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Abstract

In this thesis, we focus on differential privacy and the trade-off between privacy level

and accuracy of shared databases. For differential privacy, the Laplace mechanism

is commonly utilised, for which the choice of value for a privacy parameter ✏, also

known as the privacy budget, plays a key role in the trade-off between privacy

level and accuracy. We aim to build a game-theoretical model of choosing this

privacy budget ✏, while optimising the utility of the shared databases to which the

differential privacy mechanism is applied. In this thesis, we consider differentially

private queries applied in the context of two different models. The first model is

an information-theory based query system using a discrete Laplace mechanism.

The utility and leakage are quantified by information theory with min-entropy

between original information, real answer and reported answer in the system. The

second model is based on data analysis with privacy-aware machine learning using

differentially-private gradient queries. We quantify the quality of the trained model

by fitness cost, which is a function of differential-privacy parameters and the size

of the distributed datasets, to capture the trade-off between privacy and utility by

machine learning. Then, game theory is used to analyse the utility-leakage tradeoffs

for both of these two models respectively.
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Chapter 1

Introduction

1.1 Motivation

Data analysis methods using machine learning (ML) can unlock valuable insights

for improving revenue or quality-of-service from, potentially proprietary, private

datasets. Having large high-quality datasets improves the quality of the trained

ML models in terms of the accuracy of predictions on , potentially untested data.

The subsequent improvements in quality can motivate multiple data owners to

share and merge their datasets in order to create larger training datasets. For

instance, financial institutes may wish to merge their transaction or lending datasets

to improve the quality of trained ML models for fraud detection or computing

interest rates. However, government regulations (e.g., the roll-out of the General

Data Protection Regulation in EU, the California Consumer Privacy Act or the

development of the Data Sharing and Release Bill in Australia) increasingly prohibit

sharing customer’s data without consent [8]. Our work here is motivated by the need

to conciliate the tension between quality improvement of trained ML models and the

privacy concerns for data sharing. Game theory is the main method implemented in

this thesis to tradeoff conflicts between accuracy and privacy level in privacy-aware

data analysis.

Game theory has been widely used in wireless networks, such as cognitive

radio, sensor networks, and mobile social networks [42]. It studies how rational

players choose from a range of available strategies to obtain an optimised system

1



2 Introduction

resource allocation. The interaction among independent and self-interested players

is analysed, especially in Equilibrium analysis and relative system performance [25].

In this thesis, we are interested in the tradeoff between accuracy level and privacy

level in data analysis with differential privacy mechanism implemented, which is

directly related to the value choice of privacy budget ✏. So, it can be foreseen that

game theory has the advantage in analysing the contrasting objectives for utility

and privacy level from independent database curators.

C

A

B DAggregator

Figure 1.1: System model of multiple users sharing information at an Aggregator

To our knowledge, the existing methods for tradeoff between utility and privacy

level are basically based on probability and other mathematical studies in privacy

quantifications. Most of these existing methods take an economic view to look at

the problem in order to obtain the value range for privacy budget ✏ [3,4,33]. Also,

the system models used in these works assume an individual who holds a database

with sensitive information and an attacker trying to reveal this. The cost functions

for both these two parties are represented by ✏ through mathematical methods

to estimate the probability of preserving or revealing the sensitive information in

the database. Then, an upper limit is set for the total cost, which is a combination

of the individual’s cost and attacker’s cost, so as to obtain the appropriate value

of ✏. However, these methods are not generic to fit in various data types and
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Figure 1.2: The communication structure between the learner and the distributed data
owners for submitting queries and providing differentially-private (DP) responses.

queries, and the tradeoff is between only two parties. Instead, by introducing a

game theoretical method, the players in the system can be enabled to make their

choice of ✏ separately. At the same time, the players in the game are not limited

to just an individual and an attacker, but also extend to multiple users who are

rational and may be semi-hostile to each other. The extended system model is

shown in Figure 1.1, where A, B, C, D are database owners that share information

at an Aggregator. Then, by carefully designing the game rule and relative risk-utility

function, the game can reach an equilibrium outcome, where each player achieves

their best response value of privacy budget to every other player.

In system models of existing works, the datasets used are simplified and limited

to the value for one attribute. And the responded answer, after the randomised

mechanism is applied, is chosen from a finite number of available values. So, in

this thesis, we significantly extend the state-of-art to a more realistic situation with

multiple attributes in the dataset and where the answer is chosen from a continuous

range of values. After this, a complete model for a system of privacy-aware machine

learning is introduced.

We investigate a machine learning setup in which a learner wants to train a

model based on multiple datasets from different data owners. In general machine
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learning with multiple datasets, the learner trains its model with gradients from all

datasets. For the purpose of preserving privacy for data contributors, the learner

can only submit queries to data owners and they respond by providing differentially-

private (DP) responses as illustrated in Figure 1.2. In this thesis, the learner submits

a gradient query to each data owner. Upon receiving DP responses from data owners

to the gradient queries, the learner adjusts the parameters in the ML model in the

direction of the average of the DP gradients. Therefore, the quality of the DP

responses (in terms of the magnitude of the additive DP noise) from the data owners

to the gradient queries determines the performance of the ML training algorithm.

An important parameter in the ML training algorithm is the step size, the amount

by which the model parameters are adjusted in each iteration. If the fitness cost

of the ML meets the assumptions of smoothness, strong convexity, and Lipschitz-

continuity of the gradient, we can prove that, by selecting the step sizes to be

inversely proportional with the iteration number and inversely proportional with

the maximum number of iterations squared (see Algorithm 1 in Section 3.1), the

difference between the fitness of the trained ML model using DP gradient queries and

the fitness of the trained ML model in the absence of any privacy concerns becomes

small. In fact, the magnitude of the difference becomes inversely proportional to

the size of the training datasets squared and the privacy budgets of the data owners

squared; see Theorem 2 in Section 3.2. Several ML models and fitness costs, such

as linear and logistic regression, satisfy the above-mentioned assumptions. This

enables us to predict the outcome of collaboration among privacy-aware data owners

and the learner in terms of the fitness cost of the ML training model. However,

if the fitness function does not meet these assumptions, we must select the step

size to be inversely proportional to the square root of the iteration number. This

way, the step size fades away much slower and the effect of the DP noise is more

pronounced on the iterates of the learning algorithm. Therefore, we must add an

averaging layer on top of the algorithm to reduce the negative impact of the DP
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noise; see Algorithm 2 in Section 3.1. This is based on the developments of [50]

with appropriate changes in the averaging step to suit the ML problem with DP

gradient queries. In this case, we can prove that the difference between the fitness

of the trained ML model using DP gradient queries and the fitness of the trained

ML model in the absence of any privacy concerns is inversely proportional to the

size of the training datasets (no longer squared) and the privacy budget (no longer

squared); see Theorem 3 in Section 3.2.

For experimental verification of the theoretical results, two financial datasets

are used in this thesis. First, we use a regression model on a dataset containing

information on loans made on Lending Club, a peer-to-peer lending platform [32],

to automate the process of setting interest rates of loans. Second, we train a support

vector machine for detecting fraudulent transactions based on a dataset containing

transactions made by European credit card-holders in September 2013 [39]. We use

the experiments to validate theoretical predictions and to gain important insights

into the outcome of collaborations among privacy-aware data owners. For instance,

even if the learner has access to one large dataset with relaxed privacy constraints,

the performance of the trained ML model can be very bad if two small conservative

datasets (i.e., very small privacy budgets) also contribute to the learning. Therefore,

it is best to exclude smaller conservative datasets from collaboration. This is a

counter-intuitive observation as it clearly indicates that more data is not always good,

if it is obfuscated by conservative data owners. Larger, but conservative, datasets

are sometimes worth including in the training as they do not degrade performance

heavily with their conservative privacy budgets, yet improve the performance of the

trained ML model because of their size.

In this thesis, we propose information theoretical methods to quantify utility

and leakage in privacy-aware data analysis for two models. And in each model, we

capture the trade-off between privacy and accuracy level. And we build a game-

theoretical model of choosing the value for privacy budget ✏, while optimising
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the utility of the shared databases to which the differential privacy mechanism is

applied.

1.2 Thesis Contributions

This thesis makes the following contributions:

• We evaluate the existing works describing utility-leakage tradeoffs between

a two parties model of an individual and an attacker, and introduce game-

theoretic methods to solve accuracy-leakage level tradeoffs from differential

privacy.

• We develop DP gradient descent algorithms for training ML models on dis-

tributed private datasets owned by different entities; see Algorithms 1 and 2

in Section 3.1.

• We prove that the quality of the trained ML model using DP gradient descent

algorithm scales inversely with privacy budgets squared, and the size of the

distributed datasets squared, which can establish a trade-off between privacy

and utility in privacy-preserving ML; We develop a theory that enables to

predict the outcome of a potential collaboration among privacy-aware data

owners (or data custodians) in terms of the fitness cost of the ML training

model prior to executing potentially computationally-expensive ML algorithms

on distributed privately-owned datasets; see Theorems 2 and 3 in Section 3.2.

• We validate our theoretical analysis by evaluating our differentially private

ML algorithms using distributed financial datasets belonging to multiple in-

stitutes/banks for determining interest rates of loans using regression, and

for detecting credit card fraud using support vector machine classifier; We

further validate the predictions of the analysis with the actual performance
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of the proposed privacy-aware learning algorithms applied to the distributed

financial datasets; see Section 3.3.

• Our experimental results indicate that, in the case of three banks collaborating

to train a support vector machine classifier to detect credit card fraud, within

only 100 iterations, the fitness of the trained model using DP gradient queries

is in average within 90% of the fitness of the trained model in the absence of

privacy concern if the privacy budget is equal to 1 and each bank has access

to a dataset of 30,000 records of credit card transactions and their validity.

We observe similar performance results for training a regression model over

interest rates of loans with the privacy budget of 10 and datasets of 350,000

records each.

