power during the first 

training set took relatively shorter paths to the hidden platform. This was true for 

performance in the first training set as well as the second one when a novel platform 

location was introduced in the same environment. This observation demonstrates that 

the correlation between right hippocampal theta during encoding and spatial 

navigation performance is not contingent on learning a specific location and therefore 

strongly argues for the functional role of right hippocampal theta is about encoding 

the whole environment. Robust encoding of the configuration of the environment to 

form a cognitive map of the space confers the flexibility to navigate efficiently to any 

location in that particular environment (Wolbers & Hegarty, 2010). This association is 

also consistent with previous studies linking the right hippocampus, more generally, 

to spatial navigation performance (e.g. Abrahams et al. 1997; Spiers et al., 2001; 

Burgess et al., 2002; Nedelska et al., 2012) and with previous reports that increased 

theta power was associated with successful/better memory formation in other 
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experimental paradigms (e.g. Staudigl & Hanslmayr, 2013; Hanslmayr et al., 2011; 

Osipova et al., 2006; Sederberg et al., 2003).  However, the result that no correlation 

was found between right hippocampal theta in the familiar environment and path 

length, in conjunction with the result that in the familiar environment, there was an 

attenuation of right hippocampal theta power, indicates that the hippocampus might 

function prominently during the early stages of cognitive mapping (see Wolbers & 

Wiener, 2014 for a review). 

 

    Our results converge with a body of evidence that the right hippocampus is 

important in spatial navigation (Marguire et al., 1997; Bohbot et al., 1998; Gron et al., 

2000; Maguire et al., 2000; Ekstrom et al., 2003), and further indicate that this may 

reflect a role in encoding an environment to facilitate navigation performance. There 

is some evidence that impairment of the right hippocampus is associated with 

impaired navigation performance. Cornwell et al. (2010) reported that depressed 

patients exhibited impaired performance in a virtual Morris water maze task and this 

impairment was related to reduced right hippocampal theta oscillations compared to 

healthy controls. 

 

    Taken together, our results indicate that left and right hippocampi may have 

different functional roles (Burgess et al., 2002), with right hippocampus playing a role 

in encoding an environment to form a cognitive map of the space and left 

hippocampus being involved in navigating to a specific location but not in 
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environmental processing. The left hippocampus is thought to play a role in 

associative processing (Igloi et al., 2010) and to mediate specific component 

processes of spatial navigation, such as binding the platform to its spatial location 

(Mitchell et al., 2000; Kessels et al., 2004; Cornwell et al., 2008a). Consistent with 

this hypothesis, our results show that left hippocampal theta was elicited with 

comparable magnitude in both training sets with the hidden platform presented in two 

different locations, and was not modulated by environmental novelty, adding another 

piece of evidence that left hippocampus was not sensitive to environment. Further 

work is required to nail down the potential functional dissociation of left and right 

hippocampi.  

 

We note that all the effects observed in the current study were localized to the 

anterior portion of the hippocampus/parahippocampal cortices. Some authors have 

argued for functional specialization along the longitudinal axis of the hippocampus in 

both rodents (see Fanselow & Dong, 2010 for a review) and humans (see Poppenk et 

al., 2013 for a review). While no definitive conclusion on the specific functional 

differentiation between anterior and posterior portion of human hippocampus has 

been reached, our results fit with the proposal that anterior hippocampus may 

predominantly encode coarse, global representations and that encoding is more linked 

to anterior portion of the hippocampus (Poppenk et al., 2013).  

 

    Our results stand in contrast to those of a recent iEEG study (Park et al., 2014) 



	
   131 

which reported bilateral hippocampal involvement during encoding of a new 

environment; further, these researchers reported that hippocampal theta power 

increased with increasing familiarity with the environment. There are two possible 

reasons for the discrepancies. First, Long et al. (2014) reported there existed temporal 

dynamics of the subsequent memory effect, with theta power increasing in the early 

encoding phase and decreasing in the late encoding phase. Different hippocampal 

theta power change patterns found in the current study and Park et al. (2014) might be 

due to difference in length of encoding phases. In Park et al., (2014), new 

environment was defined as the first trial in the learning phase, which can be regarded 

as very early encoding phase. In the current experiment, encoding effect was the 

average of the learning effect in the first training set, which contains 20 trials in 

hidden platform condition and random swimming condition respectively. Thus, the 

encoding effect reflected the average effect of very early encoding phase and later 

encoding phase.  Second, in Park et al. (2014)’s study, target locations were constant 

in the new and familiar environments, so that the environment encoding was 

confounded with encoding a specific location within the environment. In our study, 

target location was dissociated from environmental familiarity in the first and second 

training sets. Thus, bilateral hippocampal activation found in Park et al. (2014) might 

reflect both encoding of new environment and location within that environment.  

 

    One may query whether the right hippocampal theta that was observed is related 

to general novelty processing instead of environmental novelty processing. However, 
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the correlation between right hippocampal theta power in the first training set and 

spatial navigation performance in both training sets argues against this possibility and 

suggests a more specific association with learning the environment. If the right 

hippocampal theta was only for general novelty processing and had nothing to do with 

spatial processing, the chance of being able to observe a correlation with behavioral 

measures of spatial cognition would be extremely slim.  To yield a more definitive 

conclusion in this regard, a third training set in a new environment is needed, in which 

we would predict a rebound in right hippocampal theta.  

 

    Co-registration errors and head movement introduce spatial uncertainty of 

hippocampal estimates and the peak theta power at the individual level. Although 

group-level statistics should average out these differences, since co-registration errors 

and head movement across participants are unlikely to be systematic in direction, the 

ability of MEG to differentiate source signals from the hippocampus versus 

parahippocampus is questionable, and the clusters of differential power observed here 

generally spanned both structures.  This is an important limitation given evidence 

that hippocampus and parahippocampal cortices mediate distinct functions. For 

instance, Ekstrom et al. (2007, 2011) documented that the hippocampus and 

parahippocampus responded differentially to spatial and temporal order source 

retrieval. Aggleton and Brown (2006) argued that the role of parahippocampus relies 

on an item-based familiarity discrimination mechanism, while the function of the 

hippocampus concerns novel spatial arrangements of stimuli and associative and 
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contextual aspects of memory.  Future development of source reconstruction 

techniques with higher spatial resolution will facilitate the functional differentiation 

of parahippocampal and hippocampal theta oscillations.  

 

Conclusion 

 

    In the past several decades, numerous studies have attempted to determine the 

precise function and behavioral correlates of hippocampal theta oscillations (Ekstrom 

et al., 2014). Our study contributes to this literature by presenting evidence for the 

function of right hippocampal theta rhythm in environment encoding during 

navigation in humans, directly linking results from invasive studies in animals with 

results from noninvasive measurements in healthy humans. Most importantly, these 

results demonstrate a robust relationship between hippocampal theta rhythm and 

behavioral measures of spatial navigation performance.  
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Chapter four 

 

High-gamma activity in the human hippocampus during inter-trial 

rest periods of a virtual navigation task 
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Abstract 

 

In rodents, hippocampal cell assemblies formed during learning of a navigation task 

are observed to re-emerge during resting (offline) periods, accompanied by 

high-frequency oscillations (HFOs). This phenomenon is believed to reflect 

mechanisms for strengthening newly-formed memory traces. Using 

magnetoencephalography recordings and a virtual Morris water maze task, we 

investigated high-gamma (80 – 140 Hz) oscillations in the hippocampal region in 

humans during inter-trial rest periods in a virtual navigation task.  We found right 

hippocampal gamma oscillations mirrored the pattern of theta power in the same 

region during navigation, varying as a function of environmental novelty. Gamma 

power during inter-trial rest periods was positively correlated with theta power during 

navigation and predicted faster learning of a new location as the environment became 

familiar. These findings suggest the existence of a ‘replay mechanism’ for memory 

consolidation in the human hippocampus.  

 

Keywords: Hippocampus, high-gamma oscillations, replay, virtual spatial navigation, 

magnetoencephalography (MEG)   
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Introduction 

 

    The formation of spatial memories has been proposed to proceed in two stages 

(Buzsaki, 1989, 2015).  In the initial encoding phase, during active exploration of an 

environment, a transient change of synaptic strengths in the hippocampus is formed 

accompanied by theta-band local field potential (LFP) oscillations. Subsequently, 

during ‘offline’ states, including slow-wave sleep and quiet wakefulness, the new 

synaptic network re-emerges, accompanied by high frequency oscillations (HFOs) 

which operate to potentiate and strengthen the synaptic changes and thereby 

consolidate the otherwise labile memory traces. 

 

    Invasive electrophysiological studies in rodents have shown that temporal spike 

sequences of place cells active during navigation reoccur (replay) when the animal is 

asleep or in a state of awake immobility after exploration accompanied by HFOs 

(O'Neill et al., 2010). Disruption of hippocampal HFOs impairs spatial learning 

(Gerrard et al., 2008; Girardeau et al., 2009; Jadhav et al., 2012), suggesting a causal 

relationship between HFOs and memory formation. Replay is also sensitive to 

environmental novelty (Carr et al., 2011). Following navigating in a new environment, 

the strength of place cell replay is stronger (Diba & Buzsaki, 2007; O'Neill et al., 

2008) and HFO power is significantly higher (Cheng & Frank, 2008) than that 

following navigation in a familiar environment.  
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    Evidence for learning-dependent replay in the human hippocampus is lacking. 

fMRI studies (Staresina et al., 2013; Tambini et al., 2010) have reported that regions 

involved in encoding are reactivated during offline states. However, the results 

concerning hippocampal reactivation after learning of a hippocampus-dependent task 

are mixed. Some studies have found the hippocampus was reactivated (Bergmann et 

al., 2012; Peigneux et al., 2006), while others have not (Deuker et al., 2013; Staresina 

et al., 2013). We reasoned that the discrepancy might be due to the possibility that 

hippocampal reactivation occurs immediately following each learning trial and is 

transient. Depending on the task, durations of hippocampal replay vary, such that for 

some tasks, hippocampal reactivation during offline rest/sleep after a block of 

learning trials might not be apparent. In the meanwhile, some neurophysiological 

work has been done using iEEG or MEG aiming to reveal the neurophysiological 

mechanism underlying the replay process. After learning a word list, Axmacher et al. 

(2008) recorded the brain activity of pre-surgery patients during a nap and observed 

high-gamma (80 – 140 Hz) bursts in the rhinal cortex and hippocampus, but only the 

high-gamma bursts in the rhinal cortex were correlated with the number of words 

retrieved in the post-nap test. Using MEG, Cornwell et al. (2014) observed that 

hippocampal high-gamma power during a 5-minute rest period after a block of spatial 

learning correlated with learning rate before rest, but not with the performance in the 

post-rest test phase. These results suggest that high-gamma might be relevant to 

replay process. However, since there was no control condition (e.g., a non-learning 

condition) in these studies, it is unclear whether the correlation is learning specific or 
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only reflects trait-related general cognitive ability.  

 

    Motivated by the animal models, we used magnetoencephalography (MEG) to 

examine whether hippocampal high-gamma band would show a “replay effect” 

during the short inter-trial rest period following each trial of spatial learning, MEG 

was recorded while participants performed two training sets of a virtual Morris water 

maze task. Each set included a hidden platform condition (the task was to find the 

hidden platform) and a random swimming condition (the task was aimlessly 

swimming in a pool without platform). Environment layouts of each condition in the 

two training sets were the same. In a previous report on data from the same 

experiment described in chapter three, we studied low-frequency theta (4 – 8 Hz) 

activity during navigation, finding that there was significantly greater theta power in 

right hippocampus in the first compared to the second training set, which was 

associated with environment encoding; there was significantly more left hippocampal 

theta in hidden platform condition than in random swimming condition, which was 

associated with encoding of the hidden platform location.  

 

    In the present analyses, I hypothesized that right and left hippocampal 

high-gamma during inter-trial period would mirror the pattern of right and left 

hippocampal theta during navigation respectively to replay the newly learned 

information, as shown in animal studies (e.g., Cheng & Frank, 2008) described above. 

I also reasoned that hippocampal high-gamma power during rest should correlate with 



	
   155	
  

theta power during navigation, since replay is proportional to previous learning in 

rodents (Sutherland & McNaughton, 2000). Finally, I hypothesized that high-gamma 

power after navigating in new environment should correlate with learning 

performance in the familiar environment, since consolidation of newly learned 

environment to form a cognitive map of the space should facilitate flexible navigation 

to new locations in the same environment (Wolbers & Hegarty, 2010). 

 

Materials and Methods 

 

Participants and Task. Eighteen male participants (mean age = 29 years; range = 18 

– 39 years) participated in the study. The study was approved by Macquarie 

University’s human subjects ethics committee. All participants gave written informed 

consent. Analysis of data during active navigation was previously reported in chapter 

three. The current analysis investigated high-gamma during the inter-trial intervals 

(ITI) of the experiment when participants rested quietly following each trial of spatial 

navigation.  

