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Abstract 
 

Vacuolar pyrophosphatase (V-PPase) is induced by a number of abiotic stresses and is 

thus thought to play a role in plant adaptation. This thesis reports on the regulation of 

six V-PPase genes in rice (Oryza sativa L.) coleoptiles under anoxia, using cultivars 

with varying flood tolerance at the germination stage to test this hypothesis. 

Quantitative PCR time courses showed that one vacuolar pyrophosphatase (OVP3) 

was consistently induced by anoxia, particularly in the flood-tolerant cultivar Amaroo 

where it rose 20-fold in 2 h. Regulation of OVP3 expression under anoxia was 

investigated by analysis of putative OVP promoters. The putative OVP3 promoter 

contained more previously identified anoxia-inducible motifs than the promoters of 

the other five OVP genes. GUS activity in transgenic rice plants transformed with the 

OVP3 promoter region linked to the GUS reporter gene was induced by anoxia but 

not by salt or cold: GUS staining was visible mainly in the stele of seminal roots. 

Transgenic Arabidopsis plants overexpressing AVP1 (an Arabidopsis vacuolar 

pyrophosphatase) showed increased anoxia resistance as measured by survival and 

growth rate during the recovery period in air after anoxic treatment. Transgenic rice 

plants overexpressing OVP3 had higher anoxia tolerance which was supported by 

reduced solute leakage, more polarised membrane potentials and higher cytosolic pH 

under anoxia, compared to wild type roots. Membrane potentials of knockouts of the 

OVP gene family were depolarised under anoxia compared to wild type plants. I 

conclude that OVP3 is a key gene determining anoxia tolerance in rice seedlings via 

its effect on membrane properties. The importance of OVP3 is significant as a single 

gene determinant of anoxia tolerance. 
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