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Abstract

Anyonic quantum statistics is an exotic phenomenon of identical particles in quan-
tum mechanics. When particles are confined in two spatial dimensions, exchanges of
identical particles can induce phase factors in the wave function of Abelian anyons
or matrix valued transformations of the wave function of non-Abelian anyons. As a
result, systems of anyons may have richer properties than those of bosons and fermions
in three spatial dimensions. There is strong theoretical support for the existence of
anyons in some engineered two-dimensional systems such as 2D electron gases, strongly
correlated spin lattices and as edge modes of nanowires. In the future, anyons could
be used in topological quantum computation to perform highly efficient information
processing with very small error rates.

The phases of matter described by dynamically interacting anyons have recently
been studied in chains where anyons interact via Heisenberg-type exchange interactions.
In this thesis, new kind of anyonic interactions are studied, induced purely by braiding
during free evolution. Such interactions are of topological origin, and the information
about the interactions is stored non-locally. A quantum walk model is used to study
the effects of these braiding interactions on the dynamical behaviour of anyons.

The anyonic quantum walk is a quasi-one-dimensional generalization of the discrete-
time quantum walk which allows the simulation of anyonic dynamics analytically. The
moving anyon and a chain of stationary anyons interact via braiding statistics, and
the behaviour of the anyon is studied in three cases. Striking differences are found be-
tween particles with conventional boson or fermion statistics and non-Abelian anyonic
statistics.

The random walk is a dynamical model that describes the motion of a particle on
a lattice. In physics, it is used to describe Brownian motion of fluids and gases. In
such systems, energy transport is diffusive, and the order of the system approaches a
highly mixed state without any information content. The quantum version of the ran-
dom walk, the quantum walk, has nonintuitive properties. Generally, the information
content in a unitarily evolving system is fixed, which leads to unexpected transport
phenomena. An initially localized particle does not propagate diffusively, but escapes
the starting point with ballistic speed.

Most of our results for non-Abelian anyons use the Ising model anyon which is
most likely to be measured in experiments. First, when each anyonic site is occupied
by one Ising anyon, the propagation of the anyon becomes diffusive. More precisely, the
variance of the spatial probability distribution of the particle depends linearly on the
number of time steps. This is in stark contrast to bosons, fermions and Abelian anyons
which propagate ballistically, and the variance depends linearly on the square of the
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number of time steps. The essential reason for this slowdown is that the non-Abelian
anyons possess an extra degree of freedom called the fusion Hilbert space. This space
can be viewed as an environment for the normal degrees of freedom of the particle,
inducing decoherence in the quantum walk. This thesis opens the line for studies of
this novel kind of decoherence mechanism in quantum walks.

In the second case the study is extended to more general anyon models by losing
some of the information about the history of the evolution. In this case the system is
subject to decoherence, and the total system evolution is not unitary. The behaviour of
the particle in this model is found to be diffusive for all the non-Abelian anyon models
studied, while Abelian anyons behave ballistically also in this model.

One peculiarity of quantum systems is their behaviour under disorder. Quantum
mechanical particles moving in random local potentials are known to freeze and not
move at all. Such a phenomenon is known as Anderson localization. Studies have
shown that Anderson localization happens also in quantum walks with random spatial
fluctuations in the coin parameters. In the third case, the transport properties of
anyons are studied under topological randomness, allowing the occupations of anyons
change between experiments. Bosons and fermions would propagate ballistically under
such randomness, and Abelian anyons are shown to localize. The results show that
non-Abelian anyons behave diffusively at short time scales, and it is argued that they
do so in the long time limit as well.

In all cases, non-Abelian anyons are shown to have very different dynamical prop-
erties than bosons, fermions and Abelian anyons. A possible simulation of the anyonic
quantum walk in Fractional Quantum Hall systems is also discussed.
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1
Introduction

Since the inception of quantum mechanics, systems of identical particles have been
of special interest. Identical particles are defined as objects which have exactly the
same physical properties, and no experiment can distinguish between them even in
principle. The same results in experiments would be obtained regardless of which
copy of the particle was chosen. Physically, the particles have some defining properties
such as rest mass, electric charge and intrinsic spin, which must all be identical if the
particles are to be considered as identical.

In classical mechanics particles are always point-like and they follow well-defined
trajectories. Therefore identical particles are distinguishable in principle. In quantum
mechanics, however, the situation is different. The wave functions of particles extend
over the whole space, and the identity of a particle is related to the knowledge of
the observer about the particle. Before the measurement has happened the observer
should have no information about the identities of particles and they must be regarded
as indistinguishable. If one puts no additional constraints on the mathematical de-
scription of a set of particles, they must however be considered as distinguishable.
To demand indistinguishability is then to pose some constraints on the representa-
tion of the physical state of the system. Perhaps surprisingly, this has far-reaching
consequences on the physics of the system. Particle indistinguishability demands that
the physical properties must not change if the mere positions of the particles are ex-
changed. These exchanges are called permutations, and the requirement that the state
is invariant under permutations is called permutation symmetry. Strictly speaking all
local observables and the representation of the state (up to an overall phase) must be
invariant under the permutation symmetry.

In three spatial and one time dimensions, the requirement of permutation symmetry
allows two kinds of mathematical descriptions for the system. This leads to a clear-cut
division between particles: the ones described by the first kind are called bosons and
the ones described by the second kind are called fermions. All elementary particles
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2 Introduction

are thus bosons or fermions. The boson/fermion nature of particles is called quantum
statistics.

Although the division to bosons and fermions is clear in fundamental physics, there
are situations where this classification is not adequate. Sometimes, collections of el-
ementary particles such as electrons form collective states which are stable in time.
These collective states can be viewed as particles themselves, if they interact with
their environment as a single entity. Such states are called quasiparticles to emphasize
that they are not elementary particles. Quasiparticles can have different physical prop-
erties than their constituent particles, and the effective description of a quasiparticle is
usually simpler than the full characterization of its constituents. Familiar examples of
quasiparticles are phonons, mobile disturbances of the lattice structure in condensed
matter, and holes, states which can occupy electrons but are missing them.

In general, the quantum statistics of quasiparticles should not be altered: two
identical quasiparticles should still be either bosons or fermions. This is however not
the case if particle exchanges are interpreted in the physical sense such that the particles
draw trajectories in space-time, and if the particles are effectively confined on a plane.
If the quasiparticles are two-dimensional, and the particles are not allowed to collide
(interact in close range), then there are many ways to choose the trajectories when
particles are exchanged, but none of these is preferred unless additional constraints are
imposed. Thus, fermionic and bosonic quantum statistics are not enough to describe
the constraints imposed by permutation symmetry in two spatial dimensions. The
correct formalism to account for quantum statistics is then called anyonic braiding
statistics, and the quasiparticles that obey such statistics are called anyons.

Quantum statistics has very profound consequences in physical systems. The spin-
statistics theorem states that statistics is intimately connected to the intrinsic spin
that particles carry. The exclusion principle states that no two fermions can exist in
the same physical state. Since the mathematical description of anyons is much richer
than that of bosons and fermions (bosons and fermions can be viewed as special kinds
of anyons), it is expected that the physics of anyons is rich and complex. The study
of anyonic properties is currently an active and developing area of research, partly
because of intrinsic theoretical interest and partly because of possible applications in
quantum computing. The question posed in this thesis is: what are the effects of
anyonic braiding statistics on the dynamics of a system of particles? In other words,
how does the pure quantum statistics affect the time evolution of wave packets that
describe the particles? In the models that are studied here, it turns out that there
are qualitative differences between the dynamics of particles that obey Abelian and
non-Abelian anyonic statistics.

There has recently been some related work on quantum walks in topological phases
[1–4]. These walks possess a chiral symmetry, such that the quasi-momentum vector
n(k) winds non-trivially around the Bloch sphere as k goes from −π to π. There are
bound edge states of energy 0 or π, which are robust against perturbations of the
Hamiltonian if these perturbations do not break the chiral symmetry. These quantum
walks have a variety of topological phases characterized by the winding number. The
existence of anyons in such topological phases has not been studied so far. Other
related work has been done with interacting anyons in one-dimensional chains [5].
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This Heisenberg-type interaction model favours energetically the fusion of neighbouring
anyons into certain fusion channels. It was shown that a chain of Fibonacci anyons
preferring fusion to vacuum is critical and is described by two-dimensional conformal
field theory.

The first part of this Chapter introduces the concept of anyonic braiding statis-
tics, highlighting the differences between conventional quantum statistics and anyonic
statistics, and introducing the mathematical tools needed to understand anyons. The
second part discusses the quantum walk, setting the ground for the formalism that will
be used to study the anyonic quantum walk model.

1.1 Anyonic quantum statistics

Anyonic statistics extends the idea of conventional quantum exchange statistics. Ex-
change statistics in quantum mechanics is a procedure to fix the problem of exchange
degeneracy [6], which means that a particular physical state can be described by several
different wave functions in a many-body system. The relative phases of these states
carry information about the identities of the particles, so they must be considered as
fundamentally distinguishable. To describe systems of indistinguishable particles, it is
necessary to pose further constraints on the states to remove the exchange degeneracy.

Exchange degeneracy is removed by requiring that the physical properties of the
state do not change under permutations of identical particles. The overall phase of
the wave function might change but it is still constrained to certain values. If Pij is
the permutation operator that exchanges particles labelled i and j, this operator must
commute with the total Hamiltonian if the physical properties are to be invariant un-
der permutations. The allowed physical states for identical particles must therefore
be eigenstates of Pij. Another constraint on the wave functions is that exchanging
particles twice must give the original state, P 2

ij

∣∣Ψ〉 =
∣∣Ψ〉. This property implies that

permutation operators have only two distinct eigenvalues, +1 and −1. The eigen-
states corresponding to these eigenvalues are called symmetric, Pij

∣∣ΨS

〉
=
∣∣ΨS

〉
, and

antisymmetric, Pij
∣∣ΨA

〉
= −

∣∣ΨA

〉
. They can be formally written as∣∣ΨS

〉
=

1√
N !

∑
α

Pα
∣∣Ψ〉 (1.1)

∣∣ΨA

〉
=

1√
N !

∑
α

εαPα
∣∣Ψ〉 (1.2)

where α labels the N ! permutations of N objects (including identity permutation) and
εα is +1 (−1) for all even (odd) permutations. The class of particles which are described
by completely symmetric and antisymmetric states are called bosons and fermions
respectively. The requirement that systems of identical particles must be described
by either a symmetric or antisymmetric wave function is called the symmetrization
postulate. The boson/fermion characteristic is fundamental to elementary particles,
protected by a superselection rule so that one can not turn to the other.

Quantum exchange statistics is quite an abstract concept, a mathematical con-
straint derived from physical principles. In that context, the exchange of particles is
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not to be understood as a physical process where the positions of two particles are
exchanged. It is rather a reshuffling of the particle indices in the mathematical rep-
resentation of the state. It is therefore of interest to consider particle exchange in a
more concrete way, such that the exchange is interpreted to occur in physical phase
space, perhaps as a result of interactions, and particles draw trajectories in space-time
as they change positions. Such a treatment was given by Leinaas and Myrheim [7],
who considered the exchange of single-particle wave functions via parallel transport.
They pointed out that the configuration space of N particles is not a Cartesian prod-
uct of the single particle spaces XN , but the real configuration space is XN/SN , the
product of single particle spaces modulo the permutation group for N particles. In
XN/SN the singular points where the particle positions coincide are related to the
topology of the configuration space. When a vector is parallel transported around a
singular point, its direction might change so that it is not equal to the original vector.
Trajectory loops are therefore divided into different classes that record information
about the singular points. A translation in the spatial coordinates causes a gauge
transformation in the wave function,

∣∣ψ(x)
〉
→
∣∣ψ′(x)

〉
= eiχ

∣∣ψ(x)
〉
, where the total

phase χ = χdyn + χgeom + ϕ can in general be the sum of dynamical, geometric and
exchange phases, respectively. The exchange phase ϕ is a characteristic number of the
many-body system of identical particles. Values ϕ = {0, π} correspond to bosonic and
fermionic systems respectively. In three spatial dimensions, the configuration space is
doubly connected, so that encircling a singular point twice takes the state back to its
original configuration. Thus, the constraint P 2

ij = ei2ϕ = 1 allows only bosonic and
fermionic behaviour, and the symmetrization postulate is already built into the theory.
This is more intuitive than requiring symmetrized states which assume entanglement
between particles that possibly have never interacted. In two spatial dimensions, the
configuration space can be infinitely connected, and there are no restrictions on the
gauge condition. The wave function can acquire any phase when the particle indices
are interchanged, and a new form of statistics emerges: anyonic quantum statistics.

The notion of anyonic statistics was independently discovered by Frank Wilczek,
who was investigating particles with fractional angular momentum [8, 9]. A two-
dimensional composite particle with charge q orbiting a magnetic monopole (flux tube
in three dimensions) with flux Φ is quantized in units l = integer − qΦ/2π, and the
interchange of two composite particles yields a phase factor eiqΦ on observables. This is
a consequence of the fact that the gauge transformation which removes the azimuthal
vector potential is not 2π-periodic. If the two-anyon wave function

∣∣Ψ〉 is characterized
by the relative polar coordinates r and φ of the particles, the wave function is subject to
constraint

∣∣Ψ(r, φ + π)
〉

= ei2π∆
∣∣Ψ(r, φ)

〉
. Now the parameter ∆ interpolates between

bosonic and fermionic character. The spin of the anyon is sa = integer+s+∆, where s
is the intrinsic spin of the charged particle. The total phase acquired when the anyons
are interchanged is ei2πsa , so the connection between spin and statistics holds also in
the more general case.

The above examples show that quantum statistics can be altered in two spatial di-
mensions, such that the wave function can acquire an arbitrary phase eiφ when identical
particles are exchanged. The phase is determined by the physical laws governing the
system. Some examples of the physical situations where anyonic phases might appear
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are reviewed below. In the course of the past decades, it has been realized that there
exists another possibility for quantum statistics in two dimensions, where the particle
exchanges can not be represented by simple phase factors. Rather, a permutation of
particles results in a non-trivial rotation of the wave function:∣∣Ψ2,1

〉
= B

∣∣Ψ1,2

〉
. (1.3)

Thus, there exists a Hilbert space HA with dim(HA) > 1 that describes different
particle configurations. The particles must be indistinguishable, so the states in this
Hilbert space can not be distinguished by any local observable, and the states belong
to the same superselection sector of the total Hamiltonian of the system. This kind
of exotic quantum statistics is called non-Abelian braiding statistics, while the simpler
case where B = eiϕ is a phase factor is called Abelian statistics.

Non-Abelian quantum statistics is a hypothetical form of effective interactions in
two spatial dimensions, where information is stored non-locally in the collective many-
body state of identical particles. The information can be manipulated by exchanging
(braiding) the particles. The idea of non-Abelian statistics arises from theoretical ideas
in (2 + 1)-dimensional electromagnetism and (lattice) gauge theory.

One theoretical platform with non-Abelian statistics is the relativistic (2 + 1)-
dimensional quantum electrodynamics with a non-Abelian symmetry group. It is de-
scribed by the Chern-Simons action

ICS =
k

8π

∫
M

εijkTr
(
Ai(∂jAk − ∂kAj) +

2

3
Ai[Aj, Ak]

)
(1.4)

where the coupling constant k is called the level of the theory, A is SU(2)-valued
gauge field, and gauge invariance requires that k is quantized in integer values. The
Chern-Simons term does not include a metric, which means that it is a generally
covariant quantum field theory: all observables of the theory are topological invariants
which remain unchanged under the action of any local operator. To find the quantum
numbers of the theory, one can define the most general gauge-invariant observable, the
Wilson loop. It is the trace in the representation R of the holonomy of connection Ai
around an oriented closed curve C in the manifold M :

WR(C) = TrRP exp
( ∫

C

Aidx
i
)
. (1.5)

The observable is then defined as the Feynman path integral∫
DA eiICS

r∏
i=1

WRi(Ci) (1.6)

where Ci are r oriented and non-intersecting knots on the three-manifold M . The
union of these knots constitute a link, and the integral above can be viewed as the
expectation value of the link or a partition function of M . Witten has shown that
this expectation value is related to the Jones polynomial [10], which is a polynomial
invariant used to classify classical knots and links. Moreover, the sources of the theory
have anyonic statistics.
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Non-Abelian anyons emerge also in the Drinfel’d quantum double construction [11].
There one considers a system which is invariant under some continuous non-Abelian
symmetry group G. As the system enters the ground state, this symmetry is sponta-
neously broken to some discrete residual symmetry H ⊂ G via the Higgs mechanism
[12]. The force carriers acquire a mass and the fields are expelled from the bulk due to
a sort of Meissner effect. There are thus no long-range interactions between the parti-
cles. The system has also topological excitations which are quantum numbers that are
protected by a global symmetry. This quantum number is called a charge. In general,
there are two kinds of irreducible representations (particles) in the theory: fluxes and
charges. Together they can form dyonic combinations which have non-Abelian anyonic
statistics.

Another platform where non-Abelian anyons are found is the conformal field theory
describing the critical Ising model [13]. The excitations of this model have anyonic
statistics, and they are generally called Ising anyons. The anyons studied in this
thesis are Ising anyons, although in Chapter 4 more general SU(2)k anyons are also
considered.

To this date there has been no conclusive evidence for the existence of non-Abelian
anyons in experiments. Non-Abelian Ising anyons have been however long thought
to exist at certain plateaus of the Fractional Quantum Hall Effect. Also quasipar-
ticles called Majorana fermions have non-Abelian anyonic statistics [14]. Recently,
strong evidence for the existence of Majorana fermions has been found in semiconduc-
tor nanowires coupled to s-wave superconductors [15].

1.1.1 Braiding and isotopy invariance

The permutation statistics of identical particles acquires new meaning when the particle
exchanges are interpreted in a physical sense, such that each trajectory between points
a and b in phase space is assigned an amplitude Kα(a, b). The Feynman path integral
[16, 17] integrates the kernel K over all paths between a and b in the homotopy class
fab(α). The overall probability amplitude is a weighted sum over the homotopy classes:

K(a, b) =
∑
α

χ(α)Kα(a, b) (1.7)

where the weight factors χ(α) are given by (scalar) unitary representations of the
fundamental group Π1 [18]. The fundamental group Π1(M) records information about
holes in a manifold M . Specifically, given a point on the manifold, the elements of
the group correspond to equivalence classes of paths starting from the point, such
that all paths in an equivalence class can be continuously deformed into each other
without taking the path over holes. The group multiplication is given by adjoining
paths from their final and initial points. If the particles are not allowed to coincide, the
fundamental group of a three (spatial) dimensional manifold with N holes is isomorphic
to the permutation group of N objects:

Π1(MN
3 ) ' SN . (1.8)
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The configuration space of indistinguishable particles is the quotient space YN/SN ,
where YN is the coordinate space of N distinguishable particles. In three dimensions,
there are two unitary scalar representations of SN : the trivial and the alternating rep-
resentation, which is +1 for even permutations and −1 for odd permutations. The
trivial representation corresponds to bosonic statistics and the alternating represen-
tation corresponds to fermionic statistics. Similar conclusions were drawn by Leinaas
and Myrheim by considering parallel transport instead of path integrals [7]. Note that
there exist also higher dimensional irreducible representations of SN , and this other
form of exotic quantum statistics is called parastatistics.

In two spatial dimensions, the picture changes. The 2-dimensional spatial manifold
with holes is multiply connected, since trajectories can not be continuously deformed
into each other without taking them over the holes. The fundamental group is now
isomorphic to the Artin braid group:

Π1(MN
2 ) ' BN . (1.9)

The weight factors χ(α) corresponding to different homotopy classes α are now given
by representations of the braid group [19]. The elements Bi of the braid group cor-
respond to different ways of tangling N strands with each other, the inverse elements
B−1
i correspond to the braids where each crossing in Bi is reversed, and the group

multiplication is given by joining the outgoing ends of a braid Bi with the incoming
ends of a braid Bj. The braid group is completely described by N − 1 generators bk
which are just single crossings between adjacent strands k and k + 1. Any element
of the braid group can be given as a product of the generators: B = bibj . . . bx. The
generators are constrained by the relations [20]

bj bk = bk bj, |j − k| ≥ 2 (1.10)

bk bk+1 bk = bk+1 bk bk+1. (1.11)

That is, distant braids of two adjacent strands commute, while braiding of close by
strands obeys a specific rule.

A convenient feature of the braid group is that it allows diagrammatic representa-
tions of the elements. The generators braid two adjacent strands:

bk =̂
k k+1

b−1
k =̂

k k+1

and multiplication of braids corresponds to stacking the diagrams on top of each other
such that the ends of the strands coincide. The convention followed here is that time
flows from the bottom of the page to the top, such that a braid bjbk is represented
by putting bj on top of bk in the diagram. These diagrams are very similar to those
encountered in the study of links in the next section, and in fact there exists a math-
ematical relationship between the braid group and link invariants. Equations (1.10)
and (1.11) can now be written using the diagrammatic representation as



8 Introduction

=

k k+1 j j+1 k k+1 j j+1 (1.12)

=

k k+1 k+2 k k+1 k+2 (1.13)

The first relation is just saying that if the strands touched by the generators bk and
bj are distinct, the order of the braids is irrelevant. The second relation expresses the
braiding rule when one of the strands is mutual. The diagrammatic representation
of this rule shows that the second relation expresses the fact that strands can slide
over crossings, as long as the initial braid can be deformed into the final braid without
cutting any strands.

The invariance under continuous deformations of strands is called isotopy. In math-
ematics, the isotopy invariance can be studied using knot or link theory, where orig-
inally 3-dimensional links are projected on a plane, and the analysis concentrates on
the planar diagrams of links. In knot theory, the goal is to construct isotopy invariants
which take the same value for isotopic knots, regardless of the representation.

1.1.2 Link invariants

The study of knots and links has a long history in mathematics, and is still developing.
In general, a knot can be defined as a particular embedding of a closed, nonintersecting
curve in R3, and links are defined as nonintersecting unions of knots. If two knots can
be deformed into each other via continuous moves such that the curve never intersects
with itself, they are considered as equivalent, and called ambient isotopic to each other.
Knots are usually studied using planar diagrams, two-dimensional projections of knots.
Obviously, knots can have several different presentations as planar diagrams. The aim
of knot and link theory is to define invariant quantities which are equivalent for all
presentations of ambient isotopic knots and links. Ideally, these quantities should also
be distinct for structures which are not ambient isotopic.

Remarkably, ambient isotopy is captured by four simple local moves on planar
diagrams shown in Fig. 1.1. Reidemeister showed that two links are ambient isotopic
to each other if and only if they can be deformed into each other using these moves
[21], now known as Reidemeister moves. Each strand in these figures is taken to be
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0
∼ ∼

I
∼ ∼

II
∼

III
∼

Figure 1.1: Reidemeister moves. For move I, there are also additional moves with the
loop on the right side. For move II, there is also an additional move with both crossings
reversed, and for move III one where the central crossing is reversed.

a) `0 `+ `− L0

b) `1 `2 `3 `4

Figure 1.2: a) Elementary types of crossings `0, `+ and `−, and the trivial link L0. Note
that the two strands in the crossings may or may not belong to the same component. b)
Elementary types of crossings between two distinct strands.

part of a larger diagram, so the endpoints and the angles at the endpoints must be
assumed to be fixed during these moves. If two link diagrams are related via moves 0,
II and III (but not I) they are called regular isotopic [22].

Each individual knot in a link is called a component. An oriented link is one where
each curve has a preferred direction to it, indicated with an arrow. Two simple link
invariants of oriented links are the writhe and the linking number. The writhe w of a
link L is the difference between the number of positive and negative crossings:

w(L) = #(`+)−#(`−) (1.14)

where the crossings `+ and `− are defined in Fig. 1.2a). Note that the writhe is not
invariant under the Reidemeister move I, and thus it is an invariant of regular isotopy.
The linking number counts how many times different components are wound with each
other. It is defined as the sum over positive and negative crossings when the strands
are distinct, divided by two. Using the crossings defined in Fig. 1.2b), it can be written

lk(L) =
#`1 + #`2 −#`3 −#`4

2
. (1.15)

The linking number is an invariant of ambient isotopy.
Link invariants can also be defined via local surgery moves, which assign coef-

ficients for different smoothings of a crossing in a link diagram. These moves are
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generally known as skein relations. For example, the writhe and the linking number
are determined by the respective skein relations as follows [23]

`+ − `− = 2 (1.16)

`+ − `− =

{
1, strands different
0, same strand

(1.17)

The link invariants can be computed by forming the diagram for the link, and using the
skein relations for each crossing. The result is a sum over links. By applying the skein
relations and Reidemeister moves, each diagram can be deformed into the trivial link
L0. By defining L0 = 1, one finally gets the number that is the value of the invariant
for the link.

In the previous section it was mentioned that the generators of the Artin braid group
allow a diagrammatic representation as crossings, just like the elementary crossings in
link diagrams. In fact, a theorem by Alexander states that links may be represented by
an element of the braid group [24]. A link is obtained from a braid by simply connecting
the ends of the strands to each other. Such a process is called the closure of a braid
B, and the link thus obtained is denoted L(B) = (B)C, where C is some scheme for
connecting the ends of the strands. The most common scheme is the Markov closure
where the first incoming strand is connected to the first outgoing strand, second to
second, and so on.

The connection between links and braids was used by Jones to define a polynomial
invariant of links, called the Jones polynomial [25]. It is given by the trace closure over
the von Neumann algebra representation rq of the braid B:

VL(q) = (−(q + 1)/
√
q)n−1Tr(rq(B)). (1.18)

where the parameter q ∈ C and n is the number of strands. It is a Laurent polynomial
in the variable

√
q:

VL(q) =
∞∑

i=−∞

ai
√
q i (1.19)

with integer coefficients and it is an ambient isotopy invariant of oriented links. It is
the first link invariant to distinguish mirror images of links. The skein relations for the
Jones polynomial are written

q−1`− − q`+ = (
√
q −√q−1)`0 (1.20)

and the Jones polynomial of the trivial link is

VL0 = 1. (1.21)

Another invariant of regular isotopy is the Kauffman bracket [26]. It is defined by
the relations

`+ = A`0 + A−1`′0 (1.22)〈
L0 ∪ L

〉
= d
〈
L
〉
; L 6= ∅ (1.23)〈

L0 ∪ ∅
〉

= 1 (1.24)



1.1 Anyonic quantum statistics 11

where d = −A2−A−2 and `′0 is the (unoriented) crossing obtained from `0 by rotating
it 90 degrees. These relations are applied repeatedly to smooth a link to a disjoint
collection of loops and the result is a polynomial in A and A−1. In Sec. 4.2 they
are used to calculate the values of the Kauffman bracket explicitly. For a generic link
diagram without the types of the crossings specified, a state S represents a particular
choice for the directions of the crossings. The bracket polynomial can then be expressed
as 〈

L
〉

=
∑
S

〈
L|S

〉
d|S|−1 (1.25)

where
〈
L|S

〉
is a polynomial in the parameter A, obtained from the link diagram corre-

sponding to choice S by using the skein relations, and |S| is the number of components
in the diagram of choice S. The bracket polynomial is an invariant of unoriented links.
Although it is not an invariant of ambient isotopy, it can be normalized via the writhe
to yield the Jones polynomial. By introducing an orientation to a link L, the Kauffman
bracket and the Jones polynomial are related via

〈L〉(A)|A→q−1/4 = (−q1/4)−3w(L) VL(q) (1.26)

VL(q)|q→A−4 = (−A)−3w(L) 〈L〉(A). (1.27)

and the correspondence between the parameters of the Jones polynomial and the Kauff-
man bracket is A = q−1/4.

1.1.3 Representation theory of non-Abelian anyons

The existence of non-Abelian anyons arises from some residual global symmetry in
the ground state of the parent system. The quantum numbers induced by such a
symmetry are topological, which means that they are preserved under the action of
any local operator. The information contained in these quantum numbers can be
manipulated by operating on the topological states of the system. Concretely this is
done by braiding anyons around each other.

The addition of the topological quantum numbers does not follow the usual paradigm
of quantum number algebra. The global symmetry imposes constraints on the possible
values of the composite of two quantum numbers. The addition of topological quantum
numbers is called fusion algebra, and it is described formally by fusion tensors N . The
fusion tensors include information about the symmetry, and they label the possible
fusion outcomes of the composite charge c when the charges a and b are fused: [27]

a× b =
∑
c

N c
abc. (1.28)

Equations like this are called the fusion rules of the theory. Fusion of Abelian anyons is
always trivial in the sense that the fusion channels are unambiguous and N is non-zero
for only one value of c. The fusion rules arise from the underlying symmetry of the
system, and they define anyon models. The braiding statistics of non-Abelian anyon
models is completely determined by these fusion rules. The fusion outcomes give rise
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to a collective Hilbert space for the two charges. The states of this space can be labeled
as
∣∣c, µ〉, where c is the composite charge, and µ labels the number of ways to combine

a and b to get total charge c. For the most common anyon models N c
ab = 1 and the

degeneracy index is redundant. The collective many-body Hilbert space is called the
fusion space and is denoted HF.

