DCT ARCHITECTURE DESIGN FOR HEVC / H.265 VIDEO CODING

Joshua Haddrill

Bachelor of Engineering
Computer Engineering

-
=

MACQUARIE

University

SYDMEY AUSTRALIA

Department of Engineering
Maequarie University

November, 7 2016

Supervisor: Dr Yinan Kong

ACKNOWLEDGMENTS
I would like to acknowledge Niras Cheeckottu-Vavalil and Yinan Kong for their

assistance and guidance throughout the project.

STATEMENT OF CANDIDATE

I, Joshua Haddrill, declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Engineering,
Macquarie University, is entirely my own work unless otherwise referenced or
acknowledged. This document has not been submitted for qualification or assess-

ment an any academic institution.

Student’s Name: Joshua Haddrill
Student’s Signature: J.Haddrill (Digital)

Date:07/11/2016

ABSTRACT

H.265/High Efficiency Video Codec (HEVC) is a relatively new codec that is
poised to replace H.264/AVC as the High Definition encoding standard. The
Discrete Cosine Transform (DCT) is widely used for the compression of video
frames and images including use in HEVC. The document proposes an architec-
ture that completes a two dimensional DCT (2D-DCT) that uses a smaller area
or a smaller gate count than existing architectures, while maintaining a similar
throughput. The architecture is based on the algorithin proposed by Meher et al
for a reusable architecture [4]. The architecture is written using VHDL hardware
description language to construct One Dimensional DCT (1D-DCT) modules of
4, 8, 16 and 32 point lengths that are used twice in combination with a transpose
unit to compute the 2D-DCT. The 1D-DCT modules, that have a length greater
than 4, use a reusable architecture that incorporates the N/2 DCT module and
shift-adders to compute the DCT more area efficient then the common matrix
multiplication method. The architecture was synthesized with Synopsys Design
Tools to produce an Application Specific Integrated Circuit (ASIC) that is able
to encode 8K UHD video files at 60 FPS in a real time frame while saving more

than 66% in hardware area or number of logic gates.

Contents

Acknowledgments
Abstract

Table of Contents
List of Figures
List of Tables

1 Introduction

1.1 Project Objectives e e e e e
2 Background and Related Work
2.1 Discrete Cosine Transform oL L oL
2.1.1 Discrete Cosine Transform Definition
202 DOTUSAZE & o i s i i 6 6 5 i &9 b @ F 6 b b & @ b &0 & b b b b
2.2 Related Work 0. oL
2.2.1 Meher et al’s Proposed Algorithm
2.2.2 Masera et al's Proposed Algorithm

3 One Dimensional Discrete Cosine Transform Modules
3.1 Introduction L e e e e e e e

3.2 VHDL Coding Decisions
3.3 Four-Point DCT and Subsidiary Functions
331 Imtroduction e e e e
3.3.2 Aleorithm
3.3.3 Subsidiary Functions o0 Lo
3.3.4 Four-Point Module
34 Eight-Point DCT i et e e e e e e e
341 Imtroduetion L e
3.4.2 Eight-Point Algorithm
3.4.3 Eight-Point VHDL Module
3.5 Sixteen-Point DCT e e e

iii
vii
ix
xiii

XV

e

o B T

oo

CONTENTS

351 Imtroduction o . i i i i e e e 18
362 Algorithmn - - - - - ¢ o v o v ci s s s s s e s s e s E s 2 18
3.5.3 Sixteen Point Module Architecture 18
3.5.4 Sixteen Point Input Adder Unit 19
3.5.5 Sixteen Point Shift Adder Unit 19
3.5.6 Sixteen Point Output Adder Unit 20
3.6 Thirtyv-Two Point DCT Module 21
361 Imtroduction i v i i it e 21
362 Algorithm i e e 21
3.6.3 Thirty-Two Point Input Adder Unit 22
3.6.4 Thirty-Two Point Shift Adder Unit 22
3.6.5 Thirty-Two Point Output Adder Unit. 22
Variable Length Discrete Cosine Transform Module 23
4.1 Infroduction L 23
42 Length Selection i e 23
4.3 VHDL Implementation 24
4.3.1 Direct Access Implementation 24
4.3.2 Layered Implementation L0 26
Two Dimensional Discrete Cosine Transform Module 27
5.1 Tobroduction v v v v v v b e e e e e e e e e e e e e e 27
5.2 Transpose Module. oo 27
53 Two Dimensional DCT Architecture 29
Results and Comparison 31
6.1 Introduction L e e 31
6.2 Verification of DCT Designs 31
6.3 Synthesis of 1D-DCT Architectures 32
6.4 Synthesis of the 2D-DCT Architecture 33
6.4.1 Xilinx FPGA Synthesis 33
6.4.2 ASIC Synthesis 34
Conclusions and Future Work 35
7.1 Conclusions 0 0 e e e e e 35
7.2 Future Work L 35
Abbreviations 37
1D-DCT VHDL Modules and Related Packages 39
Al Four-Point DOT e e e e e e e e e e 39
All FourPoint.vhd 39
A1.2 Four Point Functions 41

A2 Eight Point Moduleo 0o 43

CONTENTS xi
A.2.1 EightPoint.vhdo oo L 43

A.2.2 EightPointFunctions.vhdo 46

A.3 SixteenPoint Module 47
A.3.1 SixteenPoint.vhd 47

A4 32-Point Module oL 53
A4l ThirtyTwoPoint.vhd . . .00 00 00 0000 oo 53

A4.2 ThirtyTwoFunctionsvhd 0. 0 0o oo oL 65

B 2D-DCT VHDL Modules and Related Packages 67
B.1 Shift Register/ Transpose Module 67
B.2 SR Control Module, 69
B3 TopLevel Module 70

C Consultation Meeting Attendance Form 73
D ODWEPVIEW & 5 & s & 6 6 &od b b 6 B E R E b R R R B E b6 B b E B b b 73
C2 Scamned Form 00 i i e e e e e e e e 73
Bibliography 73

List of Figures

2.1
2:2
2.3
24
2.5
2.6
27
3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

Mustrated 2D-DCT computation [10]
Image approximation: DCT vs DFT [10],
Visualization of the Butterfly technique [2]
Generalized architecture for 8, 16 and 32 point DCT [4]
Stick diagram of the Butterfly technique applied to the DCT
Proposed variable length DCT architecture [4]
Masera et al's proposed 2D-DCT architecture [3]

Structure of the 4-point SAU ool o oo e oo
Visualization of the Four-Point DCT module
Visualization of the 8-Point DCT module’s architecture
Visualization of the Eight Point SAU
A generalized structure of larger length length DCTs, where N = 8, 16,

BN sos s in e onl D 0L T Dl BN BN kYD BN S 55 B

'SEL’ selection method diagram
Diagram representing the Direct Access Implementation
Diagram representing the Layered Variable Size Implementation

The proposed 2D shift register architecture, showing 4 inputs and 4 out-
puts. Data shifted in horizontal direction from left to right, and shifted
out in up direction. all MUX selection changes accordingly
The proposed 2D-DCT architecture. Transposed module implemented us-
ing a 2-D register array, data enters in left column and shifted rightward,
and the data shifted upward fo get transposed data.

Consultation Meeting Attendance Form

xiii

12
13
15
17

28

29

List of Tables

3.1
3.2
3.3
3.4
3.5
4.1
6.1
6.2
6.3
6.4

Four-Point DCT Algorithm by Stage 11
VHDL Code for the 4Point Module 14
Eight-Point DCT Algorithm by Stage 15
Sixteen-Point DCT Algorithm by Stage 19
32-Point DCT Algorithm by Stage 21
Variable Length DCT SEL Assignments 24
Synthesis Results of the 1D-DCT Modules, performed by Xilinx ISE 32

Synthesis Results of the 2D-DCT Architecture, using Xilinx ISE 33
Clock Timing Breakdown for the 2D-DCT, from the Xilinx Synthesis Report 33
Comparison of 2D-DCT Architectures 34

XV

Chapter 1

Introduction

As the demand for High Definition (HD) and Ultra High Definition (UHD) video content
increases as does the need for efficient compression techniques. The H.265/High Efficiency
Video Codec (HEVC) [7] is a relatively new codec that is poised to replace H.264/AVC [8]
as the standard for high definition video encoding. The development of compression pro-
cess for this codec is crucial to allow for HD content to be more readily awvailable and
accessible by reducing the total file size of the media, while minimizing loss of quality.
The HEVC offers approximately a 50% reduced bit-rate than AVC for a near equivalent
reproduction of quality [3]. The use of the Discrete Cosine Transform (DCT) is a common
method in several previous codecs and could be a key factor in the development of com-
pression techniques for the HEVC due to its near optimal efficiency for performing this
task [4]. To accommodate for the varving size HEVC, the DCT needs to be computed
for a matrix of varying lengths. Due to the nature of the transform being similar to that
of a Fourier transform it is possible to compute this by completing the one dimensional
DCT on the rows of the matrix followed by performing the DCT on the columns of the
resulting matrix or vice-versa. To accommodate for the varying size of the architecture it
would be ideal to develop components that would be able to be utilized by other lengths
such that the architecture is more area efficient. This means that the common method
of multiplving by a constant matrix would not be effective in this case, due to this it's
architecture not being able to be reused by other lengths. The development of a dedi-
cated, efficient hardware implementation that can perform a varying length DCT with a
reusable architecture would allow for a more area efficient design than other compression
techniques currently being applied to the HEVC.

1.1 Project Objectives

The main objective of this project is to create a well rounded two dimensional DCT
architecture with input lengths of 4, 8, 16 and 32 at the hardware level, this will be
completed using VHDL hardware description language. The architecture is intended to
be used as part of the compression process for H.265/HEVC to reduce the total file size
and computation time. The proposed architecture should provide improvements in either

1

2 Chapter 1. Infroduction

area efficiency, computational speed /throughput or a combination of these when compared
to the existing DCT designs used for HEVC. This should be done without affecting the
accuracy of the transform and without losses in other key areas of comparison.

Chapter 2

Background and Related Work

2.1 Discrete Cosine Transform

2.1.1 Discrete Cosine Transform Definition

The Discrete Cosine Transform (DCT) is a Fourier related transform that only uses real
numbers to represent a set number of discrete data points within a signal, unlike the
traditional Discrete Fourier Transform (DFT) the DCT only uses cosine functions to
represent the data points [1]. There are multiple versions of the DCT that range from
DCT-I to DCT-IV, the most common of which is the DCT-II which is referred to as "the
DCT" and defined in Equation 2.1.

N-1
Xy = Z cos [%{n + %}#} Tpfor0 < k< N (2.1)
n=0 o
For this project however we require the use of the two-dimensional (2D) DCT, such
that it will be applicable to the data tvpe. The due to the separability of the multidi-
mensional DCT, the 2D-DCT is a trivial expansion of the standard DCT as it can be
obtained easily when viewing the data as a matrix to give Equation 2.2.

N-1N-1
Xy = Z COs [ﬁ(n. B %}Arl] [;—', (ng + %]kg] Ty (2.2)
n=0 n=0 =
The process involves first computing an intermediate matrix by performing the 1D-
DCT of the rows of the matrix, following this the 1D-DCT is computed on the intermediate
matrix to complete the 2D-DCT. This process is illustrated in Figure 2.1.

2.1.2 DCT Usage

The DCT has become a staple in image compression, specifically in the JPEG format,
due to the resulting lossy compression that occurs as a result of the transform, allowing

4 Chapter 2. Background and Related Work

10-DCT

1D-DCT

[

Slkyony] C .1k, k3]

Figure 2.1: Illustrated 2D-DCT computation [10]

larger image data to be compressed. This is done by applying the DCT to a quantization
of an image’s pixels to obtain an approximation that requires less data to be stored.

The DCT posses a strong energy compaction property [6] as most of the signal infor-
mation tends to be concentrated in the lower frequencies components that make the DCT
useful for image compression.

The DCT does this particularly well when compared to that of the DFT approximation
of the same image as seen in Figure 2.2. This is because human vision is much more
sensitive to small variations in colour or brightness over larger areas when compared tot he
strength of high frequency variations in brightness. The DCT uses the previously defined
property to effectively store the magnitudes of higher frequencies with lower accuracy
then that of the lower frequency components [6]. where the colour spectrum on the left
represents the approximation value and the graph on the right represents the spread of
results. The reduced spread is clearly seen in the DCT, resulting in less data to be stored
as it can reference the other identical data in less memory.

The related Fourier properties of the DCT make it possible to use the butterfly mul-
tiplication approach described by Budagavi et al, such that the overall transformation
is completed in sections that effectively “folds’ into the next section, as visualized in
Figure 2.3 [2]. This method is ideal as it is more efficient then brute force matrix multi-
plication method that is very costly in computing time [2].

2.2 Related Work 5

DCT

Figure 2.2: Image approximation: DCT vs DFT [10]

KADIDCT

along columns
e ey

NN

N 1D IDCT
along rows

Figure 2.3: Visualization of the Butterfly technique [2]

2.2 Related Work

There are a number of proposed DCT algorithms proposed for use with the HEVC, the
two that seemed most relatable to the problem were the algorithms proposed by Meher
et al [4] and Masera et al.

2.2.1 Meher et al’s Proposed Algorithm

Meher et al propose a reusable architecture algorithm to perform the transformation that
performs the transformation in stages gradually building from the 4-point DCT to obtain
the completed transforms for the 8, 16 and 32-point lengths. A generalized architecture
is over viewed in Figure 2.4.

At each stage of this process the input data is first manipulated by an Input Adder

Chapter 2. Background and Related Work

{0
(0] wl0} "
all) M2 g
(1) —3 - {N22)-paint 0
integer
8 = DCT unit "
ez Mv2)
£ ;
" N M B
B —
o B s 2,
;
»¥-2)— . - s
=, .
o1y — A -
B(NI2-1) NZL 2| wen
Era = e

Figure 2.4: Generalized architecture for 8, 16 and 32 point DCT [4]

Unit (IAU) to create intermediate data that is then used as the input for the lower and
current operations can be performed. The even numbered rows/columns, including zero,
are processed as an N/2 point DCT to obtain the corresponding output values. The odd
numbered rows and columns are passed through a Shift-Add Unit (SAU), which is specific
to the point length of the DCT being performed, to produce the corresponding values in
the output matrix.

