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Abstract

We present a theoretical study of superradiance with nitrogen-vacancy centres in nanodia-

monds. Superradiance is a radiation phenomenon where identical proximal atoms emit pho-

tons collectively. A nitrogen-vacancy centre is an “artificial atom” in which indistinguisha-

bility cannot be assumed a priori. Nevertheless, superradiance from nitrogen-vacancy centres

in nanodiamond has been observed very recently. While a phenomenological model built on

Dicke states and the known properties of nitrogen-vacancy centres was able to explain the

experimental findings well, many of the microscopic details that introduce distinguishability

were not included: (i) photon emission into orientation-dependent superpositions of polar-

izations, (ii) transition and permanent dipole-dipole interactions, (iii) random distributions

of transition frequencies and spatial locations, and (iv) nitrogen-vacancy centres couple to

lattice vibrations. These effects are generally expected to diminish superradiance. In this

thesis, we develop numerical simulations based on a model which takes these features into

account. Our program can, in principle, perform simulations on the emission dynamics of

up to 13 centres. Based on the results presented, we conclude that superradiance persists

for certain nitrogen-vacancy centre densities, consistent with the experimental findings. Fur-

thermore, our simulation tools provide a theoretical framework to study coherently driven

dynamics, other temperature regimes, or use of other colour centres.
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A kiss on the hand may be quite continental,

but diamonds are a girl’s best friend.

Marilyn Monroe

1
Introduction

Humans have long been fascinated with diamond, initially due to its natural beauty but

increasingly because of its technological relevance. Diamond has outstanding mechanical,

thermal, electric and optical properties [1]. In more recent years, its usefulness in quantum

engineering has emerged. Imperfections in the diamond structure can give rise to the for-

mation of “artificial atoms”, such as the nitrogen-vacancy (NV) centre, which occurs when

two adjacent carbon atoms are replaced with a nitrogen atom and a vacancy. Many of

the properties of the NV centre have been well studied due to its striking potential for a

multitude of applications [2], ranging from quantum information [3] and metrology [4] to

biology [5]. However, a well-known quantum optics phenomenon has remained elusive until

very recently — cooperative behaviour among many NV centres in a single diamond result-

ing in superradiant behaviour [6]. Superradiance has been observed in a number of other

systems but never in diamond; this is the first report of superradiance in a true nanoscale

system equivalent to the one originally envisioned by Dicke [7]. Even more surprisingly, it

was observed at room temperature. Given that superradiance relies on the formation of

1



2 Introduction

highly entangled Dicke states, this observation is both surprising and striking. As the NV

centre is far from being an ideal atom, a theoretical study taking proper account of many

of the details of the system is justified and timely, especially in light of the many NV-based

quantum technologies that have been proposed.

1.1 Superradiance

In 1954 Dicke considered n closely packed identical emitters coupled to the radiation field.

When excited, the emitters radiate photons. In this configuration, it cannot be determined

which photon came from which emitter. This gives rise to a characteristic burst of photon

emission, with a peak emission rate proportional to n2. This collective behaviour is termed

superradiance. The emission is very different to the behaviour of n independent emitters,

which decay exponentially and with emission rate intensity proportional to n. Superradiance

requires that emitters are both spectrally and spatially indistinguishable. Given this spec-

tral requirement, it is not surprising that the first observations of superradiance were from

atomic gases [8]. Dicke’s seminal proposal required emitters to be within a volume much

smaller than the cube of the emission wavelength, which at the time was difficult to achieve

experimentally. Instead, initial observations of superradiance relied on a pencil-shaped sam-

ple of gas molecules confined to distances much smaller than the emission wavelength in two

dimensions, which resulted in superradiant bursts at the ends of the pencil [9].

The first experimental observation of strong superradiance was by Skribanowitz et al. in

1973 from room-temperature hydrogen-flouride gas at millitorr pressures [8]. Superradiance

has since been observed in a variety of systems including from two trapped ions in 1996 [10],

from quantum dots in 2007 [11] and from two superconducting qubits in 2014 [12]. The first

experimental observation of superradiance from atom-type emitters confined to a volume

much smaller than the cube of the emission wavelength, as originally envisioned by Dicke,

was reported recently for NV centres in nanodiamonds [6].

An ensemble of n quantum emitters exhibiting superradiance was originally of interest

as it is an exactly solvable quantum system which exhibits a phase transition between su-

perradiant and normal behaviour [13–15]. In recent years, a superradiant laser source with
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unprecedented narrow linewidth was realised [16] and cooperative emission has been used

to achieve laser cooling below the recoil limit [17, 18]. Superradiance has been proposed

to enhance long-distance quantum communication [19, 20], for realising quantum memories

[21] and for single-photon generation [22, 23]. Outside the pure quantum-optics domain,

superradiance has been predicted to occur in the vicinity of black holes [24, 25], and in

light-harvesting complexes [26].