The total Hilbert space size for NA anyons can be calculated from the fusion rules:

dim(HF) = N c1
a1a2

N c2
c1a3

N c3
c2a4
· · ·N cNA−1

cNA−2aNA
(1.29)

where Einstein summation convention is assumed. The non-local fusion Hilbert space
does not admit a tensor product decomposition in terms of Hilbert spaces of individual
charge labels. Instead, it grows as dim(HF) ∝ dNA , where d is called the quantum
dimension. The quantum dimension is not necessarily an integer, and it is a charac-
teristic quantity of particular anyon models. For example, the quantum dimension of
Ising model anyons is d =

√
2.

As mentioned above, the particle exchange operators for NA anyons must be repre-
sentations of the braid group BNA . In addition, the exchange operators must respect
the global symmetry of the system. In summary, one is looking for unitary solutions
to the quantum Yang-Baxter equation: [22]

R12R13R23 = R23R13R12. (1.30)

where Rij denotes the exchange of labels i and j. The solutions of the quantum
Yang-Baxter equation also satisfy the Artin braid group relation (1.11). The solutions
are obtained via quasi-triangular Hopf algebras, also known as quantum groups, as
introduced by Drinfel’d [11].

The representations of the braiding matrices are most easily understood via dia-
grams. A fusion state

∣∣a × b → c
〉

can be represented by a vertex with two incoming
indices and one outgoing index, and the matrix Rc

ab implements a braid:

ab

c

= Rc
ab

ab

c (1.31)

(strictly speaking, the lines should have orientations, but when the charges are self-
conjugate the orientations can be omitted). The state of NA particles is represented
by fusing two particles to get the fusion outcome c1, fusing the third particle with c1

to get c2, fusing the fourth with c2, and so on. The intermediate charges {cj} are the
quantum numbers which span the fusion Hilbert space: HF = span{cj}NA−1

j=1 , and the
order in which the anyons are fused can be regarded as a choice of basis. A change of
basis can be done via so called F -moves:

a b c

d

e
=
∑
f

[F d
abc]

e
f

a b c

d

f

(1.32)
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where degeneracy labels µ have been omitted for clarity. (the F -tensor should not be
confused with the coin flip matrix F used throughout this thesis). The basis choice on
the left-hand side of Eq. (1.32) is known as the standard basis. The F -moves could be
viewed as deformations of the 6 − j symbols for ordinary SU(2) angular momentum.
The R and F tensors are completely determined by the fusion rules of the theory. They
can be derived using consistency conditions known as pentagon and hexagon equations
[27, 28]. The representation for the exchange of any particle labels ci and cj can then
be constructed by using the F -moves to bring these labels together, using the R-matrix
to exchange them, and reverting the F -moves.

Most results in this thesis are derived for Ising anyons. The charges of this anyon
model are 1, σ and ψ. The fusion rules are

1× {1, σ, ψ} = {1, σ, ψ}, σ × σ = 1 + ψ, ψ × ψ = 1. (1.33)

and the non-trivial F and R matrices are [29]

F σ
σσσ =

1√
2

(
1 1
1 −1

)
(1.34)

where the first column/row corresponds to 1 and the second to ψ, and

[Fψ
σψσ]σσ = [F σ

ψσψ]σσ = −1 (1.35)

R1
σσ = e−i

π
8 , Rψ

σσ = ei
3π
8 , R1

ψψ = −1 (1.36)

Rσ
σψ = Rσ

ψσ = −i. (1.37)

The quantum dimensions are d1 = dψ = 1, dσ =
√

2.
In Chapter 4 the anyons are spin-1/2 irreducible representations (irreps) of the

quantum groups SU(2)k, parametrized by the integer k called the level. These are the
anyons which arise in the Witten-Chern-Simons theory [10]. The charges of the theory
are {0, 1

2
, 1, . . . , k

2
}, and the fusion rules satisfy the triangle inequality and integer sum

condition as in SU(2):

j1 × j2 =

j1+j2∑
j=|j1−j2|

j

but with two restrictions on the total spin charge j:

j ≤ k/2; j1 + j2 + j ≤ k.

The non-trivial R and F tensors for SU(2)k anyons are [29]

F
1
2
1
2

1
2

1
2

=
1

[2]q

(
1

√
[3]q√

[3]q −1

)
(1.38)

R0
1
2

1
2

= −e−i 3π
2(k+2) , R1

1
2

1
2

= ei
2π

4(k+2) (1.39)
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where the so called quantum integers are given by

[n]q =
qn/2 − q−n/2√
q − 1/

√
q
, q = ei

2π
k+2 . (1.40)

For the special case k=2, the R and F tensors become

F
1
2
1
2

1
2

1
2

=
1√
2

(
1 1
1 −1

)
(1.41)

R0
1
2

1
2

= −e−i 3π8 , R1
1
2

1
2

= ei
π
8 . (1.42)

Note that the case k=2 is closely related to the Ising model, since F
1
2
1
2

1
2

1
2

= F σ
σσσ and

R∗1
2

1
2

= −iRσσ where the star denotes complex conjugation. Thus up to phase factors

and complex conjugation, the Ising and SU(2)2 models act similarly under braiding of
spin-1/2 irreps with charge correspondence {1, σ, ψ} =̂ {0, 1

2
, 1}.

1.1.4 AJL algorithm

Apart from being a delicate theoretical construction, non-Abelian quantum statistics
might have applications in quantum computing. The braiding of anyons induces matrix
valued transformations in the wave function, which could be seen as quantum gates
in the circuit model of quantum computing. The fusion Hilbert space of non-Abelian
anyons could thus be used to encode quantum information, and the information could
be manipulated by braiding anyons around each other. The fusion space is a very
favourable place to store information: the size of the Hilbert space grows exponentially
as a function of the number of particles, so that large quantities of information can
be represented by a moderate number of particles. Moreover, the states are protected
by a global symmetry, such that local perturbations can not change the state of the
system. This property makes topological systems robust against interactions with the
environment, which are the biggest challenge in realizing quantum computing in more
conventional systems.

An explicit quantum algorithm for anyonic systems has recently been constructed
by Aharonov, Jones and Landau (AJL) [30–32]. It approximates the Jones polynomial
of links at any primitive root of unity, q = ei2π/k. This approximative algorithm scales
polynomially in the number of strands, crossings and k, while the best exact classical
algorithm scales exponentially [33]. The algorithm was also extended to approximate
the Tutte polynomial, with the Jones polynomial as a special case [34]. The connection
between topological systems and link invariants was first made by Witten [10], who
showed that the skein relations of the Jones polynomial arise from the expectation

value of the product of Wilson loops, with the value q = ei
2π
k+2 of the parameter in

the Jones polynomial for deformations of the Lie group SU(2). The computability
of topological quantum field theories was further discussed in a series of papers by
Freedman et al [35–38]. Their results implied that there exists an efficient quantum
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algorithm to evaluate the Jones polynomial at q = ei
2π
5 , but such an algorithm was not

constructed explicitly.
The virtue of the AJL algorithm is that it allows the calculation of braid closures

directly, without relying on formalism of field theories. Unitary representations of the
braid group can be mapped to the so called Temperley-Lieb algebra, which can be
used to define a trace. The trace maps elements of the Temperley-Lieb algebra to
complex numbers, which are the values of the Jones polynomial. Since the trace over
the Temperley-Lieb algebra satisfies the Markov property, it is unique and the trace
is thus well defined. The trace of a unitary matrix can be approximated efficiently by
the Hadamard test, which yields the algorithm to approximate the Jones polynomial
at roots of unity.

The AJL algorithm provides a way to calculate the expectation values of unitary
representations of the braid group using link polynomials. If the state

∣∣χ0

〉
represents

a configuration where NA particles are created from the vacuum and B is a braid word
which braids the particles, then the expectation value of B is related to the Jones
polynomial as 〈

χ0

∣∣B∣∣χ0

〉
=

(−q3/4)w(Btr)

dNA−1
VBtr(q) (1.43)

where Btr is the link obtained from the braid word B via closure defined by the state∣∣χ0

〉
, and w is the writhe. The importance of this relation must be emphasized, as

most results in this thesis rely on it. The connection to the probability distribution of
the anyonic quantum walk is discussed in Sec. 2.3.

1.2 Quantum Walks

With the rise of quantum information science, quantum walks have emerged as a sim-
ple model that provides a platform for investigating dynamical quantum effects. The
simplicity of the model allows to keep complete account of degrees of freedom during
time evolution and the models can be often solved analytically to get the asymptotic
behaviour of several quantities. It can also be used to construct quantum algorithms.
One of the best features of the quantum walk model is that there is a correspond-
ing classical model, the random walk, which provides a reference point for comparing
differences between classical and quantum systems in motion. Most notably, the per-
formance of quantum systems in algorithmic applications almost always supersedes
that of classical systems.

The random walk is a simple model in probability theory and computer science
which can be used for studying algorithms and queueing theory, for example. Random
walk is a kind of cellular automaton where the system is described by a set of nodes,
one or more of the nodes occupied by a moving object called the walker, and the
system evolves in discrete time steps according to some transition rule. The nodes are
connected by edges which define the neighbour sites where the walker is allowed to
move. Each edge is assigned a transition probability which determines the probability
for moving between connected sites during a single time step. By its definition, the
random walk is a Markov process: the next state of the system depends only on the
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s−1 s s+1 s+2
Pr

1− Pr

Figure 1.3: The classical random walk on a line. Circles represent the nodes that the
walker can occupy. Pr is the probability that the walker (red cross) at site s at time instant
t moves to s+ 1 at time t+ 1. Conservation of total probability requires that the probability
to move left is 1− Pr.

present state and the transition rule, not past states of the system. A schematic picture
of random walk dynamics is given in Fig. 1.3. When the state space (nodes) is discrete,
random walks are also called Markov chains, sequences of random variables ordered
in time, the random variable being the position of the walker at each time step. In
physics, random walks are widely used to describe Brownian motion in fluids and gases.

The coin flips in random walks are sequences of Bernoulli trials, where the prob-
ability of each outcome is constant for each trial. The position s of the walker is a
random variable, which is distributed according to the binomial distribution. When the
probabilities for each outcome are equal, the walk is said to be symmetric or unbiased,
and the probability to be at site s at time t can be written [39]

pRW(s, t) =
1

2t

(
t

Hs

)
(1.44)

where Hs is the number of right-moves needed to reach the site s in t time steps, starting
from the initial site s0. Random walks can be characterized by various quantities, such
as the probability to return to the origin and the probability of last visit to the node.
In this thesis, the probability distributions are characterized by how spread out they
become in course of time. This property can be quantified by the variance of the
distribution as defined below.

The idea of a quantum version of random walks was initiated by Aharonov, Davi-
dovich and Zagury [40]. They imagined the quantum walk as a discrete process where
a particle is moving in space, with an additional degree of freedom called the quantum
coin. The quantum coin could be any physical degree of freedom belonging to a particle
if it can be used to construct a basis, such as the z component of the particle spin.
The coin basis elements represent different outcomes of a coin flip, for example heads
and tails can correspond to eigenstates of spin up and spin down. The quantum coin
is measured at discrete time intervals, and the motion of the particle is coupled to the
coin such that measurement outcome up (down) indicates that the particle has moved
right (left). If the wave packet describing the particle is initially centered at x0, its
state can be written

∣∣Ψ〉 =
∣∣ψ(x0)

〉(
c0

∣∣0〉 + c1

∣∣1〉) where 0 and 1 label the coin out-
comes. The state evolves according to the time evolution operator U = exp(−iSzPl/~)
to
∣∣Ψ′〉 = c0

∣∣ψ(x0 − l)
〉∣∣0〉+ c1

∣∣ψ(x0 + l)
〉∣∣1〉, where Sz is the spin operator (generator

of rotations) and P is the momentum operator (generator of translations). After the
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measurement, the coin state is reset to the initial state, and the process is repeated t
times. If the initial wave packet is Gaussian, the dynamics sees the wave packet shift
and change its shape in time. Perhaps the most interesting feature of the quantum
walk of Aharonov et al is that for some values of the parameters the wave packet shifts
by an amount which is larger than the maximum classically allowed value.

Quantum walks can also be formulated as decision trees [41, 42]. In this model,
the wave packet is initially localized at a certain node. This node branches into two
separate nodes such that the walker has a certain probability of ending up on either
node. Similarly, as time passes each node branches into two new ones at constant time
intervals. The system evolves continuously in time, governed by a Hamiltonian that
gives the transition amplitudes between the nodes. This model does not include a coin
degree of freedom at all. For some tree structures the classical algorithm takes a time
exponential in the number of elementary time steps to reach a certain node, but the
quantum algorithm can reach the same node in polynomial time. Another model that
is closely related to quantum walks is the quantum cellular automaton as defined by
Meyer [43]. There space consists of discrete cells, and a transition rule defines the
evolution of a field φ defined on the cells. This model can be formulated as a lattice
gas where a particle jumps between lattice sites. Meyer proves that in one dimension
there exists no nontrivial, homogeneous, local, scalar quantum cellular automaton. To
define a unitary QCA, Meyer relaxes the homogeneity condition, whereas in coined
quantum walks the scalar condition is relaxed.

In a certain sense, the Feynman path integral method [16, 17] is also a type of
quantum walk. The path sum method gives the transition amplitude between two
space-time points as a sum over all possible paths, each path weighted by their classical
action. At each discrete time interval ε, the particle can move left or right, and between
the time intervals the particle propagates at the speed of light. The path sum becomes
the path integral by passing to the continuous limit of space and time. In fact, as shown
in the next section, the transition amplitudes for the discrete-time coined quantum walk
can also be expressed as a sum over paths of constant length. In that case, each path
is weighted by a product of coin terms.

The most studied quantum walk presently is perhaps the discrete-time quantum
walk on graphs [44, 45], described in the next section. The anyonic quantum walk
presented in the next chapter is also a variant of this walk. For reviews on the theory
of quantum walks the reader is directed to Refs. [46–48].

1.2.1 Discrete-time quantum walk in one dimension

The one-dimensional anyonic quantum walk is defined as a discrete-time and discrete-
space quantum walk on a line. The non-anyonic version of this walk was analyzed
by Ambainis et al [44], who introduced the coin operator F which acts on the coin
degree of freedom at each time step, after the state of the coin is measured. The time
evolution of the combined space-coin system is then unitary. Ambainis et al [44] solved
the wavepacket dynamics in the absence of boundaries and for absorbing boundaries,
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using the Hadamard operator as the coin flip operator:

F =
1√
2

(
1 1
1 −1

)
. (1.45)

This walk is known as the Hadamard walk. The walker starts initially localized at
some site s0 at time instant t = 0. In the case of infinite lattice, the expected distance
from the initial site is linearly proportional to t the number of time steps, in contrast
to classical random walks where the expected distance is proportional to

√
t.

Aharonov et al [45] analyzed a similar discrete-time model on finite graphs with
arbitrary vertex degrees (number of edges going out from a vertex), and arbitrary coin
flip operators. Their model is defined as a quantum Markov chain, when the position of
the particle at a given time step is interpreted as a random variable. The time evolution
of the probability distribution on the nodes of the graph does not tend to any limiting
distribution. They show however that the time average of the probability distribution
always tends to a limiting distribution. The limiting distribution depends in general
on the initial state and the eigenvectors of the time evolution operator, but if all the
eigenvalues of the time evolution operator are distinct, then the limiting distribution
is uniform on the nodes.

The quantum walk on the line is defined by the unitary time evolution operator
U and initial state

∣∣Ψ(0)
〉
. The time evolution operator propagates the wave function

forward in time by one time step:
∣∣Ψ(t + ∆t)

〉
= U

∣∣Ψ(t)
〉
, and for simplicity the unit

of time is set as ∆t = 1. The total Hilbert space,
∣∣Ψ〉 ∈ HQW, is the composite space

of spatial and coin spaces: HQW = HS⊗HC. On an N -site lattice, the spatial space is
spanned by N position basis vectors: HS = span{

∣∣s〉}Ns=1, and the coin space is spanned
by two basis vectors: HC = span{

∣∣0〉, ∣∣1〉}. The position states can be thought as the
eigenstates of an abstract position operator, S

∣∣s〉 = es
∣∣s〉, and the coin states can be

thought as the eigenstates of some physical two-dimensional degree of freedom of the
particle, such as spin, C

∣∣c〉 = ec
∣∣c〉, although these operators are not usually defined.

The transformation rule for a single time step is depicted in Fig. 1.4. First, the∣∣s〉∣∣c〉-component of the wave function, ψ(s, c, t) =
(〈
s
∣∣〈c∣∣)∣∣Ψ(t)

〉
, moves into a super-

position: ψ(s, c, t)→ u0c ψ(s, 0, t) + u1c ψ(s, 1, t). This action can be represented by a
coin flip matrix

F =

(
u00 u01

u10 u11

)
(1.46)

such that the action of the coin flip operator on the wave function is∣∣Ψ(t)
〉
→
(
IS ⊗ F

)∣∣Ψ(t)
〉
≡ F

∣∣Ψ(t)
〉
. (1.47)

Next, the position becomes correlated with the coin, such that outcome 0 shifts the
walker to the left and 1 shifts the walker to the right:∣∣Ψ(t+ 1)

〉
=
(
T−P0 + T+P1

)∣∣Ψ(t)
〉
≡ S

∣∣Ψ(t)
〉

(1.48)
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s−1 s s+1 s+2
F F∣∣1〉

C

∣∣0〉
C

Figure 1.4: The discrete-time and discrete-space quantum walk model in one dimension.
The coin flip operator F acts first on the coin degrees of freedom. Then the 0-component of
the wave function at each site shifts left and the 1-component shifts right.

where the translation operators T± and the projectors to coin states are

T+ =
N−1∑
s=1

∣∣s+ 1
〉〈
s
∣∣⊗ IC (1.49)

T− =
N−1∑
s=1

∣∣s〉〈s+ 1
∣∣⊗ IC (1.50)

Pc = IS ⊗
∣∣c〉〈c∣∣. (1.51)

A single time step of the walk is then given by
∣∣Ψ(t+ 1)

〉
= U

∣∣Ψ(t)
〉

= SF
∣∣Ψ(t)

〉
and

the wave function at time step t is obtained by repeated applications of U :∣∣Ψ(t)
〉

= U t
∣∣Ψ(0)

〉
. (1.52)

Note that the shift operator S is not unitary at the boundaries. This can be fixed
by redefining the shift operator as S + TBC, where TBC is a boundary condition term.
By choosing the boundary conditions in a suitable way, the total evolution becomes
unitary. Details of boundary conditions are discussed in Sec. 2.4.1.

The full solution of the dynamics of the walk requires diagonalization of U . If
the coin operators are identical on every site, the walk is translationally invariant
and diagonalization can be done by moving to the momentum basis by taking the
Fourier transform. Anyonic walks are not in general translationally invariant which
complicates solution. The full solution is not obtained here, but instead the analysis
concentrates on the time evolution of the spatial probability distribution of the walker.
The information about the spatial degrees of freedom is carried by the reduced density
matrix of the position space ρS, which is obtained from the total pure state density
matrix

∣∣Ψ〉〈Ψ∣∣ by tracing out all other than spatial degrees of freedom. The density
matrix of the position space after t time steps is

ρS(t) = TrC

(
U tρ(0)(U †)t

)
(1.53)

where the initial state is ρ(0) =
∣∣Ψ(0)

〉〈
Ψ(0)

∣∣, and the wave packet is localized at some
initial position s0:

∣∣Ψ(0)
〉

=
∣∣s0

〉(
ψ(s0, 0, 0)

∣∣0〉+ ψ(s0, 1, 0)
∣∣1〉) ≡ ∣∣s0

〉∣∣c0

〉
.

In the one-dimensional case, the time evolution operator U has transition elements
only between adjacent sites. This means that for a bounded wave packet, there is a
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maximal distance that the edges of the packet can propagate in a given time interval
T , such that there exists a causal light cone. Also, the probability to be at site s at
time t is given by interference of all probability amplitudes starting at some site s′ at
time instant t − T , and of all paths which lead from site s′ to s in time interval T .
This becomes concrete when the elements of the spatial density matrix are calculated
explicitly: (

ρS(t)
)
s,s′

=
〈
s
∣∣ ρS(t)

∣∣s′〉 (1.54)

=
∑
c

〈
s
∣∣〈c∣∣ U t

∣∣s0

〉∣∣c0

〉 〈
s0

∣∣〈c0

∣∣ (U †)t
∣∣s′〉∣∣c〉. (1.55)

From the above formula, the spatial and coin states can now be treated separately. The
coin amplitudes consist of repeated applications of the coin matrix F and projectors
Pc: 〈

c
∣∣ U t

∣∣c0

〉
=

∑
c1={0,1}

. . .
∑

ct={0,1}

〈
c
∣∣ PctFPct−1F . . . Pc2FPc1F

∣∣c0

〉
=

∑
c1={0,1}

. . .
∑

ct={0,1}

〈
c
∣∣ct〉〈ct∣∣F ∣∣ct−1

〉
. . .
〈
c2

∣∣F ∣∣c1

〉〈
c1

∣∣F ∣∣c0

〉
,

where the sums are taken over all coin outcomes at each time step. Each term is just a
product of elements of the coin matrix F . The conditional shift operator S associates
a shift T− (T+) to each coin outcome 0 (1), such that for each choice of coin outcomes
{ct′}tt′=1 there is a corresponding string of shift operators T atT at−1 . . . T a2T a1 , at′ ∈
{−,+}. Changing the notation such that at′ ∈ {0, 1} and T at′ =

∑
s

∣∣s + 2at′ − 1
〉〈
s
∣∣

allows to write〈
s
∣∣ U t

∣∣s0

〉
=
〈
s
∣∣ T atT at−1 . . . T a2T a1

∣∣s0

〉
=
∑
s1

. . .
∑
st

〈
s
∣∣st + 2at − 1

〉 〈
st
∣∣st−1 + 2at−1 − 1

〉 〈
st−1

∣∣st−2 + 2at−2 − 1
〉

. . .
〈
s3

∣∣s2 + 2a2 − 1
〉〈
s2

∣∣s1 + 2a1 − 1
〉〈
s1

∣∣s0

〉
=δ
(
s, s0 + 2

t∑
t′=1

at′ − t
)

where δ(·, ·) is the Kronecker delta function. Observing the second line above, it is seen
that the time evolution operator connects only sites st′ and st′ ± 1 between time steps
t′−1 and t′. The last line shows that only the coin histories {at′}tt′=1 ≡ at which satisfy
s = s0 + 2

∑t
t′=1 at′ − t are allowed in the transition matrix which connects positions

s and s0. Such coin histories correspond to paths which start at site s0 at time t′ = 0
and end up at s0 at time t′ = t. From now on, the vector a is used as a synonym for
the path of the walker (the t-index is dropped to simplify the notation). Each element
of a indicates the direction of the walker at each time step, for example a = (00101)T

means that the walker goes left twice, then right, left and right.
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Substituting the spatial and coin amplitudes to Eq. (1.54) gives the following
compact formula for the elements of the spatial density matrix:

(
ρS(t)

)
s,s′

=
∑
a,a′

δ
(
s, s0 + 2

t∑
t′=1

at′ − t
)
δ
(
s′, s0 + 2

t∑
t′=1

a′t′ − t
)

× δ
(
at, a

′
t

)
C(a, c0) C(a′, c0)∗

=
∑
a s
a′ s′

C(a, c0) C(a′, c0)∗ (1.56)

where the abbreviation
∑

a1={0,1}
∑

a2={0,1} . . .
∑

at−1={0,1}
∑

at={0,1} ≡
∑

a has been
used, and a  s means that the summation is done only over paths for which s =
s0 + 2

∑t
t′=1 at′ − t and a′t = at hold. Path a corresponds to ket evolution and path a′

to bra evolution before the partial tracing is carried out. The coin terms are given by

C(a, c0) =
〈
at
∣∣F ∣∣at−1

〉
. . .
〈
a2

∣∣F ∣∣a1

〉〈
a1

∣∣F ∣∣c0

〉
. (1.57)

The condition a′t = at comes from tracing over coin degrees of freedom:
∑

c

〈
c
∣∣at〉〈a′t∣∣c〉 =

δ(at, a
′
t). Eq. (1.56) expresses the elements of the spatial density matrix as sums over

forward and backward paths a and a′ (with some constraints on the paths), in other
words it can be regarded as a path sum representation. An analogous expression will
later be derived (see Sec. 3.1) for anyonic quantum walks, and in fact the treatment of
coin degrees of freedom in anyonic quantum walks is identical to usual quantum walks.

The probability distribution across the sites is given by the diagonal elements of
the spatial density matrix.

p(s, t) =
(
ρS(t)

)
s,s

=
∑
a,a′ s

C(a, c0) C(a′, c0)∗ (1.58)

where the abbreviation a, a′  s means that the summation is done over all paths that
satisfy at = a′t and

∑t
t′=1 at′ =

∑t
t′=1 a

′
t′ = (s − s0 + t)/2. This notation will be used

throughout the thesis.
A particularly neat formula for the probability distribution at time t can be obtained

by choosing the initial coin state
∣∣c0

〉
=
∣∣0〉 and using the Hadamard coin given in Eq.

1.45. The coin elements are
〈
at
∣∣F ∣∣at−1

〉
= − 1√

2
if at = at−1 = 1, and

〈
at
∣∣F ∣∣at−1

〉
= 1√

2

otherwise. The coin term in Eq. (1.57) takes the form

C(a, 0) =
(−1)z(a)

2t/2
(1.59)

where z(a) =
∑t−1

t′=1 atat+1 is the number of occurrences of two subsequent 1’s in a.
Substituting in Eq. (1.58), the probability distribution for the Hadamard walk is

p(s, t) =
1

2t

∑
a,a′ s

(−1)z(a)+z(a′). (1.60)

Because of this compact form, the Hadamard coin will be used in the anyonic quantum
walk formalism. Note that the Hadamard walk is only symmetric for the initial states
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∣∣c0

〉
= (

∣∣0〉 ± i
∣∣1〉)√2 (Hadamard coin is a real-valued matrix so real and complex

parts of the wave function do not interfere), therefore choosing
∣∣c0

〉
=
∣∣0〉 implies

that the position distribution does not evolve symmetrically. The loss of generality
by specifying initial state and the coin is not dramatic. Although the details of the
position distribution depend on the initial state and the coin, relevant quantities such
as the variance of the probability distribution are not sensitive to them.

The analysis of anyonic quantum walks concentrates mainly on the variance, which
is the square of the expected distance from the initial site. The variance (or dispersion)
is a measure of likelihood to find the walker far from the initial location. The random
variable in quantum walks is the position s, and its variance is written

σ2 =
〈
(s− s0)2

〉
=
〈
s2
〉
− 2s0

〈
s
〉2

+ s2
0 (1.61)

where
〈
·
〉

denotes the expectation value. When the variance is small, the probability
of getting a value near the initial site s0 is large. If the variance is large, the probability
distribution p(s) associated to the random variable s is spread out, and the probability
of getting a value near s0 is small. If s is distributed according to the discrete proba-
bility distribution p(s, t) at time t, and the probability to get a value si is p(si, t), the
expectation value is the first moment of s:

〈
s
〉

=
∑

i p(si)si. Similarly, by writing out
the second moment of s the variance can be written

σ2(t) =
∑
i

p(si, t)s
2
i − 2s0

∑
i

p(si, t)si + s2
0 (1.62)

where si runs through N sites.
One of the qualitative differences between random walks and quantum walks is the

time dependence of variance. The probability distribution of the symmetric random
walk on the line is binomial, and the variance depends linearly on the number of
time steps. The probability distribution of the discrete-time quantum walk is roughly
uniform around the initial site with peaks close to the edges of the causal light cone,
and the variance depends linearly on the square of the number of time steps [44]. To
summarize,

σ2
RW(t) = t (1.63)

σ2
QW(t) = C2t

2 + C1t+ C0. (1.64)

with C2 > 0. When the variance is quadratic in time, the walk is said to be ballistic,
since any initially localized particle propagates away with a velocity that is close to
the maximum allowed velocity. Linear dispersion is called diffusive, as the probability
to find the particle close to its initial location is still highest, and the probability mass
diffuses slowly out of the initial region. A third distinct behaviour is localization: the
whole probability mass is frozen around the initial point and does not evolve in time.
This implies that the variance stays constant in time, ie. there exists a constant C
such that

σ2(t) < C, ∀t. (1.65)

In general, there are different definitions for localization. In Chapter 5, dynamical
localization is defined such that the probability falls off exponentially as a function
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of the distance from the initial site. Another definition might be partial localization,
which means that there is a finite probability to be at the initial site at the asymptotic
limit t→∞, but this definition is not used here.