Once the lower level transforms and operations have being completed the resulting
data is then further manipulated by an Output Adder Unit (OAU) to complete the trans-
formation. A stripped down representation of this process can be seen in Figure 2.5, where
the horizontal lines represent the input and manipulated data after operations and the
dots represent the addition or subtraction when a (-) is placed beneath it. this continues
until the out put is reached. The stages are divided up by the red vertical lines, with the
last section being similar to OAU as it only performs a simple operation.

a1 WA b i
FARWAW/ XX i
LR ARVAVA VAN D¢ .
X[4] X X X . Y[4]
AL AN AV AN ANV D¢ "
xts1——[3 A A1 X1 v
o AN D i

Siage 1

Stage 2

Stége >

Figure 2.5: Stick diagram of the Butterfly technique applied to the DCT

2.2 Related Work T

The complete architecture implementation, Figure 2.6, operates recursively by grad-
ually calling N/2-point DCTs until it reaches the four-point DCT. It uses a control unit

to select a mode of operation dependent on the length of the input. It uses multiplexers
on the outputs when some are not required.

s
control unit
@l 1 sel_2 |
aF
E-3
3 Wu)
i) (N72)-point #2)
At e reussbleinteger | 3 3 1
Ig | DCT unit
MN-2)
1015 1)) 1.\'.-2-”
x(0) 3 " N2 Y 5
o— S SR e :
I B z F‘ﬁ)
£ A £ s S
(NV2-1) ok 5 = 1>
: ST : .
N2
o DT 3 .
N2+ D E 3 3 '
] \;—> MN-1)
N-1) 2 5
:)7 (N2)-point
& o w reusable integer e e e .
s = s s DCT unit -
D——
5l 2 T

Figure 2.6: Proposed variable length DCT architecture [4]

The 2D-DCT is then calculated by using a two 1D-DCT modules with a transpose
module in between, to convert the acquired row transforms into column order to perform
the transforms second stage using the same unit.

8 Chapter 2. Background and Related Work

2.2.2 Masera et al’s Proposed Algorithm

The algorithm proposed by Masera et al, uses Walsh-Hadamard Transform (WHT) fol-
lowed by Givens rotations fo compute the DCT. This can be exploifed to compute four
different approximations by selectively skipping the appropriate Givens rotations [3]. By
removing the options to skip certain rotations, this method can be converted into an
algorithm that purely calculates the DCT.

The 2D-DCT implementation proposed uses a singular 1D-DCT and transposition
memory as well as some other minor manipulations to prepare the data coming out of the
1D-DCT to either be stored within the memoaory or sent to the output signals. This process
is defined in Figure 2.7. This architecture will have a smaller implemented area then that
proposed by Meher et al [1] as it only uses a single 1D-DCT unit and a multiplexer (MUX)
to complete the 2D-DCT instead of two complete 1D-DCT units.

columns of rows of
intermediate intermediate P
tput e input - Y
T Transposition |, wpi
Memory ™ (| cu |
.
>>log, N -1
hY
> :
= N-point 1D-DCT =>log N+6 +—>
E E]
rows of columns of
2D-DCT 2D-DCT
input output

Figure 2.7: Masera et al’s proposed 2D-DCT architecture [3]

Chapter 3

One Dimensional Discrete Cosine
Transform Modules

3.1 Introduction

The purpose of this chapter is to give an overview of the development and resulting
implementation of VHDL modules that complete the One Dimensional Discrete Cosine
Transform (1D-DCT) for input lengths of 4, 8 16 and 32 points. This will include an
explanation of the design method chosen, and in some cases alternate or original im-
plementations, of each DCT length as well as reasoning behind their selection. These
modules will then be used to construct the variable size one dimensional module which
will be used to within the two dimensional model that is required for HEVC.

The modules that will be examined in this section include the Four-Point, Eight-Point,
Sixteen-Point and Thirty Two-Point modules as well as their respective helper functions
used to perform particular calculations throughout each module.

3.2 VHDL Coding Decisions

For the data types within VHDL, the std_logic_vector type is used for the inputs and
outputs of each module to represent the incoming integers in binary form. This was de-
cided such that they could be easily manipulated through the shifting operations while
still maintaining the ability to add the vectors together, this also allows for easier conver-
sion between the models presented by Meher et al [4]. All std_logic_vectors are of size 7
downto 0 such that they could represent an 8 bit binary number which was decided to be
sufficient.

For some module implementations. it was decided that it would be beneficial to use a
VHDL function to replace repetitive calculations that used more then one line in obtaining
the resulting value. As a result some subsidiary functions were created to calculate specific
intermediate values with the aim of reducing the total implementation time and creating
a more interpretable design for others to follow the implemented design.

9

10 Chapter 3. One Dimensional Discrete Cosine Transform Modules

For the 1D-DCT Modules it is possible to use combination logic to perform the cal-
culations as they are not heavily dependent on timing and therefore will not require the
presence of a CLK to trigger the next stage. The process that performs the calculations
in each of the modules is sensitive to the inputs of the respective module such that it will
recalculate the outputs each time an input value is altered.

3.3 Four-Point DCT and Subsidiary Functions

3.3.1 Introduction

This section of the document will cover the development and implementation of the four-
point (4X4) 1D-DCT. This is the base model of the entire implementation and will be used
in every calculation as the end point of the stacked process of the reusable architecture.
This module is based on the proposed algorithm by Meher et al [4]. The module was to
be supported by various VHDL functions that would perform repeated operations such
as shifting and adding the input and processed data at various times throughout the
transform.

3.3.2 Algorithm

The algorithm used to implement the 1D-DCT for a 4 x 4 matrix is outlined in stages in
Table 3.1. The algorithm is broken into the Input Adder Unit (IAU), Shift Adder Unit
(SAU) and the Output Adder Unit (OAU) such that each stage can be examined and
implemented individually to ensure necessary values are available as each stage completes.
This algorithm was extracted from the larger algorithm proposed by Meher et al for their
multiple length algorithm, as such it is intended that the four-point module produced will
be used in a similar manner [4].

Within the table, the X(i) values represent the inputs and the Y(i) values the outputs
of the algorithm. with ¢ = Ofo3, such that there are four inputs and outputs.

This algorithm is used to replicate the kernel matrix represented by Equation 3.1 [9]
such to perform the transform without directly performing matrix multiplication. This is
done to improve the computational speed and efficiency of the architecture.

64 64 64 64
. _ |83 36 -36 -83
Ca=l64 —64 —64 64 e
36 —-83 83 -36

3.3.3 Subsidiary Functions

These functions were developed first to represent and implement the basic functions of
the architecture, mainly the SAU unit and the right shift operators.

3.3 Four-Point DCT and Subsidiary Functions 11

Table 3.1: Four-Point DCT Algorithm by Stage

Four Point DCT

Stage Computation Binary Expression Other Notes

Stage 1 (IAU) a(i) = x(i) + x(3-1)
b(i) = x(i) - x(3-1)

Fori=0to3

Stage 2 (SAU) my;9 = 9b(i) (b(i) << 3) + b(i)
migq = 64a(z) ali) << 6 Fysssas
tis = 83b(i) i) << B4 tmsss it =S
tiag = 3[1-5(?) Mg << 2

Stﬂg{‘. 3 (OAU} y(Uj = tﬂ.[i-l + t|_ﬁ,|
y(1) = toss + t1 36
Y(2) = togs — tisa
y(3) = toas — tiss

Input Adder Unit

This unit is split into two functions that perform the two operations of the IAU, vector
addition and vector subtraction. The first function, PPartial, is used to calculate the
addition of the two input vectors, for the Four-point TAU this adds X(0) & X(3) and X(1)
& X(2). The second function, NPartial, is used to calculate the subtraction of the one
input vector from the other, for the four-point TAU this subtracts X(3) from X(0) and
X(2) from X(1).

The functions are both built using the standard operators of the numeric std logic
packages. Both of these functions can be found under Appendix A.1.2.

Four-Point Shift-Add Unit

The SAU for the Four-Point DCT is implemented using the structure diagram presented
in Figure 3.1.

The SAU requires the ability to shift left to complete, the first approach used towards
this was to use the in built arithmetic shift left (sla) to complete the shifts, however this
function was not compatible with the stdlogic_vector resulting in the need for a shift
function to be developed.

The unit is divided into two functions such that the middle value, up until the second
split pointin Figure 3.1 only has to be calculated once when called from the Four-point
DCT module. This function computes the three left shifts, addition with the original and
then a single left shift, from here the i performed another shift left to obtain the the f; 34
intermediate value.

A second function is used to call the six shift left operation and final addition of the
previously created intermediate value and the original to obtain f; 3.

12 Chapter 3. One Dimensional Discrete Cosine Transform Modules

<< b6

b(i) . \ A) tis3

<< 3 < 1 << 1|—tis%

Figure 3.1: Structure of the 4-point SAU

The two intermediate values are then fed back into the output adder unit to complete
the transformation.

Qutput Adder Unit

The purpose of this unit is to manipulate the output values to complete the DCT correctly.
This unit uses the PPartial and NPartial functions created for the IAU to complete
the Operation of the OAU. Another function that called both of the partial functions
was considered such that only one function call was made by the module, however it
was decided that it would perform the calculations easier if the partials were just called
within the module itself. The subsidiary funefion were able to be used here due the simple
addition and subtraction of only two inputs, however this will not be as easily completed
in later units due to multiple inputs and varying operators.

The use of the subsidiary functions is not completely necessary due to the simplicity
of the calculation, however they were implemented before this realization was made and
it was decided that they would remain as it had minimal effect on the units performance
and efficiency.

3.3.4 Four-Point Module

This module is the top level executor that performed the Four-point DCT by calling the
subsidiary functions for the IAU, SAU and OAU while performing simple instructions
that do not require a function. All code for this section is based on the set values outlined
in Table 3.1.

The code is be executed within a VHDL process that is triggered by a change in the
input signal, that is it will run each time there is a change in any of the input signals. The
intention of this method is to complete the operations using combination logic without the
use of a clock to drive the hardware at this level. A clock signal (CLK) was originally used
as the driver for the process and was controlled using a series of if statements controlled
by the ‘currentState’ signal that defined what stage of the DCT was to be completed at

3.3 Four-Point DCT and Subsidiary Functions 13

each clock evele, however this was deemed to be unnecessary and was therefore altered to
the combination logic technique.

This method has some drawbacks when the 10 data is not managed correctly, such
that if incoming data is not loaded simultaneously it will begin its calculations early which
could cause an incorrect output to be recorded for use in a later section. The solution to
this problem is to manage the inputs correctly when using an implemented version of the
module,

The implemented module will follow the method represented by Figure 3.2.

<< 6|

<< 6

Figure 3.2: Visualization of the Four-Point DCT module

The IAU is first performed using the PPartial and NPartial creating the values in IAU
section of Table 3.2. These values then feed into the SAU functions to create the inputs
for the OAU. These values are as displayed in Table 3.2.These finally pass through the
output adder unit to give the output values as shown in the OAU section of Table 3.2

This module is used throughout the rest of the project as the first stage of larger point
DCTs as well as to be incorporated twice as part of the 2D-DCT for the 4x4 matrix. This
is be outlined in the 2D-DCT chapter of this report.

14 Chapter 3. One Dimensional Discrete Cosine Transform Modules

Table 3.2: VHDL Code for the 4Point Module

Stage VHDL Implementation

a(0): X(0) + X(3)

b(0): X(0) - X(3)

1): X(1) + X(2)

1): X(1) - X(2)

SAU tggs:a(0) << 6
tosa: SAU(b(0)) Output 1
toss: SAU(B(0)) Output 2
tiea:a(l) << 6
tosz: SAU(b(1)) Output 1
toas: SAU(b(1)) Output 2

OAU ¥(0): fnga + £164

IAU

): toss +ti3s
¥(2): togs — t1,64
v(3)togs — tiss

3.4 Eight-Point DCT

3.4.1 Introduction

The purpose of this chapter is to give an overview and explanation of the development
and resulting architecture of the eight-point (8x8) 1D-DCT module. This module’s main
purpose is to perform the DCT for an 8x8 matrix, from which the result is then used in
the 2D-DCT as well as the 16 and 32-point modules. The module completes the transform
using a combination of the four point module and shift adders to compute the resulting
output signals,

3.4.2 Eight-Point Algorithm

Similarly to the algorithm for the Four-point DCT, the algorithm that has been used to
implement part of the 1-D DCT for an 8x8 matrix is outlined by stage in Table 3.3. This
algorithm was also extracted from that of Meher et al’s variable length algorithm such
that it can be examined and implemented as its own functional module [4].

The algorithm outlined in Table 3.3 deals with producing half of the output signals
or values of the eight-point DCT. After the IAU generates the a(i) and b{i) values for
i = 0to3, the b(i) values are then manipulated by the SAU and OAU appropriately while
the a(i) values are passed to a copy of the four-point DCT to compute the remaining
output values.

3.4 Eight-Point DCT 15

Table 3.3: Eight-Point DCT Algorithm by Stage

Eight Point DCT

Stage Computation Binary Expression Other Notes

Stage 1 (IAU) a(i) = x(i) + x(7-1)
b(i) = x(i) - x(7-i)

Fori=0to3

Stage 2 (SAU) my;g = 9b(8) (M(i) << 3) + b(i)
m;ay = 20b(i) (b(i) << 4) + myq)
t;18 = 18b(%) mig << 1 S .
tisg = 50[){?—} Mas << 1 Fori=0%03
ti 75 = T50(4) tiso + M2
tigo = 8(”}{?} ((‘J{FJ << G] + m; o5
ST-H{.’,'E‘. 3 (OA[Y} jj[l] = Tfgag + i‘-|‘-g_-3 + tg‘_-',[] + Iq 15
4(3) = tos — t1,18 — tago — taso
y(5) = tos0 — ti,g0 + tos + tars
4(7) = toas — tis0 + a5 — tase

3.4.3 Eight-Point VHDL Module

The Eight-Point VHDL module builds upon the existing Four-Point module to perform the
DCT using eight inputs. The module was broken down into the same three stages (IAU,
SAU and OAU) as the Four-Point module such that they were able to be implemented
and examined more effectively. The module follows the architecture shown in Figure 3.3,
the design and function of the units shown in this figure are outlined below.

—_—— a(0) Y(0) >
X(1)—> 20 ! 4-point 2 5,
- a2 DCT 0N
XG3)—>| I 203) R
A
X(4)—> b(0 — Y1
o u L@ - > W
—- b(1) I Y(3
3| 8-point —{ O >~
X(6)—>= b(2) > | SAU . > A Y(5) 3
X(7)= b£3! ; | | a U Y!?! a

Figure 3.3: Visualization of the 8-Point DCT module’s architecture

16 Chapter 3. One Dimensional Discrete Cosine Transform Modules

Eight-Point Input Adder Unit

The IAU functions almost the same way as the corresponding IAU in the Four-Point
module as it calculates the sum and subtraction of the values x(i) and x(7-1), where 0 to
7 represent the eight inputs of the module. The addition results are stored as a(i) and
the subtractions stored as b(i) for i = 0 to 3. Unlike the previous module, functions were
not used to complete these calenlations as they are simple operations, in a small number,
that could be completed efficiently without the need for a function.