• We use the concept of differential entropy to quantify the leakage that occurs in

a trained machine learning model using an ✏� differentially privacy gradient

descent algorithm. By carefully study the interactions between each player

in the system and how the chosen actions effect the payoff function of other

players, we develop a compensation game and test Equilibrium outcomes.



Chapter 2

Literature Review

2.1 Privacy preserving machine learning with distributed
datasets

ML using Secure Multi-Party Computation and Encryption. Secure multi-party

computation provide avenues for securing the iterations of distributed ML algorithms

across multiple data owners. In the past, secure multi-party computation has been

used in various ML models, such as decision trees [36], regression [13], association

rules [53], and clustering [30,54]. Training ML models using encrypted data was

discussed in [5, 9, 20, 29, 34]. In [19], efficient conversion of models for use of

encrypted input data was discussed. The use of secure multi-party computation

reduces the computational efficiency of ML algorithms by adding a non-trivial

computational and communication performance overhead.

ML with Differential Privacy. A natural way for alleviating privacy concerns

is to deploy privacy-enabled ML using differential privacy (DP) [11, 49, 55, 58].

In [11], a privacy-preserving regularized logistic regression algorithm is provided

for learning from private databases by bounding the sensitivity of regularized

logistic regression, and perturbing the learned classifier with noise proportional

to the sensitivity. This technique is proved to be DP and simulations are used to

investigate the trade-off between privacy and learning utility. In [55], a large class of

optimization-based DP machine learning algorithms are developed by appropriately

perturbing the objective function of the ML training algorithm. The mechanism is

8
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applied to linear and logistic regression models and shown to provide high accuracy.

In the mentioned studies, privacy-preserving ML, however, often relies on an entire

dataset, constructed by merging smaller datasets, being stored in one location. The

ML model is then either trained on the aggregated dataset, and is systematically

obfuscated using additive noise to guarantee differential privacy, or trained on an

obfuscated centrally-located data. Such methods do not address the underlying

problem that the smaller datasets are owned by multiple entities with restrictions

on sharing sensitive data.

Distributed/Collaborative Privacy-Preserving ML. ML based on distributed

private datasets has been recently investigated in, e.g., [21,27,28,45,56]. Note that

this problem is intimately related to distributed optimization using differentially-

private oracles, as such ML problems can be cast as distributed optimization prob-

lems in which distributed training datasets are represented within cost functions or

constraints of the entities. Using stochastic gradient descent with additive Gaus-

sian/Laplace noise to ensure DP is also common in the literature; (e.g., [1,41,51,57]).

In [51], noisy gradients are used to train a deep neural network. The scale of the

required additive noise for DP is reduced in [1] by employing the idea of moment

accountant, instead of standard composition rules. Stochastic gradient descent is

also utilized in [41] for recurrent neural network language models. Generalizations

for obfuscating individual and group-level trends by DP additive noise are presented

in [57]. Because iterative methods rely on multiple rounds of inquiries of private

datasets, for instance, by submitting multiple gradient queries, the privacy budget

must be inversely scaled by the total number of iterations to ensure that a reasonable

privacy guarantee can be achieved (alternatively, privacy guarantees get weaker

as the number of iterations grows because of the composition rule of differential

privacy). Hence, if the parameters of the optimization algorithm are not carefully

chosen, bounds on the performance of the ML training algorithm deteriorates with

an increasing total number of iterations; e.g., see [24]. In [28, 56], the privacy
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budget was kept constant and therefore by communicating more, as the number

of the iterations grows, the privacy guarantee weakens. However, in those studies,

if the privacy budget had been scaled inversely proportional to the total number

of iterations, privacy guarantees would be maintained over the entire horizon but

performance would deteriorate with increasing total number of iterations, as in [24].

All these studies, however, do not address the issues of convergence of the

learning algorithm, selection of appropriate step size in the stochastic gradient

descent, and forecasting of the quality of the trained ML model based on the

privacy budget prior to running extensive potentially computationally-expensive

experiments. These missing steps are some of the important contributions of this

thesis.

2.2 Game-theoretic methods for network security prob-
lem

In this section, existing results of utilising game-theoretic approaches to solve

security problems in network are reviewed.

Game theory is a mathematical analysis tool for interactive players in a game [43].

In game theory, the basic elements used to describe a game are shown in Table 2.1.

All players participate in the game by choose from a set of available strategies.

Table 2.1: Description for the basic elements in a game

Players The interactive decision makers.

Actions
In each move of a player, an action is taken. The player is

assumed to know the possible actions of each other.

Payoff
After every player has taken actions, the received return is

payoff. A payoff could be either positive or negative.

Strategies
A player’s strategy is the plan of an action that based on the
knowledge of the action history. The strategies can be pure

or mixed strategies.
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Figure 2.1: Basic classification of game theory [48]

Then, based on the utility function, the player evaluates the resulting outcome

for each strategy. In non-cooperative game, players are rational and will seek

for maximum utility by choosing the optimal strategy. In a game with multiple

players, the action of one player will directly affect the utility of other players. Thus,

the games can have a pure strategy where the decision is deterministic or mixed

strategies where the decision follows a probability distribution. In this thesis, the

games all use pure strategies. An Equilibrium in a game is a combination of the

players’ strategies so that each player’s strategy is the best response to the strategies

of the other players [18]. Such strategy leads to a maximum payoff given other

players’ strategies.

In [23], Hamilton et al. built a link between game theory and information

warfare. Their investigation is initialised from tactical analysis in information

warfare, which consists of the search technique and the evaluation function. It

is stated that the player in a game uses the evaluation function to monitor the

performance of strategies while the search technique is used in choosing from

different moves. An important concept of mini-max is mentioned as a mostly used

technique.

While there are significant advantages in using game theory in areas of infor-

mation warfare, there are challenges in reality applications. In another work from

Hamilton et al., the challenges in applying game theory to the domain of information

warfare are discussed [22]. According to potential conflicts in straightforward imple-
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mentation of common search techniques for player and opponent, the fundamental

issues are classified into seven different scenarios. After detailed evaluations for

each issue, the authors drew a conclusion that game theoretic techniques can be

modified to fit in information warfare.

As investigated in [48] by Roy et al., it is demonstrated that there exist game-

theoretic solutions facing with the challenges proposed in [22]. They confirmed

that game theoretic approaches are promising to solve changing security threats

in the cyber system. In this work, they evaluated the problem in areas of game

theory. It is narrowed down to different types of games as shown in Figure 2.1.

As stated by the authors, the existing research on security games focuses on non-

cooperative games. They considered static games and dynamic games and discussed

existing works in detailed in this survey. For static games, it is classified into two

broad categories which are complete and imperfect information and incomplete

and imperfect information as shown in Figure 2.2.

For complete and imperfect information, there is a work by Carin et al. [10]. In

this work, the authors constructed an attack/protect economic model, and used

QuERIES’ approach to estimate the probabilities and costs, and then gave quantifica-

tions for both models. The work concentrates on protecting the critical intellectual

property. The authors fitted the scenario into static game and proposed a Markov

Decision Process to calculate theoretical results and computational algorithms. As

the performance of QuERIES in small-scale simulations is positive, it is proved

that the methodology has the ability to improve risk assessments with rational and

capable attacks.

For incomplete imperfect information as shown in Figure 2.3, Liu et al. focused

on pairs of attacking/defending nodes in ad hoc network [37] . The game used in

their work is a two-player static Bayesian game between one potential attacking node

and one defending node. For the attacking node, it uses two pure strategies: attack

and not attack. While for the defending node, it also has two pure strategies: monitor
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Figure 2.2: Classification of static games [48]

and not monitor. Costs and beliefs are assumed to be the common knowledge in

the game. The authors stressed that in realistic models, the dynamic game is more

practical for the defender to update its information of the opponent. The work

investigated the Bayesian Nash Equilibria of the game and provided simulation

results from intrusion detection system.

In [40], Manshaeu et al. highlighted the application of game theory in solving

security and privacy problems in the network. It is noted that in this work, they

collected and re-ordered existing various security or privacy problems with their

types of game approach and main results in computer networks. They considered

the situation when network nodes need to disclose some private information and to

tradeoff between security and trust in the network. In this paper, they referred to a

work by Raya et al in [46] and built game-theoretic models for privacy-preserving

systems. Then, the authors proved that the strategy is a perfect Bayesian equilibrium

of the game. They analysed that privacy loss of individual players is minimised while

the trust-privacy tradeoff is optimised. This paper links privacy and game theory, and

gives an inspiration to apply game-theoretic methods to network security problems.

And it points out a way to apply game-theoretic approaches in determining ✏ under

differential privacy in the network.

It should be noted that the players in a game may not always be able to get

complete information of payoffs and strategies choices from opponent, such that it
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Figure 2.3: Classification of dynamic games [48]

is rare for agents to be fully rational [40]. There is a problem in accuracy degree

a player can obtain. So the application of incomplete and imperfect information

theoretical game is a key direction to solve this problem. In addition, agents require

more accuracy estimation of security game parameters, which needs distributed

machine learning to provide services of detection, analysis and decisions comparing

in network security.

In this thesis, the relationship between the agents of the network is supposed

to be independent and rational, and they make decision competitively to each

other. So, non-cooperative game is chosen to tradeoff risks and utility between the

individuals. All players in the game will choose its strategy wisely so as to maximise

its payoff. In [35], it is said that Nash Equilibriums could be considered as a kind

of optimal strategies for the network users. A Non-cooperative Nash Equilibrium

occurs when no single player in the game can improve its utility through a unilateral

deviation. And for a two player zero sum game, the Nash equilibrium is a saddle-

point equilibrium with a single objective function minimised by one player and

maximised by the other. The goal is to find a way to design the game and the

tradeoff function in an appropriate way, and to optimise the entire utility in the

system.

2.3 Differential privacy

Payoff function plays an important role in game theory. It is vital to consider what

quantification to choose to represent the utility and cost in the payoff function.

