
Nonparametric Inference in the Presence of
Biased Sampling

By

Ali Shariati (45037663)

A thesis submitted to Macquarie University
for the degree of Master of Research

Department of Statistics
July 2019



ii

© Ali Shariati (45037663), 2019.

Typeset in LATEX2ε .



iii

Statement of Originality
Except where acknowledged in the customary manner, the
material presented in this thesis is, to the best of my knowl-
edge, original and has not been submitted in whole or part
for a degree in any university.

Ali Shariati (45037663)



iv



Acknowledgements

I would like to specially thank my supervisors Dr. Hassan Doosti and Dr. Justin Wishart.
Since the beginning, Hassan provided me with guidance, support and friendly discussions
so that I could adapt myself to the new situations. Great thanks without doubt would have
to be given to Justin for his assistance and encouragement that gave me a constant support
and motivation. Also, I would like to thank my first M.Sc. supervisor Dr. Vahid Fakoor
who took me under his wings and developed my interest and research skills in the field of
Nonparametric Statistics. I would also like to thankMacquarie University and theDepartment
of Mathematics and Statistics for their financial support and providing such a pleasant work
environment.

With great heartfelt thanks, I would like to dedicate this thesis to my parents Mr. Reza
Shariati and Mrs. Zohreh Fatemi for their constant love, encouragement and sacrifice. I
would also like to warmly thank my family, Sanaz, Omid, my late beloved brother Hessam
and Hannaneh, for supporting my decisions and giving their wisdom and guidance in all
facets of my life over the years.



vi Acknowledgements



List of Conference participation and
Publications

• Ali Shariati, Hassan Doosti and Justin Wishart. Empirical Likelihood Inference for
Length-biased and Right-censored Data via the Unconditional NPMLE. Under prepa-
ration.

• Ali Shariati. Empirical Likelihood-based Confidence Band in Length-biased Sam-
pling. Joint International Society for Clinical Biostatistics and Australian Statistical
Conference, Melbourne, Australia (2018).

• Ali Shariati and Hassan Doosti. Empirical Likelihood-based Inference for Right-
censored Length-biased Survival Data. BioNetwork 2018 ’Killing it in Science’,
Macquarie University, Sydney, Australia (2018).

• Vahid Fakoor, Ali Shariati and Majid Sarmad. The MRL function inference through
empirical likelihood in length-biased sampling. Journal of Statistical Planning and
Inference. 196, 115-131 (2018).



viii List of Conference participation and Publications



Abstract

Life expectancy is a key concept in survival analysis. When communicating with non-
statisticians, average remaining lifespan is a more meaningful and comprehensible measure
than the survival probability or the hazard rate. Therefore our research is centered on the
mean residual lifetime function.

Survival data collected in a cohort of prevalent cases may be used to draw statistical
inference. Since non-random sampling of subjects is involved, the data collected in this
sampling scheme are biased. The most common case of this bias, occurring when the so-
called stationarity assumption is satisfied, is called length-bias. While prospective prevalent
cohort studies are commonly conducted to evaluate the progression of some disease over
time, observations of many other sampling schemes have been reported to be length-biased.
It is often necessary to take into account loss to follow-up of subjects, that is, the presence of
censored data.

In this thesis, we study the problem of statistical inference (i.e. confidence interval) for
length-biased data via the empirical likelihood method. The results are extended to construct
a confidence interval for length-biased random censored data. The performance of these
methods are illustrated through a simulation study and a data set obtained from a study of
shrubs.
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1
Preliminaries and Background

In this chapter, we present definitions and concepts required for this thesis. The discussions
given in this chapter include concepts from probability theory, stochastic processes, time se-
ries, survival analysis and statistical inference. Although these topics are widely investigated
in the literature, we have collated an overview which provides the background necessary for
this thesis. We also provide some examples from the current literature to illustrate the topic
presented in each section. A comprehensive overview of the literature relevant to this thesis
may be found in Section 1.8.

1.1 Stochastic Process
DEFINITION 1.1.1 A stochastic process is a collection of random variables Xt which is
indexed by t such that {Xt, t ∈ J} and is defined on a probability space, when the indexing
set J may be an arbitrary continuous or discrete set.

For everyω ∈ Ω, the set
{

Xt(ω), t ∈ J
}
is called the sample path of the stochastic process Xt .

If the indexing set J is discrete, the stochastic process is defined as a set of discrete random
variable indicated by X j , in which j is an integer. Alternatively, X(t) is used for stochastic
process with a continuous index set. However, Xt denotes the stochastic process in general
regardless of it is discrete or continuous.

We define two important stochastic process below that will be used in our analysis in the
following chapters.

DEFINITION 1.1.2 A stochastic process Xt is stationary if and only if for any possi-
ble values of n, s, and time sequence t1, . . . , tn, the random variables X(t1), . . . , X(tn) and
X(t1+s), . . . , X(tn+s) have the same cumulative distribution function.

DEFINITION 1.1.3 The stochastic process X(t1), . . . , X(tn) is a Gaussian process if for
arbitrary time sequence t1, . . . , tn, the random variables X(t1), . . . , X(tn) follow a multivariate
normal distribution.
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1.1.1 Renewal Process
Renewal theory–the study of probability methods for analyzing renewal processes–originally
arose from the study of some particular probability problems in the are of reliability that focus
on failure and replacement of components. However, it has developed over the decades into
the investigation of a wide range of practical probability problems. One of these problems
(which is of concern in this thesis) is that of length-bias; this will be discussed in the next
chapter. Before defining a renewal process, we require the definition of a counting process.

DEFINITION 1.1.4 Let
{
N(t), t ≥ 0

}
be a stochastic process with N(t) representing the

number of events which have occurred up to time t and N(0) = 0. Then
{
N(t), t ≥ 0

}
is a

counting process if it satisfies the following conditions:

(I) N(t) ∈ N ∪ {0} for all values of t, where N is the field of natural numbers.

(II) If s < t, then N(s) ≤ N(t).

(III) For s < t, the number of events occurring in the interval (s, t] is given by N(t) − N(s).

We now define the ordinary renewal process as a special kind of counting process.

DEFINITION 1.1.5 Let
{

X(n), n ∈ N
}

denote a sequence of non-negative identical random
variables with a common distribution function F(·). To avoid trivial cases, suppose that
F(0) = P{X(n) = 0} < 1. Then we define X(n) as the interval time in between event number
n and event n + 1 in a counting process (Definition 1.1.4). Suppose that

µ := E
(
X(n)

)
=

∫ ∞

0
xdF(x),

is the mean of time duration between successive events.
Considering the assumptions that X(n) ≥ 0 and F(0) < 1, it can be concluded that

0 < µ ≤ ∞. Now, if we define

S0 := 0, Sn :=
n∑

i=1
X(i), (n ≥ 1),

then Sn is the time of observing the nth event. Suppose that N(t) denotes the total number of
events up to time t. Since N(t) is the maximum amount of n satisfying Sn ≤ t, we have

N(t) = sup {n : Sn ≤ t} .

This counting process is called a renewal process.

1.1.2 Brownian Motion
In 1826, Robert Brown, a Scottish botanist and palaeobotanist, while examining grains
of pollen of the plant Clarkia pulchella suspended in water under a microscope, observed
minute particles, now known to be amyloplasts (starch organelles) and spherosomes (lipid
organelles), ejected from the pollen grains, executing a continuous jittery motion. Later, he
observed the same pattern of motion in particles of inorganic matter, enabling him to rule out
the hypothesis that the effect was life-related. This event is now known as Brownian motion,
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although Brown did not provide a theory to explain the motion and even he was not the first
person to report this phenomenon.

A French mathematician, Louis Jean-Baptiste Alphonse Bachelier, was the first person
to introduce a mathematical model of Brownian motion in 1900. In his Doctoral thesis in
Finance, he applied his method of modeling the Brownian motion for valuing stock options.
Einstein (1905) proved the probabilistic nature of Brownian motion. He was the first person
explained precisely how the motion that Brown had obtained was a consequence of the
pollen being moved by individual water molecules (the immersed particle was continuously
bombarded by the surroundingmolecules), whichwas one of his first significant contributions
to science. However, the definition presented here for aBrownianmotionwas given byNorbert
Wiener in several articles he published in 1918.

There exist numerous examples of phenomena that may be modeled by Brownian motion.
One simple example which could be used to describe Brownian motion is random walk. A
random walk is a stochastic process which represents a path that consists of a succession of
random steps on some mathematical space such as the integers. An elementary example of
a random walk is the random walk on the integer number line Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
Suppose that an object is at the origin of the integer number line at the time 0. It then moves
right or left by taking a unique step at each time unit when all the possible steps (toward right
or left) have exactly the same probabilities. Let Xi denote the distance that the object travels
at time i. Accordingly, {Xi : i ∈ N} is a sequence of independent and identically distributed
random variables with probability mass function

P (Xi = +1) = P (Xi = −1) = 1
2
.

Define Sn :=
∑n

i=1 Xi which is the position of the object at the nth step. Following the above
paragraph, it is apparent that S0 = 0. The series {Sn : n ∈ N} is called the simple random
walk on Z. It is of note that {Sn : n ∈ N} represents the distant walked with E (Sn) = 0 and
Var(Sn) = n. Generally, any stochastic process {Sn : n ∈ N} with

Sn = Sn−1 + Xn (n ∈ N); S0 = 0

is a random walk process, when the random variables Xi (i ∈ N) are independent and
identically distributed such that E(Xi) = 0 and Var(Xi) = σ2 < ∞.

However, in reality an object exhibiting Brownian motion fluctuates constantly and con-
tinuously, and therefore a continuous timescale is required. Consequently, the continuity of
time should be considered when investigating the asymptotic behavior of the object location
Sn. For this purpose, we consider the partial summation S[nt], where [nt] denotes the greatest
integer less than or equal to nt and 1/n < t < ∞. Bear in mind that when 0 ≤ t ≤ 1/n, the
value of S[nt] is assumed to be zero. Now, we define the random variable Wn(t) as follows

Wn(t) := n−1/2 S[nt]
σ

.

Given the central limit theorem, it is easy to conclude that

Wn(t)
L−→ N(0, t),

where L−→ indicates convergence in distribution (convergence in law). It is apparent that
the variable Wn(t) is random since it depends on the random variables {Xi : i ∈ N}. On the



4 Preliminaries and Background

other hand, it is a function of the variable t. Therefore, in this situation the random function
Wn(·) converges weakly to a random function calledW , according to Donsker’s theorem. The
continuous-time stochastic process W is named the Wiener process (the standard Brownian
motion) in honor of Norbert Wiener. He presented the mathematical fundamental of the
theory of the random walk processes (Brownian paths) using Fourier series (Wiener, 1923,
1924).

DEFINITION 1.1.6 Any stochastic process
{
Wt, t ∈ R+

}
is a Wiener process (the standard

Brownian motion) if it satisfies the following properties:

(I) P {W0 = 0} = 1,

(II) For any 0 < s < t: P
{
Wt − Ws ≤ x |Wu, 0 ≤ u < s

}
= P {Wt − Ws ≤ x}

(III) For any 0 < s < t: Wt − Ws
L−→ N(0, t − s),

(IV) The sampling path of the stochastic process is almost surely a continuous function t.

However, we may define a Brownian motion process in general by using directly a random
walk process. Let we speed up the simple random walk on Z by taking smaller and smaller
steps in shorter and shorter time intervals. Precisely, suppose we take a step of size ∆x at each
time interval ∆t. In addition, let {Xi : i ∈ N} be the sequence of independent and identically
distributed random variables defined above. Therefore, for the position of the object in the
new random walk process we have

Xt = S[t/∆t]

= ∆x
(
X1 + · · · + X[t/∆t]

)
= S[t/∆t]−1 + ∆x X[t/∆t]

where [t/∆t] denotes the greatest integer less than or equal to t/∆t. Then, it can be checked
that

E (Xt) = 0,

Var (Xt) = (∆x)2 [t/∆t].

To avoid trivial situations, let ∆x = c (∆t)1/2 for some constant c ∈ R+ := [0,∞). Given this
relation for ∆x, let ∆t → 0. Then,

Var (Xt) −→ c2t.

The stochastic process
{

Xt, t ∈ R+
}
has Brownian motion when ∆t → 0.

DEFINITION 1.1.7 Any stochastic process
{

X(t), t ∈ R+
}

is a Brownian motion process if

(I) P
{

X(0) = 0
}
= 1,

(II) The increments of
{

X(t), t ∈ R+
}

are independent and stationary.

(III) For any t > 0: X(t) is normally distributed with E
(
X(t)

)
= 0 and Var

(
X(t)

)
= c2t.
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Given Definition 1.1.7, when c = 1 the process is called the standard Brownian motion
(Wiener process) often.However, any Brownian motion like X(t) can be converted to the
standard Brownian motion by considering X(t)/c.

As mentioned, there are many real examples, including the path traced by a molecule as
it moves in a liquid or a gas, the search path of a foraging animal, the price of a fluctuating
stock and the financial status of a gambler, that may be approximated by random walk
models. Therefore, random walk processes have a variety of applications in many disciplines
such as physics, chemistry, economics, computer science, biology, ecology and psychology.
Thus, random walks could be used to explain the behaviors of many processes, particularly
in nonparametric studies. Here, we define two important processes that will be used in
asymptotic study of the statistics obtained.

DEFINITION 1.1.8 Let
{

X(t) : t ∈ N
}

be a stochastic process. If for any sequence t1, . . . , tn,
the random variables X(ti), . . . , X(tn) satisfy the multivariate normal distribution, then{

X(t) : t ∈ N
}

is a Gaussian process.

DEFINITION 1.1.9 Define a stochastic process
{
B(t), 0 ≤ t ≤ 1

}
on the probability space

(Ω, ν, P). We call this stochastic process a Brownian bridge whenever it satisfies the following
conditions:

(I) E
(
B(t)

)
= 0

(II) For any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1 (n ∈ N), the sequence of random variables
B(t1), . . . , B(tn) is a Gaussian process.

(III) The covariance of B(t) is given by

Cov(s, t) = E
(
B(s)B(t)

)
= min(s, t) − st .

(IV) The sampling path of the stochastic process is almost surely a continuous function of t.

Given Definition 1.1.9, let
{

Xt, t ∈ R+
}
be a Brownian motion. If B(t) = X(t) − tX(1), then{

B(t), 0 ≤ t ≤ 1
}
is a Brownian bridge process.

1.1.3 Empirical Process
Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (i.i.d.)1 random
variables with a common distribution function F(·). Thus, the empirical distribution function
of these random variables is

Fn(x) :=
1
n

n∑
i=1

I(Xi ≤ x) x ∈ R,

in which I(·) is the indicator function.
Accordingly, the strong law of large numbers indicates that

Fn(x)
a.s.−→ F(x).

From the Glivenko-Cantelli theorem, it can be obtained that

sup
x∈R

|Fn(x) − F(x)| a.s.−→ 0.

1Independent and identically distributed (i.i.d.)
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DEFINITION 1.1.10 A function g(x, t) is an empirical process if

g(x, t) := [t]
(
F[t](x) − F(x)

)
x ∈ R, t ≥ 0,

where [t] is the largest integer that is less than or equal to t.

The theory of empirical distribution functions and empirical processes has a long history in
probability and statistics. There have been many studies in this area (e.g. Csörgo and Révész
(1981) and Gaenssler and Stute (1979)), among which, the strong approximation presented
by Kiefer (1972), that is now being known as the Kiefer process, has attracted significant
attention.

1.2 Survival analysis

A problem frequently faced by statisticians is the analysis of survival data. Survival data,
sometimes called time-to-event data, spans the time between two events, namely initiating
and terminating (or failure) events. A verity of statistical and probabilistic methods may
be applied for analyzing time-to-event data. Survival analysis, that is the study of time-to-
event data, is composed of the all statistical and probabilistic methods used for analyzing
non-negative random variables.

Examples of survival data arise in numerous scientific fields, such as medicine, biology,
public health, epidemiology, engineering, economics and demography. Therefore, the sta-
tistical tools we shall present are applicable to all these disciplines, albeit our focus in this
thesis is mainly on the applications of the techniques proposed to biology and medicine.

Examples of initiating event from the literature include a medical diagnosis, appearance
of a tumor, becoming a resident of a retirement community, and onset of addiction to a
substance. Instances of terminating events comprise of death from a particular disease, a
threshold of tumor or disease progression, mortality from natural causes, or even positive
events such as cessation of substance abuse or disease remission. Some real examples of
studies conducted on survival data are given below.

Analyzing data on the time to death for patients with psychiatric disorder, elderly residents
of a retirement community, male laryngeal cancer, cancer of the tongue, and two categories
of dementia including vascular dementia and Alzheimer’s disease presented by Tsuang and
Woolson (1977), Nahman et al. (1992), Kardaun (1983), Sickle-Santanello et al. (1988) and
Wolfson et al. (2001), respectively. The survival time from marrow transplants to partial
or complete remission in patients with acute myeloctic/lymphoblastic leukemia was studied
by Copelan et al. (1991). Lagakos et al. (1988) were interested in drawing inference on
the lifespan to Acquired Immune Deficiency Syndrome (AIDS) among patients with Human
Immunodeficiency Virus (HIV).

Hamburg (1975) conducted a study on the time taken from the beginning of high school
to first using of marijuana for Californian students. This issue had been first addressed by
Turnbull and Weiss (1978).

Freireich et al. (1963) investigated the time to partial/complete remission in children with
acute leukemia. Another study measured the time from percutaneous/surgical placement of
a catheter until the onset of renal insufficiency infection in kidney dialysis patients (Nahman
et al. (1992)).
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1.2.1 Survival functions
There are four functions that are used to model the random survival time X . The first and
the most commonly used function is the probability density function (or probability mass
function), say f (x). This indicates the probability of observing the terminating event at a
time x. The second function is the survival function, denoted S(x). This represents the
probability a subject survives beyond time x. Thus,

S(x) := P(X > x)
= 1 − F(x).

The hazard rate function, or just the hazard function, indicates the probability that a subject
with age x will experience the terminating event in the next instant. Themean residual lifetime
(MRL)2 function of a subject that has survived beyond time x, say M(x), is another important
function. We will discuss in detail this function in the next section. Theoretically, given
one of these four functions, the other three functions may be derived uniquely. Along with
the cumulative hazard function, these functions are the most often used to explain different
characteristics of the random variable X .

1.2.2 The Mean Residual Lifetime Function
As mentioned previously, the mean residual lifetime function is very useful as it used in
statistical studies to characterize the survival time of interest. Over the years, the MRL
function has attracted considerable researchers’ attention. The MRL function indicates the
expected lifetime remaining for a subject at age x.

For any distribution function (d.f)3 such as G(·), let τG be the right endpoint of its support.
Thus τG := inf

{
x : G(x) = 1

}
. Given this definition, let F(·) be an arbitrary distribution

such that τF < ∞, then the mean residual function MF(·) = M(·) at any point x > 0 is defined
by

M(x) := E(X − x | X > x)
=

I[0,τF )(x)
S(x)

∫ ∞

x
(t − x)dF(t)

=
I[0,τF )(x)
1 − F(x)

∫ ∞

x
(1 − F(t))dt . (1.1)

Note that the last line in the equation above was obtained using integration by parts.
There are many studies in literature concerning the mean residual lifetime function. The

MRL function estimation on a fixed interval 0 ≤ t ≤ τ < ∞ was studied by Yang (1978).
He proved that the proposed estimator is strongly uniform consistent over the mentioned
interval. By using compact topology, Yang (1978) obtained that the stochastic process√

n(M̃n(t) − M(t)) is weakly convergent to a certain Gaussian process on [0, τ] where M̃n(·)
is the estimator he proposed. After that, Hall and Wellner (1979) extended the findings of
Yang (1978) over the positive half-line R+ by means of an appropriate metric.

Csörgo and Zitikis (1996) studied the mean residual life process over the whole positive
half-line R+. They presented an approximation of the empirical mean residual life process
by employing special weight functions. Csörgo and Zitikis (1996) also revealed the strong

2Mean residual lifetime (MRL)
3Distribution function (d.f.)
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uniform consistency and the weak convergence of the proposed estimation over the positive
half-line R+. By investigating the empirical mean residual life process as an integral form,
Bae and Kim (2006) proved uniform asymptotic behaviours of the process over the positive
half line. Under length-biased sampling with Type I censoring (defined in the next section),
pointwise consistency of MRL was established by De Uña-álvarez (2004), when uncensoring
is a special case. A comprehensive review of the recent statistical studies with regard to the
MRL function inference in the presence of different biased sampling is presented in Section
1.8.

1.2.3 Censoring
Survival data collection is frequently associated with many restrictions which cause different
obstacles in analysis. One of the most important problem in obtaining survival data is
censoring. Censoring occurs when all we know about some of the underlying subjects is that
they have experienced the event of interest (either the terminating event or the initiating event)
in a certain period of time, but we do not know the exact time. In other words, survival data
is censored when we are not able to observe the complete lifetime for some subjects owing to
a variety of reasons, which is why the censored data is sometimes called "incomplete data" as
well. There are many reasons that results in observing censored data, some of which are end
of the study due to time limitation, loss to follow-up and leaving the study by some subjects.

Different types of censoring may be obtained depending on the sampling mechanism
and different aspects of data and the underlying study restrictions. The possible types of
censoring are type I censoring, right-censoring, left-censoring, interval-censoring, random
censoring and multiplicative censoring. We discuss below a few types of possible censoring
that may obtain in the data collection procedures discussed in this thesis.

Type I Censoring
In type I censoring, we only observe the terminating event if the subject experiences it before
a fixed time. The fixed time is named the censoring time. However, since underlying subjects
do not experience the initiating event at the same time necessarily, time of censoring for each
subject is unique and different than the others.

Suppose we are conducting a statistical study involving amodel organism or a clinical trial
on the patients of a hospital with a specific disease. Assume that the study has commenced
with a fixed number of cases. After a period of time, the researcher is obligated to finish the
study due to time or money restrictions, reporting the results, while, some of the underlying
subjects are yet to experience the terminating event. In this case that the calender time of
censoring is the same for all of the censored cases, rather than being random, and all these
subjects have been studying for the whole duration of study we face type I censoring.

DEFINITION 1.2.1 Suppose that X denotes the lifetime of an underlying subject and C0 is
a fixed censoring time. The exact value of X is obtained if and only if X is less than or equal
to C0. Whereas, when X is greater than C0, we are not able to observe the value of X and the
subject is censored.

For the simplicity of notations, the pair of random variables (T, δ) is used to indicate the
lifespans of subjects under type I censoring. In this occasion, δ is the censoring indicator
which is equal to 0 (δ = 0), when the subject is censored, and is equal to 1, once the subject
is not censored (δ = 1). Also, the random variable T is defined to be T := min(X,C0).



1.2 Survival analysis 9

Random Censoring
Assume that we conduct a survey of patients with a special type of disease, like a specific
cancer. The study commenced with a fix number of cases and continues until the last subject
experience the underlying terminating event, e.g. death due to that kind of cancer. Now,
if we lose some of the subjects during the study due to any other reasons different than the
terminating event of interest (e.g. heart attack, accident, leaving the study by some subjects
etc.), then these subjects experience random censoring.

Random censoring, called random right-censoring sometimes, is a type of "competing
risks" censoring. This type of censoring occurs when some recruited subjects may experience
some competing risks events which results in leaving the study by those cases.

DEFINITION 1.2.2 Let X1, . . . , Xn denote independent and identically distributed random
survival times with a distribution function indicated by F(·). Moreover, suppose that
C1, . . . ,Cn are non-negative i.i.d. random censoring variables from distribution function
G(·). Under random censoring, a pair of random variables (Zi, δi) (i = 1, . . . n) arises, when,
for each i, Zi := min (Xi,Ci), δi := I (Xi ≤ Ci), and I(·) is the indicator function.

It can be easily concluded from Definition 1.2.2 that the random variables Zi are independent
and identically distributed.

Multiplicative Censoring
The multiplicative censoring was initially introduced by Vardi (1989) as an artificial model
which could be used tomodel several practical situations. Consequently, Vardi (1989) showed
that the multiplicative censoring model could be applied, for example, to model survival data
with right-censoring under some specific circumstances as well.