Eight-Point Shift Adder Unit

The SAU for the Eight-Point module works similarly to that of the Four-Point module, not
all values generated by the TAU stage are used in this section. The b(i) values generated
in the IAU will be manipulated by the SAU while the a(i) values will be processed by an
implemented Four-Point module.

The SAU for this module is more complicated then that of the Four-Point as the
increase in input size requires the transform to use a greater range of multiplications to
complete. The transform can be expressed as a kernel matrix as shown by Equation 3.2.

(G4 64 64 64 61 64 G4 G4]
8 7 50 18 =18 =50 =75 -89
83 36 =36 —-83 —83 =36 36 83
7 —-18 -89 —-50 50 8 18 75
64 —64 —064 064 G4 —64 —06G4 G4
50 -89 18 75 =75 —18 89 =50
36 =83 83 =36 -—-36 83 —83 36

|18 =50 75 -89 89 75 50 —18]

This results in a larger number of partial values to caleulate, to represent each mul-
tiplication, these values are then stored such that they can be reused to replace larger
multiplications with addition or subtractions of the previously caleulated multiplications.
An example of this would be multiplying by 75 which can be calculated by adding the
existing results of multiplying by 50 and 25, #;5 = #50 + #25. This is very beneficial in
regards to computational efficiency due to addition operation being far more efficient than
multiplication and the previous values being readily available from previous calculations.

This method is more area efficient then completing the transform using dedicated
architecture as it will reuse’ existing architecture, however this creates a small delay in
which the values are passed and the outputs are retrieved from the unit. This is solved
by ensuring the output values of the unit are taken once the lower level unit is completed,
this will be relevant for all modules from this point as they will all call lower level DCT
modules to complete their operation.

The reusable architecture is evident in the Eight-Point SAU where each addition is able
to build on the next with some minor manipulations to create the next intermediate value
to be acted on by the OAU. This is visualized Figure 3.4, where the addition represented
by The A’s flow into each other from the top to bottom while being altered slightly at each

3.4 Eight-Point DCT 17

b(i)

Le 5 <<] ti,lS

<< 4 \-1-/ << 1 ti,SO
\'br ti7s

tiso

<< 6 @

Figure 3.4: Visualization of the Eight Point SAU

stage to give a particular intermediate value. These stages were implemented as VHDL
functions as they were used multiple times and required multiple lines of code for each
value. These results were then used to compute the remaining values through addition
and shifting to attain the remaining intermediate values.

Eight-Point Output Adder Unit

Similarly to that of the Four-Point, the Eight-Point OAU is quite simple in operation
as it only performs basic addition and subtraction between four intermediate values to
obtain the output values for the odd numbered index values. These are specified by the
corresponding OAU equations in Table 3.3.

18 Chapter 3. One Dimensional Discrete Cosine Transform Modules

3.5 Sixteen-Point DCT

3.5.1 Introduction

The purpose of this chapter is to overview and explain key concepts and developments of
the Sixteen Point (16x16) 1D-DCT module, Sixteen-Point. Similarly to the Eight-Point
module, the Sixteen-Point will use a combination of shift adders and shorter length DCT
modules to complete the transform.

3.5.2 Algorithm

The algorithm was extracted from Meher et al’s variable length algorithm, such that the
Sixteen Point module could be implemented as a stand alone module [4]. The extracted
algorithm is represented in Table 3.4. The unit contains a functional copy of the Eight-
Paoint module, and inherently the Four-Point module, to complete the even indexed output
signal computations using the generated addition results from the IAU. The remaining
IAU subfraction results will be processed by the SAU to generate the odd indexed output
values.

3.5.3 Sixteen Point Module Architecture

By expanding the model of the Eight-Point Architecture in Figure 3.3, a reusable archi-
tecture is extracted for use with the remaining DCT lengths was developed, using similar
methods to Meher et al [4]. This model nses an N/2 DCT module and a SAU specifically
designed for each length to complete the transform. Purpose built IAUs and OAUs were
also defined for each length, as this was the simpler and most efficient implementation of
both units. A diagram overview of the reusable architecture is shown in Figure 3.5, while
the design of supplementary units (IAU, SAU, OAU) are defined within the sections of
their corresponding modules,

X(0) —=| _*3(0) o) >
x1) = Lem] N/2-Point o) 5
: DCT :
B I a(NIZ-lh)_ ¥(N-2) >
E A
b(0 (1
U ey > W _g
b(1)) Y(3)
——>| N-Point —>|0 >
K{N-2)= E SAU E A E
X(N-1)] bSNIZ-la! | | > e Y(N-1) 3

Figure 3.5: A generalized structure of larger length length DCTs, where N = &, 16,
32 [4).

3.5 Sixteen-Point DCT 19

Table 3.4: Sixteen-Point DCT Algorithm by Stage

Sixteen Point DCT

Stage Computation Binary Expression Other Notes
Stage 1 (IAU) a(i) = x(i) + x(7-1) S—

b(i) = x(i} - x(7-) Fori=0to7
Stage 2 (SAU) nh s = 8b(i) b(i) << 3

0= 9b(1) m;g + b(7)

m; s = 18b(i) ig<<l1

Mita = T?b(tj tig << 3

tios = 25b(%) (b(i) << 4) +tig

t; a3 = 43b(¢ m; s + Lias Fori=0to7

tisr = HTh(¢

(

((b(é) << 5) + ti2s
ti 70 = TOb(i

(

(i

[:b(} << 6} —ii70

re 80 = 80b(7 M7 + Mg
t; a7 = 87b(¢ (tigz << 6) + b(2)
tion = Job(2 -+ Mg
Stage 3 (OAU) y toon + t187 + fago +ta0 + Eas7 + fsa3 +tpas5 + t7 g

) =

) = togr +tisr +tag — taaz — taso — 500 — te70 — fr.2s
) = toso +t1g — toq0 — tasr — tags + ts57 +tego + tr a3
) = to,70 — t1,43 — E2,87 + tag + ta.00 + t525 — te.s0 — Er 7
) tosr — tiso — f2,05 + 300 — fag — f587 + te a3 + 1770
1) = toas — tign + tasr + t395 — tasy + ts 0 + teo —

3) = toas — tio + tag0 — 380 + taas + tag —

5) = tog — 125 + 1243 —

t780

Ls 57 + Lr gy
tzs7 + fa70 —ts80 + lesr — troo

3.5.4 Sixteen Point Input Adder Unit

The TAU for the Sixteen Point module follows the same structure as the previous IAU’s
in the values a(i) and b(i) are generated by computing the addition and the subtraction
respectively for X (i) and X((N/2) — 1 — i), in this case N = 16. The same method of
computing the values at time of assignment is used here again for the same reasons given
for the Eight-Point IAU due to the number of calculations still being relatively small when
compared to the project as a whole.

3.5.5 Sixteen Point Shift Adder Unit

The Sixteen Point SAU produces more intermediate values then that of the previous
modules due to the increase in inputs resulting in a greater range of multipliers. The
output values are defined in Stage 2 of Table 3.4. The unit also reuses previously calculated
results in later multiplications such fo increase the efficiency of the architecture.

20 Chapter 3. One Dimensional Discrete Cosine Transform Modules

3.5.6 Sixteen Point Output Adder Unit

The Sixteen Point OAU works in a similar manner to those in the Four-Point and Eight-
Point modules, in which output values are calculated using a series of addition and sub-
tractions of specific intermediate values to obtain the result. For the Sixteen-Point mod-
ule this involves the resulting calculation being determined by a set of eight values being
manipulated using varying operation patterns depending on the output value being deter-
mined, these are defined by Stage 3 of Table 3.4. Due to the varying nature of operations
and a undefinable patfern, a suitable VHDL function could not be designed in a way that
could be used in a general case therefore the outputs were all calculated at the point of
assignment as it was equally efficient and required less overall implementation time.

3.6 Thirtv-Twao Point DCT Module

21

3.6 Thirty-Two Point DCT Module

3.6.1 Introduction

This purpose of this section of the document is to give an overview and insight into
the design and implementation for the Thirty-Two Point (32x32) 1D-DCT Module. The
purpose of this unit is to successfully perform the DCT for a 32x32 matrix, which will
then be used to complete the two dimensional transform as well as being the base of the
variable length DCT module. The module achieves this purpose using a combination of

smaller length DCT modules and shift adders

3.6.2 Algorithm

The algorithm for the Thirty-Two Point module that computes the odd indexed output
values is outlined in Table 3.5 and extracted from Meher et al’s variable length algorithm
[4]. The even indexed outputs, including Y(0), are caleulated by an implemented Sixteen
Point module. The use of the Sixteen Point module inherently utilizes the Eight-Point and
Four-Point to perform the lower level calculations as outlined in their respective sections.

Table 3.5: 32-Point DCT Algorithm by Stage

Thirty-Two Peint DOT

Stage Corputatic Binary Expression Other Notes

Stage 1 (IAU) ali) = x(i} + ={15-i)

Bli} = x(i} - x{15i) Foc L=l An

Stage 2 (SAU) mig = 26(i} bli}) << 1

bii) << 2

(b(i) <= 3) + bli)
tig << 1

tig €< 3
tia+iio

t,] <<2

tig +mi

(bl << ":} — Bli}
tig << 2+my For i = 0 to 15
tigz €< 14 g2
m; gy ;g
(P31 << 1) + b{#)
ting tEiag

ey vz 4 bii)

tiaa << 14 my 52
tig t+tiTs

tiaa + Wy s

tigz =<2

b = ENJHI} my ez + oy ae

w(1) = topo + tipo + tgss + tass + tesg + tsze + te7
¥(3) = togo + t1az + t2ar + tage + fazz — f5a —
!ufﬂ = togg + f1g7 + 1231 — f313 — 454 — Es82
w(7) = togs + tran — tana
¥(9) = tgaz + tizz — fuse —
urI]J =gz — f1.4 = t2a83 = ¢
= lo7a = f131 = tapo =

3 + r7| + tgo1 + tesd + troas + tapas + fizan a3z

= tnge — tiarg —

tyars + ti290 + tiag

2+ tpeg + L1084 — f114, 2

5 + fa31 — tpas — taono — flrer + a2
— 722 — taes — fosr £ frasn + f1190 4 tias

- 8313 + tpez + tio6a = fr1de — figas = fasd

Stage 3 (OAU)

= faga — f173 — a6 + l-su + tyan — l,na = n — tag, — tgpo + tiozz + E1185 —
= fosa — f1a5 — f2a, + f388 — faas — tmey T — tgop + tozs + troer — f1178 —
= toas — f1o0 + tzas + 354 — tyoo + Es31 + fear — Pree + fe22 + losr — lios +

foas — tiss + tary — tag, = tas7 + fsp — foue — tra1 +tass — tors i —

toan — f17e + tzeo — tael + 44, + t554 — foms F i7sz — t1100 +
= tga2 — f141 + t2gs — t3gg + ty73 — & 54 =
= toaa — 138 + tag a7a + tyas — L =

w(31) = tog, — ty1g + fagz — fas + taas — b 3+ tiors — 1182

= fi4pg — ¢

#2141 + tisog

+ tigg1 + ¢
— by478 = ¢
+ tigge + 1

a38 = “l’)l] _‘lI‘lb

+ #1554

22 Chapter 3. One Dimensional Discrete Cosine Transform Modules

3.6.3 Thirty-Two Point Input Adder Unit

The IAU for the Thirty-Two Point IAU follows the same structure as the previous IAU’s
such that the values a(i) and b(i) are generated by computing the addition and the
subtraction respectively for X(i) and X((N/2) — 1 — i), in this case N = 32. The same
method of computing the values at time of assignment is used here again due to the
number of caleulations still being relatively small when compared to the project as a
whole.

3.6.4 Thirty-Two Point Shift Adder Unit

The Thirty-Two Point SAU uses similar methods to those of the smaller length DCT
by using shifts and additions to perform multiplications, while also reusing previously
calculated results to perform larger multiplications. In the Thirty-Two Point case however
there are many of these multiplications to be completed as there are twenty multipliers
that each need to be applied to sixteen different inputs, giving a total of 320 values to
be calculated. Due to the repetitive nature of these calculations, VHDL functions were
created to calculate and perform basic operations require anything more than a single
operator, such as x << 1, as well as to compute values that required multiple lines of
code. Due to the larger number of calculations some variables initially had the same name
following the naming pattern that was implemented throughout the project, for example
t152 represented both the multiplications t15(2) and t1(52). The solution to this was to
make exceptions for these cases as there were only several instances of this problem rather
then altering the naming scheme for the entire project, this was usually done by adding a
'07 in the appropriate case i.e £1502 to create a variation for the previously given example

3.6.5 Thirty-Two Point Output Adder Unit

This stage of the module uses the caleulated results of the intermediate multiplications
from the SAU to generate the output values for the odd indexed signals. The calculations
are quite simple only using addition and subtractions operations, however there are fifteen
operation to be performed per output value without an obvious pattern to the order of
operations from one signal to the next. As a result of this a VHDL functions was not
appropriate and each signal was calculated at the time of assignment according to the
respective calculations defined in Stage 3 of Table 3.5. This calculation initially contained
a few minor errors caused by incorrect operators being used in several of the output
calculations, once the source of the errors were discovered they were quickly corrected to
give the expected output value.

Chapter 4

Variable Length Discrete Cosine
Transform Module

4.1 Introduction

HEVC allows for the use of a variable block length (4, 8, 16 and 32) to accommodate
for this it is beneficial to create a module that is capable of performing the DCT for
these common block sizes. This module will allow for the same architecture to be used to
process any block size to act as a foundation for the two dimensional DCT. This section
outlines the development of this module and its related concepts, such as length selection.

4.2 Length Selection

To implement the variable length module it was necessary to implement a method that
allowed for the unit to determine the appropriate length DCT to use for the incoming
data. The initial attempt at this was to use only the 32 input signals, X(0) to X(31) and
examine specific signals to determine if they were used or not. The signals to be examined
were X(4), X(8) and X(16), as by examining the input on these signals conelusions would
able to be drawn whether data existed bevond the threshold of each length DCT such
that only the largest size necessary would be used. However this method proved to be
ineffective in cases where the data on these points happened to be 00000000 as this was
the default assigned value that was being checked against to determine if it was being
used or not. It was considered to check the next values in this case but a similar problem
could arise and there would be more efficient methods then checking each value.