1.2.2 Decoherence in quantum walks

One of the hallmarks of the quantum walk from a theoretical viewpoint is that it
provides a simple yet untrivial platform for investigating differences between classical
(statistical) dynamics and quantum dynamics. Unitary quantum dynamics is memory
preserving, and the system dynamics is dependent on the initial state. One might
then ask what are the conditions under which quantum dynamics becomes classical
dynamics, where systems evolve stochastically and information about past states of
the system disappears eventually.

Decoherence in quantum walks refers generally to any non-unitary dynamics of
the composite space and coin system [49]. The state of the system goes from a pure
to a mixed state, described by a density matrix ρQW. The time evolution of the
initial density matrix ρQW(0) to ρQW(t) is given by a completely positive map, the
superoperator E , expressed in terms of the Kraus generators Ej:

ρQW(t) = E
(
ρQW(0)

)
=
∑
j

EjρQW(0)E†j . (1.66)

If the system interacts with an environment and the total evolution of the system and
environment is unitary, the index j runs over the environment degrees of freedom.

Decoherence processes can be modeled in numerous ways. Usually one is interested
in the average distribution, sampling over a range of random parameters. Mackay et
al [50] investigated the average distribution in one and two dimensions numerically,
when the coin operator is a random unitary deformation of the Hadamard coin. They
observed classical diffusive behaviour, with the average distribution approaching the
binomial distribution. Brun et al [51, 52] studied decoherent quantum coins from a
more general point of view, constructing the superoperator when the coin is subject to
measurement with probability p at each time step. If the coin is measured at each time
step, the variance of the distribution is equal to the classical random walk variance.
For smaller p, the variance is initially quadratically dependent on number of time steps,
but tends to linear behaviour, with the coefficient inversely proportional to p.

The time evolution of the walk does not always have to be non-unitary for the
dynamics to become classical-like. If the coin flip operator is changed at every time
step, the distribution resembles the random walk distribution and the variance depends
linearly on the number of time steps [53]. In general, the effect of decoherence is that
it mixes the phase relations between quantum states in such a way that quantum
interference effects are erased. Decoherence can be seen as the theoretical mechanism
for transition from quantum to classical behaviour. The physical origin of decoherence
are interactions between the system and the environment: when the system is coupled
to the environment, the interactions cause entanglement between the system and the
environment and the system can no longer be described as a pure state. As shown
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in Sec. 2.4.2, the anyonic fusion degrees of freedom can be seen as an environment
for the space and coin system, and the anyonic quantum walk can be interpreted as a
decoherent quantum walk.

Perhaps surprisingly, decoherence can also serve to speed up processes in quantum
dynamics. Kendon and Tregenna [54] found that a small amount of decoherence speeds
up the mixing time on a cyclic graph and the hitting time on hypercube. A review of
decoherence effects in quantum walks can be found in Ref. [49]. Recently, the effects
of disorder in quantum systems have also been investigated in the literature. These
results are discussed in Chapter 5.



2
Anyonic Quantum Walk

The anyonic quantum walk [55] is a modification of the one-dimensional discrete-time
quantum walk of Ambainis et al [44]. The motivation for this model is to understand
the effect of pure braiding interactions of anyons in motion. The braiding interactions
induce non-local correlations between anyons, protected by a global symmetry of the
wave function. The single-particle anyonic quantum walk describes the time evolution
of a single anyon wave packet when the motion of the anyon is coupled to an ancillary
degree of freedom called the quantum coin. As time evolves, the walker anyon exhausts
all the possible paths between the initial and starting point, ending up at site s at time
instant t with probability p(s, t). As a consequence of non-trivial quantum statistics in
two dimensions, this probability depends on the mutual statistics of the mobile anyon
and other anyons in the system, if the mobile anyon is allowed to circumvent them.
The other anyons in the system are taken to be localized with frozen dynamics, in
other words they have a definite location in space and do not move during the time
evolution of the walk. This motivates to think of them as background anyons.

It should be emphasized that the anyonic quantum walk model captures only the
non-local braiding interactions of anyons. Additional interactions such as Aharonov-
Bohm phases or close-range interactions between the particles are not considered, so it
is a toy model which might describe the essential physics in some situations. One possi-
ble application of the theory presented here could be in the multipoint contact version
of the Fabry-Perot type Fractional Quantum Hall interferometer. This possibility is
discussed in Sec. 2.5.

From the perspective of quantum walks, the anyonic quantum walks provide a
tool to investigate novel types of decoherence mechanisms. The anyonic fusion Hilbert
space can be seen as an environment of the quantum walk Hilbert space that consists of
space and coin. This environment is non-local and its dynamics is strongly correlated
with the quantum walk system. As the total evolution of the state is unitary, the
environment can have an infinitely long memory, and the system and the environment

25
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remain entangled for the whole evolution of dynamics.

The purpose of this chapter is to introduce the discrete-time anyonic quantum walk
and highlight some of its features. The definition of the model is given in Sec. 2.1.
The construction of representations of the braid generators is discussed in Sec. 2.2, and
calculation of the probability distribution using link invariants is discussed in Sec. 2.3.
Section 2.4 presents some results on finite graphs and discusses the role of decoherence
in anyonic quantum walks. A possible implementation of the anyonic quantum walk
in Fractional Quantum Hall systems is given in Sec. 2.5.

2.1 Quantum walk model

The anyonic quantum walk describes the discrete time evolution of a particle moving
on a lattice of spatial sites. Between each spatial site, there is an additional anyon such
that the moving anyon braids with these anyons as it hops between the lattice sites. The
positions of the additional anyons can be thought to form a dual lattice, the sites on the
dual lattice are called islands, and the anyons placed on the islands are called stationary
anyons. Importantly, the walker anyon can never go inside an island and interact with
the stationary anyons in close range. A close range interaction would lift the degeneracy
of the state and destroy the non-local information about the particle configuration.
The results presented here are therefore valid in cases where the distances between the
particles are significantly larger than their localization lengths, and the interactions
between the particles are purely statistical braiding interactions. Although only one-
dimensional lattices will be considered in what follows, it is necessary to think about
the anyons as existing in two dimensions, such that the walker can encircle an island
without crossing it.

The special case where all anyons are of the same type, and there is only stationary
anyon on each island is called a uniform configuration of charges. The models studied
in chapters 3 and 4 are uniform. The general case where anyon types or occupation
numbers of the islands are different are called disordered charge configurations, studied
in Chapter 5.

The setup for the anyonic quantum walk scheme is depicted in Fig. 2.1. It is very
similar to the usual one-dimensional discrete-time quantum walk setup described in
Sec. 1.2.1, except one has to define which way the walker passes the island. In Fig.
2.1, the walker always passes the island from above if it is going left and from below
if right. Therefore, there is a preferred direction for the motion of the particle, and
the model is called chiral. This choice of direction facilitates calculations, but a more
realistic model would take both directions into account. However, the chiral model
should capture the essential dynamics of the system, and all the results obtained for
it are expected to hold also for non-chiral models. This assumption is supported by
results in Sec. 5.3.2, where a continuous-time Hamiltonian model for anyonic walks
is discussed. This model is non-chiral, and the variance of this walk is linear in the
number of time steps just like in the chiral model.

As explained in Sec. 1.1.3, a braid generator bk represents a counterclockwise braid
of anyons labelled k and k+ 1. In principle, the positions of the anyons are exchanged
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a)

F F

bs

s− 1 s s+ 1 s+ 2

∣∣0〉

∣∣1〉

b)

∣∣0〉
∣∣1〉F F

s− 1 s s+ 1 s+ 2

bs

Figure 2.1: Anyonic discrete-time quantum walk model. The red and grey crosses rep-
resent the walker and stationary anyons, respectively. States

∣∣0〉 and
∣∣1〉 are the coin states

and bs is the generator that braids anyons s and s+1. a) Schematic drawing of the dynamics
during a single step of the anyonic quantum walk. After the coin flip F , the coin state is
in superposition and the component 0 travels left, passing the stationary anyon from above,
and the component 1 travels right, passing the stationary anyon from below. The sites which
the walker can occupy are drawn as solid circles and the islands on the dual lattice which
the stationary anyons occupy are drawn as dashed circles. Since the system is assumed to
be topological, only the direction in which the walker passes the island is relevant, not the
details of the path. b) A setup equivalent to a), but now the coin state is represented as
another spatial degree of freedom. The coin flip matrix F can be viewed as a tunneling matrix
describing the hopping amplitudes between the upper and lower edges at discrete locations.
Each edge is associated with a unique direction of motion, such that ending up in coin state∣∣0〉 (

∣∣1〉) implies that the walker travels left (right). This scheme can be naturally extended
to an experimental setup in Fractional Quantum Hall Systems as discussed in Sec. 2.5.

such that after the braid anyon k has moved to position of anyon k + 1 before the
braid and vice versa. In Fig. 2.1, however, the braid generator bs is associated with
the walker moving between sites s and s + 1 and the stationary anyon staying in its
original place, so strictly speaking their positions are not exchanged during each braid.
Since the system is topological, this is not relevant, because after the walker has hopped
from site s to s + 1 for example, the configuration is topologically equivalent to the
configuration where the final positions are shifted to the left by one lattice site, such
that the final positions are identical to the initial positions. Topological nature of the
spatial manifold also ensures that the exact path of the walker is not important, and
only the direction (above or below) in which the walker passes the island matters.

To make the labelling of anyons explicit, the fusion tree for the initial state of the
quantum walk is shown in Fig. 2.2. The walker anyon starts in the middle of the fusion



28 Anyonic Quantum Walk

1

2 3 w−1 w w+1 NA−1 NA

c1 c2 cw−3 cw−2 cw−1 cw cNA−3 cNA−2
O

Figure 2.2: Initial fusion state of the anyonic quantum walk with NA anyons in the
standard basis. The walker anyon is labelled w and it is initially located in the middle of the
fusion tree. The fusion degrees of freedom are labelled by the intermediate fusion charges
{cj}. The total charge of all anyons is the vacuum O.

tree, such that it has the same amount of stationary anyons to the left and right. The
anyons are thought to be created from vacuum, such that their total charge is trivial
(depending on the fusion rules, it is sometimes necessary to add an ancillary stationary
anyon to make the total charge vacuum). If the label of the walker charge is made
equal to the initial site of the walker k = s0, it is guaranteed that the braid generators
are always assigned with correct spatial translations of the walker.

The transformation rule
∣∣Ψ(t + 1)

〉
= U

∣∣Ψ(t)
〉

for the anyonic quantum walk is
only a slight modification of the corresponding rule for usual discrete-time quantum
walks. There, coin outcomes 0 and 1 were associated with uniform translation operators
T− and T+ respectively. In the anyonic version, each site-specific translation T−s+1 =∣∣s〉

S

〈
s + 1

∣∣ and T+
s =

∣∣s + 1
〉

S

〈
s
∣∣ is associated with a braid generator bs. As the

braid generators act on different fusion charges at different locations, they break the
translational invariance which holds in the usual quantum walk with a uniform coin.
The braid generators act in the fusion Hilbert space HF only, and to accommodate the
Hilbert space for the fusion degrees of freedom, the total Hilbert space is extended to
the tensor product of spatial, fusion and coin degrees of freedom: H = HS⊗HF⊗HC.

The discrete N -site space is spanned by N basis vectors
{∣∣s〉}N

s=1
, the fusion space for

NA anyons is spanned by {⊗NA−2
j=1

∣∣cj〉}, where cj are the intermediate charges and the
dimension is dim(HF) ∝ dNA with quantum dimension d, and the coin is spanned by
{
∣∣0〉, ∣∣1〉}.

The time evolution operator can be decomposed into coin-flip and conditional shift
operators: U = SF , with the coin-flip defined similarly as for usual quantum walks:

F = IS ⊗ IF ⊗ F. (2.1)

The conditional shift operator S associates a braid bs with translations T−s+1 and T+
s ,

and is given by

S =
N−1∑
s=1

(T−s+1bsP0 + T+
s bsP1) + TBC (2.2)

Where TBC stands for boundary condition terms (see Sec. 2.4.1).
Note that by defining T− =

∑
s T
−
s+1bs and T+ =

∑
s T

+
s bs as generalized translation

operators, the transformation rule can be written exactly the same way as for usual
quantum walks: S = T−P0 + T+P1. The position space and fusion space can then
be seen as a generalized position space, and the translation operators act only in this
space, while the projectors and the coin flip operator act only in the coin space. The
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T
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Figure 2.3: The path a = (01110), and the corresponding braid word B =
bs0+1bs0+1bs0bs0−1bs0−1. The solid lines represent stationary strands and the dashed lines
mark the spatial sites which the walker can occupy. The red walker component starts from
site s0.

coin degrees of freedom can therefore be handled separately from the spatial degrees
of freedom, in the same way that was done for usual quantum walks in Sec. 1.2.1.

In Sec. 1.2.1 the coin histories were recorded in vector a, and each vector cor-
responds to a distinct path. If the fusion state is initially

∣∣χ0

〉
, each application

of the time evolution operator U multiplies the fusion state by a braid generator:∣∣χ0

〉
→ bstbst−1 . . . bs2bs1

∣∣χ0

〉
, where st is the braid index at time step t. It is useful

derive an expression for the indices of the braid generators in terms of the coin history
a. If the walker is at site s = s0 + 2

∑t−1
t′=1 at′− (t− 1) at time step t− 1, then the braid

index is st = s+at−1, ie. st = s−1 if the walker went left and st = s if right. Thus the
index is st = s0 + 2

∑t
t′=1 at′ − at− t. As an example, consider the coin history for five

time steps a = (01110) (time going left to right). It can be checked that starting from
the initial site s0, the string of braid generators B = bs0+1bs0+1bs0bs0−1bs0−1 (time going
right to left) is applied to the fusion state. Such strings of generators are called braid
words from now on. The braid representation corresponding to the above coin history
is shown in Fig. 2.3. It is also possible to write the braid word Bta corresponding to a
path a of t time steps in a very compact form:

Bta =
t−1∏
r=0

bsr (2.3)

sr = s0 + 2
t−r∑
t′=1

at′ − at−r − (t− r). (2.4)

Here the index sr is chosen such that the order of generators is correct (time goes right
to left). This formula will be very useful when taking the trace over the fusion space.

In the quantum walk evolution, one is mainly interested in the probability distribu-
tion over sites as a function of time steps. The information about the spatial degrees
of freedom is carried by the reduced density matrix of the position space ρS(t). Since
the time evolution operator U entangles spatial states with coin and fusion states, the
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spatial states are mixed most of the time, but unitarity of U ensures that the total den-
sity matrix ρ(t) =

∣∣Ψ(t)
〉〈

Ψ(t)
∣∣ is always pure. The spatial density matrix is obtained

from the total density matrix by tracing out the coin and fusion degrees of freedom:

ρS(t) = TrCTrF

(
U t
∣∣Ψ0

〉〈
Ψ0

∣∣(U †)t) (2.5)

The braid generators bs act only on the fusion Hilbert space, so the fusion trace can
be carried out separately from the coin degrees of freedom. The sequence of braid
generators applied on the state depends on the path of the walker, whether it went left
or right at each time step. The elements of the spatial density matrix are now given
by (

ρS(t)
)
s,s′

=
∑
a,a′

st. a′t=at
a s,a′ s′

C(a, c0) C(a′, c0)∗ Tr
(
Bta
∣∣χ0

〉〈
χ0

∣∣(Bta′)†) (2.6)

where the coin terms are expressed by recalling Eq. (1.57):

C(a, c0) =
〈
at
∣∣F ∣∣at−1

〉
. . .
〈
a2

∣∣F ∣∣a1

〉〈
a1

∣∣F ∣∣c0

〉
.

Eq. (2.6) is very similar to the corresponding expression for usual quantum walks,

Eq. (1.56), except for the extra factor Tr
(
Bta
∣∣χ0

〉〈
χ0

∣∣(Bta′)†) which can be seen as the

anyonic term. The anyonic coefficient multiplies each path component by a complex
number, thus distorting the ordinary quantum walk dynamics. The spatial probability
distribution is given by diagonal values of the density matrix:

p(s, t) =
(
ρS(t)

)
s,s

=
∑
a,a′ s

C(a, c0) C(a′, c0)∗ Tr
(
Bta
∣∣χ0

〉〈
χ0

∣∣(Bta′)†). (2.7)

Recall from Sec. 1.2.1 that the notation a, a′  s means that the sum is taken over
paths with at = a′t and s = s0 +2

∑t
t′=1 at′− t. In what follows, the main concern is the

evaluation of the anyonic trace term. One approach is to construct representations for
the braid generators in the fusion basis, and take the matrix trace over the represen-
tations of the braidwords, as explained in Sec. 2.2. Another approach in Sec. 2.3 uses
relations between braid closures and link invariant polynomials. The latter approach
proves to be more efficient in some cases, and provides a visual way of thinking about
anyon trajectories as links. It is also used to derive the main results.

Eq. (2.7) gives a neat formula for calculating the probability distribution of the
walker at time step t: for a fixed site, the probability is a sum of fixed-length paths
starting from the initial site and leading to s (the length of the path is the real distance
traveled by the walker, not the distance between s and s0). Of course, this method
allows only the calculation of the spatial density matrix, and the full information about
the wave function is lost. It is good to keep in mind that this formula holds specifically
for an initially localized particle. To extend the analysis for an initially delocalized
particle, the initial state would be a superposition of position states, and one would
have to sum over all initial locations, and consider all fixed-length paths from each
initial site to site s.
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For the sake of numerical calculations, it is interesting to consider the computational
complexity of evaluating the probability distribution as the number of time steps in-
creases. For each pair of paths (a, a′), one has to evaluate the product C(a, c0)C(a′, c0)∗

×Tr
(
Bta
∣∣χ0

〉〈
χ0

∣∣(Bta′)†). The evaluation of each of these quantities as a function of

path pair (a, a′) is a task of its own, but some insight is obtained by considering the
number of terms in the path sum, since the number of elementary operations is bounded
from below by this number. The number of terms in the path sum is just the number
of pairs of paths leading to site s (remember the pairs of paths correspond to bra and
ket evolution of the walker), with the constraint that the last coin outcomes must be
the same: at = a′t. From analysis of standard random walks, it is known that the prob-
ability to reach a site after t time steps is

(
t
H

)
, where H is the number of right-moves

taken by the walker (note that the number of left-moves is given by L = t − H). In
terms of the path vector, the number of right-moves is given simply by the sum of its
elements: H =

∑
t at. In computer science, the sum of elements of a binary string is

called the Hamming weight. To fix the site where the walker ends up, one can write
Hs,t = {∑t′ at′ | s = s0 + 2

∑
t′ at′ − t}, or written in a more compact form,

Hs,t =
s− s0 + t

2
. (2.8)

Since the last coin outcomes must be the same, the number of pairs of paths leading
to s is just the number of pairs of paths leading to s− 1 (at = a′t = 1) plus the number
of paths leading to s+ 1 (at = a′t = 0) at time step t− 1. The number of single paths
leading to s−1 is

(
t−1

Hs−1,t−1

)
, so squaring this number gives the number of pairs of paths.

Using similar reasoning for s+1, and identities Hs−1,t−1 = Hs,t−1 and Hs+1,t−1 = Hs,t,
the number of pairs of paths is given by

#(a, a′)st. a,a′ s =

(
t− 1

Hs,t − 1

)2

+

(
t− 1

Hs,t

)2

. (2.9)

The expression above implies that the number of elementary additions needed to eval-
uate p(s, t) grows exponentially as a function of t. On top of addition, the coin and
anyonic terms need to be evaluated and multiplied for each path, which increases the
number of elementary operations significantly. As will be shown later, the coin and
anyonic terms can be identical for different paths, and recognizing these symmetries
reduces the amount of additions needed. However, even in the presence of these sym-
metries the probability distribution will still be exponentially hard in time to evaluate.

2.2 Construction of braid generators in the stan-

dard basis

As discussed in Sec. 1.1.3, the matrix representations of the braid generators can
be constructed using R- and F -tensors, which give the coefficients for two-particle
braiding and three-particle basis changes for the anyon model in question. These
matrix representations are constructed in the standard basis as shown in Fig. 2.2. The
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trace over the fusion space can then be computed by constructing the initial state in
the standard basis, applying the braid generators and taking the matrix trace.

In the fusion basis labeled by intermediate charges {cj}, the elements of the braid
generators for NA identical σ anyons are given explicitly as [55]

〈
Ψ({c′j})

∣∣bk∣∣Ψ({cj})
〉

=



∏NA−2
m=k δcm,c′mR

c1
σσ, k = 1∏NA−2

m=k δcm,c′m
×∑x([F

ck
σσσ]−1)

c′k−1
x Rx

σσ(F ck
σσσ)xck−1

, k = 2∏k−2
l=1 δcl,c′l

∏NA−2
m=k δcm,c′m

×∑x([F
ck
ck−2σσ

]−1)
c′k−1
x Rx

σσ(F ck
ck−2σσ

)xck−1
, 2 < k < NA − 1∏NA−2

m=k δcm,c′mR
cNA−2
σσ , k = NA − 1

(2.10)
This expression gives the matrix elements of the braid generators in terms of the R
and F tensors and is applicable for any anyon model with degeneracy-free fusion.

The fusion space of spin-1/2 irreps of SU(2)2 anyons and the σ charges of the Ising
anyon model has a very convenient tensor product structure in terms of qubits. For
example, two spin-1/2’s can fuse to either vacuum 0 or spin 1: 1

2
× 1

2
= 0 + 1. Thus

the fusion charge can take values c1 = {0, 1}. But when c1 is fused with another spin-
1/2, the fusion outcome is necessarily 1/2: c2 = c1 × 1

2
= 1

2
, according to the fusion

rules of SU(2)2. The degeneracy of the fusion outcome is 2, as it can be obtained
in two different ways. One can continue with similar logic and find that every even
intermediate charge is c2j = 1

2
, and every odd charge forms a qubit: c2j+1 = {0, 1}. The

total degeneracy is equal to the dimension of the Hilbert space. Requiring that the total
charge is zero, the fusion space then consists of m = NA/2− 1 qubits: HF ' (C2)⊗m.
The braid generators of SU(2)2 and Ising anyons thus admit a simple structure where
the non-trivial matrices acting on the fusion space are at most 4-by-4:

b1 = R⊗mj=2 I2, b2 = B ⊗mj=2 I2, b3 = A⊗mj=3,

b2k = ⊗k−1
j=1I2 ⊗B ⊗mj=k+1 I2, b2k+1 = ⊗k−1

j=1I2 ⊗ A⊗mj=k+2 I2; 1 < k < m, (2.11)

bn−3 = ⊗m−2
j=1 I2 ⊗ A, bn−2 = ⊗m−1

j=1 I2 ⊗B, bn−1 = ⊗m−1
j=1 I2 ⊗R.

For Ising anyons, the non-trivial matrices are

R = e−i
π
8

(
1 0
0 i

)
, B =

e−i
π
8√

2

(
ei
π
4 e−i

π
4

e−i
π
4 ei

π
4

)
,

A = e−i
π
8


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1


and for the SU(2)2 anyons R→ iR∗, B → iB∗ and A→ iA∗.
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Figure 2.4: The structure of the links encountered in the anyonic quantum walk. The
initial fusion state is

∣∣Φ0

〉
= B0

∣∣χ0

〉
, such that the trace closure corresponds to Markov

closure. The total braid word (Bta′)†Bta is a product of the bra- and ket-evolution.

2.3 Relation to link invariants

An alternative route to evaluating the trace over the fusion degrees of freedom comes
from link invariant polynomials. As discussed in Sec. 1.1.4, the expectation values of
braid words are related to the Jones polynomial via Eq. (1.43). Using the completeness
of the fusion basis, the trace over the fusion degrees of freedom can be expressed as an
expectation value over the initial state: Tr

(
Bta
∣∣χ0

〉〈
χ0

∣∣(Bta′)†) =
〈
χ0

∣∣(Bta′)†Bta∣∣χ0

〉
. If∣∣χ0

〉
is an initial state where 2NA particles are created from the vacuum, and B0 is a

braid word that drags the left member of each pair to the left, then the expectation
value over the state

∣∣Φ0

〉
= B0

∣∣χ0

〉
corresponds to Markov closure of the braid word

(Bta′)†Bta, forming a link L:〈
Φ0

∣∣(Bta′)†Ba∣∣Φ0

〉
=̂
(
(Bta′)†Bta

)Markov
=̂ L(a, a′)

This is illustrated in Fig. 2.4. The Markov closure means that the outgoing ends of
each strand are joined together with their respective incoming ends.

By invoking the relationship with the expectation values and the Jones polynomial,
the fusion trace can now be expressed as

Tr
(
Bta
∣∣Φ0

〉〈
Φ0

∣∣(Bta′)†) =
(−q3/4)w(L(a,a′))

dNA−1
VL(a,a′)(q). (2.12)

Here the parameter of the Jones polynomial is q = ei
2π
k+2 , and d = −A2 − A−2 =

−q−1/2 − q1/2 = 2 cos π
k+2

for spin-1/2 irreps of SU(2)2.
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A similar expression can be given in terms of the Kauffman bracket. The bracket
is related to the Jones polynomial via VL(q)|q→A−4 = (−A)−3w(L) 〈L〉(A) with the
correspondence q = A−4. The fusion trace is now given by

Tr
(
Bta
∣∣Φ0

〉〈
Φ0

∣∣(Bta′)†) =
〈
L(a, a′)

〉
/dNA−1, (2.13)

where A = ie
iπ

2(k+2) . Note that the writhe and the Jones polynomial, but not the
Kauffman bracket, require a choice of orientation for the link components, and the
orientation is picked such that all the strands which take part in the walk (the left half
in Fig. 2.4) have the same orientation.

Although these formulas strictly hold for the spin-1/2 irreps of SU(2)k, they can
also be used anyonic walks with Ising anyons. For more detailed description of this
correspondence see Secs. 3.1 and 5.3.1.

2.4 Finite chains

This section discusses anyonic quantum walks in chains of finite length. To ensure
unitarity of the walk, the boundary conditions must be defined correctly. One motiva-
tion to study finite chains is that the size of the fusion Hilbert space remains constant,
and long time scale simulations of the walk become possible. Results on entropy and
mixing of the probability distribution are given.

2.4.1 Boundary conditions

The boundary conditions describe how the components of the wave packet transform
when the walker reaches the edges of the system. If the total evolution of the system
is assumed to be unitary, then the boundary condition terms must also be unitary. In
fact, the boundary conditions are needed so that the total evolution of the system is
unitary. Although the middle terms given in Eqs. (2.1) and (2.2) are unitary in general,
the components

∣∣1〉
S

∣∣0〉
C

and
∣∣1〉

S

∣∣1〉
C

are connected only in one way, ie. there is no
amplitude connecting the first component forward in time or the second component
backward in time, therefore the total probability is not conserved. It is thus necessary
to define how these components transform at the boundary. The boundaries can also
be thought as an interface between the quantum walk system and its environment,
such that the walker interacts with the environment when it reaches the boundary. In
this case the interaction might cause decoherence of the quantum walk evolution, and
the evolution is not necessarily unitary.

The most common way to define unitary boundary conditions are periodic boundary
conditions. The ends of the lattice are joined together to form a ring graph, such that
a left moving walker at site 1 moves to site N and a right moving walker at site N
moves to site 1. The coin state does not change during the shift between lattice sites 1
and N , but the fusion labeling of non-Abelian anyons does. For example, if the walker
is initially at site 1, its corresponding anyonic charge is labelled as 1, and if the walker
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Figure 2.5: Periodic boundary conditions for anyons in the discrete-time quantum walk.
a) The transition N → 1 on the circle (left), and a path isotopic to it when the circle is
stretched to a line (right). b) The periodic boundary condition moves the anyon with the
last label (walker) to the first label. This move is represented by the braid matrix B.

is the last site N , its charge is labelled as NA. The periodic boundary conditions must
therefore be defined in such a way that also the fusion state transforms correctly.

