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Abstract

Quantum technologies like quantum computing, quantum communication or quantum metrol-
ogy promise astonishing advantages over their classical counterparts. However, they all re-
quire excellent control and protection of the involved quantum states. In this respect, photons
are ideal carriers of quantum information due to their robustness against decoherence and
the ease with which they can be transferred over long distances. At the same time they
suffer from weak interactions with matter and the large structures necessary, as given by the
wavelength of light. Combining quantum optics with plasmonic structures could open an
avenue to address these drawbacks while still benefiting from the advantages of photons.

We present for the first time the transmission of an entangled two-photon state through a
plasmonic aperture that is smaller than the wavelength of the light. Entanglement is the key
resource for many quantum information schemes and its protection of great interest. Strong
interactions with the nanoaperture usually destroy the entanglement of an arbitrary state. We
tailor a special state for the interaction — taking into account the specific properties of the
aperture — that leads to quantum interference and eventually protects the entanglement from
degradation. We experimentally demonstrate creation of this state, transmission through the
nanoaperture and successful protection of the entanglement.

On our way to this achievement, we improve our control over the spontaneous parametric
down-conversion source of photon pairs. We report a surprising dependence of the time
delay distribution between the photons of the pair on the position of the non-linear crystal.
We experimentally confirm the effect via quantum interference experiments and challenging
direct measurements of the arrival time. Furthermore, a novel reconstruction scheme for the
complex spectral biphoton wave function allows us to study the temporal correlations in more
detail and to shape the wave function. We experimentally demonstrate the reconstruction
in different situations and find an unexpected temporal distribution with a detection mode
carrying orbital angular momentum.
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The “paradox” is only a conflict
between reality and your feeling
of what reality “ought to be”.

Richard Feynman [1]

General Introduction

This first chapter introduces the goal of the thesis and some of its fundamental concepts in
terms understandable by any interested reader in order to give a general context. A more
technical and detailed introduction follows in the next chapter 2.

We start in section 1.1 with the question of what quantum physics is and how it is different
from classical physics. We answer very selectively with a few examples that will matter for
this work, especially light sources and entanglement. In section 1.2 we see how the unique
behaviour of quantum objects can be used in exciting applications that might transform every
day life. We conclude the chapter with section 1.3 by giving an overview over our work and
by exploring how it could help advance quantum technologies.



2 General Introduction

1.1 Quantum physics

Quantum physics was developed at the beginning of the 20th century as the result of searching
for new explanations and descriptions of phenomena that could not be explained satisfactorily
by theories at that time. A central role was played by electromagnetic radiation and its
understanding. During the 19th century the idea that electromagnetic radiation — including
visible light, ultraviolet, infrared — was a wave had solidified. Among other milestones
the double slit experiment of Young (1803), where light interferes like typical waves and
Maxwell’s equations (1861) describing electromagnetic radiation as waves were responsible
for this [1]. One unexplained problem was the emission spectrum of a so called black body
(a body that absorbs all incident light), for which classical theory predicts an ever increasing
energy emission towards higher frequencies. This results in a physically impossible infinite
energy. In 1900, Planck published a new formula for the black body radiation that avoided
the infinite energy. It was based on the idea that electromagnetic radiation is quantised in
energy steps of

E=hv , (1.1)

where v is the frequency of the radiation and 4 is a constant, now known as Planck’s constant.
This discovery, that light appears in quantised energy packets challenged the prevailing
picture of light as a wave. The explanation of the photoelectric effect by Einstein in 1905
further threatened the wave concept. This effect, where electrons are ejected from a metal
by incoming light, could also be elegantly explained by assuming that light exists in quanta.
All this would eventually lead to the so called wave-particle duality, one of the fundamental
features of quantum physics. Einstein and Infeld wrote in 1938 [2]:

But what is light really? Is it a wave or a shower of photons? [...] There
seems no likelihood of forming a consistent description of the phenomena of
light by a choice of only one of the two possible languages. It seems as though
we must use sometimes the one theory and sometimes the other, while at times
we may use either. We are faced with a new kind of difficulty. We have two
contradictory pictures of reality; separately neither of them fully explains the
phenomena of light, but together they do!

This coexistence of the two views of light and their selective use for different phenomena, can
be understood by considering a fundamental entity of quantum physics — the wave function.
The wave function represents the complete knowledge about a particle or system. A particle
— for example an electron or a photon — usually has several degrees of freedom, but we will
consider only space for the moment (disregarding relativistic problems for simplicity). The
wave function can then be thought of as assigning every point in space a probability amplitude
that the particle can be found at that point. Contrary to classical physics, the position is then
no longer a precise quantity, but inherently statistical in nature. The particle’s wave function
describes where it is likely to be found and where it is less likely, but there is no specific point
in space where it definitely can be found at a certain point in time. The wave function evolves
with time and behaves — as the name suggests — like a wave. This is the underlying reason that
particles in quantum mechanics behave as waves, in particular they can be thought of as the
wave of the probability amplitude. The particle behaviour manifests itself, once the particle
is detected. For example when measured in space, the uncertainty in the location vanishes
and the particle is found at exactly that location. The way wave functions behave and evolve
was formalised by Schrodinger in 1925.
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One other striking feature of quantum mechanics was first discussed by Einstein, Podolsky
and Rosen in an attempt to show that quantum mechanics is incomplete [3]. What they
considered an argument against the completeness of the theory was later acknowledged as
one of the defining features of quantum mechanics. The ability for two or more particles to
form a connected system — with one collective wave function — that behaves in a way which
can not be explained by treating the particles individually.

1.1.1 Light sources - classical and quantum

We now want to discuss different types of light sources, since a special source of quantum
light is used for the experiments described in this thesis. For the purpose of our comparison
of different light sources, the characterising features are coherence and counting statistics.
Coherence describes whether different parts (either in space or time) of a wave can interfere
with each other. If the phase relation between these parts is constant, interference is possible
and the wave is said to be coherent. The counting statistics provide information about
the expected distribution of detection events when measuring the arrival of single photons.
Assuming that a detector is placed somewhere in the vicinity of the light source and the
detector is capable of registering the arrival of single photons, the question arises, what is the
signal going to look like? We discuss these two important characteristics of light sources for
three different types.

(a)

P>
(b)

P>
(c)

60 00000 c00 0000 o

Figure 1.1: Schematic comparison between the three regimes of photon statistics. A stream
of photons is measured at a detector on the right and the spacing between photons can be
very different for the three regimes: (a) Super-Poissonian statistics, where random changes
in intensity lead to stronger fluctuations than those found in (b) Poissonian statistics, where
the arrival of a single photon is independent from the arrival of any other photon. (c)
Sub-Poissonian statistics, where photons are well separated and fluctuations are even smaller.

The first source of light is truly ubiquitous. It is thermal radiation, such as from an
incandescent light bulb or any other “warm” body. The motion of charged particles inside
any material causes electromagnetic radiation to be emitted and the higher the temperature,
the higher the speed of the particles and with that the higher the energy of the emitted radiation.
At room temperature most of the light is emitted as infrared, which is why we do not see
our surroundings glow in the visible spectrum. Independent waves with different frequencies
are emitted from different parts of the body, making the emission highly incoherent. Waves
emitted independently of each other have arbitrary and changing phase relationships, making
it impossible to observe interference. Regarding the counting statistics, thermal light tends to
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bunch together, due to fluctuations of the emission. This regime is called Super-Poissonian
statistics. Figure 1.1 (a) shows schematically such a stream of photons.

Another important source of light is the laser. Within an active medium, photons are
bounced back and forth, leading to stimulated emission of further photons with the same
properties. In contrast to thermal radiation, the atoms emit in phase, “knowing” of each
other, because of the common reference due to the light field itself. This gives rise to high
coherence. The photon statistics are Poissonian, meaning that the probability for the arrival
of a photon is independent of any other. Figure 1.1 (b) visualises such a stream of photons.
There is less bunching compared to the super-Poissonian case of (a).

A source that shows true quantum features is depicted in figure 1.1 (c). Here, photons
never arrive close to one another, they are perfectly anti-bunched. An experimental realisation
of such a source is a single photon emitter and has approximately been demonstrated in a
variety of systems. A true single photon source would be an invaluable tool for many quantum
technologies (see section 1.2) and is hence an area of intense research. The coherence of a
single photon source depends strongly on its specific implementation.