The method which was implemented was to use an extra 2-bit std_logic_vector signal
named ‘SEL’ with allowed for four different values to be stored, each of which was assigned
to one length DCT as expressed in Table 4.1. This allows for the user to predetermine
which length DCT is used to suit the needs of their input data which can then be easily
examined by the top level module and passed into lower level modules, if necessary, to
create the appropriate result. As there still exists 32 input signals, for the modules lower

23

24 Chapter 4. Variable Length Discrete Cosine Transform Module

SEL
l(l downto 0)

Top Data Out
Datain = . ata Ou
(7 downto 0)* Level * (7 downto 0)
—_— Module }—=

Figure 4.1: "'SEL’ selection method diagram

Table 4.1: Variable Length DCT SEL Assignments

DCT Module Length SEL Value

Four-Point 4 00
Eight-Point 8 01
Sixteen-Point 16 10
ThirtyTwo-Point. 32 11

then the ThirtyTwo-Point, the output signals will be given a default value of 00000000 for
use in other modules such as the Two-dimensional DCT. This idea is briefly illustrated
in Figure 4.1, in which the types are all std_logic_vector where the numbers represent the
sizes of the the vectors.

4.3 VHDL Implementation

For the implementation of this model, fwo different implementations were considered
each having its own advantages in ferms of ease of implementation and efficiency. The
two models are outlined briefly in this section.

4.3.1 Direct Access Implementation

This implementation uses a top-level module of 32 input and 32 output signals which
instantises each of the 4 length DCT modules such that the input data can be directed
to the appropriate module and performed quickly. The approach is quite simple and
effective, however it is lacking efficiency due to the fact that multiple versions of the
lower length DCTs will be created within each of the larger modules. This is not ideal
as the architecture generated for the other modules that are not currently in use will be
wasted in most cases and will not totally utilize the architecture without restructuring
the existing modules. The basic layout of this method is visualized in Figure 4.2, where
the numbers after the X and Y’s respectively representing the output and inputs of the
numbered length DCT.

It would be possible to make better use of this architecture by increasing the number of
input and output signals such that they could be assigned to each individual module’'s [O

4.3 VHDL Implementation 25

X32(0-31) X16(0-15) X8(0-7) X4(0-3)
ser] [|
DCT-4
I DCT-4 DCT-4
DCT8 -
I gg:s DCT-16 I
| DCT-32 |
I Top-level Module

Y16(0-15) Y8(0-7) Y4(0-3)

Figure 4.2: Diagram representing the Direct Access Implementation

signals, this would allow for multiple sizes to be processed simultaneously. This scenario
seems unlikely as the data input would generally be the same size when performing the
DCT on a single source, this means that to use the architecture in this way it would be
likely processing data from mmltiple sources. Processing data in this way increases the
chance if an error if data is mishandled when being processed outside of the module, such
as when being stored for data_out or in preparation to perform the transpose before the
second round of the DCT for the two dimensional case required for HEVC.

Another way that this implementation could be utilized would be to use each of the
larger modules to perform lower length DCT simultaneously though the existing copies in
the larger, similarly to the method described in the Layered Implementation section. For
example, the Four-Point module could be running four at a time by passing the values
through the larger length modules until it reaches their Four-Point module. While this
method has potential, all of the modules will be running with different timings as it passes
throngh the modules ereating points of overlap. This could create similar problems of
storing the output data correctly, such that it is in the correct position within the matrix,
as well as timing what data is to be given to each module at each time. Additional
calculations would need to be cmnpletcd at each stage before implementation to determine
when and which data would be passed to each module to ensure the correct output is
generated.

26 Chapter 4. Variable Length Discrete Cosine Transform Module

4.3.2 Layered Implementation

This implementation uses either a top level module or alters the Thirty-Two Point Module
such that data can be passed through the larger sized DCT modules to access the smaller
modules within them to perform the appropriate length DCT. Due to 32-point DCT
containing a version of each module, it is the only module that is required to be used
within this model. This design is more area efficient than the previous model as there are
only a total of 4 module architectures in use compared to the 10 used in the direct access
method. A visulaization nof this model is shown in Figure 4.3.

Sel Sel Sel Sel
e — — —|
-
— DCT-16 —
DCT-32 :
N-point ¥ N-Point
MR Data Out
—— Passed Data- —

Figure 4.3: Diagram representing the Layered Variable Size Implementation

However this method would require modification of each module. This is necessary
to handle data being passed to a lower length module through a higher level module,
this is done to bypasses the IAU such that the data is not altered before reaching the
appropriate module. Preventing the SAU and OAU from being used unnecessarily would
also be beneficial, however this is not a priority as the generated output signals could be
ignored when passing data out of the module.

Using multiplexers (MUX) to accomplish this goal is suitable with minimal modifica-
tions to the existing modules, allowing for control of the input into the lower level modules
and the IAU. These are easily implemented as ‘if " statements in VHDL, effectively gating
the unnecessary architecture when there is no use for it. The signal controlling these
MUXs will be the SEL signal described in Section 4.2, which the inputs of all modules
will be modified to accept and mange this signal as an input. Each module will check if
it is the module to be used according to the assigned values in Table 4.1, if the current
module it is to be used it functions as normal if else it passes the input into the next
module without modification.

This method is preferred as there is lower risk of the mishandling of data while also
being more area efficient, allowing for the architecture to require less physical area when
implemented while also requiring less power to perform the transform. It does lack
in computational speed/efficiency when compared tot he potential of the direct access
method,however the benefits of using this design outweigh the negatives of the direct
access design.

Chapter 5

Two Dimensional Discrete Cosine
Transform Module

5.1 Introduction

When processing two dimensional signals, such as video frames, it is necessary to use
a two dimensional version of the DCT (2D-DCT) to complete the process. Due to the
trivial expansion of the 1D-DCT the 2D-DCT is separable into two steps, the 1D-DCT
of the columns of the signal followed by a 1D-DCT of the rows of the resulting rows. The
2D-DCT is necessary for processing the video frames of the HEVC. as such the separable
properties allow for a reduction in total computations to complete the transform when
compared to the direct matrix multiplication. This comes at the cost of required data
storage, as it is clear that the second step of the process (row/column 1D-DCT) can only
begin once the first step is fully completed. The proposed architecture attempts to take
advantage of these properties while reusing the existing architecture to compute both
1D-DCTs. To do this it is necessary to transpose the results of the first step, allowing it
to be run through the same architecture while computing the opposite 1D-DCT to the
first step.

5.2 Transpose Module

Transposition of the output of the first step 1D-DCT is crucial to the function of 2D-DCT
architecture, as this module also needs to be able to store the outgoing data from multiple
iterations of 1D-DCT. For this purpose two user defined types were created to represent
a single column or row as well as the entire matrix. These are defined as:

type slv32 is array (0 to 31) of std_logic_vector(7 downto 0)
type regld2x32_t is array (0 to 31, 0 to 31) of std_logic_wvector(7 downto Q)

28 Chapter 5. Two Dimensional Diserete Cosine Transform Module

As can be seen in the given listing above, the classes are both arrays of std_logic_vectors
and are implemented for a size of 32 x 32 byte as it is the largest block size that is
compatible with HEVC. The slv32 type will be used to mange the input and output data
of the module, while the The reg32x32_t type is used to store and manipulate the data
within the module as what is effectively a set of 2D shift registers, set out in the same
pattern as the 4 input and output shown in Figure 5.1.

Yo Y

. I
Xo ROO ’D~R9\1
X1—~ RlDL:D—o R11 |

AN

Y2 Y3

RO2 LD* RE3 !

AN

R13
A

- R20 ~D——Rf2\1‘ R22 T R23
R31 D R32 M R33

Figure 5.1: The proposed 2D shift register architecture, showing 4 inputs and 4 outputs.

Data shifted in horizontal direction from left to right, and shifted out in up direction, all
MUX selection changes accordingly

R12

'

AEAEA
x"?

[dEAE:

X3 R30

.-

J
i

The module operates in two modes, ‘shift in" and *shift out’. During each clock cycle
of the shift in mode, the transpose module receives data from the output of the first step
1D-DCT, the module then shifts the existing data in the registers to the right by one
column to accommodate for the incoming data which is then stored within the left most
column of the shift registers. This process continues until all of the first step transforms
have been completed. where the module changes into ‘shift out mode’. The shift out mode
passes the stored values back into the input of the 1D-DCT in row order, starting from the
top row of the shift registers. The values are shifted upwards through the registers each
clock eyele until all rows have being passed back into the 1D-DCT. An implementation
of this is included in Appendix B.1.

The size of this unit can be altered easily by altering the size of the input and output
arrays and altering the for loops within the behavioral to correspond with the altered
value. Using generics to create a generic model of the transposition along with a select
signal would allow for general use of the module without the need for set size specification.

5.3 Two Dimensional DCT Architecture 29

5.3 Two Dimensional DCT Architecture

The 2D-DCT architecture is implemented as a top-level module that encapsulates the
1D-DCT and the Transpose modules as well as a basic control module that changes the
operating mode of the shift registers within the Transpose. The module uses the slv32
type for the input signal data_in and the output signal data_out, this allows for the input
data to be easily assigned a row/column at a time which is then subsequently passed
though a variable into the assigned signals of the 1D-DCT. The proposed architecture is
shown in Figure 5.2. This design took inspiration from the 2D-DCT architecture proposed
by Masera et al [3], where the transposition memory had been replaced by that described
in the Transpose Module section above. This change allows for data to How more freely
between the 1D-DCT, the transposition memory and the output signals.

data in

8/16/32 IDDCT

data out

2D Shift registers

data in data out
(left column) (top row)

Transpose module

Figure 5.2: The proposed 2D-DCT architecture. Transposed module implemented using
a 2-D register array, data enters in left column and shifted rightward, and the data shifted
upward to get transposed data.

The proposed architecture requires 2N clock cycles to complete an N-Point 2D-DCT.
For example when performing the 32-point 2D-DCT, the first 32 clock evcles are required
to complete the column transforms and store them within the shift registers, it then
requires another 32 clock cycles to shift the rows out of the registers to perform the row
transformations for a total of 64 clock cycles.

Alternate designs were considered for this method, however this implementation was
chosen due to its greater area efficiency with minute differences in computational speed
when compared with other methods.

30

Chapter 5. Two Dimensional Discrete Cosine Transform Module

Chapter 6

Results and Comparison

6.1 Introduction

This section investigates the results obtained through simulation and testing of the overall
2D-DCT architecture design, as well as the lower level modules of the 1D-DCT architec-
ture. These results are then compared with that of existing implementations that are
currently associated with the HEVC.

6.2 Verification of DCT Designs

The proposed architecture, written in VHDL hardware description language, is verified
throngh simulations in ModelSim that produce waveforms that are then compared to
mathematical results produced by MATLAB to ensure that ontput given by the architec-
ture correctly matches that expected of the DCUT. The mathematical results produced by
MATLAB were acquired by performing the matrix multiplication of the incoming data
matrix (X) with the kernel matrices (T) to achieve the processed matrix (Y') using Equa-
tion G.1. An expanded matrix form of this equation is shown displayed in Equation 6.2

Ty T ... TN tn tie ... lix yu e ... NN
Tz T ... 2N tor o ... Taw Y Yoz ... 2N

Y=]|. . T l=1. . . i (6.2)
Tyi Tyz ... INN tv1 tnz ... tww YNt Ywnz ... YNN

A simple example of this process, using the 4-Point DCT is outlined in Equation 6.3,
This gives the expected result of the 2D-DCT and can be compared to the waveform
produced by ModelSim to confirm the transform has completed successfully.

31

32 Chapter 6. Results and Comparison

64 64 64 64 1 2 3 4
83 36 =36 -83 5 6 7 8 1554 =576 320 -18
2542 -T64 508 18
3530 —952 696 54

64 —64 —64 G4 9 10 11 12 (6.3)

566 —388 132 —54
36 —83 83 36 13 14 15 16

These results were then able to be compared to the output data of the appropriate
length DCT simulation to verify the transform. Additionally the 1D-DCT was also tested
by inputting the equations defined in the respected algorithms of each length DCT into
MATLAB and checking the results against them. This was used as an initial verification
before the 2D-DCT architecture was completed. Each 1D-DCT module outlined Chap-
ter 3.3 successfully completed the DCT for their respective lengths. The 2D-DCT was
tested for the 32-point length only, however this ensures that all lower modules would also
complete successfully as they are implemented within this module and are needed for the
correct output value to occur.

6.3 Synthesis of 1D-DCT Architectures

The 1D-DCT modules were synthesized using Xilinx Design Suite to give basic information
about produced architecture. These results are displayed in Table 6.1. The synthesis was
preformed with the target device belonging to the Kintex7 family of FPGA devices which
allowed for 410000 Slice LUTs and 300 I0Bs to be assigned to the device.

Table 6.1: Synthesis Results of the 1D-DCT Modules, performed by Xilinx ISE

1D-DCT Synthesis Results
Module Slice LUTs 10Bs Est. Delay

4-Point 57 G4 3.282ns
8-Point 336 128 4.691ns
16-Point 1289 256 G.878ns
32-Point 4860 512 7.645ns

The synthesis results are all quite positive producing no errors and only one warning
in the 16 and 32-point modules as it exceeded the number of 10Bs available on the
target device. This means that the modules would not be able to be implemented onto
the device in question, however it would still be possible when using an FPGA device
with an appropriate number of I0Bs. It is also possible to make an Application Specific
Integrated Circuit (ASIC) which can be purposefully made to suit the design, as this was
not necessary to verify that the designs of the 16 and 32 point 1D-DCTs this was not
done at this stage.

The estimated delay of each module is satisfactory with the most important module
to examine being the 32 Point 1D-DCT. The delay in this device is crucial as it will affect

6.4 Syvnthesis of the 2D-DCT Architecture 33

the maximum clock speed of 2D-DCT, such that there is enough time for the transform
to be completed before being passed to the shift registers for storage. Using this result
it is estimated that the delay of completing the column-wise 32 point 1D-DCT will take
approximately 32 x 7.645ns = 244.64ns and will take approximately 32 x 244.64ns =

7,828.48ns = T.828us to complete the 2D-DCT transformation of a single 32 x 32 video
frame.

6.4 Synthesis of the 2D-DCT Architecture

6.4.1 Xilinx FPGA Synthesis

The 2D-DCT architecture was synthesized using the Xilinx Design Suite to obtain an
overview of the designs parameters, these are displayed in Table 6.2. The synthesis was
performed using the same target device of the Kintex7 family of FPGAs as used by the
1D-DCT.

Table 6.2: Synthesis Results of the 2D-DCT Architecture, using Xilinx ISE

Used # Awailable

Slice Registers 8201 82000
Slice LUTs 12957 41000
10Bs 514 300

The synthesis results shows, as expected, an increase in slice LUTs when compared
to the results of the 1D-DCT while also introducing the registers when compared to the
1D-DCT, this is due fo storage in the 2D-DCT that is required to be able to complete
the transpose and the second step transform. There was a small increase in the 10Bs
to accommodate for the extra logic within the controller and input data, this retains the
same problems as the 1D-DCT architecture.