 

    A detailed description of the experimental paradigm is in chapter three. In brief, 

naive participants performed two training sets of a virtual Morris water maze task. In 

each training set of the task, there were two conditions. In the hidden platform 

condition, participants needed to find a hidden platform submerged in the opaque 

water by using the visual cues on the walls surrounding the virtual pool. In the 
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random swimming condition, participants moved aimlessly in the same virtual pool 

(but with no visual cues on the walls). The environment of each condition in the two 

training sets was the same, thus the environment in the first training set was defined 

as new environment and that in the second one as familiar environment. Therefore, 

the difference between the two training sets allowed us to measure learning of the 

environment (chapter three), and the difference between hidden platform condition 

and random swimming condition provided an index of goal-directed spatial 

navigation (Cornwell et al., 2008). The rationale for removing the cues in the random 

swimming condition was to investigate whether hippocampal oscillations have a 

general role in environmental learning of both cue poor and cue rich environment. To 

avoid the possibility that environment learning was confounded with learning a 

specific location, the location of the hidden platform was changed and 

counterbalanced between the training sets.  

 

    In each training set, there were 40 trials including 20 hidden platform and 20 

random swimming trials respectively, presented in alternating blocks of four trials. 

Between each trial, there was a 4.5 – 5.5s inter-trial interval (ITI) (Fig. 1), during 

which a gray screen was presented and participants rested quietly without movement.  

 

Behavioral measures. The length of the path taken from the starting position to the 

hidden platform in each trial was recorded. Learning rate was computed as the 

average path length of the first block minus that of the last one, divided by the number 
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of blocks. A large positive value thus reflects rapid learning (Hopper et al., 2007).    

 

 

Figure 1. Experimental procedure. In each training set, there were 40 trials, including 20 

hidden platform trials (the task was to find the hidden platform in a pool with four cues) and 

20 random swimming trials (the task was to aimless swimming in a pool without visual cues 

and platform), which were alternatively presented (4 hidden platform trials, 4 random 

swimming trials, 4 hidden platform trials, 4 random swimming trials…). The interval between 

each trial (ITI) was 4.5 – 5.5 s (random jittered), during which a grey screen was presented 

and participants rested quietly without movement.  

ITI: Inter-trial interval 

 

MEG recordings. Recordings were made in a magnetically shielded room (Fujihara 
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Co. Ltd., Tokyo, Japan) with a 160-channel KIT system (Model PQ1160R-N2, 

Kanazawa, Japan) with superconducting quantum interference device (SQUID)-based 

first-order axial gradiometers (50-mm baseline; Kado et al., 1999; Uehara et al., 2003). 

Neuromagnetic signals were digitized continuously at a sampling rate of 1000 Hz 

filtered at 0.03 and 200 Hz. Before recordings, the locations of the five marker coils 

and three fiducial markers, and the participant’s head shape were digitised with a pen 

digitizer (Polhemus Fastrack, Colchester, VT, USA). The five marker coils were 

energized before and after each training set to determine head movement and position 

within the MEG dewar.  

 

MRI scans. High-resolution T1-weighted anatomical magnetic resonance images 

(MRIs) were acquired in a separate session at Macquarie University Hospital, using a 

3T Siemens Magnetom Verio scanner with a 12-channel head coil. Images were 

obtained using 3D GR\IR scanning sequence with the following parameters: 

repetition time, 2000 ms; echo time, 3.94 ms; flip angle, 9 degrees; slice thickness, 

0.93 mm; field of view, 240 mm; image dimensions, 512 × 512 × 208. 

 

MEG analyses 

 

High-gamma activities during offline rest period. The MEG data during the 

inter-trial intervals (ITI) were epoched (-4.5 – 0 s; 0 s was the onset of the next trial; 

4.5 s was the shortest ITI across trials) and were labeled as post hidden platform 
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condition and post random swimming condition respectively. Sources were 

reconstructed using synthetic aperture magnetometry (SAM) beamformer analysis 

(Hillebrand et al., 2005; Robinson & Vrba, 1999) implemented in the BrainWave 

toolbox (version 3.0, http://cheynelab.utoronto.ca/). MEG has been shown to be able 

to reliably localize activity from the hippocampus in both simulation studies (e.g., 

Attal et al., 2007; Chupin et al., 2002; Meyer et al., 2017; Quraan et al., 2011; 

Stephen et al., 2005) and empirical experiments (e.g., Backus et al., 2016; Cornwell et 

al., 2008; Riggs et al., 2009; Tesche & Karhu, 2000). Recently, Crespo-Garcia et al. 

(2016) have shown agreement between simultaneous intracranial depth recordings 

and MEG virtual sensor recordings of hippocampal activity.  

 

    Due to the 1/f power law, in general, high-gamma power is harder to investigate 

as compared to low frequency power. Nevertheless, many previous studies have 

shown that high-gamma was successfully detected by MEG (e.g., Cheyne et al., 2008; 

Cheyne & Ferrari, 2013; Cornwell et al., 2014; Muthukumaraswamy, 2013 for a 

review). In the case of the hippocampus, an important reason is that invasive 

recordings in animal models show substantially greater power for high frequency 

gamma during rest/sleep than for low frequency theta during navigation (Buzsaki, 

2015).  

 

    Beamformer source reconstruction is achieved by first defining a source space of 

volumetric grids encompassing the whole head. SAM operates by constructing an 
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adaptive spatial filter (beamformer weights) for each grid location, based on a 

combination of lead fields calculated from the forward solution and the data 

covariance matrix. Beamformer weights are convolved with the MEG sensor data to 

obtain a source signal for each grid element. Since the output of the spatial filter 

contains both the signal of interest and noise, it is necessary to estimate the noise level 

and normalize the output beamformer signal to obtain a relatively ‘pure’ neural signal. 

One commonly used method of normalization (e.g. Cornwell et al., 2014; Perry, 

2015). uses a pseudo-Z metric (Robinson & Vrba, 1999; Vrba & Robinson, 2001), 

which divides the absolute source power of a single state by a noise estimate. Another 

normalization approach (e.g. Cornwell et al., 2012; Isabella et al., 2015) uses a 

pseudo-F or pseudo-T metric, which computes the percentage change (pseudo-F) or 

absolute change (pseudo-T) of the signal power in an active state relative to a control 

state so as to implicitly control the noise level (under the assumption that the two 

states have similar noise levels).  

 

    In the present analysis, the source power of high-gamma activity during 

inter-trial interval (ITI) was computed using a pseudo-Z metric because we were 

interested in estimating spontaneous high-gamma power during ITI rest period (as 

opposed to event-related power changes). The forward model in the current analysis 

was a single sphere volume conduction model (Lalancette et al., 2011; Sarvas, 1987) 

derived from the individual MRIs. Data covariance matrices were calculated for the 

whole epoch for the frequency band of 80 – 140 Hz during ITI, the same frequency 
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range as used in Axmacher et al. (2008) and Cornwell et al. (2014). Thus the length of 

the covariance matrix in the post hidden platform condition was 20 trials × 4.5s/trial 

＝ 90s and that in the post random swimming condition was 19 trials × 4.5s/trial ＝ 

85.5s. In the latter, there were 19 trials instead of 20, because the last trial of the 

experiment was always a random swimming trial and the experimental program 

aborted after the completion of the last trial. The slight difference in covariance 

window length for post hidden platform condition and post random swimming 

condition was not expected to significantly influence source estimation. Brookes et al. 

(2008) demonstrated that if the bandwidths of the estimated frequency band was > 50 

Hz, and when covariance window length amounted to 40 s, the accuracy of source 

estimation would be very high and increasing the covariance window length would 

not greatly improve the accuracy of source estimation. Source power was estimated 

across the entire 3D source space at a resolution of 4×4×4 mm.   

 

    The resulting volumetric SAM images were warped to a standard Talairach 

template space and analyzed with Analysis of Functional Neuroimaging (AFNI) 

software (Cox, 1996; http://afni.nimh.nih.gov/afni). To address the first hypothesis, 

i.e., whether right and left hippocampal offline high-gamma mirror the pattern of right 

and left hippocampal theta activity during navigation respectively, first, we defined an 

ROI in the right hippocampus and parahippocampus1, showing a new environment 

encoding effect in chapter three during navigation in theta frequency band and two 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 For simplicity, I used right hippocampal ROI to refer to the ROI in the right hippocampus and 
parahippocampus.  
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ROIs (because this effect occurred in two time windows: 1 – 2 s and 1.5 – 2.5 s) in the 

left hippocampus and parahippocampus2, which showed hidden platform encoding 

effect during navigation in theta frequency band in chapter three. The cluster mean of 

high-gamma power (pseudo-Z values) during ITI from the above ROIs was extracted 

from each condition and training sets. Then we compared the cluster mean of rest 

high-gamma in the right hippocampal ROI in post hidden platform and post random 

swimming condition in the first training set with those in the second training set using 

paired t test using IBM SPSS (version 23) to see whether right hippocampal rest 

high-gamma was significantly larger in the first training set relative to the second one, 

as shown in right hippocampal theta during navigation. We also compared the cluster 

mean of rest high-gamma in the two left hippocampal ROIs in post hidden platform 

condition with that in post random swimming condition in each training set using 

paired t test to find out whether left hippocampal rest high-gamma in the post hidden 

platform condition was significantly larger than that in post random swimming 

condition as seen in left hippocampal theta during navigation.   

 

    To address the concern that the effect seen in the above ROIs was due to signal 

leakage from cortical regions, we performed a 2 (condition: post hidden platform vs. 

post random swimming) × 2 (training set: 1st vs. 2nd) within-subject ANOVA analysis 

for each voxel across the whole brain to see whether the source image was focal with 

the local maximum being in the hippocampus. False positives were controlled by 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 I referred the ROI in the left hippocampus and parahippocampus as left hippocampal ROI.	
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using small volume FDR correction method in a mask containing bilateral 

hippocampi and parahippocampi with the threshold of p < 0.05 (corrected).  

 

Sliding window analyses. Previous animal studies have reported that high frequency 

oscillations (HFOs) are transient phenomena (Ego-Stengel & Wilson, 2010; 

Girardeau et al., 2009; Logothetis et al., 2012; Siapas & Wilson, 1998). To find out 

which analysis time window showed the most dominant effects, beamformer analyses 

were performed using a sliding window method, i.e., a sliding window of 2 s were 

advanced in 0.5s steps from -4.5 – 0 s. A length of 2 s was chosen for the sliding 

window, because we need to balance the accuracy of beamformer analyses (Brookes 

et al., 2008) and the sensitivity of detection. Thus, the covariance matrix of each 

sliding window was 20 trials * 2s/trial = 40s and 19 trials * 2s/trial = 38s for post 

hidden platform and post random swimming condition respectively. This step resulted 

in six volumetric beamformer images. Those images were normalized to a standard 

Talairach space as in the analyses for the whole time window. A 2 (condition: post 

hidden platform vs. post random swimming) × 2 (training set: 1st vs. 2nd) 

within-subject ANOVA was performed on each of these images with small volume 

FDR correction in the mask as used in the primary analyses to control multiple 

comparisons problems. From the technical point of view, sliding window analyses can 

also test whether the results from the whole-time window can be replicated.    
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Time frequency plots. The time frequency representations (TFRs) were constructed 

for the peak voxel of the hippocampal region showing significant main effect revealed 

by ANOVA analyses for the whole time window. To accomplish this, a five-cycle 

wavelet was convolved with the beamformed source activity over a frequency range 

of 30 – 200 Hz in 1 Hz steps from -4.5 – 0 s using the formula of  

                           

Wavelets were normalized so that the total energy was 1, with the normalization 

factor A being equal to: 

. 

The final TFRs were presented as the power change in one condition/training set 

relative to another.  

 

Post-hoc analyses 

 

Low-gamma activities during offline rest period. To explore whether the effects 

seen during inter-trial period can also be seen in low-gamma band (30 – 80 Hz), we 

performed beamformer analyses for 30 – 80 Hz. Group analyses with the same 

significance threshold were performed as for the frequency band of 80 – 140 Hz.  

 

High-gamma activities during navigation. To explore whether a similar effect 

during inter-trial period could also be seen during active navigation, MEG data were 
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epoched into 0 – 4 s (0 s was the trial onset, 4 s was the fastest time from the starting 

point to the hidden platform among all trials and participants) for each condition 

(hidden platform and random swimming condition). Beamformer images were 

computed for the frequency range of 80 – 140 Hz for this period. Then, the 

standardized beamformer images were analysed with a 2 (condition: hidden platform 

vs. random swimming) × 2 (training set: 1st vs. 2nd) within-subject ANOVA to see 

whether there was a similar effect as seen during inter-trial period. The same 

significance threshold was employed as used for the analyses of high-gamma band 

during inter-trial rest period.  