DEFINITION 1.2.3 Suppose that X1, . . . , Xn and Y1, . . . ,Ym are two sequences of i.i.d. ran-
dom variables with the common distribution function F(·). While we observe the complete
lifetime for the random variables X1, . . . , Xn, we are not able to observe the complete lifes-
pans for random variables Y1, . . . ,Ym owing to censoring. Instead, we obtain the random
variables Z1, . . . , Zm. Under multiplicative censoring, for each observable random variable
Zi (i = 1, . . . ,m) there exist two random variable Yi defined and Ui such that Ui possesses
U(0, 1)4 and Zi = YiUi.

It is worth mentioning that the numbers of uncensored and censored subjects (n and m)
are random in most of the practical situations which could be modeled via multiplicative
censoring. Nonetheless, Vardi (1989) has considered them to be fixed numbers that are not
random.

1.2.4 Truncation
The other very common feature associated with the survival data is truncation. Different types
of truncation may obtain in survival data collection depending on the sampling mechanism
and study restrictions such as time and budget. Survival analysis becomes more complex
under truncation, which sometimes is confused with censoring. Truncation is observed when
the subjects are observed if and only if they have sufficient lifetime, distance, or any other

4U(a, b) indicates the continuous uniform distribution defined on interval (a, b)
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measures, depending on the study details, in order to be observable. Furthermore, truncation
also occurs when the subjects recruited in the sampling procedure have experienced an event
(initiating event or terminating event) by a fixed point in time. Depending on the sampling
mechanism, wemay obtain different types of truncation in the data set collected. The possible
types of truncation are left-truncation, right-truncation, or both.

Left-truncation is obtained if there is a time delay between experiencing the initiating
event of interest and recruitment of subjects. Thus, each individual enters at a special age,
but subjects are not observed when they experience the initiating event. The subjects are then
followed from the recruitment until experiencing the terminating event or the censoring time.
Basically, truncation is obtained frequently in the study of time-to-event data. However, the
application of truncated data is not restricted to survival analysis. Another possible situation
in which truncation is obtained is when only the objects whose measures are greater than
a specific amount are observable. Consequently, those that are smaller than that specific
measure are not observable.

Right-truncation occurswhen only those individuals that have experienced the terminating
event before a definite time are detectable. For instance, in estimation of the distribution of
the distance of a galaxy from the Earth, only those stars whose distances from the Earth are
less than an specific amount depending on the accuracy of the telescope are discernible. And
those stars that are beyond that specific distance are not detectable owing to right-truncation,
albeit they exist. This is the principal difference between censorship and truncation that we
do not have any information about the truncated data, while we know at least that the censored
subjects have existed and we even obtained some information about them by observing them
for a period of time.

In general, the truncation arises in survival analysis when we only obtain the subjects
whose either initiating events or terminating events occur within a specific time interval, say
(TL,TR). Thus, any subject that does not experience the event within this period of time is
not observable and we do not receive any information about this individual. The scale of the
interval (TL,TR) could be adapted to any required measure in order to explain truncation in
different situations.

DEFINITION 1.2.4 When the value of TR in the defined interval is large enough (theoreti-
cally says TR goes to infinity), we obtain left-truncation in the underlying sampling. In this
situation, we only observe the subjects whose terminating events are experienced after the
time TL . In other words, in order to be discernible, ones lifetime, say X , should be greater
than the left-truncation time TL , X > TL .

Thus, all the individuals that have experienced the terminating event before the time TL are
not observable under left-truncation. Woodroofe (1985) illustrated left-truncation through
several real examples in economic and astronomy. Moreover, numerous practical applications
of different types of truncation in biology, epidemiology and medical sciences are presented
in Klein and Moeschberger (2003).

Truncation Variable
In survival analysis, studying on time-to-event data is based on the initiating and terminating
events. Under left truncation, since the time of experiencing the initiating event is random, it
implies that the age of the subjects at the sampling time is random as well.
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DEFINITION 1.2.5 Let S (Start) and E (End) indicate the initiating and terminating events
times, respectively. It is apparent that S ≤ E and the survival time X = E−S is independent of
S. Now, suppose that t indicates the recruitment time. Under left-truncation, any individual
for that X = E − S is greater than A := t − S is observed. The time A which is the delay time
for an individual to enter to the sample is called the truncation variable.

Considering Definition 1.2.5, it is of note that, since S is random, A = t − S is random as
well. For better illustration, Figure 1.1 reveals the truncation times for two subjects that one
is observed, while the other one is left-truncated. As can be seen, any subject, like X1, whose
lifetime is greater than truncation time is discernible (X1 > A1). Whereas, those individuals
such as X2 for that the truncation time is greater than the lifetime (A2 > X2) do not have any
chance of being observed.

Figure 1.1: Truncation Variable

1.3 Length-Bias
In practical studies and real situations, obtaining an independent and identically distributed
sample from the population of interest, called target population in this thesis, is impossible.
Instead, a weighted sample, known as biased sample, is observed which implies a distribution
that is different from the target population. There are many practical applications of similar
bias in different disciplines such as forestry, genetic, economic, industry, biology, epidemiol-
ogy and medical sciences. One can find several real examples of length-biased data in Patil
and Ord (1976), Rao (1965) and Rao (1977).

There exists a special case of such bias that have amore prominent role in practice. Length-
bias, which is the most frequent case of the discussed bias, occurs when the probability of
being collected for a subject is proportional to its lifetime, length, or any other relatedmeasure.
In other words, if the subjects whose lifetime, lengths, or measures are greater than the others
have more chance of being collected in the sampling procedure, then the sample obtained
suffers from length-bias.

The problem of length-bias was initially discovered by Wicksell (1925) while doing
research into anatomy. When he was observing the corpuscles of organs under microscope,
he noticed that only the corpuscles whose measures is greater than the magnification of the
microscope are discernible. However, those cells that are smaller than this level are truncated
and could not be observed. After that, the probabilistic model under the length-bias was
investigated by McFadden (1962) and Cox (1962). In estimating the distribution of the
lengths of fabric fibers, Cox (1969) figured out that linger fibers have more chance of being
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collected and therefore the sample is subject to length-bias. Patil and Rao (1978) studied
various types of bias commonly associated with the studies in demography and wildlife
biology. Cristóbal and Alcalá (2001) have provided an invaluable overview of nonparametric
studies on the statistical inferences when the data arises from aweighted distribution function.

DEFINITION 1.3.1 Suppose that X is an arbitrary random variable with the continuous
cumulative distribution function F(·). The random variable Y is length-biased with respect
to the random variable X if the distribution function of Y has the representation,

G(y) :=
∫ y

0

x
µX

dF(x), y ≥ 0,

where µX is the mean of the random variable X .

The distributionG(·) presented in Definition 1.3.1 is called length-biased distribution, and the
corresponding distribution F(·) is known as the unbiased distribution or the target distribution.

1.4 Cohort: Prevalent and Incident Cases
One of the problems which is frequently faced by researchers is the analysis of survival data
arising form a population of interest. To analyze the data collected, what we need to do
is estimate one of the survival functions defined. Survival data and the related variables
arise in many disciplines such as medical tests, clinical trials, cohort studies, or prevalent
cohort studies. Having defined the population of interest by specifying the related initiating
and terminating events, the researcher needs to collect data from a previous data bank or
by sampling from the existing subjects. Here, a cohort emerges–a group of subjects that
have experienced the same initiating event of interest shapes a cohort. After recruitment
of individuals, the members of a cohort are followed over time until they experience either
the terminating(s) event or censoring. It is worth mentioning that in some studies, despite
having the same initiating event (e.g. bone marrow transplant for acute leukemia patients),
the patients may experience different terminating events (e.g. platelet recovery, relapse, acute
Graft-versus-host disease, and death) in addition to censoring.

There are three different types of cohort that are used to collect survival data. Cohort
of incidence cases is one of these cohorts in which we only recruit incident cases. Incident
cases are the subjects that newly experience the initiating event (being diagnosed with the
underlying disease over the course of sampling). Such cases experience the initiating event
after the commencement of the study. However, prevalent cases are the subjects that have
already experienced the initiating event (being diagnosed by the underlying disease before
recruitment), but are yet to experience the terminating event or censoring. Cohort of prevalent
cases is an alternative way of studying survival data. The third type of cohort consists of both
prevalent and incident cases. Studying on prevalent cases is more interesting and practical,
since it raising the number of potential cases. Indeed, it is extremely more time- and cost-
efficient to study prevalent cases. However, various bias is associated with prevalent cohort
study due mainly to left-truncation.

1.5 Stationarity Assumption
As mentioned, the survival data collected through a prevalent cohort study are left-truncated.
The stationarity assumption of incidence event holds if and only if the number initiating
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event, which is known as incident rate in literature, satisfies an stationary Poisson process
(see Asgharian et al. (2006)). In other words, the rate of incidence process is constant under
stationarity assumption. When this assumption satisfies, it can be simply proven that the
truncation variable defined in Definition 1.2.5 follows a uniform distribution defined on an
interval greater than the length of time from recruitment to initiating event.

Left-truncated survival data is basically analyzed by conditioning on the truncation times,
which are the values realized for truncation variables. This approach is known as the con-
ditional approach5 in literature. A huge body of research has been done during the recent
decades using the conditional approach. When the stationarity assumption is violated the
model is not identifiable, and therefore conditional methods are mostly used. However, if
there are adequate reasons that the stationarity assumption holds, it implies the observations
follows the length-bias distribution. Consequently, the normal empirical estimator is the
unconditional nonparametric maximum likelihood estimator6, and it is not inevitable to con-
dition on the observed truncation times. The following lemma indicates that how stationarity
assumption implies the length-biased distribution.

LEMMA 1.5.1 Let X denote the random variable in regard to survival time of the subjects
that follows probability density function f (·). Assuming the stationarity assumption of in-
cidence, which equivalently means that the truncation random variable T have a uniform
distribution defined on an interval (0, θ), then for the distribution function of the observed
survival data X under left-truncation T we have

g(x) := f (x |X > T)
=

x f (x)
µ

,

in which µ is the mean of the random variable X . This is the length-bias distribution presented
in Definition 1.3.1.

Proof. See the Appendix I for the proof of this lemma.

1.6 Cross-Sectional Sampling
Cross-sectional sampling is a method for collecting data in which we only obtain the subjects
in an instant or a very short period of time. However, it does not necessarily means that all
the data are collected in that point in time. Instead, it means that the recruitment is done in
an instant or a very short period of time. In survival analysis, the recruited subjects are then
monitored over time in order to record the terminating event or censoring time for all of them.

The type of sampling which leads to a cohort of prevalent cases is cross-sectional sam-
pling. Because, a prevalent sampling design only collect survival data from individuals who
have already been diagnosed with a condition or disease but have yet to experience the failure
event. In other words, we only select the subjects who are in the middle of initiating and
terminating events at sampling time which is an instant or a very short period.

Figure 1.2 illustrates a cross-sectional sampling procedure for survival data. The sampling
time is the start of the study. It is revealed that only violet, red and green subjects are
observed. Whereas, the blue subjects do not have any chance of being collected due to left-
truncation. Moreover, the subjects who will experience the initiating event after recruitment

5Conditional approach
6Unconditional approach
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Figure 1.2: Cross-sectional sampling in the presence of censoring

are not detectable. Accordingly, the random sampling of subjects is violated (non-random
sampling7) in cross-sectional surveys and prevalent cohort studies. It is worth mentioning
that, among all the subjects recruited, only the green cases have experienced the terminating
event. However, while the cases shown violet are randomly censored, those shown red have
experienced the type I censoring.

1.7 EM algorithm
The problem investigators frequently face is maximizing the likelihood function while the
function and even its logarithm do not result in closed forms. To deal with this problem, the
Expectation Maximization (EM)8 algorithm is a practical approach that provide researchers
with an accurate approximation of the maximum likelihood estimator (MLE)9. This method
is an iterative procedure that was generalized to analysis of incomplete data by Dempster
et al. (1977). Having figured out that a similar technique had been used many times in prior
studies, Dempster et al. (1977) presented a general framework and named it EM algorithm
for the first time.

Suppose that Y1, . . . ,Yn is a random sample with d.f. g(·|θ) and θ is the underlying
parameter that we want to estimate. Let Yi (i = 1, . . . , n) be a function of the random
variable Xi with probability density function f (·|θ). We assume the set of random variables
(Y1, . . . ,Yn) denotes incomplete data and (X1, . . . , Xn) is the corresponding set of complete
data. In practice, the set of (X1, . . . , Xn) is not observable, instead, the set (y1, . . . , yn) is
realized for (Y1, . . . ,Yn) as a result of a biased sampling procedure. Each iteration of the
algorithm consists of two separate steps, namely Expectation step (E-step) and Maximization
step (M-step). By selecting an arbitrary amount of θ, say θ(0), the algorithm commences. In
E-step, we calculate the following conditional expectation.

Q
(
θ |θ(n)

)
:= E

[
log

{
f
(
X1, . . . , Xn |θ

)}
| y1, . . . , yn, θ

(n)
]

= E
[
log

{
L(θ)

}
| y1, . . . , yn, θ

(n)
]

= E
[
l(θ)| y1, . . . , yn, θ

(n)
]

(n = 0, 1, 2, . . .), (1.2)

7Non-random sampling
8Expectation Maximization (EM) algorithm
9Maximum likelihood estimator (MLE)
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where θ(n) is the estimation of θ in the nth repetition. In the next step, say M-step, given a
fixed amount of θ(n), we should find the maximum of (1.2) as a function of the variable θ,
obtaining θ(n+1).

By means of the following equation, Dempster et al. (1977) have proven that the EM
algorithm leads to maximizing the likelihood function.

H
(
θ |θ(n)

)
:= EX

[
log

{
f
(
X1, . . . , Xn | y1, . . . , yn, θ

)}
| y1, . . . , yn, θ

(n)
]

= Q
(
θ |θ(n)

)
− log

{
g

(
y1, . . . , yn | θ

)}
,

where the variables y1, . . . , yn and also θ(n) are assumed to be known. In addition, X1, . . . , Xn
are unknown random variables, and θ is an unknown variable that is not random. Dempster
et al. (1977) showed that the function H

(
θ |θ(n)

)
hits its maximum at the point θ = θ(n).

Furthermore, for any n ∈ N ∪ {0}, the likelihood function of observations satisfies the
following equation.

L
[
g(y1, . . . , yn | θ(n+1)

]
≥ L

[
g(y1, . . . , yn | θ(n)

]
.

Thus, the likelihood increases in each repetition of the EM algorithm, which continues until
the EM algorithm reaches an optimized point. Under some circumstances, this optimized
point is the maximum likelihood estimation. It is of note that the convergence of EM
algorithm to the optimized point does not depends on the selection of the initial point θ(0).
Therefore, the invaluable and distinct advantage of the EM algorithm is detect of complete
data X1, . . . , Xn by using incomplete observations.

1.8 Literature Review
In this section, we conduct a comprehensive review on the recent literature regarding non-
parametric inference for the survival data. It was mentioned that in many practical situation
we are not able to observe an i.i.d. sample of complete data from the target population.
Consequently, we restrict our attention to the researches including censoring and biased sam-
pling. On the other hand, utilizing the empirical likelihood (EL)10 method, one can draw
statistical inference for a population parameter, say θ, in general. This is one of the most
important advantages of the empirical likelihood method that provides researchers with a
flexible framework for making nonparametric inference (i.e. hypothesis testing, or construct-
ing confidence interval) for a parameter generally. Specifying a relation for the parameter
of interest, an EL type theorem which is a nonparametric alternative of Wilks’s theorem is
required in order to obtain the asymptotic behavior of the empirical likelihood ratio.

Accordingly, empirical likelihood is another issue that is highly relevant to our researches
for this thesis. There has been a lot of research centred on survival functions based on
an i.i.d. sample of the population of interest ( e.g. Owen (2001)). However, there have
been fewer studies done on survival data when considering censoring and truncation. Zheng
et al. (2014) proposed an adjusted EL method for constructing confidence interval for a
population parameter. Although adjusted EL method had already been used for unbiased
data, Zheng et al. (2014) presented an extension for analysis of the right-censored data by
using an influence function. It was observed that the introduced confidence interval improved
the performance of the empirical likelihood method particularly for small sample sizes.

10Empirical likelihood (EL)
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By applying the unconditional nonparametric maximum likelihood estimator (NPMLE)11
of the length-biased d.f., Ning et al. (2013) studied the problem of constructing confidence
interval for summary statistics using empirical likelihood method. They considered the pos-
sibility of observing censored subjects in their sample. Ning et al. (2013) derived that the
empirical log-likelihood under some regularity conditions has a limiting chi-square distribu-
tion with one degree of freedom. The method proposed may be used to do hypothesis testing
as well. They investigated the application of the method presented for the survival function
at a fixed point in time, say x0.

There has been lots of work on survival functions by adopting conditional approach. But,
different studies indicate that the empirical log-likelihood of a population parameter like θ
using censored data asymptotically goes to a scaled chi-square distribution (See e.g. Zhao
and Qin (2007), Wang and Jing (2001) and Hjort et al. (2009)). Since the scale parameter is a
function of the unknown asymptotic variance, the scale parameter is required to be estimated
separately which results in the decreasing the coverage probability for the parameter of
interest. However, under some normal circumstances, He et al. (2016) proved that the
empirical log-likelihood of the parameter goes asymptotically to chi-square distribution with
one degree of freedom by means of a special influence function as an estimating function.
Moreover, the estimating function derived in He et al. (2016) exhibited a smaller asymptotic
variance than those in Wang and Jing (2001) and Qin and Zhao (2007). Thus, the coverage
probability of their confidence intervals indicated better results by comparison with other
alternative methods.

As mentioned, life expectancy is a very important concept in survival analysis. There
has been increasing tendency to do research into the residual lifetime. Reporting the average
remaining lifespan to researchers from other disciplines, physicians, and patients is a more
meaningful and easier to understand measure than the survival chance or the hazard rate.
Therefore, our main focus is on the researches concerning statistical inference for the mean
residual lifetime. Zhao and Qin (2007) pointed out that statistical inference on the linear
functional of cumulative hazard function may result in a flexible framework that could be
applied for analysis of survival data. Using this framework, Zhao and Qin (2007) studied the
problem of constructing confidence interval and band for two linear functionals of cumula-
tive hazard function, namely partial mean lifetime and distribution function. They proved
confidence bands for these functions based on independent right-censored data. Moreover,
they discussed the application of the method proposed for the cumulative hazard function as
well.

Qin and Zhao (2007) propose an EL-based method for drawing statistical inference on
mean residual lifetime function using right-censored data. They derived that the logarithm of
the EL ratio for the mean residual lifetime function converges in distribution to a scaled chi-
square distribution. They applied this limiting distribution to construct confidence interval.
After that, Chaubey and Sen (2008) discussed the problem of point estimation for the MRL
function using right-censored data. Inspired by techniques introduced by Chaubey and Sen
(1998), Chaubey and Sen (2008) proposed a smoothing method to improve the performance
of the product-limit estimator. It was revealed that the proposed method does not result in
boundary bias, despite the standard kernel smoothing estimator.

Zhou (2011) investigated the problem of testing hypothesis for the MRL function using
random censored time-to-event data. They introduced an empirical likelihood-based method

11Nonparametric maximum likelihood estimator (NPMLE)
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which may be used for constructing confidence interval and confidence band as well. Follow-
ing this, Chan et al. (2012) proposed a proportional mean residual life regression model for
analyzing the right-censored and length-biased survival data collected from a prevalent sur-
vey. The method they presented was an extension of the technique had been introduced earlier
by Oakes and Dasu (1990). Afterwards, Zhao et al. (2013) discussed the problem of non-
parametric estimation of the MRL function with left-truncated and right-censored data. They
proved that their estimator is weakly convergent to a zero mean Gaussian process. Then, Wu
and Luan (2014) proposed a new estimator of the MRL function based on length-biased and
right-censored data. It was observed that the proposed estimator converges in distribution to
a normal random variable under some circumstances. They also illustrated that the proposed
estimator is more efficient that other alternatives for length-biased and right-censored.

In Fakoor (2015), the problem of statistical inference for a non-parametric estimator of
the mean residual lifetime function using length-biased data was discussed. The estimator
proposed is the unconditional NPMLE of the MRL function. He proved the strong uniform
consistency and weak converge of the estimator. Following this, given the wide applications
of Cox model in cohort studies, Bai et al. (2016) presented a semiparametric approach for
the proportional residual life model in length-biased setting. The possibility of observing
censored data was considered in the model. The introduced method may be used for the
construction of confidence band for the MRL function when the Cox model for data is
assumed.

Liang et al. (2016) made statistical inference on mean residual lifetime using empirical
likelihood. They considered the possibility of censoring in their model. They also discussed
the problem that the observation of many survival data are length-biased. However, the mean
residual lifetime function discussed in this article is not the common MRL function defined
in (1.1). Additionally, although they discussed the problem of statistical inference using
length-biased observations, the proposed method was not based on length-biased data and
the statistical inference was not made on the target population. Instead, they used unbiased
data for they analysis, while unbiased observations are not available in the problem of length-
bias. These issues extensively limits the application of this article. Afterwards, Chen et al.
(2017) proposed a nonparametric method by means of Jackknife empirical likelihood to test
the equality of two MRL functions. Their Jackknife empirical likelihood was derived using a
a U-statistic. They proved that the empirical log-likelihood ratio is convergent in distribution
to a chi-square distribution with one degree of freedom.

Ultimately, Fakoor et al. (2018) is themost recent article related to the underlying problem.
The paper involved studying the problem of making statistical inference for MRL function
under length-bias. An EL-based procedure was presented for constructing confidence in-
terval for the MRL function through length-biased data. Utilizing the findings of Fakoor
(2015), Fakoor et al. (2018) introduced another normal approximation method for obtaining
confidence interval for MRL function. Furthermore, the empirical log-likelihood of theMRL
function was derived to be convergent weakly to a Gaussian process. As a consequence, a
confidence band for the MRL function using length-biased data was obtained by means of a
Gaussian process approximation procedure.

In the rest of this thesis: Chapter 2 commences with reviewing two real examples in which
length-biased data have arisen. Then, the preliminaries and the unconditional NPMLEs of
survival functions are discussed. Following that, the fundamental theoretical framework
of the empirical likelihood is discussed. An empirical likelihood-based method is then
proposed for constructing confidence interval for the MRL function under length-bias. The
method proposed is inspired by Fakoor et al. (2018). It is noticed that the method can be
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alternatively applied for hypothesis testing. Afterwards, the finite sample performance of
the introduced method is inspected using a simulation study. For better comparison, another
normal approximation method has been applied to the simulated data, exhibiting superiority
of the EL method. A real data application for the method is presented at the end.

Chapter 3 involves investigating into the length-biased right-censored data. This chapter
starts by introducing another real study in which length-biased and right-censored data has
arisen. Afterwards, this chapter continues with discussing the preliminaries and the NPMLEs
for the survival functions using incomplete length-biased data. Then, a new method for
constructing confidence interval for the length-biased right-censored data has been proposed
by means of the empirical likelihood method. The method involves applying the mean
residual life function to draw statistical inference on the survival data. Following that, a
simulation study is conducted to reveal the performance of the method proposed.

Eventually, Chapter 4 presents a detailed overview of the discussions presented in this
dissertation. The chapter continues with discussing the future of the thesis and the possible
further investigations using the results obtained toward this monograph.



2
Confidence Interval for the MRL Function

Based on Length-biased Data

2.1 Introduction
A frequent problem statisticians face is the analysis of survival data. Survival data arises
in various disciplines, such as reliability, engineering, economics, demography, biology,
epidemiology and public health. In various studies, we are frequently obliged to deal with
the obstacle of analyzing the observation obtained from a bias sampling procedure. In the
past decades, bias statistical inferences caused by different bias sampling procedures have
been reported extensively in literature. Among various bias sampling procedures, there is a
very important type of bias called length-bias which has turned many researchers’ attention
for many years. Length-biased data obtained when the data arises in a sampling procedure
are not randomly selected, instead, the sample observations are collected with probabilities
proportional to their measures.