The photon source we use throughout this thesis is special in the sense that it produces
well separated pairs instead of single photons. A stream of many high energy photons is sent
through a non-linear crystal, where a small chance exists that a single high energy photon is
transformed into two lower energy photons. Due to the low probability of this happening,
pairs are well separated from each other and it is unlikely to get more than one pair at a
time. These photon pairs are used for a variety of applications. We discuss these so called
spontaneous parametric down-conversion (SPDC) sources in section 2.2 of the next chapter
in more detail.

1.1.2 Entanglement

We now want to focus on one quintessential feature of quantum mechanics: entanglement.
Entanglement plays a central role throughout this thesis and is an important resource for
many quantum technologies. In 1935 Schrodinger put it this way [4]:

I would not call that one but rather the characteristic trait of quantum me-
chanics, the one that enforces its entire departure from classical lines of thought.

Two or more particles can become entangled when interacting with each other and through
this interaction they can not be described independently any longer, but must be treated as
one system. Even if the particles were to be separated by large distances, they would still
form this unit and strangely influence each other. What is meant by influence in this context?
Following the argumentation of Gisin [5] we first take a look at classical correlation and then
argue that entanglement gives rise to a completely new type of correlation.

A correlation is a synchronised behaviour of two quantities or events A and B. This could
for example be the flow rate of municipal fresh water that suddenly jumps up when there
is a break in a major sports event. Science very often deals with such situations, where
a correlation is observed and a causal relation is wanted to explain the observation. The
correlation between the fresh water consumption and the course of the sports event is most
likely explained by an increased bathroom usage throughout the city, when the exciting game
is paused. In this case we say that the game influences and causes the behaviour of the water
consumption. So A causing B or B causing A is a first type of causal relation. Another one
is the so called common cause: A and B could be caused by C.
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It is important to note here that A causes B makes sense only if A even had the chance
to cause B. That means if, for example, B lies in the past of A, A causes B is not a valid
explanation for an observed correlation between A and B. To be more precise, we have to
take space into account as well. If A is too far away to reach B in time, A can not cause B.
“Too far away” is accurately defined by the speed of light. No information can be transmitted
faster than the speed of light. So, in order for A to cause B, they have to be separated in
space-time by at most the distance of a light signal connecting A with B. In this sense, we
speak of local correlations if they can be explained by causal relations, where the effect was
transported with at most the speed of light.

Quantum mechanics, as first discussed by Einstein, Podolsky and Rosen [3] allows for
non-local correlations. Non-local [6] means that there is no local causal relation possible.
Einstein, Podolsky and Rosen used this discovery as an argument against the completeness
of quantum mechanics in the sense that they expected a more fundamental explanation
of quantum mechanics could be found to resolve this non-locality. For these non-local
correlations to manifest, entanglement is necessary. A very simple example of an entangled
system would be two photons which have had a specific interaction at some point in time,
forming their special bond. After that, it does not matter how far they are separated, as long
as they are undisturbed, the entanglement will persist. Measuring one of the two, forcing
it to decide on a measurement result (collapsing the wave function), instantaneously [7]
determines the outcome of a measurement of the second photon. If those measurements were
always of the same type, such a behaviour could be explained with a classical correlation. The
classically inexplicable happens when the photons are measured in different basis, leading to a
type of correlation stronger than any classical correlation. Einstein called this “spooky actions
at a distance” (page 158 in [8]). Interestingly, those correlations were used by Bell in 1964
[9] to formulate inequalities that rule out the possibility of a more fundamental explanation of
quantum mechanics. One that both reproduces the results of quantum mechanics and restores
locality, as envisioned by Einstein. These inequalities have since been tested countless times
with different systems and improving accuracies and always found that quantum mechanics
and entanglement can not be explained by a local hidden variable theory [10-14].

1.2 Quantum technologies

Quantum mechanics is the ultimate description of nature. In particular, microscopic objects
(atoms, ions, electrons) can only be described with quantum mechanics. Since all matter is
made of atoms, it is difficult to draw a line between conventional technologies and quantum
technologies. However, one can roughly distinguish between two phases of technological
advances based on concepts from quantum mechanics.

The first phase built upon the ideas of quantised energies and the wave function and
generated such now ubiquitous technologies as the laser (1960) or semiconductor transistors
(1947). The transistor makes explicit use of the fact that electrons can tunnel through a
forbidden region, because their wave function extends past this region. The laser on the other
hand would not be possible without the quantised energy of light and the stimulated emission.
Only many years later did the second phase take off, starting with ideas around information
and entanglement.

A very prominent example of quantum information research is directed towards quantum
computation. Some tasks that are hard to perform on a classical computer, like for example
factoring a large number, can be done with a much more favourable scaling on a quantum
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computer [15]. Significant efforts are undertaken to research and prepare the building blocks
of a quantum computer and many different approaches in a variety of different systems are
explored. The main hindrance towards a working quantum computer are negative influences
of the environment on the delicate carriers of information. Nowadays a few of these so called
qubits can be controlled, but for a useful universal quantum computer thousands to millions
of qubits would be needed [16, 17]. As an intermediate goal quantum simulations emerge
as an exciting testbed for early quantum computers. Quantum simulations could efficiently
solve important problems in chemistry, since many of these problems depend on the quantum
mechanical behaviour of electrons.

A somewhat related topic is that of quantum cryptography [18, 19]. If a reasonably
powerful quantum computer would exist, current state of the art cryptography relying pre-
dominantly on public key encryption schemes, would be worthless due to the ability of
a quantum computer to factor large numbers efficiently. Luckily, quantum cryptography
provides a way to make communications inherently secure by using entanglement.

Quantum metrology [20, 21] as a last example of a novel technology made possible
by quantum mechanical effects, is also very promising. Measurements are fundamental to
science and making them as precise as possible is an ongoing effort in every area. Due
to inherent and unavoidable noise, there is a fundamental limit to the precision of classical
measurements. It can be overcome by using special quantum states [22]. A prominent
example where this may be of importance is the detection of gravitational waves by kilometre
long interferometers. The recent first ever direct measurement of gravitational waves by the
two LIGO interferometers [23] was performed without quantum effects. However, further
increases in sensitivity could be driven by quantum metrology. A first interferometer, GEO
600, already makes use of this [24].

1.2.1 Nanophotonics and quantum optics

Our work is situated at the interface of nanophotonics and quantum optics. Before we
introduce the aim of our work in the next section, we briefly discuss what the two fields can
offer to one another.

Nanophotonics studies the behaviour of classical light at the nano-scale and its interactions
with matter at this scale. Because the wavelength of light is large (visible light: 400 nm
to 800 nm) compared to objects a few nanometer in size, it is difficult to create strong
interactions between the two. This is overcome by using metallic structures, that are capable
of concentrating the electromagnetic field to very small volumes. Free electrons inside the
metal resonate with the external field, like in an antenna.

Quantum optics on the other hand studies the quantum features of light and how well
controlled quantum states of light interact with matter. A special emphasis lies on quantum
information encoded in these states. Photons are ideal carriers of quantum information due to
their robustness against influences of the environment. However, controlling and modifying
the quantum information can be difficult because of these weak interactions with matter.

This is where quantum optics and nanophotonics can benefit from one another. Nano-
photonics could provide the tools to process quantum information at the nano-scale. The
ability to fabricate dedicated structures, optimised for specific tasks may open new possibili-
ties. In the other direction, challenges in nano-photonics, like the sensing of single molecules
could profit from the introduction of controlled quantum states of light.
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1.3 Our work

The main goal of this thesis is to demonstrate the protection of an entangled quantum state
of light from degradation due to the interaction with a metallic structure smaller than the
wavelength of the light. We successfully engineer the state of a photon pair, considering the
specific behaviour of the nano-structure and show that it is quantum interference between the
two photons that protects the state. Both photons are created in a spontaneous parametric
down-conversion source, which we briefly mentioned in section 1.1.1. Subsequently, we
control their quantum state to ensure that they are entangled and let them interact with the
structure. Interference only happens under very specific conditions in this system and we
need very good control over the entangled state to achieve these conditions. We show that
only the entanglement of the one specific state is protected and all other photon pairs lose their
entanglement. The protection of entanglement is especially interesting for all experiments
dealing with quantum information, as entanglement is an important resource. We describe
the experiment and the theoretical foundations in chapter 5.

To reach the necessary control over the photon pair, we looked into effects on the time
delay between both photons. This work is presented in chapter 3. The photons are created
simultaneously from a decaying higher energy photon, but they propagate with different
velocities through the medium, where the down-conversion takes place. Interestingly, the
acquired time delay is incorporated in the wave function of the pair, leading to a true quantum
uncertainty about the delay.