The transition from site N to site 1 is shown in Fig. 2.5a). The walker does
not braid directly with stationary anyons as it crosses the boundary, but the path
corresponding to the lattice shift N → 1 is isotopic to the path that goes over all the
stationary anyons, when the ring is stretched out as a line in such a way that none of
the anyon worldlines cross. In this case, all the braids are counterclockwise. The shift
1→ N is isotopic to the path where the walker goes from 1 to N under the stationary
anyons, and all the braids are clockwise. If the labelling of the sites around the ring
was chosen in clockwise direction, then the shift N → 1 would correspond to the path
where the walker is taken under the stationary anyons and conversely for 1→ N .

The periodic boundary conditions for anyons are represented by a braid word B
which implements a braid that moves the walker between the first and last anyon. This
braid can be represented in the fusion basis as shown in Fig. 2.5b). It moves the anyon
with the last label to the first and moves all the other anyons to the right by one step.
The braid word can be decomposed to generators as

B =

NA−1∏
k=1

bk. (2.14)

If the sites on the ring are labelled counterclockwise, then the shift N → 1 is associated
with B and 1→ N is associated with B†. The boundary condition terms in Eq. (2.2)
can thus be written

Tpbc =
∣∣1〉〈N ∣∣⊗B ⊗ P1F +

∣∣N〉〈1∣∣⊗B† ⊗ P0F. (2.15)

The setup for reflective boundary conditions is slightly different. To connect the
unconnected components of the wave function, one could define boundary conditions
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a) ∣∣0〉∣∣0〉 ∣∣1〉∣∣0〉
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∣∣2〉∣∣0〉

∣∣2〉∣∣1〉

∣∣N−1
〉∣∣0〉

∣∣N−1
〉∣∣1〉

∣∣N〉∣∣0〉

∣∣N〉∣∣1〉 ∣∣N+1
〉∣∣1〉

b)∣∣−1
〉∣∣0〉 ∣∣0〉∣∣0〉

∣∣1〉∣∣1〉

∣∣1〉∣∣0〉

∣∣2〉∣∣1〉

∣∣2〉∣∣0〉

∣∣N−1
〉∣∣1〉

∣∣N−1
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∣∣N+1
〉∣∣1〉 ∣∣N+2

〉∣∣1〉
Figure 2.6: Dynamics at the boundaries. a) Reflective boundary conditions. Two an-

cillary states
∣∣0〉

s

∣∣0〉
c
,
∣∣N + 1

〉
s

∣∣0〉
c

are attached to the left and right ends of the chain.
The walker returns from the endsites with unit amplitude and its coin state is flipped. b)
Absorbing boundary conditions. A walker arriving at the boundary sites can either tunnel
through the boundary or be reflected with its coin state flipped. The tunneling amplitudes
at the boundaries are given by some tunneling matrix FB. Once the walker has passed the
boundary, it can not return to the system.

where the coin component 0 at site 1 stays at the same site, and its coin state is
changed to 1 after the coin flip. Such a setup would however break the convention that
the walker moves either left ot right on every time step, and never stays in place after
one time step. To construct well defined boundary conditions, it is therefore necessary
to add ancillary states

∣∣0〉
S

∣∣0〉
C

and
∣∣N + 1

〉
S

∣∣1〉
C

to the left and right boundaries, as

shown in Fig. 2.6a). Then a walker at site 1 moves to
∣∣0〉

S

∣∣0〉
C

if its coin state is 0

after the coin flip, and a walker at site N moves to
∣∣N + 1

〉
S

∣∣1〉
C

if its coin state is
1 after the coin flip. There are no coins at the ancillary sites, such that the walker
moves from

∣∣0〉
S

∣∣0〉
C

to
∣∣1〉

S

∣∣1〉
C

with unit amplitude, and similarly at the last site.
The coin state is flipped as the walker moves back from the ancillary sites. There are
no stationary anyons between the middle sites and the ancillary sites, so braiding is
trivial during these shifts.

In the case of reflective boundary conditions, the boundary can be thought as
separating the quantum walk system from its environment. When the walker is reflected
back from the boundary, its direction of motion and the coin state have changed, as a
consequence of the interaction between the walker and the environment. In this case
however, the interaction does not cause decoherence, and time evolution is unitary.



2.4 Finite chains 37

The boundary terms for reflective boundary conditions can be written

Tref =
∣∣0〉∣∣0〉〈1∣∣〈0∣∣F +

∣∣1〉∣∣1〉〈0∣∣〈0∣∣
+
∣∣N + 1

〉∣∣1〉〈N ∣∣〈1∣∣F +
∣∣N〉∣∣0〉〈N + 1

∣∣〈1∣∣, (2.16)

where the first state in the tensor product
∣∣s〉∣∣c〉 is to be understood to lie in the

position space and the second state in the coin space.
Absorbing boundary conditions can be defined similarly as reflective boundary con-

ditions, except there are now two ancillary states on the left and right, see Fig. 2.6b).
Sites

∣∣0〉
S

∣∣0〉
C

and
∣∣N + 1

〉
S

∣∣1〉
C

act as partially transparent boundaries such that a
walker arriving from the middle sites to the boundary has some probability of passing
through the boundary and some probability to be reflected back to the system. Once
the walker has passed through the boundary it has been absorbed by the environment
and it can not return to the system, so there is no probability to return from the
ancillary states

∣∣ − 1
〉

S

∣∣0〉
C

and
∣∣N + 2

〉
S

∣∣1〉
C

. This property makes the dynamics ir-
reversible, and the total time evolution is not unitary. The tunneling amplitudes are
given by a tunneling matrix FC , which is just a specific coin flip operator attached to
the boundary sites. The boundary terms can then be written as:

Tabs =
∣∣0〉∣∣0〉〈1∣∣〈0∣∣F +

∣∣1〉∣∣1〉〈0∣∣〈0∣∣ (∣∣0〉〈1∣∣FC) +
∣∣− 1

〉∣∣0〉〈0∣∣〈0∣∣FC
+
∣∣N + 1

〉∣∣1〉〈N ∣∣〈1∣∣F +
∣∣N〉∣∣0〉〈N + 1

∣∣〈1∣∣ (∣∣1〉〈0∣∣FC)

+
∣∣N + 2

〉∣∣1〉〈N + 1
∣∣〈1∣∣FC . (2.17)

In this case, the probabilities p(s = −1, t) =
∣∣〈 − 1

∣∣Ψ(t)
〉∣∣2 and p(s = N + 2, t) =∣∣〈N+2

∣∣Ψ(t)
〉∣∣2 are the instantaneous probabilities for the walker to occupy the ancillary

states
∣∣−1

〉
S

∣∣0〉
C

and
∣∣N +2

〉
S

∣∣1〉
C

. If the N -site lattice is seen as a finite cavity, these
are the probabilities for the walker to exit the cavity from left or right at time t. Thus
p(s = 0, t) for example gives the probability distribution in time for the walker to
exit the cavity from left. Note that although the dynamics is not unitary, the total
probability is conserved in the sense that the time integrated exit probabilities plus
the site probabilities at time t is conserved:

∑t−1
t′=1(p(s = −1, t′) + p(s = N + 2, t′)) +∑N+2

s=−1 p(s, t) = 1.

2.4.2 Decoherence

As discussed in Sec. 1.2.2, interaction with an environment mixes the phase relations
of quantum states, and depending on the type of interaction the effective behaviour
of the system may look classical (stochastic). This phenomenon is generally known
as decoherence. Note that the total Hilbert space in non-Abelian anyonic quantum
walks is H = HS ⊗ HF ⊗ HC = HQW ⊗ HF, ie. the fusion space HF can be seen as
the environment for the walker. Equivalently, the joint system of the coin and fusion
degrees of freedom can be seen as an extended coin space: H = HS ⊗ HF ⊗ HC =
HS⊗HC′ . The total state evolves unitarily in time, but the spatial and coin degrees of
freedom are not in a pure state, but instead in a mixed state described by the density
matrix ρQW.
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The dynamics of the spatial and coin degrees of freedom in the anyonic quantum
walk can be described by defining a superoperator E acting on the initial (pure) density
matrix ρQW(0). The initial density matrix of the total system is ρ(0) = ρQW(0) ⊗∣∣χ0

〉〈
χ0

∣∣. The density matrix at time step t is obtained by applying the time evolution
operator t times: ρ(t) = U tρ(0)(U †)t. The Kraus generators of E are obtained by
tracing over the fusion (environment) degrees of freedom:

ρQW(t) = TrA

[
U tρ(0)(U †)t

]
(2.18)

=
∑
f

EfρQW(t)E†f (2.19)

≡ E
(
ρQW(0)

)
(2.20)

where the generators are given by

Ef =
(
I ⊗

〈
f
∣∣)U t

(
I ⊗

∣∣Φ0

〉)
(2.21)

and f runs through the basis elements of the fusion space. The superoperator E defines
a completely positive (CP) trace-preserving map on the density matrix of the space
and coin system. The states of the environment drive the quantum walk dynamics
to decoherence channels labeled by f , and the system chooses the channel randomly.
When the number of anyons in the system is high, the dimension of the fusion Hilbert
space is high and it is expected that the degree of decoherence is high as well.

It is interesting to see how the decoherence from the fusion space affects the quantum
walk dynamics. The degree of disorder in a quantum state ρ can be measured by its
von Neumann entropy:

S(ρ) = −Tr
(
ρ ln ρ

)
(2.22)

= −
∑
j

λj lnλj (2.23)

where λj are the eigenvalues of ρ. The von Neumann entropy is zero if and only if
the state is pure, and equal to the maximum value ln d if and only if the state is
completely mixed (d is the dimension of ρ) [56]. In a certain sense, the von Neumann
entropy measures the departure of the state from a pure state. Since the total state is
pure, the von Neumann entropy is also a measure of entanglement between the system
described by ρ and its environment. The von Neumann entropy of the spatial and
coin degrees of freedom in the non-Abelian anyonic quantum walk with Ising anyons
is plotted in Fig. 2.7. Note that the entropy for an Abelian anyonic quantum walks is
always zero as the fusion space of Abelian anyons is one-dimensional. The plots show
that when the number of sites is small, the entropy fluctuates randomly around some
mean value. When the number of sites is large, the entropy seems to converge to some
value very close to the maximum entropy, and the entropy increases on every time step.

Since the speedup of quantum walks with respect to random walks seems to origi-
nate from the quantum correlations between the spatial and coin states, it is therefore
of interest to compare how these correlations are affected when the walker interacts
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Figure 2.7: Von Neumann entropy of the composite space and coin system in the non-
Abelian anyonic walk with Ising anyons and periodic boundary conditions. The maximum
entropy is marked with a red line. a) Nsites = 5. b) Nsites = 21.

with an environment. The spatial entropy of ρS in the Hadamard walk with periodic
boundary conditions is plotted in Fig. 2.8 a) and b). In the non-anyonic walk the spa-
tial entropy is equal to coin entropy, and the maximum entropy is always ln 2 ≈ 0.693.
The entropy fluctuates randomly, but the values become restricted to some interval as
the number of sites grows. A similar effect is seen for anyonic walks in Fig. 2.8 c),
where the entropy is also restricted to a bounded interval even when the lattice has
only 5 sites. For 21 sites, the entropy tends to the maximum entropy and increases
on every time step, similarly as the entropy for the combined space and coin system.
Note that the calculation of the maximum entropy in anyonic walks is a bit more cum-
bersome than in quantum walks. For example, if there are five sites in the system,
the Hilbert space dimension of the position space is dim(HS) = 5. There are 6 anyons
in the system (4 stationary, walker, plus ancillary anyon so that the total charge is
vacuum), and their fusion space dimension is dim(HF) = 26/2−1 = 4. The dimension
of the coin+fusion space is thus dim(HF⊗HC) = 4× 2 = 8. The maximum entropy is
calculated with respect to the smaller system so that S(ρS)N=5

max = ln 5 ≈ 1.609.

These examples show that the coupling of the space and coin with fusion degrees
of freedom changes the dynamics of the quantum walk significantly. The system goes
from a pure state to a mixed state, and the correlations between the spatial and coin
degrees of freedom become degraded as the system is subject to decoherence. As
shown in the next chapter, this decoherence has profound effects on the dispersion of
a particle on an infinite line. The effective dynamics becomes classical-like, as the size
of the environment grows exponentially in time.

2.4.3 Mixing time

It is known that on finite graphs, the quantum walk does not converge into any asymp-
totic distribution (unless it starts from an eigenstate of the time evolution operator, in
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Figure 2.8: Entropy of spatial states. Upper row: normal quantum walk with a) 5 and
b) 21 sites. Lower row: Ising anyons with c) 5 and d) 21 sites. The maximum entropy is
marked with a red line. Periodic boundary conditions were used.

which case the walk is trivial). However, the time-averaged probability distribution,

p(s, t) =
1

t+ 1

t∑
t′=0

p(s, t) (2.24)

has been shown to converge [45]. Moreover, by suitably tuning the decoherence param-
eters the converge rate can increase [54]. It is therefore interesting to compare how the
anyonic decoherence affects the mixing properties of the Hadamard walk. The ε-mixing
time is defined as [45]

Mε = min{T |∀t ≥ T, ||Dt − π|| ≤ ε} (2.25)

where Dt is the probability distribution at time step t, the asymptotic distribution is
π = lim

t→∞
Dt, and the distance measure between two probability distributions is the

total variation distance defined as ||D1 −D2|| =
√∑

i(D1(i)−D2(i))2.
As the asymptotic distribution is not known, an operational measure of convergence

is defined as the total variation distance to the final time-averaged distribution at time
step T :

D(t, T ) = ||p(s, t)− p(s, T )|| (2.26)
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Figure 2.9: Total variation distance D(t, T ). a) 5 sites. b) 21 sites. Black represents the
classical random walk and green represents the time-averaged classical random walk. Blue is
the time-averaged Hadamard walk and red is the time-averaged Ising walk. Total number of
time steps was 500 and periodic boundary conditions were used.

such that lower values of D mean faster convergence. The total variation distance
for Ising anyons is plotted in Fig. 2.9 with the corresponding plots the random walk
and the Hadamard walk. Note that the random walk distribution converges to the
uniform distribution even without averaging, and for this reason both the actual and
time-averaged distributions are plotted. For a small number of sites, the time-averaged
probability distributions are quite similar, although the convergence of the random
walk distribution is smoother than that of quantum and anyonic walks. For a larger
number of sites, the differences become more apparent. The quantum and anyonic
walks converge faster initially, exhibiting a quantum speedup in the convergence. The
convergence of the anyonic walk is smoother than that of the usual quantum walk. One
could deduce that the anyonic walk has good convergence properties, as it supersedes
the convergence speed of the classical random walk and has less irregularities than the
quantum walk.

2.5 Proposal for experimental setup

A possible experimental platform for simulating anyonic walks could be in Fractional
Quantum Hall samples. The quasiparticles at the ν = 5/2 plateau have been proposed
to have non-Abelian anyonic statistics corresponding to Ising anyons. Some evidence
for the statistical signatures of non-Abelian anyons have been reported in the literature
recently in interference experiments, as highlighted below, but conclusive evidence is
still lacking.
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2.5.1 Fractional Quantum Hall Interferometry

Several wave function candidates have been proposed for the ν = 5/2 Fractional Quan-
tum Hall state, some of these with Abelian braiding statistics and some with non-
Abelian statistics. The effective quasiparticle charge e∗ was measured in tunneling
experiments through a single quantum point contact, measuring the spectral density
of shot noise fluctuations as a function of impinging current [57] and measuring the
temperature scaling of the tunneling current pattern [58]. Both measurements were
consistent with e∗ = e/4, where e is the electron charge. These measurements can
not distinguish between Abelian and non-Abelian statistics, since the quasiparticle
charge is e/4 in both Abelian and non-Abelian models. To probe the statistics, an
interferometer with at least two point contacts is needed.

The experiments probing quasiparticle statistics can be done using a Fabry-Perot
type interferometer on top of a FQHE layer [59, 60]. An interference pattern is in-
duced on the longitudinal conductance σxx as the side gate voltage Vs is varied. The
side gate voltage controls the size of the island where bulk quasiparticles are con-
fined, thus changing the magnetic flux which the edge quasiparticles circulate. As the
magnetic flux inside the interferometer loop changes, also the Aharonov-Bohm phase
acquired by quasiparticles circulating the loop changes, resulting in Aharonov-Bohm
oscillations in the transmitted current through the interferometer. The period of the
AB oscillations is given by ∆AL = (e/e∗)Φ0/B, where e∗ is the charge of the tunneling
quasiparticle and Φ0 = hc/e is the magnetic flux quantum. The area of the loop is
approximated to be linearly dependent on the applied side gate voltage, ∆AL ∝ ∆Vs.
AB oscillations are also observed when magnetic field is varied, but these oscillations
are not usually measured because varying the magnetic field changes also the area of
the island, allowing less control of the experimental setup.

The current through the non-Abelian interferometer is given by [60]

I = (|t1|2 + |t2|2)/2 + Re{t∗1t2eiα
〈
ψ
∣∣B∣∣ψ〉}

where ti are the tunneling amplitudes through constrictions 1 and 2, and B is the braid
group representation associated with braiding the edge mode quasiparticle and bulk
quasiparticles confined on the island. This expression holds when the quasiparticles
wind around the island only once and tunneling at the point contacts is weak. It was
pointed out in Refs. [61, 62] that for non-Abelian anyons, the Aharonov-Bohm os-
cillations are suppressed if the number of non-Abelian particles on the island is odd.
The suppression of oscillations is due to the fact that for odd number of particles,
the interference term in the above equation is not allowed by the fusion rules of Ising
anyons. The disappearance of these oscillations was confirmed experimentally [63],
but instead of complete suppression of oscillations, the period switched between the
values corresponding to e/4 quasiparticle charge (σ anyon) and e/2 (ψ anyon), the e/4
oscillations having a larger amplitude. When the temperature was raised from 30 mK
to 150 mK, the e/4 oscillations disappeared. The conclusion was that if the number of
quasiparticles on the island is even, both e/4 and e/2 oscillations are present. As the
side gate voltage changes, the area of the island also changes, and new quasiparticles
may be introduced to the enclosed area. If the number of quasiparticles changes from
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Figure 2.10: Potential physical realization using a chained version of the two point contact
interferometer in Fractional Quantum Hall systems. The tunneling matrix U and dynamical
and Aharanov- Bohm phases can be tuned by adjusting the gate voltages indicated by the
thin and wide rectangles. The tunneling matrix U corresponds to the coin flip operator F in
the quantum walk formalism.

even to odd, the e/4 oscillations disappear but e/2 oscillations persist. This interpre-
tation was backed up by further measurements [64], where the period switching was
observed over large sweeps of the side gate voltage, and the switching was aperiodic
as a function of the side gate voltage, which fits the picture that the quasiparticles
are randomly distributed on the island. Additionally, performing the sweeps with two
different magnetic fields which differ by an energy corresponding to addition of a single
localized quasiparticle, the patterns were interchanged, which supports the idea that
e/4 oscillations are observed for even number of quasiparticles and e/2 oscillations for
odd number of quasiparticles. The origin of e/2 oscillations was discussed in detail in
Ref. [65], where two explanations were given: they could correspond to an e/4 particle
going through the interferometer loop twice, or there could be ψ particles going through
the interferometer loop as well. Based on their analysis, the latter option seems more
plausible.

2.5.2 Experimental scheme for anyonic quantum walks

An experimental setup which implements the anyonic quantum walk scheme could be
used to probe statistical properties of quasiparticles via transport measurements while
keeping the magnetic field and the area of the interference region constant, contrary
to previous measurements which track the interference patterns as these parameters
are varied. Such an experiment would implement a multipoint contact version of the
Fabry-Perot type interferometer as shown in Fig. 2.10 The experiment should be done
in the weak bulk-edge coupling regime of the side gate voltage, where the Aharonov-
Bohm oscillations dominate the interference pattern [65]. Since the side gate voltage
should be kept low and constant, the side gate is not needed at all. However, it is
good to introduce antidot top gates on the islands [66], such that quasiparticles can be
injected on the islands one by one.

To measure the probability distribution of the quantum walk directly would require
introducing contacts at each location corresponding to spatial sites of the quantum
walk. A simplified scheme where the conductivity is only measured at the ends of the
multipoint contact ladder is depicted in Fig. 2.11. In this scheme, the quantum walk is
induced by bringing a voltage contact to the middle of the ladder, such that localized
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Figure 2.11: Measurement setup for a quantum walk in a multipoint contact interferom-
eter. a) Non-destructive measurement. The walker interacts weakly with the measurement
device and returns to the system in an altered state. The action of the measurement pro-
cess in a characteristic time interval ∆t is represented by the operator U , generated by the
interaction between the walker and the measurement device. This introduces decoherence
to the quantum walk, but the total evolution of the quantum walk + measurement device
system is unitary. b) Destructive measurement. A voltage contact is brought to the middle
of the chain, such that quasiparticles can be injected to the edge modes. The experiment
measures the two-terminal conductivity between the initial point and either of the end point
contacts. The quasiparticle configuration on the islands can be controlled with antidot gates,
such that increasing the gate voltage by the chemical potential of the bulk quasiparticles
creates a single quasiparticle in the bulk.

initial states with definite initial coin state
∣∣0〉 can be easily prepared. Changing the

voltage in this gate by the value corresponding to the chemical potential of the edge
quasiparticles creates a single edge mode which starts to propagate along the edge.
The coin states are encoded by the occupation of either upper or lower edge and the
tunneling matrix at the point contacts corresponds to the coin mixing operator in the
quantum walk formalism. The conductivity between the initial point and the edge
contacts is given by the probability for the quantum walker to reach the end sites. The
measurement is assumed to be destructive, such that quasiparticles reaching the end
contacts can not travel back, which corresponds to introducing absorbing boundary
conditions to the quantum walk.

In the weak tunneling limit of the quantum point contacts, multiple windings around
the interferometer are strongly suppressed in the signal. In the quantum walk lan-
guage, the weak tunneling limit corresponds to using a coin which mixes the coin
states only weakly. The Hadamard operator is strongly mixing, so implementation of
the Hadamard walk would require strong coupling at the point contacts.

The initial fusion state can be controlled with the antidot gates. The antidots con-
trol the number of quasiparticles on the islands, allowing measurements with different
charge configurations on the islands. Particular charge configurations can also be pre-
pared by measuring charges on each island separately (although additional gates are
probably needed). Of special interest is the all-vacuum configuration, for which the
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Figure 2.12: Accumulated exit probability as a function of time. The number of sites in
the simulation is 21.

statistics should not play any role, and the uniform filling configuration, in which the
number of localized quasiparticles is odd such that the total charge on a single island
is σ.

We propose two types of measurements to be performed, with uniform and disor-
dered charge configurations on the islands. The uniform case requires careful prepara-
tion of the initial fusion state, such that all islands are occupied by the same number
of quasiparticles. Based on results on anyonic quantum walks with uniform charge
configuration, the probability to reach a site far from the initial site is smaller if the
walker and all stationary anyons are σ anyons. Intuitively, the conductivity should
be lower in this case, but this drop in conductance can not be quantified with the
quantum walk model. A toy model simulation of the anyonic walk is presented in
Fig. 2.12, where the accumulated exit probability is plotted as a function of time.
Assuming absorbing boundary conditions, the total exit probability at time step t is
p(s = −1, t) + p(s = N + 2, t). The accumulated exit probability can then be written

Pex(t) =
t∑

t′=0

p(−1, t′) + p(N + 2, t′). (2.27)

The simulation shows that initially the random walker takes the longest time to exit
the lattice. The anyonic walker is faster than the random walker, but slower than the
quantum walker.

In real experiments, the quasiparticle occupations on the islands are hard to control
and experiments with uniform charge configurations might be unrealistic. A more
implementable experiment would exploit disorder in the determination of statistics.
As shown in Chapter 5, Abelian anyons localize when the results are averaged over
many different occupations, while non-Abelian anyons do not. If the length of the
ladder is bigger than the localization length, on average there should be no particles
exiting the ladder and the average conductivity should be zero. If the particles are
non-Abelian anyons, there should be some leakage current in the ends of the ladder.
Unfortunately the amount of this current can not be estimated quantitavely from the
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quantum walk.
Because of imperfections in the experimental preparation, there is bound to be

some disorder in the system: the front gate voltages might vary across the ladder, the
effective sizes of the islands are different, and distances between front gates are different.
The fluctuations of the front gate voltage correspond to using a slightly different coin at
every site, and such disorder has been shown to cause localization for almost all cases
considered in the literature. The size of the island is proportional to the Aharonov-
Bohm phase, and the distance between front gates brings an additional dynamical
phase, which can both be absorbed to a random statistical phase, which has been shown
to cause localization. Therefore any type of disorder in the experimental configuration
implies localization for Abelian anyons, but the effective temporal randomness in the
non-Abelian case causes the wave packet to diffuse, thus allowing to distinguish the
pure statistical behaviour of the quasiparticles.

The main concern in our proposal is the coherence length of mobile quasiparticles.
Localization is only observed if the spatial disorder is fixed during a single run of the
experiment, and fluctuations occur between the runs. The observation of localization
might need a ladder with several quantum point contacts, but when the length of the
sample is increased, the propagating edge modes are subject to noise and the quantum
coherence might be lost. The noise would introduce temporal randomness such that
localization can not be observed. It is therefore important that localization is shown
for values of the magnetic field which are known to support Abelian anyons.



3
Ising Anyons

The simplest anyonic quantum walk is the uniform and unitary walk, where each island
is occupied by a single anyon and the walk evolves in a pure state

∣∣Ψ(t)
〉
. The time

evolution of the spatial probability distribution for an initially localized walker particle
is solved analytically as a function of number of time steps. The main question is,
how likely is it to find the walker a distance |s− s0| away from the initial location? In
other words, how fast does the particle propagate away when it is initially placed at a
definite location. The probability to find the particle far away from its initial location
can be quantified by the variance of the probability distribution of the position of the
particle. The main result is that the variance depends linearly on the number of time
steps t. If each island is occupied by the vacuum charge, then the walk is equivalent
to the Hadamard walk, and the variance depends linearly on the square of the number
of time steps. Similarly, if the anyons are Abelian, the statistical phase has a trivial
effect and the walk is identical to the Hadamard walk. Thus, the mutual statistical
interactions of the non-Abelian anyons slow down the propagation of the wave packet
from ballistic to diffusive.

This chapter is organized as follows. In Sec. 3.1, the trace over the fusion degrees
of freedom is expressed in terms of the Jones polynomial, and it is shown how the
structure of the links encountered in anyonic quantum walks can be used to simplify
the Jones polynomial, leading to a compact formula for the probability distribution in
Eq. (3.8). The exact numerical results up to 25 time steps are presented in Sec. 3.2.
The asymptotic results for the variance as t→∞ are derived in Sec. 3.3 using certain
approximations. The asymptotic behaviour is shown to be related to the fraction of
proper links over all links, and the fraction of proper paths is shown to be O(1/t2)
in Sec. 3.4. The results presented in this chapter are reported in [L. Lehman, V.
Zatloukal, J. Pachos, G. Brennen and Z. Wang. Quantum Walks with Non-Abelian
Anyons.]

47
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3.1 Analytical formula for probability distribution

In Sec. 2.3 it was shown that the evaluation of the anyonic term Tr
(
Bta
∣∣Φ0

〉〈
Φ0

∣∣(Bta′)†)
for SU(2)k anyons of Chern-Simons theory is equivalent to evaluating the Jones poly-
nomial of the link drawn by the trajectories of the anyons. Evaluation of the Jones
polynomial for a generic link is exponentially hard in the number of crossings [33], and
since number of crossings is equal to the number of time steps, the evaluation of the
Jones polynomial is exponentially hard in time for each path. The calculation of the
probability distribution is thus hopelessly inefficient in the general case. However, in
the special case k=2, the calculation of the Jones polynomial is only polynomially hard
in the number of crossings, and numerical calculations become slightly more efficient.
The number of paths grows still exponentially in time and the probability distribution
can only be evaluated for a small number of time steps.

This section presents one of the main results: an analytical formula for the anyonic
quantum walk distribution of Ising anyons as a function of t. There is a structure to the
links encountered in anyonic quantum walks that simplifies the evaluation of the Jones
polynomial, such that the trace over the anyonic degrees of freedom can be expressed
in terms of two simple link properties, properness and arf, as explained later.