The timing of the 2D-DCT is more important due to the requirement of a clock to
manage the shift registers correctly. The clock in this case needs to cover a minimum
period that allows for the transform to complete and for the result to be stored in the

Table 6.3: Clock Timing Breakdown for the 2D-DCT, from the Xilinx Synthesis Report

Property Value

Min. Period 7.199 ns
Max. Clock Freq 138.91 MHz
Min. input arrival time before clock 7.075 ns

Max. Output required time after clock 7.146 ns
Max. Combinational Path Delay 7.022 ns

34 Chapter 6. Results and Comparison

shift registers. Using the information provided by the Synthesis Keport, the minimum
period is approximately 7.199ns which allows for a maximum clock frequency of 138.915
MHz, a more detailed breakdown of the timing of the 2D-DCT architecture is shown in
Table 6.3. The maximum frequency is relatively high for an FGPA implementation and
is satisfactory for the purpose of the project, however this could be improved by using an
ASIC design in its place.

6.4.2 ASIC Synthesis

An ASIC design was synthesized using the VHDL designed modules using Synopsys Design
Compiler version K-2015.06 with Synopsys Armenia Educational Department (SAED)
design kit standard 28nm logic cell libraries, for operating conditions of 1.16V and a
worst case temperature of 125°C'. The hardware requires clock cycles to complete a 32 x
32 block, i.e 16 pixels per clock cyele when processing a 32 point block. This can vary
depending on the block size used when processing the video frames, the worst case of 2
pixels per cycle oceurs when processing using a 4x4 block size, however this is unlikely due
as the average block size for UHD content is 16 x 16. To be comparable to other existing
models, the proposed architecture needs to be able to process 8k UHD @ 60 Hz in 4:2:0
YUV format which requires a minimum clock speed of 374 MHz. The synthesis results of
the ASIC, shown in Table 6.4, estimates the design can operate with a maximum clock
speed of 450 MHz, which is much higher than the required clock speed. This is also much
higher then the Xilinx synthesis’ maximum clock speed, making the ASIC the better
option in terms of performance. The synthesized design has an area of 0.0985mm? or a
68k standard 2-input NAND equivalent gate count.

Table 6.4: Comparison of 2D-DCT Architectures

Design Technology # of Gates Max. Freq. Throughput Supporting Video Format
TCSVT 14 Arch.-1 [4] 90 nm 347 k 187 MHz 5.984 G 8K UHD @ 60 FPS
TCSVT 14 Arch.-2 [4] 90 nm 208 k 187 MHz 2.992 G 8K UHD @ 60 FPS
TCSVT'16 Arch.-1 [3] 90 nm 243 k 250 MHz 3212G 8K UHD @ 64 FPS
TCSVT'16 Arch.-2 [3] 90 nm 157 k 250 MHz 1.302 G 8K UHD @ 26 FPS
Proposed 32 nm 65 k 450 MHz 3.600 G 8K UHD @ 60 FPS

The two proposals discussed in [4] and [3] for 2D-DCT architectures based on the
unfolded and folded 1D-DCT referred to as Arch. 1 and Arch. 2 respectively in Ta-
ble G.4. The comparison of the key properties of the existing and proposed architectures
is displayved in Table 6.4, from this it is clear that the proposed method uses less than
half the logic gates of other designs while also having a greater maximum clock speed.
The throughput is higher or approximately equivalent to most other designs with the
exception of the full parallel method (Arch. 1) described by Meher et al [1]. In general,
the proposed architecture saves more than 66% of the gate counts with approximately
equivalent throughput when compared to the other designs in the table.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The research and project discussed in this document focuses around the development
of a variable length Two-Dimensional Discrete Cosine Transform (2D-DCT) that was to
be used for compressing the video frames of the HEVC/H.265 codec. The outcome of
this produced an ASIC design, using 32nm technology, that is capable of processing 8K
UHD video content at G0 FPS at a similar throunghput to that of existing designs with
a reduced total gate number and therefore reduced area. The design is able to run at a
maximum clock frequency of 450 MHz which allows for a throughput of 3.600 G, with a
total area of 0.0985mm? or 68K standard NAND equivalent gate count. The improvement
in transposition memory, the use of a reusable architecture and the assumption of the use
of larger block sizes allows for the removal of unnecessary complexities that are present
in other designs accommodates for the lower total gate count.

7.2 Future Work

Future developments of this project would be to further improve the area reduction though
optimization of the larger length modules. This optimization could allow for further
reduction of area or an increase in thronghput/computational speed.

Chapter 8

Abbreviations

1D-DCT
2D-DCT
ASIC
CLK
DCT
DFT
FPS

HD

IAU
MUX
OAU
SAED
SAU

VR

One Dimensional Discrete Cosine Transform
Two Dimensional Discrete Cosine Transform
Application Specific Integrated Cireuit
Clock

Discrete Cosine Transformm

Discrete Fourier Transform

Frames Per Second

High Definition

Input Adder Unit

Multiplexer

Output Adder Unit

Synopsys Armenia Educational Department
Shift-Add Unit

Virtual Reality

37

38

Chapter 8. Abhreviations

Appendix A

1D-DCT VHDL Modules and
Related Packages

A.1 Four-Point DCT

A.1.1 FourPoint.vhd

library IEEE;
:luse IEEE.STD_LOGIC_l1164.ALL;
use work.FourPointFunctions.ALL;

ar metic fu on

use IEEE.NUMERIC_STD.ALL;

i|entity FourPoint is

port (X40: in std_logic_wvector {7 downto 0);
X41: in std logic_wector (7 downto 0);
X42: in std_logic_wvector (7 downto 0);
X43: in std logic_wector (7 downto 0);

Y40: out std_logic_vector(7 downto 0);

Y41l: out std_logic_wvector ({7 downto 0);
Y42: out std_logic_wector (7 downto 0);
Y43: out std_logic_wvector (7 downto 0));

i|end FourPoint;

28| architecture Behavioral of FourPoint is

39

40 Chapter A. 1D-DCT VHDL Modules and Related Packages

begin

process (K40, X41, X42, X43)

variable A0 : std_logic_wector (7 downto 0);
variable Al : std_ legic_vector (7 downto 0);
variable B0 : std_logic_vector (7 downte 0);

variable Bl : std_logic_wector (7 downto 0);
variable T083 : std_logic_vector (7 downto 0);
wvariable T036 : std_logic_wector (7 downte 0);
variable T183 : std_logic_wector (7 downto 0);
variable T1l36 : std_logic_vwvector (7 downte 0);

variable SAUP : std_logic_vector (7 downto 0);
begin
—— IAU Phase

A0 := PPartial (X40, X43);

BO := HPartial (X400, X43);

Al := PPartial (X41, X42);

Bl := NPartial (¥41, Xd42);

—— SAU Phase

o
[
i

1= A0 {1 downto 0) & "000000"; -- tO, 64
Al := Al (1l downte 0) & ™000000"; tl, 64

SAUP := SAU_Partial (BO);
T083 := SAU_83 (B0, SAUP);
T036 := SAU_36(B0);

SAUP := SAU_Partial (Bl);
T183 := SAU_83(Bl, SAUP);
T136 := SAU_36(Bl);

QAL Phas&fﬂutput

Y40 <= PPartial (AQ,Al);
Y41 <= PPartial (T083,T136);
Y42 <= NPartial (A0,Al);
Y43 <= NPartial (T036,T183);

end process;
end Behavioral;

Code/FourPoint.vhd

A.1 Four-Point DCT

41

A.1.2 Four Point Functions

13| function MPartial (A,B :

)| function SAU_Partial

library IEEE;

use IEEE.STD_LOGIC_l164.all;
s|use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.NUMERIC_STD.ALL;

package FourPointFunctions is

function 3L6 (input
std_logic_vector;

in std_logic_vector (7 downte 0)) return

{input : in std_legic_vector(7 downto 0)) return
std_logic_wector;

function SAU_36 (input :
std_logic_wvector;

in std_logic_vector(7 downto 0)) return

function SAU_B83 (input, SAUP : in std_logic_vector (7 downto 0)) return
std_logic_wvector;
function PPartial (A,B : in std_logic_vector(7 downto 0)) return

std_logic_wvector;
in std_logic_vector(7 downto 0)) return
std_logic_vector;

end FeourPointFunctions;

package body FourPointFunctions is
- SLe (arithmatic)
function SL6 (input :
std_logic_wvector is
begin
return input (1 downto 0) &
return temp;
end SL6;

in std_logic_vector{7 downto 0)) return

"000000";

———— SAU SHIFT 3 add Shift 1
function SAU_Partial (input
std_logic_wvector is
variable temp : std_logic_wvector (7 downto 0);
variable x std _logic_vector (7 downto 0);

in std_logic_vector(7 downto 0)) return

begin
temp := input;
® := temp(4 downto 0) & "000";
® = X + temp;
x 1= #(6 downto Q) & "0O";

return =;
end SAU_Partial;

t36 output
function SAU_36 (input :
std_logic_wvector is
variable temp : std_logic_wvector (7 downto 0);
begin

in std_logic_vector (7 downto 0)) return

1|--—-— IAU/OAU Positive

42 Chapter A. 1D-DCT VHDL Modules and Related Packages

temp input;
temp temp (6 downto 0) & "O0";
return temp;

end SAU_36;

t83 output
functieon SAU_83 (input, SAUP: in std_logic_vector(7 downto 0)) return
std_logic_vector is
variable temp : std_logic_vector(7 downte 0);
variable x : std_logic_vwvecteor (7 downto 0};
variable v : std_logic_vector(7 downto 0});

begin

temp := input;

x = SAUP(6 downto 0) & "O";

y := temp(l downto 0) & "000000";
= t= x + ¥y + temp;

return x;
end SAU_B83;

function PPartial (A, B in std _logic_vector (7 downto 0)) return
std_logic_vector i
variable temp : std_logic_wector (7 downto 0);
begin
temp = A + B;
return temp;
end PPartial;

IAU/OAD Negatiwve Partial
function MPartial (A, B : in std_logic_vector (7 downto 0)) return
std_logic_vector is
variable temp : std_logic_wvector (7 downto 0);
begin
temp := A - B;
return temp;
end NPartial;

end FourPointFunctions;

Code/FourPointFunetions.vhd

A.2 Fight Point Module

43

A.2 Eight Point Module
A.2.1 EightPoint.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.EightPointFunctions.ALL;

entity EightPeint 1is

Port (X80, X81, X82, XB3, X84, X85, XBe6, XB7 : in STD_LOGIC_vector(7

downto 0);

Y80, ¥Ygl, Y8z, Y83, Y84, Y385, Y86, ¥87 : out STD_LOGIC wector (7

downto 0));

end EightPoint;

architecture Behavioral of EightPoint is
signal A0, Al, A2, A3 : std_logic _wvector (7 downto 0);

component FourPeint
Port {
®40, X41, %42, X43 : in std_logic_vector(7 downto 0);
Y40, Y41, Y42, Y43 : out std_logic_vector(7 downto 0)});
end component;

begin

uut: FourPoint port map (

X40 => A0,
x4l => Al,
42 => AZ,
®43 => A3,
Y40 => YBO,
Y41 => ¥YB2,
Y42 => YB4,
¥43 => Y86

iH

process (X80, X81, H82, X8B3, X84, X85, X86, X87)

variable B0, Bl, B2, B3 : std_logic_vector (7 downto 0);
variable t018, t118, t218, t318 : std _logic_vector(7 downte 0);
variable t089, tl189, t289, t389 : std_logic_vector (7 downto 0);
variable t075, t175, t275, t375 : std_logic_wector (7 downto 0);
variable t050, tl150, t250, t350 : std_logic_vector (7 downto 0);

beagin
——-IAU (Stage 1)

o

44 Chapter A. 1D-DCT VHDL Modules and Related Packages
AQD <= X80 + X87;
B0 := X80 - X87;
Al <= XBl + XB&;
Bl := ¥81 - X86;
A2 <= XB2Z + X85;
B2 ;= X82 - XB5;
A3 <= X83 + X84;
B3 := XB83 - X84;
Stage 2 (SAU and FourPoint)
Itermdeites
t0l8 := SAUB_AL(B0O);
t11g := SAUB_Al(Bl);
t218 := SAUB_AL(B2);
t318 := SAUS_Al(B3);
-— Create 2nd intermedietes
t050 := SAUS_AZ2(BO, t018);
t150 := SAUB_AZ(Bl, tl1ll18);
t250 := SAU8_A2(BZ2, t218);
t350 := SAUS_AZ (B3, t318);
Set tl8s
t018 := t01lB{6 downto 0) & '0";
£118 := t118(6 downto 0) & 'O’
t218 := t218(6 downto 0} & "0°;
£318 := t318(6 downtc 0} & “0';
-— Set t89s
t089 := SAUB_t89(BO, t050);
t189 := SAUS_t89(Bl, t150);
t289 := SAUB_t89(B2, t250);
t389 := SAUB_t8%(B3, t350);
-— Set t75s
£t075 := t050{6 downto 0} & "0°;
t075 = £075 + t050;
£175 := tl50(6 downto 0) & 0°;
£175 ;= t£175 + £150;
t275 := t250(6 downto 0} & "0°;
t275 := t275 + t250;
£375 := t350(6 downte 0} & “0';
£375 := t375 + t350;
-— Set t50s
£050 := t050(6 downto 0) & "0’
£150 := tl50(6 downto 0} & "0°;
£t250 := t250(6 downto 0) & 0°;
£350 := t350({6 downto 0} & "0
QAU
Y87 <= {(t0l8 - t389) + (t275 - tl150);

A.2 Fight Point Module

45

¥85 <= (t218 - t189) + (t375 - t050);
Y83 <= (tll8 - t289) + (t075 - t350);
Y81l <= (t318 - t089) + {(tl75 - t250);

i|end process;
end Behawvioral;

Code/EightPoint.vhd

46 Chapter A. 1D-DCT VHDL Modules and Related Packages

A.2.2 EightPointFunctions.vhd

library IEEE;

:luse IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
i|use IEEE.NUMERIC_STD.ALL;

| package EightPointFunctions is

function SAUB_Al (input : in std_leogic_vwvector(7 downto 0)) return
std_logic_wvector;

s| function SRUS_A2 (input, Al : in std_logic_vector(7 downto 0)) return
std_logic_vector;

function SAUB_t89 (input, A2 : in std_legic_vector (7 downte 0)) return
std_logic_vector;

end EightPeointFunctions;
package body EightPointFunctions is

First Stage Addition
16 function SAU8S_Al (input : in std_logic_vector (7 downto 0)) return
std_logic_vector is
variable temp : std_logic_wector (7 downto 0);
18 begin
temp input (4 downto 0} & "000";
20 temp := temp + input;
return temp;
end SAUS_AL;