 

    To further explore whether there was an increase in high-gamma power during 

inter-trial rest period compared with navigation period as reported in rodent study 

(Buzsaki, 2015), for the ROI which showed significant ‘replay’ effect in the inter-trial 

rest period, we extracted the cluster mean of high-gamma power during navigation 

period from this ROI. We then performed a paired t-test to compare high-gamma 

power between offline rest period and navigation period. 

 

Correlational analyses 

 

High-gamma activities during rest versus subsequent navigation performance. 

To test the hypothesis that environment replay-related right hippocampal high-gamma 

power in the new environment should predict subsequent navigation performance in 
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the familiar environment, the right hippocampal high-gamma power increase in the 

post hidden platform condition relative to navigation period in hidden platform 

condition in the new environment (the first training set) was correlated with path 

lengths and learning rate in the hidden platform in the familiar environment (the 

second training set) using Pearson correlation analyses implemented in IBM SPSS 

(version 23) respectively. We did not correlate left hippocampal high-gamma power 

with navigation performance because in chapter three, only environment 

encoding-related right hippocampal theta showed a correlation with navigation 

performance. For exploratory purposes, if left hippocampus exhibited replay effect, 

we would also correlate left hippocampal high-gamma power with path lengths and 

learning rate in hidden platform condition.  

 

High-gamma activities during rest versus theta during navigation. To address the 

third research question, i.e., whether higher replay related-hippocampal high-gamma 

power during inter-trial rest period corresponded to higher encoding 

related-hippocampal theta power during navigation, for the hippocampal ROI which 

showed a significant replay effect, the power change of high-gamma (difference in 

pseudo-Z values) in the ROI in post hidden platform and post random swimming 

condition during inter-trial rest period relative to that in hidden platform and random 

swimming condition during navigation was correlated with power change of theta 

(pseudo-F value as calculated in chapter three) in the same ROI in hidden platform 

condition and random swimming condition relative to pre-trial baseline in the 
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corresponding time window (the time window showing significant encoding effect) 

respectively. However, considering that the value of the power change used for 

correlation analyses above contained both baseline power and power of interest, if 

there was no significant correlation, it might not necessarily mean there was no 

correlation between the ‘pure’ power of the two frequency bands in each time period. 

Then we correlated the pure power of high-gamma (pseudo-Z values) in the ROI in 

the inter-trial rest period with the pure power of theta (pseudo-Z values) in the same 

ROI during navigation in the time window showing significant encoding effect in 

chapter three. The method of computing pseudo-Z images for theta during navigation 

was the same as used for computing pseudo-Z images for offline high-gamma. Since 

the time window showing significant encoding effect was only 1s long, the data used 

for computing pseudo-Z image for theta was only 20 trials * 1s/trial = 20s for both 

hidden platform and random swimming condition respectively. The signal-to-noise 

ratio might be low. If there was a significant correlation, to confirm that the 

correlation was not due to noise or leakage from cortical surface, cluster mean of 

offline high-gamma in the ROI was correlated voxel-wise with pseudo-Z image 

across the whole brain to make sure the correlation effect was not spanning 

everywhere and constrained in the region of interest. The significance threshold was 

set as p < 0.005 (uncorrected).    

 

Results  
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High-gamma during rest. High-gamma power in the right hippocampal region in the 

inter-trial rest period in training set one was significantly larger than that in training 

set two (t(17) = 2.257, p = 0.02 for post hidden platform condition and t(17) = 2.153, 

p = 0.046 for post random swimming condition; Fig. 2A). However, no significant 

difference was found between offline high-gamma power in the left hippocampal ROI 

regions following hidden platform trials and that following random swimming trials. 

These results were confirmed by a whole brain 2 (conditions: post hidden platform vs. 

post random swimming) × 2 (training sets: first vs. second) repeated measures 

ANOVA analysis, which revealed a significant main effect of training set (p < 0.05, 

FDR corrected, peak voxel in right hippocampus, Talairach coordinates: x = 18 y = -5 

z = -8) (Fig. 2C), with the power of hippocampal high-gamma in the first training set 

being significantly larger than that in the second one. No significant main effect of 

condition and no significant interaction between condition and training set were found 

in bilateral hippocampi. These results showed environmental learning-related right 

hippocampus accompanied by high-gamma band during inter-trial period exhibited 

the same power change of theta activities during navigation. 
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Figure 2. A. Cluster mean of high-gamma power (pseudo-Z values) during inter-trial rest 

period (ITI) (-4.5 – 0 s) in the encoding-related right hippocampal region (right hippocampal 

ROI) in the first and second training set for both post hidden platform condition and post 

random swimming condition. In both conditions, right hippocampal high-gamma power 

during rest in the first training set was significantly higher than that in the second training set. 

B. Cluster mean of high-gamma power (pseudo-Z values) during navigation period (0 – 4s) in 

the right hippocampal ROI in the first and second training set for both hidden platform and 

random swimming condition. For both conditions, no significant difference was found 

between right hippocampal high-gamma power in the first vs. second training set during this 

period. Paired t test showed right hippocampal high-gamma power in the post hidden 

platform condition during rest in the first training set was significantly higher than that in 

hidden platform condition during navigation in the first training set. C. Whole brain images of 
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main effect of training set during rest. The peak voxel is in the right hippocampus (peak voxel: 

Talairach coordinates x = 18 y = -5 z = -8).  

Error bar represents standard errors. * represents p < 0.05.  

 

    Sliding window analyses showed similar results as in the primary analysis above.  

In the time window of -2.5 – -0.5 s and -4.5 – -2.5 s, there was a significant main 

effect of training set in the right hippocampus (p< 0.05, FDR corrected. We did not 

show images here because they were similar to Fig. 2C).  TFRs (Fig. 3) also 

confirmed that there were more high-gamma increase during inter-trial period 

following exposure to new environment than following familiar one. Visual 

inspection revealed that the strongest high-gamma increase occurred in the time 

window of -2.5 – -0.5 s.  

 

Other brain regions showing significant main effect of training set were left 

thalamus (peak: Talairach coordinates x= -2, y= -17, z= 0), left superior parietal 

lobule (peak: Talairach coordinates x= -18, y= -53, z= 44) and left posterior cingulate 

gyrus (peak: Talairach coordinates x= -2, y= -41, z= 28).  
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Figure 3. The time frequency representations of the peak voxel in the right hippocampus. 

This plot depicts the power change in first training set relative to the second one during 

inter-trial rest period of -4.5 – 0 s. The black rectangular shows more high-gamma (80 – 140 

Hz) bursts during inter-trial rest period in the first relative to the second training set as 

revealed by SAM beamformer analysis. The	
  TFRs	
  show	
  that	
  the	
  duration	
  of	
  high-­‐gamma	
  power	
  

increase	
  is	
  brief	
  and	
  is	
  around	
  100ms,	
  in	
  line	
  with	
  the	
  duration	
  of	
  animal	
  ripples.	
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Figure 4. Band-pass filtered (80 – 140 Hz) virtual sensor activities of the peak voxel of the 

right hippocampus for one individual participant during ITI in each training set and condition.   

 

Post-hoc analysis results  

 

Low-gamma activities during rest. No significant results were found for 

low-gamma band of 30 – 80 Hz, supporting the specificity of the effects to the 

high-gamma range.  

 

High-gamma activities during navigation. No significant results were found for 

high-gamma during navigation, which may suggest that when theta was the most 

dominant LFP, there was no significant effect for high-gamma rhythm during 
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navigation (Fig. 2B).  Direct comparison of high-gamma power during inter-trial rest 

period and that during navigation in the right hippocampal ROI showed that 

high-gamma power in the post hidden platform condition during rest in the first 

training set was significant higher (t= 3.072, p= 0.007, Fig. 2A & 2B) than that during 

navigation in the hidden platform condition. No significant difference was found for 

the second training set, indicating that replay effect was most apparent following 

navigating in the new environment.  

 

    No significant difference was found between high-gamma power in the post 

random swimming condition and that during navigation in the random swimming 

condition in both training sets, which might suggest although in post random 

swimming condition, right hippocampal high-gamma power showed the same pattern 

of right hippocampal theta power during navigation, the replay effect in inter-trial 

period following navigation with low learning demands was not as salient as that 

following navigating with high learning demands (Eschenko & Sara, 2008; Girardeau 

et al., 2014). This was confirmed by the result of direct comparison between the 

high-gamma power difference between post hidden platform and hidden platform 

condition (Diff_H) in the first training set and the high-gamma power difference 

between post random swimming and random swimming condition (Diff_R) in the first 

training training set, which showed the Diff_H in the first training set was 

significantly larger than Diff_R in the first training set (t(17) = 2.264, p= 0.037). No 

significant difference was found between Diff_H and Diff_R in the second training 
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set.  

 

Correlation Results 

 

Right hippocampal high-gamma during rest vs. navigation performance. 

Consistent with our hypothesis, there was a significant correlation between the power 

increase of high-gamma in the inter-trial rest period in post hidden platform condition 

relative to that during navigation in hidden platform condition in the right 

hippocampal ROI in the first training set with learning rate in the second training set 

(r= 0.601, p= 0.004, one-tailed Fig. 5). No correlation was found between 

high-gamma power increase in the first training set with path length in the second 

training set. This might mean high-gamma is more sensitive to learning rate compared 

to path lengths as shown in Cornwell et al. (2014). The significant correlation 

indicates navigator who shows higher high-gamma power will learn the hidden 

platform location more quickly in the familiar environment as indicated by larger 

learning rate.  

 

   To exclude the possibility that the correlation only reflected the general 

relationship between high-gamma power and behavioral performance across subjects, 

we also correlated learning rate in the second training set with the right hippocampal 

high-gamma power change in the inter-trial rest period in post hidden platform 

condition relative to that in hidden platform condition in the ROI in the second 



	
   175	
  

training set, when consolidation requirement decreased indexed by decreased 

high-gamma power as shown in above analyses and improved navigation 

performance in the second training set as shown in chapter three. No significant 

correlation was found, confirming that the correlation between replay-related 

high-gamma power and subsequent learning performance is functional relevant.      

 

                  

Figure 5. Right high-gamma power increase in the post hidden platform condition during rest 

relative to that in the hidden platform condition during navigation in the first training set in 

the right hippocampal ROI (x-axis) of each participant plotted against his learning rate during 

navigating in the second training set (y-axis).  

ITI: inter-trial-interval 

 

Right hippocampal high-gamma during rest vs. right hippocampal theta during 

navigation. No significant correlation was found between the power change 
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(difference in pseudo-Z values) of high-gamma in post hidden platform condition 

relative to that in hidden platform condition in the right hippocampal ROI in the first 

training set with the power change of theta (pseudo-F values computed in Pu et al. 

(2017) in hidden platform condition relative to pre-trial baseline in the first training 

set when the environment was new and the learning requirement was maximum. 

Since power change contains power information of both baseline period and the 

period of interest, we then investigated whether there was a significant correlation 

between the ‘pure’ power in the two periods of interest. To do so, we correlated the 

cluster mean (pseudo-Z values) of high-gamma in the right hippocampal ROI in 

inter-trial rest period of -4.5 – 0 s in post hidden platform condition in the first 

training set and the cluster mean (pseudo-Z values) of theta power in the same right 

hippocampal ROI in the hidden platform condition in the time window of 1.25 – 2.25s 

(this time window showed significant environmental encoding effect in chapter three) 

during navigation.  

 

    We found a significant correlation (r = 0.406, p = 0.046, one tailed). We also 

correlated high-gamma power in the time window (-2.5 – -0.5s), which showed the 

strongest high-gamma increase with theta power in 1.25 – 2.25s. As expected, the 

correlation was significant and even stronger (r = 0.53, p = 0.017, one-tailed, Fig. 6A). 

Voxel wise correlation analysis confirmed that the significant effect was focal with 

the local maximum in the right hippocampus (Fig. 6B). These correlations support the 

conclusion that spontaneous high-gamma power in the inter-trial rest period was 
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proportional to previous learning indicated by the strength of right hippocampal theta. 

No significant correlation was found between offline high-gamma power in the 

second training set and online theta power in the second training set, when learning 

requirement decreased, suggesting the significant correlation seen above is learning 

dependent.  

 

                          

                      

Figure 6. A. Cluster mean of high-gamma power (pseudo-Z values) in the right hippocampal 

ROI during inter-trial rest period (ITI) of -2.5 – -0.5s (the time window showed the strongest 

high-gamma effect in the time frequency representations in Fig. 3), plotted against cluster 

mean of theta power (pseudo-Z values) in the same region during navigation in the time 

window of 1.25 – 2.25s when there was an environmental encoding effect as shown in 

A.	
  

B.	
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chapter three. B. Whole brain images of correlation between cluster mean of high-gamma 

power (pseudo-Z values) in the right hippocampal ROI in the time window of -2.5 – -0.5s and 

theta power (pseudo-Z values) in the time window of 1.25 – 2.25s in each voxel across the 

whole brain. Threshold is set at p<0.005 (uncorrected). The local maximum is at right 

hippocampus (peak voxel: Talairach coordinates x = 26, y = -17, z = -8). 