The system’s initial state is
∣∣Ψ0

〉
=
∣∣s0

〉
S

∣∣Φ0

〉
F

∣∣0〉
C

, where
∣∣Φ0

〉
= B0

∣∣χ0

〉
is the

vacuum state of the NA pairs of anyons with half the members braided to the left as
depicted in Sec. 2.3. The lattice consists of N spatial sites on a line with N −1 islands
between the sites, each island filled with a single stationary Ising anyon. The total
number of anyons taking part in the walk is then NA = N . Choosing the Hadamard

coin F = 1√
2

(
1 1
1 −1

)
as the coin flip operator and recalling Eq. (2.7), the probability

distribution after t steps is

p(s, t) =
(
ρS(t)

)
s,s

=
1

2t

∑
a,a′ s

(−1)z(a)+z(a′) Tr
(
Bta
∣∣Φ0

〉〈
Φ0

∣∣(Bta′)†). (3.1)

The lattice is assumed to be infinite. In reality, for a given number of time steps, the
size of the lattice is always chosen such that N ≥ 2t+1, and boundary conditions need
not be used.

The anyonic trace term is evaluated using link invariant polynomials as described
in Sec. 2.3. Although the correspondence between the fusion trace and the Jones
polynomial holds for spin-1/2 irreps of the quantum group SU(2)k, the probability
distribution for Ising anyons can also be calculated using the formula (2.12). As seen
in Sec. 2.2, the braid generators of the SU(2)2 and Ising anyon models are equivalent
up to a phase and complex conjugation. To see that the probabilities are invariant,
consider a phase change in the generators such that the braid word becomes Ba = eiφaB∗a
(∗ denotes complex conjugation). For the terms with a = a′ in the sum in Eq. (3.1) the
braid words cancel each other and the anyonic contribution is trivial. The remaining
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terms can be written

1

2t

∑
a,a′ s

s.t. a6=a′

[
(−1)z(a)+z(a′) Tr

(
eiφaB∗a

∣∣Φ0

〉〈
Φ0

∣∣(B∗a′)†e−iφa′)

+ (−1)z(a
′)+z(a) Tr

(
eiφa′B∗a′

∣∣Φ0

〉〈
Φ0

∣∣(B∗a)†e−iφa)]
=

1

2t

∑
a,a′ s

s.t. a6=a′

(−1)z(a)+z(a′)
[〈

Φ0

∣∣(B∗a′)†B∗a∣∣Φ0

〉
+
〈
Φ0

∣∣(B∗a)† B∗a′∣∣Φ0

〉]
.

Here φa = φa′ since the walker braids exactly t times during both bra- and ket-evolution,
and the phase difference for each generator of Ising and SU(2)2 models is eiφ = i. The
complex conjugation can now be moved to be taken over the whole expectation values
and the anyonic term becomes〈

Φ0

∣∣(B∗a′)†B∗a∣∣Φ0

〉
+
〈
Φ0

∣∣(B∗a)† B∗a′∣∣Φ0

〉
=
〈
Φ0

∣∣(Ba′)†Ba∣∣Φ0

〉∗
+
〈
Φ0

∣∣(Ba′)† Ba∣∣Φ0

〉
= 2 Re

(〈
Φ0

∣∣(Ba′)† Ba∣∣Φ0

〉)
which is exactly the same without phases and complex conjugation, and results hold
equivalently for Ising and SU(2)2 anyons.

Recalling Eq. (2.12), the trace over the fusion space is related to the Jones poly-
nomial as

Tr
(
Bta
∣∣Φ0

〉〈
Φ0

∣∣(Bta′)†) =
(−q3/4)w(L(a,a′))

dNA−1
VL(a,a′)(q)

where the quantum dimension is d =
√

2 for Ising anyons, and the parameter of the
Jones polynomial is q = i. The link corresponding to the paths of the anyons is the
Markov closure of the braid word Bta′

†Bta:

L(a, a′) =̂ (Bta′
†Bta)Markov.

Since the braids in the forward and backward time parts of the link have the opposite
orientation (counterclockwise and clockwise respectively), and the number of cross-
ings is equal to the number of time steps in both parts, the writhe is always zero:
w(L(a, a′)) = t − t = 0. Thus for a uniform filling of Ising anyons the fusion trace is
simply related to the Jones polynomial via

Tr
(
Bta
∣∣Φ0

〉〈
Φ0

∣∣(Bta′)†) =
VL(a,a′)(i)√

2
NA−1

. (3.2)

The probability distribution is now given by a sum over weighted Jones polynomials.
At the special value q = i, the Jones polynomial of a link can be related to a simpler
knot invariant known as the arf invariant [67]. Specifically,

VL(i) =

{ √
2

#(L)−1
(−1)arf(L) if L proper

0 if L not proper
(3.3)
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where the number of components #(L) = NA here. An oriented link is proper if each
component Lk evenly links the union of other components, such that∑

j 6=k

lk(Lj, Lk) = 0 mod 2, ∀j (3.4)

holds. The linking number of two components lk(Lj, Lk) is defined in Sec. 1.1.2 and
can be computed in polynomial time in the number of crossings of a braid presentation.
The arf of a knot K, which is a single component link, is equal to zero if K is equivalent
to the unknot and is equal to one if K is equivalent to the trefoil knot. It can be related
to the Alexander polynomial for knots ∆K :

arf(K) =
(∆K(−1))2 − 1

8
mod 2

which can be computed in time polynomial in the crossing number of a braid presen-
tation of the knot [68]. For multicomponent links L, the arf has a more complicated
definition in terms of a knot that is related to the link. Since both properness and
arf can be computed in polynomial time, the Jones polynomials at value q = i can be
evaluated in polynomial time [33].

The evaluation of arf can be simplified for links that appear in anyonic walks.
If a link is totally proper, every component of the link links evenly with every other
component (not just the union), or lk(Lj, Lk) = 0 mod 2 ∀j, k. In the special case
where the link L is totally proper, there is a three local formula for the arf invariant:

arf(L) =
∑
i

c1(Li) +
∑
i<j

c2(Li, Lj) +
∑
i<j<k

c3(Li, Lj, Lk) mod 2 (3.5)

where cs(Γ) is the coefficient of zs+1 in the Alexander-Conway polynomial of the s-
component sublink Γ [67]. An s-component sublink is a link obtained from the original
link by removing all but s components. It is immediately clear that all totally proper
links are also proper, but the converse is not necessarily true. However, the links that
appear in anyonic quantum walks have a special structure such that it is true, as will
be shown next. This allows to use the above formula in Eq. 3.3. It simplifies greatly
the evaluation of arf, as one needs only to compute quantities for links with 1, 2 and
3 components.

To see that proper links are also totally proper, consider the set of all the sums
S = {∑k 6=j lk(Lj, Lk)}nj=1. The condition of L being proper is that every member
of S is an even integer. Separating the walker component, the sums can be written
S = {∑k 6=j lk(Lj, Lk)}j 6=wt{

∑
k 6=w lk(Lw, Lk)}, but since the stationary strands never

braid with each other, the only term surviving from the sum in the j 6= w part is
lk(Lj, Lw). The j = w part is the sum of linking numbers of the walker component
and every other component. Note that the crossings are always of the same type in
the forward and backward time parts of the link diagram (and opposite to each other),
and the number of crossings is always equal to the number of time steps in both parts,
therefore the total linking number is zero:

∑
k 6=w lk(Lw, Lk) = (t − t)/2 = 0. Thus

for the links considered here, S = {lk(Lj, Lw)}j 6=w t {0}. But the condition that L
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is totally proper is precisely that every member of the set {lk(Lj, Lw)}j 6=w is an even
integer. Hence if L is proper then it is totally proper.

The structure of the anyonic walk paths allows even further simplification of the
Jones polynomial. The c1 term in arf counts the number of tangles in each component,
and tangles can only form when a particle makes a loop and goes through it. Such a
process would correspond to turning backwards in time, or braiding the particle with
its antipartner in a certain way and then fusing them. These processes do not appear
in paths, so there is no self-linking: c1 = 0.

Furthermore, the term
∑

i<j c2(Li, Lj) for the links in anyon walks is an even num-
ber. For that it is only necessary to consider links involving the walker Lw and any other
component Lj since the non-walker components are disjoint. Such a link is the braid
closure of a braid in the two component braid group B2 with one generator b so that
link can be written, (Lw, Lj) = (bm)Markov where m = 2 × lk(Lw, Lj). The two-point
invariant can be computed using the defining skein relation for the Alexander-Conway
polynomial

∇`+ −∇`− = z∇`0 . (3.6)

If one of the components is unlinked from the others then it can be removed with
a multiplicative factor: ∇O = 1. The polynomial for any link L can be written as
∇L(z) =

∑∞
i=0 aiz

i. For pairwise component links (Lw, Lj) the Alexander-Conway
polynomial can be expressed as

∇(Lw,Lj) = f|m|(z) + f|m|−1(z),

where these functions satisfy the Alexander-Conway skein relation: f|m|(z) = zf|m|−1(z)+
f|m|−2(z). This can be verified by writing the skein relation for the Alexander-Conway
polynomial, noting that the deformations just remove one or two of the crossings such
that the new links can be written as (bm−1)Markov and (bm−2)Markov, and using the def-
inition of the Alexander-Conway polynomial in terms of the function f|m|(z). The
recursion relation for the function f|m|(z) can be solved using Mathematica to get the
result as

f|m|(z) = 1
2m+1

√
z2+4

[
z
((
z +
√
z2 + 4

)m − (z −√z2 + 4
)m)

+
√
z2 + 4

((
z +
√
z2 + 4

)m
+
(
z −
√
z2 + 4

)m)]
.

Expanding the Alexander-Conway polynomial in powers of z and substituting m =
2lk(Lw, Lj), the expression for c2 can now be read from the coefficient of the cubic
term:

c2(Lw, Lj) = lk(Lw, Lj)(lk(Lw, Lj)
2 − 1)/6. (3.7)

Note that the linking numbers are always even, lk(Lw, Lj) = 2nj with nj an integer,
so the sum can be written as∑

j<k c2(Lj, Lk) = 8
6

∑
j 6=w n

3
j − 8

6

∑
j 6=w nj

= 8
∑

j 6=w
(
nj+1

3

)
∈ 2N
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∼

Figure 3.1: Borromean rings and the corresponding quantum walk path. These links are
related via Reidemeister moves.

using the facts that the sum of the linking numbers is zero, so that
∑

j 6=w nj = 0, and
the binomial coefficient is always an integer.

Finally, the triple component invariant c3(Lr, Ls, Lt) is known as the Milnor invari-
ant. It counts the number of Borromean rings in three-component sublinks [69], and it
is the only term that has a nontrivial contribution to the arf of the links. Borromean
rings are a three-component link where each pair of components are disjoint to each
other, but together they are inseparable. It can be shown via Reidemeister moves that
the Borromean rings are isotopic to the anyon walk path shown in Fig. 3.1. If b1 and
b2 are the generators of the three-strand braid group, then this path corresponds to
the braid word B = (b†1)2(b†2)2b2

1b
2
2. Note that at the last time step the walker moves

in different directions in the forward and backward time parts, thus this path is not
well defined and the first Borromean rings start to form after 5 time steps of anyonic
quantum walk evolution.

To evaluate the Milnor invariant c3, it is helpful to consider the relation between
fusion trace and the Jones polynomial. First, for any triple of components without
the walker, the invariant is always zero: c3(Lr, Ls, Lt) = 0; r, s, t 6= w. Picking two
components r and s, the Jones polynomial for the sublink (Lr, Lw, Ls) with the walker
component can be written

V(Lr,Lw,Ls)(i) =
√

2
2
(−1)arf(Lr,Lw,Ls).

Since the original link is totally proper, also the sublink is totally proper. Using the
formula (3.5) for arf, and noting again that c1 = 0 and c2 = 0, the Jones polyno-
mial simplifies to V(Lr,Lw,Ls)(i) = 2(−1)c3(Lr,Lw,Ls). Now consider the 3-strand braid
group with generators b1 and b2, and define braid words Ba and Ba′ such that the
3-component sublink (Lr, Lw, Ls) corresponds to the Markov closure of the braid word
B†a′Ba. Then the fusion trace over this braid word is related to the Jones polynomial
of the corresponding link as

Tr
(
Ba

∣∣Φ0

〉〈
Φ0

∣∣B†a′) =
(−i3/4)w(Lr,Lw,Ls)

dNA−1
V(Lr,Lw,Ls)(i) = (−1)c3(Lr,Lw,Ls)
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where total properness implies w = 0. The braid words Ba and B†a′ are formed by taking
the original braid words Bta and (Bta)†, picking only the generators which correspond to
braiding with components r and t, and relabelling the generators as b1 and b2. Thus,
the evenness of c3(Lr, Lw, Ls) is determined by the trace over the generators of the
3-strand braid group. For Ising anyons, the representations for these generators are

b1 = −e−iπ/8
(

1 0
0 i

)
= −eiπ/8e−iπσz/4

b2 = −e
iπ/8

√
2

(
1 −i
−i 1

)
= −eiπ/8e−iπσx/4.

where σx,z are the Pauli operators. Note that if the walker is initially in the middle,
r < w < s, the generators b1 and b2 always appear in pairs, since the walker has to
return to the middle before braiding with the other strand. Noting that b2

1 = e−iπ/4σz

and b2
2 = e−iπ/4σx, the calculation of the trace reduces to analysis of Pauli operators.

Using the commutation relations of Pauli operators and the identities (σx)2 = (σx)2 =
I, the string of braid words is found to be proportional to the identity matrix, with the
sign determining evenness of c3(Lr, Lw, Ls). If the walker is not between strands r and
s initially or at the final step, there is an extra generator in the beginning or end of
the braid word, but the effect in both cases is trivial under tracing. Thus, for a given
total link L(a, a′), the sum

∑
i<j<k c3(Li, Lj, Lk) mod 2 is calculated by forming the

3-strand braid words corresponding to all pairs of stationary strands and the walker
strand, grouping the squares of generators b1 and b2, and calculating the sign of the
string of Pauli operators.

In summary, the analysis above allows to express the Jones polynomial of the link
corresponding to a path (a, a′) in a very compact form, and the probability distribution
at time step t can now be written

p(s, t) =
∑
a,a′ s

{
(−1)z(a)+z(a′)+τ(a,a′)/2t L proper
0 L not proper

(3.8)

where the sum of Milnor invariants over sublinks is τ(~a,~a′) =
∑

r<s<t c3(Lr, Ls, Lt).
When all links are proper and τ(a, a′) is even, then p(s, t) becomes equal to pQW(s, t),
the Hadamard walk distribution. When all nonmirror paths (i.e., a 6= a′) are nonproper,
then p(s, t) becomes equal to pRW(s, t), the classical random walk distribution.

3.2 Numerical results

In the previous section, it was shown how the Jones polynomial simplifies for links in
anyonic quantum walks, which allowed a compact expression for the spatial probability
distribution of the walker at time step t, see Eq. 3.8. The anyonic contribution to
each path is given by properness of the corresponding link and the sum of the Milnor
invariants τ(a, a′). It was also shown that the evaluation of the Milnor invariants c3

reduces to evaluation of trace over Pauli operators. The probability distribution for a
given time step can thus be evaluated by implementing the following algorithm:
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1. Form all the pairs of paths leading to site s by taking all vectors a and a′ of length
t, such that they satisfy s = s0 + 2

∑t
t′=1 at′ − t and have identical last elements,

at = a′t. The number of such paths is
(

t−1
Hs,t−1

)2
+
(
t−1
Hs,t

)2
, where Hs,t = (s−s0+t)/2.

2. Check if the path is proper, ie.
∑

k(#bk(a)−#b†k(a
′))/2 = 0 where #bk(a) is the

number of generators bk in the braid word Bt
a.

3. If the path is proper, calculate z(a) + z(a′) =
∑t−1

t′=1(atat+1 + a′ta
′
t+1). Otherwise

proceed to next path.

4. Calculate τ(a, a′) as described in the previous section.

5. Calculate (−1)z(a)+z(a′)+τ(a,a′)/2t and sum over all paths.

Note that this method gives only the spatial probability distribution, and the informa-
tion about coin and fusion degrees of freedom is lost.

The efficiency of the calculations can be enhanced by taking into account two sym-
metries of the link invariants. First, exchanging the path indices a and a′ is equivalent
to turning the link around on the plane, and reversing each crossing. Such a procedure
does not change the properness of the link or the number of Borromean rings in the
sublinks, so that the summation can be done only over distinct pairs of paths. Second,
considering the paths leading to s0 − s and s0 + s, the links for these two cases can
also be obtained from each other by turning the link around the axis orthogonal to the
first one and reversing the crossings. In this case the coin terms (−1)z(a)+z(a′) will be
different. The coin terms for s0 +s can be obtained from the paths leading to s0−s by
considering consecutive zeros instead of consecutive ones. Thus it suffices to consider
only sites s0 − t ≤ s ≤ s0.

The numerical results for Ising anyons are presented in Fig. 3.2, where the spatial
probability distribution has been plotted for t = 0, 10, 20 and 25 (calculations were
done for every time step up to 25). At 25 time steps, the calculations are simulating
the time evolution of 52 anyons (and their antipartners involved in the tracing).

The variance σ2(t) = 〈(s− s0)2〉, where the expectation value is 〈O(s)〉 ≡∑sO(s)
×p(s, t), is plotted in Fig. 3.3, and it quickly approaches the linear random walk
variance. The total variation distance to the random walk distribution is ||p(s, 25) −
pRW(s, 25)|| = 0.04 and to the Hadamard walk distribution ||p(s, 25) − pQW(s, 25)|| =
0.34.

3.3 Asymptotics in time

The numerical results for the uniform filling of Ising anyons, shown in Fig. 3.3, suggest
that the variance of the walker approaches that of the classical random walk, σIsing(t)→
t. Here it is shown, using certain well justified approximations, that the variance of
the non-Abelian anyonic walker is indeed linearly dependent (with coefficient 1) on the
number of time steps in the asymptotic limit t→∞.

Comparing the formulas for the spatial probability distribution of the usual Ha-
damard walk and the non-Abelian anyonic walk, Eqs. (1.60) and (3.8) respectively, the
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Figure 3.2: Time evolution of the probability distribution of the Ising anyon walk. a)–d)
for 1, 10, 20 and 25 time steps respectively.
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Figure 3.3: Numerical results for the variance of the spatial distribution p(s, t) for the
Ising anyonic walk and the corresponding classical and quantum walk evolutions with the
same initial state.
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amplitudes for each path are similar except the anyonic expression includes properness
and the sum over Milnor invariants τ . The amplitudes in the Hadamard walk can only
take values {1,−1} but the amplitudes in the anyonic walk can take values {1, 0,−1}.
If the link corresponding to a path is not proper, the amplitude for such a path is
zero since the Jones polynomial for the link is zero. Thus, the paths for which the
amplitude is zero do not contribute to the probability at all, and the effect of the Jones
polynomial is that it projects to the set of paths which have a proper link. As it turns
out, at large time scales most of the paths are not associated with proper links.

The fraction of proper paths measures how often one gets a proper path, and is
defined by

pP (s, t) =
NP (s, t)∑
s′ N(s′, t)

(3.9)

where NP (s, t) is the number of proper paths leading to site s at time t, and N(s, t) is
the number of all paths leading there. The fraction pP can be viewed as the statistical
probability for a proper path to occur at site s, when the sample space is the set of all
paths (on any site). The probability distribution p(s, t) can be written in terms of pP .
In order to do this, first note that the probability distribution can always be separated
to a classical random walk term and a quantum term,

p(s, t) = pRW(s, t) +
∑
a,a′ s

st. a6=a′

{
(−1)z(a)+z(a′)+τ(a,a′)/2t L proper
0 L not proper

(3.10)

where pRW(s, t) =
(

t
Hs,t

)
/2t is the random walk probability to be at site s at time t,

and the summation in the second term is only done over paths which are not identical.
This is a consequence of the fact that the trace over the coin and fusion spaces is 1 for
all identical paths, and the number of pairs of identical paths is equal to the number
of paths leading to s at t in the random walk. Denoting NP,± the number of proper
paths for which (−1)z(a)+z(a′)+τ(a,a′) = ±1 and a 6= a′ hold, the distribution is written

p(s, t) = pRW(s, t) +
NP,+(s, t)−NP,−(s, t)

2t
. (3.11)

Furthermore, if one assumes that properness is statistically uncorrelated with the value
of z(a) + z(a′) + τ(a, a′), then

NP,+ −NP,− =

(
NP,+∑
N
− NP,−∑

N

)∑
N

= (pP,+ − pP,−)
∑

N

≈ pP (p+ − p−)
∑

N

= pP (N+ −N−)

where the dependence on s and t is left out to clarify the notation, and p±(s, t) =
N±(s, t)/(

∑
s′ N(s′, t)) is fraction of paths for which (−1)z(a)+z(a′)+τ(a,a′) = ±1 and

a 6= a′ hold, but properness is not required. The statistical probability that the path is
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proper and (−1)z(a)+z(a′)+τ(a,a′) = 1 can be written in terms of conditional probability:
pP,+ = pP p+|P ≈ pP p+, where the assumption about statistical independence has been
used: p+|P ≈ p+.

Using the approximation above, the probability distribution can be written

p(s, t) ≈ p̃(s, t) = pRW(s, t) + pP (s, t)
N+(s, t)−N−(s, t)

2t
. (3.12)

Furthermore, by noting that the usual Hadamard walk distribution can also be written
as pQW(s, t) = pRW(s, t) + (N+(s, t)−N−(s, t))/2t, this reduces to the simple form:

p̃(s, t) = pRW(s, t) + pP (s, t) (pQW(s, t)− pRW(s, t)). (3.13)

The formula above has the intuitive property that it converges to the random walk
distribution when pP = 0 and to the Hadamard walk distribution when pP = 1. In the
former case, the quantum term becomes identically zero, and in the latter the quantum
term is identical to Hadamard walk term when all the paths are proper (and τ = 0),
as is the case without approximation. The validity of the approximation on statistical
independence can be estimated by expressing the probability as

p(s, t) = p̃(s, t) + EP(s, t) (3.14)

where the analytical error function is defined as

EP(s, t) =
(
NP,+(s, t)−NP,−(s, t)− pP (s, t)(N+(s, t)−N−(s, t))

)
/2t. (3.15)

Equation (3.13) turns out to be very helpful when estimating the variance of the
probability distribution as a function of time steps. More specifically, the behaviour of
the variance depends on time dependence of the fraction of proper paths pP (s, t). The
variance can now be written

σ2(t) = σ2
RW(t) +Q(t) + E(t) ≡ σ̃2(t) + E(t) (3.16)

where the quantum and error terms are given respectively as

Q(t) =
∑
s

pP (pQW − pRW)s2 −
∑
s

pRWs
(∑

s′

pP (pQW − pRW)s′
)

−
(∑

s

pP (pQW − pRW)s
)2

(3.17)

E(t) =
∑
s

EPs
2 −

(∑
s

EPs
)2 −

∑
s

EPs
(∑

s′

(
pRW + 2pP (pQW − pRW)

)
s′
)

(3.18)

and the variance is approximated as σ2(t) ≈ σ̃2(t) = σ2
RW(t)+Q(t) assuming statistical

independence between properness and z(a) + z(a′) + τ(a, a′).
Next it is shown that the term Q(t) is bounded from above and below by a constant

function, such that the variance behaves asymptotically similar to the variance of the
random walk. A manipulation gives

Q(t) =
∑
s

pP (s, t )
(
pQW − pRW

)
s
(
s−

∑
s′

p̃(s′, t)s′
)
. (3.19)
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The individual terms are bounded as follows:

−1 ≤ pQW(s, t)− pRW(s, t) ≤ 1

−t ≤ s ≤ t

choosing s0 = 0, and 0 ≤ pP (s, t ) ≤ 1. It can be shown that the last term is bounded
by

−X1(t) ≤ s−
∑
s′

p̃(s′, t)s′ ≤ X1(t)

X1(t) = t
(
2 +

∑
s′

pP (s′, t)
)

And taking the extremes of each term yields the bounds

−X(t) ≤ Q(t) ≤ X(t)

X(t) = t2
∑
s

pP (s, t)
(
2 +

∑
s′

pP (s′, t)
)

where X(t) ≥ 0 ∀t. The sum over fraction of proper paths can be evaluated as fol-
lows. Recall NP (s, t) is the number of proper paths leading to site s at time t. It
can be written as NP (s, t) = p′P (s, t)N(s, t), where p′P (s, t) = NP (s, t)/N(s, t) is the
probability for proper paths, when the sample space is the set of all paths leading
to (s, t). As argued in the next section, this probability is highest at the initial site,
p′P (s, t) ≤ p′P (s0, t). This allows to express the sum as∑

s

pP (s, t) =

∑
sNP (s, t)∑
s′ N(s′, t)

≤ p′P (s0, t)
∑

sN(s, t)∑
s′ N(s′, t)

= p′P (s0, t). (3.20)

Furthermore,
X(t) ≤ t2 p′P (s0, t)

(
2 + p′P (s0, t)

)
.

As shown in the next section, p′P (s0, t) ≤ C
t2

. Thus X(t) = O(1) as t→∞ and

σ̃2(t) = σ2
RW +O(1) (3.21)

3.4 Density of proper paths

The fraction pP (t) is plotted in Fig. 3.4 which shows clearly that most of the paths
are not proper. This means that actually only a small subset of the paths contribute
to the walk, while most amplitudes are zero. The highest fraction of paths is found at
t = 7, where about every tenth path is proper.

It will now be shown that pP (s0, t), the probability of a randomly chosen link L
to be proper (mirror paths excluded), is bounded from above by a function C

t2
under

certain assumptions. (The prime in p′P (s0, t) used to denote a different sample space
is dropped in this section.) This is done by considering the number of links with even
linking numbers and deriving pP (s0, t) as the proportion of these links with respect to
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Figure 3.4: The fraction of proper paths. Here the fraction is calculated over all sites,

ie. pP (t) =
∑
sNP (s,t)∑
sN(s,t) . Note that only nonidentical path pairs are taken into account. For

a few initial steps, all legit path pairs are identical and N(s, t) = 0, and in these cases it
has been defined that pP = 0. The total number of non-identical paths for a given site is

N(s, t) =
(
t−1
Hs,t

)2
+
(

t−1
Hs,t−1

)2 − ( tHs).
all links. The result holds for paths which end up on the initial site but numerical
results suggest that pprop(s, t) < pprop(s0, t) if s 6= s0, provided s is not too close to the
boundaries at s0 ± t. In particular, it is true inside the domain s0−s

t
= [− 1√

2
, 1√

2
].

Suppose a path (a, a′) leading after t steps to the position s0 links with link com-
ponents Lj, j ∈ {l, ..., r} (Fig.3.5). For the corresponding link L to be proper, all the
linking numbers lk(Lw, Ll), ..., lk(Lw, Lr) must be even. Let pe(t, j) be the probability
that lk(Lw, Lj) is even. Assume that for large enough (fixed) t, the probabilities pe(t, j)
can be treated as independent. This is justified inside the interval s0−s

t
= [− 1√

2
, 1√

2
],

where the number of paths that contribute to the anyonic walk density at each point s
is exponential in t. The linking number of the walker with any particular component
can change even/odd parity by a simple deformation and within the typical width (i.e.
number of components touched by the walker) of the path there are an exponential
number of such deformations. Hence the linking numbers of the walker with those
components are well approximated as independent quantities, and the probability for
the link L to be proper can be written as

pP (s0, t) = pe(t, l) · ... · pe(t, r) . (3.22)

Denoting the maximum of the individual strand probabilities as

ρ ≡ max
j
pe(t, j) , (3.23)

where j runs over all link components Lj that braid with some t step long path leading
to s0, this can be estimated from above as

pP (s0, t) ≤ ρw , (3.24)
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Figure 3.5: A generic path reaching after t steps (here t = 8) the position s0. The path
braids with all the link components Ll, ..., Lr, and its width is w = r − l + 1 = 5.

where w = r − l + 1 is called the width of the link.
The idea of the proof is to count all the paths whose width is exactly w, and

calculate the probability of each such path having an even linking number over every
strand. This gives an upper bound on the total number of paths as given in Eq. (3.31).
This formula can be evaluated by subsituting the number of paths which touch a given
diagonal given by Eq. (3.27), to yield the final result in Eq. (3.39).