24| -— Second Stage Addition

function SAUB_AZ2 (input, Al : in std_logic_wector (7 downto 0)) return
std_logic_vector is

26 variable temp : std_logic_wector (7 downto 0);

begin

15 temp input (3 downto 0} & "0000";

temp := temp + input + Al;

a0 return temp;

end SAUS_A2;

-- t89 generator

14 function SAUS_t8%9 (input, AZ : in std_logic_wector(7 downto 0)) return
std_logic_vector is

variable temp : std logic_wvector (7 downto 0};

3| begin
temp != input(l downto 0) & "000000";
15 temp := temp + input + AZ;

return temp;
10 end SAUS_t89;
end EightPointFunctions;

Code/Eight Point Functions.vhd

A.3 SixteenPoint Module 47

A.3 SixteenPoint Module

A.3.1 SixteenPoint.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

i|use IEEE.NUMERIC_STD.ALL;
use IEEE.STD_LOGIC_UNSIGHWED.ALL;

entity SixteenPoint is

Port (X160, X161, X162, X163, X164, X165, X166, X167, X168, X169, X1610,
X1611, X1612, Xlel3, X16l4, Xlel5 : in std_logic_vector(7 downto 0);
Y160, ¥16l, ¥162, Y163, Y164, Y165, Y166, Y167, Y168, ¥169, Y1610,

Y1611, Y1612, Y1613, Y1614, Y1615 : out std_logic_vector{7 downto 0));

in|end SixteenPoint;

:larchitecture Behavioral of SixteenPoint is

signal AO, Al, A2, A3, A4, AS, A6, AT : std_logic_vector(7 downto 0});

Component EightPoint
port (X80, X81, X82, X83, X84, X85, X86, X87 : in STD_LOGIC_ vector (7
downto 0);
¥80, ¥81, Y82, Y83, ¥B84, ¥85, Y86, Y87 : out STD_LOGIC_wvector(7
downto 0}));

19 end component;

begin

uut: EightPoint port map (
-- inputs
X80 => A0,
X81 => Al,
X82 => AZ,
X8B3 => A3,
ol K84 => A4,
X85 => A5,
XB86 => As6,
¥87 => A7,
1% ——putputs

Y80 => Y160,
Y81 => Y162,
Y82 => Y164,
¥83 => Y166,
Y84 => Y168,
¥85 => Y1610,
¥YB6 =>» Y16lZ2,
Y87 => Y1614
)i

48 Chapter A. 1D-DCT VHDL Modules and Related Packages

process (X160, X161, X162, X163, X164, X165, Xle66, X167, X168, X169,
¥1610, X1ell, ¥1612, X1613, X16l4, X1615)
variable BO, Bl, B2, B3, B4, B5, B6, B7 ¢ std_logic_wector (7 downto 0)

variable m08, ml8, m28, m38, m48, m58, m68, m7& : std_logic_vector (7
downtao 0);

variable t09, tl9, t29, t39, t49, t59, t69, t79 : std_logic_vector (7
downteo 0Q);

variable t025, €125, t225, t325, t425, t525, t625, t725
std_logic_vector (7 downto 0);

variable t043, t143, t243, t343, t443, t543, t643, t743
std_logic_vector (7 downto 0);

variable t057, tl157, t257, t357, t457, tb57, t6d7, t757
std_logic_vector (7 downte 0);

variable t070, t170, t270, t370, t470, t570, t&70, t770 :
std_logic_vector (7 downto 0);

variable t080, t180, t280, t380, t480, t580, t680, t780
std_logic_vector (7 downteo 0);

variable t087, t187, t287, t387, t487, t587, t&87, t787
std_logic_vector (7 downto 0);

variable t09%0, t190, t290, t3920, t4%0, t590, t620, t7390
std_logic_vector (7 downto 0);

variable m018, ml118, m218, m318, m418, m518, m61l8, m718
std_logic_vector (7 downteo 0);

variable m072, ml172, m272, m372, md472, mb7Z, m&72, m77Z
std_logic_vector (7 downto 0);

begin

——IAU

AQ <= X160 + X1615;
Al <= X161l + X16l14;
A2 <= X162 + X1613;
A3 <= X163 + X1612;
A4 <= X164 + X1lo6ll;
AL <= X165 + X1610;
A6 <= X166 + X169;
A7 <= X167 + X168;

B0 := X160 - X1615;
Bl := X161 - X1l6l4;
B2 := X162 - X1613;
B3 := X163 - X1612;

B4 := X164 - X1l611;
B5 := X165 - X1610;
B6 := X166 - X169;
B7 := X167 - X168;

SAU (Stage 2)

A.3 SixteenPoint Module

49

m8’s
m08 := BO(4 downto 0) &
ml8 := BO{4 downto Q) &
m28 := BO(4 downte 0) &
m38 := BO(4 downto 0) &
md8 := BO{4 downto 0) &
m58 := BO(4 downte 0) &
mé&8 := BO{4 downto 0) &
m78 := BO(4 downto 0) &
t9's
t09 := m08 + BO;
t1l2 := ml& + Bl;
t29 := m28 + B2Z;
t32 := m38 + B3;
t49 := md8 + B4;
t59 := m58 + B5;
t69 := mb8% + BE;
t79 := m78 + B7;
-- ml8’s
mQl8 := t09(6 downto 0)
mll8 := t19(6 downto 0)
m218 := t29(6 downto 0)
m318 := t39(6 downto 0)
m4l8 := t49(6 downtoc 0)
m518 := t59(& downto 0)
m6lB := t69(6 downto 0)
m7l8 := t79(6 downtoc 0)
-- m72*s
m072 := t09(4 downto 0)
ml72 := t192(4 downtoc 0)
m272 := £29(4 downto 0)
m372 := t3%(4 downto 0)
m472 := t49(4 downtec 0)
m572 := t59(4 downto 0)
m672 := t69(4 downto 0)
m772 := t79(4 downto 0)
t25% s
t025 := BO(3 downto 0)
t025 := t025 + t09;
tl25 := B1l{(3 downto 0)
t025 = t125 + tl19;
t225 := B2(3 downto 0)
t225 1= £225 + t29;
t325 := B3(3 downto 0)
t325 := t£325 + t39;
t425 := B4(3 downto Q)
t425 = t425 + t49;
t525 := B5(3 downto 0)

"000";
"000";
"000";
"000";
"000";
"000";
"000";
"000";

0 ;
0’ ;
FDI;
0 ;
.ror;
rQr;
FDI;
.ror;

[~ A LT U LT - A LT]

"000";
"000";
"000";
"000";
"000";
"000";
"000";
"000";

£ T~ T - - AT - L]

"oQDQo";
"Qooo";
"0Q0Q";
"0000";
"0oo0";

*0000";

50 Chapter A. 1D-DCT VHDL Modules and Related Packages
t525 := t525 + t59;
te25 := B6(3 downto 0} & "0000";
t625 = £625 + £69;
t725 := B7(3 dewnto 0) & "0000";
t72% := t725 + t79;
== £@3"E
t043 := m0l8 + t025;
£l1l43 := mll8 + tl25;
£t243 := m21l8 + t225;
£343 := m3il8 + t£3i25;
£t443 := m4l8 + t425;
t5343 := mdl8 + t£525;
th43 := mblB + tE25;
£743 = m718 + £725;
a1
t057 := B0O(2 downto 0) & "00000";
t057 := t057 + t025;
tl57 := Bl(2 downto 0) & "00000";
£157 := t157 + t125;
£t257 := B2(2 downto 0) & "00000";
257 = L25T7 + £225;
£t357 := B3(2 downto 0) & "00000";
£357 = t357 + t325;
t457 := B4(2 downteo 0} & "00000";
t457T = £457 + t425;
£557 := B5(2 downto 0} & "00000";
£557 = t557 + t525;
t&57 := B&6(2 downto 0) & "00000";
t657 := t657 + t£625;
£t757 := B7(2 downto 0) & "00000";
£t757 = t757 + t725;
t070 := BO(6 downto 0} & “0F;
t170 := Bl(6 downto 0) & *07;
t270 := B2(6 downto 0} & "0F;
£370 := B3(6 downto 0) & '07;
t470 := B4(6 downto 0} & ‘0F;
£t570 := B5(6 downto 0} & *0F
t670 := B&(6 downto 0) & '0F
t770 := B7(6 downto 0} & “0F;
£t070 := md72 - £t070;
£170 ;= ml72 - £170;
t270 = m272 - t270;
£370 := m372 - t£370;
470 ;= md472 - £470;
£570 := m572 - tS570;
t&70 := m&72 - t670;
t770 = m772 - t770;

A.3 SixteenPoint Module

51

t290
t390
t490
t590
t690
t790

QAU
Y16l
Y163
Y165
Y167
Y169
Tl6l11

md72
ml72
m272
m372
m472

= m572

non @

ow O
nnw

<=

me72
m772

£043 (6
£143 (6
£243 (6
£343 (6
£443 (6
= t543 (6
£643 (6
£743 (6

t087
t187
£287
t387
£487
t587
£687
t787

m072
ml72
m272
m372
m472
m572
ma72
m772

t090
£0g7
t080
t070
£057

end process;

+

mQ8;
ml8;
m28;
m38;
md8;
m58;
mes;
m78;

downto
downto
downto
downto
downto
downto
downto
downto

BO;
Bl;
B2;
B3;
B4;
B5;
B6;
B7;

mO18;
mll8;
m218;
m3l8;
mdls;
m518;
mel8;
m718;

0
0
0
0
0
0
0)
0)

/o BB o B

for;
IOP;
L
IOP;
IOP;
PO!';
IOP;
for;

£187 + £280 + 370 + £457 + 542 + 625 + t79;
tl57 + t29 — t343 — £480 - £590 -
tl% - t270 - t387 - t425 + th5H7 +
€143 - €287 + £39 + £490 + £525 -
t180 - £225 + £390 - t49 - t£587 +
<= t043 - t190 + t257 + t325 - t487 + t570
Y1613 <= t025 - t170 + t290 - £380 + t443 + t53% - t657 + t787;
Y1615 <= £09 - t125 + t243 - £357 + t470 - t580 + t687 - t790;

te70 - t725;
t690 + t743;
£680 - t757;
t643 + t770;
+ t69 - £780;

52

Chapter A. 1D-DCT VHDL Modules and Related Packages

end Behavioral;

Code/SixteenPoint.vhd

A4 32-Point Module

53

A.4 32-Point Module
A.4.1 ThirtyTwoPoint.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGHWED.ALL;
use IEEE.NUMERIC_STD.ALL;

use work.ThirtyTweFunctions.ALL;

entity ThirtyTwoFPoint is

¥X3216, X3217, %3218, X3219, X3220, X3221,
X3224, X3225, X3226, X3227, %3228, X3229,
std_logic_vector (7 downto 0);

Y320, Y321, ¥322, Y323, ¥324, Y325,
Y328, Y329, Y3210, ¥3211, ¥3212, Y3213,
¥321le, Y3217, Y3218, Y3219, Y3220, Y3221,
Y3224, Y3225, Y3226, Y3227, Y3228, Y3229,
std_logic_wvector (7 downto 0));
end ThirtyTwoPoint;

architecture Behaviecral of ThirtyTwoPoint is

signal A0, Al, A2, A3, A4, A5, A6, A7,
AB, A%, Al0, All, Al2, Al3, Al4, AlS
0);

component SixteenPoint

std_logic_vector (7 downto 0);
Y160, Y161, Y162, Y163, Y164, Y165,

std_logic_vector (7 downto 0));
end component;

begin
uut: SixteenPoint port map (
¥160 => AD,
X161 => Al,
%162 => A2,
X163 => A3,
X164 => A4,

port (X320, X321, X322, X323, X324, X325, X32e,
X328, X329, ®3210, X3211, X3212, X3213, X3214,

Y168, Y169, Y1610, Y1611, Y1612, Y1613,

X3222,
X3230,

Y326,

Y3214,
Y3222,
¥3230,

X327,
X3215,

X3223,
X3231

Y327,
Y3215,
Y3223,
Y3231 :

in

out

;1 std_logic_wvector (7 downto

port (X160, X161, X162, X163, X164, X165, X166,
X168, X169, X1610, X1611, X1612, X1613,

X167,

X1614, X1615

Y166, Y167,

¥1614, Y1615

roAn

out

54

Chapter A. 1D-DCT VHDL Modules and Related Packages

X165 => A5,
X166 => ABG,
®167 => A7,
X168 => A8,
X169 => A9,
X1610 => AlQ,
X1lell ==>
X1612 =>
X16l3 =>
X1l6ld =>
X1615 =>

-

-

o o
e o i it
ol W b =

-

Y160 => Y320,
Y16l => Y322,
Y162 => Y324,
Y163 => Y326,
Y164 => Y328,
¥165 =» Y3210,
Y166 => Y3212,
Y167 => Y3214,
Y168 => Y3216,
Y169 => Y3218,
Y1610 => ¥3220,
Y161l => Y3222,
Y1612 => Y3224,
Y1613 => Y3226,
Y1614 => Y3228,
Y1615 => Y3230
1i

PROCESS (X320, X321, X322, X323, X324, X325, X326, X327,
¥328, X329, X3210, %3211, X3212, ¥3213, X3214, X3215,
X3216, X3217, X3218, X3219, X3220, X3221, X3222, X3223,
3224, X3225, X3226, X3227, ¥3228, X3229, %3230, ¥X3231)

variable BO, Bl, B2, B3, B4, BS5, B&, B7,
B8, B2, B10, Bll, Bl2, B13, Bl4, Bl5 : std_logic_vector(7 downto
01

variable m02, ml2, m22, m32, md42, m52, me2, m72,
mB82, m9%2, ml02, mll2, ml22, ml32, mld42, ml502 : std_logic wvector
{7 downto Q);

variable t04, t14, t24, t34, t44, t54, ted, t74,
t84, t94, tl04, tll4, tl24, tl134, tl44, tl1504 : std_logic_wvector
(7 downto 0);

variable t09, t19, t29, t39%, t49, t59, ted, t79,
t82, £99, £109, t119, t122, t139, t149, t159 : std logic_vector
{7 downto 0);

variable m0l18, mll8, m218, m318, m4l8, m518, mel8, m718,

124

A.4 32-Point Module

55

m818, m918, ml018, mllls,
std_logic_wector (7 downto 0};

variable m072, ml72,
m8é72, md72, ml072,
std _logic_wector (7 downto 0);

variable m052, ml52, m252,
m852, m952, ml052,
std _logic_wector (7 downto 0);

m352,

variable t013, tl1l13, t213, t313,
t813, t213, tl013, t1113,
std_logic_vector (7 downto 0);

variable t022, t122, t222, t322,
t822, t922, tl022, tllz2z,
std_logic_vector (7 downte 0);

variable £031, t131, t231, t331,
t831, €931, 1031, t1131,
std_logic_wector (7 downto 0);

variable t038, t138, t238, t338,
t838, t938, tl038, tll38,
std _logic_wector (7 downto 0);

t046, tlde6, t246, t346,
t846, t946, tl046, tll4é,
std_logic_wector (7 downto 0);

variable

t054, tibh4, t254, t354,
t854, t954, tl054, tll54,
std_logic_vector (7 downto 0);

variable

variable t061, tle6l, t2el, t3sl,
t8sl, t961, tl06l, tllel,
std_logic_vector (7 downto 0);
variable 067, tl167, t267, t367,
t867, t9%67, tlle7, tlle7,
std_logic_wector (7 downto 0);