In solid-state systems, finite size effects can be eliminated by placing atoms (or artificial

atoms) in structures such as cavities and waveguides, where preferential coupling to one spa-

tial light mode is guaranteed by means of mode engineering [27–34]. Studying superradiance

in solid-state systems is challenging due to the inhomogeneous broadenings and large de-

phasing rates involved. It should also be noted at this point that superradiance is regularly

discussed in the context of excitonic semiconductor systems. Here we are concerned with

“atomic” superradiance where the emitters are well separated and interact through the light

field. In excitonic systems this is usually not true which makes them non-trivial [35].

As Dicke outlined in his seminal paper, while constructive interference effects can lead to

superradiance, destructive interference can lead to the related phenomenon of subradiance

[7]. Subradiance is characterized by decreased photon emission rates, resulting from partial

trapping of light in a system [36, 37]. Subradiance has recently been observed experimentally

in a large cloud of cold atoms [38, 39]. Subradiance has also been studied in the context of

cavities [40] and waveguides [41].

The study of superradiance is also of interest as by time-reversal symmetry, superradi-

ance must be accompanied by superabsorption, which is characterised by enhanced absorp-

tion rates. In most set-ups, superradiance is dominant, however it has been proposed that

through suitable engineering, structures can be created with strong superabsorption [42].

This could result in novel photon detection and light-based power transmission technolo-

gies. Superabsorption follows the same theoretical framework as superradiance and hence

the obvious questions to raise is whether NV centres in diamond could act as superabsorbers.

However, such investigations are outside the scope of this thesis.
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1.2 The nitrogen-vacancy centre

Starting from the time that nitrogen was first identified as a diamond impurity in 1959 by

Kaiser and Bond [43], the NV centre has been at the focus of an intense and ongoing research

effort. The NV centre is an extrinsic defect in the tetrahedral carbon lattice of diamond, in

which a nitrogen atom is substituted by a carbon atom, and an adjacent carbon site is left

vacant (Fig 3.1A). This atomic configuration yields a neutral NV0 state and by accumulating

an additional electron the more stable, negatively charged NV− state is formed. From here

on, the abbreviation ‘NV’ will refer specifically to the NV− state. NV centres occur naturally

in diamond, but they can also be artificially created by various methods [44–46]. Through

artificial creation, diamonds can be engineered to meet a desired spatial location of NV

centres [47, 48], or aligned to a preferred orientation [49–52].

The favourable optical and spin properties of NV centres make them a promising technol-

ogy for a range of applications. Optically, they are interesting for quantum communication

as single NV centres can act as a photostable single photon source because each NV centre

has a finite re-excitation time between emitting photons [53]. The ground electronic state

of the NV centre consists of a spin triplet with spin projection subspace ms = 0 split from

the degenerate ms = +1,−1 subspace by zero field splitting ∼ 2.88 GHz [54]. A qubit can

be stored in the ms = 0,±1 states and coherently manipulated by microwave fields. NV

centres are considered viable qubits since even at room temperature they exhibit relatively

long coherence times of T1 = 6.0 ms and T2 = 3.3 ms [55, 56], during which they can

be optically initialized, controlled and read out, as required by the DiVincenzo criteria for

quantum computing [57]. Simple logic gates have been demonstrated at room-temperature

[3, 58]. In terms of quantum metrology, NV centre spins can act as promising precision

sensors as their energy levels are sensitive to in the presence of external fields, which can

be detected using a combination of microwave and optical fields. In particular, NV centres

have a range of applications in magnetometry [4, 58–60], electrometry [61] and thermometry

[62]. Additionally, NV centres in nanodiamond are of interest for biological applications as

they are bio-compatible [63]. They have the potential to be used as precision sensors in vivo

[64, 65], and they can be used for biolabelling [5] and drug delivery [66].
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Historically, NV centres have received the most attention. However, they are not the

only diamond-defect of interest to the scientific community — silicon-vacancy (SiV) centres

[67, 68] and germanium-vacancy (GeV) [69] centres potentially exhibit similar spin-optical

properties. In particular, SiV centres have better optical properties than NV centres as they

have less variance in the centre frequency and might therefore exhibit stronger superradiance.

In addition, SiV and GeV centres have no permanent electric dipole moment (to first order)

as they have an inversion symmetry. Thus, unlike the NV centre, they will be unaffected by

the dipole-dipole interaction of permanent dipoles which hinder NV centre superradiance.