In this thesis, we are interested to make statistical inference on studying survival data
concerning progression of a disease. Usually, prospective prevalent cohort surveys are
conducted to assess the history of a disease (e.g. time to onset of acquired immune deficiency
syndrome or death) among recruited individuals who have already experienced the initiating
event (e.g. diagnosis of human immunodeficiency virus, cancer or Alzheimer’s disease). A
frequent used sampling scheme to estimate the lifetime between the initiating event and the
terminating event is a cross-sectional follow-up study. On average, the prevalent subjects
observed in such studies are confirmed to possess a longer lifetime, as the sample does not
consist of a random selection from the target population. The most common case of this bias,
occurring when the so-called stationarity assumption is satisfied, is called length-bias.

However, the application of the length-biased data is not restricted to biology, epidemiol-
ogy, medical sciences, and public health. Efromovich (2008) studied the distribution of the
ratio of alcohol in the blood of liquor-intoxicated drivers in England. The data was collected
from routine police reports on arrested drivers charged with driving under the influence of
alcohol. In this study, it was observed that more intoxicated drivers had more chance of
being identified and arrested by the police. So the data set was reported to be length-biased.
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Another biased sampling procedure was reported in a study into the lifetime of automobile
brake pads by Kalbfleisch and Lawless (1992). A real data was initially given by Lawless
(2011). The number of units (distance in kilometers) driven until the brake pads were reduced
to a specific minimum thickness was considered as the lifetime. Therefore, it apparent that
the special minimum thickness was the terminating event in this study. To study the survival
distribution, a manufacturer selected a random sample of vehicles sold over the course of
proceeding 12 months in a known group of dealers. Accordingly, only those cars that still
had been using the initial brake pads could be selected. Because of the non-random sampling
procedure (cross-sectional sampling) of subjects, the brake-pads data was reported to be
length-biased due to uniform left truncation of data. therefore the presence of left-truncation.
There may be found many real situations in which such survival data arises.

Although biased inferences due to length-biased sampling have been widely identified in
the statistical and epidemiological literature, there has not been any adequate solution until
recently for the problem of constructing the confidence band for the MRL function (Fakoor
et al. (2018)), in which an empirical likelihood (EL) procedure for the MRL function based
on length-biased data is proposed.

In this chapter, we study the problem of drawing statistical inference for the length-biased
survival data. An empirical likelihood-based method is proposed for statistical analysis.
We applied this method for constructing confidence interval for the MRL function through
length-biased data. The method proposed may be used for hypothesis testing on the MRL
function as well. We introduce a normal approximation method for interval estimation of the
MRL function as well. In addition to the theoretical viewpoint, we consider the application
of our findings for epidemiological sciences. The performance of the proposed method is
illustrated using a real data set on the widths of shrubs collected through the line intercept
sampling method.

2.2 Preliminaries and NPMLE
Suppose that associated with each subject in a target population we have a double (X′,T ′), in
which X′ denotes the lifetime (or more generally the failure time), T ′ is the truncation time.
It is often reasonable to assume that X′ is independent of T ′. Suppose that the distribution
function of X′, say FX ′(·) = P (X′ ≤ ·), is defined on R+ = [0,∞) with a finite mean µ. In
cross-sectional sampling, only the subjects satisfying the condition X′ > T ′ are observable.
Under the stationarity assumption, the probability density function of the observed survival
time, say g(·), is related to the unbiased density ( fX ′(·)) by means of the following equation

g(x) = fX ′ |X ′>T ′
(
x |X′ ≥ T ′)

=
x fX ′(x)
µX ′

. (2.1)

As mentioned, (2.1) is the length-biased density function.
Let X denote an observation in cross sectional sampling under the stationarity assumption.

Similar to the above equation, we can deduce for the relation between the distribution of the
length-biased observation and that of the target population that

G(x) = FX ′ |X ′>T ′
(
x |X′ ≥ T ′)

= µ−1
X ′

∫ x

0
sdFX ′(s), x ≥ 0. (2.2)
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For the random variable X′ with distribution FX ′(·), let FX ′(x−) denote P (X′ < x). Therefore
P (X′ = x) = FX ′(x)−FX ′(x−). Suppose that I(A) denotes the indicator of the event A. Given
the real valued random variables X′

1, X′
2 . . . , X′

n assumed to be independent with the common
cumulative distribution function FX ′(·), it is well known that the nonparametric likelihood for
FX ′(·) is

L (FX ′) =
n∏

i=1

(
FX ′(X′

i ) − FX ′(X′−
i )

)
. (2.3)

The value L (FX ′) is the probability of obtaining exactly the observed sample values X′
1, . . . , X′

n,
from the distribution function FX ′(·). As a direct consequence, L(FX ′) = 0 when FX ′(·) is
continuous. Accordingly, in order to have a positive nonparametric likelihood, a distribu-
tion FX ′ must possess positive probability for every one of the observed data values. The
following theorem proves that the nonparametric likelihood function L (FX ′) is maximized
by the empirical distribution function, and thus, the empirical distribution function is the
nonparametric maximum likelihood estimator1 (NPMLE) of FX ′.
THEOREM 2.2.1 Suppose that X′

1, X′
2 . . . , X′

n are real valued and independent random
variables with a common distribution function FX ′(·). Let Fn(·) denote their empirical
distribution function and F(·) be any distribution function. If Fn(·) , F(·), then L(F) < L(Fn)
Proof. See the Appendix II for the proof.

Theorem 2.2.1 indicates that the classical NPMLE of FX ′(·) is simply the empirical distribu-
tion function using independent and identically distributed random variables sampled from
the population of interest. However, such a sample is inaccessible in the presence of biased
sampling. The empirical distribution function of G(·) is

Gn(x) =
1
n

n∑
i=1

I(Xi ≤ x), (2.4)

which is the NPMLE of the length-biased distribution function. Following the procedure
proposed by Cox (1969), for the empirical estimator of FX ′ we have

Fn(x) = µn

∫ x

0
s−1dGn(s)

=
µn

n

n∑
i=1

1
Xi

I(Xi ≤ x). (2.5)

where

µ−1
n =

∫ ∞

0
x−1dGn(x)

=
1
n

n∑
i=1

1
Xi
.

Let MFX ′ (x) be the MRL function defined in (1.1) corresponding to the distribution
function FX ′(·). So, when our observations are length-biased, for the empirical counterpart
of the MRL function we have

Mn(x) := EX ′(X − x | X > x)
=

I[0,X(n))(x)

1 − Fn(x)

∫ ∞

x
(1 − Fn(s))ds. (2.6)

1Nonparametric maximum likelihood estimator (NPMLE)
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2.3 Nonparametric Empirical Likelihood Ratios
The likelihood ratio method plays a crucial role in hypothesis testing and constructing confi-
dence intervals for parametric models. The confidence interval region for γ0 or the hypothesis
test that γ0 = γ is rejected, once L(γ) is much smaller than L(γ̂). According to Wilks’s
theorem, under some regularity conditions, −2 log(L(γ0)/L(γ̂)) converges to a chi-squared
distribution as n → ∞. This issue can be used to specify the exact confidence region or crit-
ical region. In other words, we are interested in obtaining how small L(γ) should be in order
to reject the hypothesis test that γ0 = γ. For the parameter of the asymptotic distribution,
Wilks’s theorem indicates that the dimension of the set of γ values is the degrees of freedom
in the chi-squared distribution. When we are interested in constructing a confidence region
for the parameter γ, the image of a confidence region for γ may be created by{

θ(γ) | L(γ) ≥ cL(γ̂)
}
,

where the threshold c is chosen by using Wilks’s theorem with a degree of freedom equal to
the dimension of the set of γ values.

Similarly, we may also use a ratio of the nonparametric likelihood as a basis for a
hypothesis test or a confidence interval. For a distribution F, we define the likelihood ratio
function as

R(F) = L(F)
L(Fn)

, (2.7)

when L(F) is the nonparametric likelihood defined in (2.3). Now we can deal with nonpara-
metric likelihood for making statistical inferences similar to the method for the parametric
likelihood.

Let θ be some function of the distribution function FX ′(·), say θ = T(FX ′) for some
function T(·). We consider FX ′(·) as a member of a set of distribution function indicated by
F . We might consider F to be the set of all possible distribution functions on R. However,
we often consider a more restricted set of distribution function. The likelihood ratio profile
is defined as follows.

R(θ) = sup
{
R(F) | T(F) = θ, F ∈ F

}
. (2.8)

In the above profile the supremum is taken on the set of all the distribution functions on F
restricted to T(F) = θ. In this thesis, F indicates all possible distribution functions on R.

Accordingly, the hypothesis H0 : T(F0) = θ0 is rejected through empirical likelihood test,
once R(θ0) < c0 for some threshold value c0. Thus, an empirical likelihood-based confidence
region may be obtained by analogy with the following relation.{

θ | R(θ) ≥ c0
}
.

An empirical likelihood type theorem2 (ELT) which is a nonparametric alternative of Wilks’s
theorem is needed in order to reach the precise threshold c0 depends on the corresponding
settings. From now onward, we will discuss the problem of drawing inference for the MRL
function under a length-bias setting, and will present the appropriate ELTs for each case
separately.

2Empirical Likelihood Theorem (ELT)
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2.4 Empirical Likelihood for Length-biased Data
The fundamental principle for inferring a confidence interval for the survival functions
through empirical likelihood method is to obtain the EL ratio statistics under the specified
constraints using the Lagrange multiplier method. In this section, we are interested in
testing T(FX ′), where T(·) is a function of the distribution function, while the available data
arises from a length-biased sampling procedure. More precisely, we are interested in testing
T(FX ′) = M(x) here, when M(x) is the MRL function defined in (1.1). As mentioned, if
an i.i.d. sample from the underlying distribution had been observable, by substituting FX ′(·)
with the classical empirical distribution function inT(FX ′), we would have been able to obtain
the maximum likelihood estimator. However, the available data in length-biased sampling
does not consist of i.i.d. copies of the target population. But, the FX ′(·) could be estimated
using the empirical distribution of the observations by (2.5), and therefore M(x) is related
to the observations through (2.6). Accordingly, by plugging Fn(·) defined in (2.5) in T(FX ′),
the maximum likelihood estimation of θ may be obtained. The principal aim of this thesis
is to prove that an empirical likelihood-based confidence interval for survival data. For this
purpose, the essentials of an EL-based confidence interval is to prove an appropriate ELT
under different setting in each chapter. Accordingly, it will be observed that the confidence
intervals under different setting possess sets of the following form.{

θ | R(θ) ≥ c
}
,

where the threshold values c for different cases will be obtained.
We need to find a unique function T(·) of distribution FX ′(·), so that T(F) = θ, in order

to define the special profile likelihood ratio function for the mean residual function under
length-biased data.

H0 : T(F) =
∫ τ

0
ξ(s)dFX ′(s) = θ.

The above null hypothesis may be alternatively considered as∫ τ

0
ξ(s) − θdFX ′(s) = 0.

Since we do not have an independent and identically distributed random sample under length-
biased sampling, the empirical likelihood approach consists in the estimation of the biased
distribution function G(·) instead of the unbiased distribution F(·). Consequently, we should
restrict our attention, equivalently, to the following hypothesis test for length-biased data.

H0 : T(G) = µX ′

∫ τ

0
ξ(s)s−1dG(s) = θ, (2.9)

which implies the following constraint:∫ τ

0

(
ξ(s) − θ

)
s−1dG(s) = 0.

Defining η(s, θ) := s−1 (
ξ(s) − θ

)
, we can rewrite the constraint H0 as follows.

H0 : EXη(X, θ) =
∫ τ

0
η(s, θ)dG(s)
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= 0. (2.10)

When we are interested in constructing a confidence interval for the mean residual lifetime
function at an arbitrary but fixed point x0, we have

M(x0) = EX ′(X − x0 | X > x0)

=
EX ′

[
(X − x0) I[x0,τ)(X)

]
1 − FX ′(x0)

. (2.11)

Now, assuming θ0 = θ(x0) = M(x0) that is the true value of the MRL function at time x0, it
can be deduced that

EX ′
[
(X − x0) I[x0,τ)(X)

]
1 − FX ′(x0)

− θ0 = µX ′

EX

[(
1 − x0+θ0

X

)
I[x0,τ)(X)

]
1 − µX ′

∫ x0
0 s−1dG(s)

= EX

[(
1 − x0 + θ0

X

)
I[x0,τ)(X)

]
= 0. (2.12)

It is worth mentioning that the parameter of interest here is the MRL function at a fix point
x0, and therefore it is defined and closely related to the point x0 (M(x0) = θ(x0)). However,
from now onward, for the simplicity of notation we only use θ0 instead of θ(x0) to emphasize
that it is a function of x0.

One can draw statistical inference for theMRL function at a fixed time like x0. Considering
(2.10), the equation (2.12) implies the following representation for the function η(·, θ) with
respect to the MRL function at x0,

ηx0(s, θ0) =
(
1 − x0 + θ0

s

)
I[x0,τ)(s). (2.13)

It is of note that although in the above expression x0 is fixed and ηx0(s, θ0) is a function of
s and θ0, it is defined and affected by x0, and thus we have different function ηx0(s, θ0) for
various points x0, which is why we have used x0 as a subscript for emphasis.

Accordingly, to test the null hypothesis defined or construct a confidence interval for
the MRL function, it is necessary to maximize the likelihood function (2.8) under the spe-
cific constraint H0 defined in (2.10), in which ηx0(s, θ0) is equal to (2.13). Hence, for the
length-biased sample X1, X2, . . . , Xn the following estimation equation might be applied for
calculating the maximum likelihood estimating practically.

H0 : 1
n

n∑
i=1

ηx0(Xi, θ0) = 0. (2.14)

where

ηx0(Xi, θ0) =
(
1 − x0 + θ0

Xi

)
I[x0,X(n))(Xi),

for i = 1, . . . n, in which X(n) is the maximum of the underlying sample.
Considering the discussion presented in Section 2.3, we shall construct our inference

based on the nonparametric likelihood function for the distribution function FX ′(·). According
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to Theorem 2.2.1, based on the random length-biased sample X1, X2, . . . , Xn, the classical
empirical distribution of the observation is the nonparametric maximum likelihood estimator
for G(·), but not for FX ′(·). For the likelihood function L(G′), suppose that the distribution
G′(·) places a probability mass pi = G′(Xi) − G′(X−

i ) ≥ 0 on the value of Xi ∈ R. Then,
p = (p1, p2, . . . , pn) is a probability vector which assign the probability pi to the value of
Xi ∈ R, and therefore ηx0(Xi, θ0), where

∑n
i=1 pi = 1 and L(G′) = ∏n

i=1 pi. Thus, the
likelihood ratio function of G′(·) is a function of p, and we have:

R(G′) = L(G′)
L(Gn)

=


n∏

i=1
npi :

n∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . , n
 . (2.15)

As mentioned in Section 2.3, the distribution G′(·) in (2.15) is a member of the set of all
distribution in R, indicated by F in the previous sections. However, we use a smaller set of
distributions by applying the constraint (2.14), since we are interested in drawing statistical
inference for the parameter θ0 here. Accordingly, define the profile likelihood ratio as follows.

R(θ0) = sup
{
R(G′) | T(G′) = θ0,G′ ∈ F

}
= sup


n∏

i=1
npi :

n∑
i=1

pi = 1,
n∑

i=1
piηx0(Xi, θ0) = 0, pi ≥ 0, i = 1, 2, . . . , n

 .(2.16)
Given (2.14), we can deduce that the second equality in the above likelihood ratio to satisfy
the condition T(G′) = θ0. To maximize the likelihood function under the extra constraint H0,
the Lagrange multiplier method can be applied. Thus, it is obtained that the above likelihood
function attains its maximum at pi =

[
n
(
1 + λx0ηx0(Xi, θ0)

) ]−1, in which λx0 is the solution
of the following equation.

1
n

n∑
i=1

ηx0(Xi, θ0)
1 + λx0ηx0(Xi, θ0)

= 0.

Consequently, the likelihood ratio function (2.16) for the parameter θ0 is concluded to be

R(θ0) =
n∏

i=1

(
1 + λx0ηx0(Xi, θ0)

)−1
.

Bear in mind that we have used subscript x0 for λx0 because it depends solely on ηx0(·, ·),
which is defined for, and is a function of x0.

Therefore, the corresponding empirical log-likelihood ratio is defined as

l(θ0) := −2 logR(θ0)

= 2
n∑

i=1
log

{
1 + λx0ηx0(Xi, θ0)

}
. (2.17)

The following theorem presented by Fakoor et al. (2018) indicates the asymptotic distri-
bution of the empirical log-likelihood ratio.
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THEOREM 2.4.1 Assume that E (X)−2 < ∞. Then, for all x0 ∈ [0, τ), the limiting distribu-
tion of l(θ0) is a chi-square distribution with 1 degree of freedom. That is,

l(θ0)
L−→ χ2

(1).

Proof. See Fakoor et al. (2018).

This limiting distribution may be used to obtain the following EL ratio confidence interval
for θ0. Therefore, an asymptotic 100(1 − α)% confidence interval for the MRL function
θ0 = M(x0) at a fixed time x0, when x0 ∈ [0, τ), may be obtained using the following relation:

C1(x0) =
{
θ(x0) = θ0 : l (θ0) ≤ χ2

1,α

}
,

where χ2
1,α is the upper α-quantile of the distribution χ2

(1).

2.5 Simulation
A simulation study was carried out to evaluate and check the performance of the EL method
proposed. The code for the simulation presented was written in R by the author and may be
found in Appendix II. The performance of the method was inspected through computing the
coverage probability and the lengths of the EL-ratio confidence intervals. We used the small
sample size 50, the moderate sample size 100, and the large sample size 200 to illustrate the
results of the method. In each scenario, the data was generated from the related length-biased
distribution function. The resulting lengths of confidence intervals and coverage probabilities
was calculated for various scenarios based on the 5000 iterations. In each repetition, while
the data are simulated from a length-biased distribution, the confidence interval is estimated
for the corresponding target population of interest. The coverage probabilities were computed
as the ratio of the number of confidence intervals covering the real value of the mean residual
lifetime function for the unbiased distribution out of 5000, the total number of repetitions.
Similarly, the lengths of the confidence intervals (∆) were calculated as the average of the
lengths of intervals estimated for 5000 data sets simulated. Also, we have considered two
separate nominal levels (1 − α), which are 0.95 and 0.90, for estimating the confidence
intervals.

Having generated the simulated data according to the above scenarios, we obtained the
empirical likelihood ratio confidence intervals via C1(x0). For better illustration and com-
parison, one can apply the weak convergence resulted in Fakoor (2015) to obtain another
confidence interval for the MRL function in length-bias setting through the normal approx-
imation method. According to Fakoor (2015), under the condition that E [X p] < ∞ (p > 2)
for the unconditional NPMLE of the MRL function defined in (2.6) we have

√
n
(
Mn(x0) − M(x0)

) L−→ N(0, σ2
0 ),

(
x0 ∈ [0, τ)

)
where σ2

0 = σ
2(x0) is the asymptotic variance of the above empirical process.

However, the relation presented for the variance σ2
0 takes a sophisticated form and could

not be easily estimated. Alternatively, a resampling method may be applied for estimating
the variance of the stochastic process

√
n
(
Mn(·) − M(·)

)
at each point x0 ∈ [0, τ]. Thus, we

applied the following bootstrap procedure to estimate the variance σ2
0 . For a fixed X1, . . . , Xn

random variables from the distribution function (2.1), let X∗
1, . . . , X∗

n denote random variables
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from the distribution function Gn(·), defined in (2.4). It is worth mentioning that Gn(·) is
the empirical distribution function of the length-biased sample X1, . . . , Xn. Also, similar to
(2.4), we obtain the empirical distribution G∗

n(·) for the sample X∗
1, . . . , X∗

n . Now, define

F∗
n (x) = µ∗n

∫ x

0
s−1dG∗

n(s)

=
µ∗n
n

n∑
i=1

1
X∗

i
I(X∗

i ≤ x).

where

µ∗n
−1
=

∫ ∞

0
x−1dG∗

n(x)

=
1
n

n∑
i=1

1
X∗

i
.

Consequently, the NPMLE of the MRL function based on the length-biased resamples, that
is the bootstrap alternative to (2.6), is as follows

M∗
n (x) :=

I[0,X∗
(n))(x)

1 − F∗
n (x)

∫ ∞

x
(1 − F∗

n (s))ds.

Define the stochastic process δ∗(·) :=
√

n
(
M∗

n (·) − M(·)
)
. Suppose that we have iterated the

above bootstrap procedure B times.The bootstrap estimator of the variance σ2
0 = σ

2(x0) is
the sample variance of the stochastic process δ∗1(x0), . . . , δ∗B(x0), which may be computed
using the following equation.

σ∗2
boot :=

1
B − 1

B∑
i=1

©«δ∗i (x0) −
1
B

B∑
j=1

δ∗j (x0)
ª®¬

2

Here, to obtain the variance σ2
0 , we have considered B = 500 in each iteration. The code for

the normal approximation simulation presented was also written in R and could be found in
Appendix II.

Table 2.1 compares the performance of the EL confidence interval with that of the normal
approximation method for the target population Weibull(2, 2). It can be checked that the
underlying population fulfills the requirement of Theorem 2.4.1. It was observed that the
values of CP for the ELmethodwasmoderately larger that those for the normal approximation
method except for x0 = 3.7 and n = 50 the reason for which will be discussed. Moreover,
both methods have almost preserved the nominal levels, albeit the EL method have exhibited
superiority. Furthermore, the values of ∆ for the confidence intervals declined tremendously
as the sample sized increased in both methods. Additionally, the EL-based confidence
intervals has slightly decreased the lengths of the confidence intervals in comparison with the
normal approximation method. There was not observed any noticeable difference between
two separate values of (1 − α).

The other significant advantage of the empirical likelihoodmethod is that it is considerably
more efficient in terms of time and calculation. The normal approximation method is more
computationally demanding and time consuming. In addition, over the course of estimating
the confidence intervals, we pointed out that the natural procedure of the bootstrap estimator
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Table 2.1: 90 % and 95 % Confidence Intervals for MRL of Weibull(2,2)
1 − α = 90% 1 − α = 95%

Time Sample EL NA EL NA
x0 n ∆ C.P. ∆ C.P. ∆ C.P. ∆ C.P.

50 0.443 0.879 0.443 0.873 0.529 0.941 0.529 0.934
0.5 100 0.317 0.897 0.318 0.892 0.380 0.945 0.379 0.942

200 0.227 0.899 0.226 0.895 0.270 0.950 0.270 0.947
50 0.377 0.898 0.379 0.891 0.450 0.948 0.452 0.942

1.0 100 0.268 0.897 0.268 0.894 0.319 0.949 0.320 0.945
200 0.190 0.905 0.191 0.903 0.227 0.950 0.227 0.945
50 0.352 0.901 0.354 0.897 0.420 0.947 0.422 0.941

1.5 100 0.250 0.901 0.251 0.901 0.297 0.948 0.298 0.945
200 0.176 0.900 0.177 0.897 0.210 0.946 0.210 0.944
50 0.357 0.889 0.360 0.886 0.430 0.945 0.432 0.438

2.0 100 0.254 0.895 0.255 0.891 0.303 0.950 0.304 0.948
200 0.180 0.899 0.180 0.897 0.215 0.948 0.215 0.945
50 0.395 0.888 0.413 0.886 0.474 0.935 0.481 0.928

2.5 100 0.280 0.897 0.282 0.893 0.336 0.950 0.337 0.941
200 0.199 0.895 0.199 0.893 0.238 0.952 0.238 0.947
50 0.458 0.850 0.689 0.881 0.547 0.921 0.853 0.951

3.0 100 0.337 0.882 0.343 0.875 0.401 0.935 0.410 0.925
200 0.238 0.900 0.239 0.895 0.285 0.947 0.285 0.938

does not present a valid result for large values of x0 (here x0 = 3 and sometime x0 = 2.5)
when the sample size is small (n = 50). Because, the MRL function M∗

n (·) is defined on
[0, X∗

(n)), and therefore, δ∗(·) is defined on [0, X∗
(n)) as well. However, it is very unlikely for

the large amounts of x0 that X∗
(n) > x0 is satisfied for all the generated bootstrap sample of

the distribution function Gn(·), when Gn(·) is calculated based on the sample size n = 50.
Indeed, that we have considered x0 up to roughly 90%-quantile. Accordingly, in order to
obtain B = 500 valid observations δ∗1(x0), . . . , δ∗B(x0) for large values of x0, we had to generate
higher number of bootstrap samples. Therefore, only those samples for which X∗

(n) > x0 could
be used for the calculation of σ∗2

boot . This issue, for small sample scenario (n = 50) and large
values of x0, leads to an illusive dramatic increase in the variance σ∗2

boot , which increases the
lengths of the normal approximation confidence intervals hugely, while growing the values
of CP moderately. This issue also makes the normal approximation method computationally
more demanding. It is worth mentioning that Fakoor et al. (2018) applied the EL confidence
intervals for some different Uniform and Gamma family distributions and it was observed
that the EL method even increased the coverage probabilities more than what we observed
for Weibull distribution here.