The other important step towards our goal is described in chapter 4, where we discuss and
demonstrate a reconstruction scheme for the spectral wave function of the photon pair. The
spectral wave function encompasses complete information about the energies and the relative
time delay of the photon pair. The reconstruction protocol is based on careful measurements
of interference between the two photons under varying relative temporal and spectral shifts
with respect to each other.

We believe that this work constitutes a valuable contribution to current efforts under-
standing and exploiting quantum effects at the nano-scale. Many quantum technologies rely
on entanglement as a basic resource and protecting it from interactions with the environment
is crucial.
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Technical Introduction

In this chapter we introduce general concepts that are relevant for the following chapters.
We start in section 2.1 with a brief overview of the description of quantum states with wave
functions and density matrices. In section 2.2 we introduce the photonic quantum state
produced by spontaneous parametric down-conversion and the specific details of the source
used for all our experiments. This is followed by section 2.3, where we introduce the famous
Hong-Ou-Mandel interference. We continue in section 2.4 with a discussion of different
photonic degrees of freedom with an emphasise on the angular momentum of light. We show
how to control the orbital angular momentum with g-plates. We finally describe the action of
a plasmonic nanoaperture on a beam of light in the section 2.6, where the angular momentum
of light plays again an important role.
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2.1 Quantum states

Measurements in quantum mechanics are inherently probabilistic in nature. The transmis-
sion of a horizontally polarised photon through a polariser that is neither horizontally nor
vertically aligned can not be predicted with certainty. This uncertainty is not a mistake of the
experimentalist, nor is it a lack of knowledge about the system. It reflects the nature of the
wavefunction of the photon. With respect to the measurement basis, given by the polariser,
the photon is in a superposition between the parallel and the orthogonal state and it is only
due to the measurement that the wave function collapses onto one of the two possibilities.
Knowing the photon is linearly polarised in a certain direction, we know everything there is
to know about the photon with respect to its polarisation degree of freedom. Such a state,
for which we have full knowledge is associated with a vector in Hilbert space and is called a
pure state. For a specific choice of basis {|t//n>} it can be represented as a wave function

¥y = > calvm) (2.1)

n

where the coefficients c, fulfill 3 |c,|?> = 1. The wave function attaches a probability ampli-
tude to every possible measurement outcome of the degree of freedom under consideration.
Any state that can be written as a coherent superposition of pure states, is itself a pure state.

In contrast to this intrinsic probability, there may also be a lack of knowledge, for example
an uncertainty in the preparation of the state. This uncertainty can be incorporated into a
density matrix, which name is reminiscent of phase space in classical statistical mechanics
[25]. Such a system, where a classical probability is associated with more than one pure
state, is called a mixed state. The density operator can describe any quantum state, mixed or
pure and can abstractly be defined as:

p=> pilup)wil (2.2)
J

where p; are the classical probabilities to find the pure states |¢/;). These pure states are
added incoherently in this case. Here, incoherently means that to calculate the probability
of a certain measurement outcome, first the probability for every pure state is computed and
then a weighted average is taken over all pure state results. If a specific orthonormal basis is
chosen {|¢m>}, the associated specific density matrix elements are obtained as:

Pmn = <¢m| o |¢n> . (2.3)

The dimension of the matrix is given by the number of basis vectors. With this density matrix
it is straightforward to calculate the expectation value of an arbitrary operator O

<O> - w(p0) . (2.4)

Both mixed and pure states can conveniently be represented by density matrices. By
choice of a suitable basis, the density matrix can always be diagonalised. If and only if the
state is pure, there is exactly one eigenstate (and eigenvector) and thus only one element equal
to 1 on the diagonal and all other matrix entries are zero. This relates back to the fact that
any pure state can be described by exactly one Hilbert space vector. The condition for purity
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of the state represented by a density matrix can concisely be written as
r(p?) =1 . (2.5)

For any mixed state tr(p?) < 1 holds. Apart from this, the density matrix has a few more
important properties. In order for every ensemble average under the action of a hermitian
operator to be real, the density matrix must be hermitian as well:

Pmn = p;k;m . (2.6)

In simple words this means that the diagonal must be real and the off-diagonal elements are
complex conjugates of each other. Since the probabilities of the incoherent mixture must add
up to unity, it follows that

tr(p)=1 . 2.7

Also, the density matrix is positive semidefinite, which requires all diagonal elements to be
positive.

A system of more than one particle is entangled if it can not be described as a product
state of its subsystems. For two particles with states in Hilbert spaces A and B,

[W)a ® D) g (2.8)

is a product state. If the two particles are entangled, their state can not be written in this way.
A single entangled system as a whole may be a pure state, if however, the sub-systems are
considered individually, they behave as completely mixed states [26]. Deciding whether a
given system is entangled, is generally not trivial [27], but for the case of two particles with
two dimensional Hilbert spaces, a number of entanglement measures exist [28].

We use the concurrence as a measure related to the entanglement of formation. It is
defined for two qubits as [29, 30]

Cp) = max{0, V| = V&2 - V3 =}, (2.9)

where the A; are the ordered eigenvalues of the matrix p(o, ® oy)p*(0, ® o), which is the
product of the original and the single spin flipped density matrix. Here o is a Pauli matrix.
Additionally, we use the negativity as another entanglement monotone. In contrast to the
concurrence it is related to the entanglement that could be harvested from a given state and
defined as [30]

N(p) = max{0, —2Anin} (2.10)

where Apni, is the smallest eigenvalue of the partially transposed density matrix. Both
concurrence and negativity take on values between 0 and 1, where 1 indicates a maximally
entangled state and O indicates a not entangled state.

2.2 Photonic quantum states

We now introduce one of the most common sources of entangled photons, spontaneous
parametric down-conversion (SPDC). In the presence of a quadratic non-linear medium, a
high energy pump photon can spontaneously decay into two photons of lower energy. This is
one of many processes observed in non-linear optics. Non-linear in this context means that
the dielectric polarisation P(¢) of the medium in which the electromagnetic waves propagate,
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responds non-linearly to the electric field. This can be expressed as a Taylor expansion in the
electric field strength E(¢) [31]

P(t)~ YVE®) + YPE*@0) + xOE3 (1) + ... (2.11)

where y denotes the n-th susceptibility. For simplicity, we have written the equation in its
scalar form. In general we would need to write polarisation and electric field as vectors and
the susceptibilities as tensors. In many media, only y(! is significant and the response is
linear in the electric field strength. Even terms of the expansion occur only in media without
inversion symmetry. Under inversion E(t) — —E(t) and P(t) — —P(t), which requires all
even terms to be zero, if inverted and non-inverted equation 2.11 are to be equal. For SPDC,
the second order non-linearity is important, which imposes restrictions on the type of material
due to the required asymmetry under inversion. This excludes any disordered material from
the start and even many crystals.

We will now give a brief motivation for the emergence of frequency related non-linear
optical effects and eventually SPDC. We start from the wave equation

n? 0’E 4 P oniin
2 o2 2 o2 ’

(2.12)

where 7 is the index of refraction and c the speed of light in vacuum. P, is the part of the
polarisation due to higher order terms. This means that in vacuum or a purely linear medium,
the right side of this equation is zero. Assuming we have an incident field with two frequency
components w; and w»:

E(t) = Eye™™" + Eye ™ +c.c. (2.13)
the second order polarisation in the medium is given by

POty = YDEX 1) = x?|2E E] + 2E:E;
+E126—2iw1t + E226—2iw2t
+2E1Eze_i(w1+w2)t + C.C.

+2E Eje @m0l fce| (2.14)

Several effects of non-linear optics are readily visible in this equation. The two terms of the
first line correspond to a static electric field inside the crystal, since their second derivative (cf.
equation 2.12) vanishes. The next line corresponds to second harmonic generation, where
an incident wave is frequency doubled. This happens independently for both input waves.
The third line corresponds to sum frequency generation, where a new photon of combined
energy is generated by consuming two incident photons. The last line describes difference
frequency generation, which is the process we are interested in, because it becomes SPDC in
the limit of vanishing intensity of one of the two input beams. Usually, there is at most one of
these four different effects observable. This is due to conservation of energy and momentum,
which can not usually be fulfilled for all of these processes at the same time.

In difference frequency generation, the higher energetic photon of the two incident photons
is destroyed, a new lower energy photon is created alongside a new photon at the difference
frequency. The existence of the lower energy input photon stimulates this process. Even if
this photon is not present in the input field, the process can still occur spontaneously: SPDC
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[32, 33]. The decay of the high energy photon into two low energy photons — hence the down-
conversion part of the name — is then induced by vacuum fluctuations. All of the non-linear
processes named above are parametric, meaning that they leave the crystal unchanged. This
requires that energy between input and output photons is conserved. The crystal only serves
as a catalyst.