ITI: Inter-trial interval 

 

    No significant correlation was found between high-gamma power during rest in 

post random swimming condition and theta power in random swimming condition. 

Voxel wise correlation did not yield significant correlation in any voxels in the 

bilateral hippocampi as well. These results might indicate although offline 

high-gamma power in inter-trial rest period in post random swimming condition 

showed the same pattern as theta during navigation in random swimming condition as 

a function of environmental novelty, the faithfulness of ‘replay’ following spatial 

navigation in simple environment with low encoding requirement and with low 

learning requirement is low, in line with findings from animal literature (Kentros et al., 

2004) that faithful retrieval of a mouse’s hippocampal representation of an 

environment increased as task demands increased.  

 

Discussion 

 

    Using MEG, we found the right hippocampal high-gamma power after 
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navigation in the new environment was significantly stronger than that in the familiar 

one, which reflected the same power change pattern of encoding related right 

hippocampal theta oscillations during navigation as shown in chapter three. This 

result is in line with the prediction of two-stage model for memory formation 

(Buzsaki, 2015) and animal studies (Ambrose et al., 2016; Davidson et al., 2009; 

Dupret et al., 2010; Jackson et al., 2006; Jadhav et al., 2012; Karlsson & Frank, 2009; 

Singer & Frank, 2009, refer to Roumis & Frank, 2015 for a review) and suggests that 

human high frequency oscillations may play an important role in replay of recently 

learnt information accompanied by theta oscillation. Greater offline high-gamma 

power after exposure to the new environment than to the familiar one also suggests 

that replay strength is stronger after navigation in new environment, consistent with 

results from animal studies that relative to a familiar environment, neuronal replay in 

a new environment is stronger and more easily to be detected (Foster & Wilson, 2006; 

O'Neill et al., 2008) and high frequency LFP in a new environment is stronger (Cheng 

& Frank, 2008; Csicsvari et al., 2007).  

 

    Our data further showed the high-gamma related learning-dependent reaction 

effect did not occur during navigation period, when the theta rhythm was the most 

dominant LFP; high-gamma power after navigation in post hidden platform condition 

in the new environment was significantly larger than that during navigation in hidden 

platform condition in new environment, in line with idea that during offline states, 

high frequency oscillations is the most dominant LFP and replay often occurs when 



	
   180	
  

animals were disengaged with external environment (Buzsaki, 2015). In the familiar 

environment, where the learning and consolidation requirement decreased, indexed by 

improved navigation performance as shown in chapter three, no high-gamma power 

increase was found during rest period relative to navigation period, suggesting that the 

high-gamma increase in the new environment is learning dependent (Cheng & Frank, 

2008). Although rest high-gamma after random swimming trials showed a power 

change in the new vs. familiar environment, resting high-gamma increase following 

navigating in hidden platform trials relative to that during navigating in hidden 

platform trials in the new environment was significantly larger than resting 

high-gamma increase after navigating in random swimming trials relative to that 

during navigating in random swimming trials. This suggests that replay strengths are 

stronger after navigation in a more complex environment with higher learning 

requirements, which is in agreement with the finding that replay strengths vary as a 

function of task demands (Eschenko & Sara, 2008; Girardeau et al., 2014). 

 

    The present results complement previous studies (Cornwell et al., 2014; 

Axmacher et al., 2008) by showing that the same hippocampal region used for 

encoding exhibited replay effect accompanied by high-gamma oscillations during 

offline states, thus supporting the role of hippocampal high-gamma in replay of 

previously learned experience. These results also support previous fMRI studies 

(Deuker et al., 2013; Peigneux et al., 2006; Staresina et al., 2013; Tambini et al., 2010; 

Vincent et al., 2006), which showed experience-dependent reactivation during 
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wakefulness or sleep and provides a neurophysiological mechanism underlying the 

reactivation. The current results might also help explain why some studies have not 

found hippocampal reactivation during offline states after learning. Because the onset 

of hippocampal reactivation occurs immediately after each learning trial as shown in 

our data and decays over the course of high frequency oscillations (Colgin, 2016; 

Kudrimoti et al., 1999), during which information is being transferred to neocortex. 

Therefore, hippocampal reactivation might not be strong and salient after a whole 

block of learning. Further study could investigate how this issue of how persistent 

high-gamma hippocampal replay is. 

 

    High frequency oscillations measured using MEG are easily confounded by 

muscle artifacts. However, source localization algorithms based on spatial filters can 

differentiate cognitive processing source from cortical or subcortical areas with 

artifactual sources (Dalal et al., 2011). Several checks support our contention the 

high-gamma effects observed in the current study are not artefactual. First, the 

analyses were performed during the inter-trial period when participants were 

instructed to rest quietly and to minimize movement. Second, there was no significant 

high-gamma effect during active navigation epochs which are more likely to be 

contaminated by muscle artifacts because participants pressed buttons to move in the 

virtual pool. Third, the spatial map of the effect was focal and localized unilaterally to 

right hippocampus, and TFRs showed relatively narrow band power changes. Muscle 

artifact, in contrast, tends to span large spatial regions and broad frequency ranges 
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(from 30 to 200 Hz or higher; Muthukumaraswamy, 2013).  

 

    Consistent with our hypothesis that replay is proportional to encoding, our data 

showed that offline high-gamma power after navigating in the hidden platform 

condition in the new environment was positively associated with theta power during 

navigation in hidden platform condition in the new environment, when learning 

requirement was strongest. Together with the finding that the same hippocampal 

region used for encoding was reactivated during rest period, the correlation provides 

further evidence that high-gamma during rest is modulated by previous learning 

experience to accurately reinforce the newly formed labile memory traces (e.g., 

Davidson et al., 2009; Skaggs & McNaughton, 1996; Wilson & McNaughton, 1994). 

A comparable correlation was not found for familiar environments with decreased 

learning requirements, indicating that the correlation seen in new environment is 

learning induced, rather than an intrinsic relationship between gamma and theta 

power. The random swimming condition, where learning requirements were low, 

showed no significant correlation between theta and high-gamma in both training sets, 

suggesting although replay is automatic, the degree of replay faithfulness may vary as 

a function of encoding requirement. This is corroborated by the findings of a rodent 

study (Kentros et al., 2004), showing that the faithful retrieval of a mouse’s 

hippocampal representation of an environment increases as task demands increase and 

place cell stability tightly covaries with attention to the available spatial cues.  
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    Further, we observed that right hippocampal high-gamma power increase in post 

hidden platform condition in the first training set relative to that during navigation in 

hidden platform condition in the first training set correlated with learning rate in the 

hidden platform condition in the second training set in the same environment. This 

correlation bolsters the argument that the functional role of right hippocampal 

high-gamma replay is memory consolidation. As indexed by higher gamma power, 

navigators with stronger memory consolidation of the environment during the offline 

state after new environment learning learned more quickly in the second training set 

where the environment was the same, even though the hidden platform location 

changed. Good consolidation of the environment to form a cognitive map can 

facilitate flexible navigation to any place in the same environment (Wolbers & 

Hegarty, 2010). This correlation is also consistent with observations from human 

fMRI studies showing that reactivation strength of the hippocampus predicts 

subsequent memory performance (Bergmann et al., 2012; Peigneux et al., 2006). The 

direction of the correlation is consistent with the results of Axmacher et al., 2008; 

Cornwell et al., 2014), showing that stronger high-gamma power corresponded to 

better memory performance. No correlation was found between high-gamma power 

during rest in the second training set (where consolidation requirement decreased) 

with learning rate in this training set, indicating the significant correlation seen above 

is learning specific.  

 

    It is noteworthy that the effects described in the current study were confined to 
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right hippocampus. In contrast, in our previous findings, navigation related theta 

effects were found in both left hippocampus (implicated in binding the external cues 

to the platform location) and right hippocampus (associated with encoding the 

environment to form the cognitive map of the space). While non-significant results do 

not confirm the null hypothesis, this is consistent with the notion that replay is 

selective, such that not every aspect of learning would be replayed (Deuker et al., 

2013). However, the mechanism underlying this replay selection is still unclear. 

Reactivation during awake rest and sleep is more complicated than expected (Buzsaki, 

2015). Recent studies (Gupta et al., 2010; Wu & Foster, 2014) have pointed out that 

the function of replay is not just consolidating previous experience but also helping to 

construct a Tolmanian cognitive map of the environment, which would result in 

flexible routes to the goal location on subsequent trials. Thus, the replay might not 

necessarily be location dependent (O'Neill et al., 2006). This might help explain why 

only the right hippocampus region was reactivated in our data. Moreover, this work 

might provide some insights into the reason why right hippocampus is believed to be 

important in spatial cognition in general (Cornwell et al., 2010; Jacobs et al., 2009; 

Maguire et al., 1998; Nedelska et al., 2012). More research is needed in the future to 

investigate the selective nature of hippocampal replay.  

 

    In sum, using a highly translational experimental task, we show as reported in 

animal studies, in the rest periods immediately following each spatial learning trial, 

human hippocampal high-gamma activity is evident and mirrors the power change 
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pattern of theta rhythms during encoding; high gamma power is proportional to theta 

magnitude and is predictive of subsequent performance. These findings link human 

data with animal models and advance our understanding of the neurophysiological 

mechanisms of human hippocampal replay in memory consolidation.  
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Chapter five 

 

Gender differences in navigation performance are associated with 

differential theta and high-gamma activities in the hippocampus 
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Abstract 

 

Gender differences in spatial navigation are well-established, but the brain 

mechanisms responsible for these differences are unclear. Hippocampal theta (4 – 8 

Hz) and high-gamma rhythms (80 – 140 Hz) are thought to play an important role in 

online encoding and offline consolidation respectively. This study examined whether 

gender differences in navigation performance are associated with differences in these 

two rhythms. We measured brain activity with whole-head magnetoencephalography 

(MEG) and analysed theta activity in males and females during navigation in a virtual 

Morris water maze, and high-gamma activity during inter-trial rest periods. 

Behavioural results showed clear gender differences: males scored significantly 

higher on the Santa-Barbara-Sense-of-Direction Scale; and were significantly faster 

than females in the water maze task. Males, but not females, showed significantly 

improved performance in the familiar environment compared to the new environment 

in the water maze task. MEG results for the two groups showed comparable left 

hippocampal theta rhythm magnitudes during goal-oriented navigation processing. 

However, there were gender differences in right hippocampal activities in 

environmental learning processing. In the new environment, right hippocampal 

magnitudes were similar between the two groups, but in the familiar environment, 

males exhibited a significant decrease in right hippocampal theta power during 

navigation, while females showed no change. After navigating in the new 

environment during inter-trial rest periods, males showed significantly higher right 

hippocampal high-gamma power than females. These results suggest that 

hippocampal theta during navigation and high gamma activities during rest might be 

responsible for behavioral differences in navigation performance of males and 

females. The study provides evidence for the functional importance of human 

hippocampal rhythms during spatial learning.   

 

Keywords: Gender difference, spatial navigation, hippocampus, theta rhythms, 

high-gamma rhythms 
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Introduction 

 

Gender differences in spatial ability and performance are well-established both 

in animals and humans (e.g., Astur et al., 2004; Blokland et al., 2006; Jones et al., 

2003; Newhouse et al., 2007). However, the brain mechanisms underlying gender 

differences in spatial ability are largely unknown (Wolbers & Hegarty, 2010). An 

obvious candidate is the hippocampal formation (HF), known to be crucially 

important for spatial navigation in animals and humans (Buzsaki & Moser, 2013; 

O'Keefe & Nadel, 1978). In rodents, navigation is associated with slow rhythmic theta 

oscillations, dominating the local field potential (LFP) of the HF (e.g., Buzsaki, 2002). 

Theta oscillations are thought to bring together and link cell assemblies into a 

temporal range where they can be modulated by synaptic plasticity (Buzsaki & Moser, 

2013). During offline states, including rest and sleep, high frequency oscillations 

(HFOs) are the dominant LFP and cell assemblies activated during navigation are 

reactivated (Buzsaki & Lopes da Silva, 2012). HFOs are thought to be crucial in 

strengthening the synaptic changes brought about during navigation (i.e., 

consolidation) (Buzsaki, 1989, 2015). The current study aimed to investigate whether 

gender differences in behavioral performance are reflected in one or both of these 

hippocampal rhythms, which are associated with different stages of spatial learning 

(Buzsaki, 2015).  