We estimated the El-based confidence intervals for various amounts of x0 using length-
biased observations corresponding to the target distribution Weibull(2, 2). Figure 2.1 shows
the performance of the average 95% confidence intervals of the large sample scenario (n =
200) based on 5000 number of repetitions. The true MRL curve for the unbiased distribution
function Weibull(2, 2) is plotted simultaneously for better illustration. The EL method was
observed to preserve the nominal level very accurately for all amounts of x0. Additionally,
it was revealed that the lengths of EL confidence intervals for the MRL function of target
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Figure 2.1: Weibull(2, 2) MRL Function with 95% Confidence Intervals

distribution Weibull(2, 2) grows noticeably as the value of x0 increases.
It was observed that, under the condition of Theorem 2.4.1, not only the EL procedure

results in an accurate confidence interval that preserve the nominal levels even for small
sample sizes, but also it exhibits superior coverage probability and shorter length of interval
in comparison to the normal approximation method. However, one may be interested in
investigating whether the proposed method is robust when the condition of Theorem 2.4.1 is
ignored–although this condition is not unrealistic or overly restrictive.

Table 2.2 illustrates the simulation results for the target distributionWeibull(0.5, 2). It can
be easily checked that length-biased observations corresponding to the unbiased distribution
Weibull(0.5, 2) does not meet the requirement of Theorem 2.4.1. It can be obtained that the
ELmethod has improved lengths of∆moderately although the values of coverage probabilities
were quite similar in two methods. This issue indicates more accuracy of the EL method. As
expected, the confidence intervals widths decreased by increasing the sample sizes. We had
the same problem as in Table 2.1 here for estimating the variance of the stochastic process√

n
(
Mn(·) − M(·)

)
for x0 = 8.5 and x0 = 10.5. However, the justification given for the slight

reduction in CP of the point x0 = 3 and sample size n = 50 in Table 2.1 applies here as well.
There was not any clear differences for simulation results in the two separate nominal levels.
Comparing the results in Table 2.2 and those in Table 2.1, the most interesting result is that
both empirical likelihood ratio and and normal approximation method are robust when the
Theorem 2.4.1 condition is ignored.

Figure 2.2 illustrates the confidence intervals of the MRL function with respect to the
unbiased d.f. Weibull(0.5, 2). The confidence intervals were calculated based on the 5000
iterations of the large sample scenario (200) using the empirical likelihood ration method. In
each repetition, the length-biased observations were generated and the point-wise confidence
interval was estimated for the target population. The nominal level of 95% was considered to
estimate the intervals. For better illustration, the true MRL curve of the distribution function
Weibull(0.5, 2) has been plotted as well. Again the coverage probabilities of the confidence
intervals out of 5000 repetitions were absolutely close to the nominal level, which is not
reported here due to space limitation. The confidence intervals widened as the value of x0
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Table 2.2: 90 % and 95 % Confidence Intervals for MRL of Weibull(0.5,2)
1 − α = 90% 1 − α = 95%

Time Sample EL NA EL NA
x0 n ∆ C.P. ∆ C.P. ∆ C.P. ∆ C.P.

50 4.476 0.843 4.892 0.843 5.184 0.883 5.648 0.900
0.5 100 3.338 0.882 3.488 0.893 3.901 0.931 4.078 0.932

200 2.390 0.886 2.443 0.887 2.844 0.941 2.903 0.938
50 5.101 0.890 5.317 0.899 6.077 0.946 6.320 0.952

2.5 100 3.596 0.898 3.668 0.900 4.264 0.954 4.346 0.953
200 2.529 0.898 2.553 0.895 3.017 0.953 3.044 0.953
50 5.798 0.888 6.002 0.897 6.882 0.945 7.100 0.942

4.5 100 4.075 0.900 4.141 0.902 4.882 0.943 4.952 0.947
200 2.877 0.900 2.898 0.904 3.433 0.950 3.455 0.951
50 6.651 0.889 6.863 0.889 7.494 0.949 7.870 0.942

6.5 100 4.589 0.897 4.658 0.903 5.497 0.951 5.559 0.950
200 3.254 0.896 3.276 0.895 3.874 0.950 3.894 0.949
50 7.498 0.898 7.891 0.896 8.252 0.948 8.513 0.946

8.5 100 5.149 0.899 5.224 0.901 6.188 0.946 6.260 0.948
200 3.636 0.895 3.660 0.896 4.329 0.947 4.351 0.948
50 8.197 0.898 10.117 0.899 9.271 0.947 11.054 9.952

10.5 100 5.761 0.900 5.848 0.910 7.134 0.948 7.223 0.962
200 4.020 0.900 4.047 0.904 4.794 0.951 4.818 0.951

rose. It is of note that the MRL function for Weibull(0.5, 2) is an increasing function. The
results of Figure 2.2 indicated once again the robustness of the proposed EL method with
respect to underlying condition (see Theorem 2.4.1).

2.6 Real Data Application
In this section, we apply the proposed method for the construction of confidence interval
using a set of real data. We used a real collection of data presented in Muttlak and McDonald
(1990). The shrubs data was collected using the line-intercept sampling procedure as a part
of a biological study. The shrub data set comprises the widths of shrubs for three different
intersect. In each sampling time, they were only able to obtain three separate widths of
shrubs. The sampling procedure was subject to the circumstances similar to those discussed
in Section 1.6 due to truncation. Muttlak and McDonald (1990) figured out that the chance
of observing a shrub in their sample was proportional to the width of that subject. Thus, the
wider shrubs had more chances of being included in the sample. The data set includes three
different transects: 18 complete widths in transect I, 22 complete observations in transect
II, and those in transect III were equal to 6. The data was initially analyzed by Muttlak and
McDonald (1990); after which several studies investigated the difference in widths of shrubs
observed in three transects. According to Wang (1996) and Ning et al. (2010), there exist
statistically significant differences between widths of shrubs in transect I and transect II, and
also between transect I and transect III. However, both researches using separate methods
indicated that there were not any statistically meaningful difference between widths of shrubs
in transect II and transect III.
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Figure 2.2: Weibull(0.5, 2) MRL Function with 95% Confidence Intervals

Consequently, we pooled the widths of shrubs in transect I and II together to construct
empirical likelihood-based confidence interval. The pooled sample includes 28 complete
widths of shrubs. The range of the data varies from 0.35 to 2.54. We have considered
separate values for x0 ∈ [0.2, 2.2] to estimate the point-wise confidence intervals of the
MRL function. Figure 2.3 illustrates the results of the 95% confidence intervals for the
MRL function using the empirical likelihood ratio method. For better illustration, the point
estimation of the mean residual lifetime function was plotted simultaneously using (2.6).

It can be observed that both point and interval estimations of the MRL function have
indicated that the average remaining widths of shrubs should decreases gradually as their
widths increase over time. For instance, we are 95% confident that a shrub with a width equal
to 0.5 should grow until it becomes thicker by approximately θ0 ∈ [0.4, 0.8] unites. Whereas,
the 95% EL-based confidence interval for a shrub with a width equal to 2 indicated that on
average it ought to grow until it become something between 0.15 and 0.52 units thicker.
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3
Confidence Interval Based on

Length-biased and Right-censored Data

3.1 Introduction
As discussed in Section 1.6, the data collected in cross-sectional sampling with follow-up is
commonly known as a cohort of prevalent cases in biosciences (e.g. epidemiology, biology
or biomedical sciences). In such sampling procedures only the subjects that have already
experienced an initiating event but are yet to obtain the terminating event at the enrollment
time, are recruited. It has been mentioned that, on average, the prevalent subjects observed
in such studies are confirmed to possess a longer lifetime owing to non-random selection of
subjects from the target population. This means our sample does not represent the behavior
of the population of interest. Instead, it consists of a non-representative (biased) sample of
the target population. The most common case of this bias, discussed in Chapter 1 and 2, is
called length-bias, occurring when the so-called stationarity assumption is satisfied.

In Chapter 2, we discussed some motivating problems which result in observing length-
biased data. To emphasis the importance of the study of length-biased data, we also presented
several real examples in which such data have arisen. Additionally, we briefly discussed in
sections 1.2, 1.3, 1.4 and 1.6 how important it is to study residual lifetime in survival analysis.
Accordingly, we defined the mean residual lifetime function to model the survival data and
we reviewed different studies concerning the MRL function in sections 1.2.2 and 1.8.

Prospective prevalent cohort studies are conducted to assess the history of a disease among
cases that have already experienced the initiating event (e.g. onset of disease). The recruited
subjects are then followed-up over time until they experience the ending event. However,
it is often impossible to follow-up on some of the recruited subjects (for variety of reasons
some of which has been reviewed in Chapter 1) which leads to censored data. The obstacle
posed by censored data is frequently associated with the study of survival data. The analysis
of survival data is very complicated in the presence of censoring, where all we know is that
the terminating event for a subject has occurred in a certain period of time, but not the exact
time. The feasible censoring schemes in a prevalent cohort study with follow-up are random
right-censoring and type I censoring. However, this issue was missed in Chapter 2, which is
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why, over the course of this chapter, we are adapting the statistical tools presented in Chapter
2 to analyze the length-biased data in the presence of right-censoring.

To emphasize the application of length-biased and right-censored data, we present a real
example here, but many more applications may be find in the literature. Wolfson et al. (2001)
conducted a study in epidemiology to explore the survival time among patients with probable
or possible dementia, in which the patients whose age were at least 65 years being recruited.
The enrolled subjects were then screened over time for dementia as the terminating event.
The dates of death or censoring, whichever happened first, were prospectively recorded for
all recruited cases. In this survey, the data collected was proven to be biased as the time
intervals recorded (from onset of dementia up to death) tended to be longer for the subjects
observed in the cohort in comparison to subjects in the target population.

In Section 1.8 we undertook a comprehensive review on recent articles in regard to
inference on a population parameter using the empirical likelihood. In particular, we reviewed
all the existing literature concerning nonparametric inference about the mean residual lifetime
function in the presence of biased sampling. It was observed that utilizing the empirical
likelihoodmethod, one can draw statistical inference on a family of population parameters, say
θ, in general. This is one of the most important advantages of the empirical likelihoodmethod
that we are able to make nonparametric inference (e.g. hypothesis testing, constructing
confidence interval) for a parameter generally, sometimes even without specifying a relation
for the parameter. Fakoor et al. (2018) revealed that the empirical likelihood method may be
adapted for the MRL function as well. However, the possibility of observing censored data
is not considered in this paper.

There are some articles in which the problem of making inference for an unknown
parameter θ via the empirical likelihood method in the presence of censorship has been
discussed. However, there has not been any solution for the problem of estimating the margin
of errors of commonly used summary statistics when our sample consist of length-biased
right-censored data until Ning et al. (2013). They have presented an empirical likelihood-
based method for constructing confidence intervals for summary statistics as well as the
survival function at a fixed point x0. By considering the mean residual function at any
arbitrary but fixed time like x0, one can deal with the MRL function (M(x0)) as a parameter
(θ) in the empirical likelihood method. Considering the importance of right-censoring
and length-bias in survival analysis, the motivating question here is how to draw statistical
inference about residual lifetime function using length-biased right-censored data. This issue
along with the advantages of empirical likelihood in statistical inference inspired us to carry
out this chapter.

3.2 Preliminaries and NPMLE
Given the motivation problem, it was discussed that a prevalent sampling survey is generally
more practical and efficient than using incident sampling. Accordingly, we consider a
sampling mechanism similar to Chapter 2, however, sometimes we are not able to follow
some of the subjects during the study due to a variety of reasons. This issue leads to
observing incomplete data (censored data) in our sample, arising when all we know is that
the terminating event for an individual has occurred in a certain period of time. Right-
censoring is the only feasible censoring scheme in cross-sectional sampling with follow-up.

Assuming the possibility of censoring in our sample, which was ignored in the data setting
discussed in Section 2.2, the following notation is needed. All of the variables below relate
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to backward recurrence times, forward recurrence times, total lifespans and censoring times.
Let X′ denote the total lifetime of interest. Associated with each X′ we observe two separate
random variables, namely T ′ and C′, representing the truncation variable and the censoring
time, respectively. Therefore, we observe a triple random variable (X′,T ′,C′) with regard to
each of the subjects in our sample. Similar to the notation in Chapter 2, let FX ′(·) = P (X′ ≤ ·)
and fX ′(·), defined on R+ = [0,∞), denote the respective cumulative distribution and density
functions of the lifetime variable X′. As mentioned in Section 2.2, in prevalent cohort studies,
only those subjects whose X′ ≥ T ′ are observable. Suppose that we denote the observation
subject to the condition X′ ≥ T ′ by X , regardless of whether it is censored or not. Similar to
Chapter 2, assuming the stationarity assumption for the incidence rate holds, the density of
the observation is g(·) = fX ′ |X ′>T ′

(
·|X′ ≥ T ′) defined in the equation (2.1).

In other words, X is the observed lifespan under left truncation. That is the obtained
length of life X′ subject to the condition X′ ≥ T ′. The random variables T and C associated
with X are defined similarly as well. Thus, in the presence of right-censoring, we have the
following triple related to the lifetime X in cross-sectional sampling with follow-up,

(A, R ∧ C, δ),

in which A, R and C, are the backward recurrence time, the forward recurrence time and
the residual censoring time for the individual obtained. Also, δ is the censoring indicator
variable, which is δ = I(R ≤ C). It is worth mentioning that the residual censoring time is
the censoring time remaining from the recruitment for a subject observed in cross-sectional
sampling. It is often reasonable to assume X is independent of (T,C), when P(C′ ≥ T ′) = 1
(SeeWang (1991)). Moreover, it is a reasonable assumption inmost real situations to consider
C is independent of (A, R).

Since our sample is consists of both censored and uncensored observations, denote the
observed subject X by Y if it is uncensored, and by Z once it is censored. That means once
the underlying lifetime variable X′ satisfies the condition X′ ≥ T ′, we indicate the length
of time either with Y , if it is a complete data, or with Z , when it is censored. Accordingly,
using the recurrence times, it is easy deduced that Y = A + R and Z = A + C. Bear in mind
that although C is independent of (A, R), the complete lifetime observedY , and the censoring
time observed Z are not independent. To show this issue,

Cov(Y, Z) = E
[
(A + R)(A + C)

]
− E [A + R] E [A + C]

= Var (A) + Cov (A, R)
= Var (A)

[
1 + Corr(A, R)

√
(Var(R)/Var(A))

]
.

It is clear that Corr(A, R) , 0. Also, when the initiating event satisfies a stationary Poisson
process, it implies A is conditionallyU(0, X), given X . Consequently,Var(A) = Var(X−A) =
Var(R). Accordingly, it is obvious that, excluding for trivial situations, the above equation
indicates that Cov(Y, Z) > 0 which apparently implies that the censoring mechanism in
a prevalent of cohort study is informative. This fact leads the censoring time to not be
independent of the lifetime of interest in a prevalent cohort study (cross-sectional sampling)
with follow-up, which is why the Kaplan-Meier estimator is not the unconditional NPMLE for
the length-biased distribution here. In other words, owing to the bias induced by the sampling
mechanism, the subject’s failure time must be longer than its truncation time (X′ ≥ T ′), that
is, be observable (X), in order to be censored.

Let A1, . . . , An and R1, . . . , Rn denote, respectively, backward recurrence times (the current
ages) and the corresponding forward recurrence times for the random sample observed in
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a prevalent cohort study, which is X1, . . . , Xn. Associated with each pair of (Ai, Ri), for
i = 1, . . . , n, there is Ci which is the residual censoring time, and therefore δi, the censoring
indicator. Accordingly, we obtain a triple like

(Ai, Ri ∧ Ci, δi), i = 1, 2, . . . n.

in relatedwith each subject observed in cross-sectional samplingwith follow-up. Considering
the above explanation of the sampling procedure, it can be deduced that the vectors (Ai, Ri ∧
Ci, δi) for i = 1, 2, . . . , n are independent.

We discussed in Section 1.3, 1.6 and 2.2 that the density function and the cumulative
distribution function of the truncated observations, say the respective g(·) and G(·) , under
stationarity assumption imply the equation 2.1 and 2.2, respectively. Under the data setting
discussed inChapter 2, we obtained that the classical empirical distribution of the observations
is the NPMLE for the distribution functionG(·). However, it is not possible to use the classical
empirical counterpart distribution here, since our sample consists of censored observations
as well. Furthermore, as discussed, the Kaplan-Meier estimator may not be used due to the
informative mechanism of censoring here.

Vardi (1989) derived a nonparametric maximum likelihood estimator for the common
lifespan distribution function of the n independent and identically distributed stationary
renewal processes. It has been proven that prevalent cohort cases under the stationarity
assumption and observations of n independent and identically distributed stationary renewal
processes started a long time ago have exactly the same probabilistic characteristics (see e.g.
Cox (1969, 1962)). To study the NPMLE for renewal processes that commenced along time
ago, Vardi (1989) initially proposed a multiplicative censorship model for which he deduced
the NPMLE. Then, Vardi (1989) proved that the multiplicative censorship model proposed
may generalize several interesting and important statistical problems such as estimating in
renewal processes, nonparametric deconvolution of an exponential random variable, and
estimating a distribution function under a decreasing density constraint. Having presented
the common NPMLE for these models by Vardi (1989), Vardi and Zhang (1992) studied the
asymptotic behavior of the nonparametric maximum likelihood estimator proposed under
multiplicative censoring. However, they realized that, despite the same maximum likelihood
estimates of the common likelihood function for all these models, the asymptotic behavior
of the NPMLE depends specifically on the characteristics of the model defined. Hence, the
asymptotic behavior of the NPMLE using the data obtained from a prevalent cohort study
with follow-up was studied by Asgharian and Wolfson (2005).

In this section, wewill present and discuss theNPMLEof the length-biased right-censored
survival data for the underlying model in this thesis. Vardi (1989) commenced their study by
proving the NPMLE for the multiplicative censoring. However, we use a more straightfor-
ward strategy for a cohort of prevalent cases (or, alternatively, independent and identically
distributed stationary renewal processes). We will also discuss briefly why the asymptotic
behavior of the subjects’ lifetime in a prevalent cohort differ from themultiplicative censoring
introduced by Vardi (1989).

Imagine that the number of subjects observed at recruitment time is equal to n. Unfortu-
nately, only a percentage of these n subjects experience the failure during the survey; while
a proportion of subjects survive until the end of the study, we lose the chance to follow-up
on the remaining subjects. It is a reasonable assumption that the remaining lifetimes of the
recruited subjects are randomly censored which is why we lose the chance to follow-up on
some of the subjects. In other words, the forward recurrence times of the recruited subjects
are subject to random right-censoring. Also, those subjects that survive until the end of the



3.2 Preliminaries and NPMLE 37

study experience type I censoring. Nonetheless, from now onwards we will treat both the
random censored subjects and type I censoring as the censored subjects since there is not
any difference between this two groups in the underlying model. It is reasonably assumed
that the number of censored and uncensored subjects are random. This issue is the principal
difference between a cohort of prevalent cases with follow-up and the Vardi’s multiplicative
censorship model. Because he assumed a fixed number of subjects to be censored while it is
random in our setting. Thus, let N1 denote the random number of uncensored observations,
then N2 = n − N1 is the number of censored subjects.

To complete the rest of analysis, we need the joint distribution of the backward and the
forward recurrence times, which has been proven in the study of renewal processes initially.
However, considering the same probabilistic characteristics of a sample collected using cross-
sectional sampling under the stationarity assumption, this joint distribution can be used for
modeling the current age and the residual lifetime of the subjects collected (See e.g. Vardi
(1989) or Gilbert et al. (1999)). The joint distribution is given by,

FA,R(a, r) =
FX ′(a + r)

µX ′
.

Denote U and C (also C), respectively, for uncensored and censored in this thesis. Then
GU(t) = P(A + R ≤ t |δ = 1). Then, by assuming p = P(δ = 1) = P(R ≤ C) and
SC(r) = 1 − FC(r) = 1 − P(C ≤ r), we have

GU(y) =
∫ y

0

∫ s

0

1
p

fA,R(s − r, r)SC(r)drds

=
1

pµX ′

∫ y

0
fX ′(s)

∫ s

0
SC(r)drds

=
1
p

∫ y

0

g(s)
s

∫ s

0
SC(r)drds. (3.1)

If gU(t) is the density function corresponding to GU(·), then it is obtained from the above
equation that

gU(y) = g(y)
py

∫ y

0
SC(r)dr . (3.2)

Let GC(t) = P(A + C ≤ t |δ = 0), then we have

GC(z) =
1

1 − p

∫ z

0

∫ s

0

∫ ∞

c
fA,R(s − c, r)drdFC(c)ds

=
1

1 − p

∫ z

0

∫ s

0

∫ ∞

c

fX ′(s + r − c)
µX ′

drdFC(c)ds

=
1

1 − p

∫ z

0

∫ s

0

∫ ∞

s

fX ′(u)
µX ′

dudFC(c)ds

=
1

1 − p

∫ z

0

1 − FX ′(s)
µX ′

∫ s

0
dFC(c)ds

=
1

1 − p

∫ z

0

1 − FX ′(s)
µX ′

FC(s)ds. (3.3)

It is worth mentioning that
(
1 − FX ′(·)

)
/µX ′, which appeared in the last equation, is the

common andwell known probability density function of the backward and forward recurrence
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times (seeCox (1962)). Let fr(·) denote the recurrence density function, inwhich the subscript
r stands for the recurrence times, it can be deduced that

fr(x) =
1
µX ′

(
1 − FX ′(x)

)
=

∫ ∞

x
s−1dG(s).

Accordingly, the cumulative distribution function (3.3) could be rewritten as

GC(z) =
1

1 − p

∫ z

0
fr(s)FC(s)ds. (3.4)

As a consequence, for the density function corresponding to the distribution function GC(t)
we have

gC(z) =
FC(z)

(
1 − FX ′(s)

)
µX ′(1 − p)

=
fr(z)FC(z)

1 − p

=
FC(z)
1 − p

∫ ∞

z
s−1dG(s). (3.5)

Given Theorem 2.2.1, it can be easily deduced that the classical NPMLE of FX ′(·) is the
empirical distribution function using independent and identically distributed randomvariables
sampled from the population of interest. However, we do not have access to i.i.d. data in a
cohort of prevalent cases with follow-up due to non-random sampling. Since the observable
sample under uniform left-truncation in a prevalent cohort study is X1, . . . , Xn, it satisfies
the distribution function (2.2), but not FX ′(·). Thus, we can employ the sample observed to
draw inference on the likelihood function of the distribution G(·). Then, having reached the
nonparametric maximum likelihood estimation ofG(·), we can estimate the target distribution
FX ′(·) by means of (2.2).