In SPDC, the high energy photon is typically called pump and the other two photons are
called signal and idler. The names can be understood from the historical context, where
down-conversion was often performed with non-degenerate photons where only one of them
was in the visible range and easily detected, the signal, and the other one in the infrared and
thus not easily detected, the idler [34].

The decay into two new photons happens only under specific conditions, called phase
matching. Both energy and momentum have to be conserved in the process

wp = Wy + w;
k, =k, +k; . (2.15)

Here the energy of each photons appears as the frequency w and momentum as the vector
k. Each photon (pump, signal and idler) is identified by the index to each quantity. The
conservation leads to correlations between frequency, momentum and polarisation of signal
and idler photons. For example in the production of heralded single photons [35] this is often
seen as a liability. If one of the two photons is detected, the other one is projected into a
mixed state, which is often unfavourable for quantum information experiments, where pure
states are required. As a countermeasure, the SPDC output has to be filtered strongly. On the
other hand, these correlations are also exploited in various directions. We will discuss some
examples in the section 2.4.

In a quantum mechanical framework, the state of the photon pair, the biphoton, after its
creation can be calculated under the reasonable assumption of a classical pump field [36] and
the final form is:

¥y = / dk, dk; dos doy D(ky, k;, o7y, 07) al(ky, o7)a'(k;, 07) |0) [0) . (2.16)

Here, a(k,, o) and a'(k;, ;) are the creation operators of signal and idler respectively. k
is the momentum vector and o the polarisation. The characteristics of the photon pair are
hidden in the mode function ®(ky, k;, o7, 07) . It contains the correlations between signal and
idler and is governed by the phase matching.

Experimentally, several different types of SPDC sources exist. The main classification
characteristics are the relative polarisations of pump, signal and idler, the emission direction
of signal and idler, and the type of non-linear crystal used. The relative linear polarisation
gives rise to three categories: in type 0 down-conversion all three photons carry the same
polarisation. If the pump photon is orthogonally polarised relative to the two down-converted
photons, the source is of type I and the case of signal and idler photons being orthogonally
polarised is assigned type II. All of these cases can be achieved with either different emission
directions of the down-converted photons or with collinear emission. We use collinear
type II down-conversion in the following experiments. Signal and idler being orthogonally
polarised gives us a straightforward way of separating them with a polarising beam splitter.
The advantage of using collinear production in the first place, lies in the ability to use rather
long non-linear crystals, which increases the number of photon pairs produced. This is a
somewhat recent development starting 2001 that only became possible with the introduction of
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periodically poled crystals [37]. Historically, so called critical phase matching was achieved
by tilting the optical axis of the crystal with respect to the pump beam. Introducing an
additional periodicity into the crystal, by alternating the optical axis, allows for the so called
quasi-phase matching [37-39]. With this technique the crystal can be fabricated to create
phase matching for a specific type of down-conversion and specific wavelengths. Fine tuning
of the phase matching is usually achieved by controlling the temperature of the crystal.
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Figure 2.1: Normalised spectra of signal and idler coupled into single mode fibres.

We use a 15 mm long, periodically poled potassium titanyl phosphate (ppKTP) [40]
crystal, with a poling period of 9.89 um, which allows us to achieve type II, degenerate,
collinear down-conversion with a pump wavelength of 404.25 nm at a crystal temperature
of about 60°C. Both signal and idler thus have a wavelength of 808.5nm, when their
wave-vector is parallel to the pump and slightly larger/smaller wavelengths at small angles.
Figure 2.1 compares the measured spectra of signal and idler photons. The width of the
down-converted spectra depends also on the pump bandwidth. In our case the pump is very
narrow with a width of only 5 MHz.

Our source produces approximately 8 x 10° signal photons per second and mW of pump
power inside the crystal, counted after coupling to single mode fibre. Although, SPDC relies
on the non-linearity of the medium, it is linear in the pump intensity [32]. That means the
number of photons produced scales linearly with the pump power and for our source the
maximum power is 24 mW. This number of signal photons per second can not be translated
directly to the number of pairs per second, because many of the pairs vanish due to losses of
one photon of the pair at optical elements, especially at fibre couplings and inefficient photon
counters. A typical ratio of intact pairs to single photons, lies at about 10 %. The decay
probability for a single pump photon lies on the order of 107!2.

2.3 Hong-Ou-Mandel interference

Interference is well known in classical physics, when two waves overlap. The classical picture
can even be applied to single particle interference. The interference of two or more particles,
however, is a purely quantum mechanical phenomenon and was first observed in the case of
photons by Hong, Ou and Mandel [41] and reported in their seminal paper in 1987. It is now
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Figure 2.2: Schematic of the input and output ports of a non-polarising beam splitter, used
for Hong-Ou-Mandel interference.

used for a wide variety of experiments and techniques in quantum information science. For
example to entangle photons [42, 43], to teleport them [44] or in optical quantum gates [45].

A schematic of the Hong-Ou-Mandel interference is shown in figure 2.2. Sending a single
photon into one of the two input ports of a non-polarising beam-splitter,

al —s % (8} +5}) (2.17)
al — % GEIE (2.18)

results in a superposition of the two output modes. Here, a7 denotes a creation operator in an
input port and b' the creation operator for a photon in the output mode. Having one photon
in each of the two inputs together leads to behaviour that can not be explained classically

fal — % (B} + B3) (5] - B5) = % (B -87) (2.19)
Namely, the two photons always leave the beam-splitter together. The cancellation of the
mixed term is of course only possible, if the two photons are indistinguishable in all their
remaining degrees of freedom, apart from the spatial mode they are in. Indistinguishability
here means that it is impossible to identify the photons based on a measurement. In type
IT SPDC for example, signal and idler photon acquire different time delays while traveling
through the non-linear crystal and they still interfere with each other, if the delay distribution is
symmetric and the average delay is zero. The important point here is that the joint probability
distribution of both photons in each degree of freedom must be symmetric. Distinguishable
input photons would require the creation operators in the output to be different, preventing
any interference.

Experimentally, Hong-Ou-Mandel interference is observed by counting coincidences
between the two output ports, while changing the distinguishability of the two input photons.
If they are indistinguishable the rate of coincidences will drop, ideally to zero, since all
photons will leave the beam splitter in pairs. We show one example of such a resulting
dip in figure 2.3. In this measurement, we have used photon pairs from our spontaneous
parametric down-conversion source (cf. section 2.2), split them, changed their relative time
delay via a path length difference and then overlapped them on the beam splitter. Figure
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Figure 2.3: Example of a Hong-Ou-Mandel dip in the coincidences count rate as a function
of the relative time delay between signal and idler photon. With perfectly indistinguishable
photons the dip should extend to zero coincidences at zero time delay. In this measurement,
however, the photons are slightly distinguishable, especially in frequency.

2.4 schematically depicts this measurement. A figure of merit for Hong-Ou-Mandel dips
is the visibility of the interference defined as V = (C(c0) — C(0))/C(c0), where C(0) is the
coincidence count rate at the minimum of the dip and C(c0) the count rate far away from the
minimum, where there is no fluctuation anymore.

Apart from the dip visibility being a measure for the indistinguishability of the two
photons, the interference dip also reveals information about the spectrum. For a specific
spatial mode, the shape of the Hong-Ou-Mandel dip is given by the Fourier transform of the
spectra of the photons.

Due to the importance for practical schemes and its fundamental significance, the Hong-
Ou-Mandel interference has been demonstrated in a wide variety of different systems. In
principle the interference can be observed for any pair of bosons, since equations 2.18 and
2.19 are generic. One of the difficulties of translating the interference to other systems is
the implementation of the beam splitter. This has been overcome for example for atoms [46]
with Bragg scattering or for plasmons [47] with waveguide evanescent couplers. Another
remarkable experiment interferes phonons in trapped ions [48]. Coming back to photons,
there is also a lot of interest to show the interference of photons from independent sources
[49, 50], as this signifies their indistinguishability and thus demonstrates good control over
the individual sources. Interestingly, a similar effect has recently been observed for electrons
[51], where due to the Pauli exclusion principle, the electrons always leave the beam splitter
separately.