Differential privacy provides a measurement of privacy loss, normally denoted

as ✏. The algorithm of differential privacy mechanism is parameterised such that
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the privacy loss can be bounded by any desired value ✏. The notion of differential

privacy is proposed by Dwork in [16]. The fundamental idea of differential privacy

is that no matter whether an individual is present or absent in the database, the

answer from a randomised query should not be affected [14]. It has been defined

in [16] that a randomised mechanism M is ✏-differentially private if for all of data

sets D1 and D2 differing on no more than one row, and for any S ✓ Range(M),

Pr[M(D1) 2 S] ex p(✏)⇥ Pr[M(D2) 2 S]. (2.1)

In this equation (2.1), ✏ factor is a key element in limiting how much the probabilities

difference is between the same answer received from two neighbouring databases

that are differing on one entry. Intuitively, privacy budget ✏ is considered to be

directly related to the accuracy of the database, because it determines the magnitude

of the added noise. Hence, ✏ can be regarded as the degree of privacy level in some

cases.

Laplace random mechanism is widely used in differential privacy. For the

given query function f (.) and randomised mechanism M(.), the output from

this channel is M(X ) = f (X ) +Y , where Y is drawn i.i.d from Lap(4 f
✏ ), and

4 f = maxD1,D2
| f (D1)� f (D2)| is the global sensitivity of f . In circumstances where

the reported answer has to be one of the several possible values, the probability

distribution will be a discrete Laplace probability. Depends on the query, the re-

ported answer may be either one value from a finite number of possible values or a

certain integer number results from a counting query. Discrete Laplace mechanism

suits such scenarios and its probability distribution function could be derived from

continuous Laplace function. The probability of the reported answer to be k with

✏ differentially privacy is P(Y = k) =
1

2� e�|k|/�P1
j=�1

1
2� e�| j|/�

. On simplification, it becomes

P(Y = k) = 1�p
1+p p|k|, where p = e�1/�.

Smaller ✏ stands for higher privacy level and results in lower utility. However, for
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the same value of ✏, if any of the following element changes, such as the size of the

attributes, the size of dataset, or the number of possible values for one attributes, the

probability of identifying an individual in a dataset will be consequently different.

For example, when two datasets using the same value of privacy budget ✏ for

differential privacy but only differing in data size, the larger dataset leaks more

information than the smaller one. So, ✏ is related to the privacy level but is not

able to give an absolute measurement of privacy in all situations. As a result, there

requires a more generic metric to quantify privacy level.

2.4 Utility-Leakage tradeoffs in Attacker-Individual
two-party models

In this section, we will evaluate attacker-individual two-party models and analyse

the utility-leakage tradeoffs from two different aspects. The first one is by using

information theoretical method to quantify utility and leakage in data analysis.

The second one takes an economics view to analysis the probability of adversarial

posterior belief and form a cost function to balance the controversy between the

attacker and the individual.

2.4.1 Information theoretic methods for Quantifications

For some models with the output of the randomised query being specific values,

discrete Laplace mechanism is used to fit this kinds of scenarios. There are several

existing works on quantifying the utility and leakage and evaluating the tradeoffs

from different perspectives. An information flow chart is used in [3] to demonstrate

how the randomised function channel works. The dataset X is the input to the

channel K. It first answers the query f and gives a real answer Y . Then this

real answer is randomised through a H randomisation mechanism and outputs a

reported answer Z . Hence, The utility of this oblivious mechanism is defined as
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Figure 2.4: Information flow of leakage and utility for oblivious mechnisms [3]

the difference between the reported answer Z and the real answer Y . The dataset

leakage L(X ,Z ) is the difference between X and Z , and used to quantify the

amount of information about the whole dataset leaked to the opponents. From the

perspective of information theory, the utility and leakage in this system could be

measured by looking into the similarity or entropy between the input database, real

answer and randomised reported answer. The flow chart is shown as Figure 2.4.

A metric used for privacy leakage is based on mutual information study [2]. This

privacy metric is based on evaluations of similarity between the information from the

original and perturbed records. Based on quantitative information flow, the process

of the original datasets being produced into the differentially private datasets is

demonstrated. Differential privacy and mutual information is first compared by

Alvim et al. in [4]. They quantified the information leakage based on the Rényi min-

entropy information theory, and optimised the proposed randomisation mechanism

for an increased utility, while preserving ✏� differential privacy. X ,Y denote the two

random variables with carriers datasets X ,Y , whose probability distributions are

pX (.) and pY (.), respectively. The Rénti entropy of order ↵(↵> 0,↵ 6= 1) of a random

variableX is defined as H↵(X ) = 1
1�↵ log2
P

x2X p(x)↵. For the case of ↵ =1, the

above equation is derived as H1(X ) = �log2
P

y2Y p(y)maxx2X p(x |y). Based

on this, the min-entropy leakage is defined as I1 = H1(X )� H1(X |Y ). This

concept can be related to an attacker’s model of the probability that the attacker’s
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guess of the real answer is the same as the actual ones.

2.4.1.1 Quantification of Leakage

In [4], the correlation L(X ,Z ) is used to measure the probability distribution of

the information that the opponent can learn about the database by observing the

reported answer Z . It is thus qualified as L(X ,Z ) = I1(X ;Z ) through min-

entropy methods. Then, the paper shows that differential privacy will leads to a

tight bound on both min-entropy leakage and utility. Because the bounds are tight

in certain conditions, it will promisingly be applied in the thesis to quantify privacy

level wisely. The bounds for min-entropy leakage L(X ;Z ) is as follows,

I1(X ;Z ) ulog2
ve✏

v � 1+ e✏
, (2.2)

where u is the number of individuals and v is the number of possible values for a

response. The results show that the min-entropy leakage of a randomised mechanism

K is tightly bounded.

2.4.1.2 Quantification of Utility

The idea of the utility comes from the probability of a successful guess for the real

answer from the reported one. That is for each report answer z, the user remaps the

guess to a value y 0 2 Y with a remapping function ⇢(z) :Z !Y . The expectation

utility for between is given as U(Y ,Z ) =
P

y,z p(y, z)g(y,⇢(z)), where p(y, z) is

the mapping function from Y to Z and g(.) is gain function.

The binary gain function is a common gain measuring the difference between

the remapping from Z back to Y 0 and Y . The gain is 1 if the guess is exact the

real answer and is 0 for all other guess. For conditions when the actual distance

between Y 0 and Y is sensitive, loss functions which measure the distance between

real answer and reported answer is used. In [4], binary gain is used. By substituting

g with binary gain, the utility function is U(Y ,Z ) =
P

y,z p(y, z)�y(⇢(z)).
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However, for generic situations, the utility function is as following:

U(Y ,Z ) =

8
>><
>>:

X

y,z

p(y, z)ky � zk, z follows discrete Laplace distribution,

Z

y,z

f (y, z)dist(y, z), z follows continuous Laplace distribution.

where dist(y, z) is the loss function measuring the distance between y 0 and y 2 Y .

Similar to the Leakage analysis, the utility with the above quantification with

binary gain is proved to have a tight bound in [4], which is provided in the following,

U(X ,Y ) (e✏)n(1� e✏)
(e✏)n(1� e✏) + c(1� (e✏)n) , (2.3)

where n is the maximum distance from y in Y , and c is a natural number used

for one edge of border range. The authors of [3] then constructed an optimal

randomisation mechanism and increased the whole utility for one database under

uniform prior distribution with truncated geometric mechanism. The upper bounds

for the leakage and utility are observed as a monotonic function of privacy budget

✏.

According to a paper by Kalantari et al., a robust privacy-utility tradeoffs is

developed for an arbitrary set of finite-alphabet source distribution. In [31], privacy

level is quantified by using differential privacy, and utility is quantified by expectation

of Hamming distortion maximised over the set of distributions. Considering the

uncertainty of the true distributions of the source set, utility is modelled as the

maximum Hamming distortion over the entire source set. As Hamming distortion

is a metric with adding noise for privacy and it could help determine whether the

original data has been changed [17]. Kalantari et al. categorised source distributions

into three possible classes with optimised different differential privacy mechanism

respectively. Then, they demonstrated how the worst-case guarantee of differentially

private information loss compares to average-case guarantee of mutual information

leakage, and the context awareness improves the utility of differential privacy
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mechanisms. In addition, the upper bounds for mutual information leakage and

Hamming distortion differential privacy leakage are compared.

In [3, 17, 31], the quantifications of data utility and leakage are defined for

discrete queries. In this thesis, we extend to continuous queries and multiple parties

model, so as to make the solution more generic.

2.4.2 An Economics view for Utility Cost quantifications

There are existing methods of choosing ✏ for differential privacy from the perspective

of economics views.

Everyone in the network contributes its information and benefits from accessing

others’ shared information. So, privacy level could be considered as a cost. Lee

and Clifton revealed that though the privacy parameter ✏ in differential privacy

is used to quantify the information loss of sensitive data in a database, it is not a

sheer measurement for most realistic cases. In [33], they argued that the privacy

guarantees of privacy differentially mechanism datasets are various for the same

value of ✏. So, instead of arbitrarily choosing the value of privacy parameter ✏,

Lee and Clifton propose a method by investigating the probability of an adversary

correctly guess whether an individual is absence or presence in a database. They

built an adversary model with an attacker who has full access to all records in the

universe U but not aware of which individual is messing in the database X 0. Then,

based on this assumption, they introduced a definition of adversary posterior belief

in an attack model. They proposed a notion for adversary posterior belief �(!)

as �(!) = P(X 0 =!|�) = P(M(!)=�)P
 2 P(M( )=�) . This is the probability of the adversary’s

posterior belief on the possible word to be ! with the query response �= M(X 0).
This is used by the attacker to find which possible word has the largest possibility to

be the real answer. It could be found out that the lowering of ✏ reduces the utility

of the answer. So Lee and Clifton used this feature to find the proper value of ✏ in

this adversary model.
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To get an upper bound on the adversary probability of a real answer, they made

assumptions of the worst case and the bound is as follows,

�(!) 1

1+ (n� 1)e�
✏4v
4 f

. (2.4)

Then, they determined the right value of ✏ by maintaining the upper bound on

this adversary’s posterior belief below a given threshold. ✏ controls how much an

adversary’s belief on a certain word can change. After observing the output of a

privacy mechanism, this belief is updated as a Bayesian agent. In this work [33],

the authors could determine the range of ✏ value under certain conditions with

constraints.