 

Behavioural studies have repeatedly demonstrated gender differences in spatial 
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ability and performance, with males showing an advantage over females in 

psychometric measures of ability and in spatial tasks (e.g., Astur et al., 1998; Hao et 

al., 2016; Hegarty et al., 2006; Moffat et al., 1998; Mueller et al., 2008; Ross et al., 

2006; Wegman et al., 2014, see Maguire et al., 1999 for a review). However, 

neuroimaging studies of gender differences in spatial cognition are still lacking. Such 

studies have focused on differences in brain activity during active navigation, with 

mixed results. For instance, an fMRI study (Gron et al., 2000) found that males 

showed bilateral hippocampal activation during navigation, while females showed 

only right hippocampal activation. In contrast, another fMRI study (Blanch et al., 

2004) reported no gender differences in brain activation during spatial navigation; 

notably, however, this study failed to find hippocampal activation in either gender. To 

our knowledge, no neuroimaging studies have investigated whether there are gender 

differences in brain activities during the offline period after spatial learning, when 

replay of newly learned information may support consolidation (Buzsaki, 2015; Carr 

et al., 2011).  

 

In the present study, we measured the brain responses of a group of female 

participants using a whole-head magnetoencephalography (MEG) system when they 

were performing a virtual Morris water maze task (Morris, 1984). In our previous 

reports on male participants (chapters three and four), we have shown that they 

exhibited stronger left hippocampal theta power during active navigation relative to 

random swimming (i.e. encoding the hidden platform position); and more right 
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hippocampal theta power in the new relative to familiar environment (i.e. encoding 

the environment). During rest periods after each trial of spatial learning, right 

hippocampal high-gamma showed the same power change as right hippocampal theta 

during navigation (i.e. replaying the newly learned environment for consolidation). 

Here we compared data from the male participants, described in the previous chapters 

three and four, to data from the group of female participants. We wished to examine 

whether the gender differences in their behavioral performance are associated with 

gender differences in theta and high-gamma oscillations. We reasoned that if 

hippocampal theta and high-gamma are functionally important for spatial navigation, 

they should reflect the robust gender differences in performance. We predicted that 

behavioral differences should be reflected in one or both of these oscillatory 

responses to spatial learning.  

 

Methods 

 

Participants. Eighteen right-handed healthy male and female participants (mean age 

in years: male 29.0 ± 5.1, female 27.9 ± 5.0; years of education: males 20.0 ± 3.3, 

females 19.1 ± 3.0). All experimental procedures were approved by the Human 

Research Ethics Committee of Macquarie University. Two female participants were 

excluded from MEG data analyses due to excessive head movement (pre-post head 

movement of pre-post recording > 4 mm). The rest of the sixteen females (mean age 

in years: 27.8 ± 4.9, mean years of education: 19.8 ± 2.9) were matched with the 
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eighteen male participants for age and education. The behavioral data analyses 

included all 18 females. The male data have been reported in chapters three and four. 

Here we focused on comparing males and females. 

 

    All the female participants had a regular menstrual cycle with a mean cycle 

length of 24 – 30 days. The eighteen females were evenly distributed in three different 

menstrual cycle phases by self-reports (six in the menstrual phase (cycle day 1 – 5), 

six in follicular phase (cycle day 6 – 12), six in luteal phase (cycle day 14 – 29). For 

the sixteen participants used in MEG data analyses, five were in the menstrual phase, 

six in follicular phase, and five in luteal phase. They were not pregnant and did not 

take any contraceptives or other hormone drugs at the time of testing.  

 

Virtual Morris water maze task. This paradigm was described in detail in chapter 

three. Briefly, naïve participants did two repeated training sets in a virtual version of 

the Morris water maze task commonly used to elicit and study hippocampal activities 

in the extensively characterized rodent model (e.g., Kelemen et al., 2005; 

Olvera-Cortes et al., 2012). In humans, the virtual Morris water maze has been shown 

to elicit hippocampal rhythms measured by MEG (e.g., Cornwell et al., 2008; 

Cornwell et al., 2010). Behaviourally, the virtual Morris water maze has also been 

shown to reveal robust gender differences in virtual place learning (Astur et al., 1998; 

Astur et al., 2004). Participants navigated by pressing buttons on a button box 

(Current Designs Co. Ltd., Philadelphia, USA) using their right hand. In each training 
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set, they needed to find a hidden platform fixed in a goal location from different 

starting positions in the hidden platform condition by using the external landmarks 

attached on the pool wall; or they needed to move aimlessly in the random swimming 

condition. The contrast of the two conditions provided an index of goal-oriented 

navigation via binding of the goal location to external cues (Cornwell et al., 2008). 

We kept the environment layout of each condition of the two training sets constant to 

measure environmental encoding from training set one to two (chapter three). Thus, 

the environment in the first training set was defined as a new environment and that in 

the second one as a familiar environment. The positions of the hidden platform 

location in the two training sets were different and counterbalanced, to avoid 

environmental learning being confounded by learning a specific location in the 

environment. In each training set, there were five blocks of 5 trials for each condition 

respectively and were alternatively presented.   

 

Control condition. To control the differences in interacting with the computer 

program between the two groups, after the MEG recording, participants were required 

to do ten trials of visible platform condition, where they needed to swim to a visible 

platform in a virtual Morris water maze with a different set of cues attached on the 

wall from different starting positions of the pool as quickly as possible by pressing 

buttons (Astur et al., 1998).  

 

Psychometric task. Participants completed the Santa Barbara sense of direction scale 
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(SBSOD; Hegarty et al., 2002), a standardized self-report scale of spatial abilities. It 

consisted of 15 items, such as “I can usually remember a new route after I have 

traveled it only once” and “I do not have a very good ‘mental map’ of the 

environment”. Participants were instructed to choose to what extent they agree or 

disagree with the statement in a 7-point Likert-type scale. The higher score of this 

scale indexes the better perceived sense of direction 

(https://labs.psych.ucsb.edu/hegarty/mary/content/santa-barbara-sense-direction-scale

). The scale has been shown to have good test-retest reliability (two-administration 

correlation was 0.91) and highly correlated with objective measures of spatial abilities 

based on different types of learning experience (Hegarty et al., 2002; Wegman & 

Janzen, 2011).      

 

Data acquisition.  

 

MEG recording. Neuromagnetic responses were recorded at the KIT-Macquarie 

Brain Research Laboratory, Macquarie University, Sydney. The MEG system (Model 

PQ1160R-N2, KIT, Kanazawa, Japan) contained 160 coaxial first order gradiometers 

(50-mm baseline; Kado et al., 1999; Uehara et al., 2003) in a magnetic shielding room 

(Fujihara Co. Ltd., Tokyo, Japan). Before MEG measurements, the 3D locations of 

five head position indicators, the three fiducial landmarks (the nasion and bilateral 

preauricular points) and head shape were measured with a pen digitizer (Polhemus 

Fastrack, Colchester, VT, USA). Head position relative to the MEG sensors was 
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measured by energizing the five marker coils both before and after each of the 

recording. Continuous data were acquired with a sampling rate of 1000 Hz.  

 

MRI recording. High-resolution T1-weighted anatomical magnetic resonance images 

(MRIs) were acquired at Macquarie University Hospital, using a 3T Siemens 

Magnetom Verio scanner with a 12-channel head coil. Those anatomical images were 

obtained using 3D GR\IR scanning sequence with the following parameters: 

repetition time, 2000 ms; echo time, 3.94 ms; flip angle, 9 degrees; slice thickness, 

0.93 mm; field of view, 240 mm; image dimensions, 512 × 512 × 208. 

 

Data analysis.  

 

MEG source reconstruction. Source localization analyses were performed using the 

synthetic aperture magnetometry (SAM) beamformer (Robinson & Vrba, 1999) 

implemented in a Matlab toolbox – BrainWave (Version 3.0; 

http://cheynelab.utoronto.ca/brainwave). SAM is a non-linear ‘beamforming’ 

technique based on fixed-aperture radar technology (Dymond et al., 2014). It 

estimates source power within specific time and frequency windows across the whole 

brain. Source space is parsed into a three-dimensional grid with optimum spatial filter 

(beamformer weights) specified for each grid point (voxel) (Hillebrand et al., 2005). 

Localizing hippocampal activity with MEG beamformer has been shown to be 

successful in both simulation studies (e.g., Meyer et al., 2017; Quraan et al., 2011; 
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Stephen et al., 2005) and empirical studies (e.g., Backus et al., 2016; Cornwell et al., 

2008; Riggs et al., 2009). 

 

Estimation of navigation-related theta oscillations. A detailed description of 

analyses can be found in chapter three. Briefly, MEG data were epoched from -1 – 4 s 

relative to trial onset (4 s was the fastest time from the starting point to finding the 

hidden platform of two participants (one female and one male)). A single sphere 

forward head model (Lalancette et al., 2011; Sarvas, 1987) was derived by fitting the 

sphere to the inner skull surface of each individual’s MRI extracted by the Brain 

Extraction Tool (Smith, 2002) in FSL. Beamformer weights were generated for the 

theta frequency (4 – 8 Hz) range. Sets of beamformer weights were computed for the 

entire brain at 4 mm isotropic voxel resolution without regularization of the 

covariance matrix. Source power at each voxel was normalized to that of the pre-trial 

baseline to control the noise and to capture the navigation-related power change 

relative to pre-trial period (event-related perturbation of theta power). Source power 

(quantified as a pseudo-F ratio) was estimated for 1s time windows using sliding 

windows in 250 ms increments (one theta cycle) after the trial onset (i.e. active 

window, e.g. 0 - 1s, 0.25 - 1.25 s, 0.5 - 1.5 s,..., 2.75 - 3.75 s), relative to the 1s 

pretrial baseline window. This generated a set of individual SAM images consisting 

of a volume of pseudo-F ratios. Sliding windows were required to detect the highly 

transient theta power change (e.g., Arai et al., 2014; Foster et al., 2013; Wyble et al., 

2004). 
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Estimation of spontaneous high-gamma oscillations during inter-trial rest period. 

For more information on high-gamma power estimation, please refer to chapter four. 

Briefly, MEG data were epoched into -4.5 – 0 s (0 s was the onset of the next trial; 4.5 

s was the shortest ITI across trials) and the epochs were grouped and labeled as post 

hidden platform condition and post random swimming condition. Since we were 

interested in spontaneous high-gamma power as opposed to event-related perturbation, 

source power at each grid location was estimated by normalizing a noise estimate 

instead of baseline power (called pseudo-Z ratio). Normalization has to be done to 

obtain a relatively ‘pure’ signal of interest, because the output of beamformer contains 

a certain amount of noise (Robinson & Vrba, 1999). This procedure resulted in a 

SAM image of a volume of pseudo-Z ratios for each condition and each training set.  

  

Group statistics. Individual SAM images were first normalized to a Talairach brain 

template using Analysis of Functional NeuroImages software (AFNI; Cox, 1996; 

http://afni.nimh.nih.gov/afni). This was achieved by registering each participant’s 

anatomical MRI to this brain template and a set of warping parameters was obtained, 

which was then applied to this participant’s SAM images for normalization. To unveil 

the similarities and differences of the two groups, we first separately analyzed females 

and males using condition by training set within-subject ANOVA to see the brain 

activation patterns of theta and high-gamma activities and then directly compared the 

two groups (e.g., Gron et al., 2000; Konishi et al., 2013) to see whether there was a 
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significant group difference. Multiple comparison issues of voxel wise analyses were 

controlled by using small volume FDR correction (p < 0.05) in a mask containing 

bilateral hippocampi and parahippocampi.  

 

Post-hoc comparison between high-gamma power during ITI and navigation 

period. In males, we reported that there was an increase during ITI in the first training 

set after hidden platform condition vs. navigation period in the first training. To 

investigate whether females also showed similar patterns, we estimated the 

high-gamma power during navigation period (0 – 4s) as what we did for high-gamma 

power estimation for ITI in females. We also carried out a within-subject ANOVA to 

see whether there was any significant effect for high-gamma power during ITI and 

navigation period for females.  

 

Time frequency representations (TFRs)  

 

Time course of navigation-related theta rhythms. The theta power time course of 

the peak voxel showing a group difference in the hippocampus was constructed to 

reveal the time-varying change of hippocampal theta oscillations in males and females. 

First, we reconstructed the source waveform of the voxel we specified from -1 – 4 s. 

Then, a five-cycle Morlet wavelet frequency transformation was performed on single 

trial source activity over a frequency range of 4 – 8 Hz in 1 Hz steps using the 

formula: 



210	
   

                    . 

Wavelets were then normalized so that the total energy was 1, with the normalization 

factor A being equal to:  (Tallon-Baudry et al., 1996). A convolution of 

the complex wavelet with the MEG source waveform was then derived and the 

magnitude of this convolution was used to create each TFRs. The value was then 

converted to percentage change in power relative to the pre-trial baseline (-1 – 0 s). 

Theta power change relative to baseline was collapsed over 4 – 8 Hz frequency bins 

and plotted over time to obtain the time course of theta power change (Isabella et al., 

2015).  

 

TFRs for spontaneous high-gamma activities. TFRs of the peak voxel showing a 

group difference was constructed. The main procedure was similar to that for the theta 

time course described above. A five-cycle Morlet wavelet transformation was 

performed on single trial source activity over a frequency range of 30 – 200 Hz over 

the period of -4.5 – 0, normalized across the frequency range so that total energy 

summed to 1. The final TFRs were presented as the difference between the two 

groups. 