We can use the Hong-Ou-Mandel interference to study the behaviour of our source. See
figure 2.5 for an example comparing two different pump beam waists. As discussed in section
2.4, the pump beam waist controls the degree of spatial entanglement, but it also influences
the spectral width of the down-converted photons. In figure 2.5 (a) we see that the spectral
width is much smaller for a large pump beam waist than for a small waist. The temperature of
the non-linear crystal shifts the spectra of signal and idler with respect to each other and thus
allows us to measure the overlap between the two. Comparing to figure 2.5 (b) it becomes
apparent, that the temporal width is inversely connected to the spectral width [52].
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detector

Figure 2.4: Schematic of a spatial delay line to create a Hong-Ou-Mandel interference dip as
shown in figure 2.3. Photon pairs arrive on the polarising beam splitter (PBS) from the left
and are split. One of photons takes a path with a variable length before both photons overlap
on a 50:50 beam splitter (BS), where the quantum interference takes place. The signature of
a reduced coincidence rate is measured with single photon counters, if the path-lengths of
both photons are equal.

2.4 Photonic degrees of freedom

A single photon can in principle be created in arbitrary electromagnetic modes and thus inherit
the properties of these modes [53, 54], energy, wave-vector, helicity, total angular momentum,
etc. The situation becomes more complex, when considering correlated photon pairs. In the
following we discuss pairs generated by spontaneous parametric down-conversion and their
degrees of freedom.

The most fundamental correlation between signal and idler photons from SPDC, is their
temporal connection. Usually, since the down-conversion is parametric, they are born at the
same time and are thus strongly correlated in time [34]. This fact is used to identify two
photons as a pair and for the generation of single photons, where the detection of an idler
photon heralds the existence of a signal photon. Correlation in time automatically entails
anti-correlation in frequency, via Fourier duality. The opposite case of correlated frequencies
and anti-correlated timing has been shown with pulsed pump beams in long crystals [55-57].
In our source, we are using continuous wave pumping and thus observe frequency anti-
correlation. Control over the separation of signal and idler mean wavelengths is possible via
temperature tuning the non-linear crystal or by changing the pump wavelength for a specific
non-linear crystal.

The reason for all correlations can be found in the phase matching conditions (cf. equation
2.15). Similar to time and energy, also space and momentum correlations can be found in
SPDC pairs [58-62]. By moving between real and Fourier space in the far field of the
source, these correlations can be interchanged [63], from correlation to anti-correlation in
space (or vice versa in momentum). A convenient basis to analyse spatial correlation of
the down-converted photons are the Laguerre-Gaussian modes, which are eigenstates of the
orbital angular momentum of light (see next section 2.5). Since they form a complete set of



18 Technical Introduction

(a) (b)
2
s 0.6 0.6
8
=
g
5 0.4 0.4 |
g
S
=
2 0.2 0.2
=
H
:2 0 T T T 0 T T T
40 50 60 -2 0 2
Crystal temperature (°C) Time delay (ps)

Figure 2.5: Direct comparison of the Hong-Ou-Mandel dips with two different pump beam
waists. The blue data points correspond to a beam waist of 5.4 pum and the purple measurement
to a beam waist of 32.4 um. Coincidence rates are normalised such, that the coincidence rate
for fully distinguishable photons is 0.5. (a) Hong-Ou-Mandel dip as a function of the crystal
temperature and (b) as a function of the relative time delay. Dip width in crystal temperature
and relative time delay are inversely related.

solutions for the paraxial Maxwell equations, every mode function (cf. equation 2.16) can
be expanded in Laguerre-Gaussian states [64—66], carrying orbital angular momentum. The
degree of spatial correlations between signal and idler photons can be controlled by choosing
the beam waist of the focused Gaussian pump beam inside the non-linear crystal [59]. The
dependence is a convex function of the beam waist and on either side of the minimum, the
down-converted photon pairs are entangled in orbital angular momentum [67, 68].

All of these correlations are unwanted for the generation of heralded single photons from
SPDC. Here, great efforts are being undertaken to remove and minimise the correlations [35].
Otherwise, the purity of the heralded photon is degraded, since properties of the detected
photon would in principle allow to obtain information about the heralded photon.

2.5 Angular momentum of light

The total angular momentum of a beam of light is often described as a combination of the
well known spin orbital angular momentum, which is connected to the polarisation and the
orbital angular momentum [65, 69], which is connected to the phase front of the beam. With
highly focused fields the separation between spin angular momentum and orbital angular
momentum disappears and a better description is given in terms of total angular momentum
J; and helicity A [70]. However, in the paraxial limit, spin and orbital angular momenta can
describe the fields well [71] and for this section, we will keep to this separation, since it is
widely used in the literature.

In a beam of well defined spin angular momentum, the spin can take one of two values:
S, = =h, corresponding to left and right circular polarisation. For the orbital angular
momentum an infinite number of values are possible: L, = [h with integer /. Solutions to
Maxwell’s equations that have a well defined orbital angular momentum are the Laguerre-
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1=-1

Figure 2.6: Overview over wavefront (left column), phase (centre column) and intensity
(right column) of three Laguerre-Gaussian beams. The upper row shows a beam with one
quantum of of orbital angular momentum per photon, which corresponds to an azimuthal
index of /[ = 1. The middle row shows / = 0, which is identical to a Gaussian beam and the
last row shows a beam with [ = —1. In all cases the radial index is zero.

Gaussian modes. Figure 2.6 compares three of those beams. A Laguerre-Gaussian beam is
defined, among other quantities, by its azimuthal index /, which is equivalent to the number
of quanta of orbital angular momenta carried per photon. Mathematically, this manifests as
a phase factor /¢ in the electric and magnetic field strengths, where ¢ is the angle around
the propagation axis. The upper row of the figure shows a first order Laguerre-Gaussian
beam with / = 1, which carries one quantum of orbital angular momentum per photon.
Characteristically, the phase front wraps around the axis of propagation as seen in the first
column, where a surface of constant phase is shown. The phase in a plane perpendicular to
the propagation axis is depicted in the second column with the vortex of undefined phase
in the centre. In the intensity pattern shown on the right, this vortex results in a vanishing
intensity in the centre and the typical doughnut shape. In the case of / = 0 a Gaussian beam
is retrieved, as shown in the second row. The phase fronts are flat and separated and the
intensity profile is the well known Gaussian bell curve. A beam with / = —1 again carries one
quantum of orbital angular momentum per photon, but this time with inverted orientation of
the rotation.
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Figure 2.7: Camera images of the beam profile of an initially Gaussian beam after having
passed through a g-plate that is electrically switched off (a) or on (b). Both images employ
the same colormap, showing intensity with arbitrary units.

Electromagnetic beams carrying orbital angular momentum have found applications in
a number of different areas. Combining a Gaussian beam to facilitate fluorescence in mi-
croscopy samples and a Laguerre-Gaussian beam to inhibit it again in a ring around the
excitation, has allowed surpassing the diffraction limit with stimulated emission depletion mi-
croscopy [72] as one example. The theoretically unlimited range of orbital angular momenta
available makes it interesting for information multiplexing [73] in optical communications.
In the field of optical trapping, orbital angular momentum provides a tool for manipulation
and sensing of small particles [74, 75]. In Astronomy, analysis of orbital angular momentum
might add additional information about a source [76] such as the surrounding of a black hole
[77].

The applications mentioned so far are concerned with angular momentum of classical
beams. But also for quantum information technologies, orbital angular momentum is of great
interest [67]. For example Hong-Ou-Mandel interference has been demonstrated between
single photons of variable orbital angular momentum [78]. And recently, a quantum memory
was realised for states carrying orbital angular momentum [79].

For all these applications of orbital angular momentum, controlled creation and detection
of specific modes is important. Detection of orbital angular momentum [80, 81] is intimately
connected to its creation. Early schemes to modify the orbital angular momentum content of
a beam relied on polarisation independent methods like cylindrical lenses [69], spiral phase
plates [82] or holograms [83], directly imposing the helical phase that is characteristic of
orbital angular momentum beams.