Based on [33], another economic model is proposed by Hsu et al. In [26], which

enables users of differential privacy to choose ✏ in a more principled approach.

Instead of considering only the attackers’ perspective, they proposed a two-party

model with an individual and an analyst. The Individual is likely to contribute

its information with a payment, while the analyst’s problem is how accuracy the

shared information is. A cost function is introduced under differential privacy

for an individual who might want to contribute its information and a real-valued

accuracy function for an analyst curious about the individual’s information. Then,

they combine the two views to derive the expected cost to the individual and so

as to determine ✏. This is the first comprehensive two party model. The authors

then compared the true cost of privacy with a non-privacy study. As differential

privacy requires additional noise to protect sensitive information while give adequate

accuracy, privacy studies is expected to cost more than non-privacy studies. So

when the budget is the same, the privacy study is better than non-privacy studies as

the latter has no guarantees on privacy.

The authors also compared the necessity of the complex model to the earlier

attack models in [15]. In the previous work by Dwork et al., it had only one notion
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✏ for privacy measurement. However, in realistic cases, the individuals need to

consider more complex conditions including whether to participate in the privacy

study and how much cost it could pay for such a certain accuracy. So the model

proposed by Hsu et al. is more practical and detailed to face with real events.

The model will be extended to an interactive multiple users model. Each in-

dividual is regarded as a semi-opponent by the others. Also, we will focus on the

cost function and utility function used in the existing works. The methods used

to measure leakage and utility level will be studied and modified in our extended

models.



Chapter 3

Privacy preserving Federated
Learning

In this Chapter, we apply machine learning in distributed private data owned by

multiple data owners, entities with access to non-overlapping training datasets.

We use noisy, differentially-private gradients to minimize the fitness cost of the

machine learning model using stochastic gradient descent. We quantify the quality

of the trained model, using the fitness cost, as a function of privacy budget and size

of the distributed datasets to capture the trade-off between privacy and utility in

machine learning. This way, we can predict the outcome of collaboration among

privacy-aware data owners prior to executing potentially computationally-expensive

machine learning algorithms. Then, the prediction of relative training loss could be

used as a loss function in forming the utility function in 2.4.1.2.

3.1 Federated Learning with DP Gradient Queries

3.1.1 Setup

Consider a group of N 2 N private agents or data owners N := {1, . . . , N} that are

connected to a node responsible for training a ML model, identified as a learning

agent, over an undirected communication graph as in Figure 1.2. Each agent has

access to a set of private training data Di := {(xi, yi)}ni
i=1 ✓ X⇥Y ✓ Rpx ⇥Rpy , where

xi and yi, respectively, denote inputs and outputs. Each data owner, for instance,

23
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could be a private bank/financial institution. In this case, the private datasets can

represent information about loan applicants (such as salary, employment status,

and credit rating1) as inputs and historically approved interest rates per annum by

the bank (in percentage points) as outputs.

Assumption 1. Private datasets are mutually exclusive, i.e., Di \ D j = ; for all

i, j 2 N .

Assumption 1 states that two identical records, equal in every possible aspect,

cannot be in two or more datasets. This is a realistic assumption in many real-life

applications, such as financial and energy data. For instance, across multiple banks

and financial-service providers, transaction records (e.g. for purchasing goods) are

unique by the virtue of timestamps, amounts, and the uniqueness of purchases for

an individual. In energy systems, one household cannot transact (for purchasing

power) with two or more energy retailers and thus its consumption pattern can

only be stored by one retailer. The reasons behind this assumption are two-fold.

First, to guarantee ✏-differential privacy, we need to ensure that the records are not

repeated so that an adversary cannot reduce the noise levels by averaging the reports

containing information about repeated entries and thus exceeding ✏ (due to the

composition rule for differential privacy). If the datasets had common entries, there

would need to be a privacy-preserving mechanism for identifying those common

entries without potential information leakage with respect to non-common entries,

which is a daunting task. The mutually exclusive or non-overlapping nature of the

datasets also results in statistical independence of additive privacy-preserving noise.

This independence is extremely useful in computing the magnitude of the additive

noise for forecasting the performance of privacy-aware learning algorithms.

The learning agent is interested in extracting a meaningful relationship between

the inputs and outputs using ML model M : X⇥Rp✓ ! Y and the available training
1Categorical attributes, such as gender, can always be translated into numerical ones according

to a rule.
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datasets Di, 8i 2 N , by solving the optimization problem in

✓ ⇤ 2 arg min
✓2⇥


g1(✓ ) +

1
n

X

j2N

X

{x ,y}2D j

g2(M(x;✓ ), y)
�
, (3.1)

where g2(M(x;✓ ), y) is a loss function capturing the “closeness” of the outcome of

the trained ML model M(x;✓ ) to the actual output y , g1(✓ ) is a regularizing term,

n :=
P
`2N n`, and ⇥ := {✓ 2 Rp✓ |k✓k1  ✓max}. Note that a large enough ✓max

can always be selected such that the search over ⇥ does not add any conservatism

(in comparison to the unconstrained case), if desired. We use f (✓ ) to denote the

cost function of (3.1) for the sake of the brevity of the presentation, i.e.,

f (✓ ) := g1(✓ ) +
1
n

X

{x ,y}2
S

j2N D j

g2(M(x;✓ ), y). (3.2)

Remark 1 (Generality of Optimization-Based ML). In an automated loan assessment

example, a bank maybe interested in employing a linear regression model to estimate

the interest rate of the loans based on attributes of customers (thus developing an

“AI platform” for loan assessment and delivery). A linear regression model, as the

name suggests, considers a linear relationship between input x and output y in the

form of y = M(x;✓ ) := x>✓ , where ✓ 2 Rp✓ is the parameter of the ML model.

We can train the regression model by solving the optimization problem (3.1) with

g2(M(x;✓ ), y) = ky�M(x;✓ )k22, and g1(✓ ) = 0. In addition to linear (or non-linear)

regression discussed earlier, which clearly is of the form in (3.1), several other ML

algorithms follow this formulation. Another example is linear support vector machines

(L-SVM). In this problem, it is desired to obtain a separating hyper plane of the form

{x 2 Rpx : ✓>[x> 1]> = 0} with its corresponding classification rule sign(M(x;✓ ))

with M(x;✓ ) := ✓>[x> 1]> to group the training data into two sets (corresponding to

y = +1 and y = �1). This problem can be cast as (3.1) with g1(✓ ) := (1/2)✓>✓ and

g2(M(x;✓ ), y) :=max(0, 1�M(x;✓ )y). We can easily see that the extension to non-

linear SVM can also be cast as an optimization-based ML problem. Another example
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is artificial neural network (ANN). In this case, M(x;✓ ) describes the input-output

behaviour of the ANN with ✓ capturing parameters, such as internal thresholds. This

problem can be cast as (3.1) with g1(✓ ) := 0 and g2(M(x;✓ ), y) := ky�M(x;✓ ))k2.

If the data owners could come to an agreement to share private data (and it was

not illegal to disclose customers’ private information without their consent), the

learning agent could train the ML model by solving the optimization problem (3.1)

directly. In practice, however, data owners may not be able to share their private

data. In this case, the learning agent can submit queries Qi(Di; k) 2 Q to agent

i 2 N for k 2 T := {1, . . . , T}, where T denotes the number of communication

rounds (i.e., the number of queries) agreed upon by all the data owners prior to

the exchange of information, index k identifies the current communication round,

and Q denotes the output space of the query. Agent i 2 N can then provide a

differentially-private response Qi(Di; k) 2 Q to the query Qi(Di; k) 2 Q.

Definition 1 (Differential Privacy). The response policy of data owner ` 2 N is

✏`-differentially private over the horizon T if

P
ß
(Q`(D`; k))Tk=1 2 Y

™
 exp(✏`)P
ß
(Q`(D0`; k))Tk=1 2 Y

™
,

where Y any Borel-measurable subset of QT is the range for all outcomes of privacy

mechanism, and D` and D0` are two adjacent datasets differing at most in one entry,

i.e., |D` \D0`|= |D0` \D`| 1.

The learning agent then processes all the received responses to the queries in

order to generate its ML model: ✓̂ := &((Q j(D j; k))k2T , j2N ), where & :
Q

k2T QT !
Rp✓ is a mapping used by the learning agent for fusing all the available information.

In the next subsection, we present an algorithm for generating queries, and then

use the provided differentially-private responses for computing a trained ML model.
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3.1.2 Algorithm

In the absence of privacy concerns, one strategy for training the ML model by the

learning agent is to provide unfettered access to the original private data of the data

owners inN . In this case, the learning agent can follow the projected (sub)gradient

descent iterations in

✓[k+ 1] = ⇧⇥[✓[k]�⇢k⇠ f (✓[k])], (3.3)

where ⇢k > 0 is the step-size at iteration k, ⇠ f (✓[k]) is a sub-gradient, an element

of sub-differentials @✓ f (✓[k]), of the cost function f with respect to the variable

✓ evaluated at ✓[k] [52], and ⇧⇥[·] denotes projection operator into the set ⇥

defined as ⇧⇥[a] := arg minb2⇥ ka� bk2. For continuously differentiable functions,

the gradient is the only sub-gradient. The use of sub-gradients, instead of gradient

in this thesis, is motivated by the possible choice of non-differentiable loss functions

in ML, e.g., the cost function of the L-SVM.