  

Correlation with behavioral performance. To further confirm that theta and 

high-gamma power have a functional property in spatial learning, we collapsed males 

and females and correlated theta power change during navigation relative to ITI 

baseline in the first training set, where learning requirement was maximum, with the 
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average path lengths in the hidden platform condition in both training sets across the 

whole brain. Because encoding related hippocampal theta rhythm should facilitate 

flexible navigation in the same environment (Wolbers & Hegarty, 2010). We also 

correlated high-gamma power change during ITI relative to navigation in the first 

training set with learning rate of path lengths in the subsequent training set two, 

because consolidation related high-gamma during rest/sleep should correlated with 

quicker learning in the subsequent spatial learning in the same environment. The 

significance threshold was set at p = 0.05 (uncorrected).  

 

To confirm that the correlation seen for the whole group collapsed across the two 

genders was not driven by two opposite correlation patterns of each gender, we 

plotted scattered plots for a visual check and also compared the correlation 

coefficiencies of the two genders to see whether there was a significant difference 

between the two groups. The comparison of correlation coefficiency followed the 

standard procedure described by Cohen and Cohen (1983) which does the Fisher 

r-to-z transformation, and then calculates a value of z that can be applied to assess the 

significance of the difference between two correlation coeofficients found in two 

independent samples (http://vassarstats.net/rdiff.html). The significance threshold was 

set at p = 0.05.  

 

Correlation between high-gamma and theta. Based on the effect of group 

comparison above, in order to confirm whether it is the case that the more 
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high-gamma power during ITI in the first training set was, the less theta power during 

navigation in the second training set was, we extracted the hippocampal theta power 

change during navigation relative to ITI baseline from the region which showed group 

differences in the right hippocampus and correlated that with high-gamma power 

change during ITI relative to navigation in the first training set across the whole brain. 

The significance threshold was set at p = 0.05 (uncorrected). Comparison between 

correlation coefficiencies between the two groups was made to make sure no 

significant difference between the two groups.   

 

Results 

 

Behavioral results 

 

SBSOD Scale. Independent samples t test showed that females had significantly 

lower scores than males (t(27.886) = -3.537, p = 0.001, Cohen’s d = 1.05; Fig. 1A). 

This is in accordance with previous findings (e.g., Hao et al., 2016; Hegarty et al., 

2006). 

 

Visible platform condition. Average latency over the ten visible platform trials was 

not significantly different between the two groups (t(17.018) = -1.003, p = 0.330), 

indicating that there were no systematic differences (e.g. motivational) between 

females and males in terms of how they interacted with the computer programme 
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(Astur et al., 1998).     

 

Performance in virtual Morris water maze task.  

 

Movement onset (from the picture showing up to the movement onset in each 

trial) of the two groups were marginally different (main effect of gender, F(1,34) = 

4.057, p = 0.052, η2 = 0.107), with females being slightly slower than males to move 

in the task. 

 

We then performed a two (gender: females vs. males) × two (training set: one vs. 

two) mixed design ANOVA to directly compare the average latency and path lengths 

from movement onset to the time point of finding the hidden platform in the two 

groups. We found a main effect of gender (F(1,34) = 7.37, p = 0.01, η2 = 0.178) and 

an interaction between gender and training set (F(1,34) = 4.33, p = 0.045, η2 = 0.113) 

(Fig. 1B). Simple effect analyses confirmed that males required significantly less time 

to find the platform in the second training set compared to the first training set (F 

=5.67, p = 0.023), while females did not show any improvement (F = 0.31, p = 0.579). 

Males were significantly faster than females in both training sets (F = 4.17, p = 0.049 

and F = 8.65, p = 0.006 for training set one and two). (The subset of 16 participants 

used for MEG analyses were subjected to the same analysis, with no differences in the 

statistical inferences reported for the total 18 female participants).  
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Figure 1. A. Score of Santa Barbara sense of direction (SBSOD) of females and males. B. 

Average latency in each condition and training set taken by the two groups. * represents p < 

0.05.  

For path lengths, we found a significant interaction between gender and training 

set (F(1,34) = 5.29, p = 0.031, η2 = 0.13). Males showed significantly shorter path 

lengths in the second training set (t(17)=2.329, p=0.032) than that in the first one as 

reported in chapter three, while females did not showed no difference between 

training sets (t(17)=0.596, p = 0.559).  

 

Overall, the behavioural results show clear gender differences, with males 

having higher scores on the sense of direction scale and faster performance on the 

maze task.  Males also showed significantly improved performance in the familiar 

versus new environments, while females did not, in line with the idea that males and 

females differ in how they process environmental cues (e.g., Sandstrom et al., 1998; 

Saucier et al., 2002; Chai & Jacobs, 2009; Iachini et al., 2005; Lawton, 1994; Mueller 
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et al., 2008).  

 

MEG results 

 

Theta activation pattern of males and females during navigation. Males’ theta 

results have been reported in chapter three. Briefly, there was a main effect of 

condition in the anterior left hippocampus and parahippocampus in the time window 

of 1 - 2s, 1.5 - 2.5s and there was a main effect of training set in the right 

hippocampus in the time window of 1.25 – 2.25s. For females, two (conditions: 

hidden platform vs. random swimming condition) × two (training sets: first vs. second) 

repeated measures ANOVAs demonstrated that there was a main effect of condition 

in the anterior left hippocampus and parahippocampus in the time window of 2 - 3s (p 

< 0.05, corrected, peak voxel at left parahippocampus: Talairach coordinate x= -18 , 

y= -17, z= -16), with left hippocampal theta being greater in the hidden platform 

condition than in the random swimming condition (Fig. 2A & B). No significant main 

effect of training set, or interaction between training set and condition, was found in 

any time window for females (Fig. 3A).  

 

High-gamma activation pattern of males and females during rest. Males’ 

high-gamma results have been reported in chapter four. There was a main effect of 

training set in the right hippocampal high-gamma activities, mirroring the power 

change pattern of navigation-related right hippocampal theta rhythms in the new 
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versus familiar environment. For females, no significant main effect of training set 

was found for rest high-gamma activities during the inter-trial rest period (Fig. 5A). 

This echoed the result that in females no significant main effect of training set was 

found for theta oscillations during navigation. No other significant results were found 

for females for resting high-gamma activities. We further computed high-gamma 

power during navigation period for females and compared that with that during ITI. 

No single voxels were found when original p = 0.05 (uncorrected) for high-gamma 

power between the two time periods (Data not shown), while as shown in chapter four, 

there was a significant increase in high-gamma power during ITI after hidden 

platform condition in the first training set relative to that during navigation in the 

hidden platform condition in the first training set.  

 

 

Figure 2. Images of hippocampal activation of females. A. Main effect of condition in the 

anterior left hippocampus (peak voxel: x = -18, y = -17, z = -16) in the time window of 2 - 3s. 

B. The cluster mean of theta power (pseudo-F values) in anterior left hippocampus in each 

condition and each training set in the time window of 2 - 3s.  
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Direct comparison of the two groups.  

 

Left hippocampal theta during navigation. Since both groups showed a significant 

main effect of condition in the left hippocampus and parahippocampus, the cluster 

mean (pseudo-F values) of the voxels showing a significant effect in each group in the 

corresponding time window was extracted to directly compare activations in the two 

groups. Since this effect was the contrast between hidden platform condition and 

random swimming condition, and there was no condition by training set interaction in 

either group, we collapsed the power of the cluster mean of the left hippocampal and 

parahippocampal theta power in training set one and two together for each group and 

compared the value of the two groups using independent sample t-test. No significant 

difference was found between the two groups.  

 

Right hippocampal theta during navigation. Since females did not show any 

significant environmental learning effect in any of the voxels in bilateral hippocampi, 

defining an ROI in the right hippocampus showing a significant effect in male group 

and extracting theta power from females for group comparison may cause bias (Vul et 

al., 2009). So voxel wise comparisons between the two groups were performed and 

corrected as in the previous analyses above. Moreover, since the environmental 

learning effect was obtained through subtraction of the two training sets, to 

investigate where the group difference came from (1st or 2nd training set), a two 
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(gender: females vs. males) × two (conditions: hidden platform condition vs. random 

swimming condition) mixed design ANOVA was performed for training set one and 

two respectively. We averaged all the time windows of females together, because no 

single time window in females showed a significant main effect of training set and 

compared theta power in the average time window with that of males in the time 

window of 1.25 – 2.25s for training set one and two respectively. We found no 

significant difference in the first training set, but a significant main effect of gender in 

the right hippocampus in the second training set (p < 0.05, corrected, peak voxel in 

the right hippocampus, Talairach coordinate x = 26, y = -25, z = -4) (Fig. 3B & 3C), 

with females having significantly higher right hippocampal activation than males. No 

other significant effect was found for both training sets. 
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Figure 3. A. Females showed no main effect of training set in the hippocampus for theta 

oscillations during navigation. B. Main effect of gender (1.25 - 2.25s of males vs. average 

time window of females) in the right hippocampus (peak voxel: x = 26, y = -25, z = -4) for 

the second training set for theta oscillations during navigation. C. The cluster mean of theta 

power in the right hippocampal region showing gender difference in each condition in males 

and females in the second training set.  

 

We then plotted the time course of the peak voxel showing main effect of gender 

in the right hippocampal region for both males and females (Fig. 4. the last few 

hundred milliseconds were trimmed because of edge effects, Kaplan et al., 2012). The 

time course of right hippocampal theta activities confirmed that in the first training set, 

when the environment was new, right hippocampal theta activity was similar in the 

two groups; in the second training set, where the familiarity degree of the 

environment decreased, right hippocampal theta power of male participants decreased, 

while females’ right hippocampal theta magnitude was still high.  
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Figure 4. Time course of right hippocampal theta power (during navigation) percentage 

change relative to the baseline in training set one (new environment) and two (familiar 

environment) for males and females.  

 

New	
  environment	
  

Familiar	
  environment	
  



221	
   

 

 

Figure 5. A. Females showed no main effect of training set in the hippocampus for 

high-gamma oscillations during inter-trial rest period. B. Main effect of gender in the right 

hippocampus (peak voxel: x = 22, y = -17, z = -12) for the first training set for high-gamma 

oscillations. C. The cluster mean of high-gamma power during inter-trial rest period in the 

right hippocampal region showing gender difference in each condition in males and females 

in the first training set.  

 

Right hippocampal high-gamma during rest. We performed a two (gender: females 

vs. males) × two (conditions: hidden platform condition vs. random swimming 

condition) mixed design ANOVA for each voxel across the voxels of the whole brain 

for training set one and two respectively. ANOVA showed a significant main effect of 
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group in the right hippocampus (p < 0.05, corrected, peak voxel at right hippocampus: 

Talairach coordinate x = 22 y = -17 z = -12. Fig. 5B & 5C) in the first training set, 

with the resting high-gamma activation strength of males being significantly higher 

than that of females. No other significant effects were found for this training set. As 

for the second training set, no significant effect was found. TFRs (Fig. 6) also 

confirmed that in the first training set, when the environment was new, males showed 

more high-gamma bursts than females during the inter-trial rest period. These results 

suggest that females may have weaker automatic consolidation processing after 

spatial leaning, which might be a reason why they required continuing encoding of 

the environment and persistently high theta power in the second training set when 

male’s theta power had significantly declined from the first training set. 
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Figure 6. Time frequency representations (units: pseudo-Z) of right hippocampal 

high-gamma difference between males and females (males minus females) during inter-trial 

rest period in training set one (new environment) and training set two (familiar environment). 

The black rectangular shows the time window and frequency range (80 – 140 Hz) used in 
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SAM beamformer analysis for group comparison. 

Correlation between theta and high-gamma with navigation performance.  

To investigate whether theta power change during navigation relative to 

navigation and high-gamma power change during ITI relative to navigation were 

related to navigation performance across participants, we collapsed males and females 

together and correlated theta power change during navigation and high-gamma power 

change during IIT in the first training set where the learning requirement was the 

maximum across the two genders with navigation performances, because we reasoned 

if hippocampal theta and high-gamma have an important functional property in spatial 

learning in humans, they should correlate navigation performance across genders. We 

found right hippocampal theta power change in the first training set during navigation 

in the hidden platform condition relative to ITI was negatively correlated with path 

lengths in both training sets in hidden platform condition (Fig. 7) and right 

hippocampal high-gamma power change in the first training set during ITI after 

hidden platform condition relative to navigation was positively correlated to learning 

rate in the second training set in the hidden platform condition (Fig. 8). No significant 

group difference was found between the correlation coefficients of the two genders (z 

= -0.34, p = 0.73; z = -0.52, p = 0.60 for the comparison between the correlation 

coefficients from the correlation between hippocampal theta in the first training set 

and path lengths in the first and second training set respectively and z = 0.94, p = 0.35 

for the comparison of the correlation coefficients from the correlation between 
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high-gamma power and learning rate). 