For this purpose, let n1 and n2 be the values realized for the random variables N1
(the random number of uncensored observations) and N2 (the random number of censored
observations), respectively. Consequently, given n1 and n2, it is obvious that n1 + n2 = n
and our sample X1, . . . , Xn consists of Y1, . . . ,Yn1 and Z1, . . . , Zn2 . Suppose that y1, . . . , yn1

and z1, . . . , zn2 denote the uncensored and censored realized values for the random variables
Y1, . . . ,Yn1 . Z1, . . . , Zn2 , respectively. Then, the full likelihood based on the information of
the total lifespans observed is as follows.

L =
©«

n1∏
i=1

dGU(yi)
ª®¬ ©«

n2∏
j=1

dGC(z j)
ª®¬

=
©«

n1∏
i=1

dG(yi)
pt

∫ yi

0
SC(r)drª®¬ ©«

n2∏
j=1

FC(z j)
1 − p

∫ ∞

zj
s−1dG(s)ª®¬

∝ ©«
n1∏

i=1
dG(yi)

ª®¬ ©«
n2∏
j=1

∫ ∞

zj
s−1dG(s)ª®¬ . (3.6)

To obtain the NPMLE, all we need to do is to find a distribution function G(·) in the set
F , defined in Section 2.3, that maximize (3.6). For this purpose, it is apparent that G(·)
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should be a kind of distribution which assign probability masses to the set of all observa-
tions

{
(y1, . . . , yn1) ∪ (z1, . . . , zn2)

}
. But, if G(·) is a kind of distribution function assigning

probability masses to any set beyond the sampled observations
{
(y1, . . . , yn1) ∪ (z1, . . . , zn2)

}
,

then, by moving the mass(es) to the nearest observation(s) on the left side, we obtain another
distribution function possessing higher likelihood. Furthermore, if G(·) is a distribution that
assigns any probability mass to the left side of the smallest observation, adding this mass
to the smallest observation results in growing the likelihood. We obtain this increase in the
likelihood, since the final integral in (3.6) for different values of zi is right-tailed with a limit
from left. Thus, it is concluded that all we need to do, in order to find the NPMLE, is re-
strict our attention to the problem of finding a discrete distribution which assigns probability
masses to the mentioned set and maximizes the likelihood function (3.6).

For this aim, suppose that t1, . . . , tm are the ordinal values of the set of all of observations{
(y1, . . . , yn1) ∪ (z1, . . . , zn2)

}
so that 0 < t1 < t2 < · · · < tm. It is of note that if the

distribution function FX ′(·) and as a direct consequence G(·) are completely continuous, we
should not observe any tie in our sample and therefore theoretically m = n1 + n2 = n with
probability 1. However, it is common in practice to observe ties in our real data sets due
to possibility of discrete distribution of the underlying survival time, which is why we have
used m for the number of observations instead of n = n1 + n2 indicating the possibility of
multiplicity. It is apparent that m ≤ n1 + n2 is always true. Let ξ j and ζ j for j = 1, . . . ,m
denote the multiplicity of uncensored (Y values) and censored (Z values) data, respectively.
Therefore,

ξ j =

n1∑
i=1

I(yi = t j) and ζ j =

n2∑
i=1

I(zi = t j), ( j = 1, . . . ,m).

Given the above definition, the problem of maximizing likelihood function (3.6) is equivalent
to the problem of maximizing the following likelihood.

L(G) :=
m∏

i=1
pξii

©«
m∑
j=i

1
t j

p j
ª®¬
ζi

, (3.7)

in which pi indicates the weight that the NPMLE of the distribution G(·) assigns to the point
ti, for j = 1, . . . ,m. In other words, pi := p(ti) = G (dti). Accordingly, p := (p1, . . . , pm)
must satisfy the following conditions:

pi ≥ 0 ( j = 1, . . . ,m),
m∑

i=1
pi = 1. (3.8)

Considering the form of (3.7), it is hard to maximize the likelihood analytically as it does
not have a closed form. However, following studies such as Vardi (1989) we can employ
some optimization method to obtain the point p̂ at which the likelihood function (3.7) hits its
maximum.

For this purpose, we consider
{
(Y1, . . . ,Yn1) ∪ (Z1, . . . , Zn2)

}
as the set of data consisting

of incomplete and complete data for which we observe the pooled sampleT1 < T2 < · · · < Tm.
Moreover, we think of

{
(Y1, . . . ,Yn1) ∪ (Y21, . . . ,Y2n2)

}
=

{
∪n

i=1Xi

}
as the set of complete data

which is not observable due to censoring of the subjectsY21, . . . ,Y2n2 . Similar to Section 2.2, if
observing a complete sample was possible, the nonparametric maximum likelihood estimator
of the distribution function G(·) would be simply the empirical counterpart of the data set
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(X1, . . . , Xn). However, the NPMLE of the distribution function G(·) here is a nonparametric
distribution function that assigns the weights pi (i = 1, . . . ,m) to the combined sample
(T1, . . . ,Tm) using only the information provided by the sample

{
(Y1, . . . ,Yn1) ∪ (Z1, . . . , Zn2)

}
.

Consequently, the EM algorithm is an invaluable tool by considering different aspects of the
problem. Indeed, the EM algorithm takesmore advantages in comparison to the other existing
methods when the underlying problem is to deal with incomplete data.

Since we have considered the possibility of observing ties in our data, suppose that for
the complete sample X1, . . . , Xn we have observed x1, . . . , xn and the corresponding ordinal
values t1, . . . , tm. Let ϑi (i = 1, . . . ,m) denote the number of multiplicity corresponding to
the sample value ti,

ϑi =

n∑
j=1

I(x j = ti) (i = 1, . . . ,m).

Then, recalling the vector of probability masses assigned by distribution G(·) to the observa-
tion points ti (i = 1, . . . ,m), we can rewrite the likelihood function (3.7) based on the sample
consists of all complete data as follows,

L′(G) :=
m∏

i=1
pϑii . (3.9)

This likelihood has a closed form and themaximumpoint could be observed throughLagrange
multiplier method. Given the likelihood function (3.9), we have the following Lagrangian for
the log-likelihood function (3.9) under the constraint (3.8).

L(G, λ0) :=
m∑

i=1
ϑi log

(
pi

)
+ λ0

©«
m∑

i=1
pi − 1ª®¬ (3.10)

By considering the Lagrangian (3.10), the following EM algorithm may be applied to
obtain the NPMLE of G(·) using the sample consisting of incomplete and complete data{
(y1, . . . , yn1) ∪ (z1, . . . , zn2)

}
. Given an initial arbitrary probability mass vector, denote

p0 = (p0
1, . . . , p0

n), satisfying the conditions (3.8), we can calculate the conditional expectation
vector of the multiplicities of observations at observation points ti (i = 1, . . . ,m) indicated
by ϑ1 = (ϑ1

1, . . . , ϑ
1
n). Having obtained ϑ1, we can maximize the Lagrangian (3.10) reaching

p1 = (p1
1, . . . , p1

n). For the remaining repetitions of the EM algorithm , all we need to do in
each iteration is substitute the new estimated weight vector pl for the previous probability
mass vector pl−1 and calculate the new conditional expectation, say ϑl+1, based on the new
weights (pl), and then calculating pl+1 by means of ϑl+1 (l = 1, 2, . . .).

Considering the underlying sampling setting, we present below the computational phases
for the EM algorithm in order to estimate the NPMLE G(·).

Expectation Step: For any arbitrary i ∈ (1, . . . , n1), j ∈ (1, . . . , n1) and k ∈ (1, . . . ,m),
we have

Epl−1
{
I(Yi = tk) + I(Y2 j = tk) | (y1, . . . , yn1, z1, . . . , zn2)

}
= P

{
Yi = tk | (y1, . . . , yn1, z1, . . . , zn2), pl−1

}
+P

{
Y2 j = tk | (y1, . . . , yn1, z1, . . . , zn2), pl−1

}
=

P
{
Yi = tk , (y1, . . . , yn1, z1, . . . , zn2), pl−1

}
P

{
(y1, . . . , yn1, z1, . . . , zn2), pl−1

}
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+
P{Y2 j = tk , (y1, . . . , yn1, z1, . . . , zn2), pl−1}

P{ (y1, . . . , yn1, z1, . . . , zn2), pl−1}

=
P{Yi = tk , Yi = yi, pl−1}

P
{

Yi = yi, pl−1
} +

P{Y2 j = tk , Z j = z j, pl−1}
P

{
Z j = z j, pl−1

}
= I(yi = tk) +

∫
P

{
A2 j = a , Y2 j = tk , Z j = z j, pl−1 | δ = 0

}
da

P
{

Z j = z j, pl−1
}

= I(yi = tk) +

∫
P

{
A2 j = a , R2 j = tk − a , Cj = z j − a, pl−1, δ = 0

}
da

(1 − p)P
{

Z j = z j, pl−1
}

= I(yi = tk) +

∫ zj
0 P

{
A2 j = a , R2 j = tk − a , pl−1

}
P

{
Cj = z j − a, pl−1

}
da

(1 − p)g̃C(tr)

= I(yi = tk) +
∫ zj
0 f̃A,R(a, tk − a) fC(z j − a)da

FC(z j)
∫

x≥zj
x−1 dG̃(x)

= I(yi = tk) +
g̃(tk)

∫ tr
0 fC(a′)da′

tk FC(tr)
∫

x≥tr
x−1 dG̃(x)

= I(yi = tk) +
pl−1

k

tk
∑m

s=r
pl−1

s

ts

= I(yi = tk) +
pl−1

k

tk


I(z j = t1)∑m

s=1
pl−1

s

ts

+
I(z j = t2)∑m

s=2
pl−1

s

ts

+ · · · +
I(z j = tk)∑m

s=k
pl−1

s

ts


. (3.11)

Now, we can obtain the following expectation by applying the most recent estimation of
probability masses vector, say pl−1. Given (3.11), for l = 1, 2, . . . we have

ϑl
k := Epl−1

(
ϑk | (y1, . . . , yn1, z1, . . . , zn2)

)
= Epl−1

©«
n∑

i=1
I(Xi = tk) | (y1, . . . , yn1, z1, . . . , zn2)

ª®¬
= Epl−1


n1∑

i=1
I(Yi = tk) +

n2∑
j=1

(Y2 j = tk) | (y1, . . . , yn1, z1, . . . , zn2)


=

n1∑
i=1

I(yi = tk) +
pl−1

k

tk


∑n2

j=1 I(z j = t1)∑m
s=1

pl−1
s

ts

+

∑n2
j=1 I(z j = t2)∑m

s=2
pl−1

s

ts

+ · · · +
∑n2

j=1 I(z j = tk)∑m
s=k

pl−1
s

ts
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= ξk +
pl−1

k

tk


ζ1∑m

s=1
pl−1

s

ts

+
ζ2∑m

s=2
pl−1

s

ts

+ · · · + ζk∑m
s=k

pl−1
s

ts


= ξk +

pl−1
k

tk

k∑
j=1


ζ j∑m

s= j
pl−1

s

ts


.

Maximization Step: In this step, by using the vector ϑl , we can obtain a new probability
vector, say pl , which maximize the Lagrangian (3.10).

pl =
(
pl

1, pl
2, . . . , pl

m

)
=

(
ϑl

1∑m
i=1 ϑ

l
i

,
ϑl

2∑m
i=1 ϑ

l
i

, . . . ,
ϑl

m∑m
i=1 ϑ

l
i

)
=

1
n
(ϑl

1, . . . , ϑ
l
m).

The last relation in the above equation is satisfied because the summation of all multiplicities
ϑi (i = 1, . . . ,m) must be equal to the sample size,

∑m
i=1 ϑi = n.

It was expected that the maximization phase would lead to probability masses ϑi/n (i =
1, . . . , n) because (3.10) is the likelihood function corresponding to the empirical counterpart
distribution of the sample of complete data x1, . . . , xn by considering the possibility of
observing ties in our observation. It is of note that the probability reached in this step is not
only to maximize the Lagrangian (3.10) and therefore the likelihood function (3.9), but also
the likelihood function (3.7).

Properties of the EM algorithm
1 There exists a unique p̂ = (p̂1, . . . , p̂m) which maximize the likelihood function (3.7).

2 The likelihood function (3.7) grows in each repetition of the EM algorithm.

3 The algorithm converges to p̂ = (p̂1, . . . , p̂m), the unique maximizer of the likelihood
function (3.7).

4 Suppose that

Ĝn(x) :=
m∑

i=1
p̂i I[0,x](ti) (3.12)

be the nonparametric maximum likelihood estimator ofG(·). Then, Ĝn(·) is a consistent
estimate of G(·) for x > 0.

Proof. For proof of these properties see Vardi (1989) for an analogous argument.

Efron (1967) initially introduced a similar algorithm for another problem, after which
Vardi (1989) proposed another similar EMalgorithmwhichwas deduced for themultiplicative
censoring initially and it is validity for the underlying model, however, has been noted. Here,
we presented a more straight forward method for a prevalent cohort study with follow-up.
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COROLLARY 3.2.1 If the value realized for the random variable N2 is equal to zero, indi-
cating the number of the censored data is equal to zero (n2 = 0), then the likelihood function
(3.6) leads to the same problem discussed in Chapter 2. That means the NPMLE obtained
here using the above EM algorithm will be equal to the classical empirical counterpart of the
observations, (2.4).

NPMLE: More informative structure
It is of note that we have not used the information about the current age and the residual
lifetime for the likelihood function (3.6). Instead, we have used the total lifetime obtained for
censored and uncensored subjects by applying distribution functions (3.1) and (3.4). However,
the information of the backward and forward recurrence times are basically accessible in the
sampling mechanism of interest in this chapter. Accordingly, the aim of this section is to
use the more informative structure of the data to obtain the likelihood function. It will be
observed that both procedures lead to the same maximization problem which is a function of
G(·). This means that there is a unique maximum estimator for both likelihood functions.

For this purpose, let Ai and Ri, for i = 1, . . . , n1, denote the backward recurrence time
and the forward recurrence time of the random variablesY1, . . . ,Yn1 such thatYi = Ai + Ri, for
i = 1, . . . , n1. Also, suppose that A j and Cj ( j = 1, . . . , n2) denote the backward recurrence
time and the residual censoring time in regard to the random variables Z1, . . . , Zn2 , and
therefore Z j = A j + Cj ( j = 1, . . . , n2). Furthermore, suppose that ai (a j) and ri (r j) are the
values realized for Ai (A j) and Ri (Rj), respectively. As a consequence, it is apparent that
yi = ai + ri and z j = a j + c j , when i = 1, . . . , n1 and j = 1, . . . , n2. Then,

L =
©«

n1∏
i=1

fA,R(Ai = ai, Ri = ri |δi = 1)ª®¬ ©«
n2∏
j=1

fA,C(A j = a j,Cj = c j |δ j = 0)ª®¬
=

©«
n1∏

i=1

1
p

SC(ri) fA,R(ai, ri)
ª®¬ ©«

n2∏
j=1

1
1 − p

fC(c j)
∫ ∞

cj
fA,R(a j, r)drª®¬

=
©«

n1∏
i=1

1
p

SC(ri)
fX ′(ai + ri)

µX ′

ª®¬ ©«
n2∏
j=1

fC(c j)
1 − p

∫ ∞

cj

fX ′(a j + r)
µX ′

drª®¬
=

©«
n1∏

i=1

SC(ri)
pyi

dG(yi)
ª®¬ ©«

n2∏
j=1

fC(c j)
1 − p

∫ ∞

zj
s−1dG(s)ª®¬

∝ ©«
n1∏

i=1
dG(yi)

ª®¬ ©«
n2∏
j=1

∫ ∞

zj
s−1dG(s)ª®¬ . (3.13)

It can be observed that the likelihood functions (3.6) and (3.13) have led to the same maxi-
mizing problem which results in the same unique NPMLE.

NPMLE: Random number of random censoring subjects
Bear in mind that in our analysis, without loss of generality, we have obtained the likelihood
functions (3.13), (3.6) by conditioning on observing N1 = n1 and N2 = n2. However, as
we have insisted previously, N1 and N2 are random and not fixed variables in the underlying
model. Our conditional approach does not have any impact on the NPMLE proposed here,
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albeit N1 and N2 must be considered as random variables in the asymptotic study of the
proposed NPMLE of G(·) since it leads to different limiting properties.

Here we present the likelihood for the random number of censoring to indicate that our
conditional procedure is not affecting the result for the NPMLE.

L =

n∏
i=1

(
fA,R(Ai = ai, Ri = ri)

)δi (P(A j = a j, c j < Rj)
)1−δi

=

n∏
i=1

(
fX ′(yi)
µX ′

)δi (∫ ∞

cj
fA,R(a j, r)dr

)1−δi

=

n∏
i=1

(
G(yi)
yi

)δi (∫ ∞

zj
s−1dG(s)

)1−δi

∝
n∏

i=1

(
G(yi)

)δi (∫ ∞

zj
s−1dG(s)

)1−δi

. (3.14)

It is apparent that the likelihood functions (3.6), (3.13) and (3.13) result in the same maxi-
mizing problem, and consequently a unique NPMLE.

3.3 Empirical Likelihood for Length-biased Right-censored
Data

In Section 2.3, we reviewed the basic principle of constructing a confidence interval for a
parameter. We discussed a method for constructing a confidence interval for length-biased
data using empirical likelihood in Section 2.4. Similar to the previous chapter, let T(·) denote
a function T(·) : F → R. As mentioned in Chapter 2, we are precisely interested in testing
hypothesis or constructing a confidence interval when the EL constraint is T(FX ′) = M(x),
in which M(x) is the MRL function defined in (1.1). However, while Chapter 2 presents
statistical inference on the MRL function using the length-biased survival data, we consider
here the possibility of observing censored data in a length-biased sampling procedure.

If an i.i.d. sample from the target distribution had been observable, we would have been
able to obtain an NPMLE for the MRL function by substituting FX ′(·) with the classical
empirical distribution function in T(FX ′). However, the available data in cross-sectional
sampling does not consist of i.i.d. copies of the target population because of non-random
sampling of subjects. Furthermore, the method presented in Section 2.4 is not applicable
here as our sample is comprised of complete and incomplete data.

However, our statistical inference may be based on the NPMLE presented in Section 3.2.
Having assumed the stationarity assumption for incidence rate, all the equations presented
from (2.1) to (2.13) are valid here as well. Therefore, we need to maximize the likelihood
function (3.7) under the constraint H0 defined in (2.10) by substituting ηx0(s, θ0) from (2.13)
. Hence, given (2.8), for the length-biased right-censored sample of survival data

{
∪n

i=1Xi

}
={

(Y1, . . . ,Yn1) ∪ (Z1, . . . , Zn2)
}
defined in Section 3.2, we are looking for a distribution G ∈ F

that satisfies the following estimation equation,

H0 :
∫

ηx0(s, θ0)dG(s) = 0, (3.15)
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where ηx0(Xi, θ0) is defined by (2.13). As mentioned in Section 2.4, although ηx0(s, θ0) is a
function of s and θ0, it is defined and affected by x0. Nonetheless, x0 was assumed to be
a fixed point in Section 2.4. Consequently, we have different function ηx0(s, θ0) for various
points x0, which is why we have used x0 as a subscript of ηx0(s, θ0) for more emphasis.

Inspired by the discussion given in Section 2.3, we may make statistical inference onT(F)
by constructing an alternative likelihood ratio to (2.7). The method presented in Chapter 2 is
not applicable here since the possibility of observing censored data is missed. However, the
discussion presented in Section 3.2, and therefore the NPMLE Ĝn obtained in (3.12) can be
applied alternatively for constructing the likelihood ratio.

Consider the sample variablesT1 < T2 < · · · < Tm corresponding to the set of all observa-
tions

{
(Y1, . . . ,Yn1) ∪ (Z1, . . . , Zn2)

}
. For the likelihood function L(G̃), we shall suppose that

G̃(·) is a distribution which assign a probability masses wi (i = 1, . . . ,m) to the random vari-
able Ti ∈

{
∪m

i=1Ti

}
. Then, w = (w1,w2, . . . ,wm) is a probability vector assigned by G̃(·) to the

random variables Ti ∈ R, and therefore ηx0(Ti, θ0) (i = 1, . . . ,m). Thus, wi = w(Ti) = dG̃(Ti)
(i = 1, . . . ,m), where

∑m
i=1 wi = 1. Following relation (3.7), it is apparent that for L(w) we

have

L(G̃) =
m∏

i=1
w
ξi
i

©«
m∑
j=i

1
t j
w j

ª®¬
ζi

. (3.16)

Note that we have considered the possibility of observing multiplicity in our sample (m ≤
n = n1+n2) for deriving distribution function G̃(·). The likelihood ratio function G̃(·), which
is a function of w, has the representation

R(G̃) = L(G̃)
L(Ĝn)

=


m∏

i=1

(
wi

p̂i

)ξi ©«
∑m

j=i
1
tj
w j∑m

j=i
1
tj

p̂ j

ª®¬
ζi

:
m∑

i=1
wi = 1, wi ≥ 0, i = 1, . . . ,m

 . (3.17)

The last equation in (3.17) is obtained by means of (3.7) and (3.16).
As mentioned in Section 2.3, the distribution G̃(·) in (3.17) is a member of the set of all

distributions on R, indicated by F . However, since we are interested in drawing statistical
inference for the parameter θ0, we use a smaller set of distributions by applying the constraint
H0. Therefore, given (3.15), the following estimation equation may be used in order to find
the NPMLE under the constraint H0,

H0 :
m∑

i=1
ηx0(Ti, θ0)wi = 0. (3.18)

where

ηx0(Ti, θ0) =
(
1 − x0 + θ0

Ti

)
I[x0,X(n))(Ti),

for i = 1, . . .m, in which X(n) = Tm is the maximum of the underlying sample and θ0 =
θ(x0) = M(x0), where M(x0) is the value of the MRL function (2.11) at point x0.
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Based on the ordinal random sample T1, . . . ,Tm, (3.18) is the alternative constraint to
(3.15). Therefore, we can form the profile likelihood ratio for the length-biased right-censored
sample by applying the constraint (3.18) as follows.

R(θ0) = sup
{
R(G̃) | T(G̃) = θ0, G̃ ∈ F

}
= sup


m∏

i=1

(
wi

p̂i

)ξi ©«
m∑
j=i

1
t j
w j

ª®¬
ζi ©«

m∑
j=i

1
t j

p̂ j
ª®¬
−ζi

:
m∑

i=1
wi = 1,

m∑
i=1

wiηx0(Ti, θ0) = 0,wi ≥ 0, i = 1, . . . ,m

}
. (3.19)

It is not easy to maximize the above likelihood ratio analytically since it does not have a closed
form. Therefore, we can employ a suitable optimization method to find the maximizer of the
likelihood ratio R(θ0). Inspired by discussion resulting in (3.9), suppose that X1, . . . , Xn is
the complete sample, a proportion of which is not observable owing to random censoring.
Instead, let t1, . . . , tm denote the ordinal values we obtained for the length-biased right-
censored sample

{
(Y1, . . . ,Yn1) ∪ (Z1, . . . , Zn2)

}
. Suppose that ρi, (i = 1, . . . ,m) denotes the

number of ties for the sample value ti,

ρi =

n∑
j=1

I(x j = ti) (i = 1, . . . ,m).