Here we focus our attention on NV centres as this is the best-known defect system, and as

reported by our group, the system in which superradiance was recently seen. However, given

the structural similarities between the defect centres, the model developed here can readily

be adjusted to describe SiV or GeV centres, and to predict the occurrence and strength of

superradiance in these systems.

1.3 Superradiance from nitrogen-vacancy centres

Our research group recently reported the observation of superradiance from nanodiamonds

with high densities of NV centres [6]. This study was inspired by an earlier independent

experiment, also conducted by our group, where nanodiamonds with high densities of NV

centres exhibited enhanced optical trapping [70]. In the superradiance study, fluorescence

decay following pulsed laser excitation from 100 different nanodiamonds with high densities

of NV centres was studied. Due to inhomogeneities in the nanodiamonds, not all NV centres

act cooperatively. Collections of spectrally similar NV centres act cooperatively within small

domains. Within these domains, NV centres were modelled following Dicke physics, with an

additional phenomenological dephasing mechanism. This model will be referred to as the

Bradac-Johnsson (BJ) model. Through comparison of fluorescence decay from this model

with that in the experiment, an estimate was constructed of the maximal domain size in each

nanodiamond. Many of the nanodiamonds exhibited behaviour that required domain sizes

larger than one (indicating cooperative behaviour) to fit the experimental results [6]. Figure

1.1 shows the normalised fluorescence decay curves for 4 of the nanodiamonds studied.



6 Introduction

Figure 1.1: Measured rate of fluorescence decay over time for 5 nanodiamonds after they were
excited by a 10ps laser pulse, normalised to the maximum of each curve. The faster decay rates
corresponds to superradiant behaviour. [6]

Shortly after our paper was posted to the arXiv, a related study from the Lukin group

at Harvard appeared in which they observed superradiance from two SiV centres which were

optically coupled in a waveguide at low temperatures [71].

To date, the possible effects of superradiance on the aforementioned applications of

NV centres has not been considered because most investigations have assumed low den-

sity regimes. However, in high-density samples, superradiance could play a striking role in

enhancing the viability of some of these applications due to the coherence and higher peak

intensity of the photons emitted.

1.4 In this thesis

In this thesis, we conduct a detailed theoretical study of superradiance from NV centres in

nanodiamond. This is done as an extension to the BJ model, and also to study superradiance

in the context of NV centres generally.

This has been achieved through the creation of a new model, which is numerically sim-

ulated in MATLAB. This new model is different from the BJ model in that the full density

matrix is simulated, as opposed to just tracking the populations in the Dicke ladder. This
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allows us to explicitly include the dipole-dipole terms and properly model dephasing. In

addition, in this model we account for orientation effects and spatial inhomogeneities, and

we extend the spectral inhomogeneity effects.

To set the scene and introduce the reader to the theoretical model, Chapter 2 gives a

brief technical introduction to Dicke superradiance. In Chapter 3, we examine NV centres

in nanodiamond to inform our model. We first explore a single NV centre, examining how

its physical structure gives rise to a complex vibronic structure and the subsequent emission

spectrum. We also consider how the orientation of an NV centre determines the superpo-

sition of the polarizations it can emit into. Secondly, we discuss ensembles of NV centres

whereby dipole-dipole interactions and dephasing emerge. NV centres have both transition

and permanent dipole moments which must both be considered. Finally, we consider NV

centres with some degree of distinguishability, both spectrally and spatially. In Chapter 4,

we describe both the BJ model and our new model. As I was most involved with creating

the new model, this is the area in which most emphasis has been placed. In Chapter 5, we

discuss the results of our work. We are able to confirm the accuracy of some aspects of the

phenomenological BJ model, and we discuss the impact of effects not previously considered.

In Chapter 6, we outline our key conclusions, and present possible directions for future work.

Appendix A contains a discussion of the master equation that governs our simulation.



The most practical solution is a good theory.

Albert Einstein

2
Superradiance

Dicke superradiance is the cooperative emission of photons from identical proximal emitters.

A detailed theoretical description of superradiance is found in Gross and Haroche’s 1982

essay on the subject [9].