£073, €173, t273, t373,
t873, t973, £1073, t1173,
std_logic_vector (7 downto 0);

variable

to78, tl1l78, t278, t378,
t878, t978, tl078, tl1178,
std_logic_vector (7 downto 0);

variable

ml218,

m272, m372, md472,
mll72, ml272,

md52,

mll52, ml2S2,

£1213,

t42z,

t431,

ta3s,

ml318, ml418, ml518

m772,
ml572

m572,
ml372,

me72,
ml472,

m552, m652,
ml352, ml4s52,

752,
ml552

t413, tS513,

£1313,

tel3,
t1413,

t713,
t1513

ts22, te22,
tl1222, tl1322, tl422,

E722,
tisa22

t531, t631,
£1231, t1331, t1431,

t731,
£1531

538, t638,
tl238, tl338, tl43s,

t738,
t1538

td446,
tl24e,

t54e, tede,
t1346, tl4de,

t746,
t1546

t454,
t1254,

t554, t654,
t1354, tl454,

t754,
t1554

t46l,
t1261,

t561, téel,
t13e61, tl1l461,

t761,
t1561

t767,
tls5e7

ta67,
t1267,

t567, tee7,
tl3e7, tl4e7,

td73,
t1273,

t573, 673,
t1373, tl473,

t773,
1573

t478,
t1278,

t378, te7s8,
t1378, t1478,

t778,
t1578

.

Chapter A. 1D-DCT VHDL Modules and Related Packages

variable t082, tl82, t282, t382, t4B82, t582, te682, t782,
t882, t982, t1l082, t1182, tl1l282, t1382, t1482, tld82
std_logic_vector {7 downto 0);

variable +t085, t185, t285, t385, t485, t585, te85, t785,
t885, t985, tl1l085, tl1l185, tl1l285, t1385, tl14B85, tl1585 :
std_logic_vector {7 downto 0);

variable t088, t188, t288, t388, t488, t588, te&8B, t788,
t888, €988, t1088, t£1188, t1288, t1388, t1488, tl588
std_logic_wvector (7 downto 0);

variable t090, t190, t290, t390, t490, t59%0, te90, t7%90,
£890, £990, t1090, £1190, t£1290, £1390, t1430, t1590
std_logic_vector {7 downto 0);

AQ <= MN320 + X3231;
Al <= X321 + X3230;
A2 <= X322 + X3229;
A3 <= K323 + X3228;
BRd <= X324 + X3227;
AS <= X325 + X3226;
A6 <= K326 + X3225;
AT <= X327 + X3224;
AB <= X328 + X3223;

A9 <= X329 + X3222;
Al0 <= X3210 + X3221;
Bl11 <= X3211 + X3220;
Bl2 <= X3212 + X3219;
Al3 <= X3213 + X3218;
Bl4 <= X3214 + X3217;
AlS5 <= X3215 + X3216;
B0 := X320 - X3231;
Bl := X321 - X3230;
B2 := X322 - X3229;
B3 := X323 - X3228;
B4 := X324 - X3227;
BS := X325 - X3226;
Bé := X326 - X3225;
BT := X327 - X3224;
B8 := X328 - X3223;
B9 := X329 - X3222;
B10 := X3210 - X3221;
B11l := X3211 - X3220;
Bl2 := X3212 - X3219;

A4 32-Point Module

57

B13 :
Blg :
Bl5 :

= M3213 - X3218;
= X3214 - X3217;
= X3215 - X3Z21%;

mi2
ml2
m22
m32
md2
ms2
me2
m72
m82
m92
ml02
mllz2
ml22
ml32
ml42
ml502

to4 :
tld :
t24 :
t3d :
t44 :
t54 :
ted :
t74 :
t8a :
t94 :
t104
tlld
tlz24
t134
tl44
t1504

tos
£19
ta2s
£3s
t49
£59
teg
€79
tas
£es
t109
tl119

L T T I T

= shiftl (B0O);
= shiftl (Bl);
= shiftl(B2);
= shiftl (B3);
= shiftl (B4);
= shiftl (B5);
= shiftl (Be);
= shiftl(B7);
= shiftl (B8);
= shiftl(B9);
= shiftl(B10});
shiftl(B11);
shiftl(B12);
shiftl1l(B13);
= shiftl(B14);
:= shiftl (B1S);

T TR
]

= shift2 (B0);

= shift2(Bl);
= shift2 (B2);

= shift2(B3);

= shift2 (B4);
shift2 (B5);
shiftZ (B6);
shift2 (B7);
shift2 (B8);
shift2 (B9);

= shift2(B10);

= shift2(B11);

= shift2(B12);

= shift2(B13);

= shift2(B14);

:= shift2(B15);

e we we we owe

ti9 (BO);
ti9 (Bl);
ti% (B2);
ti9 (B3);
ti9 (B4);
ti9 (B5);
ti% (B6);
ti% (B7);
ti9 (B8);
ti% (B9);
1= ti%(B10);
t= ti9(B1l);

58

Chapter A. 1D-DCT VHDL Modules and Related Packages

t129
tl39
t149
t1l59

mO1l8
mlls
m218
m318
m418
m518
méls
m718
m&18
m918
ml1l018
mllls
ml218
ml1318
ml418
ml1518

mQ72
ml72
m272
m372
md72
m572
m&72
m772
m872
m972
ml072
mll72
ml272
ml372
ml472
ml572

t013
tll3
t213
t313
t413
t513
t613
t713
t813
t913

tl013
£1113
ti1213

tig(B12);
ti9(B13);
tig(B14);
tig9(B15);

shiftl{t092);
shiftl{tl9);
shiftl{t29);
shiftl(t39);
shiftl{td49);
shiftl{t59);
shiftl(te9);
shiftl{t79);
shift1{t89);
shift1({t99);

1= shiftl(tl1l09});
1= shiftl(tll9);

= shiftl(t129);

1= shiftl(tl1l39);
1= shiftl (£149);
'= shiftl(t159);

shift3{t092);
shift3({t19);
shift3(t29);
shift3(t39);
shift3{t49);
shift3{t59);
shift3(t69);
shift3{t79);
shift3({t89);
shift3{t99);
shift3(tl109);

1= shift3(t119);
'= shift3(tl29);
1= shift3(tl139);
1= shift3(t149);
t= shift3(tl159);

t04 + t09;
tld + £19;
t24 + t29;
t34 + t39;
td4 + £49;
t54 + t£59;
t64d + t69;
t74 + £79;
t84 + t89;
t94 + t99;

£104 + t109;
t114 + t119;

1= tl24 + tl129;

A4 32-Point Module

59

tl51

m052
ml52
m252
mis2
m452
m552
me52
m752
mB52
m352
ml0Q52
mll52
ml252
ml3is2
ml452
ml552

T T T TR T PR

P T T

3
£1413 :
3

TR T TR

.
*

= £134 + t139;
= tl44 + tl149;
= £1504 + t159;

shift2(t013);
shift2(t113);
shift2(t213);
shift2(t313);
shift2(t413);
shift2(t513);
shift2(t613);
shift2(t713);
shift2(tg813);
shift2(t913);
= shift2(£1013);
= shift2(t11l1l3);
= shift2(t1213);
= shift2({t1313);
= shift2(t1413);
= ghift2(t1513);

t04 +
tld +
t24 +
t34 +
t44 +
thd +
ted +
t74 +
t84 +
t94 +
= £104
= tll14
= £124
= tl134
= t144

m018;
mllg;
m218;
m318;
m418;
m518;
melg;
m718;
m8l8;
m918;
+ ml018;
mllls;

ml318;

+
+ ml218;
5
&

ml418;

= £1504 + ml518;

= ti31(B0);
= ti31(Bl);
= ti31(B2);

ti31(B3);
ti3l (B4);
ti31(B5);
ti3l (B6);
ti31(B7);
ti3l (B8);

= ti31(B9);

= £i31(B10);
= ti31(Bll};
= £i31(B12};
= t£i31(B13);

60

Chapter A. 1D-DCT VHDL Modules and Related Packages

t1431
tls3l

t038
tl38
t238
t338
td4d38
t538
t638
t738
tg838
t938
t1038
t1138
tl238
t1338
t1438
t1s538

t046
tl46
t246
t34e
t446
t546
teds
t746
t846
t94s
tl046
tll4ae
tl246
tl3ds
tl44s
tl1546

t054
tls4
t254
t354
t454
t554
t654
t754
t854
t954
t1054
tlls4
t1l254
t1354

ti31(B14);
ti3l(B15);

shift2{t09) +
shift2{tl19) +
shift2(t22) +
shift2{t39) +
shift2(td49) +
shiftz2{t59) +
shift2(t69) +
shift2(t79) +
shift2({t89) +
shift2{t92) +

t= shift2(t109)
= shift2(t119)
1= shift2(tl29)
1= shift2({tl139)

= shift2(t149)

1= shift2(tl159)

shiftl{t022) +
shiftl(t122) +
shiftl{t222) +
shiftl{t322) +
shiftl(t422) +
shiftl{t522) +
shiftl(t622) +
shiftl{t722) +
shiftl{tB822) +
shiftl(t922) +

'= shiftl (t1022)

= shiftl(t1122)

1= shiftl(tl222)

= shiftl (t1322)

1= shiftl (t1422)
1= shiftl(tl1522)

mo52 + m02;
mlS2 + ml2;
m252 + m22;
m3i52 + m32;
md452 + m42;
m552 + m52;
m652 + mé2;
m752 + m72;
mB52 + m82;
m952 + m92;

;= ml052 + mlQ2;
1= mll52 + mll2;
1= ml252 + ml22;
1= ml352 + ml32;

A4 32-Point Module

61

t145
£155

4 :
4 :

TR T TR

= ml452 + mld2;
= ml552 + ml502;

shiftl(t031) +
shiftl(t131)
shiftl(t231)
shiftl(£331)
shiftl(t431)
shiftl(t531)
shiftl (£631)
shiftl(t731)
shiftl (t831)
shiftl(t931) +
= shiftl(t1031)
= shiftl(t1131)
= shiftl (t1231)
= shiftl (£1331)
= shiftl (t1431)
= ghiftl (t1531)

+ + + + +

+ + +

t054 +
t134 +
t254 +
t354 +
t454 +
t554 +
t654
t754
t854 +
t954 +
= £1054
= t1154
= £1254
= t£1354
= t1454
= t1554

m072 +
ml72 +
m272 +
m372 +
m472 +
m572 +
me72 +
m772 +
m872 +
m372 +
= ml072
= mll72
= ml272
= ml372

£013;
t113;
t213;
£313;
t413;
t513;
t6l3;
t713;
t813;
t913;
+ £1013;
+ £l11ll3;
+ £1213;
+ t1313;
+ tl1l413;
+ t1513;

BO;
Bl;
BZ;
B3;
B4;
B5;
B6;
B7;
BS;
B9;
+ B10;
+ Bll;
+ B12;
+ B13;

EBO;
Bl;
E2;
B3;
B4;
BS;
B6&;
B7;
BE;
E9;
+ B10;
+ Bll;
+ Bl2;
+ B13;
+ Bl4;
+ B15;

62

Chapter A. 1D-DCT VHDL Modules and Related Packages

t1473
t1573

t078
ti78
t278
t378
t478
t578
te78
t778
ta878
t978
ti1078
t1178
ti278
t1378
t1478
tls578

t082
t182
t282
t382
t482
t582
te82
t782
tgs2
tag2
ti082
t1182
ti2s82
t1382
tl1482
tlss82

t085
t185
t285
t385
485
t585
t685
t785
£885
t985
t1085
t1185
t1285
t1385
t1485

1= mld72
1= ml572

shiftl
shiftl
shiftl
shiftl
shiftl
shiftl
shiftl
shiftl
shiftl
shiftl

1= shift
1= shift
1= shift
i= shift

= shift

1= shift

t04
tl4d
t24
t34
td4
t54
ted
t74
t84
to4

+ + + + + + + + o+

1= £104
1= t114
1= t124
= t134
1= t144
1= t1504

1= t913

t013
£113
t213
t313
td413
t513
t6l3
t713
t813

++ + + + + o+ o+ o+

= t1013

;= £1113
1= t1213
1= £1313
1= t1413

+ Bl4;
+ BlS;

(t013) +
(t1l3) +
{(£213) +
(t313) +
(£d13) +
{t513) +
(t613) +
(£713) +
(t813) +
(t913) +
1{t1013)
1(t1113)
1{t1213}
1{t1313)
1(t1413)
1{t1513)

t078;
t178;
t278;
t378;
t478;
t578;
te78;
t778;
t878;
t978;
+ tl1078;
+ t1178;
+ t1278;
+ t1378;
+ t1478;
+ t1578;

m0l18;
mll8;
m218;
m318;
md18;
m518;
m618;
m718;
m818;
m9l8;
+ ml0l8g;
+ ml118;
+ ml21l8;
+ ml318§;
+ ml418;

md52;
ml52;
m252;
m352;
mids52;
mss2;
mes2;
m752;
me8s2;
mas2;
+ ml052;
+ mll52;
+ ml252;
+ ml352;
+ mld52;
+ ml552;