Consequently,

R(θ0) = sup


m∏

i=1
w
ρi
i p̂−ξii

©«
m∑
j=i

1
t j

p̂ j
ª®¬
−ζi

:
m∑

i=1
wi = 1,

m∑
i=1

wiηx0(Ti, θ0) = 0,wi ≥ 0, i = 1, . . . ,m
 (3.20)

Thus, the log-likelihood ratio profile under the constraint (3.18) is equal to

l(θ0) = −2 logR(θ0)

= 2 log


m∏

i=1
p̂ξii

©«
m∑
j=i

1
t j

p̂ j
ª®¬
ζi

−2 sup
log

m∏
i=1

w
ρi
i :

m∑
i=1

wi = 1,
m∑

i=1
wiηx0(Ti, θ0) = 0,wi ≥ 0, i = 1, . . . ,m


= 2

m∑
i=1

ξi log
(
p̂i

)
+ ζi log ©«

m∑
j=i

1
t j

p̂ j
ª®¬
 − 2 sup


m∑

i=1
ρi log (wi) :

m∑
i=1

wi = 1,

m∑
i=1

wiηx0(Ti, θ0) = 0,wi ≥ 0, i = 1, . . . ,m
 (3.21)
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Considering the form of equation (3.20) and (3.21), the Lagrange multiplier method can be
used tomaximize the likelihood ratio profile under the extra constraint H0. So, the Lagrangian
is defined by

L(G̃, λx0, λ) :=
m∑

i=1
ρi log (wi) + λx0

©«
m∑

i=1
wiηx0(Ti, θ0)

ª®¬
+λ

©«
m∑

i=1
wi − 1ª®¬ + c, (3.22)

where c is a constant.
Adopting the method proposed to obtain the maximizer of the Lagrangian (3.10), we

can apply a constrained EM algorithm to reach the NPMLE of the likelihood ratio function
(3.19) under the restriction (3.18). To start the algorithm, select an arbitrary weight vector
w0 = (w0

1, . . . ,w
0
n), which should satisfy the conditions

∑m
i=1 wi = 1 andwi ≥ 0 (i = 1, . . . ,m).

Then, calculate the conditional expectation of the number of multiplicity of observations at
points ti (i = 1, . . . ,m) that is ρ1 = (ρ1

1, . . . , ρ
1
m). Having calculated ρ1, maximize the

Lagrangian (3.22), obtaining w1 = (w1
1, . . . ,w

1
m). Thereafter, the lth iteration estimates the

conditional expectation ρl by means of the last weight vector wl−1 and will terminates by
maximizing the Lagrangian, reaching the new weight vector wl .

We introduce below the computational procedure of the EM algorithm for obtaining the
NPMLE of G(·) under the constraint 3.18.

Expectation Step: In this phase, we can obtain the following expectation by applying
the estimation of probability weight vector presented in the previous step, say pl−1. Given
(3.11), we possess

ρl
k := Ewl−1

(
ρk | (y1, . . . , yn1, z1, . . . , zn2)

)
= Ewl−1

©«
n∑

i=1
I(Xi = tk) | (y1, . . . , yn1, z1, . . . , zn2)

ª®¬
= Ewl−1


n1∑

i=1
I(Yi = tk) +

n2∑
j=1

I(Y2 j = tk) | (y1, . . . , yn1, z1, . . . , zn2)


= ξk +
wl−1

k

tk


ζ1∑m

s=1
wl−1

s

ts

+
ζ2∑m

s=2
wl−1

s

ts

+ · · · + ζk∑m
s=k

wl−1
s

ts


= ξk +

wl−1
k

tk

k∑
j=1


ζ j∑m

s= j
wl−1

s

ts


,

where k = 1, . . . ,m.
Maximization Step: In this step, we can maximize the Lagrangian (3.22) by substituting

the ρl estimated in above for ρ. Thus,

wl
k =

ρk∑m
i=1 ρi − λx0ηx0(Ti, θ0)

, (k = 1, . . . ,m), (3.23)
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where λx0 is the solution of the following equation.
n∑

i=1

ρiηx0(Ti, θ0)∑m
i=1 ρi − λx0ηx0(Ti, θ0)

= 0.

Therefore, we can conclude the following new weight vector, say wl , which maximize the
likelihood function (3.20) based on the ρl .

wl =
(
wl

1,w
l
2, . . . ,w

l
m

)
=

(
ρ1

n − λx0ηx0(Ti, θ0)
,

ρ2
n − λx0ηx0(Ti, θ0)

, . . . ,
ρm

n − λx0ηx0(Ti, θ0)

)
.

The last equation holds because the sum of all multiplicities ρi (i = 1, . . . ,m) must be equal
to n,

∑m
i=1 ρi = n.

Properties of the EM algorithm
1 There is a unique ŵ = (ŵ1, . . . , ŵm) which maximize the likelihood function (3.16).

2 The likelihood function (3.16) climbs by increasing the number of iterations of the EM
algorithm.

3 The algorithm converges to the unique maximizer of the likelihood function (3.16), say
ŵ = (ŵ1, . . . , ŵm).

4 Suppose that

G̃n(x) :=
m∑

i=1
ŵi I[0,x](ti)

denote the nonparametric maximum likelihood estimator of G(·) under the constraint
(3.18) using length-biased right-censored data. Then, G̃n(x) is a consistent estimate of
the distribution function G(x) for x > 0 under the constraint H0 defined in (3.15). In
other words, G̃n(·) is a consistent estimate of G̃(·) ∈ F that achieves the supremum of
(3.19).

Proof. For the proof of these properties see Ning et al. (2013) for an analogous argument.

Thus, by plugging in the weigh vector ŵ in (3.19) we can obtain the following equation
for the likelihood ratio profile of the parameter θ0.

R(θ0) =
m∏

i=1

(
ŵi

p̂i

)ξi ©«
m∑
j=i

1
t j
ŵ j

ª®¬
ζi ©«

m∑
j=i

1
t j

p̂ j
ª®¬
−ζi

. (3.24)

Accordingly, the empirical log-likelihood ratio corresponding to (3.24) is equal to

l(θ0) = −2 logR(θ0)

= 2
m∑

i=1

ξi log
(
p̂i

)
+ ζi log ©«

m∑
j=i

1
t j

p̂ j
ª®¬
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−2
m∑

i=1

ξi log (ŵi) + ζi log ©«
m∑
j=i

1
t j
ŵ j

ª®¬
 . (3.25)

In the following theorem, we have studied the limiting distribution of the empirical
log-likelihood ratio.

THEOREM 3.3.1 Assume that E
(
X−2

)
< ∞. For all x0 ∈ [0, τ), the limiting distribution

of l(θ0) is a chi-square distribution with 1 degree of freedom. That is,

l(θ0)
L−→ χ2

(1).

Proof. See Appendix I for this proof.

The limiting distribution presented in Theorem 3.3.1 can be used to construct the following
EL ratio-based confidence interval for θ0 using the length-biased right-censored data. Thus,
an asymptotic 100(1 − α)% confidence interval for the MRL function θ0 = M(x0) at a fixed
time x0, when x0 ∈ [0, τ), could be obtained through the following relation.

C3(x0) =
{
θ(x0) = θ0 : l (θ0) ≤ χ2

1,α

}
,

where χ2
1,α is the upper α-quantile of the distribution of χ2

1 .

3.4 Simulation
A Monte Carlo simulation was undertaken to inspect and illustrate the performance of the
empirical likelihood ratio confidence interval proposed. Three separate sample sizes 60,
100 and 200 were considered for constructing the confidence intervals, representing small,
moderate and large sample sizes, respectively. Two different values for the nominal level, that
are 1 − α = 0.95 and 0.90, were used to estimate the confidence intervals. The performance
of the EL method was evaluated based on 5000 repetitions of the confidence intervals for
each sample size. Consequently, the coverage probability of the confidence interval in each
scenario was computed as the proportion of the number of intervals covering the real value
of the unbiased MRL function out of the 5000 repetitions.

For each scenario, the pairs of independent random variables (X′
i ,T

′
i ) (i = 1, 2, . . . , k)

were generated, where T ′
i is the truncation variable from a uniform distribution U(0, b) and

X′
i is the i.i.d. copies from the target population of interest. The truncation random variables

were generated from a uniform distribution to ensure that the stationarity assumption was
satisfied. For each scenario, only those pairs of random variables (X′

i ,Ti) satisfying the
condition X′

i > T ′
i were collected, and the remaining data was considered as the unobserved

left-truncated subjects. The amount of k was considered large enough to ensure that the
required sample size was provided. Also, the value of b was chosen in regard to the target
population of interest. We call the observed truncated sample X1, . . . , Xn in this thesis. It is
apparent that the obtained data was length-biased. For the observed sample, the backward and
forward recurrence times were computed using (Xi,Ti) (i = 1, 2, . . . , k), which means that, for
an observed individual, Ai = Ti and Ri = Xi −Ti. Afterwards, the censoring variables Ci was
generated from some uniform distributions U(0, b). Two separate levels of censoring 12%
and 30% were taken for each simulation scenario. The censoring variables were applied for
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Table 3.1: 90 % and 95 % Confidence Intervals for MRL of Uniform(1,4)
Scenario: 1 − α = 90% 1 − α = 95%

Censoring Level Censoring Level
Time Sample 15% 30% 15% 30%

x0 n ∆ C.P. ∆ C.P. ∆ C.P. ∆ C.P.
60 0.402 0.899 0.435 0.886 0.479 0.953 0.519 0.955

1.2 100 0.315 0.897 0.343 0.895 0.375 0.951 0.407 0.948
200 0.225 0.897 0.245 0.895 0.267 0.952 0.290 0.952
60 0.333 0.893 0.363 0.887 0.397 0.949 0.432 0.936

1.7 100 0.261 0.893 0.284 0.897 0.311 0.941 0.338 0.952
200 0.186 0.895 0.203 0.897 0.221 0.945 0.241 0.943
60 0.277 0.891 0.301 0.886 0.328 0.945 0.357 0.949

2.2 100 0.216 0.897 0.236 0.889 0.258 0.950 0.281 0.940
200 0.154 0.903 0.168 0.905 0.183 0.950 0.199 0.949
60 0.223 0.891 0.243 0.890 0.265 0.950 0.288 0.941

2.7 100 0.174 0.900 0.190 0.892 0.208 0.948 0.227 0.950
200 0.124 0.900 0.136 0.899 0.148 0.950 0.161 0.950
60 0.167 0.896 0.181 0.883 0.198 0.949 0.216 0.937

3.2 100 0.130 0.902 0.143 0.889 0.156 0.944 0.170 0.944
200 0.093 0.896 0.102 0.897 0.110 0.943 0.121 0.945
60 0.099 0.860 0.110 0.854 0.119 0.929 0.133 0.919

3.7 100 0.077 0.885 0.083 0.866 0.093 0.935 0.099 0.922
200 0.055 0.920 0.150 0.899 0.065 0.954 0.071 0.943

the remaining lifetime (the forward recurrence times) to meet the requirement of informative
censoring structure. The code for the simulation presented was written in R by the author
and can be found in Appendix II.

Table 3.1 illustrates the performances of the 90% and 95% confidence intervals for the
MRL function using the empirical likelihood method. The length-biased and right-censored
data corresponding to the target population U(1, 4) was considered for analysis, which meets
the condition given in Theorem 3.3.1. It can be observed that the EL method preserved
the nominal level very well. As expected, the confidence intervals narrowed enormously
by increasing in the sample sizes. Moreover, the lengths of confidence intervals widened
noticeably as the share of censored subjects increased. However, the observed coverage
probabilities for both levels of censoring were almost similar and fortunately there was not
considerable negative impact between the results for the censoring levels. This issue can
be justified by considering the average lengths of confidence intervals. In addition, the
widths of intervals dived swiftly by increasing the value of x0. A quite slight decline in the
coverage probabilities were only observed for small (n = 60%)sample scenario and x0 = 3.7.
This issue is completely acceptable since x0 = 3.7 is exactly the 90%-quantile of the target
distribution (the censored sample provide less information for tails). Furthermore, there was
not any statistically meaningful disparity between two groups of the nominal levels, 90% and
95%.

Table 3.2 summarizes the simulation results for the MRL confidence intervals of the
Gamma(2, 4) distribution as the unbiased population. However, the length-biased and right-
censored data, according to the setting presented above, was simulated to construct the
confidence intervals. The proposed empirical likelihood method was applied to obtain the
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Table 3.2: 90 % and 95 % Confidence Intervals for MRL of Gamma(2,4)
Scenario: 1 − α = 90% 1 − α = 95%

Censoring Level Censoring Level
Time Sample 15% 30% 15% 30%

x0 n ∆ C.P. ∆ C.P. ∆ C.P. ∆ C.P.
60 0.412 0.902 0.443 0.899 0.491 0.956 0.528 0.951

1.0 100 0.320 0.907 0.344 0.894 0.382 0.952 0.411 0.943
200 0.227 0.905 0.245 0.895 0.273 0.959 0.291 0.948
60 0.393 0.895 0.423 0.897 0.469 0.951 0.505 0.942

1.5 100 0.305 0.899 0.327 0.900 0.364 0.945 0.391 0.947
200 0.217 0.906 0.232 0.897 0.264 0.955 0.278 0.951
60 0.412 0.895 0.445 0.890 0.494 0.941 0.532 0.943

2.0 100 0.321 0.903 0.346 0.889 0.382 0.944 0.411 0.945
200 0.228 0.899 0.244 0.893 0.275 0.956 0.291 0.951
60 0.467 0.886 0.464 0.884 0.558 0.939 0.560 0.941

2.5 100 0.363 0.894 0.389 0.888 0.435 0.945 0.465 0.949
200 0.261 0.898 0.276 0.894 0.323 0.958 0.329 0.948
60 0.552 0.874 0.558 0.869 0.668 0.925 0.667 0.928

3.0 100 0.430 0.887 0.465 0.893 0.519 0.942 0.559 0.942
200 0.337 0.904 0.332 0.898 0.409 0.959 0.397 0.954
60 0.670 0.832 0.683 0.825 0.782 0.894 0.784 0.878

3.5 100 0.533 0.872 0.576 0.860 0.635 0.929 0.687 0.913
200 0.406 0.913 0.415 0.890 0.498 0.960 0.499 0.945

values reported in this table. It was revealed that the lengths of confidence intervals decreased
tremendously as the sample size increased. But, the coverage probabilities were fortunately
similar for all sample sizes excluding x0 = 3.7. The observed moderate decrease in values of
CP for x0 = 3.7 is not surprising since this point is roughly 90%-quantile of the underlying
distribution and censored data results in some instability in tails. In comparison to the lengths
of intervals for 30% censoring level, those for 15% censoring level were smaller marginally.
In addition, there did not exist any noticeable disparity in the coverage probabilities of the two
groups of censoring, 90% and 95%. Once again, this issue can be explained by considering
the lengths of intervals and coverage probabilities simultaneously. Moreover, the EL-based
confidence intervals narrowed significantly by increasing the value of x0 in theMRL function.
The proposed method almost achieved the nominal levels 90% and 95% for variouse sample
sizes and all censoring levels. Broadly, the widths of MRL function confidence intervals
were observed to reduce considerably as the values of x0 grew.



52 Confidence Interval Based on Length-biased and Right-censored Data



4
Discussion and Future Directions

4.1 Contributions
In this thesis, we have proposed applying the empirical likelihood method for analysis of the
survival data collected from a biased sampling procedure. The significant advantage of this
method is to provide researchers with a flexible framework for drawing statistical inference.
As mentioned, during the recent years there has been an increasing tenancy to study into
residual life expectancy. The benefits of investigating the MRL function in comparison to the
other survival functions were mentioned. Following this, recent research studies concerning
statistical inference about mean residual lifetime were reviewed. Prospective prevalent cohort
study was introduced as a practical and efficient method to evaluate the progression of a
disease of interest. It was observed that the prevalent cases have longer lifetime on average,
that is, length-bias. We considered this issue as the main motivating problem of this thesis.
In addition, it was highlighted that several common other sampling procedures in practice
result in obtaining length-biased data. Recent literature with regard to statistical inference on
length-biased or right-censored survival data was reviewed comprehensively.

In chapter 2, observations from a length-biased sampling procedure were considered
for analysis. We investigated the problem of estimating different survival functions using a
sample of length-biased data. In addition, the concept of the empirical likelihood ratiomethod
was studied in detail. We drew statistical inference for the MRL function using length-biased
data through the EL method. The limiting distribution of the empirical log-likelihood was
presented. A simulation study was conducted to inspect the finite sample performance of the
method proposed. Another method for constructing confidence interval for the length-biased
observations was introduced. Comparing the simulation results of the methods proposed, we
mentioned some superiority for the EL method over the normal approximation procedure. A
real data example was used for better illustration of the proposed EL method.

The prospective subjects recruited in a prevalent cohort study or other cross-sectional
sampling surveys ought to be followed over time until recording the terminating event for
all of them. However, it was mentioned that it is always necessary to expect that we may
loss to follow-up of some recruited individuals (for a variety of reasons) leads to censoring.
In section 3, we considered the possibility of obtaining censored data in a length-biased
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sampling procedure. It was indicated that the underlying non-random sampling procedure
induces the informative censoring structure to the observed data. The advantages of the
unconditional NPMLE approach over the conditional methods in which statistical inference
are drawn by conditioning on the observed truncation times was discussed briefly. However,
there is no study in the current literature on MRL which uses an unconditional approach to
analyze length-biased right-censored data. For this reason, we proposed applying the full
likelihood model of the observations to make inference on the MRL function. We established
the empirical likelihood of the MRL function using the NPMLE of the length-biased right-
censored data. We studied the limiting distribution of the empirical log-likelihood ratio.
This limiting distribution was applied for constructing a confidence interval for the MRL
function. A simulation study was carried out to investigate the performance of the introduced
empirical likelihood method for different finite sample sizes. The simulation results indicated
the efficiency and accuracy of the EL method proposed for length-biased right-censored data.

4.2 Future Directions
In this thesis, we proposed a new and advanced method for constructing a confidence interval
for the MRL function using empirical likelihood method. But, another very interesting
question, specially from a theoretical point of view, is how to obtain an EL-based confidence
band for the length-biased right-censored survival data. There is not any study based on the
full likelihood function and the unconditional approach in the current literature regarding
length-biased and right-censored data. Fakoor et al. (2018) investigated this question for
length-bias setting, but they did not considered the possibility of observing censored data in
their sample. They established the weak convergence of the empirical log-likelihood ratio
stochastic process (2.17). The covariance of the resulting limiting process depends on the
following,

ψ(x) = E
[
η2

x(Xi, θ)
]
.

THEOREM 4.2.1 Assume that E
[
X−2] < ∞. Then, there exists a mean zero Gaussian

process {ε(x), 0 ≤ x ≤ a} such that

l(θ) W−→ ε2(·)
ψ(·) ,

in D[0, a], the space of cadlag functions on [0, a], where
W−→ denotes weakly convergence.

The Gaussian process ε(·) is given by

ε(x) :=
∫ ∞

x
ηx(u, θ)dB(G(u)),

with covariance function

Cov(ε(x1), ε(x2)) =
∫ ∞

x1∨x2

(
1 − x2 + θ(x2)

u

) (
1 − x1 + θ(x1)

u

)
dG(u),

where B(·) is a Brownian bridge in a unit interval.

Proof. See Fakoor et al. (2018) for this proof.
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Using Theorem 4.2.1 and the continuous mapping theorem, it is obtained that

sup
0≤x≤a

{
l(θ)

} L−→ sup
0≤x≤a

ε2(x)
ψ(x) .

Consequently, for x ∈ [0, a]; a ≤ τ, an asymptotic 100(1−α)% confidence band for the MRL
function is

C4 =
{
θ : l (θ) ≤ qα, x ∈ [0, a]

}
,

where qα is the upper α-quantile of the distribution of

sup
0≤x≤a

{
ε2(x)/ψ(x)

}
. (4.1)

Since it is difficult to evaluate the limiting distribution of (4.1) analytically, they suggested
a method to approximate this Gaussian process, and therefore estimate the α-quantile of
sup0≤x≤a

{
ε2(x)/ψ(x)

}
to obtain the confidence band.

We have applied the results of Theorem 4.2.1 on the real data set of the widths of shrubs
studied in Section 2.6. The obtained confidence band is presented in Appendix I (see Section
5.2, Figure 5.1). We considered extending the methods presented in Fakoor et al. (2018)
(Theorem 4.2.1) and Hollander et al. (1997) for length-biased right-censored data. However,
proving the weak convergence for the l(θ) defined in (3.25) is muchmore complex and beyond
the scope of this thesis. We are studying this problem as our main plan for the future.
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5
Appendix I

5.1 Proofs
The aim of this appendix is to present the proof of some theorem and lemma presented
throughout of the previous sections.

Proof of Lemma 1.5.1.

f
(
x |X ≥ T

)
dx ≈ P (x ≤ X ≤ x + dx, X ≥ T)

P (X ≥ T) , (5.1)

Now for the denominator of (5.1) we have

P (X ≥ T) =
∫ ∞

0

∫ x

0
fX,T (x, t) dt dx

=

∫ ∞

0

∫ x

0
f (x) fT (t) dt dx

=

∫ ∞

0

∫ x

0
f (x) 1

θ
dt dx

=
1
θ

∫ ∞

0

∫ u

0
f (u) dt dx

=
µ

θ
, (5.2)

for the numerator of (5.1) we have

P (x ≤ X ≤ x + dx, X ≥ T) =
∫ x+dx

x

∫ x

0
f (x) 1

θ
dtdx

=
1
θ

∫ x+dx

x
x f (x) dx

≈ 1
θ

x f (x) dx, (5.3)
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Accordingly, given (5.1), (5.2) and (5.3), the underlying equation is proven.
�
The proof of Theorem 2.2.1 has been presented in Owen (2001) and shown here for

completeness.
Proof of Theorem 2.2.1. Let z1 < z2 < . . . < zm denote the distinct values observed for

X′
1, X′

2, . . . , X′
n, and let n j ≥ 1 be the number of Xi that are equal to z j . Let p j = F(z j)−F(z−j )

and define p̂ j = n j/n. If p j = 0 for any j = 1, . . . ,m, then L(F) = 0 < L(Fn). But, if we
suppose that all p j > 0 and for at least one j, p j , p̂ j , then

log
(

L(F)
L(Fn)

)
=

m∑
j=1

n j log

(
p j

p̂ j

)
= n

m∑
j=1

p̂ j log

(
p j

p̂ j

)
< n

m∑
j=1

p̂ j

(
p j

p̂ j
− 1

)
(5.4)

≤ 0, (5.5)

and therefore L(F) < L(Fn). It is worth mentioning that the inequality (5.4) is held because
log(x) ≤ x − 1 for all x > 0 with equality only when only when x = 1.
�
In order to complete the proof of Theorem 3.3.1, we initially need to prove the following

lemmas. Before we state the first lemma, we need to define the following function :

ψ(x) := E
[
η2

x(X, θ)
]
.

LEMMA 5.1.1 Assume that E
(
X−2

)
< ∞. Then, for all x0 ∈ [0, τ) we have

√
n

m∑
i=1

p̂iηx0(ti, θ0)
L−→ N

(
0, ψ(x0)

)
,

and
m∑

i=1
p̂iη

2
x0(ti, θ0)

P−→ ψ(x0),

where
P−→ denotes convergence in probability and

ψ(x0) < ∞.

Proof. Suppose x0 is an arbitrary but fixed point that x0 ∈ [0, τ). Then, under the assumption
of the lemma, we have

ψ(x0) = E
[
η2

x0(X, θ)
]

= E

[(
1 − x0 + θ0

X

)
I[x0,τ)(X)

]2

≤ E
[
I[x0,τ)(X)

]2
+ E

[
x0 + θ0

X
I[x0,τ)(X)

]2
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≤ 1 + (x0 + θ0)2 E
[
X−2

]
< ∞. (5.6)

On the other hand, since E
[
ηx0(X, θ0)

]
=

∫ τ

0 ηx0(t, θ0)dG(t) ≡ 0,

√
n

m∑
i=1

p̂iηx0(ti, θ0) =
∫ τ

0
ηx0(t, θ0)αn (dt) ,

where αn :=
√

n
(
Ĝn(t) − G(t)

)
.

Now, according to Asgharian and Wolfson (2005), the αn is weakly convergence to
B

(
G(·)

)
where B(·) is a Brownian bridge on the unit interval. Then, by continuous mapping

theorem it is concluded that∫ τ

0
ηx0(t, θ0)αn (dt) W−→ G(t) :=

∫ τ

0
ηx0(t, θ0)dB

(
dtG(t)

)
,

and
Cov

(
G(t),G(s)

)
:=

∫ ∞

t∨s

(
1 − x0 + θ0

t

) (
1 − x0 + θ0

s

)
dG(u),

whereW indicates weakly converges.
Consequently, given (5.6), it is obtained that∫ τ

0
ηx0(t, θ0)αn (dt) =

√
n

m∑
i=1

p̂iηx0(ti, θ0)
L−→ N

(
0, ψ(x0)

)
.