2.1 Superradiance for two spins

Consider two spin-1/2 systems. Each of these systems starts in its excited state |e〉, and it

can spontaneously decay to its ground state |g〉. We can describe the total Hilbert space

as the tensor product of the two individual Hilbert spaces, so that the possible states of

the collection are |ee〉, |eg〉, |ge〉 and |gg〉. Superradiance is most clearly described by the

coupled-spin basis. This basis is spanned by the symmetric states |ee〉, (|eg〉+ |ge〉)/
√

2, and

|gg〉, which have angular momentum J = 1, and the antisymmetric state (|eg〉 − |ge〉)/
√

2

which has angular momentum J = 0. In this basis, the states can thus be labelled |J,M〉,

where M ∈ {J, ...− J} is the spin projection. In this |J,M〉 basis we thus have |1, 1〉 = |ee〉,

|1, 0〉 = (|eg〉+ |ge〉)/
√

2, |1,−1〉 = |gg〉 and |0, 0〉 = (|eg〉 − |ge〉)/
√

2.

8



2.2 Superradiance for n spins 9

In the case of independent emitters, both two-level systems will independently undergo

exponential decay. However, if they act collectively, they instead act as a spin J = 1 system.

They start in the |1, 1〉 state, before decaying through the |1, 0〉 state to the |1,−1〉 state.

Even with two spins, the emission from the collectively acting ensemble is different to that

for independent emitters, as in Figure 2.1.

Figure 2.1: Left: the Dicke ladder for a two spin system. Right: Rate of photon emission from
two spins, starting in the fully excited state.

2.2 Superradiance for n spins

For a larger number of systems, the result is analogous — n spin 1/2 systems behave as a

spin J = n/2 system — termed the Dicke ladder. The Clebsch-Gordan coefficients can be

used to express the Dicke states in terms of the product basis as

|J,M〉 =

√
(M + J)!(J −M)!

(2J)!

∑
π

|g . . . g︸ ︷︷ ︸
J−M

e . . . e︸ ︷︷ ︸
J+M

〉 (2.1)

The normalisation factor is found from the combinatorial problem ‘from n = 2J spin-1/2

systems, choose (J + M) to be excited ’ and π denotes the sum over all permutations with

J +M excited atoms.

The raising and lowering operators for the ith two-level system are ŝ+
i = |e〉 〈g|i and ŝ−i =
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|g〉 〈e|i, respectively. To describe collective behaviour, the collective raising and lowering

operators are Ŝ± =
∑n

i=1 ŝ
±
i . The rate of collective decay from Dicke state |J,M〉 is

Γ 〈J,M | Ŝ+Ŝ− |J,M〉 = Γ(J +M)(J −M + 1). (2.2)

At the top and bottom of the ladder, i.e. for the |J, J〉 → |J, J − 1〉 and |J,−J + 1〉 →

|J,−J〉 transitions, the rate of collective decay is Γ2J = Γn, while halfway down the ladder,

for the |J, 1〉 → |J, 0〉 and |J, 0〉 → |J,−1〉 transitions, the rate of collective decay is ΓJ(J +

1) ≈ Γn2/4. This explains the shape of the photon emission from a collectively acting sample

— as the collection of systems cascades down the Dicke ladder, the florescence increases,

peaks with an intensity that scales with n2 at halfway down the ladder, then decreases, as

in Fig. 2.2. This behaviour can be described with the superradiance master equation [6]

dρ̂

dt
= −Γ

2
D[ρ̂] = −Γ

2

(
Ŝ+Ŝ−ρ̂+ ρ̂Ŝ+Ŝ− − 2Ŝ−ρ̂Ŝ+

)
. (2.3)

Figure 2.2: Left: Dicke ladder, where the blue lines indicate optical transitions. The thickness
of the line corresponds to the intensity of the transition. Right: Dicke superradiance as compared
to independent decay.



Truth . . . is much too complicated to allow

anything but approximations.

John von Neumann

3
Nitrogen-vacancy centres in diamond

In order to model superradiance from NV centres, we must first explore the physics of the

NV centre itself. In Section 3.1, we explore how the physical structure of a single NV centre

gives rise to its energy level structure. In Section 3.2 we consider multiple orientations as

an additional consequence of this physical structure. In Section 3.3 we discuss ensembles of

NV centres, and introduce dipole-dipole interactions and dephasing. In Section 3.4 we relax

the restraint of identical emitters — both spectrally and spatially. Taking into account all

of these effects we will then be ready to move on to the next chapter and craft our model of

NV centre superradiance.

3.1 Energy level structure of an NV centre

As NV centres are fixed within the lattice, they do not possess any translational or rotational

degrees of freedom. The NV complex can vibrate however, both in a molecular vibration

but also as a whole coupling to lattice phonons. In addition, there is an orbital degree of

freedom, as the electrons can take different configurations, resulting in a rich vibrational and

electronic (vibronic) energy structure.