These results suggested the more the right hippocampal theta power increase 

during navigation was, the shorter the path lengths were in both training sets, in line 

with previous results that stronger right hippocampal activity during navigation 

corresponded to shorter path lengths (Cornwell et al., 2010). The results also 

suggested that the more the high-gamma power increase during ITI was, the larger the 

learning rate would be in the subsequent learning, in agreement of previous reports 

that higher high-gamma power during rest/sleep after learning associated with better 

subsequent memory performance (Axmacher et al., 2008; Cornwell et al., 2014).    

 

Figure 7. Correlation between hippocampal theta power change during navigation relative to 

ITI baseline in the first training set and path lengths in both training sets across genders. The 
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left figures of upper panel whole brain images which exhibit more theta power increase 

during navigation in the first training set in the hidden platform condition corresponded to 

shorter path length in the first training set. The right figure of upper panel is the scatter plot of 

right hippocampal theta power change during navigation in the first training set plotted 

against the path lengths in the first training set in the hidden platform condition. The left 

figures of lower panel shows whole brain images which show more theta power increase 

during navigation in the first training set in the hidden platform condition corresponded to 

shorter path length in the second training set. The right figure of lower panel is the scatter plot 

of right hippocampal theta power change during navigation in the first training set plotted 

against the path lengths in the second training set in the hidden platform condition. 

 

Figure 8. Correlation between high-gamma power change during ITI relative to navigation in 

the first training set in the hidden platform condition with learning rate in the second training 

set in the hidden platform condition. The left brain images show the more hippocampal-high 

gamma power increase during ITI in the first training set was, the quicker the participants 

would learn in the subsequent training set two. The scatter plot on the right side is the right 

hippocampal high-gamma power change during ITI plotted against the learning rate in the 
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second training set in the hidden platform condition.    

Correlation between high-gamma power change during ITI in the first training set with 

theta power change during navigation in the second training set. 

To further investigate whether the right hippocampal high-gamma power change 

during ITI in the first training set was related to theta power change during ITI in the 

second training set, because in the group comparison above, we saw decreased right 

hippocampal theta power in males but not in females in the second training set, while 

increased high-gamma power during ITI in the first training set in males but not in 

females, we extracted right hippocampal theta power change during the second 

training set in the two genders and correlated that with their high-gamma power 

change during ITI in the first training set. As expected, we found a negative 

correlation between high-gamma power change during ITI in the first training set with 

theta power change in the second training set during navigation (Fig. 9). No 

significant difference was found between the correlation coeffiencies of the two 

groups (z = 0.65, p = 0.52).  
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Figure 9. Correlation between high-gamma power change during ITI relative to navigation in 

the first training set and theta-power change during navigation during navigation relative to 

ITI in the second training set. The brain images on the left side show the more high-gamma 

power increase is in the first training set, the less the navigation related theta power is in the 

second training set. The scatter plot on the right side shows a scatter plot of right hippocampal 

high-gamma power change during ITI in the first training set plotted against the right 

hippocampal theta power change in the second training set.  

 

Discussion 

 

    In this study, we investigated whether gender differences in navigation 

performance are associated with gender differences in hippocampal theta during 

navigation and high-gamma activities during rest period using a whole-head MEG 

with a virtual Morris water maze task. The behavioral results were consistent with 

previous behavioral studies: males had a significantly better sense of direction and 

were able to find the hidden platform faster than females; in the second training set, 

males took less time to find the hidden platform than that in the first training set, but 

females did not show any improvement. MEG results revealed that (1) in both groups, 

navigation elicited left hippocampal and parahippocampal theta, with comparable 

magnitudes; (2) there were gender differences in right hippocampal theta and 

high-gamma activity. From the first to the second training set during navigation 

period, males showed decreased right hippocampal theta power, while females did not; 
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during inter-trial rest periods, males showed significantly higher right hippocampal 

high-gamma power in the first training set than females; (3) the more the right 

high-gamma power during ITI in the first training was, the less the right hippocampal 

theta power during navigation was; (4) both theta power during navigation and 

high-gamma power during ITI were associated with better navigation performance 

across genders. 

 

    The behavioral data agree with previous studies (e.g., Astur et al., 1998; Mueller 

et al., 2008) showing that males were faster than females to find the hidden platform 

in a virtual Morris water maze task. We further showed that males, but not females, 

significantly improved performance from the new (training set one) to familiar 

(training set two) environment. These results support the conclusion that there are 

gender differences in environment learning, in line with previous findings (e.g., 

Mueller et al., 2008; Sandstrom et al., 1998; Saucier et al., 2002; Woolley et al., 2010) 

showing gender differences in environmental processing. The group differences are 

not attributable to differences in the interaction with the computer programme 

between the two groups for the following reasons. First, males outperformance of 

females in spatial navigation is consistent with previous studies (e.g., Astur et al., 

1998; Astur et al., 2004) and with the significantly higher scores on the Santa Barbara 

sense of direction scale (SBSOD); second, there was no significant group difference 

in the control condition (visible platform condition), indicating that motivational, 

motor, or sensory aspects of interacting with the computer program were not 
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significantly different between the two groups (Astur et al., 1998).  

 

In both groups during navigation, left hippocampal and parahippocampal theta 

oscillations showed greater power in the hidden platform relative to the random 

swimming condition, and no gender difference was found in left hippocampal and 

parahippocampal theta. Left hippocampal theta has been proposed to be functionally 

involved in binding the platform to its spatial location (Cornwell et al., 2008), and the 

left hippocampus has been conceputalised as a binding device (Chalfonte et al., 1996; 

Kessels et al., 2004; Mitchell et al., 2000). Our MEG results are consistent with 

previous behavioural studies which found that females and males performed equally 

well in object-to-position binding processing (Postma et al., 1998; Postma et al., 

2004); and a meta-analysis (Voyer et al., 2007), showing no gender difference in 

remembering the location of a gender-neutral object. The similarity of the functional 

activation of the left hippocampus in both groups is further corroborated by a recent 

MRI study (Joel et al., 2015), which reported that there was a significant overlap 

between males and females in the volume of the left hippocampus.  

 

Our results do provide evidence for a gender difference in right hippocampus in 

environmental encoding during spatial navigation. From the first to second training 

set, males showed decreased theta power in the right hippocampus. In contrast, 

females’ right hippocampal theta power showed no change (was equally high) in both 

training sets. Previous studies demonstrated that the right hippocampus showed a 
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time-dependent decrease of activity during spatial learning as performance achieved 

ceiling (Igloi, 2010; Wolbers & Buchel, 2005). Thus, decreased right hippocampal 

theta power in the second training set in males might indicate reduced environmental 

learning requirements from training set one to two, while environmental learning 

requirements did not decrease in females as the magnitude of right hippocampal theta 

was equally high in both training sets.  

 

In males, we observed that during inter-trial rest period, right hippocampal 

high-gamma power mirrored the right hippocampal theta power change during 

navigation, with right hippocampal high-gamma power being higher in the first 

training set than that in the second one to replay and consolidate the newly learned 

environment); in contrast, females showed no evidence of such a high-gamma replay 

effect. Group comparison showed that in the first training set, where the environment 

was new, right hippocampal high-gamma power of males was significantly higher 

than that of females. These findings suggest that replay of newly learned spatial 

knowledge of females is significantly less than that of their male counterparts. This 

idea was supported by the correlation results that the more the right high-gamma 

power was during ITI, the less the right hippocampal theta power was during 

navigation. Thus, a weaker consolidation mechanism in females might explain why 

right hippocampal theta activation in the second training set was as high as that in the 

first one in this group, because they might still need to encode the environment, which 

has already been familiar for males. That explains why males, but not females, 
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showed improved navigation performance over the first to second training sets, while 

females did not. The gender difference in the (replay-related) high-gamma effect 

during the rest period is corroborated by previous findings (Wang & Fu, 2009) that 

the effect of daytime sleep on declarative memory for pictures is different for males 

and females. For instance, after sleep, there was an increased familiarity with the 

previously learned pictures in males relative to that before sleep after learning, while 

the familiarity with previously learned pictures in females was not influenced by 

daytime sleep.  

 

Collapsing across genders, we found stronger right hippocampal theta power 

during navigation and right hippocampal high-gamma power during ITI in the first 

training set where learning requirement was the strongest, corresponded to better 

navigation performance across genders. These correlations with behavioral 

performance across genders are in agreement with previous reports that stronger 

navigation related theta and high-gamma power during rest/sleep period are 

associated with better memory performance (Cornwell et al., 2010, 2014; Kaplan et 

al., 2012; Axmacher et al., 2008) and further reinforce the functional importance and 

behavioral relevance of hippocampal theta and high-gamma rhythms in spatial 

learning in humans.   

 

    Our MEG results are in agreement with the fMRI results of Gron et al. (2000), 

showing no gender difference in right hippocampal activation strength in a new 
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environment. However, our results do show a gender difference in right hippocampal 

activation in a familiar environment. In contrast with Gron et al. (2000), which 

showed left hippocampal activation was specific to males, the present study revealed 

that females also activated left hippocampus during navigation. The discrepancy may 

be due to the fact that the task in Gron et al. (2000) involved both allocentric and 

egocentric navigation. Previous behavioral studies (e.g., Dabbs, 1998; Sandstrom et 

al., 1998) showed there was a gender difference in preferred usage of egocentric and 

allocentric navigation strategies. Thus, the difference in left hippocampal activation 

found in Gron et al. (2000) may reflect a different usage of allocentric and egocentric 

navigation strategies between males and females. In the present study, the virtual 

Morris water maze task restricted the type of navigation strategy that can be used or at 

least makes an allocentric strategy more efficient than other approach (Mueller et al., 

2008), and we found that if both groups used external cues to remember the goal 

location, left hippocampus would be activated in both groups with the same strength.  

 

While the results of the present study strongly implicate the hippocampal 

function as a crucial neural substrate for known gender differences in navigation 

ability, further studies are needed to systematically investigate the precise nature of 

these differences in hippocampal rhythms. Many factors could be involved, including 

sex hormones (e.g., Driscoll et al., 2005), genetic factors (e.g. Ruiz-Opazo & Tonkiss, 

2006), and navigation experiences (e.g. Waller, 2000).  
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    In sum, we found that gender differences in navigation performance were 

reflected in the differences in both environmental encoding-related right hippocampal 

theta activities during navigation and environmental replay-related right hippocampal 

high-gamma activates during rest period. Left hippocampal theta activities, which was 

used to bind the hidden platform to its location using external landmarks during 

navigation were similar between the two genders. The similarities and differences 

between males and females reinforce the functional importance of hippocampal 

rhythms in different stages of spatial learning and also further our understanding of 

the neural substrates underlying spatial navigation of the two groups.  
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In this concluding chapter, the main research findings of the current thesis will 

be outlined, followed by discussion of how these findings relate to our understanding 

of the functional role of human hippocampal theta and high-gamma oscillations in 

different stages of spatial learning. The results support the conclusion that memory 

formation in the human brain proceeds through two consecutive stages accompanied 

by low and high frequency band oscillations respectively for encoding and 

consolidation as shown in animal models. Implications of these findings for future 

investigations will then be considered. Finally, I will highlight the validity and value 

of using magnetoencephalography (MEG) to study neuronal oscillations from the 

human hippocampus by routine experimentation.  

 

Overview of the thesis 

 

The present thesis systematically investigated the functional properties of low 

frequency theta oscillations and high frequency gamma oscillations during spatial 

encoding and consolidation in healthy humans, using non-invasive MEG recordings 

while participants performed a highly translational virtual Morris water maze task. 

The broad aim was to assess whether the two-stage model of memory formation -- 

derived from animal models -- (Buzsaki, 1989, 2015) can be translated to the human 

hippocampus.  

 

Chapter two made the case that MEG is able to reliably detect the signals from 
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the human hippocampus. The main lines of evidence are reviewed: 1) the principle 

neurons in the hippocampus are neatly aligned with the dendrites facing one direction 

and the soma another, such that the magnetic fields generated by this type of neurons 

can be detected by MEG sensors (Lorente de No, 1947; Murakami & Okada, 2006); 2) 

despite of the folded geometry of the hippocampus, signal cancelation is partial and 

only occurs when all the hippocampal subfields and dentate gyrus are activated 

together simultaneously (Stephen et al., 2005); 3) simulation studies have 

demonstrated that magnetic fields emanating from the hippocampus are strong 

enough to be detected by MEG sensors and can be reliably localized to the 

hippocampus; 4) a body of empirical MEG studies have reported hippocampal 

activity using a variety of experimental paradigms and validated by independent 

measurements by iEEG or fMRI.  