We assume that g1 and g2 are convex functions of ✓ . This implies that f is also

a convex function of ✓ . The existence of sub-differentials is guaranteed for convex

functions [52]. We define ḡ x ,y
2 (✓ ) = g2(M(x;✓ ), y). The update law in (3.1) can be

rewritten as ✓[k+ 1] = ⇧⇥[✓[k]�⇢k⇠g1
(✓[k])� ⇢k

n

P
`2N j\{ j} n`Q`(D`; k)], where

⇠g1
is a sub-gradient of g1, ⇠ ḡ x ,y

2
is a sub-gradient of ḡ x ,y

2 , and Q`(D`; k) is a query

that can be submitted by the learning agent to data owner ` 2 N in order to provide

the aggregate sub-gradient: Q`(D`; k) = 1
n`

P
{x ,y}2D` ⇠ ḡ x ,y

2
(✓[k]). Responding to

the query Q`(D`; k) clearly intrudes on the privacy of the individuals in dataset

D`. Therefore, data owner ` only responds in a differentially-private manner by

reporting the noisy aggregate:

Q`(D`; k) =Q`(D`; k) + w`[k], (3.4)

where w`[k] is an additive noise to establish differential privacy with privacy budget



28 Privacy preserving Federated Learning

Algorithm 1 ML training algorithm with distributed private datasets using DP
gradients for strongly-convex smooth fitness cost.
Require: T
Ensure: (✓[k])Tk=1

1: Initialize ✓[1]
2: for k = 1, . . . , T � 1 do
3: Learner submits query Q`(D`; k) to data owners in N
4: Data owners return DP responses Q`(D`; k)
5: Learner follows the update rule

✓[k+ 1] = ✓[k]� ⇢

T 2k

Å
⇠g1
(✓[k]) +
X

`2N

n`
n
Q`(D`; k)
ã

,

6: end for

✏` over the horizon T ; see Definition 1. As stated before, here, the horizon T is the

total number of iterations of the projected sub-gradient algorithm. Note that each

neighbour responds to one query in each iteration.

We assume that ⌅:=max(x ,y)2X⇥Y k⇠ ḡ x ,y
2
(✓[k])
��

1 <1. This implies the gradi-

ents or the sub-gradients of fitness function have a bounded magnitude.

Theorem 1. The policy of data owner ` in (3.4) for responding to the queries is ✏`-

differentially private over horizon {1, . . . , T} if w`[k] are i.i.d.2 noises with the density

function p(w) = ( 1
2b )

p✓ exp(�kwk1b ) with scale b = 2⌅T/(n`✏`).

Proof. See Appendix A.1.

Theorem 1 states that i.i.d. Laplace additive noise can ensure DP gradients.

Each response in (3.4), for a given k, using the additive noise density in Theorem 1

is (✏`/T )-differentially private. Therefore, over the whole horizon {1, . . . , T}, all

the responses meet the definition of ✏`-differential privacy. This follows from

the composition of T differentially-private mechanisms [16]. In [28, 56], each

response is constructed to ensure ✏-differential privacy, which implies that the

2independently and identically distributed
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overall algorithm is ✏T -differentially private, thus reducing the privacy guarantee

with increasing the number of the iterations.

In the presence of the additive noise, the iterates of the learner follow the

stochastic map

✓[k+ 1] = ⇧⇥[✓[k]�⇢k(⇠ f (✓[k]) + w[k])], (3.5)

where w[k] := 1
n

P
`2N n`w`[k].

Algorithm 1 summarizes our proposed ML algorithm with distributed private

datasets using DP gradients. In Chapter 3.2, we observe that the performance of

Algorithm 1 can only be assessed under the assumptions of differentiability, smooth-

ness, and strong convexity of the fitness cost. These assumptions are satisfied for

several ML models and fitness costs, such as regression. To avoid these assumptions

and to also reduce the effect of the additive noise, we can define the averaging

variable

✓̄[k+ 1] =
k� 1

1/
p

T + k
✓̄[k] +

1/
p

T + 1
1/
p

T + k
✓[k]. (3.6)

Algorithm 2 summarizes the proposed ML algorithm with distributed private datasets

using DP sub-gradients with the additional averaging step as per equation (3.6).

Now, we are ready to analyze the performance our privacy-preserving ML training

algorithms.

3.2 Predicting the Performance of ML on Distributed
Private Data

For Algorithm 1, we can prove the following convergence result under the as-

sumptions of differentiability, smoothness, and strong convexity of the ML fitness

function.

Theorem 2. Assume that f is a L-strongly convex continuously-differentiable function
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Algorithm 2 ML algorithm with distributed private datasets using DP sub-gradients.
Require: T , c1
Ensure: (✓[k])Tk=1

1: Initialize ✓[1] within ⇥
2: for k = 1, . . . , T � 1 do
3: Learner submits query Q`(D`; k) to data owners in N
4: Data owners return DP responses Q`(D`; k)
5: Learner follows the update rule

✓[k+ 1] = ⇧⇥

ï
✓[k]� c1p

k

Å
⇠g1
(✓[k])+
X

`2N

n`
n
Q`(D`; k)
ãò

,

6: Learner follows the averaging rule

✓̄[k+ 1] =
k� 1

1/
p

T + k
✓̄[k] +

1/
p

T + 1
1/
p

T + k
✓[k].

7: end for

with �-Lipschitz gradient and ✓max =1 (i.e., there is no constraint). For any " > 0,

there exists a large enough T such that the iterates of Algorithm 1 satisfy

min
1kT
E{ f (✓[k])}� f (✓ ⇤)8⌅2⇢

Ln2

ÅX

`2N

1
✏2
`

ã
+ ", (3.7)

and

min
1kT
E{k✓[k]� ✓ ⇤k22}

32⌅2⇢

L2n2

ÅX

`2N

1
✏2
`

ã
+
"

4L
. (3.8)

Proof. See Appendix A.2.

Theorem 2 establishes the convergence of Algorithm 1 for smooth strongly convex

functions. This quantifies the trade-off between privacy and utility by capturing the

closeness to the trained ML model with and without taking into account the privacy

constraints of the data owners. In fact, the inequalities in (3.7) and (3.8) enable

us to predict the outcome of a potential collaboration among privacy-aware data

owners (or data custodians) in terms of the fitness cost of the ML training model prior

to executing potentially computationally-expensive ML algorithms on distributed



§3.2 Predicting the Performance of ML on Distributed Private Data 31

Figure 3.1: Statistics of relative fitness of the stochastic gradient method in Algorithm 2
for learning lending interest rates versus the iteration number for T = 100 with various
choices of privacy budgets. The boxes, i.e., the vertical lines at each iterations, illustrate the
range of 25% to 75% percentiles for extracted from a hundred runs of the algorithm and
the black lines show the median relative fitness.

privately-owned datasets

To relax the conditions required for convergence of the ML training, we can

use Algorithm 2. In this case, we do not even need the fitness function to be

differentiable because the algorithm uses sub-gradients, rather than gradients. For

the noisy projected sub-gradient decent algorithm in Algorithm 2, the following

result can be proved.

Theorem 3. For any T, there exists large enough constants3 c1, c2 > 0 such that the

iterates of Algorithm 2 satisfy

E{ f (✓̄[T])}� f (✓ ⇤) c2⌅

n

vutX

`2N

1
✏2
`

, (3.9)

Further, if g1 is a L-strongly convex function,

E
ß��✓̄[T]� ✓ ⇤
��2

2

™
 4c2⌅

Ln

vutX

`2N

1
✏2
`

. (3.10)

Proof. See Appendix A.3.

3Note that the constants in the statement of the theorem can be functions of T and, therefore,
the bounds in (3.9) and (3.10) are useful for comparing the variations in the performance of the
sub-gradient descent algorithm for various privacy budgets and sizes of the datasets as long as T is
fixed.
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The upper bounds on the performance of the training Algorithms 1 and 2 in Theo-

rems 2 and 3 are increasing functions of (1/n2)
P
`2N 1/(✏`)2 and (1/n)[

P
`2N 1/(✏`)2]1/2,

respectively. By increasing ✏`, i.e., relaxing the privacy guarantees of data owners,

the performance of the ML training algorithm improves, as expected because of

having access to better quality gradient oracles.

Remark 2 (Comparison with Central Bounds). Under the assumption that all the

data owners have equal privacy budgets ✏i = ✏, 8i, the bound in (3.7) scales as ✏�2 and

the bound in (3.9) scales as ✏�1. These bounds are in line with the lower and the upper

bounds in [7] for strongly convex and general convex loss functions. The same outcome

also holds if N = 1 and ✏1 = ✏, which is the case of centralized privacy-preserving

learning.

Finally, we note that these results provide bounds on the distance between the

non-private ML model and the privacy-preserving ML models learned in a distributed

manner as a function of the privacy budgets and the size of the datasets. Issues,

such as non-independent and non-identical datasets, influence the performance

of the non-private model and thus also indirectly influence the performance of

the privacy-preserving models. In the next section, although the datasets are not

restricted be i.i.d. (e.g., the number of fraudulent transactions in the credit card

fraud detection is low and arguably contains activities that have originated from

same/similar fraudsters), the theoretical bounds tightly match the experimental

results.

3.3 Experimental Validation of the ML Performance

In this section, we examine the results of this chapter, specifically the performance of

Algorithm 2, on two financial datasets on lending and credit card fraud. Particularly,

we use the relative fitness of the iterates in Algorithm 2 to illustrate its performance.

The relative fitness of ✓ is given by (✓ ) := f (✓ )
f (✓ ⇤) � 1.
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Figure 3.2: Relative fitness of the stochastic gradient method in Algorithm 2 for learning
lending interest rates after T = 100 iterations versus the size of the datasets and the privacy
budgets.

This measure shows how good ✓ is in comparison to the optimal ML model ✓ ⇤

in terms of the training cost in (3.1). We opt for studying the relative fitness, scaled

by f (✓ ⇤) as opposed as the absolute fitness f (✓ ) � f (✓ ⇤), because we consider

datasets with different sizes for two distinct ML learning models and thus we want

to factor out the effects of the variations of f (✓ ⇤). Finally, note that, by construction,

 (✓ )� 0. Further, the lower the value of (✓ ), the better ✓ performs in comparison

to ✓ ⇤.

3.3.1 Lending Dataset

First, we use a lending dataset with a linear regression model to demonstrate the

value of the methodology and to validate the theoretical results.