Regarding the second part of Lemma 5.1.1, using the Asgharian and Wolfson (2005)’s
findings and the continuous mapping theorem we have

m∑
i=1

p̂iη
2
x0(ti, θ0) =

∫ ∞

0
η2

x0(t, θ0)dĜn(t)
L−→ ψ(x0),

Thus,
m∑

i=1
p̂iη

2
x0(ti, θ0)

P−→ ψ(x0),

and thus the proof of Lemma 5.1.1 is completed. �

LEMMA 5.1.2 Let h(·) be a continuous function. Under the same condition as in Theorem
3.3.1, for all x0 ∈ [0, τ) we have

m∑
i=1

ηx0(ti, θ0)h(ti)p̂i
P−→ ι(x0),

and

1
n

−
m∑

i=1
ξih2(ti) + 2n

m∑
j=1

p̂ j h2(t j) − n ©«
m∑

j=1
p̂ j h(t j)

ª®¬
2
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−2
m∑

i=1
ζi

©«
∑m

j=i p̂ j h2(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬ +
m∑

i=1
ζi

©«
∑m

j=i p̂ j h(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬
2

P−→ φ1h,

where
ι(x0) :=

∫ τ

0
ηx0(t, θ0)h(t)dG(t),

and

φ1h :=
∫ τ

0
t−1h2(t)

∫ t

0
SC(s)dsdG(t) −

(∫ τ

0
h(t)dG(t)

)2

+

∫ τ

0
FC(t)

(∫ τ

t s−1h(s)dG(s)
)2∫ τ

t s−1dG(s)
dt .

Proof. In order to present the proof of this lemma, we need to make some statements. Let
n1 and n2 = n − n1 be the realized values for N1 and N2 = n − N1. Then, for the length-
biased right-censored sample

{
∪n

i=1Xi

}
=

{
(Y1, . . . ,Yn1) ∪ (Z1, . . . , Zn2)

}
define p̂ := n1/n(

1 − p̂ = n2/n
)

ĜU(t) :=
1
n1

n1∑
i=1

I[0,t](Yi)

and

ĜC(t) :=
1
n2

n2∑
i=1

I[0,t](Zi).

Then,

p̂
a.s.−→ p, (5.7)

ĜU(·) W−→ GU(·), (5.8)

ĜC(·)
W−→ GC(·) (5.9)

and, following Asgharian and Wolfson (2005),

Ĝn(·)
W−→ G(·), (5.10)

where a.s.−→ indicates convergence almost surely (with probability one), and (5.7) is concluded
using the law of large numbers.

Considering the first part of the lemma, h(·), ηx0(·, θ0), and therefore their product are
continuous. Thus,

m∑
i=1

ηx0(ti, θ0)h(ti)p̂i =

∫ τ

0
ηx0(t, θ0)h(t)dĜn(t) < ∞.

Given (5.10), by using the continuous mapping theorem we have∫ τ

0
ηx0(t, θ0)h(t)dĜn(t)

L−→
∫ τ

0
ηx0(t, θ0)h(t)dG(t).
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Therefore, ∫ τ

0
ηx0(t, θ0)h(t)dĜn(t)

P−→ ι(x0).

Turning to the second part of the lemma, following (3.3), (5.7) and (5.8) we have

1
n


m∑

i=1
ξih2(ti)

 =

m∑
i=1

n1
n

dĜU(ti)h2(ti)

=

∫ τ

0
h2(t)p̂dĜU(t)

L−→
∫ τ

0
h2(t)pdGU(t)

=

∫ τ

0
t−1h2(t)

∫ t

0
SC(s)dsdG(t)

=

∫ τ

t
h2(t)dG(t) −

∫ τ

0
FC(s)

∫ τ

s
t−1h2(t)dG(t)ds. (5.11)

Furthermore, by considering (3.4) and (3.5), and then continuous mapping and Slutsky’s
theorems, it is obtained that

1
n

2n
m∑

j=1
p̂ j h2(t j) − 2

m∑
i=1

ζi
©«
∑m

j=i p̂ j h2(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬ +
m∑

i=1
ζi

©«
∑m

j=i p̂ j h(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬
2

= 2
m∑

j=1
p̂ j h2(t j) − 2

m∑
i=1

(n − n1)
n

dĜC(ti)
©«
∫ τ

ti
h2(s)s−1dĜn(s)∫ τ

ti
s−1dĜn(s)

ª®¬
+

m∑
i=1

(n − n1)
n

dĜC(ti)
©«
∫ τ

ti
h(s)s−1dĜn(s)∫ τ

ti
s−1dĜn(s)

ª®¬
2

= 2
∫ τ

0
h2(t)dĜn(t) − 2

∫ τ

0

(
1 − p̂

) ©«
∫ τ

t h2(s)s−1dĜn(s)∫ τ

t s−1dĜn(s)
ª®¬ dĜC(t)

+

∫ τ

0

(
1 − p̂

) ©«
∫ τ

t h(s)s−1dĜn(s)∫ τ

t s−1dĜn(s)
ª®¬

2

dĜC(t)

L−→ 2
∫ τ

0
h2(t)dG(t) − 2

∫ τ

0

(
1 − p

) ©«
∫ τ

t h2(s)s−1dG(s)∫ τ

t s−1dG(s)
ª®¬ dGC(t)

+

∫ τ

0

(
1 − p

) ©«
∫ τ

t h(s)s−1dG(s)∫ τ

t s−1dG(s)
ª®¬

2

dGC(t)

= 2
∫ τ

0
h2(t)dG(t) − 2

∫ τ

0
FC(t)

∫ τ

t
h2(s)s−1dG(s)dt

+

∫ τ

0
FC(t)

(∫ τ

t h(s)s−1dG(s)
)2∫ τ

t s−1dG(s)
dt, (5.12)

Given (5.11) and (5.12), since it can be easily checked that φ1h(x0) < ∞, we can conclude
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that

1
n

−
m∑

i=1
ξih2(ti) + 2n

m∑
j=1

p̂ j h2(t j) − n ©«
m∑

j=1
p̂ j h(t j)

ª®¬
2

−2
m∑

i=1
ζi

©«
∑m

j=i p̂ j h2(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬ +
m∑

i=1
ζi

©«
∑m

j=i p̂ j h(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬
2

P−→ φ1h(x0).

�
The proof of Theorem 3.3.1 is mainly inspired by the method discussed in Pan and Zhou

(1999) and that in Ning et al. (2013).
Proof of Theorem 3.3.1. In order to prove the asymptotic behavior of the empirical log-

likelihood (3.25), we need to define a one-parameter sub-family of all distribution functions
F . We first look for a distribution in this sub-family maximizing the empirical log-likelihood,
which helps us to obtain the limiting distribution of l(θ0).

For any fixed but arbitrary x0 (and so θ0), let h(·) be a continuous function such that
h(t)ηx0(t, θ0) ≥ 0 for all t > 0. Then we define HG

θ0
to be the class of all functions h(·).

Therefore,

HG
θ0

:=
{
h(·)| h(·) is continuous and h(·)ηx0(·, θ0) ≥ 0 a.s. G(·)

}
.

We also assume the following sub-family of one-parameter distribution function.

AG
h :=

G̃′(x)| G̃′(x) =
m∑

i=1
w′

i I[0,x](ti); w′
i :=

p̂i

1 + λh(ti)
©«

m∑
j=1

p̂ j

1 + λh(t j)
ª®¬
−1 ,

where p̂i (i = 1, . . . , n) is defined in (3.12).
Let w′ := (w′

1, . . . ,w
′
n) defined in AG

h . Following this, we can define the likelihood ratio
function and the profile likelihood ratio for family AG

h similar to those in (3.16) and (3.19)
as follows, respectively.

Rh(G̃′) :=
L(G̃′)
L(Ĝn)

=


m∏

i=1

(
w′

i

p̂i

)ξi ©«
∑m

j=i
1
tj
w′

j∑m
j=i

1
tj

p̂ j

ª®¬
ζi

:
m∑

i=1
w′

i = 1, w′
i ≥ 0, i = 1, . . . ,m

 ,
and

Rh(θ0) = sup
{

Rh(G̃′) |
∫

ηx0(s, θ0)dG̃′(s) = 0, G̃′ ∈ Ah

}
= sup


m∏

i=1

(
w′

i

p̂i

)ξi ©«
m∑
j=i

1
t j
w′

j
ª®¬
ζi ©«

m∑
j=i

1
t j

p̂ j
ª®¬
−ζi

:
m∑

i=1
w′

i = 1,

m∑
i=1

w′
iηx0(Ti, θ0) = 0,w′

i ≥ 0, i = 1, . . . ,m

}
.
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The estimation equation
∑m

i=1 w
′
iηx0(Ti, θ0) = 0 for the ordinal random sample T1, . . . ,Tm

has been used in practice to impose the constraint
∫
ηx0(s, θ0)dG(s) = 0. But, this estimation

equation has one unique solution which is denoted ŵ′ = (ŵ′1, . . . , ŵ′
m), obtained by substi-

tuting λ′x0 for λ in w
′. Therefore, similar to (3.25), the corresponding empirical log-likelihood

is equal to:

lh(θ0) := −2 logRh(θ0)

= 2
m∑

i=1

ξi log
(
p̂i

)
+ ζi log ©«

m∑
j=i

1
t j

p̂ j
ª®¬


−2
m∑

i=1

ξi log
(
ŵ′

i

)
+ ζi log ©«

m∑
j=i

1
t j
ŵ′

j
ª®¬
 . (5.13)

It is of note that the condition h(·)ηx0(·, θ0) ≥ 0 almost surely onG(·) used inHG
θ0
was required

to make sure that
∑m

i=1 w
′
iηx0(Ti, θ0) is a monotonic function of λ in order to avoid multiple

solutions for
∑m

i=1 w
′
iηx0(Ti, θ0) = 0.

Before we continue with the rest of the proof, we need to make the following statements.
Since E

(
η2

x0(Ti, θ0)
)
< ∞ by Lemma 5.1.1, according to Lemma 3 of Owen (1990) we have

max
1≤i≤m

��ηx0(Ti, θ0)
�� = op

(
n1/2

)
. (5.14)

Moreover, given the definition of h(·), it is obtained that

max
1≤i≤m

��h(Ti)
�� = op

(
n1/2

)
. (5.15)

Since
∑m

i=1 ηx0(ti, θ0)w′
j = 0 has one unique solution, say λ′x0 ,

0 ≡

������ m∑
i=1

ηx0(ti, θ0)
p̂i

1 + λ′x0 h(ti)

������
≥

���λ′x0

���
max1≤ j≤m

��1 + λ′x0 h(ti)
��
������ m∑
i=1

h(ti)ηx0(ti, θ0)p̂i

������ −
������ m∑
i=1

ηx0(ti, θ0)p̂i

������
≥

���λ′x0

���
1 +

��λ′x0

�� max1≤ j≤m
��h(ti)��

������ m∑
i=1

h(ti)ηx0(ti, θ0)p̂i

������ −
������ m∑
i=1

ηx0(ti, θ0)p̂i

������ . (5.16)

According to Lemma 5.1.1, for the second term of the right side of the recent inequality, we
have ������ m∑

i=1
ηx0(ti, θ0)p̂i

������ = Op

(
n−1/2

)
.

Turning to the other term of the mentioned inequality, by considering Lemma 5.1.2, it is
deduced that
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���λ′x0

���
1 +

��λ′x0

�� max1≤ j≤m
��h(ti)�� = Op

(
n−1/2

)
.

By applying (5.15), this equation results in���λ′x0

��� = Op

(
n−1/2

)
. (5.17)

Considering the first equality in (5.16), use a Taylor expansion of each function fi(λ) :=
p̂i

(
1 + λh(ti)

)−1 around the origin, we have

m∑
i=1

ηx0(ti, θ0)p̂i

1 + λ′x0 h(ti)
=

m∑
i=1

ηx0(ti, θ0)p̂i − λ′x0

m∑
i=1

ηx0(ti, θ0)p̂ih(ti)

+λ′2x0

m∑
i=1

ηx0(ti, θ0)p̂ih2(ti)(
1 + τ′λ′x0 h(ti)

)3 , (5.18)

where τ′ ∈ [0, 1].
But, for the last term of the above equation we have

��������λ′x0

m∑
i=1

ηx0(ti, θ0)p̂ih2(ti)(
1 + τ′λ′x0 h(ti)

)3

�������� ≤ max
1≤i≤m

��������
λ′x0 h(ti)(

1 + τ′λ′x0 h(ti)
)3

��������
������ m∑
i=1

ηx0(ti, θ0)p̂ih(ti)

������
≤ 1���1 − τ′

��λ′x0

�� max1≤i≤m
��h(ti)�����3

���λ′x0

��� max
1≤i≤m

��h(ti)��
������ m∑
i=1

ηx0(ti, θ0)p̂ih(ti)

������
= op(1). (5.19)

The last inequality is true because τ′
���λ′x0

��� max1≤i≤m
��h(ti)�� = op(1).

Consequently, (5.18) and (5.19) together result in the following relation.

m∑
i=1

ηx0(ti, θ0)p̂i

1 + λ′x0 h(ti)
=

m∑
i=1

ηx0(ti, θ0)p̂i − λ′x0

m∑
i=1

ηx0(ti, θ0)p̂ih(ti) + op(λ′x0).

Following this, since
∑m

i=1 ηx0(ti, θ0)w′
j = 0, it can be easily obtained that

λ′x0 =

∑m
i=1 ηx0(ti, θ0)p̂i∑m

i=1 ηx0(ti, θ0)p̂ih(ti)
+ op

(
n−1/2

)
Given Lemma 5.1.1 and 5.1.2, by applying Slutsky’s theorem, we have

nλ′2x0

L−→ φ2h(x0)χ2
1, (5.20)

where φ2h(·) is defined as follows,

φ2h(x0) :=
ψ(x0)
ι2(x0)

.
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Now, an alternative to the L(w) in (3.16) is obtained by substituting ŵ′ for w as follows:

U(λ) := log
[
L

(
w′) ]

= log


m∏

i=1
w
′ξi
i

©«
m∑
j=i

1
t j
w′

j
ª®¬
ζi

=

m∑
i=1

ξi log p̂i −
m∑

i=1
ξi log

(
1 + λh(ti)

)
−

m∑
i=1

(
ξi + ζi

)
log ©«

m∑
j=1

p̂ j

1 + λh(t j)
ª®¬

+

m∑
i=1

ζi log ©«
m∑
j=i

p̂ j

t j
(
1 + λh(t j)

) ª®¬ .
Bear in mind that in the above equation

∑m
i=1

(
ξi + ζi

)
= n. It is apparent that w′

i
(i = 1, . . . , n), and therefore L (w′) are functions of λ. Moreover, as mentioned, the equation∑m

i=1 ηx0(ti, θ0)w′
j = 0 has one unique solution that is ŵ′ which obtained by substituting λ′x0

for λ in w′. Accordingly, by applying a Taylor expansion forU(λ) = L (w′) around the origin,
it can be obtained that

U(λ′x0) =
m∑

i=1
ξi log

(
p̂i

)
+

m∑
i=1

ζi log ©«
m∑
j=i

1
t j

p̂ j
ª®¬

+λ′x0

−
m∑

i=1
ξih(ti) + n ©«

m∑
j=1

p̂ j h(t j)
ª®¬ −

m∑
i=1

ζi
©«
∑m

j=i p̂ j h(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬
 (5.21)

+
λ′2x0

2


m∑

i=1
ξih2(ti) − 2n

m∑
j=1

p̂ j h2(t j) + n ©«
m∑

j=1
p̂ j h(t j)

ª®¬
2

+2
m∑

i=1
ζi

©«
∑m

j=i p̂ j h2(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬ −
m∑

i=1
ζi

©«
∑m

j=i p̂ j h(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬
2

+
λ′3x0

6

−
m∑

i=1
ξi

h3(ti)(
1 + τ′λ′x0 h(ti)

)3 + 6n

∑m
i=1 p̂ih3(ti)

(
1 + τ′λ′x0 h(ti)

)−4

∑m
i=1 p̂i

(
1 + τ′λ′x0 h(ti)

)−1

−2n

∑m
i=1 p̂ih(ti)

(
1 + τ′λ′x0 h(ti)

)−2 ∑m
i=1 p̂ih2(ti)

(
1 + τ′λ′x0 h(ti)

)−3{∑m
i=1 p̂i

(
1 + τ′λ′x0 h(ti)

)−1
}2

−4n

∑m
i=1 p̂ih2(ti)

(
1 + τ′λ′x0 h(ti)

)−3{∑m
i=1 p̂i

(
1 + τ′λ′x0 h(ti)

)−1
}2 + 2n

{∑m
i=1 p̂ih(ti)

(
1 + τ′λ′x0 h(ti)

)−2
}3

{∑m
i=1 p̂i

(
1 + τ′λ′x0 h(ti)

)−1
}4

−6
m∑

i=1
ζi

∑
j=1 t−1

j p̂ j h3(t j)
(
1 + τ′λ′x0 h(t j)

)−4

∑
j=1 t−1

j p̂ j

(
1 + τ′λ′x0 h(t j)

)−1
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+2
m∑

i=1
ζi

∑
j=1 t−1

j p̂ j h(t j)
(
1 + τ′λ′x0 h(t j)

)−2 ∑
j=1 t−1

j p̂ j h2(t j)
(
1 + τ′λ′x0 h(t j)

)−3{∑
j=1 t−1

j p̂ j

(
1 + τ′λ′x0 h(t j)

)−1
}2

+4
m∑

i=1
ζi

∑
j=1 t−1

j p̂ j h2(t j)
(
1 + τ′λ′x0 h(t j)

)−3 ∑
j=1 t−1

j p̂ j h(t j)
(
1 + τ′λ′x0 h(t j)

)−2{∑
j=1 t−1

j p̂ j

(
1 + τ′λ′x0 h(t j)

)−1
}2

−2
m∑

i=1
ζi

{∑
j=1 t−1

j p̂ j h(t j)
(
1 + τ′λ′x0 h(t j)

)−2
}3

{∑
j=1 t−1

j p̂ j

(
1 + τ′λ′x0 h(t j)

)−1
}3


(5.22)

Given (3.12), it is apparent that L (w′) attains its maximum in general at w′ = p̂ (when
λ′ = 0), which results in U′(0) = 0, and consequently (5.21) is equal to zero. On the other
hand, in view of the fact that(

1 + τ′λ′x0 h(t j)
)−1
=

(
1 + op(1)

)−1
= 1 + op(1),

by using an argument analogous with Lemma 5.1.2, we have

U(λ′x0) =
m∑

i=1
ξi log

(
p̂i

)
+

m∑
i=1

ζi log ©«
m∑
j=i

1
t j

p̂ j
ª®¬

+
λ′2x0

2


m∑

i=1
ξih2(ti) − 2n

m∑
j=1

p̂ j h2(t j) + n ©«
m∑

j=1
p̂ j h(t j)

ª®¬
2

+2
m∑

i=1
ζi

©«
∑m

j=i p̂ j h2(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬ −
m∑

i=1
ζi

©«
∑m

j=i p̂ j h(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬
2

+
λ′3x0

6

−
m∑

i=1
ξi

h3(ti)(
1 + τ′λ′x0 h(ti)

)3

 + op(n−1/2). (5.23)

However, ��������λ′3x0

m∑
i=1

ξi
h3(ti)(

1 + τ′λ′x0 h(ti)
)3

�������� ≤
���λ′x0

���3 max
1≤i≤m

���� ξi

p̂i

����
��������

m∑
i=1

p̂i
h3(ti)(

1 + τ′λ′x0 h(ti)
)3

��������
=

���λ′x0

���3 max
1≤i≤m

����� (n − n1) dĜU(ti)
p̂i

����� op(1)

≤ op(n−1/2). (5.24)

Following this, by applying (5.24) and (5.23) we obtain for lh(θ0) obtained in (5.13) that

lh(θ0) = −2

{
log

[
L

(
ŵ′

)]
− log

[
L

(
p̂
) ]}
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= −2
(
U(λ′x0) − U(0)

)
= λ′2x0

−
m∑

i=1
ξih2(ti) + 2n

m∑
j=1

p̂ j h2(t j) − n ©«
m∑

j=1
p̂ j h(t j)

ª®¬
2

−2
m∑

i=1
ζi

©«
∑m

j=i p̂ j h2(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬ +
m∑

i=1
ζi

©«
∑m

j=i p̂ j h(t j)t−1
j∑m

j=i p̂ j t−1
j

ª®¬
2 + op(1).

Now, given Lemma 5.1.2 and (5.20), it can be concluded by applying Slutsky’s theorem that

lh(θ0)
L−→ φ1h(x0)φ2h(x0)χ2

1 .

However, by an analogous argument of Pan and Zhou (1999) and Zhou and Li (2008), it can
be deduced that, for each point x0 ∈ [0, τ),

inf
h
φ1hφ2h(x0) = 1

Accordingly, applying the continuous mapping theorem

inf
h

lh(θ0)
L−→ χ2

1 . (5.25)

Thus, there exists an h(·) for which the empirical log-likelihood ratio lh(θ) converges to a chi-
square random variable with one degree of freedom. But, there is only one G̃′(·)maximizing
the log-likelihood ratio Rh(θ0) which is equivalent the unique G̃(·) that maximizes R(θ0).
This issue alongside with (5.25) result in

l(θ0) = −2 logR(θ0)
L−→ χ2

1,

and therefore the proof is completed.
�

5.2 Real Data Application
As mentioned in Chapter 4, the weak convergence presented in Theorem 4.2.1 can be used
to construct a confidence band for a set of length-biased data. We have applied these results
for the real data set on the widths of shrubs discussed in Section 2.6 for better illustration.

Figure 5.1 reveals the empirical likelihood ratio-based 95% confidence band for the MRL
function of the widths of shrubs. In addition, the estimated MRL curve has been plotted
simultaneously using the consistent estimator (2.6) for better comparison. According to this
diagram, the MRL of shrubs are anticipated to decline gradually as their widths increases.
For instance, while it is estimated for the shrubs with more that 0.1 widths to grow gradually
until they become between 0.75 to 1.35 thicker, the MRL of the shrubs with widths equal to
roughly 1.9 is from almost 0 to 0.8.
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Appendix II

This appendix comprises the R code for simulation study.