More recently, Prof. Lorenzo Marrucci and coworkers [84, 85] have developed a method
that couples spin with orbital angular momentum using anisotropic inhomogeneous media.
In a slab of liquid crystal, the optical birefringent axis is changed locally, creating a pattern
with a topological charge in the centre. This charge determines the amount of orbital angular
momentum being transferred. The orientation of the optical axis wraps around the centre
g times, where ¢ must be integer or half integer, since the optical axis does not have a
polarity. Figure 2.8 shows the orientation of the optical axis schematically for two different
g-plates. The change of the optical axis creates a topological defect at the centre of the
plate with charge g. The change of the orbital angular momentum is then Al = +2¢, where
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() (b)

Figure 2.8: Schematic of the orientation of the local optical axis within the liquid crystal of
a g-plate, indicated in each point by the tangent to the curves shown. (a) g-plate with ¢ = 0.5
and (b) with ¢ = 1. Figure adapted from [84].

the sign is determined by the circular input polarisation. This polarisation is flipped in
the transformation. That means for g = 1 the transfer happens purely from spin angular
momentum to orbital angular momentum without any momentum exchange with the g-plate.
The theoretical efficiency can be very high, approaching 100 % [86]. For the experiments
described later in this thesis it is very convenient that the g-plate can be electrically tuned
and switched from in-active to active [87, 88], as shown in figure 2.7 for a beam of SPDC
photons in a Gaussian state.

2.6 Plasmonic nanoapertures

The study of light scattering off sub-wavelength apertures has been an active area of research
for many decades now, starting with the seminal theoretical investigation by Bethe [89] in
1944. Since then, the discovery that the transmission through apertures in metallic films
can be much stronger than predicted by Bethe [90], created a lot of interest. The effect is
now known as “extraordinary transmission” and is attributed to the excitation of localised
plasmons at the interface of metal and dielectric [91].

The key behaviour of isolated circular nanoapertures for the experiment reported in this
thesis, is their influence on the helicity of transmitted light [92]. Since the light must be
focused strongly, the separation into spin and orbital angular momentum is not adequate.
Instead, total angular momentum and helicity — the projection of the total angular momentum
on the linear momentum — provide a valid description both in the paraxial limit as well as for
arbitrarily focused beams [70]. For all experimental purposes, however, one can think of the
two helicity states just as left and right circularly polarised. This is possible, because both in
preparation and detection the beam is virtually paraxial and due to the fact that an aplanatic
lens [93] does not alter the helicity state [94].

An incident photon of well defined helicity A and total angular momentum m undergoes
a transformation into a superposition of an output photon with the same helicity and one of

opposite helicity:
51 A N
a, n — abm’A + ,Bbm,_A . (2.20)
The creation operator for input photons is denoted here as a' and the creation operator for
photons after the interaction with the nanoaperture as b'. The relative strength of changed

and unchanged helicity fields is governed by the two coefficients @ and . The total angular
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momentum is conserved due to the cylindrical symmetry of the system. The helicity on
the contrary is not conserved in this interaction, because of the broken duality symmetry
[70]. The relative strength of the output fields with changed and unchanged helicity naturally
depends on the specifics of the nanoaperture and the incident field. Generally, however, for
smaller apertures they become more and more comparable, due to the stronger coupling to
large transverse momenta [92]. The probability of a helicity flip, given by the parameters o
and S can only be determined experimentally [92, 95] or via simulation [96].
If the input for example is a right circularly polarised Gaussian beam

aj, — ab]  +pb}_ (2.21)
the collimated output after the transmission through the aperture consists of an identically
polarised Gaussian beam and a left circularly polarised Laguerre-Gaussian beam carrying
two quanta of orbital angular momentum / = A — m per photon.



Controlling the SPDC Wave Function

Photon pairs from spontaneous parametric down-conversion are a widely used resource for
photonic quantum technologies. Because all of their degrees of freedom can be tailored
for specific applications, these photon pairs are very versatile. Control over all degrees of
freedom is essential for our project in order to understand the coupling to nanostructures.
In this chapter, we report a novel way of influencing the temporal wave function. This is
especially important for experiments relying on the interference of the two photons and their
indistinguishability.

We have found, studied and explained the surprising behaviour of temporal correlations of
the pair with respect to the position of the non-linear crystal for type II, continuously pumped
SPDC. We attribute this behaviour to the interplay between spatio-temporal correlations of
the wave function and selective detection. To measure the influence of the crystal position,
we have developed a method to directly measure arrival time differences with a resolution of
a few 0.1 ps even with single photon detectors which time resolutions are limited to several
10 ps.

Starting in section 3.1, we recount the circumstances that lead to the finding and present
a first measurement based on Hong-Ou-Mandel interference. In section 3.2 we discuss why
this is a surprising behaviour and in that course examine where SPDC photons are created in
a finite length non-linear crystal. We subsequently present the theoretical reason behind the
effect in section 3.3. Afterwards in section 3.4, we start with a discussion of the technique
used for the first measurement and also introduce the direct time delay measurement method,
which allows us to extend the measurement to other detection modes. In the following
section 3.5 we present the measurement results based on the new method, demonstrating the
robustness of the effect against spatial and spectral filtering. We conclude the chapter with a
discussion of the findings and their impact in section 3.6.

3.1 Motivation

During the course of this project we developed and built the SPDC source described in
section 2.2 with the objective in mind to interact with plasmonic nanostructures. As part of
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Figure 3.1: Shift of the Hong-Ou-Mandel dip position as a function of the down-conversion
crystal position (blue dots) shown together with the visibility (solid grey line) and the singles
count rate (dashed purple line). The Hong-Ou-Mandel dip position for each data point is
extracted from a full Hong-Ou-Mandel dip scan.

the characterisation process, we set up a Hong-Ou-Mandel interference experiment to test
the indistinguishability of the down-converted photons. Surprisingly, we found that after
determining the dip position once and then measuring the dip visibility only at this position,
the visibility changed strongly between measurements. It was only after some tests, that
we found the longitudinal position of the non-linear crystal with respect to the pump beam
waist to influence the location of the Hong-Ou-Mandel dip. We then performed a systematic
measurement, changing the crystal position along the beam axis and recording the location
of the resulting interference dip. We show in figure 3.1 (blue dots) the path length difference
necessary for optimal interference as a function of the non-linear crystal position. Alongside,
we also show the visibility of the underlying Hong-Ou-Mandel dip (solid grey curve) and the
singles count rate (dashed purple curve). Zero crystal displacement corresponds to a centred
pump beam focus and positive values indicate a shift in the direction of pump propagation.
The crystal has a total length of 15 mm. Due to diffraction of the pump beam and its interplay
with the crystal movement, the pump focus lies within the crystal from —5 mm to 5 mm. We
see that the dip position changes nearly linearly within this interval over a total path length
difference of 1.2 mm, which is equivalent to a time difference of 4 ps. Both singles count rate
and visibility drop off as soon as the pump focus leaves the crystal.

We did not expect such a behaviour, that could naively be attributed to a localised creation
of photon pairs inside the crystal. In the following, we will discuss where SPDC photons are
created and how this puzzling effect can be explained.

3.2 Where are SPDC photons created?

Why does it matter where photon pairs are born in a non-linear crystal? For type II SPDC
(cf. section 2.2), the two photons are orthogonally polarised and the non-linear crystal
is birefringent. This means, both photons experience different group velocities inside the
crystal. This difference will lead to a time delay between signal and idler photon and its
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magnitude depends on the distance they travel through the crystal. A pair created close to
the end facet of the non-linear crystal, leaves the crystal with only a small time delay and a
pair created in the front, will acquire a large delay. Having a delay between the two photons
affects their distinguishability and this is important for all experiments based on quantum
interference of two photons.

In brief, the answer to the question of birthplace is that there is no specific place of
creation, as long as the pair is not measured. SPDC is a coherent process [34] and each pair
has the same probability distribution of time delays. A specific delay only manifests itself,
when the pair is measured. Probabilities from the front to the end of the crystal coherently
add up to the final temporal wave function of the pair.

In the following, however, we describe measurements and present results that show a
dependence of the measured time delays on the position of the down-conversion crystal with
respect to the pump beam focus. This would seem at odds with the coherent production. One
could now argue, that even if the creation is coherent, there may be places in the crystal that
are more likely to produce a photon pair than others, like for example at the pump focus. This
effect would indeed alter the temporal wave function when moving the crystal. However,
such a region does not exist. Even though SPDC is a non-linear process, the production of
pairs is linear in the pump intensity [32], because in our case pump depletion is negligible,
due to the very small total efficiency of the process. This means the number of pairs created is
independent of the pump intensity distribution and only depends on the total power [97, 98].
As long as the pump beam is fully contained within the transverse extent of the crystal, a
locally varying production efficiency can thus not explain our observations.

We show in the following section that the reason for our observation lies in the combination
of spatio-temporal correlations [99] of the SPDC wave function, a spatially dependent phase
imprinted by the collection lens and the fact that not all photons are detected. Such correlations
between different degrees of freedom of SPDC pairs are often unwanted. For example in
heralded single photon generation [35, 100], where correlations between the heralding and
the heralded photon negatively impact the purity of the heralded photon. One common way
of overcoming these correlations is by filtering in the relevant degrees of freedom [101]. In
other situations, these correlations can however also be used and are a subject of focused
research efforts [102—105].