The paths (a, a′) relevant for a walk of t steps must satisfy at = a′t. Consider the
paths leading to s0 (assume t is even), for which at = a′t = 1. It is useful to depict a
half-path a as a lattice path on a n− 1×n lattice (n = t

2
) with allowed steps ↑ and→

(Fig.3.6). The number of all such paths is [70](
2n− 1

n− 1

)
≡ #(all) . (3.25)

The number of lattice paths that touch the diagonal y = x + w,w ∈ {1, ..., n} in an
n− 1 by n lattice is (

2n− 1

n− w

)
≡ #(w) . (3.26)

Consider the set Pw of lattice paths that touch the diagonal y = x+ w but do not
touch the further diagonal y = x + w + 1. The sets Pw are for distinct w ∈ {1, ..., n}
disjoint. The number of paths in Pw is

|Pw| = #(w)−#(w + 1) =

(
2n− 1

n− w

)
−
(

2n− 1

n− w − 1

)
. (3.27)

Here the convention that
(
m
k

)
= 0 if k < 0 is used. Furthermore, the union

⋃n
w=1Pw

comprises all the paths on n− 1 by n lattice, which follows from∑n
w=1 |Pw| =

∑n
w=1

((
2n−1
n−w

)
−
(

2n−1
n−w−1

))
=

(
2n−1
n−1

)
= #(all).

(3.28)



3.4 Density of proper paths 61

Figure 3.6: Any half-path (i.e. either ”bra” or ”ket” history of the walker) can be thought
of as being realized on a two dimensional lattice, where only the steps ↑ and → are allowed.
If the number of steps t is fixed (presume t even), the position reached after t steps s = s0

and the last coin outcome at = 1, all the possible half-paths can be drawn on a lattice n− 1
by n, where n = t

2 . The figure on the right shows one such path. The lattice paths that
touch the diagonal y = x + w (1 ≤ w ≤ n), but don’t touch y = x + w + 1, braid with at
least w link components. ”At least”, because they certainly braid with the w components to
the left of s0, but they might be (and typically are) spread to the right of s0 as well.

A path (a, a′) consists of two lattice paths, the ”bra” and ”ket” parts a and a′,
where a ∈ Pw and a′ ∈ Pw′ for some w,w′ ∈ {1, ..., n}, i.e. (a, a′) ∈ Pw × Pw′ . The
full path touches the diagonals w and w′ during the bra and ket evolution respectively
and the width of the path (a, a′) is at least max{w,w′} (if the other path extends to
the left and the other to the right then the total width is w + w′). Now let ρ be the
maximum probability that the linking number of a single strand is even, as defined
in Eq. (3.23). Dividing the paths into sets of different widths, the number of proper
paths can be estimated from above as

NP (s0, t) =
n∑

w=1

ρw × #(a, a′ | width w) . (3.29)

In the following, it does not matter how large ρ is as long as ρ < 1.

The number of paths with width w can be evaluated by considering all the combi-
nations of bra and ket paths whose other part has at least width w and the other part
can vary from 1 to w. This is illustrated in Fig. 3.7 which shows the different sets
of paths for a given width w. The total number of paths with width w can thus be
written

#(a, a′ | width w) = |Pw|2 + 2
w−1∑
j=1

|Pw||Pj| − |Pw|

The upper bound for the density of proper paths pP (s0, t) can now be written as the
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Figure 3.7: The set of paths that after t steps reach the position s = s0, with the last
coin outcome fixed. The axes correspond to bra and ket paths and a point corresponds to
a full path (a, a′). The number of paths with width {w . . . 2w − 1} is #(a, a′ | width w) =
|Pw|2 + 2

∑w−1
j=1 |Pw||Pj | − |Pw|, where the mirror paths a = a′ are excluded.

number of proper paths divided by the number of all paths:

pP (s0, t) ≤
NP (s0, t)

N(s0, t)
(3.30)

=
2
(∑n

w=1 ρ
w
(
|Pw|2 + 2

∑w−1
j=1 |Pw||Pj| − |Pw|

))
2
(
#(all)2 −#(all)

) . (3.31)

The number 2 in both the nominator and the denominator is due to the fact that both
types of paths – with at = a′t = 0 and at = a′t = 1 – are counted, and the symmetry
between the two situations is used. Also, the mirror paths have been excluded.

Before substituting to (3.31), rewrite (3.27) as

|Pw| = (2n−1)!
(n−w−1)!(n+w−1)!

(
1

n−w − 1
n+w

)
= w

n

(
2n
n−w

) (3.32)

and (3.25) as

#(all) =
(2n− 1)!

n!(n− 1)!
=

1

2

(
2n

n

)
. (3.33)

Now (3.31) reads

pP (s0, t) ≤
1
2(2n

n )
1
2(2n

n )−1

∑n
w=1 ρ

w
(
( 2n
n−w)

2
−|Pw|+2

∑w−1
j=1 |Pw||Pj |

)
1
2(2n

n ) 1
2(2n

n )
,

which can be estimated from above using the relation between binomial coefficients
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(
2n
n−w

)
≤
(

2n
n

)
to get:

pP (s0, t) ≤
1
2

(
2n
n

)
1
2

(
2n
n

)
− 1

∑n
w=1 ρ

w
(
w2

n2 + 2
∑w−1

j=1
w
n
j
n

)
1
2

1
2

=

(
1 +

1
1
2

(
2n
n

)
− 1

)
4

n2

n∑
w=1

ρw

(
w2 + 2w

w−1∑
j=1

j

)

=

(
1 +

1
1
2

(
2n
n

)
− 1

)
4

n2

n∑
w=1

ρww3 , (3.34)

where the formula
∑w−1

j=1 j = 1
2
w(w − 1) has been used. For n ≥ 2 (i.e. t ≥ 4)

1
1
2

(
2n
n

)
− 1
≤ 1

1
2

(
4
2

)
− 1

=
1

5
. (3.35)

Thus
pP (s0, t) ≤ 6

5
4
n2

∑n
w=1 ρ

ww3

< 6
5

4
n2

∑∞
w=1 ρ

ww3.
(3.36)

The infinite sum on the right hand side converges for all ρ ∈ [0, 1) and one can find
that

∞∑
w=1

ρww3 =
ρ(1 + 4ρ+ ρ2)

(1− ρ)4
. (3.37)

The following upper bound (recall n = t/2) is finally obtained:

pP (s0, t) ≤
1

t2
6 · 4 · 4

5

ρ(1 + 4ρ+ ρ2)

(1− ρ)4
(3.38)

=
C

t2
, (3.39)

where C is independent of time (number of steps) t.
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4
Anyonic U2 Quantum Walk

In the previous chapter, evaluation of the Jones polynomial could be done in polynomial
time in the number of time steps for Ising anyons, which correspond to spin-1/2 irreps of
SU(2)2. For higher values of k, the Jones polynomial for spin-1/2 irreps is exponentially
hard to evaluate in the number of time steps, and numerical calculations freeze after
only a handful of time steps. In this chapter, the anyonic quantum walk model is
simplified such that numerical calculations can be carried out for SU(2)k anyons for
any level k for fairly long times. By using a certain approximation, it is also possible
to obtain analytical expressions of probability distributions for a few special values of
k.

The model considered here is a variant of the so called Un quantum walk [71].
In this model, the walker takes n discrete steps as in the usual quantum walk, after
which the coin degree of freedom is traced out and reset before the next step. The
walk proceeds thus with the tracing carried out every n steps. The density matrix of
the position space carries information about the history of the walk, but entanglement
between space and coin is lost in the tracing. The tracing process thus introduces
decoherence in the walk, and the memory stored in the coin degrees of freedom is lost.
In the anyonic version, the loss of memory simplifies the calculations significantly, as
the number of degrees of freedom to keep track of is small.

As the total state evolution in the Un walk is not unitary, it is interesting to
see whether this walk exhibits quantum properties. In unitary quantum walks, the
Shannon entropy of the probability distribution grows on average, but might decrease
at individual time steps. This is due to the breakdown of majorization ordering of
probability distributions. In the Un model the majorization ordering is still valid like
in classical random walks. Surprisingly, the variance does not behave like in classical
random walks, but is proportional to the square of the number of time steps for any
n ≥ 2 [72] (n = 1 corresponds to the classical random walk).

The Un model can be thought to describe the dynamics for systems where coherence

65
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time of the joint coin+space system is finite but the coherence time of spatial degrees
of freedom is long, such as a two-level atom in a cavity driven by laser field [73, 74].
The laser field adds noise to the system, and the level of noise can be controlled easily,
allowing the investigation of quantum to classical transition. The dynamics is fairly
robust against the noise, since the classical behaviour is only obtained when tracing is
carried out on every time step.

As seen in the previous chapter, anyonic quantum walks with SU(2)2 anyons behave
effectively classically, in the sense of asymptotic dependence of the variance. This
suggests to ask whether similar behaviour is seen also in Un walks. Additionally,
numerical results for SU(2)k anyons for higher k show that the probability distribution
at small number of time steps resembles that of the non-anyonic quantum walk as k
increases, but the calculations become very inefficient when k and t are large. The Un

model allows efficient calculations for any level of k and the anyon models are therefore
easy to compare.

The first section introduces the anyonic version of the Un=2 quantum walk. Cal-
culation of the CP map elements using the Kauffman bracket is discussed in Sec. 4.2
and numerical results are presented in Sec. 4.3. In Sec. 4.4 the Kraus generators
of the CP map are approximated by circulant matrices and these results are used in
Sec. 4.5 to derive the asymptotic probability distribution for the special level k = 2.
The results presented in this chapter are reported in [L. Lehman, D. Ellinas and G.
Brennen. Quantum Walks of SU(2)k Anyons on a Ladder.]

4.1 Anyonic U 2 model

The anyonic U2 quantum walk is a straightforward modification of the unitary anyonic
quantum walk. The system evolves unitarily according to the time evolution operator
U2, after which other than spatial degrees of freedom are traced out. In the original
U2 model, these are just the coin degrees of freedom, but in the anyonic case the fusion
space must traced out as well. This constitutes one step of the walk. The coin and
fusion states are then reset to their initial values, and the procedure is repeated t/2
times to yield a walk that corresponds to t time steps of the unitary quantum walk.
The effect of resetting the coin and fusion degrees of freedom is that the quantum corre-
lations between position states and coin and fusion states are erased, and decoherence
is introduced in the time evolution. Total probability is still conserved in this model,
so that renormalization of the density matrix is not necessary.

One might ask what is the physical meaning of tracing and resetting the coin and
the fusion DOFs. Discarding the information of these states should be understood
as decoupling and recoupling again the position from other DOFs, such that all the
entanglement between the states is removed during this operation. Note that if the
other degrees of freedom were measured, the total state would collapse to the state
which is consistent with the measurement, which would also be reflected in the density
matrix of position. In the U2 model the position density matrix does not however
change during the decoupling. Therefore the correct interpretation is that position is
decoupled from other DOFs, the information about the other DOFs is discarded, and
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the other DOFs are prepared again with a precisely known initial state. In a practical
setup, the experimenter should find a way to prepare the other DOFs in a definite state
without affecting the position DOFs in any way.

The main advantage of using this model is that it allows numerical calculations
for high number of time steps for spin-1/2 irreps of the quantum groups SU(2)k for
any level of k. This becomes possible because the information about fusion degrees of
freedom is kept only for two consecutive steps of the walk, and the number of degrees
of freedom to keep track of does not grow with the number of time steps as it does in
the unitary anyon walk. The evaluation of the fusion trace can be done by analyzing
the Kauffman bracket of link diagrams with just four crossings, which can be carried
out analytically.

In the usual quantum walk protocol, the quantum speedup is understood to orig-
inate from the entanglement between position states and coin states. The system
evolves coherently and the correlations between the position states and coin states pre-
serve the memory in the system, hence the system dynamics is highly non-Markovian.
If the walk is subject to decoherence, the correlations between the position and the
coin become degraded and some of the memory in the system is lost. The loss of mem-
ory happens because the state of the coin is erased and reset on every nth step, for
example by doing a measurement on the coin and preparing it over again in the initial
state. After resetting the coin, the system is in a product state and the correlations
between the position and coin are lost. Remarkably even in the U2 model there is
enough coherence left in the system to provide for quadratic speed up over the classical
random walk. Specifically, it was shown in Ref. [72] that the variance asymptotically
scales like σ(t)2 = K2t

2 +K3t for some constants K2, K3.

The setup for the U2 walk is similar to the unitary walk. The one-dimensional lattice
is assumed to be infinite such that the walker may propagate freely in both directions.
The initial density matrix of the coin is

∣∣c0

〉〈
c0

∣∣ =
∣∣0〉〈0∣∣ and the Hadamard coin

is chosen as the coin flip operator F . The initial state of the anyons is
∣∣Φ0

〉〈
Φ0

∣∣ =

B0

∣∣χ0

〉〈
χ0

∣∣B†0, such that the tracing corresponds to Markov tracing as explained in
Sec. 2.3. The trace over the fusion degrees of freedom can then be expressed in terms
of the Kauffman bracket

〈
L
〉
(A), as expressed in Eq. (2.13):

Tr(B1

∣∣Φ0

〉〈
Φ0

∣∣B†2) =
〈
Φ0

∣∣B†2B1

∣∣Φ0

〉
=

〈
L(B1,B2)

〉
(A)

d#(L)−1
(4.1)

where L(B1,B2) = (B†2B1)Markov is the link obtained by taking the Markov closure of
the braid word B†2B1, d = 2 cos π

k+2
is the quantum dimension of the anyons, #(L) is the

number of distinct components (strands) in the link L, and the value of the parameter
for SU(2)k anyons is A = ieiπ/2(k+2).

The dynamics of the system can be written in terms of a superoperator E acting
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on the density operator ρS(t) for the spatial degrees of freedom of the walker:

ρS(t+ 2) = E(ρS(t)) (4.2)

=
∑
f,c

[(
IS ⊗

〈
f
∣∣⊗ 〈c∣∣)(SF)2

]
ρS(t)⊗

∣∣Φ0

〉〈
Φ0

∣∣⊗ ∣∣c0

〉〈
c0

∣∣
×
[(

(SF)2
)†(IS ⊗

∣∣f〉⊗ ∣∣c〉)]
=
∑
f,c

[(
IS ⊗

〈
f
∣∣⊗ 〈c∣∣)(SF)2(IS ⊗

∣∣Ψ0

〉
⊗
∣∣c0

〉)]
ρS(t)

×
[(
IS ⊗

〈
Φ0

∣∣⊗ 〈c0

∣∣)((SF)2
)†(IS ⊗

∣∣f〉⊗ ∣∣c〉)]
≡
∑
f,c

Efc ρs(t) E
†
fc (4.3)

where the Kraus generators have been defined as

Efc =
(
IS ⊗

〈
f
∣∣⊗ 〈c∣∣) (SF)2 (IS ⊗

∣∣Ψ0

〉
⊗
∣∣c0

〉)
. (4.4)

Substituting the expressions for the coin flip operator (2.1) and the conditional shift
(2.2) the double step operator is written

(SF)2 =
∑
s

(∣∣s− 2
〉〈
s
∣∣⊗ bs−2bs−1 ⊗ P0FP0F +

∣∣s〉〈s∣∣⊗ b2
s ⊗ P0FP1F

+
∣∣s〉〈s∣∣⊗ b2

s−1 ⊗ P1FP0F +
∣∣s+ 2

〉〈
s
∣∣⊗ bs+1bs ⊗ P1FP1F

)
.

(4.5)

It is clear from this equation that the double step operator shifts the coefficients of
the density matrix by two rows or columns, or not at all. By inserting this expres-
sion to the superoperator and using the completeness of the fusion and coin bases,∑
f

〈
f
∣∣bs∣∣Φ0

〉〈
Φ0

∣∣b†s′∣∣f〉 =
〈
Φ0

∣∣b†s′bs∣∣Φ0

〉
and

∑
c

〈
c
∣∣PaFPbF ∣∣c0

〉〈
c0

∣∣F †Pa′F †Pb′∣∣c〉 = δa,b′

×
〈
c0

∣∣H†Pa′F †PaFPbF ∣∣c0

〉
, the action of the superoperator on a general element

∣∣s〉〈s′∣∣
of the spatial density matrix can be written as a sum of 7 terms:

E(
∣∣s〉〈s′∣∣) = 1

4

[∣∣s− 2
〉〈
s′ − 2

∣∣ 〈Φ0

∣∣b†s′−1b
†
s′−2bs−2bs−1

∣∣Φ0

〉
+
∣∣s− 2

〉〈
s′
∣∣ 〈Φ0

∣∣b†2s′ bs−2bs−1

∣∣Φ0

〉
+
∣∣s〉〈s′ − 2

∣∣ 〈Φ0

∣∣b†s′−1b
†
s′−2b

2
s

∣∣Φ0

〉
+
∣∣s〉〈s′∣∣ (〈Φ0

∣∣b†2s′ b2
s

∣∣Φ0

〉
+
〈
Φ0

∣∣b†2s′−1b
2
s−1

∣∣Φ0

〉)
−
∣∣s〉〈s′ + 2

∣∣ 〈Φ0

∣∣b†s′b†s′+1b
2
s−1

∣∣Φ0

〉
−
∣∣s+ 2

〉〈
s′
∣∣ 〈Φ0

∣∣b†2s′−1bs+1bs
∣∣Φ0

〉
−
∣∣s+ 2

〉〈
s′ + 2

∣∣ 〈Φ0

∣∣b†s′b†s′+1bs+1bs
∣∣Φ0

〉]
.

(4.6)
where the initial coin state is

∣∣c0

〉
=
∣∣0〉 and the Hadamard coin has been chosen as

the coin flip operator F such that
〈
c0

∣∣F †Pa′F †PaFPbF ∣∣c0

〉
= ±1

4
.

Equation (4.6) shows that for any element of the initial spatial density matrix, there
are only seven nonzero elements of the superoperator E . Writing the density matrix in a
vectorized form, the superoperator can be written as a matrix: ~ρ ′ =

∑
f,c

(
Efc⊗E†fc

)
~ρ,
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where the superoperator matrix
∑

f,c

(
Efc⊗E†fc

)
is a band matrix with seven diagonal

bands, and the rest of the elements are zero. Starting from the initial position density
matrix ρs(0) =

∣∣s0

〉〈
s0

∣∣, the position density matrix after t time steps is obtained by
applying the superoperator t times:

ρS(t) = E t
(
ρS(0)

)
. (4.7)

The probability distribution at time step t is then given by the diagonal elements of
the final spatial density matrix ρS(t).

4.2 CP map elements

The construction of the superoperator E for non-Abelian anyons requires calculation of
the eight expectation values in Eq. (4.6) for all values of s and s′. These expectation
values are related to the Kauffman bracket via Eq. (4.1). The defining properties of the
Kauffman bracket are given by the uncrossing relation and two relations for removing
loops from the bracket: 〈 〉

= A
〈 〉

+ A−1
〈 〉

(4.8)

〈
L ∪©

〉
= −(A2 + A−2)

〈
L
〉

(4.9)

〈
©
〉

= 1. (4.10)

The value of the Kauffman bracket for a specific braid word can be calculated by
forming the link diagram that corresponds to the braid presentation and Markov closure
of the word. The unique link diagrams for one braid word are drawn for illustration
in Fig. 4.1. The value of the bracket polynomial is then obtained by applying the
relations (4.8) and (4.9) to the link diagram, removing all crossings and loops in the
diagram except one. The bracket of a single loop is trivial, so the remaining coefficient
is the value of the bracket polynomial. Using the skein relations above, the following
formulas for removing loops can be derived〈 〉

= −A−3
〈 〉

(4.11)〈 〉
= −A3

〈 〉
(4.12)〈 〉

= −A3
〈 〉

(4.13)〈 〉
= −A−3

〈 〉
(4.14)

For SU(2)k anyons, the value of the parameter is A = ieiπ/2(k+2), and the quantum
dimension satisfies d = −(A2 + A−2) = 2 cos( π

k+2
). For s′ − s large, the forward and

backward braid words never touch the same strands, the links corresponding to forward
and back evolution are disjoint, and the value of the Kauffman bracket polynomial is
equal for all s and s′. Thus, the calculation of a general element

〈
Φ0

∣∣B(s, s′)
∣∣Φ0

〉
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a)

ss-1 s' s'+1

bs-1

bs-1

bs'+1

bs'

b)

s-1 s'+1

Figure 4.1: Two links corresponding to the expectation value
〈
Φ0

∣∣b†s′b†s′+1b
2
s−1

∣∣Φ0

〉
. a)

Case s′ − s = 1. The forward braids b2s−1 and the backward braids b†s′b
†
s′+1 act on separate

sets of strands, therefore the links corresponding to the forward and backward braids are
disjoint. The links corresponding to s′ − s ≤ −4, s′ − s ≥ 1 are all disjoint and the values of
the Kauffman brackets are the same. b) Case s′− s = −1. The forward and backward braids
now form a joint link.

involves only the calculation of the disjoint element and a few cases where s′ − s is
small. The unique values of five of the expectation values are given in Table 4.1. The
remaining elements are given by〈

Φ0

∣∣b†2s′−1b
2
s−1

∣∣Φ0

〉
=
〈
Φ0

∣∣b†2s′ b2
s

∣∣Φ0

〉
and the conjugate transpose elements〈

Φ0

∣∣b†s′−1b
†
s′−2b

2
s

∣∣Φ0

〉
=
(〈

Φ0

∣∣b†2s bs′−2bs′−1

∣∣Φ0

〉)∗
and 〈

Φ0

∣∣b†2s′−1bs+1bs
∣∣Φ0

〉
=
(〈

Φ0

∣∣b†sb†s+1b
2
s′−1

∣∣Φ0

〉)∗
.

4.3 Numerical results

One interesting feature of the U2 anyonic walk is that the effect of braiding statistics is
trivial for Abelian anyons. If all the stationary anyons are of the same type, the walker
always picks the same phase eiφ/2 when braiding with them, such that〈

Φ0

∣∣B∣∣Φ0

〉
= e−iφ/2e−iφ/2eiφ/2eiφ/2 = 1. (4.15)

This is similar to the fully coherent anyonic quantum walk, where the wave function
always picks the phase eiφt/2 during the forward time evolution and phase e−iφt/2 during
backward time evolution, such that the overall effect is trivial. Another way to think
about the Abelian walk is to look at the case k = 1 in Chern-Simons theory. There are
only two charges {0, 1

2
} in this model, the fusion channels are unambiguous: j1×j2 = j,

and the quantum dimension is d = 1, so this model is Abelian. Substituting A = ie−iπ/6
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s′ − s
〈
Φ0

∣∣b†s′−1b
†
s′−2bs−2bs−1

∣∣Φ0

〉 〈
Φ0

∣∣b†s′b†s′+1bs+1bs
∣∣Φ0

〉
−2 d−4 d−4

−1 d−2 d−2

0 1 1
1 d−2 d−2

2 d−4 d−4

≤ −3, ≥ 3 d−4 d−4

s′ − s
〈
Φ0

∣∣b†2s′ bs−2bs−1

∣∣Φ0

〉 〈
Φ0

∣∣b†s′b†s′+1b
2
s−1

∣∣Φ0

〉
−3 −A6(A4 + A−4)/d3 −A−6(A4 + A−4)/d3

−2 d−2 d−2

−1 d−2 d−2

0 −A6(A4 + A−4)/d3 −A−6(A4 + A−4)/d3

≤ −4, ≥ 1 −A6(A4 + A−4)/d3 −A−6(A4 + A−4)/d3

s′ − s
〈
Φ0

∣∣b†2s′ b2
s

∣∣Φ0

〉
−1 (A4 + A−4)2/d2

0 1
1 (A4 + A−4)2/d2

≤ −2, ≥ 2 (A4 + A−4)2/d2

Table 4.1: The values of the braid group elements involved in the evolution CP map.
These are obtained by calculating the normalized Kauffman brackets.

to the values of the brackets in Table 4.1 gives
〈
Φ0

∣∣B(s, s′)
∣∣Φ0

〉
= 1 for all brackets,

confirming that the Abelian walk gives the same dynamics as the original U2 quantum
walk. The variance of the U2 walk for Abelian anyons is plotted in Fig. 4.2a). It
shows the known fact [71] that the original U2 walk propagates slower than the fully
coherent quantum walk, but qualitatively the behaviour is still the same: the variance
depends quadratically on time. The best fit for the variance of the k = 1 walk is given
by σ2 = 0.125 t2 + 0.75 t.

The numerical results for the time evolution of the variance σ2(t) for various choices
of k are plotted in Fig. 4.2b) up to t = 100 iterations of the superoperator, correspond-
ing to 200 quantum walk steps. For k = 2, the variance follows exactly the linear line
σ2 = t. It is interesting to note that this behaviour is exactly the same as was shown for
the fully coherent walk with k = 2 in the previous chapter. For the rest of the values of
k, there is surprisingly small difference in the variance, with the slope of the variance
slightly increasing as a function of k. For k = 3 and k = 4 (not shown in the figure)
the slope of the variance is slightly smaller than 1, k = 3 having the smallest slope
(best fit 0.9877). The highest variance is obtained when k →∞, which corresponds to
choice of the parameters A = i and d = 2, with slope 1.0665. It should be noted that
in the fully coherent anyonic quantum walk model, taking the limit k → ∞ leads to
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Figure 4.2: The variance σ2 of the two-step walk as a function of time t for various anyon
models indexed by k. The scaling of the sites and time steps is chosen such that one iteration
of the superoperator E corresponds to two iterations of the quantum walk time evolution
operator, and at each iteration of E the walker shifts twice. a) Case k = 1 corresponds
to the Abelian walk, which also coincides with the original U2 quantum walk. Plotted for
comparison are the variance of the classical random walk (RW) and the ordinary quantum
walk (QW) with the same initial coin state and coin flip matrix. b) Non-Abelian SU(2)k
models zoomed to the last 100 time steps. Also plotted is the linear curve σ2 = t which
corresponds to the classical random walk.

the conventional SU(2) algebra, and the braiding generators are a non-Abelian repre-
sentation of the permutation group. However when decoherence was introduced in the
system, the braid words that contribute to the walk have different structure than in the
fully coherent model. In the fully coherent model, the diagonal elements of the spatial
degree of freedom of the walker correspond to a sum over all paths where the walker
strand and necessarily all other strands return their initial position after forward and
backward time evolution. Hence each of these paths is a trivial permutation in the
fusion space and has no effect on the diagonal elements of the quantum walk. In the
U2 model however, the links do not have a dedicated walker strand as can be seen
from Fig. 4.1. The nontrivial character of the k →∞ model thus follows from the fact
that the links are not identity permutations and hence expectation values in Table 4.1
are not equal to 1, as they would be in the fully coherent walk. The key difference is
that only for a highly non-Markovian environment does the k →∞ case reduce to the
normal quantum walk for only if one includes memory of all previous steps does the
fusion degree of freedom become disentangled with the spatial degree of freedom.

4.4 Approximation by circulant matrices

In the previous section, the superoperator that describes how the spatial density matrix
transforms in a single step of the walk was derived exactly, and numerical results were
obtained by repeatedly applying the superoperator to the density matrix. Although
the numerics showed clear diffusive behaviour for all values of k, no expression for the
density matrix after evolution by an arbitrary number of steps was obtained. In the
following, the Kraus operators Efc are approximated by circulant matrices which have
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uniform coefficients on each diagonal, and the Kraus operators are diagonalized for
k = 2, 4 via Fourier transform to find arbitrary powers of the superoperator E in a
compact form.

A matrix C = (cij) of order n is called a circulant matrix [75] if cij = ai−j( mod n).
The entries of any row or column a ≡ (a0, a1, ..., an−1) determine the entire circulant
matrix which is denoted Cn = circ(a) = circ(a0, a1, ..., αn−1), and in matrix form it
reads

Cn =


a0 an−1 an−2 · · · a1

a1 a0 an−1 · · · a2

a2 a0 · · · a3
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0

 . (4.16)

Alternatively circulant matrices can be written in terms of an elementary circulant
matrix ĥ =

∑
m∈{0,1,...,n−1}

∣∣m〉〈m+1
∣∣ = circ(0, 1, ..., 0), as Cn = circ(a0, a1, ..., αn−1) =

p(ĥ) where p is the polynomial p(z) := a0+a1z+· · · an−1z
n−1. The elementary circulant

matrix and its inverse are written explicitly as

ĥ =
∑
n

∣∣n+ 1
〉〈
n
∣∣ =


0 1
1 0

1 0

1
. . .