 

In Chapter three, I had two aims. The first was to replicate and confirm the 

MEG measurements of hippocampal theta reported by Cornwell et al. (2008) using a 

different MEG system (KIT MEG; Cornwell et al. used a CTF MEG system). The 

second aim was to examine the functional role of hippocampal theta rhythms in 

environmental encoding and the relationship between theta oscillations and 

performance. Two training sets of a virtual Morris water maze (vMWM) task were 

administered to 18 male participants with the environmental layout of the two training 

sets being constant to measure the environmental encoding. Each training set 

contained a hidden platform condition, in which the participants needed to find a 



	
   251 

hidden goal platform in a fixed location by using visual cues attached on the pool 

walls and a random swimming condition, in which participants swam randomly in a 

pool without visual cues. It was found that 1) in agreement with (Cornwell et al., 

2008), left hippocampal/parahippocampal theta power was significantly stronger in 

the hidden platform condition than in the random swimming condition. I further found 

that left hippocampal theta power was not modulated by environmental novelty; 2) 

right hippocampal theta activation was significantly stronger in the first training set 

than that in the second one; 3) the magnitude of right hippocampal theta in the first 

training set was significantly correlated with navigation performance in both training 

sets. These results confirm that that MEG can reliably detect and localize human 

hippocampal theta and that this rhythm is significantly related to navigation 

performance.  I interpreted these results to suggest that, as in rodents, human 

hippocampal theta oscillations function in spatial encoding during navigation, with 

right hippocampal theta oscillations being responsible for environmental encoding 

and left hippocampal theta oscillations for goal-oriented spatial navigation.  

 

Chapter four examined high frequency gamma oscillations (80 – 140 Hz) 

during the inter-trial rest periods of the dataset from chapter three. This analysis was 

motivated by animal studies showing that the hippocampal cell ensembles used for 

encoding during navigation accompanied by theta oscillations would be reactivated 

during rest, accompanied by high frequency oscillations (termed as ripple oscillations 

in animal studies), to replay the newly learned spatial knowledge for consolidation. I 
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found that 1) right hippocampal high-gamma power during the inter-trial rest period 

showed the same power change pattern of right hippocampal theta oscillations during 

navigation, with the power being significantly higher during rest period in the new 

environment relative to the familiar one; 2) right hippocampal high-gamma power 

during the rest period was positively correlated with right hippocampal theta power 

during navigation in the new environment and also predicted navigation performance 

in the familiar environment. No significant effect was found for left hippocampal 

high-gamma oscillations. These findings support the interpretation that human 

hippocampal high-gamma oscillations play an important role in replay of newly 

learned spatial knowledge as demonstrated in animal models. Since high-gamma 

power during ITI was proportional to theta power during navigation and was 

predictive of subsequent navigation performance, it argues strongly that human 

hippocampal high-gamma during rest period after spatial learning is involved in 

memory consolidation. Notably, only right hippocampal showed the high-gamma 

‘replay’ effect. Left hippocampus did not show this effect, although left hippocampal 

theta was significantly stronger during goal-directed navigation to encode the hidden 

platform location. This might suggest that replay mechanism accompanied by 

high-gamma oscillations is selective, such that not every aspect of learning is replayed 

(Deuker et al., 2013). The detailed mechanisms underlying the selection are still 

unclear.  

 

In Chapter five, I examined hippocampal theta and high-gamma oscillations in a 
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group of female participants; and contrasted these with the patterns of responses in the 

male participants described in the previous two chapters. Previous behavioural studies 

in animals and humans have shown significant gender differences in spatial abilities 

and navigation performance (e.g., Astur et al., 1998; Astur et al., 2004; Blokland et al., 

2006). To the extent that MEG-measured theta and high-gamma oscillations are 

functionally involved in spatial navigation, I reasoned that they should reflect such 

gender differences in performance. On this logic, MEG scans were obtained from 18 

healthy female participants while they performed the virtual Morris water maze task. 

At the behavioral level, there was a clear gender difference: males scored 

significantly higher on the Santa-Barbara-Sense-of-Direction Scale and were 

significantly faster to find the hidden platform in the water maze task. Notably, in the 

familiar environment, males showed improved navigation performance compared to 

the new environment, while females did not show any improvement. At the brain 

level, during navigation, the two groups showed comparable left hippocampal theta 

(associated with remembering the hidden goal location). But there were gender 

differences in right hippocampal theta oscillations. From the first to second training 

set, in males, right hippocampal theta power decreased, but was equally high in both 

training sets in females. During the inter-trial rest period in the new environment, 

right hippocampal high-gamma power of males was significantly greater than that of 

females. These findings suggest that gender differences in environmental learning in 

the water maze task are associated with both (environmental encoding-related) right 

hippocampal theta during navigation and (environmental replay-related) right 
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hippocampal high-gamma oscillations during the rest period, in agreement with 

previous studies that males and females differ in environmental processing (Chai & 

Jacobs, 2009; Iachini et al., 2005; Mueller et al., 2008). The lack of a gender 

difference for left hippocampal theta oscillations during navigation can be interpreted 

with respect to previous behavioral studies (Postma et al., 1998; Postma et al., 2004), 

showing that no gender differences were found in the task which needs to bind the 

object to the location and the left hippocampus is thought to be responsible for this 

binding (Kessels et al., 2004). The finding that gender differences in theta and 

high-gamma rhythms are associated with differences in behavioral performance 

strongly reinforces the functional importance of human hippocampal theta and 

high-gamma rhythms in spatial learning.  

 

Contributions of the thesis and implications for future studies 

 

Empirically, the results demonstrated that as reported in rodent studies, human 

hippocampal theta and high-gamma were modulated by environmental novelty during 

navigation and rest period and correlated with navigation performance. Direct 

correlations with navigation performance strengthen the functional interpretation of 

these oscillations. The results show distinct functional roles of human hippocampal 

theta and high-gamma oscillations in the encoding and consolidation stages of spatial 

learning, and establish a clear linkage between human and animal hippocampal 

functioning. The functional interpretation of human theta and gamma is further 
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reinforced by the finding that gender differences in navigation performance are 

reflected in these rhythms.  

 

Theoretically, these results contribute to our understanding of the 

neurophysiological mechanisms of memory formation in the human hippocampus, 

and indicate that the two-stage model of memory formation put forward based on 

animal models (Buzsaki, 2015) can be translated to the human brain. That is, during 

the initial encoding phase, hippocampal regions are activated accompanied by low 

frequency theta oscillations to encode the new information from the environment. 

However, spatial memory needs to be reinforced to form a more stable representation 

in the brain. Thus, during the offline period, when the brain has little interaction with 

the environment, the hippocampal region used for encoding the new information is 

reactivated accompanied by high frequency oscillations to ‘replay’ the newly formed 

memory to consolidate the otherwise labile memory traces.  

 

There are several implications for future investigations. First, the thesis provides 

a framework for systematically investigating memory formation in humans. 

Previously, researchers have mainly investigated the active navigation component of 

spatial memory in isolation and the inter-trial rest period after each learning trial has 

been largely ignored. The present thesis showed that 1) during navigation, low 

frequency theta oscillations are the dominant neuromagnetic signals from the 

hippocampus; 2) high frequency oscillations become prominent during the inter-trial 
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rest period; 3) gamma magnitude during rest is proportional to theta magnitude during 

navigation and both rhythms are relevant to navigation performance. Thus, in the 

future, researchers should analyze both types of oscillations to reveal a fuller picture 

of the dynamics of brain during learning. This perspective may also help uncover 

more meaningful information when comparing groups, including patient groups (such 

as people with Alzheimer’s disease) with pathologies of the hippocampus, and 

hippocampal theta during encoding and hippocampal high-gamma during rest might 

be used as potential neurophysiological biomarkers for these group comparisons.   

 

Second, it would be interesting to investigate what determines individual 

differences in the strength of hippocampal low frequency oscillations during 

navigation and hippocampal high frequency oscillations during the offline state. For 

instance, what are the structural and genetic bases of the strength the hippocampal 

rhythms? The findings of the thesis also indicate that deep brain stimulation studies 

could probe both navigation states and offline states using stimulation in different 

frequency bands. Further, since a complex cognitive process needs a network of brain 

regions, it is important to study how the hippocampus interacts with other brain 

regions during memory encoding and consolidation. Thus, it would be of interest to 

apply phase-phase coupling or phase-amplitude coupling analyses to study regional 

interaction during encoding and consolidation. Dynamical causal modeling or 

Granger causality can also be applied to investigate the direction of information flow 

between hippocampus and cortex. Graph theory can be employed to determine the 
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networks supporting memory encoding and consolidation, with the help of leakage 

correction algorithms (Colclough et al., 2015) to alleviate cross-talk problems at the 

source space.  

 

Using MEG to study human hippocampal functions and future directions  

 

The hippocampus plays an important role in a range of cognitive processes, such 

as spatial navigation (Buzsaki & Moser, 2013), memory (Horner & Doeller, 2017), 

violation detection (Garrido et al., 2015) and online language processing (Piai et al., 

2016). Pathologies in this region may result in many brain diseases/dysfunctions, such 

as Alzheimer’s diseases, depression, anxiety, epilepsy, and schizophrenia. Accurate 

characterization of the functions of the hippocampus and its interactions with other 

brain regions is key to the treatment of these diseases/dysfunctions and a deeper 

understanding of the nature of memory. In the last two decades, fMRI has been the 

most commonly used neuroimaging technique to study the hippocampus and it indeed 

has provided many insights (e.g., Backus et al., 2016; Doeller et al., 2008; Igloi, 2010) 

and enhanced our understanding of hippocampal functions. With the advent and 

proliferation of high-field (7-Tesla) MRI, researchers have further unveiled different 

functions of hippocampal subfields (e.g., Deuker et al., 2014; Duncan et al., 2014; 

Suthana et al., 2015). However, due to the low temporal resolution of fMRI (on the 

order of seconds, Buckner & Logan, 2001), fast rhythmic neuronal activities cannot 

be resolved with this technique. Thus, neurophysiological mechanisms revealed by 
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animal studies, including the theta and faster rhythms that are the topics of this thesis, 

are not directly accessible to fMRI. iEEG has both excellent temporal and spatial 

resolution, and can record not only local field potentials of synchronized neurons but 

also activities of individual neurons, which can exhibit a full picture of the dynamics 

of the hippocampal activities (Buzsaki et al., 2012). However, it depends on very 

limited opportunities for recordings from pre-surgery epileptic patients, who may also 

have pathologies that alter the functioning of the hippocampus.  

 

Due to its high temporal resolution, non-invasive nature, and the fact that the 

skull, skin and other brain tissues and fluid do not distort the magnetic fields 

emanating from the activation of the neurons of the brain regions, using MEG to 

record and localize the rhythmic neuronal activities of the hippocampus by routine 

experimentation becomes a valuable method to study the hippocampal functions in 

the healthy and disease. As has been shown in the literature review and the empirical 

studies of this thesis, MEG is capable of reliably detecting the signals from the 

hippocampus and revealing the dynamics of this region in different stages of learning 

as shown in animal models. Thus, MEG provides important advantages for bridging 

the gap between human data and animal and computational models of 

electrophysiology (Baillet, 2017) and permitting routine experimental exploration of 

the function of healthy and pathological human hippocampi.  

 

However, it is still challenging to study hippocampal function using MEG at the 
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individual level. Studying the hippocampus on an individual basis is important for 

studying individual differences and clinical implications. As shown in the simulation 

study of Meyer, Rossiter, et al. (2017), at the individual level, if the co-registration 

error was greater than 3 mm, model comparison could not choose the correct model. 

This problem can be compensated with subject-specific headcasts using 3D printing 

recently introduced to the MEG community (Meyer, Bonaiuto, et al., 2017). Greater 

use of individual headcasts may significantly improve the sensitivity of MEG to 

hippocampal signals. Moreover, accurately detecting the hippocampal signal also 

depends on accurate forward modeling, although it still needs to validate the realistic 

model based on individual MRI segmentations (Dalal et al., 2013). However, not 

every MEG toolbox has implemented realistic head modeling and it is still 

computationally consuming to construct a realistic forward model. In the near future, 

more studies need to be done to validate the realistic modeling first and then 

implement it in more toolboxes to reach more cognitive neuroscientists. More 

efficient computational approaches in realistic forward models are also important for 

future advances. New/improved source localization methods are needed to further 

improve the spatial resolution of the source space in order to investigate the functions 

of hippocampal subfields.  

 

It should be noted that new types of MEG sensors are currently under 

development and are likely to significantly improve MEG performance over that 

achieved with conventional SQUID sensors. For example, optically pumped 
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magnetometers (OPMs; Boto et al., 2017) can be placed directly on the scalp, about 

2-3 cm closer to the brain than conventional SQUID-based sensors. OPMs can detect 

both evoked and induced changes with signals as much as four times larger than 

equivalent SQUID measurements. The current thesis confirms that conventional 

SQUID MEG systems are capable of interrogating human hippocampal function; 

these deep source capabilities would be dramatically enhanced with OPM systems 

that significantly reduce the distance between the hippocampus and sensors with 

dramatic increases in signal to noise ratios. 
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