We know of only one work that looked into the influence of the non-linear crystal position
on the biphoton state. Di Lorenzo Pires and coworkers [97] analysed intensity patterns at the
exit facet of the non-linear crystal in dependence of its position for type I SPDC.

Coming back to the question of where SPDC photons are created, the answer of coherently
created photons over the whole length of the crystal is still valid. But, we have found a way
to influence the temporal correlations in a non-trivial way, by using the spatio-temporal
correlations of the wave function.

3.3 Theoretical explanation of the time delay shift

We want to briefly show the general line of argument for explaining the time delay shift in
this section. A detailed account is available in reference [106] and Nora Tischler’s PhD thesis
[107].

Any effect on the temporal correlations must be connected to the two-photon wave
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Figure 3.2: Illustration of the spatio-temporal correlations of the SPDC wavefunction. We
depict here the probability to observe a photon with specific combination of g, and Q and
gy = 0, while not considering the other photon. The solid line emphasises the quadratic
dependence between Q and |q|>. The probabilities are based on simulations of the SPDC
wavefunction for experimentally relevant parameters by Nora Tischler.

function:
|\P> = / dqs dql dws (D(qs’ qi, Wy, wi) a\T(an Wy, O-S) dT(qi’ Wy, O-i) |0> s (31)

where ( is the transverse wave-vector, w the angular frequency, and o the polarisation. The
subindices indicate signal s or idler i photons. The photon creation operators d'(q, w, o) are
characterised by transverse wavenumber, frequency, and polarisation. The mode function
d(q,, q;, ws, w;) contains all correlations and specificities of the creation process. We integrate
over only one angular frequency here, because we can safely approximate our narrow band
pump laser as a monochromatic field, which fixes the idler frequency: w; = w,—w; and we can
write the frequencies in terms of the deviation from half the pump frequency w;/; = w,/2+Q.

To understand the origin of the time delay shift, we then calculate the second order
correlation function between signal and idler photons with a variable delay between them:

G1) = ‘<0| EN -1/ (e +1/2) 1) L (3.2)

Experimentally, this second order correlation function can be measured through the number
of coincidences as a function of the time delay. By inserting our specific two-photon wave
function, it should reveal the origin of the dependence on the crystal displacement. We find:
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where L is the length of the crystal, k, are longitudinal wave-vectors and g(qs, ;, z.) depends
on the spatial collection modes. The first exponential term is due to the propagation of
the photons through the crystal. The cardinal sine term originates from the phase matching,
where Ak, = k,;— kg, —k; is the longitudinal wave-vector mismatch. The second exponential
term captures the effect of the collection lens and is especially interesting with respect to
explaining the time delay. It connects the distance between non-linear crystal and collection
lens d with the transverse momenta q and q; for signal and idler. This is the first ingredient
to the explanation of the time delay shift. The second ingredient is the non-linear relationship
between transverse momenta and the frequency of signal and idler. Indeed, it has been shown
[103, 107], that Q and |q|? are linearly related, when the photons propagate along one of the
crystal axes, as in our case. We show this relationship for a simulated wave function in figure
3.2. Numerical calculations show that without spatio temporal correlations of this form, no
such time delay can be observed.

Combining both ingredients leads to a time delay, because the exponential from the
collection lens effect now connects distance d with the frequency difference of signal and
idler. After the integration over Q the exponential depends on the time delay 7 relative to the
distance between crystal and collection lens d. In a simplified model, equation 3.3 reduces to
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momentum. We see that the important exponential depends on 7, which in turn depends on
the distance between crystal and collection lens and is thus responsible for the time delay. The
average time delay increases, when d is reduced. A detailed derivation is given in reference
[106, 107].

3.4 Measuring small time delays

A modern silicon avalanche diode has a timing resolution of a few tens of picoseconds to a few
nanoseconds, depending on quality, as well as desired wavelength and quantum efficiency.
This resolution is large compared to the maximum delay a pair can acquire over the length of
a typical SPDC crystal of a few mm. In our case, the ppKTP crystal has a length of 15 mm,
which corresponds to a maximum delay of 5.3 ps. To measure any shift of the average time
delay within this interval, a resolution below 1 ps is necessary.

Hong, Ou and Mandel demonstrated in their seminal paper [41], how to use the two photon
interference to translate a time measurement into a length measurement, by varying the path
length of one of the two photons before overlapping them. We have used this approach in
section 3.1, showing that the necessary path length difference changes with the positioning of
the SPDC crystal, which in turn signals a change in the time delay. In addition, we also show
that it is indeed possible to measure the time delay directly, using modern avalanche photo
diodes. This enables us to test the effect under different experimental conditions. Figure
3.3 shows the basic structure of our experiment for both types of measurements. The pump
beam of 404 nm wavelength is focused into the ppKTP crystal. The crystal can be displaced
along the pump beam axis by a computer controlled stage. The down-converted photon pairs
are collected by another lens and then separated from the pump beam by a longpass filter. A
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Figure 3.3: Experimental setup for time delay measurements in dependence on the longi-
tudinal position of the down-conversion crystal with respect to the collimation lens. The
pump beam is focused into the SPDC crystal and the down-converted photons are collimated
by another lens. A longpass filter rejects the pump beam and then the pair of orthogonally
polarised photons is split by a polarising beam-splitter and coupled into fibres. We subse-
quently employ two different measurement schemes that are not shown in this schematic.
The photons are either directly detected by avalanche photo diodes and their arrival time
difference measured, or their delay is measured via a Hong-Ou-Mandel interference on an
additional fibre based beam-splitter, before the detectors. For this Hong-Ou-Mandel type
measurement, one of the fibre-couplers can be displaced along the beam axis.

polarising beam splitter then sends signal and idler photons along different paths. From here
on, the two measurement techniques diverge.

3.4.1 Hong-Ou-Mandel based approach

Measuring a length is much easier than measuring the corresponding time interval for photon
delays on the order of a few picoseconds. Our initial measurement thus employed a standard
Hong-Ou-Mandel interferometer to measure changes in the time delay distribution between
signal and idler photons when displacing the down-conversion crystal. After the pair has been
split, each photon is coupled to a single mode fibre and they are then overlapped again on a
fibre beam splitter. One of the incouplers is mounted on a movable stage, which allows us
to control the relative path length from the polarising beam splitter to the fibre beam splitter.
Coincidence events between the two output ports are registered with avalanche photo diodes
connected to a time to amplitude converter. If the path-length difference exactly compensates
the inherent time delay of the photons, a reduction of the coincidence count rate is observed
(cf. section 2.3). By recording the necessary path-length difference to compensate the time
delay as a function of the SPDC crystal position, we can observe the behaviour of the temporal
correlations. Additionally, the shape of the interference dip offers insight into the spectrum
of the photon pair. However, this measurement scheme can only be used with single mode
fibres and thus keeps us from measuring the time delay in other detection situations. We
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address this shortcoming in the following with a direct time delay measurement, where we
can use arbitrary detection modes.

3.4.2 Direct time delay measurement
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Figure 3.4: Example histogram showing the distribution of arrival time differences between
signal and idler photons. Black circles indicate counted number of photons and the blue line
shows the fit to the data, from which the peak position is extracted. The width of the peak is
dominated by the timing jitter of the APDs. Due to slight electrical differences between the
two counting channels there is always an offset in the time difference and only relative changes
are important. The absolute time difference between signal and idler can be measured by
exchanging them in the detection channels with a half wave-plate. The integration time for
the shown histogram was 52s. One time bin is 4 ps wide. Indicated as a grey stripe is the
temporal width over which the time delay of a photon pair from our crystal could theoretically
vary.

To allow for the measurement of different detection modes we also implement a direct
time measurement. In this case, we remove the fibre-beam splitter. Instead, we either
attach single photon counters directly to the single mode fibres or remove the fibre coupling
altogether and use free space detectors to capture a much larger fraction of the photon pairs.
The connected time to amplitude conversion electronics (see appendix A for details on the
coincidence detection system) builds a histogram of recorded delay times. The challenge of
this approach is captured in figure 3.4, where we show such a histogram. The black circles
depict data points, the blue line is a fit to the histogram peak and the grey stripe indicates the
maximum interval of time delays that could potentially be acquired in our length of non-linear
crystal. The width of the histogram is purely due to the timing jitter of the APDs and the
counting electronics. We are thus trying to measure time delay shifts that are much smaller
than 5.3 ps with a distribution that itself has a full width at half maximum of 46 ps, while
each bin is already 4 ps wide.