1 0

 , (4.17)

ĥ−1 =
∑
n

∣∣n− 1
〉〈
n
∣∣ =


0 1

0 1
0 1

. . . 1
1 0

 , (4.18)

and they generate the abelian group {ĥa}a∈ZN ' ZN , share the property ĥ† = ĥ−1 =∑
s∈ZN

∣∣s+1
〉〈
s
∣∣, where ĥn = 1. Matrix ĥ is diagonalized by the finite Fourier transform

unitary matrix F , with elements Fab = 1√
n
ωab, ω = ei2π/n, as F †ĥF = ĝ, where

ĝ = diag(1, ω, ..., ωn−1). Any circulant matrix is then canonically decomposed as Cn =
circ(a0, a1, ..., αn−1) = F †diag(p(1), p(ω), ..., p(ωn−1))F . A banded circulant matrix is
a circulant matrix for which only a connected subset in the sequence a = (aj)

n−1
j=0 is

nonzero.
The Kraus generators of the U2 anyon walk are not circulant matrices, but they

can be approximated as such. Substituting Eq. (4.5) to (4.4), the Kraus generators
are written explicitly as

Efc =
∑
s

[
C00
c

〈
f
∣∣bsbs+1

∣∣Φ0

〉 ∣∣s〉〈s+ 2
∣∣ +

〈
f
∣∣ (C01

c b
2
s + C10

c b
2
s−1)

∣∣Φ0

〉 ∣∣s〉〈s∣∣
+ C11

c

〈
f
∣∣bs+1bs

∣∣Φ0

〉 ∣∣s+ 2
〉〈
s
∣∣] (4.19)
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where the coin term has been defined as Cab
c :=

〈
c
∣∣PaFPbF ∣∣c0

〉
. The matrix expression

of the generators is

Efc =



dfc(0) afc(0) · · · bfc(N − 2)
dfc(1) afc(1) bfc(N − 1)

bfc(0) dfc(2)
. . .

bfc(1)
. . . . . . afc(N − 3)

afc(N − 2) · · · . . . . . .

afc(N − 1) bfc(N − 3) dfc(N − 1)


,

(4.20)
where

afc(s) = C00
c

〈
f
∣∣bsbs+1

∣∣Φ0

〉
, (4.21)

bfc(s) = C11
c

〈
f
∣∣bs+1bs

∣∣Φ0

〉
, (4.22)

dfc(s) = C01
c

〈
f
∣∣b2
s

∣∣Φ0

〉
+ C10

c

〈
f
∣∣b2
s−1

∣∣Φ0

〉
. (4.23)

Although the matrix Efc is not a circulant matrix, it can be turned to a circulant
matrix if the s-dependence of parameters afc(s), bfc(s), dfc(s) is suppressed in some
meaningful way, so that the sequences of these parametrers get approximated by some
respective sequences ãfc, b̃fc and d̃fc. This suppression of the s-dependence also leads to
circulant form for Efc. The advantage of having the Kraus generators being circulant
matrices stems from the fact that the spectral decomposition problem of such matrices
is solved, and therefore the walk superoperator and its powers can be expressed in
terms of the orthogonal eigenprojections of the generators.

A viable approximation for the Kraus generators is given by their optimal circulant
matrix. For the construction of the optimal circulant matrix it has been recommended
[76] (after preliminary transformations such as changing the order of the rows and mul-
tiplying them with suitable constants), to apply the following: by imposing periodicity
i.e. dj+N,k = dj,k, form the arithmetic averages of the elements along the diagonals i.e.

aj = 1
N

∑N−1
k=0 dj+k,k, and construct in this way the circulant C = circ(a0, a1, ...maN−1).

On the other hand an optimal circulant approximation of some Toeplitz matrix T (see
e.g. Strang’s suggestion in [77]) is constructed by determining the nearest circulant
with respect to Frobenius matrix norm for matrix T , i.e. by solving the optimization
problem minC:circulant ‖T − C‖F [78]. The resulting circulant coincides with the one
obtained by the method of arithmetic averages [76], applied to T .

The arithmetic averages of afc(s), bfc(s) and dfc(s) are given by

afc(s) ≈ ãfc(s) =
1

N
Tr(ĥ2Efc) (4.24)

dfc(s) ≈ d̃fc(s) =
1

N
Tr(Efc) (4.25)

bfc(s) ≈ b̃fc(s) =
1

N
Tr(ĥ−2Efc) (4.26)
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where ĥ is the elementary circulant matrix. This is explicitly written as

ãfc =
C00
c

N

∑
s

〈
f
∣∣bsbs+1

∣∣Φ0

〉
, (4.27)

d̃fc =
C01
c

N

∑
s

〈
f
∣∣b2
s

∣∣Φ0

〉
+
C10
c

N

∑
s

〈
f
∣∣b2
s−1

∣∣Φ0

〉
(4.28)

b̃fc =
C11
c

N

∑
s

〈
f
∣∣bs+1bs

∣∣Φ0

〉
, (4.29)

Denote Ew
fc the matrices obtained from Efc by substituting the s-dependent terms with

their averages:

Ew
fc = ãfc

∑
s

∣∣s〉〈s+ 2
∣∣+ d̃fc

∑
s

∣∣s〉〈s∣∣+ b̃fc
∑
s

∣∣s+ 2
〉〈
s
∣∣ (4.30)

= ãfcĥ
2 + d̃fcI + b̃fcĥ

−2. (4.31)

The map given by the new Kraus generators Ew
fc is not trace preserving, so the

generators have to be normalized to obtain well defined generators Ẽfc which sat-

isfy the trace preserving condition
∑

f,c Ẽ
†
fcẼfc = I. The normalization is given by∑

fcE
w†
fc E

w
fc ≡ M , so the new trace preserving circulant Kraus generators are defined

Ẽfc = (
∑

f,cE
w†
fc E

w
fc)
−1/2 Ew

fc ≡ Λ Ew
fc with Λ = M−1/2. A calculation gives

M = κ1 I + κ2 ĥ
2 + κ∗2 ĥ

−2 (4.32)

where

κ1 =
∑
f,c

(
|ãfc|2 + |d̃fc|2 + |̃bfc|2

)1

4

( 1

N2

∑
j,j′

〈
Φ0

∣∣b†j′+1b
†
j′bjbj+1

∣∣Φ0

〉
+

2

N2

∑
j,j′

〈
Φ0

∣∣b†2j′ b2
j

∣∣Φ0

〉
+

1

N2

∑
j,j′

〈
Φ0

∣∣b†j′b†j′+1bj+1bj
∣∣Φ0

〉)
(4.33)

κ2 =
1

4

( 1

N2

∑
j,j′

〈
Φ0

∣∣b†j′b†j′+1b
2
j−1

∣∣Φ0

〉
+

1

N2

∑
j,j′

〈
Φ0

∣∣b†2j′ bjbj+1

∣∣Φ0

〉)
. (4.34)

The matrix M is a circulant band matrix which can be diagonalized via discrete Fourier
transform F :

F †MF =
∑
l

(
κ1 + κ2ω

2l + κ∗2ω
−2l
)∣∣l〉〈l∣∣.

The matrix F †MF is a diagonal matrix with all diagonal values nonzero, so its inverse
exists. The normalization operator Λ can now be defined as Λ = F (F †MF )−1/2F †,

where (F †MF )−1/2 =
∑

l

(
κ1 + κ2ω

2l + κ∗2ω
−2l
)−1/2∣∣l〉〈l∣∣. A simple check verifies that

Λ2M = I and Λ = M−1/2 as desired.
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4.5 Asymptotics

Unfortunately, the normalized generators Ẽfc = ΛEfc contain all even powers of the

matrices ĥ for general values of the Chern-Simons parameter k and do not admit a
helpful form. However, for the special values k = 2, 4 there is a significant simplifica-
tion. Notice that each of the terms in expressions for κ1, κ2 in Eqs. (4.33) and (4.34)
is an averaged Kauffman bracket. For large N most of these brackets will correspond
to disjoint links, i.e. the links formed by two step walks involving the strands located
at j and j′ do not entangle. As shown in Table 4.1, this always occurs if |j′ − j| > 3.
If the average is approximated by the value of the bracket for these disjoint links then

κ1 =
1

32

(
6 cos(

2π

k + 2
) + 4 cos(

4π

k + 2
) + 2 cos(

6π

k + 2
) + 5

)
sec4(

π

k + 2
) +O(1/N)

(4.35)

κ2 =
1

8

(
cos(

4π

k + 2
)− cos(

2π

k + 2
) + 1

)
sec2(

π

k + 2
)
)

+O(1/N). (4.36)

where the error is of order 1/N . Thus κ2 ≈ 0 at the special values k = 2, 4 and the

normalization operator becomes a scalar multiple of the identity: Λ = κ
−1/2
1 I. The

Kraus generators are now given by

Ẽfc = κ
−1/2
1

(
ãfcĥ

2 + d̃fcI + b̃fcĥ
−2
)
. (4.37)

The elementary circulant matrix ĥ can be diagonalized as F †ĥF = ĝ =
∑

n∈ZN ω
n
∣∣n〉〈n∣∣

where ω = e2πi/N . This allows to write the Kraus generators in a diagonal form

Ẽfc = κ
−1/2
1 F

(
ãfcĝ

2 + d̃fcI + b̃fcĝ
−2
)
F † (4.38)

≡
∑
k∈ZN

λfc(k)Pfk (4.39)

with λfc(k) = κ
−1/2
1

(
ãfcω

2k + d̃fc + b̃fcω
−2k
)

and Pfk = F
∣∣k〉〈k∣∣F †. The action of the

superoperator Ẽ on a spatial density matrix ρS is then given by

Ẽ(ρS) =
∑
f,c

Ẽfc ρS Ẽ
†
fc =

∑
f,c

∑
k,l∈ZN

λfc(k)λ∗fc(l)PfkρSP
†
fl

(4.40)

and for t time steps

Ẽ t(ρS) =
∑
k,l∈ZN

t∏
i=1

∑
fi,ci

(
λfici(k)λ∗fici(l)

)
PfkρSP

†
fl
. (4.41)

This compact form allows to express the diagonal probability distribution p(s, t) at

time t: p(s, t) =
〈
s
∣∣Ẽ t(ρS(0))

∣∣s〉. Assuming that the walker is initialized in the position
eigenstate

∣∣s0

〉
, that the size of the periodic lattice is N , and that during the 2-step
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walk the coin is always reinitialized to state
∣∣c = 0

〉
, the probability distribution for

index k = 2 is written

pIsing(s, t) = 〈s|Ẽ t(|s0〉〈s0|)|s〉
= 1

2tN2

∑
r,l∈ZN ω

(s−s0)(r−l)(ω2(r−l) + ω−2(r−l))t

= 1
2tN2

∑t
m=0

(
t
m

)∑
r,l∈ZN ω

(s−s0)(r−l)ω2m(r−l)ω−2(t−m)(r−l)

= 1
2tN2

∑t
m=0

(
t
m

)∑
r∈ZN ω

r(s−s0+4m−2t)
∑

l∈ZN ω
−l(s−s0+4m−2t)

= 1
2tN2

∑t
m=0

(
t
m

)
(Nδs−s0+4m−2t,0)2

= 1
2t

( t
2t−(s−s0)

4

)
(4.42)

This is the binomial distribution where the range of the sites is s ∈ [−2t, 2t] and the
probabilities are nonzero only for s = s0 + 4n, n ∈ Z, i.e. the U2 model with k = 2.
SU(2)2 anyon walkers therefore have the same probability distribution as the classical
random walk where every step moves two units to the right or left and the variance,
scaled so that each two steps move takes place over two time intervals, is σ2

SU(2)2
(t) = t.
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5
Disordered Walks

In the two models studied in the previous chapters, it was assumed that each island
is occupied by a single anyon with the same mutual statistics as the mobile anyon.
In possible experimental situations, this might be a too stringent condition, as the
energies for creating and destroying quasiparticles are small and the exact amount of
quasiparticles is hard to control. This motivates the study of anyonic quantum walks
with disordered particle configurations. It will be seen that disorder is not necessarily
an evil that destroys quantum correlations – the quantum statistical features survive the
introduced randomness and Abelian and non-Abelian are observed to behave differently
under disorder.

It is a well known result by Anderson that randomised local potentials can suppress
diffusion of quantum particles [79], a phenomenon known as Anderson localisation.
This mechanism is based on randomisation of phases that correspond to individual
particle histories and consequent destructive interference.

The surprising consequences of disorder in quantum systems has motivated the
study of disorder in quantum walks. The quantum walk provides a simple testbed
for non-trivial quantum effects and allows analytical study of the conditions which
cause localization of the walker wave packet. Most studies concentrate on disorder
in the parameters of the coin flip operator F , and localization has been observed for
many types of spatial disorder in the coin parameter. Linden and Sharam showed
that periodically varying coin parameters can lead to both bounded and unbounded
walks [80], depending on the period. Konno used path-counting methods to study
quantum walks under quenched and annealed disorder, and showed that a coin defect
at the origin causes partial localization of the wavepacket [81, 82]. Joye and Merkli
[83] and Ahlbrecht et al [84] showed that dynamical Anderson localization occurs for
spatially inhomogeneous coin, when the coin parameters are chosen randomly from
continuous or certain discrete sets. If the coin parameters change in time, the walker
spreads ballistically or diffusively, but no localization has been observed. Brun et al

79
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Figure 5.1: The disordered anyonic quantum walk. A walker anyon braids counterclock-
wise around islands filled with a random number of static anyons of the same type. The
islands are denoted with dashed circles and the possible positions of the walker are denoted
by dotted circles placed in between the islands. The charge configuration is assumed to be
fixed during each run of the walk.

[53] studied cyclic coins, and found that the walk is still ballistic unless the period
becomes as large as the length of the walk, in which case it is diffusive. Shapira et al
[85] studied quenched unitary noise numerically and observed that the walk is diffusive
in the long term after an initial ballistic period. Similar conclusions were drawn in
analytical treatment by Ahlbrecht et al [86] and Joye [87].

The transport properties of anyons in random topological environments are studied
in this chapter by varying the island occupations of the stationary anyons. The general
setup of the disordered anyonic walk is given in Sec. 5.1. The results for Abelian
anyons are presented in Sec. 5.2 and the results for non-Abelian Ising anyons are
presented in Sec. 5.3. These results are reported in [V. Zatloukal, L. Lehman, S. Singh,
J. Pachos and G. Brennen. Transport Properties of Anyons in Random Topological
Environments.]

5.1 The model

The disordered anyonic quantum walk model consists of N spatial sites and N − 1
anyonic islands canonically ordered on the surface and labeled by the index s, as
shown in Fig. 5.1. The number of anyons on an island s is ms, and the collection
of all occupation numbers is called a charge configuration, represented by a vector
m = (m1, . . . ,mN−1). The charge configuration is assumed to stay fixed during each
individual run of the walk, and the average behaviour of the system over all possible
configurations is analyzed. Such disorder is called quenched randomness, as opposed
to annealed randomness where the random parameters might change in time. Anyons
are labeled within an island from left to right by an index is = 1, . . . ,ms. The walker
anyon hops between neighbouring sites winding counterclockwise around the islands.

The time evolution operator U = SF of the disordered walk is only a slight modi-
fication of the uniform case. The coin flip and conditional shift operators are

F = IS ⊗ IF ⊗ F (5.1)

S =
N−1∑
s=1

(T−s+1b̂s,mP0 + T+
s b̌s,mP1) + TBC (5.2)

where the braid generators have been modified to include braiding around all stationary



5.2 Abelian anyons 81

anyons at island s:

b̂s,m = bs,1 · · · bs,ms , (5.3)

b̌s,m = bs,ms · · · bs,1, (5.4)

and b̂s,m = b̌s,m = 1 if ms = 0. As before, the Hadamard coin is chosen as the
coin flip operator F and the system’s initial state is

∣∣Ψ(0)
〉

=
∣∣s0

〉
S

∣∣Φ0

〉
F

∣∣0〉
C

, where

s0 = dN/2e is the initial position of the walker, and
∣∣Φ0

〉
is the initial fusion state

where the ancillary anyons are braided to the right. The configuration-dependent
spatial probability distribution is now given by

pm(s, t) =
1

2t

∑
(a,a′) s

(−1)z(a)+z(a′)Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)

(5.5)

and the configuration-dependent variance is written

σ2
m(t) =

∑
s

pm(s, t)s2 −
(∑

s

pm(s, t)s
)2
. (5.6)

The island occupation numbers ms are assumed to be independent and identically
distributed (i.i.d.) random variables with distribution W (ms). The probability of
occurrence of a configuration m is then simply Wm =

∏n
s=1W (ms), and the configu-

ration average of a quantity Qm is denoted 〈〈Q〉〉 ≡∑mWmQm. The average position
distribution after a t-step walk is given by

〈〈p(s, t)〉〉 =
1

2t

∑
(a,a′) s

(−1)z(~a)+z(~a′)〈〈Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)
〉〉. (5.7)

Note that the coin term does not depend on the charge configuration, and the amplitude
for each quantum walk path is thus weighted with the configuration average of the trace
over the fusion degrees of freedom. If the stationary anyons are viewed as punctures on
the plane, the charge configurations correspond to manifolds with different topology,
and one could say that the walker is in a random topological environment.

5.2 Abelian anyons

For Abelian anyons the braid generators {bs,is} are all equal to eiϕ where the anyonic
exchange angle is ϕ = ±π

n
, n ∈ N. The fusion space is one-dimensional, HF ' C, and

the initial fusion state
∣∣Φ0

〉
can be chosen arbitrarily. Introducing the linking numbers

`s(a, a
′) =

(
#(b̂s and b̌s in Ba)−#(b̂†s and b̌†s in B†a′)

)
/2 that count the number of times

the walker’s trajectory (a, a′) winds around an island s, the trace over the fusion space
reduces to

Tr
(
Ba,m

∣∣Φ0

〉〈
Φ0

∣∣Ba′,m) =
N∏
s=1

e±i2
π
n
ms`s(a,a′). (5.8)
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The probability distribution of the occupation numbers is assumed to be uniform:
W (m) = 1/n for 1 ≤ m ≤ n. Then the average position distribution of the walker
after t steps, 〈〈p(±π

n
)(s, t)〉〉, is given by (5.7) with

〈〈Tr
(
Ba,m

∣∣Φ0

〉〈
Φ0

∣∣Ba′,m)〉〉 =
N∏
s=1

δ0,`s(a,a′) mod n, (5.9)

where δi,j is the Kronecker symbol.
For Abelian anyons, the probability distribution can be evaluated efficiently for a

large number of time steps. The numerical results for the exchange angle φ = π/8 are
presented in Fig. 5.2. The variance approaches a constant value, which means that the
probability mass is confined to some finite region around the initial site. Dynamical
localization at point s0 is defined such that the probability to be at site s vanishes
exponentially as a function of the distance from s0:

p(s, t) ∝ e
− (s−s0)

ξloc (5.10)

where ξloc is defined to be the localization length. Thus, the logarithm of the average
probability distribution is inversely proportional to the localization length:

ln
( 〈〈

p(±π
n

)(s, t→∞)
〉〉 )
∝ −s− s0

ξloc

. (5.11)

Figure 5.2 shows that the logarithm of the average probability distribution falls of
linearly as a function of |s− s0|, and thus the Abelian anyons exhibit dynamical local-
ization. The results are essentially insensitive to the choice of n (except for the case
n = 1 which corresponds to fermions, and thus reduces to the Hadamard walk).

The Abelian anyonic quantum walk is equivalent to wave propagation in an array
of scatterers that are placed on a line in random locations, as described in the next
section. Such a model allows to calculate the probability distribution as a function
of distance from the initial location analytically. The localization length can then be
estimated analytically as

1

ln 2 + ln(1 + 2n/2)2/n
≤ ξloc ≤

1

ln 2 + ln(1− 2n/2)2/n
, (5.12)

where the anyonic statistical angle ϕ = π
n
. This theoretical result is in agreement with

exact numerical treatment presented in Fig. 5.2.

5.2.1 Multiple scattering model

The propagation of the wave packet of an Abelian anyon in a random background is
equivalent to wave propagation on a line with scatterers placed in random locations.
The anyonic phase can be translated directly to dynamical phase acquired by the wave
as it travels a random distance. The scattering model is described in Fig. 5.3. A
monochromatic wave incident from the left scatters on a series of scatterers charac-
terized by “from left / from right” reflection and transmission coefficients rj, tj/r

′
j, t
′
j.
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Figure 5.2: Numerical results for localisation of Abelian anyons. The exchange statistics
is ϕ = π

8 and the statistics is averaged over a random background of island occupations
where the distribution in each is uniform over ms ∈ {0, . . . , 7}. (a) Average variance as a
function of time t for up to 600 time steps. The averages are taken over at least 500 charge
configurations. (For clarity, only every 10th step is plotted.) (b) Average of the logarithm of
probability distribution at time step t = 1000, taken over 10000 charge configurations. Red
lines correspond to bounds for the localisation length given in Eq. (5.12). (Only the relevant
region −700 ≤ s− s0 ≤ 700 and every 20th site are plotted.) The localization length can be
estimated from the inverse of the slopes: ξloc ≈ 1.44. In both a) and b), the error bars are
given by standard deviation.

The distance between two successive scatterers j and j + 1 is random, such that the
phase that the wave acquires when traveling between j and j + 1 is eiθj . This model is
simply a discrete version of the continuous model presented in section 2 of Ref. [88].

Denote by t1,N the block amplitude of transmission from the “left of scatterer 1”
to the “right of scatterer N”; and by r′1,N the reflection amplitude from the block “1
to N” when approaching from the right. t1,N can be expressed by the series

t1,N = t1,N−1e
iθN−1

∞∑
k=0

(
rNe

iθN−1r′1,N−1e
iθN−1

)k
tN

=
t1,N−1e

iθN−1tN
1− rNr′1,N−1e

i2θN−1
. (5.13)

The corresponding transmission probability and its logarithm are given by

|t1,N |2 =
|t1,N−1|2|tN |2

|1− rNr′1,N−1e
i2θN−1|2 , (5.14)

ln |t1,N |2 = ln |t1,N−1|2 + ln |tN |2 − ln |1− rNr′1,N−1e
i2θN−1|2. (5.15)

The reflection and transmission amplitudes t1,N , r′1,N are random variables that depend
on the configuration of scatterers 1, . . . , N , i.e. on the angles θ1, . . . , θN−1. The θj’s
are assumed to be i.i.d. random variables with a uniform distribution over the discrete
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Figure 5.3: In the multiple scattering model, the wave approaches (from the left) a series
of N scatterers, and is transmitted with the amplitude t1,N . The scatterers are arranged
in line with random distances between neighbours. Hence, the phases eiθj that the wave
acquires during travelling from a scatterer j to j+1 are also random. The complex quantities
rj , tj/r

′
j , t
′
j are the reflection and transmission amplitudes for the wave impinging from the

left / right.

set {π
n
m | m = 0, . . . , n− 1} (π

n
is identified with the anyonic exchange angle ϕ). The

statistical average over the angles θ1, . . . , θn−1 is denoted by
〈〈(

. . .
)〉〉

, and

〈〈(
. . .
)〉〉
≡

n−1∑
m1=0

1

n
. . .

n−1∑
mn−1=0

1

n

(
. . .
)
. (5.16)

Averaging of (5.15) leads to〈〈
ln |t1,N |2

〉〉
=
〈〈

ln |t1,N−1|2
〉〉

+ ln |tN |2

−
〈〈

ln |1− rNr′1,N−1e
i2θN−1|2

〉〉
. (5.17)

To proceed, take the θN−1-average in the last term of Eq. (5.17),

n−1∑
mN−1=0

1

n
ln |1− rNr′1,N−1e

i 2π
n
mN−1|2

=
1

n
ln

∣∣∣∣∣∣
n−1∏

mN−1=0

(1− rNr′1,N−1e
i 2π
n
mN−1)

∣∣∣∣∣∣
2

=
1

n
ln |1− (rNr

′
1,N−1)n|2 (5.18)

In the latter the equality
n∏

m=1

(1− Cei 2πn m) = 1− Cn , (5.19)

was used, which can be proven by using the Newton’s identities between elementary
symmetric polynomials and power sums [89].

The θ1, . . . , θN−2-average of (5.18) becomes trivial once when (|r′1,N−1| ≤ 1) is esti-
mated:

ln(1− (|rN ||r′1,N−1|)n)2 ≤ ln |1− (rNr
′
1,N−1)n|2

≤ ln(1 + (|rN ||r′1,N−1|)n)2, (5.20)

ln(1− |rN |n)2 ≤ ln |1− (rNr
′
1,N−1)n|2

≤ ln(1 + |rN |n)2. (5.21)
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The upper and lower bounds of relation (5.17) read〈〈
ln |t1,N |2

〉〉
≤
〈〈

ln |t1,N−1|2
〉〉

+ ln |tN |2 −
1

n
ln(1− |rN |n)2 (5.22)

and 〈〈
ln |t1,N |2

〉〉
≥
〈〈

ln |t1,N−1|2
〉〉

+ ln |tN |2 −
1

n
ln(1 + |rN |n)2 (5.23)

respectively. When applied repeatedly, these recurrences yield (t1,1 ≡ t1)

〈〈
ln |t1,N |2

〉〉
≤

N∑
j=1

ln |tj|2 −
1

n

N∑
j=2

ln(1− |rj|n)2 ,

〈〈
ln |t1,N |2

〉〉
≥

N∑
j=1

ln |tj|2 −
1

n

N∑
j=2

ln(1 + |rj|n)2 , (5.24)

where the lower index of the averaging brackets 〈〈. . .〉〉 has been omitted.
Now assume that tj = t, rj = r for all j. On the level of the Abelian anyonic

quantum walk, this corresponds to a spatially independent coin. Exponentiating (5.24)
results in

exp
〈〈

ln |t1,N |2
〉〉
≤ (1− |r|n)

2
n e
−N

[
ln(1−|r|n)

2
n−ln |t|2

]
,

exp
〈〈

ln |t1,N |2
〉〉
≥ (1 + |r|n)

2
n e
−N

[
ln(1+|r|n)

2
n−ln |t|2

]
. (5.25)

Estimates of the localization length are then obtained as

1

ln(1 + |r|n)
2
n − ln |t|2

≤ ξloc ≤
1

ln(1− |r|n)
2
n − ln |t|2

. (5.26)

In the asymptotic limit n→∞ the localization length is ξloc → − 1
ln |t|2 .

For the upper bound in (5.12) to make sense, − ln |t|2 + 1
n

ln(1− |r|n)2 has to be a
positive number. This leads to the condition

|t|2 < (1− |r|n)
2
n , i.e. |t|n + |r|n < 1 . (5.27)

Since |t|2 + |r|2 = 1 (with |t|, |r| < 1), the latter is satisfied for n > 2.
The case n = 1 corresponds to fermions which are known not to localize (their ex-

change statistics does not induce any interference effects; fermions would still localize
if there is randomness in the coin parameter). The marginal case n = 2 corresponds to
semions (ϕ = π/2), but the present model does not allow any bound for them. How-
ever, numerics for an analogous model involving continuous time hopping of semions
on a ladder support localisation [90].

To establish a connection between this scattering model and the Abelian anyonic
quantum walk with the Hadamard coin, define

t = − 1√
2
, t′ =

1√
2
, r =

1√
2
, r′ =

1√
2
. (5.28)
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The localization length estimate for n = 8 (π
8
-anyons) is now

1.412 ≤ ξloc ≤ 1.477. (5.29)

Note that the results hold for the stationary state of a wave after infinitely many
scattering events. This corresponds to the infinite-time asymptotic behavior of the
anyonic quantum walk.

5.3 Non-Abelian anyons

The treatment of non-Abelian anyons is more cumbersome than Abelian anyons. The
braid representations are not one-dimensional, and the calculation of the configuration
average of the trace in Eq. (5.5) becomes difficult to compute. Here the trace over
the fusion degrees of freedom for each configuration is once again calculated using the
Jones polynomial, and the anyons are assumed to be Ising anyons. This method allows
to derive an analytical formula for Ising anyons. This formula is strikingly similar to
the equivalent expression for Abelian anyons except for one extra coefficient. Numeri-
cal calculations are highly inefficient, but the results suggest that localization does not
occur for non-Abelian anyons. It is argued that the decoherence due to the fusion space
washes off the quantum interference that leads to localization in disordered systems,
and over time the non-Abelian anyonic walker diffuses away in a similar manner to
a Brownian particle. The extra coefficient in the non-Abelian expression introduces
effective temporal randomness in the system, which is known to cause absence of lo-
calization in quantum walks.