3.3.1.1 Dataset Description

The dataset contains information regarding nearly 890,000 loans made on a peer-to-

peer lending platform, called the Lending Club, which is available on Kaggle [32].

The inputs contain loan attributes, such as total loan size, and borrower information,

such as number of credit lines, state of residence, and age. The outputs are the
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Figure 3.3: Relative fitness of the stochastic gradient method in Algorithm 2 for learning
lending interest rates after T = 100 iterations versus the privacy budgets. The solid line
illustrate the bound in Theorem 2.

Figure 3.4: Relative fitness of the stochastic gradient method in Algorithm 2 for learning
lending interest rates after T = 100 iterations versus the size of the datasets. The solid line
illustrate the bound in Theorem 2.

interest rates of the loans per annum. We encode categorical attributes, such as

state of residence and loan grade assigned by the Loan Club, with integer numbers.

We also remove unique identifier attributes, such as id and member id, as well as

irrelevant attributes, such as the uniform resource locator (URL) for the Loan Club

page with listing data. Finally, we perform feature selection using the Principal

Component Analysis (PCA) to select the top ten important features. This step

massively improves the numerical stability of the algorithm.

For the PCA, we only use the last ten-thousand entries of the dataset to ensure

that the feature selection does not violate the distributed nature of the algorithm.
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Figure 3.5: Relative fitness of the stochastic gradient method in Algorithm 2 for learning
lending interest rates after T = 100 iterations versus the size of the dataset and the privacy
budget of the first data owner for four distinct scenarios of collaboration.

Note that, if we were to use the entire dataset for the PCA, the data should have been

available at one location for processing which is contradictory to the assumptions

of the chapter regarding the distributed nature of the dataset and the privacy

requirements of the data owners. After performing the PCA, the eigenvectors

corresponding to the most important features are communicated to the distributed

datasets. The first n1 entries of the Lending Club are assumed to be the private

data of the first data owner. The entries between n1 + 1 to n1 + n2 belong to the

second data owner and the entries between n1 + n2 + 1 to n1 + n2 + n3 are with the

third data owner. We may use any other approach for splitting the Lending Club

dataset among the private data owners as long as the distributed datasets are not

overlapping.

The data owners then balance their datasets using the-said eigenvectors. The

eigenvectors, here, serve as a common dictionary between the data owners for

communication and training.

3.3.1.2 Experiment Setup

The experiments demonstrate the outcome of collaborations among N = 3 financial

institute s, e.g., banks, for training a ML model to automate the process of assigning

interest rates to loan applications based on the attributes of the borrower and the
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Figure 3.6: Relative fitness of the stochastic gradient method in Algorithm 2 for fraud
detection after T = 100 iterations versus the size of the datasets and the privacy budgets.

loan. Each institute has access to a private dataset of ni historical loan applications

and approved interest rates. The value of ✏i for each institute essentially determines

eagerness for collaboration and openness to sharing private proprietary datasets.

For a linear regression model, we consider a linear ML model relating the inputs

and the outputs as in y =M(x;✓ ) := ✓>x with ✓ 2 Rp✓ denoting the parameters

of the ML model. We train the model by solving the optimization problem (3.1)

with g2(M(x;✓ ), y) = ky �M(x;✓ )k22, and g1(✓ ) = 0.

3.3.1.3 Results

First, we demonstrate the behaviour (e.g., convergence) of the iterates of the

stochastic gradient descent procedure in Algorithm 2. Consider the case where

n1 = n2 = n3 = 250,000. Figure 3.4 shows the statistics of the relative fitness of

the stochastic gradient method in Algorithm 2 for a ML model determining lending

interest rates,  (✓̄ [k]), versus the iteration number k for T = 100 for three choices

of privacy budgets ✏1 = ✏2 = ✏3. The algorithm is stochastic because the data

owners provide differentially-private responses to the gradient queries, obfuscated

with Laplace noise in Theorem 1. Thus each run of the algorithm follows a different

relative fitness trend. The boxes, i.e., the vertical lines at each iterations, illustrate

the range of 25% to 75% percentiles of the relative fitness extracted from one-
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Figure 3.7: Statistics of relative fitness of the stochastic gradient method in Algorithm 2
for fraud detection versus the iteration number for T = 100 with various choices of privacy
budgets. The boxes, i.e., the vertical lines at each iterations, illustrate the range of 25%
to 75% percentiles for extracted from a hundred runs of the algorithm and the black lines
show the median relative fitness.

hundred runs of the algorithm. The black lines show the median relative fitness

versus the iteration number. The effect of the privacy budgets on the quality of the

iterates at the end of T iterations is evident, as expected from Theorem 3. As ✏

increases, i.e., the data owners become more willing to share data, the performance

of the trained ML model improves.

After establishing the desired transient behaviour of the algorithm, we can

investigate the effect of the size of the datasets and the privacy budgets on the

performance of the trained ML model, i.e., the ML model after all the iterations

have passed. Figure 3.2 shows the expectation (i.e., the statistical mean) of the

relative fitness of the stochastic gradient method in Algorithm 2 for the trained ML

model after T = 100 iterations versus the size of the datasets n1 = n2 = n3 and

the privacy budgets ✏1 = ✏2 = ✏3. As predicted by Theorem 3, the fitness improves

as the size of the datasets n1 = n2 = n3 and/or the privacy budgets ✏1 = ✏2 = ✏3

increase. To quantify the tightness of the upper-bound in Theorem 3 for Algorithm 2,

we isolate the effects of the size of the datasets and the privacy budgets on the

relative fitness. Figure 3.3 illustrates the expectation of the relative fitness of the

stochastic gradient method in Algorithm 2 after T = 100 iterations versus the

privacy budgets ✏1 = ✏2 = ✏3. In this figure, the markers (i.e., Ñ, á, and ) are
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Figure 3.8: Relative fitness of the stochastic gradient method in Algorithm 2 for fraud
detection after T = 100 iterations versus the privacy budgets. The solid line illustrate the
bound in Theorem 2.

from the experiments and the solid lines are fitted to the experimental data. We

can see that the slope of the linear lines in the log-log scale in Figure 3.3 is �2.

This shows that  (✓̄[k])/ ✏�2
i . Hence, our bound in Theorem 3 is not tight as it

states that (✓̄ [k]) is upper bounded by a function of the form 1/✏i. This is because

Theorem 3 does not use the fact that the cost function for the regression is strongly

convex and has Lipschitz gradients. These assumptions are utilized in Theorem 2

and the bounds in this theorem are in fact tight, as Theorem 2 states that (✓̄ [k]) is

upper bounded by a function of the form 1/✏2
i . Figure 3.4 shows the expectation of

the relative fitness of the stochastic gradient method in Algorithm 2 after T = 100

iterations versus the size of the datasets n1 = n2 = n3. Similarly, the slop of the

linear lines in the log-log scale in Figure 3.4 is �2 pointing to that  (✓̄ [k])/ n�2
i .

This is again a perfect match for our theoretical bound in Theorem 2 (because

n= n1 + n2 + n3 = 3ni).

Finally, we consider a few scenarios of collaboration for the data owners. Specif-

ically, we evaluate the performance of the learning algorithm for four distinct

scenarios in which the second and the third data owners have: (i) small datasets

and small privacy budgets (i.e., reluctant to share due to privacy concerns); (ii)
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Figure 3.9: Relative fitness of the stochastic gradient method in Algorithm 2 for fraud
detection after T = 100 iterations versus the size of the datasets. The solid line illustrate
the bound in Theorem 2.

small datasets and large privacy budgets (i.e., eager to share); (iii) large datasets

and small privacy budgets; (iv) large datasets and large privacy budgets. For each

case, we vary the privacy budget and the size of the dataset of the first data owner.

This allows us to investigate the potential benefit to data owners in various scenarios.

Figure 3.5 illustrates the expectation of the relative fitness of the stochastic gradient

method in Algorithm 2, after T = 100 iterations, versus the size of the dataset n1

and the privacy budget ✏1 for four distinct scenarios of collaboration.

The first scenario in Figure 3.5 (the left most plot) shows that there is no point

in collaboration with small data owners, even if the size of the dataset of the first

data owner is large and it is eager to share its data. We could foresee this from

the bound in Theorem 3 without running Algorithm 2. This bound shows that

 (✓̄ [k])/ 1/(2000+ n1)
∆

200+ 1/✏2
1; hence, no matter how large ✏1 gets (even

if ✏1 =1), the error’s coefficient remains large due to small privacy budgets of

the other two data owners and n1 must become considerably large to compensate

for it. In the second scenario (the second left most plot in Figure 3.5), the effect

of ✏1 and n1 are more pronounced. This is because, although the other two data

owners are small, they do not hinder the learning process by adding large amounts
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Figure 3.10: Relative fitness of the stochastic gradient method in Algorithm 2 for a trained
ML model determining lending interest rates after T = 100 iterations versus the size of
the dataset and the privacy budget of the first data owner for four distinct scenarios of
collaboration.

of privacy-preserving noise because of their conservatively small privacy budgets.

The third scenario is similar to the first one, albeit with better relative fitness as

conservative data owners are relatively larger. The best scenario for collaboration,

unsurprisingly, is the fourth scenario in which phenomenal performances can be

achieved even without much consideration towards the size of the first dataset or

its privacy budget as the other two datasets are large and eager to collaborate for

learning.

3.3.2 Credit Card Fraud Detection

In this subsection, we use a credit card dataset with a L-SVM classifier to further

demonstrate the value of the methodology and to validate the theoretical results.