Confidence Intervals for Length-biased Survival data using Empirical
Likelihood and Normal Approximation Methods.

l i b r a r y ( boo t )

l i b r a r y ( r o o t S o l v e )
\ v space {0 . 5 cm}

f i n a l = f unc t i on ( n , nn , a l p h a ) {

c= seq ( 0 . 0 1 , 5 , 0 . 0 1 )

cc= seq ( 0 . 0 1 , 10 , 0 . 0 1 )

t t = seq ( 0 . 5 , 1 0 . 5 , 2 )

l u cb=c ( )

M= f unc t i on ( t 0 ) {
as . numeric ( i n t e g r a t e ( f unc t i on ( x ) {
pwe ibu l l ( x , shape =0 . 5 , s c a l e = 2 , lower . t a i l =FALSE) } , t0 , 2 0 0 0 0 ) [ 1 ] )
/ pwe ibu l l ( t0 , shape =0 . 5 , s c a l e = 2 , lower . t a i l =FALSE)
}

FF1= f unc t i on (m, q ) mean ( ( ( ( t 0 +m) / yy ) −1) / (1+q∗ ( ( ( t 0 +m) / yy ) −1 ) ) )
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FF2= f unc t i on (m, q ) {
2∗sum ( l og (1+ q∗ ( ( ( t 0 +m) / yy ) −1 ) ) )
− qchisq ( p=a lpha , df =1 , ncp = 0 , lower . t a i l = FALSE , l og . p = FALSE)
}

model <− f unc t i on ( s ) c ( FF1 (m=s [ 1 ] , q=s [ 2 ] ) , FF2 (m=s [ 1 ] , q=s [ 2 ] ) )

FF3= f unc t i on ( o ) { ( n / sn )∗ ( (mn−o ) ^ 2 )
−qchisq ( p=a lpha , df =1 , ncp = 0 , lower . t a i l = FALSE , l og . p = FALSE)
}

FF4= f unc t i on ( y , i ) {xx=y [ i ]

mun2=(sum (1 / xx ) / n )^−1

yo2=c ( xx [ xx< t 0 ] )

f n t 2 =(mun2 / n )∗sum (1 / yo2 )

xx=c ( y [ xx> t 0 ] )

mn2=(mun2 / n )∗ l eng th ( xx )

mn2=(mn2 / (1− f n t 2 )) − t 0

sqr t ( n )∗ ( ( mn2)−mn)

}

FF5= f unc t i on ( y , a ) as . numeric ( i n t e g r a t e ( f unc t i on ( x ) {
( sqr t ( x )∗exp (− sqr t ( x / 2 ) ) / (8∗ sqr t ( 2 ) ) ) } , 0 , upper=y ) [ 1 ] ) − a

FF6= f unc t i on ( y ) un iroo t ( F5 , c ( 0 , 2 6 99 ) , t o l = 0 . 00001 , a =y )

F5=Ve c t o r i z e ( FF5 )

F6=Ve c t o r i z e ( FF6 )

f o r ( t 0 i n t t ) {

cb=cb0=c ( )

j =0

mrl=M( t 0 )

whi le ( j < nn ){
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y= run i f ( n , 0 ,1 )

y=c ( as . numeric ( F6 ( y ) [ 1 , ] ) )

y= s o r t ( y )

yy=c ( y [ y> t 0 ] )

r = r0=c ( )

f o r ( i i n c ) r =c ( r , m u l t i r o o t ( f =model , s t a r t =c ( i , 0 . 2 5 ) ) \ $ r o o t [ 1 ] )

r = r [ ! i s . na ( r ) ]

r = s o r t ( r )

whi le ( r [1] <0 ) r = r [ −1]

whi le ( ( r [2] − r [ 1 ] ) > 0 . 0 1 ) r = r [ −1]

whi le ( ( r [ l eng th ( r )] − r [ l eng th ( r ) −1] ) > 0 . 0 1 ) r = r [− l eng th ( r ) ]

j = j +1

mun=(sum (1 / y ) / n )^−1

yo=c ( y [ y< t 0 ] )

f n t =(mun / n )∗sum (1 / yo )

mn=(mun / n )∗ l eng th ( yy )

mn=(mn / (1− f n t )) − t 0

sn=sd ( boo t ( y , FF4 ,R=500 ) \ $ t )

r0=c (qnorm ( a l p h a / 2 , 0 , 1 )∗ ( sn / s q r t ( n ) ) +mn ,
−qnorm ( a l p h a / 2 , 0 , 1 )∗ ( sn / s q r t ( n ) ) +mn )

cb =rbind ( cb , c ( r [ 1 ] , r [ l eng th ( r ) ] , r [ l eng th ( r )] − r [ 1 ] ,
s i gn ( ( mrl− r [ 1 ] ) ∗ ( r [ l eng th ( r )] −mrl ) ) + 1 ) )

cb0=rbind ( cb0 , c ( r0 [ 1 ] , r0 [ 2 ] , r0 [2] − r0 [ 1 ] ,
s i gn ( ( mrl− r0 [ 1 ] ) ∗ ( r0 [2] −mrl ) ) + 1 ) )
}

ca t ( " t ime=" , t0 , " \ n " )
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ca t ( "MRL( t =" , t0 , " ) " , mrl , " \ n " )

ca t ( "EL : ␣C . I . = ( " , mean ( cb [ , 1 ] ) , " , " , mean ( cb [ , 2 ] ) , " ) ; ␣ De l t a =" ,
mean ( cb [ , 3 ] ) , " ␣ and␣CP=" ,mean ( cb [ , 4 ] ) / 2 )

ca t ( " \ n " )

ca t ( "NA: ␣C . I . = ( " , mean ( cb0 [ , 1 ] ) , " , " , mean ( cb0 [ , 2 ] ) , " ) ; ␣ De l t a ␣=" ,
mean ( cb0 [ , 3 ] ) , " ␣␣ and␣CP=" ,mean ( cb0 [ , 4 ] ) / 2 )

ca t ( " \ n " )

}

}

f i n a l ( n =100 , nn =5000 , a l p h a =0 . 05 )

Confidence Intervals for Length-biased and Right-censored Survival
Data using Empirical Likelihood Method.
The following R code represents the EM algorithm for the unconditional NPMLE of the
distribution function using right-censored length-biased survival data.

Mn= f unc t i on ( x , p ) ( sum ( ( p [1 , ] > x )∗p [ 2 , ] ) / sum ( ( p [1 , ] > x )∗ ( p [ 2 , ] / p [ 1 , ] ) ) ) − x

p . em= f unc t i on ( y , z , t o l ) {

m= l eng th ( y )

n= l eng th ( z )

x i = z e t a =p=c ( )

t t =c ( y , z )

names ( t t )= rep ( c ( ’ y ’ , ’ z ’ ) , c (m, n ) )

t= s o r t ( t t )

x i =names ( t )== ’ y ’

z e t a = ! x i

p=rep (1 / (m+n ) ,m+n )

pt=matrix ( p / t ,m+n ,m+n )



73

pt [ upper . t r i ( pt ) ]=0

pnew=( x i +p∗cumsum ( z e t a / apply ( pt , 2 , sum ) ) / t ) / (m+n )

whi le ( sum ( ( p−pnew )^2) > t o l ) {

p=pnew

pt=matrix ( p / t ,m+n ,m+n )

pt [ upper . t r i ( pt ) ]=0

pnew=( x i +p∗cumsum ( z e t a / apply ( pt , 2 , sum ) ) / t ) / (m+n )

}

pnew=rbind ( t , pnew )

re turn ( pnew )

}

The EM algorithm below can be used to obtain the unconditional NPMLE of the dis-
tribution function under the constraint defined for the MRL function using right-censored
length-biased survival data.

w. em= f unc t i on ( y , z , t0 , t h e t a , t o l ) {

m= l eng th ( y )

n= l eng th ( z )

x i = z e t a =p=c ( )

t t =c ( y , z )

names ( t t )= rep ( c ( ’ y ’ , ’ z ’ ) , c (m, n ) )

t= s o r t ( t t )

x i =names ( t )== ’ y ’

z e t a = ! x i

w=rep (1 / (m+n ) ,m+n )

wt=matrix (w / t ,m+n ,m+n )
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wt [ upper . t r i (wt ) ]=0

rho= x i +w∗cumsum ( z e t a / apply (wt , 2 , sum ) ) / t

e t a =(1 − ( ( t 0 + t h e t a ) / t ) ) ∗ ( t >= t 0 )

lambda=mu l t i r o o t ( f = Ve c t o r i z e ( f unc t i on ( x ) {sum ( rho∗ e t a / (m+n+x∗ e t a ) ) } ) ,
s t a r t = c ( 0 ) ) \ $ r o o t [ 1 ]

wnew=( rho ) / (m+n+lambda∗ e t a )

whi le ( sum ( (w−wnew)^2) > t o l ) {

w=wnew

wt=matrix (w / t ,m+n ,m+n )

wt [ upper . t r i (wt ) ]=0

rho= x i +w∗cumsum ( z e t a / apply (wt , 2 , sum ) ) / t

lambda=mu l t i r o o t ( f = Ve c t o r i z e ( f unc t i on ( x ) {sum ( rho∗ e t a / (m+n+x∗ e t a ) ) } ) ,
s t a r t = c ( 0 ) ) \ $ r o o t [ 1 ]

wnew=( rho ) / (m+n+lambda∗ e t a )

}

wnew=rbind ( t , wnew)

re turn (wnew)

}

For the Length-biased sample size m=n1 and n = n2, the nominal level alpha=α and

t 0 =$x_0$ we have

l i b r a r y ( r o o t S o l v e )

Model= f unc t i on ( y , z , t0 , p , t h e t a , t o l , a l p h a ){

w=w. em( y=y , z=z , t 0 = t0 , t h e t a = t h e t a , t o l = t o l )

i f ( a l l (w[2 , ] >0)==TRUE) {
re turn (2∗sum ( x i∗ l og ( p [ 2 , ] /w[ 2 , ] ) +
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z e t a ∗ l og ( rev (cumsum ( rev ( p [ 2 , ] / t ) ) ) / rev (cumsum ( rev (w[ 2 , ] / t ) ) ) ) )
−qchisq ( p=a lpha , df =1 , ncp = 0 , lower . t a i l =FALSE , l og . p = FALSE ) )

}

}

MRL=as . numeric ( i n t e g r a t e ( f unc t i on ( x ) pgamma ( x , shape =4 ,
s c a l e = 1 / 2 , lower . t a i l =FALSE ) , t0 , 1 0 0 0 ) [ 1 ] )
/ pgamma ( t0 , shape =4 , s c a l e = 1 / 2 , lower . t a i l =FALSE)

#MRL=(16−(8∗ t 0 )+ t 0 ^2 ) / (8 −(2∗ t 0 ) )

j =count=0

We need to consider y and z as the vectors of length-biased, and length-biased right-
censored observations corresponding the target population of interest.

count=count+1

x i = z e t a =w=c ( )

t t =c ( y , z )

names ( t t )= rep ( c ( ’ y ’ , ’ z ’ ) , c (m, n ) )

t= s o r t ( t t )

x i =names ( t )== ’ y ’

z e t a = ! x i

LB=UB=c ( )

p=p . em( y=y , z=z , t o l = t o l , t= t )

M=Mn( x= t0 , p=p )

d2=M−0.05

Ld=Model ( y=y , z=z , t 0 = t0 , p=p , t h e t a =d2 , t o l = t o l , a l p h a = a l ph a )

whi le ( Ld<0 | | i s . n u l l ( Ld ) ) {

d2=d2 −0.25

Ld=Model ( y=y , z=z , t 0 = t0 , p=p , t h e t a =d2 , t o l = t o l , a l p h a = a l ph a )

}
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LB=un iroo t ( f unc t i on ( x ) {Model ( y=y , z=z , t 0 = t0 , p=p , t h e t a =x , t o l = t o l ,
a l p h a = a l ph a ) } , i n t e r v a l =c ( d2 , M) ) $ r o o t

d=M+0.05

Ud=Model ( y=y , z=z , t 0 = t0 , p=p , t h e t a =d , t o l = t o l , a l p h a = a l ph a )

whi le ( Ud<0 | | i s . n u l l (Ud ) ) {

d=d +0.25

Ud=Model ( y=y , z=z , t 0 = t0 , p=p , t h e t a =d , t o l = t o l , a l p h a =a lpha ,
m=m, n=n , t= t , x i =xi , z e t a = z e t a )

}

UB=un iroo t ( f unc t i on ( x ) {Model ( y=y , z=z , t 0 = t0 , p=p , t h e t a =x , t o l = t o l ,
a l p h a =a lpha , m=m, n=n , t= t , x i =xi , z e t a = z e t a ) } , i n t e r v a l =c (M, d ) ) $ r o o t

CI=cbind ( CI , c (LB , UB, LB<=MRL & MRL<=UB, UB−LB , M) )



References

Asgharian, M. andWolfson, D. B. (2005). Asymptotic behavior of the unconditional NPMLE
of the length-biased survivor function from right censored prevalent cohort data. The
Annals of Statistics, 33(5):2109–2131.

Asgharian, M., Wolfson, D. B., and Zhang, X. (2006). Checking stationarity of the incidence
rate using prevalent cohort survival data. Statistics in Medicine, 25(10):1751–1767.

Bae, J.-S. and Kim, S.-Y. (2006). Uniform asymptotics in the empirical mean residual life
process. Journal of the Korean Mathematical Society, 43(2):225–239.

Bai, F., Huang, J., and Zhou, Y. (2016). Semiparametric inference for the proportional mean
residual life model with right-censored length-biased data. Statistica Sinica, 26(3):1129–
1158.

Chan, K. C. G., Chen, Y. Q., and Di, C.-Z. (2012). Proportional mean residual life model for
right-censored length-biased data. Biometrika, 99(4):995–1000.

Chaubey, Y. P. and Sen, A. (1998). On Smoothed Functional Estimation Under Random
Censoring, pages 83–97. WORLD SCIENTIFIC.

Chaubey, Y. P. and Sen, A. (2008). Smooth estimation of mean residual life under random
censoring. Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of
Professor Pranab K. Sen, Volume 1:35–49.

Chen, Y. J., Ning, W., and Gupta, A. K. (2017). Jackknife empirical likelihood test for mean
residual life functions. Communications in Statistics - Theory and Methods, 46(7):3111–
3122.

Copelan, E., Biggs, J., Thompson, J., Crilley, P., Szer, J., Klein, J., Kapoor, N., Avalos,
B., Cunningham, I., and Atkinson, K. (1991). Treatment for acute myelocytic leukemia
with allogeneic bone marrow transplantation following preparation with bucy2. Blood,
78(3):838–843.

Cox, D. (1962). Renewal Theory. Methuen’smonographs on applied probability and statistics.
Methuen.

Cox, D. R. (1969). Some sampling problems in technology. In New Developments in Survey
Sampling, pages 506–527.

Cristóbal, J. A. and Alcalá, J. T. (2001). An overview of nonparametric contributions to the
problem of functional estimation from biased data. Test, 10(2):309–332.



78 References

Csörgo, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Prob-
ability and Mathematical Statistics: A Series of Monographs and Textbooks. Academic
Press.

Csörgo, M. and Zitikis, R. (1996). Mean residual life processes. Ann. Statist., 24(4):1717–
1739.

De Uña-álvarez, J. (2004). Nonparametric estimation under length-biased sampling and type
i censoring: A moment based approach. Annals of the Institute of Statistical Mathematics,
56(4):667–681.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38.

Efromovich, S. (2008). Nonparametric curve estimation: methods, theory, and applications.
Springer Science & Business Media.

Efron, B. (1967). The two sample problem with censored data. In Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability, volume 4, pages 831–853.

Einstein, A. (1905). Über die von der molekularkinetischen theorie der wärme geforderte
bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik,
322(8):549–560.

Fakoor, V. (2015). On the nonparametric mean residual life estimator in length-biased
sampling. Communications in Statistics - Theory and Methods, 44(3):512–519.

Fakoor, V., Shariati, A., and Sarmad, M. (2018). TheMRL function inference through empir-
ical likelihood in length-biased sampling. Journal of Statistical Planning and Inference,
196:115–131.

Freireich, E. J., Gehan, E., Fret, E., Schroder, L. R., Wolman, I. J., Anbari, R., Burgert, E. O.,
Mills, S. D., Pinkel, D., Selawry, O. S., Moon, J. H., Gendel, B. R., Spurr, C. L., Storrs,
R., Haurani, F., Hoogstraten, B., and Lee, S. (1963). The effect of 6-mercaptopurine on
the duration of steroid-induced remissions in acute leukemia: A model for evaluation of
other potentially useful therapy. Blood, 21(6):699–716.

Gaenssler, P. and Stute, W. (1979). Empirical processes: A survey of results for independent
and identically distributed random variables. Ann. Probab., 7(2):193–243.

Gilbert, P. B., Lele, S. R., and Vardi, Y. (1999). Maximum likelihood estimation in semi-
parametric selection bias models with application to aids vaccine trials. Biometrika,
86(1):27–43.

Hall, W. J. andWellner, J. A. (1979). Estimation ofmean residual life. University of Rochester,
Department of Statistics, Technical Report.

Hamburg, B. A., K.-H. C. . J. W. (1975). A hierarchy of drug use in adolescene: behav-
ioral and attitudinal correlates of substantial drug use. American Journal of Psychiatry,
132(11):1155–1163. PMID: 1166892.



References 79

He, S., Liang, W., Shen, J., and Yang, G. (2016). Empirical likelihood for right censored
lifetime data. Journal of the American Statistical Association, 111(514):646–655.

Hjort, N. L., McKeague, I. W., and Keilegom, I. V. (2009). Extending the scope of empirical
likelihood. The Annals of Statistics, 37(3):1079–1111.

Hollander, M., McKeague, I. W., and Yang, J. (1997). Likelihood ratio-based confidence
bands for survival functions. Journal of the American Statistical Association, 92(437):215–
226.

Kalbfleisch, J. D. and Lawless, J. F. (1992). Some useful statistical methods for truncated
data. Journal of Quality Technology, 24(3):145–152.

Kardaun, O. (1983). Statistical survival analysis of male larynx-cancer patients - a case study.
Statistica Neerlandica, 37(3):103–125.

Kiefer, J. (1972). Skorohod embedding of multivariate rv’s, and the sample df. Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 24(1):1–35.

Klein, J. and Moeschberger, M. (2003). Survival Analysis: Techniques for Censored and
Truncated Data, chapter : Examples of Survival Data, pages 1–20. Springer New York,
New York, NY.

Lagakos, S.W., Barraj, L.M., andGruttola, V. D. (1988). Nonparametric analysis of truncated
survival data, with application to aids. Biometrika, 75(3):515–523.

Lawless, J. F. (2011). Statistical models and methods for lifetime data, volume 362. John
Wiley & Sons.

Liang, W., Shen, J.-s., and He, S.-y. (2016). Likelihood ratio inference for mean residual life
of length-biased random variable. Acta Mathematicae Applicatae Sinica, English Series,
32(2):269–282.

McFadden, J. A. (1962). On the lengths of intervals in a stationary point process. Journal of
the Royal Statistical Society. Series B (Methodological), 24(2):364–382.

Muttlak, H. A. andMcDonald, L. L. (1990). Ranked set samplingwith size-biased probability
of selection. Biometrics, 46(2):435–445.

Nahman, N. S., Middendorf, D. F., Bay, W. H., McElligott, R., Powell, S., and Anderson, J.
(1992). Modification of the percutaneous approach to peritoneal dialysis catheter placement
under peritoneoscopic visualization: clinical results in 78 patients. Journal of the American
Society of Nephrology, 3(1):103–107.

Ning, J., Qin, J., Asgharian, M., and Shen, Y. (2013). Empirical likelihood-based confidence
intervals for length-biased data. Statistics in Medicine, 32(13):2278–2291.

Ning, J., Qin, J., and Shen, Y. (2010). Non-parametric tests for right-censored datawith biased
sampling. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(5):609–630.

Oakes, D. and Dasu, T. (1990). A note on residual life. Biometrika, 77(2):409–410.



80 References

Owen, A. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics,
18(1):90–120.

Owen, A. (2001). Empirical Likelihood. Chapman & Hall/CRC Monographs on Statistics &
Applied Probability. CRC Press.

Pan, X.-R. and Zhou, M. (1999). Using one-parameter sub-family of distributions in em-
pirical likelihood ratio with censored data. Journal of Statistical Planning and Inference,
75(2):379 – 392.

Patil, G. P. and Ord, J. K. (1976). On size-biased sampling and related form-invariant
weighted distributions. Sankhy: The Indian Journal of Statistics, Series B (1960-2002),
38(1):48–61.

Patil, G. P. and Rao, C. R. (1978). Weighted distributions and size-biased sampling with
applications to wildlife populations and human families. Biometrics, 34(2):179–189.

Qin, G. and Zhao, Y. (2007). Empirical likelihood inference for the mean residual life under
random censorship. Statistics and Probability Letters, 77(5):549 – 557.

Rao, C. R. (1965). On discrete distributions arising out of methods of ascertainment. Sankhy:
The Indian Journal of Statistics, Series A (1961-2002), 27(2/4):311–324.

Rao, C. R. (1977). A natural example of a weighted binomial distribution. The American
Statistician, 31(1):24–26.

Sickle-Santanello, B. J., Farrar, W. B., Decenzo, J. F., Keyhani-Rofagha, S., Klein, J., Pearl,
D., Laufman, H., and O’Toole, R. V. (1988). Technical and statistical improvements for
flow cytometric dna analysis of paraffin-embedded tissue. Cytometry, 9(6):594–599.

Tsuang, M. T. and Woolson, R. F. (1977). Mortality in patients with schizophrenia, mania,
depression and surgical conditions: A comparison with general population mortality.
British Journal of Psychiatry, 130(2):162166.

Turnbull, B. W. and Weiss, L. (1978). A likelihood ratio statistic for testing goodness of fit
with randomly censored data. Biometrics, 34(3):367–375.

Vardi, Y. (1989). Multiplicative censoring, renewal processes, deconvolution and decreasing
density: Nonparametric estimation. Biometrika, 76(4):751–761.

Vardi, Y. and Zhang, C.-H. (1992). Large sample study of empirical distributions in a
random-multiplicative censoring model. The Annals of Statistics, 20(2):1022–1039.

Wang, M.-C. (1991). Nonparametric estimation from cross-sectional survival data. Journal
of the American Statistical Association, 86(413):130–143.

Wang, M.-C. (1996). Hazards regression analysis for length-biased data. Biometrika,
83(2):343–354.

Wang, Q. H. and Jing, B. Y. (2001). Empirical likelihood for a class of functionals of
survival distribution with censored data. Annals of the Institute of Statistical Mathematics,
53(3):517–527.



References 81

Wicksell, S. D. (1925). The corpuscle problem. a mathematical study of a biometric problem.
Biometrika, 17(1-2):84–99.

Wiener, N. (1923). Differential-space. Journal of Mathematics and Physics, 2(1-4):131–174.

Wiener, N. (1924). Un problème de probabilités dénombrables. Bull. Soc. Math., France,
52:569–578.

Wolfson, C., Wolfson, D. B., Asgharian, M., M’Lan, C. E., Østbye, T., Rockwood, K., and
Hogan, D. (2001). A reevaluation of the duration of survival after the onset of dementia.
New England Journal of Medicine, 344(15):1111–1116. PMID: 11297701.

Woodroofe, M. (1985). Estimating a distribution function with truncated data. Ann. Statist.,
13(1):163–177.

Wu, H. and Luan, Y. (2014). An efficient estimation of the mean residual life func-
tion with length-biased right-censored data. Mathematical Problems in Engineering,
2014(937397):5.

Yang, G. L. (1978). Estimation of a biometric function. Ann. Statist., 6(1):112–116.

Zhao, M., Jiang, H., and Liu, X. (2013). A note on estimation of the mean residual life
function with left-truncated and right-censored data. Statistics and Probability Letters,
83(10):2332–2336.

Zhao, Y. and Qin, G. (2007). Inference for a linear functional of cumulative hazard function
via empirical likelihood. Communications in Statistics - Theory and Methods, 36(2):313–
327.

Zheng, J., Shen, J., and He, S. (2014). Adjusted empirical likelihood for right censored
lifetime data. Statistical Papers, 55(3):827–839.

Zhou, Mai, J. J.-H. (2011). Empirical likelihood ratio test for median and mean residual
lifetime. Statistics in Medicine, 30(2):152–159.

Zhou, M. and Li, G. (2008). Empirical likelihood analysis of the buckleyjames estimator.
Journal of Multivariate Analysis, 99(4):649 – 664.


	Acknowledgements
	List of Conference participation and Publications
	Abstract
	Contents
	Preliminaries and Background
	Stochastic Process
	Renewal Process
	Brownian Motion
	Empirical Process

	Survival analysis
	Survival functions
	The Mean Residual Lifetime Function
	Censoring
	Truncation

	Length-Bias
	Cohort: Prevalent and Incident Cases
	Stationarity Assumption
	Cross-Sectional Sampling 
	EM algorithm
	Literature Review

	Confidence Interval for the MRL Function Based on Length-biased Data
	Introduction
	Preliminaries and NPMLE
	Nonparametric Empirical Likelihood Ratios
	Empirical Likelihood for Length-biased Data
	Simulation
	Real Data Application

	Confidence Interval Based on Length-biased and Right-censored Data
	Introduction
	Preliminaries and NPMLE
	Empirical Likelihood for Length-biased Right-censored Data
	Simulation

	Discussion and Future Directions
	Contributions
	Future Directions

	Appendix I
	Proofs
	Real Data Application

	Appendix II
	References