5.3.1 Analytical formula for Ising anyons

Using the relation between the fusion trace and the Jones polynomial, the trace for a
single configuration can be written

Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)

=

(
−q3/4

)w(L(a,a′,m))

d|m|
VL(a,a′,m)(q), (5.30)

where L(a, a′,m) is the configuration-dependent link and the writhe can be written
as w(L(a, a′,m)) = 2

∑N
s=1ms`s(a, a

′). Note that the walker is never allowed to enter
the island and it always braids with the group of stationary anyons as a whole, not
with the individual strands within an island. Strictly this formula holds for SU(2)2

anyons, but it has been mentioned above that the braid generators of Ising anyons are
equivalent to SU(2)2 generators up to phase and complex conjugation. In the uniform
model the phases cancel each other and the probability distribution is invariant under
complex conjugation. In the non-uniform model the expression is still invariant under
complex conjugation, but the phases from bra- and ket-evolution can be different. It
will be shown at the end of this section that these phases contribute trivially to the
formula for the probability distribution.
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For Ising anyons, the parameter of the Jones polynomial takes the value q = i, and
the Jones polynomial can be related to the simpler arf invariant through [67]

VL(a,a′,m)(i) =
√

2
|m|

(−1)arf(L(a,a′,m))

N∏
s=1
ms>0

˜̀
s , (5.31)

where ˜̀s ≡ δ0,`s mod 2. The product in the last expression is equal to 1 only if the link
L(a, a′,m) is proper, i.e. the sum of the pairwise linking numbers is even. Furthermore,
when the link is totally proper, i.e. all pairs of components have an even linking number,
and there is no self-linking, then [69]

arf(L(a, a′,m)) =
N∑
s=1

msc2(s) +
∑

1≤s′<s′′≤N

ms′ms′′τ(s′, s′′) , (5.32)

where c2(s) is the cubic coefficient in the Conway polynomial of the two-component
sublink of L(a, a′,m) consisting of strands corresponding to the walker and island s;
τ(s′, s′′) is the Milnor triple point invariant of the three-component sublink of L(a, a′,m)
consisting of the walker’s strand and the strands corresponding to islands s′ and s′′.
In Sec. 3.1 it was shown that for a uniformly filled background, for all the links that
contribute to the diagonal elements of the spatial probability distribution, properness
implies total properness. For non-uniform filling the same is true for the simple reason
that paths that had even linking between the walker and one island anyon will then
have multiple pairwise linking when the island has multiple occupancy.

Inserting (5.31) and (5.32) into the expression for the fusion space trace (5.30) yields

Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)

= (−i− 3
4 )w(L(a,a′,m))(−1)arf(L(a,a′,m))

N∏
s=1
ms>0

˜̀
s

= (−1)
∑
s′<s′′ ms′ms′′τ(s′,s′′)

N∏
s=1
ms>0

˜̀
s(i)

`s
2
ms(−1)msc2(s) . (5.33)

For islands s such that ms > 0 and ˜̀s = 1, i.e. `s
2
∈ Z, the coefficient c2 is given by

Eq. (3.7) which simplifies to

c2(s) =
`s
6

(`2
s − 1) =

`s
2

1

3

[
4

(
`s
2

)2

− 1

]
mod 2

=
`s
2
, (5.34)

and the trace for a single configuration can be written

Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)

=
N∏
s=1
ms>0

˜̀
s(−i)

`s
2
ms

∏
1≤s′<s′′≤n

(−1)ms′ms′′τ(s′,s′′). (5.35)

where ˜̀s ≡ δ0,`s mod 2 and τ(s′, s′′) is the Milnor triple invariant of a three-component
sublink of L(a, a′,m) formed by strands corresponding to the walker and the islands s′
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and s′′. Note that for the case of uniform background configuration, ms = 1 ∀s, this
result is equivalent to Eq. (3.8).

The configuration average of the anyonic term can now be calculated using Eq.
(5.35). First note that this expression is 4-periodic in ms for ms > 0. Thus the
calculation can be simplified by choosing W (m) = 1/4 for 1 ≤ m ≤ 4 and W (m) = 0
otherwise. The vacuum charges are therefore not included in this model, but numerical
calculations show that the variance is higher when the vacuum charges are included.
The average trace is now calculated as

〈〈
Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)〉〉

=
∑

m∈{1,...,4}N

1

4N

N∏
s=1

˜̀
s(−i)

`s
2
ms

×
∏

1≤s′<s′′≤n

(−1)ms′ms′′τ(s′,s′′) (5.36)

=

[
N∏
s=1

˜̀
s

]
1

4N−1

∑
m∈{1,...,4}N−1

N−1∏
s=1

(−i) `s2 ms

∏
1≤s′<s′′≤N−1

(−1)ms′ms′′τ(s′,s′′)

× 1

4

4∑
mN=1

[
(−i)

`N
2

]mN [N−1∏
s′=1

(−1)ms′τ(s′,N)

]mN

= . . .×
{

1 if (−i) `N2 (−1)
∑N−1
s′=1

ms′τ(s′,N) = 1
0 otherwise

(5.37)

Hence,
〈〈

Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)〉〉

= 0 whenever `N 6= 0 mod 4 (i.e. when (−i) `N2
is not a real number). Furthermore, if `N = 4 mod 8, then τ(s′, N) = 0 for all
r = 1, . . . , N − 1 (recall that τ(s′, s′′) can be nonzero only if `s′ , `s′′ = 0), and there-

fore (−1)
`N
4 (−1)

∑N−1
s′=1

ms′τ(s′,N) = −1. Hence,
〈〈

Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)〉〉

= 0

whenever `N 6= 0 mod 8. By the same reasoning, analogous holds for any island

s = 1, . . . , N . By defining
˜̀̃
s ≡ δ0,`s mod 8 the trace becomes

〈〈
Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)〉〉

=
N∏
s=1

˜̀̃
s

∑
~m∈{1,...4}N

4−N(−1)
∑

1≤s′<s′′≤nms′ms′′τ(s′,s′′).

(5.38)
The expression (−1)ms′ms′′τ(s′,s′′) is invariant under shifting ms′ → ms′ + 2 or ms′′ →
ms′′ + 2. Therefore, the sum over m ∈ {1, . . . , 4}N contains 2N classes of 2N equivalent
configurations. Also, mj = 0 is equivalent with mj = 2. Now the average of the trace
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can finally be written as

〈〈
Tr
(
Bta,m

∣∣Φ0

〉〈
Φ0

∣∣(Bta′,m)†
)〉〉

=

[
N∏
s=1

˜̀̃
s

]
1

2N

∑
~m∈{0,1}N

∏
1≤s′<s′′≤n

(−1)ms′ms′′τ(s′,s′′)

(5.39)

= Taa′
N∏
s=1

δ0,`s(a,a′) mod 8 (5.40)

where Taa′ = 1
2N

∑
m∈{0,1}N

∏
1≤s′<s′′≤N(−1)mrmsτ(s′,s′′) can be interpreted as an arith-

metic mean of the quantity (−1)arf(L∗(a,a′,m)) taken over all sublinks L∗(a, a′,m) of a
link L(a, a′,m). On comparing (5.40) to the Abelian expression (5.9) for N = 8, they
are identical except for the prefactor T~a~a′ . Considering Eq. (5.9) as the coherent ex-
pression where the quantum interference of probability amplitudes causes localisation,
the T~a~a′ coefficient can be viewed as a noise term which might or might not destroy
the interference. In Sec. 5.3.3 it is argued that at short time scales, this term does
not preserve memory and introduces temporal randomness. By results of Ref. [91],
localisation does not occur in the presence of both spatial and temporal randomness,
therefore it is conjectured that non-Abelian anyons do not localise in the asymptotic
limit t→∞.

Note that Eq. (5.40) implies that the formula for the average probability dis-
tribution is the same for Ising and SU(2)2 anyons. As discussed in Sec. 2.2, the
braid generators for these models are equivalent up to a phase i and complex conju-
gation. In disordered walks, the distribution of stationary anyons is non-uniform and
the walker may thus pick up non-trivial phases from bra- and ket-evolution. The dif-
ference between these phases is given by the writhe w, which is the difference between
positive and negative crossings in the link diagram. The total phase difference is then
iw = i2

∑N
s=1ms`s . But Eq. (5.40) says that the average of the trace is zero unless `s is

a multiple of 8. Therefore for any integer h, iw = i2
∑N
s=1ms8h = (i4)4h

∑N
s=1ms = 1, and

the results hold similarly for Ising and SU(2)2 anyons.

5.3.2 Numerical results

Numerical calculations were performed for non-Abelian anyons using two methods.
First, the probability distribution for the discrete-time model was calculated analyti-
cally using Eqs. (5.5) and (5.35) up to 23 time steps (46 anyons in the lattice). The
average variance

〈〈
σ2(Ising)(t)

〉〉
over configurations ms ∈ {0, . . . , 4} with at least 100

charge configurations is plotted in Fig. 5.4 a). The error bars were obtained by the
standard deviation of the variance of the spatial probability distribution. The average
variance is approximately a straight line with slope 0.456 from 10 to 23 time steps, but
the error bars of the variance overlap with the errorbars of the Abelian case, so Abelian
and non-Abelian anyons can not be distinguished on this short time scale. Considering
only occupations ms ∈ {1, . . . , 4} (no vacuum charges), the variance is smaller, ie. the
wave packet is diffusing slower (not shown).
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Figure 5.4: Numerical results for transport of Abelian and non-Abelian anyons. a) Exact
results for the variance of the discrete time quantum walk with anyons over an n = 46 sized
lattice. The results are shown for uniform background of Abelian anyons with π

8 statistics
(Uniform Abelian=UA), uniform background of Ising anyons (Uniform non-Abelian=UnA),
random background of Ising anyons averaged over 100 background configurations (Random
non-Abelian=RnA), and random background of Abelian anyons averaged over 500 back-
ground configurations (Random Abelian=RA). b) Variance of anyons in a Hubbard model
on a ladder realising a continuous time anyonic quantum walk over an N = 100 sized lat-
tice. The slope for the case RnA averaged over 50 configurations is 0.5426 and the slope
remains positive and less than one within one sigma variance (error bars suppressed for clar-
ity). Numerics are obtained using an approximate method employing real time evolution of
an anyonic MPS with bond dimension equal to 100.

To obtain results for longer time scales, an anyonic Hubbard model [92] was used. In
this model, time evolves continuously and the evolution is governed by a Hamiltonian
H. The spatial and coin modes are represented in a redundant manner in Fock space
such that each site is assigned a three-level quantum system simultaneously describing
the occupation of the site and coin mode: states

∣∣0〉
s
,
∣∣1〉

s
,
∣∣2〉

s
corresponding to having

an empty site, a walker with coin state 0 on the site and walker with coin state 1 at
site s, respectively. The quantum walk state space is thus Hspace,coin = (C3)⊗Nsites . The
total Hamiltonian is given by the sum of the shift and coin flip terms H = Hshift +Hflip,
where

Hshift = J
∑
s

(T−s+1b̂sP1 + T+
s b̂sP2) + h.c.

Hflip =
∑
s

(κ
∣∣2〉

s

〈
1
∣∣+ κ∗

∣∣1〉
s

〈
2
∣∣)

with J ∈ R, κ ∈ C. The operators T±s = (
∣∣1〉

s±1 s

〈
1
∣∣ +

∣∣2〉
s±1 s

〈
2
∣∣) ⊗ Ifusion are

translation operators between sites s and s±1, b̂s are braid generators defined similarly
as in the discrete model and Pc =

∑
s

∣∣c〉
s

〈
c
∣∣⊗ Ifusion are projectors to the coin states.

Here
∣∣c〉

s
corresponds to occupation of state c at site s, i.e.

∣∣c = 0
〉
s

corresponds to no
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mobile anyon at site s,
∣∣c = 1

〉
s
(
∣∣c = 2

〉
s
) is a mobile anyon with coin state

∣∣0〉(∣∣1〉) at
site s.

The above Hamiltonian is the generator of continuous-time evolution for total time
T . Running the continuous-time walk for time T simulates the discrete-time quantum
walk in a stroboscopic manner, such that the walker makes T/δt steps of infinitesimal
length δt: e−iHT = (e−iHδt)T/δt. The numerical calculations were done using the “Time-
Evolving Block Decimation” (TEBD) algorithm [93] based on matrix product states.
The TEBD algorithm was used to perform real time evolution of an initial state with
the mobile anyon placed at the middle of the lattice and with couplings κ = J = 1. The
implementation of the TEBD algorithm explicitly preserves anyonic charge [94, 95] and
also particle number [96] corresponding to the presence of a single walker. This model
realises a continuous-time anyonic quantum walk with reflecting boundaries. Fig. 5.4
b) shows that for non-Abelian anyons the variance grows linearly as a function of time,
indicating no signature of localisation.

5.3.3 Correlations in time

To analyse the long-term behaviour of the non-Abelian case, an analogy is drawn to
decoherent quantum walks by interpreting the anyonic quantum walk as a quantum
walk with an environment. The fusion space is a very special kind of environment,
since it is non-local and evolves unitarily, and such environments are not well studied
in the literature. Thus, anyonic environments open a new line of study on effects of
environment and decoherence in quantum systems.

As shown in Ref. [91], the quantum walk is diffusive also in the presence of both
temporal and spatial disorder, in other words localization does not occur in a spatially
disordered system if temporal randomness is also present. The quantum coherent terms
that are needed for localization in the spatially disordered case are thus destroyed by
decoherence from temporal randomness. When a coin changes completely randomly,
the identity of the next coin is not dependent on the previous coins at all, and the
environment which induces the change has no memory. In the following, it is argued
that the anyonic environment is effectively memoryless and the the randomness of the
environment in time causes the walker to spread diffusively.

Equation (5.40) shows that the average trace of Ising anyons is almost identical
to that of Abelian anyons, except for the term involving the Milnor triple invari-
ant τ . The Milnor triple invariant gives the number of Borromean rings in a three-
component link. The T~a~a′-term potentially induces temporal randomness in the walk,
such that the environment acts effectively in a Markovian way. The effect of this term
is that it multiplies the contribution from each path by the configuration average over
(−1)

∑
1≤s′<s′′≤nms′ms′′τ(s′,s′′). While this term preserves memory of the whole history of

the particle’s trajectory, at short time scales it could fluctuate in a disordered manner.
The value of τ changes when a new Borromean ring is formed, which requires at least
4 time steps. Also, the formation of a Borromean ring requires a very specific pattern
in the particle’s trajectory which is in no way periodic. In addition, because of the
condition on the last coin outcomes at = a′t, there are new path patterns up to t − 1
time steps introduced on every time step which were not allowed for the previous time
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step, so these paths are not correlated to previous evolution at all.
The time correlations of the τ invariant can be tracked by defining the correlator

C(t, t′) =

〈
(−1)τt(−1)τt−t′

〉
−
〈
(−1)τt

〉〈
(−1)τt−t′

〉
1−

〈
(−1)τt〉2

where τt =
∑

1≤s′<s′′≤n τ(s′, s′′) is the sum of three-component invariants for all sublinks

for a path up to t time steps and
〈
·
〉

(~a,~a′) s0
is the expectation value over all paths

leading to the initial site s0 (the subindex has been suppressed above for clarity). The
term in the denominator is a normalization factor, which is defined to be the value
of the term in the numerator in the perfectly correlated case t′ = 0. For simplicity,
the correlator is calculated only for the uniform filling (ms = 1 ∀s) using the same
method as described in Sec. 3.1. The time correlations can be analysed by keeping
the final time t fixed and calculating the correlator for increasing values of t′. The
intermediate time value τt−t′ is calculated by erasing the t′ last braid generators from
the total braid word, such that braiding is switched off after t − t′ time steps. For
some braid words, the quantity τ(s′, s′′) is not well defined in this method, in which
case set τ(s′, s′′) = 0. The correlator for t = 18 is plotted in Fig. 5.5, which shows
that the correlations fall off exponentially after one step, indicating that effectively the
τ invariant maintains memory only for a short period of time, and the environment is
Markovian at long time scales. Note that because of the condition at = a′t, the braiding
at the last time step can always be trivially undone, therefore the last two time steps
are perfectly correlated. The correlator can also be calculated for other sites s 6= s0. In
these cases, the rapid falloff is observed for the central region s0−t/

√
2 ≤ s ≤ s0+t/

√
2,

and outside this region the falloff becomes linear at the furthest edge sites. The edge
behaviour is however irrelevant, as the behaviour of the quantum walk is determined
by the central region only.

The fundamental reason for the classical-like behaviour of the walker is the strong
entanglement between the quantum walk states and the fusion states, and the highly
mixing nature of the fusion space environment. The walker states stay entangled with
the fusion states for long time periods, and recurrences where these states become
uncoupled happen very rarely. Additionally, it was observed in the simulations that
increasing the number of possible configurations of anyons (ie. increasing randomness)
decreases the variance for Abelian anyons, but increases the variance for non-Abelian
anyons. One could interpret that there are two competing effects in the non-Abelian
walk, localization due to spatial randomness, and decoherence due to the fusion space
environment. Since increasing the amount of random configurations makes the walker
less localized, it could be argued that decoherence wins this competition and the be-
haviour is diffusive at long time scales.

Finally, the effect of temporally random phases in the spatially random Abelian walk
was also investigated. In this model the wave function is multiplied by a random -1
phase with some probability p−1 if the walker crosses a site belonging to the temporally
fluctuating region of sites. The calculations with different values of p−1 and different
sizes of the region up to 500 time steps showed that the behaviour becomes diffusive
in all these cases.
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Figure 5.5: Correlator C(t, t′) as a function of t′ with total number of time steps t = 18.
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6
Conclusion

The propagation of an initially localized anyon wave packet in a chain of station-
ary anyons has been studied for various anyon models, using a quasi-one-dimensional
discrete-time anyonic quantum walk model. The spatial probability distribution at
each time step can be computed by evaluating quantum link invariants, specifically
the Jones polynomial and the Kauffman bracket polynomial. The evaluation of the
probability distribution is exponentially hard in the number of time steps. Three dis-
tinct behaviours of the time evolution of the probability distribution are identified:
localizing, diffusing and ballistic. These are defined in terms of time dependence of the
variance of the distribution. The results are both numerical and analytical.

It has been demonstrated that Abelian and non-Abelian anyons behave in a qual-
itatively different manner. Abelian anyons exhibit properties which are analogous to
non-anyonic quantum walks: ballistic transport in case of translationally invariant sys-
tems, and localization under spatial disorder. Non-Abelian anyons behave in a way
similar to classical Brownian particles, diffusing slowly across the space. It is an in-
triguing observation that although the total evolution of the system is unitary and
highly non-Markovian, the effective system dynamics is similar to a classical random
walk, which is Markovian and non-deterministic. This effect can be explained by deco-
herence. The quantum speedup in the non-anyonic quantum walk seems to originate
from the quantum correlations between the position space and coin space. The non-
Abelian anyons possess a collective Hilbert space, the fusion space. Thus the evolution
of the spatial and coin degrees of freedom is not unitary, and decoherence degrades the
quantum correlations.

This chapter presents a detailed summary of results and discussion, and an outlook
for further studies.
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6.1 Summary of results and discussion

Finite systems with periodic boundary conditions were briefly studied in Secs. 2.4.2
and 2.4.3 for Ising anyons. For a small lattice size, the von Neumann entropy of the po-
sition+coin space fluctuates randomly around some average value, as does the entropy
of only the position space. The mixing is very similar for time-averaged probability
distribution of the classical random walk, quantum walk and anyonic walk. For a large
lattice size, the von Neumann entropy increases in time and approaches the maximum
value. The mixing time of the anyons is slightly slower than that of the quantum walk,
but the converge is smoother.

Chapter 3 considers the uniform charge configuration on an infinite lattice. If the
anyons were Abelian, the anyonic phase eiϕ cancels out and the dynamics is equivalent
to a non-anyonic quantum walk, which is ballistic. The probability distribution can be
computed by evaluating the Jones polynomial, and the evaluation of Jones polynomial
is polynomially hard in the number of crossings in the case of Ising anyons. However,
evaluation of the whole probability distribution is exponentially hard in the number
of crossings. The variance of the probability distribution was calculated numerically
up to 25 time steps, and it was observed to approach the variance of the classical
random walk which is linearly proportional to number of time steps t. By using the
assumption that the properness of a link is uncorrelated from the coin terms and
the sum over the Milnor triple point invariants, the variance can be approximated as
σ2

Ising(t) = σ̃2(t) +E(t), where E(t) is an analytical error term. It was also shown that

the density of proper paths is bounded from above by pP (t) < C
t2

, which is enough to
show that the non-Abelian anyonic walk is diffusive:

σ̃2(t) = σ2
RW(t) +O(1).

The slowdown of the walker particle is explained by decoherence. The fusion Hilbert
space of non-Abelian anyons grows exponentially in the number of anyons, and as
the walker propagates further it becomes entangled with an ever growing portion of
this Hilbert space. It was observed in Sec. 2.4.2 that when the Hilbert space of the
anyons is large, the von Neumann entropy of space+coin degrees of freedom approaches
the maximum value, ie. the quantum walk becomes maximally entangled with the
fusion degrees of freedom. In other words, the quantum walk system approaches the
completely mixed state and becomes effectively classical. Similarly, the mere position
degrees of freedom approach the maximally mixed state such that the entanglement
between position and other degrees of freedom is washed out.

The study was extended to spin-1/2 irreps of SU(2)k for arbitrary levels of k in
Chapter 4. The model was changed by relaxing the unitarity condition for the total
evolution of the system, and tracing out the coin and fusion degrees of freedom on every
second time step. The complexity of the numerical calculations was thus reduced and
the walk could be simulated efficiently for any level k. For Abelian anyons, the phases
cancel out similarly as in the fully coherent walk. The behaviour in this case is ballistic
[72]. Numerical calculations were carried out for various levels of k up to 100 iterations
of the superoperator and the variance of non-Abelian anyons was found to be linearly
dependent on the number of time steps for all k, with only slight deviation in the slope



6.1 Summary of results and discussion 97

for various k. The lowest coefficient of the variance (≈ 0.9877) was found for k = 3,
the highest (≈ 1.0655) for k →∞, and the coefficient of k = 2 (Ising anyons) is ≈ 1.0.
The probability distribution for k = 2 can be approximated as

pSU(2)2(s, t) =
1

2t

(
t

2t−(s−s0)
4

)
which is equal to the classical random walk distribution. Case k = 1 corresponds to
Abelian anyons and the walk was found to be ballistic in this case.

There are two kinds of decoherence mechanisms at work in the U2 model, one due
to the fusion space of the anyons and the other because the entanglement between
the spatial modes and the coin is lost in the tracing. Since the walk is diffusive for
k = 2 even when no tracing is done, it is not surprising that it is diffusive in the
U2 model as well. For higher values of k, it is known that when the walk is unitary
the probability distribution approaches the quantum distribution at small time scales
when k increases [55]. The additional decoherence introduced by the tracing is therefore
enough to render the walk diffusive for all values of k.

The anyonic walk in disordered backgrounds was studied in Chapter 5. In this
model, the behaviour of Abelian anyons is non-trivial. Numerical calculations show
that the probability distribution is peaked around the initial site, with exponentially
vanishing probability as a function of distance from the initial site. This is the sig-
nature of dynamical localization. By using a scattering model, it was shown that the
localization length is bounded by

1

ln(1 + |r|n)
2
n − ln |t|2

≤ ξloc ≤
1

ln(1− |r|n)
2
n − ln |t|2

with the anyonic braiding phase eiϕ, ϕ = π
n
. These results present a new kind lo-

calization phenomenon for Abelian anyons, where localization is caused by quenched
topological disorder. Random fluctuations of anyonic occupations between runs, but
not during runs, cause the walker to stay at its initial location with very high probabil-
ity. These results are analogous to non-anyonic quantum walks with spatial fluctuations
in the coin parameters.

For non-Abelian Ising anyons, the probability distribution was evaluated analyti-
cally up to 23 time steps by averaging over 100 charge configurations. The variance
is higher than that of Abelian anyons, but these results are not conclusive enough
to determine whether the walk localizes or not. Further numerical calculations were
performed using a continuous-time anyonic TEBD algorithm and these results show
diffusive behaviour for Ising anyons. It was argued that in the long time limit, the
non-Abelian term in the formula for the probability distribution introduces temporal
fluctuations in the walk. These fluctuations arise when the worldlines of the anyons
form structures called Borromean rings. As the formation of such structures should
not be very strongly correlated with other features of the walk, by results of Ref. [91]
the walk is diffusive in the presence of both spatial and temporal randomness. This
argument was further supported by considering the time correlator of the non-Abelian
term. The correlator falls off exponentially as a function of time steps, which indicates
that the non-Abelian term does not exhibit strong correlations in time.
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6.2 Outlook

The results in Chapter 3 hold equivalently for Ising anyons and spin-1/2 irreps of
SU(2)2. It is an open problem whether the spin-1/2 irreps of SU(2)k behave diffusively
for arbitrary levels of k when the charge configuration is uniform and the walk is
fully coherent. One would expect so given that braiding interactions cause strong
entanglement between the walker and the fusion degrees of freedom also for k > 2.
Furthermore, some intuition may be drawn from the U2 model. Since the non-anyonic
U2 walk is ballistic but the anyonic walk is diffusive for all levels of k, it seems plausible
that the unitary anyonic walk is diffusive also for higher values of k.

It is interesting to note that the slowdown of the non-Abelian anyon could be
exploited in topological quantum computing. There the errors appear as unwanted
pairs of anyons which are created from vacuum. If these erroneous particles braid non-
trivially with the primary particles and fuse back to the vacuum, the logical state of
the system can change. Thus, the propagation of unwanted anyons could be slowed
down by placing ancillary background anyons in the system, and the logical operations
could be done by dragging the anyons along certain paths which implement the correct
transformations.

The U2 model could be easily generalized to Un models where the walk evolves
coherently for n time steps instead of two. Evaluation of higher number of time steps
becomes increasingly hard, because the number of different Kauffman brackets that
need to be computed increases as the walker is allowed to do more steps between the
tracing operations. One might expect that for large n, the walker propagates diffusively
for n steps for small k and ballistically for large k, before the tracing is carried out.
However, as the variance of the anyonic U2 walk is linear even when k � 2, it is
expected that in the long time limit the variance is linear for all Un models, although
the walker might spread ballistically in the initial stage of the walk.

One interesting application of the results of Chapter 5 could be in distinguishing
Abelian and non-Abelian anyonic statistics experimentally. As discussed in Sec. 2.5,
the anyonic quantum walk could possibly be simulated in a ladder of point contacts in
Fractional Quantum Hall samples. In principle, the conductivity between two points is
proportional to the probability for a quasiparticle to propagate from one point to the
other. If the quasiparticle is initially localized at the initial point, the conductivity at
the final point should then be proportional to the quantum walk probability to reach
the corresponding site.

The results in Chapter 3 show that if each island is occupied by a single Ising
anyon, the transport of the mobile Ising anyon is diffusive. This could be interpreted
that the system is a normal conductor. If the anyons are Abelian, the transport is
ballistic and the system could be viewed as a superconductor. In practice however,
the island occupations are difficult to control. But by the results of the disordered
model, the fluctuations of the occupation numbers could be exploited to highlight
the statistical signatures of the quasiparticles. If the occupation numbers stay fixed
during the propagation of individual quasiparticles, the average pattern under quenched
randomness is diffusing for non-Abelian anyons and localizing for Abelian anyons. That
is, if the quasiparticles are Abelian and the distance between the points is larger than
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the localization length, the system is an insulator. The non-Abelian anyons behave
diffusively and the system is a normal conductor.

The properties of the continuous-time Hamiltonian model introduced in Sec. 5.3.2
are largely unknown. This non-chiral Hubbard-type model seems to reproduce the
quantum walk dynamics faithfully, although an exact mapping between the continuous-
time and discrete-time models, analogously to that for non-anyonic quantum walks
[97], is not yet available. Of particular interest are the properties of the ground state
of this model. The interactions are purely topological, and such phases of matter are
currently under theoretical interest. The phenomena in such systems can be considered
as second-order emergent phenomena, as the existence of quasiparticles in the ground
states of some parent systems is a mysterious emergent phenomenon itself. Some work
in this direction has recently been done in chains of anyons which interact via fusion
of quasiparticles [5].

Another research direction could be extending the study to topological interactions
between mobile quasiparticles. In real systems, there exist necessarily simultaneous
mobile quasiparticles which also interact with each other. Studies of multiparticle
quantum walks have recently been conducted for fermionic and other types of inter-
actions [98, 99], and certain types of interactions have been shown to support stable
molecular states [100]. Dynamical braiding interactions between mobile anyons have
not been studied before, and our intuition about the properties of these kinds of phases
of matter is weak.

Anyons are inherently two-dimensional particles, and the models studied here were
only quasi-one-dimensional. The physics of two-dimensional lattices has recently proven
to be very rich, and particles interacting in two dimensions support an overwhelming
variety of phases, which may be of interest in quantum computing applications. A nat-
ural extension of the anyonic quantum walk would thus be walks on two-dimensional
graphs. The analytical treatment of large number of anyons is complex, but the math-
ematics of these systems is developing. There are many examples in physics where
extending or decreasing spatial dimensions brings forward a host of new phenomena.
Perhaps something is waiting for us in two dimensions.
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