3.3.2.1 Dataset Description

The datasets contains transactions made by European credit card holders in Septem-

ber 2013 available on Kaggle [39]. The inputs are vectors extracted by PCA (to avoid

confidentiality issues) as well as the amount of the transaction. The output is a class,

determining if the transactions was deemed fraudulent or not. The dataset is highly

unbalanced, as the positive class (frauds) account for 0.172% of all transactions.
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3.3.2.2 Experiment Setup

The experiments demonstrate the outcome of collaborations among N = 3 financial

institutes for training a SVM classifier to detect fraudulent activities automatically

and rapidly. Each institute has access to a private dataset of ni historical credit card

transactions and their authenticity. The value of ✏i for each institute determines

eagerness for collaboration. In L-SVM, the model is M(x;✓ ) := ✓>[x> 1]>, and

g1(✓ ) := (1/2)✓>✓ and g2(M(x;✓ ), y) :=max(0, 1�M(x;✓ )y).

3.3.2.3 Results

First, we investigate the transient behaviour of the iterates of Algorithm 2. Assume

that n1 = n2 = n3 = 30, 000. Figure 3.7 shows the statistics of the relative fitness of

the iterates of Algorithm 2 for training a fraud detection SVM classifier,  (✓̄[k]),

versus the iteration number k for T = 100 for three choices of privacy budgets

✏1 = ✏2 = ✏3. The boxes, i.e., the vertical lines at each iterations, illustrate the range

of 25% to 75% percentiles of relative fitness extracted from one-hundred runs of the

algorithm and the black lines show the median relative fitness. As expected from

Theorem 3, the performance of the trained SVM classifier gets closer to the SVM

classifier trained with no privacy constraints ✓ ⇤ as the privacy budgets increases.

Now, we can demonstrate the effect of the size of the datasets and the privacy

budgets on the performance of the trained SVM classifier at the end of T training

iterations. Figure 3.6 shows the expectation of the relative fitness of the stochastic

gradient method in Algorithm 2 after T = 100 iterations versus the size of the

datasets n1 = n2 = n3 and the privacy budgets ✏1 = ✏2 = ✏3. Similar to the

theoretical results in Theorem 3, the fitness improves by increasing the size of

the datasets n1 = n2 = n3 and the privacy budgets ✏1 = ✏2 = ✏3. We can also

isolate the effects of the size of the datasets and the privacy budgets. Figure 3.8

illustrates the expectation of the relative fitness of the iterates of Algorithm 2 after
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T = 100 iterations versus the privacy budgets ✏1 = ✏2 = ✏3. As all linear slopes

in the log-log scale in Figure 3.8 are �2, the bound in Theorem 2 seems to be a

perfect fit. Figure 3.4 shows the expectation of the relative fitness of the iterates of

Algorithm 2 after T = 100 iterations versus the size of the datasets n1 = n2 = n3

revealing the exact behaviour predicted in the bound in Theorem 2.

Finally, we evaluate the performance of the learning algorithm for four distinct

scenarios, in which the second and the third data owners have: (i) small datasets

and small privacy budgets; (ii) small datasets and large privacy budgets; (iii) large

datasets and small privacy budgets; (iv) large datasets and large privacy budgets.

Figure 3.10 illustrates the expectation of the relative fitness of Algorithm 2 after

T = 100 iterations versus the size of the dataset n1 and the privacy budget ✏1 for

four distinct scenarios of collaboration. The first scenario in Figure 3.10 (the left

most plot) illustrates that there is no point in collaboration with small data owners

even if the size of the dataset of the first data owner is large and it is eager to share

its data. In the second scenario (the second left most plot in Figure 3.10), the effect

of ✏1 and n1 are more pronounced because the privacy budgets of the second and

the third data owners are large and thus they do not degrade the performance of

the learning algorithm by injecting excessive privacy-preserving noise. The third

scenario is again similar to the first one, albeit with better results as conservative

data owners are relatively larger. The best scenario for collaboration, similar to

the loan example, is the fourth scenario in which the training performances with

and without privacy constraints are identical, so long as the dataset of the first

subsystem is large, or its privacy budget is not too small.



Chapter 4

Game Theory in Privacy preserving
Machine Learning

As mentioned in the previous sections, the differential privacy mechanism used is

simplified and min-entropy measures the probability of correct guessing for one

value at one attribute of datasets. We will extend the model to a more realistic and

complicated one. In this section, the problem is moved to solving the utility-leakage

tradeoffs in privacy-aware machine learning data analysis. First, the system model

of the machine learning is explained. Then, a real problem of data training with

two financial databases is introduced. In this thesis, the utility is measured by the

loss function in machine learning while the leakage is measured by differential

entropy. By combining the utility and leakage quantifications, a compensation policy

is proposed to build a utility-leakage game for the machine learning model.

4.1 System model

As shown in Figure 4.1, there are several database owners A, B, C , and D sharing

information at aggregator. At each database, a finite set Ind = 1, 2, ..., u of u

individuals participate with a finite set Val = v1, v2, ..., vv of v different possible

values for the sensitive attribute of each individual (e.g. disease-name in medical

database). The absence of an individual from the database can be modelled with

a special value in Val. Then, the database could be modelled as a u-tuple D =
d1, d2, ..., du, where di 2 Val is the value of individual i. D and D0 are adjacent if

43
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Figure 4.1: System model of multiple users sharing information by answering queries

they differ for the value of exactly one individual.

The process of information sharing between data holders is as following: Dataset

X is input to the channel, it first gives a true answer of Y to the query f, where

Y = Range( f ). Then, this true answer is processed by a randomise channel and

output a reported answer Z , following the probability distribution of the channel.

Intuitively, the correlation between X and Z measures how much information

about the complete database the other could learn about by observing the reported

answer Z . So this could be regarded as the leakage of the channel. This could be

quantified by using the min-entropy concept to calculate the mutual information

between X and Z . The correlation between Y and Z measures how much others

can learn about the real answer from the reported answer. So this is regarded as

the utility of the channel.

4.2 Compensation for Accessing Private Data

We assume that the learning agent is in a position to compensate its neighbours for

softening their privacy constraints (i.e., using a larger ✏` in ✏`-differential privacy).

We use the notation ⌧`(✏`,✏�`) to denote the compensation value of the learning

agent to data owner ` 2 N , where ✏�` := (✏ j) j2N \{`}.
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Each data owner ` 2 N is strategic, self-interested, and wants minimize to its

overall cost V`(✏`,✏�`) := wf · U`(✏`)� L`(✏`,✏�`), where wf is weighting factor to

normalise units and utility and leakage value’s magnitude. U` here is defined by the

predicted relative loss function in Theorem 2 in Chapter 3.2, while L` is by using

information theoretical method in Chapter 2.4.1.1.

This setup results in a game-theoretic problem. For any compensation policy

(⌧`)`2N , a privacy-compensation game is defined by the tuple (N , (R�0)`2N , (V`)`2N )

encoding the set of players1 N each with action space R�0 (positive real numbers

from which ✏` can be selected), and cost functions V`(✏`,✏�`). Naturally, we are

interested in studying the behaviour of data owners at the equilibrium, a set of

behaviours from which no data owner is inclined to deviate unilaterally.

Definition 2 (Equilibrium). (✏⇤`)`2N constitutes an equilibrium of the privacy-compensation

game with compensation policy (⌧`)`2N if ✏⇤` 2 argmin✏`�0 V`(✏`,✏⇤�`) for all ` 2 N .

Let ⌥ ((⌧`)`2N ) denote the set of all the equilibria with the payment policy (⌧`)`2N .

In general, the existence of a (pure strategy Nash) equilibrium for a privacy-

compensation game as in Definition 2 can only be guaranteed if the cost functions

(V`)`2N are continuous and quasi-convex (in the decision variables of the corre-

sponding data owners) [6,12]. However, for a set of specific compensation policies,

the existence of an equilibrium requires fewer conditions.

Proposition 1. For any compensation policy (⌧`)`2N such that⌧`(✏`,✏�`) = ⌧`(✏`,✏0�`),

8✏�`,✏0�` (i.e., ⌧` is only a function of ✏`) an equilibrium exists if the cost functions

are continuous.

Proof. See Appendix A.4.

Although the existence of an equilibrium is easier to guarantee in the case of

Proposition 1, proving uniqueness is still non-trivial. Proving the uniqueness of
1players (a common term within the game-theory literature) denote agents or data owners in

this thesis
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Figure 4.2: Equilibrium analysis and game convergence in multiple players game with Leak-
age Compensation tradeoff function (a)Payoff function plot with unique Equilibrium point;
(b)Privacy budget Convergence of multiple users with different initial values; (c)Privacy
budget Convergence of multiple users with different initial values and different data size.

the equilibrium generally requires the cost functions to be continuous and strictly

convex [47]. For the case discussed in Proposition 1, any equilibrium is also a

dominant strategy, i.e., each player implements its optimal action irrespective of

the actions of the others. This makes the equilibrium robust to collusion.

Noting that, in a liberal society, the data owners are free to not cooperate if

there is no hope for receiving compensation in return for their efforts, there exist

compensation policies for which all the data owners cease to communicate and

the privacy-aware ML algorithms may not be implemented. To avoid such trivial

compensation policies, we define the set of individually rational policies.

Definition 3 (Individually Rational). The compensation policy (L`)`2N is individually

rational if L`(✏`,✏�`)� U`(✏`), for all ` 2 N and (✏`)`2N 2 ⌥ ((L`)`2N ).

In the next two sections, discrete queries examples of security game with com-

pensation function are implemented in semi-hostile models of multiple data owners.

4.3 Leakage-Compensation Game

For a databaseX with u individuals and the v 2 Val possible values for one sensitive

attribute. The leakage between X and Z by using min-entropy quantification has a
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tight upper bounds as I1(X ,Z ) ulog2 v·e✏
v�1+e✏ derived in 2.4.1.1.

We consider the worst case which is the exact upper bound of the mutual

information as the leakage and calculate the increase trends by doing differential

equation d L
d✏ =

u
In2 · v�1

(v�1+e✏) it can be found that d L
d✏ � 0, when ✏> 0. From the above

equation, the leakage increases with the increase of ✏. Thus, the more accuracy of

the reported answer, the more leakage the system would be.

The payoff function is that, the more the leakage the database gives, the more

payoff it will gets. The cost is intuitively the privacy budget it offers. The weighting

factor wf is carefully selected to rescale the payoff and cost into a range [0, 1], then

the privacy budget from other database drives itself to contribute more accuracy.