536

A.4 32-Point Module 63
£1585 := £1513 + ml518;
t088 := shift2(t022);
t188 := shift2(tl122);
£t288 := shiftZ(t222);
t388 := shift2(t322);
£488 := shift2(td22);
£588 := shift2(t522);
t688 := shift2(t622);
t788 := shift2(t722);
t888 := shift2(t822);
988 := shift2(t922);
t1088 := shift2(t1022);
£1188 := shift2(t1122);
£1288 := shift2(t1222);
t1388 := shift2(t1322);
£1488 := shift2(£1422);
£1588 := shift2(t1522);
£t090 := mD18 + mO72;
£190 := mll8 + ml72;
£290 := m2l8 + m272;
£390 := m318 + m372;
490 := mdl8 + md7Z;
£590 := m518 + m572;
690 := mé&l8 + meE72;
t790 := m718 + m772;
£t890 := m8l8 + mB72;
£290 := m2l8 + m972;
£1090 := ml018 + ml072;
£1190 := mlll8 + mll72;
£1290 := ml218 + ml272;
£13%0 := ml318 + ml372;
£1490 := ml418 + ml472;
£1590 := mlS518 + ml572;
—— OAU
¥321 <= t020 + t190 + t288 + t385 + t482 + t578 + t673 t767 t861 +
t954 + t1046 + £1138 + £1231 + tl1322 + tl1413 + t1504;
¥323 <= t02%0 + t182 + t267 + t346 + t422 - t54 = t631 t754 t873 -
£985 - t1090 - £1188 - £1278 - £1381 - £1438 - t£1513;
Y325 <= t088 + tl67 + £231 - t313 - t454 - t582 - te90 t778 t8de -
£t94 + t1038 + £1173 + t©1290 + t1385 + tl4e6l + tlh22;
¥327 <= t085 + tl46 - £213 - t367 - t490 - t573 - te22 t738 t882 +
£988 + t1054 - £114 - 1261 - t1390 - £1478 - t1531;
Y329 <= t082 + tl122 - £254 - t390 - td46l + t513 + te78 t785 t831 -
t946 - t1090 - £1167 + tl24 + t1373 + tl1488 + t1538;
¥3211 <= t078 - t14 - £282 - t373 + t£413 + t585 + t667 t722 t8s8 -
t96l + t1031 + £119%90 + £1254 - t1338 - tl1490 - tl1546;
¥3213 <= t073 - t131 - £290 - t322 + t478 + t567 - t638 t790 t813 +

t982 + ti0s1

- tl1l46 - t1288 - t134

+ t1485 + t1554;

"

G4

Chapter A. 1D-DCT VHDL Modules and Related Packages

¥3215 <= t067 - tl54
t9l3 - tlos8s - tl1l31
¥3217 <= t061 - tl173

£t990 + tl022 + t1l185 -

¥3219 <= t054 - tl8s
t938 + tl067 - tll78
¥3221 <= t046 - t190
t967 - t£1085 + tl1l113
¥3223 <= t038 - tl8s
t978 + tl013 + tllsl
¥3225 <= t031 - t178
t922 + tl073 — tl1l190
¥3227 <= t022 - tlel
t990 - t1082 + t1154
Y3229 <= £013 - t138
t93l + tl04 + tllz2
¥3231 <= t04 - tl113

+

t278 + t338 +
£1282 + tl346
t246 + t382 +
£1238 - tl378
t24 + t388 -
£1222 + t13%0
£t238 + t354 -
£1273 - t1382
£273 - t34 -
£1220 + t1354
t290 - t361 +
t1267 - tl1313
t285 - t330 +
£1213 - £1331
t26l - t378 +
t1246 + t1367
£222 - t331 +

t973 + t1078 - t1182 + t1285 - t1388

END PROCESS;

end Behawvioral;

£485 - £522 - £690
- t1473 - tl561;
t431 - t588 - t6l3
+ tl454 + t1567;
t446 - t561 + t682
- £1431 - t1573;
£t490 + t531 + t661
+ tl44 + t1578;
t467 + t590 - 646
+ t1422 - t£1582;
t44 + t554 - t688
- tl446 + t1585;
t473 - t538 - t6d
+ tl467 - t1588;
t488 - t590 + t685
- tl482 + t1590;
t438 - t546 + t654
+ t1490 - t1590;

t74

t7%0

t713

t788

t731

t782

t746

€173

t761

t3890

t84d

£880

tB822

£885

t838

t878

t854

£B867

Code/Thirty TwoPoint.vhd

A4 32-Point Module

65

A.4.2 ThirtyTwoFunctions.vhd

library IEEE;

:|use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;

i|package ThirtyTwoFunctions is

function shiftl (input : std_logic_vector (7 downto 0)) return
std_logic_wvector;

function shift2 (input : std_logic_vector (7 downte 0)) return
std_logic_wvector;

function shift3 (input : std_logic_vector (7 downto 0)) return
std_logic_vector;

function ti?9 { input : std_logic_wvector (7 downto 0)) return
std_logic_wvector;
function ti3l { input : std_logic_vector (7 downto 0)) return

std_logic_vector;

end ThirtyTwoFunctions;

package body ThirtyTwoFunctions is

miz
function shiftl (input : std_logic_vwector(7 downto 0)) return
std_logic_vector is

variable war : std_logic_vector(7 downto 0);
begin
var := input (6 downto 0) & "0;

return var;
end shiftl;

function shift2 { input : std_logic_wvector (7 downte 0)) return
std_logic_vector is
variable wvar : std_logic_vector (7 downto 0});
begin
var := input (5 downto 0) & "0O";
return var;
end shift2;

function shift3 (input : std_logic_vector (7 downto 0)) return
std_logic_wvector is

variable wvar : std_logic_vector(7 downto 0);
begin
var := input (4 downto Q) & "000";

return var;
end shift3;

function ti% { input : std_logic_vector(7 downto 0)} return
std_logic_wvector is
variable var : std_logic_vector(7 downto 0);

66

Chapter A. 1D-DCT VHDL Modules and Related Packages

begin

var := input(4 downtoc 0} & "000";

var := wvar + input;
return var;
end ti%;

functien t£i3l (input
std_logic_vector is

std_leogic_vector(7 downto 0)) return

variable war i std_legic _vector(7 downto 0);

begin

var := input (2 downto 0) & "00000";

var := war - input;
return wvar;
end ti3l;

end ThirtyTwoFunctiens;

Code/Thirty TwoFunctions.vhd

Appendix B

2D-DCT VHDL Modules and
Related Packages

B.1 Shift Register/ Transpose Module

library ieee;
use leee.std_logic_l164.all;
:|use work.data_type.all;

|entity shift_reg is

port |
data_in : in slv3Z;
data_out : out slv32;
shift_in : in std_logic;
clk : in std_logic);

ilend entity shift_reg;

|architecture behavioural of shift_reg is

type reg3Z2x3i2_t is array (0 to 31, 0 to 31) of std_logic_wvector(7 downto
0);

signal reg32x32 : regdZx3Z_t;

begin -- architecture behavioural
process (clk) is
begin -- proce:
if (clk'event and clk = *1') then rising clock edge
if (shift_in = 1) then
for i in 0 to 30 loop
or j in 0 to 31 loop
reg32x32(i+l, j) <= reg32x32(i, j); ——- shift horizc {right)

end loop; ==
end loop; i
for i in 0 to 31 loop

67

68 Chapter B. 2D-DCT VHDL Modules and Related Packages

regdzZzx32(0, i) <= data_in(i); data in to the left
end loop; —- i
else
for j in 0 to 30 loop
for L in 0 to 31 loop
reg32x32(i, j) <= reg32x32 (i, j+1); shift out in up
direction

end loop; i

end loop; -—- 7
end if;
end if;
for i in 0 to 31 loop
rrom ne) o)

data_out (i) <= reg32x32(i, 0); dat:
end loop; -= i
end process;

slend architecture behavioural;

Code/shift_register.vhd

B.2 SR Control Module

69

B.2 SR Control Module

library ieee;
use ieee.std_logic_1164.all;

entity ctrl is

port
shift_ctrl : out std_logic;
clk in std_logic;
reset in std_logic);

e

1nfend entity ctrl;

il architecture behavicural of ctrl is

signal count : integer range 0 to 63;
begin -- architecture behavioural

process (clk, reset) is
begin -- process

if (reset = '1’') then asynchronous reset (active high)

count <= 0;
shift_ctrl <= 71';
elsif (clk’event and clk = f1') then -- rising
if (count = 63) then
count <= 0;

shift_ctrl <= '1'; -- Back to shift in mode,
else

count <= count + 1;
end if;

if {count = 31} then

shift_ctrl <= 70’; Change shift reg to sh

end 1if;
end if;
end process;

7|end architecture behavioural;

clock edge

start again

ift out mode

Code/ctrl.vhd

70 Chapter B. 2D-DCT VHDL Modules and Related Packages

B.3 Top Level Module

i|library leee;

use ieee.std_logic_1164.all;

iluse work.data_type.all;

slentity top is

port (
data_in : in slv32;
data_out : out slw32;
clk : in std_logic;
reset : in std_leogic);

ilend entity top;

|architecture behavioural of top is

component ThirtyTwoPoint
port (X320, X321, X322, X323, X324, X325, X326, X327,
X328, X329, X3210, X3211, X3212, X3213, X3214, X3215,
X3216, XK3217, ¥3218, X3219, X3220, X3221, X3222, ¥3223,
K3224, ¥3225, X3226, X3227, X3228, X3229, X3230, x3231
std_logic_vector {7 downto 0);

in

Y320, ¥321, ¥322, Y323, Y324, Y325, Y326, ¥327,
Y3izg, Y329, ¥3210, Y3211, ¥3212, Y3213, ¥3214, Y3215,
Y3216, Y3217, Y3218, Y3219, Y3220, Y3221, Y3222, Y3223,
Y3224, Y3225, Y3226, Y3227, Y3228, Y3229, Y3230, Y3231 : out
std_logic_vector {7 downto 0));
end component ThirtyTwoPoint;

component shift_reg
port {
data_in : in slv32;
data_out : out slv32;
shift_in : in std_logic;
clk : in std_logic);
end component shift_reg;

component ctrl

port |
shift_ctrl : out std_logic;
clk : in std_logic;
reset : in std_logic);

end component ctrl;

signal di, do, shift_reg_di, shift_reqg_do : slv32;
signal shift_in ¢ ostd_logic;

B.3 Top Level Module 71

begin architecture behavioural

i_det_32pt : ThirtyTwoPoint port map (
X320 => di(0),
X321 => di(l),
X322 => di(2),
X323 => di(3),
®324 => di(4),
X325 => di(5),
X326 => di(6},
%327 =» di(7),
X328 => di(8),
X329 => di(9),
¥3210 => di(10),
X3211 =» di(11),
¥3212 =» di(l2),
¥3213 => di(13),
%3214 => di(14),
¥3215 =» di(l13),
X321e => di(le),
¥3217 => di{(17),
%3218 => di(18),
¥3213 => di(19),
X3220 => di(20),
X3221 =» di(21),
¥3222 =» di(22),
¥3223 => di(23),
X3224 => di(24),
¥3225 =» di(25),
X3226 => di(26),
¥3227 => di(27),
X3228 => di(28),
¥3229 => di(29),
¥3230 => d4i(30),
X3231 => di(31),
¥320 => do(0),
¥321 => do(l),
Y322 => dol(2),
¥323 => do(3),
¥324 => doi(4),
¥325 = do(b),
¥326 => dol(6),
¥327 => do(7),
¥328 => doi(8),
Y329 => do(9),
¥3210 => do(l0),
Y3211 =» do(ll),
Y3212 => do(l2),
¥3213 => do(l3),
Y3214 => do(l4),
¥3215 => de(15),
¥3216 => do(l6),

T2 Chapter B. 2D-DCT VHDL Modules and Related Packages
¥3217 => do(l7),
Y3218 => do(l8),
¥321% => do(l9),
¥3220 => do(20),
Y3221 => do(21)
¥3222 => do(22),
¥3223 => do(23),
¥3224 => do(24),
Y3225 => do(25),
Y3226 => dol(26),
¥3227 => do(27),
13228 => do(28),
¥322% => do(29),
¥3230 => do(30),
¥3231 => do(3l));
i_ctrl ctrl port map |
shift_ctrl => shift_in,
clk =» clk,
reset => reset);

i_shift_reg
data_in
data_out =>

shift_reg port map
shift_reg_di,
shift_reg_do,

=

shift_in =» shift_in,

clk =» clk);
——with shift_in select
== do ==

data_out when 07,

—— shift_reg_di when others;
data_out <= do;
shift_reg_di <= do;

with shift_in select
di <=
shift reg_do when *0°,
data_in when others;

end architecture behavioural;

(

Code,/top.vhd

Appendix C

Consultation Meeting Attendance
Form

C.1 Overview

This is a scanned version of my Consultation Attendance form,

C.2 Scanned Form

T4

Chapter C. Consultation Meeting Attendance Form

Consultation Meetings Attendance Form

Week Date Comments Supervisor’s
(if applicable) Sigpawre
o
= 7/%016 @J
T e X LA @s@’
3vE/ G Do B, g @/
D |l ot Spvol lokr roc ol
o |arg ol
OLt-ZZd pragos™ dedp /
e e 3 a & M"""(’(Lot fain Lovb 4
s it q /1 " :F A sealesy i @3;“ '
= =
“NOE @;

@

-

YR

L

®

Bibliography

[1] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEFE Trans-
actions on Computers, vol. C-23, no. 1, pp. 90-93, Jan 1974.

[2] M. Budagavi, A. Fuldseth, G. Bjntegaard, V. Sze, and M. Sadafale, “Core transform
design in the high efficiency video coding (heve) standard,” IEEE Journal of Selected
Topics in Signal Processing, vol. 7, no. 6, pp. 1029-1041, Dec 2013.

[3] M. Masera, M. Martina, and G. Masera, “Adaptive approximated det architectures
for heve,” IFEE Transactions on Circuits and Systems for Video Technology, vol. PP,
no. 99, pp. 1-1, 2016.

[4] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo, “Efficient integer
det architectures for heve,” IEEFE Transactions on Circuits and Systems for Video
Technology, vol. 24, no. 1, pp. 168-178, Jan 2014.

[5] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of
the coding efficiency of video coding standardsincluding high efficiency video coding
{(heve),” IEEE Transactions on Circutts and Systems for Video Technology, vol. 22,

no. 12, pp. 1669-1684, 2012.

[6] K. R. Rao and P. Yip, Discrete cosine transform: algorithms, advantfages, applica-
tions. Academic press, 2014,

[7] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high
efficiency video coding (heve) standard,” IEEE Transactions on Circuits and Systems
for Videa Technology, vol. 22, no. 12, pp. 1649-1668, Dec 2012.

[8] J. V. Team, “Advanced video coding for generic andiovisual services,” ITU-T Ree.
H, vol. 264, pp. 14496-10, 2003.

[9] P. Topiwala, M. Budagavi, A. Fuldseth, R. Joshi, and E. Alshina, “Cel0: Summary
report on core transform design,” 2011.

[10] N. Vasconcelos. Discrete cosine transform. [Online]. Awailable: http://www.svel.
ucsd.edu/courses/ecel6le /handouts /DCT.pdf

-~
wn

	Final_Report_43272835_Haddrill_Joshua
	by Joshua Haddrill