We are able to measure such small changes with an error significantly smaller than the
bin width, by repeatedly integrating over several minutes, fitting a double Gaussian function
to each histogram peak and extracting its peak position. This approach is only limited
by the available signal to noise ratio and the stability of the coincidence counting system.
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Guaranteeing this degree of stability is challenging. A typical measurement cycle consists of
the acquisition of multiple histogram recordings at several different SPDC crystal positions.
To counteract slow drifts of the electronics, the whole cycle is automatised and programmed
to take reference measurements after each single measurement. We can thus detect and
correct for potential drifts of the counting electronics. Appendix A discusses the coincidence
detection system and its stability in more detail.

3.5 Results
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Figure 3.5: Time delay between signal and idler as a function of the down-conversion
crystal position along the pump beam. (a) With detection after incoupling into single mode
fibres, (b) with free-space detection after a 2.5 nm wide bandpass filter and (c) with free-space
detection after a longpass filter. The blue line shows the theory prediction for the experimental
parameters, which are: (a) pump beam waist w = 12.9 um, crystal temperature 7 = 59 °C,
detection waist wy = 18um, (b) w = 11.4um, T = 58°C, [ = 40um, (¢) w = 11.4 um,
T = 60°C, [ = 40 um. [ denotes the side length of the quadratic free-space detection area.
The error bars span one standard deviation, assuming Poissonian photon statistics.

The findings reported in section 3.1 are confirmed by the direct time delay measurements
shown in figure 3.5. Now, we are able to compare different experimental situations and
detection settings. Figure 3.5 (a) shows the dependence of the average time delay on the
crystal position in the case of single mode fibre coupled detection. Figure 3.5 (b) and (c)
present the same for free space detection with spectral filtering and without spectral filtering
respectively. The experimental results agree very well with the theoretical prediction shown as
solid blue curves. These theoretical calculations are based on equation (3.3) and only include
one adjustable parameter, which is the detection mode diameter, or in the case of free space
detection, the detector area. All other parameters are fixed by the experimental conditions.
Leaving the mode diameter free to adjust, allows us to compensate for an imperfect imaging
system. The range of time delays shown, corresponds to the maximum delay a pair of
orthogonally polarised photons could acquire when traveling through the whole length of
crystal. The reason for the time delay not reaching these maximal positions, lies in the fact
that our measurement captures the average time delay for a specific setting. The temporal
wave function extends over the full range from Ops to 5.3 ps and we measure its average.
When the whole delay distribution shifts towards the edge of possible values, naturally, the
tail to the other side becomes more and more important for the average.
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Figure 3.6: (a) Time delay between signal and idler as a function of the collection lens
z-position in free space detection without a filter. The crystal is centred. The error bars span
one standard deviation, assuming Poissonian photon statistics. Here, the origin of both axis
is without meaning. (b) The coincidence count rate quickly diminishes, once the pump focus
lies outside the non-linear crystal, even for free-space detection. The black dots show the
experimental data, which was acquired alongside the data presented in figure 3.5 and the blue
curve depicts the simulation results, for the same parameters as in that figure as well. The
grey stripe indicates the length of the crystal of 15 mm.

Very similar curves can be obtained when scanning the collection lens position, since the
effect depends on the distance between crystal and collection lens (cf. equation 3.3). See
figure 3.6 (a) for an example scan with the collection lens in free-space detection. We have
concentrated on the crystal displacement, since this case is more relevant in practice.

It is surprising that such unequal detection configurations result in very similar behaviour.
When coupling the pairs to single mode fibres, many photons of the down-converted field
are rejected and the selective nature of the detection is very clear. In the case of free space
detection, on the contrary, almost all photons are collected and measured. Nevertheless,
photons are lost also in this case, which leads to a comparably strong effect.

In addition to the robustness regarding the spatial detection, also spectral filtering only
marginally influences the effect. Spectral filtering is a widely used technique to improve
the indistinguishability of the photons for quantum interference and also to reduce spatio-
temporal correlations. By comparing figures 3.5 (b) and (c) we see that in our case, a 2.5 nm
wide bandpass filter is not enough to sufficiently suppress the spatio-temporal correlations
and to inhibit the time delay shift.

Key to understanding the effect of time delay shifts is the observation that not all photons
are collected, even for free-space detection. Together with the spatio-temporal correlations,
this leads to changes in the temporal distribution. The single count rate we show in figure 3.6
(b) demonstrates the selective detection even for the free space case. The data is based on the
same measurement and simulation as for figure 3.5 (b). The singles count rate depends on
the crystal position and drops quickly, once the pump focus is outside of the crystal. Again,
the agreement with the simulation is very good.



32 Controlling the SPDC Wave Function

3.6 Discussion

We have demonstrated a surprising dependence of the average time delay between signal and
idler photons (of type II SPDC) on the position of the non-linear crystal. Using different
measurement techniques, we were able to accurately measure the shift. We have shown that
the change in the average time delay is due to spatio-temporal correlations and their interplay
with selective detection. If all photons produced through SPDC could be collected and
measured, the temporal wave function would be rectangular with equal contributions of all
possible delays. For realistic interference experiments based on type II SPDC, especially with
long non-linear crystals, this effect is of importance. Particularly in cases where the down-
converted photons are not split and arrive at the beam splitter together [40, 108]. Usually,
this requires birefringent materials to compensate the time delay [34, 109]. Additionally, this
effect provides a novel way to influence the temporal correlations of the wave function. It is,
however, important to note, that the time delay induced by a shift of the crystal is different
from the delay shift of a path length difference. The latter maintains the shape of the temporal
wave function, whereas the crystal displacement deforms the wave function.

Both of our detection schemes are unable to resolve the temporal structure of the wave
function and allow us to measure the average time delay only. The interference based
approach can inherently return only one quantity, namely the dip minimum position and the
direct measurement approach is already at the very limit of its resolution with only the average
delay. It would, however, be very interesting to learn more about the actual structure of the
temporal correlations. This becomes possible with the method described in the following
chapter, where we use a generalised Hong-Ou-Mandel interference to reconstruct the complex
spectral wave function of the photon pair, which includes the full knowledge of the temporal
part of the wave function.



Measuring the SPDC Wave Function

Photon pairs from SPDC are a widely used resource for photonic quantum technologies. They
are relatively easy to create in large numbers and can be modified to suit different purposes.
Correlations can be engineered in and between different degrees of freedom. However,
measuring their wave function and directly checking their state is technically challenging.
As we have seen in the last chapter, the temporal characteristics of SPDC photon pairs can
not be measured directly. We present a novel technique to reconstruct the complex spectral
wave function of a two photon state produced by type II SPDC. This enables us to reconstruct
the spectrum and the delay time distribution to a precision not achievable with current direct
methods. Furthermore, the measurements show that we can control the temporal wave
function, even beyond the capabilities presented in the previous chapter.

The first section 4.1 introduces the general idea and compares it to related schemes. The
next section 4.2 briefly discusses the formulas and links between the data to be measured and
the reconstructed wave function. How this data is acquired experimentally from an SPDC
source is detailed in section 4.3. Following that, we present in section 4.4 three examples of
reconstructed wave functions with very different properties. The chapter concludes with a
discussion of this reconstruction technique and its potential applications (section 4.5).
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4.1 Wave function reconstruction

In section 2.1 of the introduction, we have discussed wave functions as a means to fully
describe pure quantum states. In the following, we demonstrate a novel reconstruction
method of the complex spectral wave function for photon pairs created in type II spontaneous
parametric down-conversion, making use of generalised Hong-Ou-Mandel interference. Due
to their versatility and high production rates, SPDC pairs are widely used for quantum
information experiments and beyond. To gain insights into the wave function and possibly
use this knowledge to further adapt the SPDC pairs to the task at hand, considerable efforts
have been undertaken to measure or reconstruct their wave function.

An early experiment aimed at measuring the two-photon temporal shape via the Hong-
Ou-Mandel interference was performed by Sergienko and coworkers [110]. Other partial
measurements of the wavefunction have been explored for the joint temporal density by
femtosecond up-conversion [57] or for the spectral density with monochromators [35, 111,
112]. Full information about the spectral temporal wavefunction can be acquired by reversing
the SPDC process via sum frequency generation [113—115]. This, however, requires very high
non-linearities for the inversion and high count rates from the