The compensation function ⌧` is as:

⌧` = wf (✏`,✏�`) · u · log2
v · e✏

v � 1+ e✏
� e✏ (4.1)

where wf is weighting factor, wf =
P
�` ✏`n

c
`P

✏`nc
`
· max(ulog2 v·e✏

v�1+e✏ )/max(e✏). The

compensation function (4.1) is a concave continuous function, which implies the

Equilibrium in Definition 2 is unique.

4.4 Utility-Compensation Game

In a randomisation mechanism, the real answer y 2 Y is mapped into a reported

answer z 2 Z according to the given probability distribution pZ |Y . Sometimes, the

user doesn’t take z as the guess for the real answer. Bayesian post-processing is

used to maximise the probability of a right guess. Thus, for a reported answer z, a

remapping function ⇢(z) : Z ! Y gives a guess of y 0 2 Y . For each pair (y, y 0)

there is an associated value regarded as gain function g(y, y 0) represents the utility.

The distance d between two elements y, y 0 2 Y has a maximum distance of

n. The upper bound in such conditions is as U(Y ,Z )  (e✏)n(1�e✏)
(e✏)n(1�e✏)+c(1�(e✏)n) . The
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Figure 4.3: Equilibrium analysis and game convergence in multiple players game with
Utility-Leakage tradeoff function (a)Utility function plot with unique Equilibrium point;
(b)Privacy budget Convergence of multiple users; (c)Privacy budget Convergence of multiple
users with different initial values.

bound provided by the above theorem is strict in the sense that for every ✏ and Y
there exist an adjacency relation ⇠ for which we can construct a randomization

mechanism H that provides ✏-differential privacy and whose utility achieves the

bound of Theorem 3. This randomization mechanism is therefore optimal, in the

sense that it provides the maximum possible utility for the given ✏. Intuitively,

the condition on ⇠ is that |Borderd(y)|must be exactly c or 0 for every d > 0.

Intuitively, by picking the worst case with largest utility value for the upper bound,

the payoff function ⌧ could be as following:

⌧` = wf (✏`,✏�`) ·
(e✏)n(1� e✏)

(e✏)n(1� e✏) + c(1� (e✏)n) � e✏, (4.2)

where wf is weight factor wf =
P
�` ✏�`n

c
�`P

✏`nc
`
· max( (e✏)n(1�e✏)

(e✏)n(1�e✏)+c(1�(e✏)n) )
max(e✏) .

The simulation results are shown in Figure 4.2 and Figure 4.3. The Equilibrium

point as defined in Definition 2 is unique. With different initial value of strategy ✏,

players with the same size of dataset converge at the end of the game. If the size for

datasets are different, the convergence value for each player is accordingly differs

to balance the payoff value at each other’s best response, which guarantee in the

case of Proposition 1.



Chapter 5

Conclusions and Future Research

We considered privacy-aware optimization-based ML on distributed private datasets.

We assumed that the data owners provide DP responses to gradient queries. The

theoretical analysis of the proposed DP gradient descent algorithms provided a

way for predicting the quality of ML models based on the privacy budgets and the

size of the datasets. We proved that the difference between the training model

with and without considering privacy constrains of the data owners is bounded by

(
P
`2N n`)�2
P
`2N ✏

�2
` in our proposed algorithms under smoothness and strong-

convexity assumptions for the fitness cost. The empirical results with real-world

financial datasets split between multiple institutes/banks while using regression and

support vector machine models demonstrated that the relative fitness in fact follows

✏�2
i and n�2

i for the proposed algorithm. This shows the tightness of the upper

bounds on the difference between the trained ML models with and without privacy

constraints from the theoretical analysis, which can be utilized for quantification of

the privacy-utility trade-off in privacy-preserving ML. These results can be used or

extended in multiple directions for future research:

• We can extend the framework to multiple learners aiming to train separate

privacy-aware ML models with similar structures based on their own datasets

and DP responses from other learners and private data owners. This is closer

in nature to the distributed or federated ML framework over an arbitrary con-

nected communication network. Note that, in this thesis, the communication
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structure among the learner and the data owners is over a star graph with the

learner at the center.

• The results of this thesis can be used to understand the behaviour of data

owners and learners in a data market for ML training. The utility-privacy

trade-off in this thesis, in terms of the quality of the trained ML models, can

be used in conjunction with the cost of sharing private data of costumers

with the learner (in terms of loss of reputation, legal costs, implementation of

privacy-preserving mechanisms, and communication infrastructure) to setup

a game-theoretic framework for modeling interactions across a data market.

The learner can compensate the data owners for access to their private data, by

essentially paying them for choosing larger privacy budgets. After negotiations

between the data owners and the learners for setting the privacy budgets, the

algorithm of this thesis can be used to the n train ML models, while knowing

in advance the expected quality of the trained model.

• Synchronous updates of the algorithm is indeed a bottleneck of the proposed

algorithm. Future work can focus on extending the results of this paper to

asynchronous gradient updates where, at each iteration, only a subset of the

data owners update the ML model. To be able to ensure the convergence

of the asynchronous algorithm, we need to ensure that all the data owners

update the model as frequently as required.

• Another direction for future research is to extend the framework of this paper

to adversarial learning scenarios that can admit more general adversaries

(than the case of curious-but-honest adversaries in this paper).
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APPENDIX

A.1 Proof of Theorem 1

First, note that kQ`(D`; k)�Q`(D0`; k))k1 = (1/n`)k
P
{x ,y}2D` ⇠ ḡ x ,y

2
(✓ [k])�
P
{x ,y}2D0

`
⇠ ḡ x ,y

2
(✓ [k])k1 =

(1/n`)k⇠ ḡ x ,y
2
(✓ [k])|{x ,y}2D`✓D0`�⇠ ḡ x ,y

2
(✓ [k])|{x ,y}2D0

`
✓D`k1. This implies that kQ`(D`; k)�

Q`(D0`; k))k1  (2/n`)max{x ,y}2D0
`
✓D`[D`✓D0` k⇠ ḡ x ,y

2
(✓ [k])k1  2⌅/n`. The rest follows

from p((Q`(D`; k))Tk=1)/p((Q`(D0`; k))Tk=1) =
QT

k=1 exp(kQ`(D0`; k)k1/b�kQ`(D`; k)k1/b)
QT

k=1 exp(2⌅/bn`) = exp(2⌅T/bn`), where, by some abuse of notation, p(·) de-

notes the probability density of the variable in its argument.

A.2 Proof of Theorem 2

First, note that

E{kw[k]k22}=E
ß����
Å

1P
`2N nj

ãX

j2N
n`w`[k]
����

2

2

™

=
Å

1P
`2N nj

ã2X

`2N
n2
`E{kw`[k]k22}

=
Å

1P
`2N nj

ã2X

`2N

8⌅2T 2

✏2
`

=
8⌅2T 2

n2

X

`2N

1
✏2
`

.
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Because r f is �-Lipschitz, f (z1) f (z2)+r f (z2)>(z1� z2)+0.5�kz2� z1k22 for all

z1, z2 [44] and therefore

E{ f (✓[k+ 1])}E{ f (✓[k])}

+E{r f (✓[k])>(✓[k+ 1]� ✓[k])}

+
�

2
E{k✓[k+ 1]� ✓[k]k22}

E{ f (✓[k])}

+⇢k

Å
�⇢k

2
� 1
ã
E{kr f (✓[k])k22}

+⇢2
k
8⌅2T 2

n2

X

`2N

1
✏2
`

.

For all ⇢k  1/�, we have

E{ f (✓[k+ 1])}E{ f (✓[k])}� ⇢k

2
E{kr f (✓[k])k22}

+⇢2
k
8⌅2T 2

n2

X

`2N

1
✏2
`

. (A.1)

For " > 0, we may define

k0 := inf
k

ß
k
����E{kr f (✓[k])k22}

16⌅2T 2⇢k

n2

X

`2N

1
✏2
`

+ "
™

.

If T is large enough, we can easily show that there exists k0 <1. This can be

proved by contrapositive. Assume that this not the case. Therefore,

lim
k!0
E{ f (✓[k])}=E{ f (✓[1])}

+
kX

t=2

(E{ f (✓[t])}�E{ f (✓[t � 1])})

E{ f (✓[1])}�
kX

t=2

"⇢k

=�1.
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This is however not possible. Since f is L-strongly convex, Polyak-Lojasiewicz

inequality [44] implies that

E{ f (✓[k0])}� f (✓ ⇤) 1
2L
E{kr f (✓[k])k22}

8⌅2T 2⇢k

Ln2

X

`2N

1
✏2
`

+
"

2L
.

Now, because k0  T , we get

min
1kT
E{ f (✓[k])}� f (✓ ⇤)E{ f (✓[k0])}� f (✓ ⇤)

8⌅2T 2⇢k

Ln2

X

`2N

1
✏2
`

+
"

2L
.

Again, because f is L-strongly convex, we can see that

f (✓ ⇤) f (t✓ + (1� t)✓ ⇤)

 t f (✓ ) + (1� t) f (✓ ⇤)� L
2

t(t � 1)
��✓ � ✓ ⇤
��2

2,

for all t 2 (0, 1). Setting t = 1/2 results in

��✓ � ✓ ⇤
��2

2  4( f (✓ )� f (✓ ⇤))/L. (A.2)

Hence,

min
1kT
k✓[k]� ✓ ⇤k22 

4
L

Å
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This concludes the proof.

A.3 Proof of Theorem 3

Under all these assumptions, the inequality in (3.9) follows from the result of [50]

using the optimal selection of c in [24]. The only difference with the proofs in [50]
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is to appreciate that

⇣k � ⇣k�1 
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If f is L-strongly convex, the proof of the inequality in (3.10) follows from (A.2).

A.4 Proof of Proposition 1

The proof is a direct consequence of the extreme value theorem [38, p. 30] and the

fact that each player’s cost function becomes only the function of its own decision

variable.
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