11



12 Nitrogen-vacancy centres in diamond

Figure 3.1: A) Diamond structure with a single NV centre where purple, green and white rep-
resent carbon atoms, nitrogen atoms, and vacancies, respectively. B) Typical fluorescence spectrum
of an NV centre in a nanodiamond at room temperature. The yellow region indicates the location
of the ZPL and the orange region indicates the vibrational sideband. [6]

In an NV centre the nitrogen atom is bonded to three carbon atoms and has a dangling

bond in the direction of the vacancy (Fig. 3.1A). This structure gives the NV centre three-

fold rotational symmetry and three planes of vertical symmetry, described by the group

C3v. Allowable operations in the C3v symmetry group are the identity, rotations by 2π/3

and 4π/3, and reflection through any of the three symmetry planes, denoted as E, C3, C2
3 ,

σ1, σ2, and σ3, respectively. Representations are sets of matrices which follow the same

product rules as elements in the group. The C3v group has three irreducible representations

(irreps), which are named according to their dimensionality. The one dimensional irreps are

called A1 and A2, and the two dimensional irrep is called E. As the operations preserve

the symmetry of the centre, they must commute with the molecular Hamiltonian. Each

irreducible representation corresponds to a single electron orbital, which is labelled with the

equivalent lowercase letter. The dimension of the representation gives the degeneracy of the

orbital, so an NV centre must have two a orbitals, denoted a′1 and a1, and two degenerate

e orbitals as in Figure 3.2A [72, 73]. The NV centre has six electrons to place in these

orbitals, which can hold two electrons each. The lowest energy configuration is a′21 a
2
1e

2,

which corresponds to the triplet state 3A2 and the singlet states 1E and 1A1. The next

lowest energy configuration is a′21 a1e
3 which corresponds to the triplet state 3E as in Figure

3.2B [2, 74–77]. The triplet states have spin projection 0 (ms = 0) and spin projection 1

(ms = ±1) fine structure levels. From the Clebsh-Gordon coefficients of the C3v group it
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Figure 3.2: A) Single electron orbitals of NV. Distribution of electron density is represented
by coloured lobes, with colour indicating phase. Based on figure from [76]. B) and C) represent
the electron (red) hole (blue) structure of a′21 a

2
1e

2 and a′21 a
1
1e

3 respectively.

can be deduced that only spin-projection conserving transitions are optically allowed in NV

centres [2, 74–76].

This group-theoretic description of a six-electron model has been confirmed by experi-

mental studies. These studies confirm the level ordering and determine the optical and mi-

crowave transition frequencies between the levels. The ms = ±1 excited-state fine-structure

levels collapse to a single level at room temperature. At low temperature, phonon transition

rates between these levels are slow compared to the decay rates, giving distinct energy levels.

At room temperature, the phonon transition rates dominate over the decay rates, such that

the 3-levels mix equally, as indicated in Figure 3.3 [78].

Figure 3.3: Diagram of the energy level structure of 14NV at A) low and B) room temperatures.
The triplet levels are shown on the left, and the singlet levels on the right. Optical transitions are
indicated with solid red arrows, and non-radiative transitions are indicated with dashed blue arrows.
As there are no optical transitions between the triplet levels and the singlet levels, the singlet levels
are termed ‘dark’ states, or the intersystem crossing (ISC) levels. Based on figures in [74], [75], [2]
and [76]. Where there are discrepancies, Doherty’s review paper has been upheld [2].

There is a fluorescent 3E → 3A2 transition which occurs at 637 nm for NV centres in

bulk diamond [79], but may vary considerably in nanodiamonds due to strain and boundary

conditions. This purely optical transition is called the zero phonon line (ZPL). However,

the NV complex can vibrate giving rise to additional transitions involving phonon emission.
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Transitions from a vibrational ground state of the excited electronic manifold can go to

many possible vibrational levels within the ground electronic manifold. The probability of a

transition ending up in any particular vibrational level is determined by the Frank-Condon

overlap between the initial and final states. For NV centres at room temperature only

around 3-5% of the photons are emitted into the ZPL (Figure 3.1B). For superradiance to

occur, it must be impossible for the system to determine which photon has come from which

emitter. If the emission of a photon is accompanied by the emission of a local phonon, that

would suggest that it the origin of a photon could, in principle, be distinguished. However,

these local phonons disperse into global phonons within picoseconds [80], erasing information

about which NV centre emitted the phonon. Due to this erasure, we discard the vibrational

substructure.

Dicke’s model of superradiance is based on identical 2-level systems which, due to sym-

metry, can be treated in the collective angular momentum space. The BJ model was based

very closely on the Dicke model, so the 6 NV levels were treated as a 2-level system, with

an additional spin label. As the system is excited once and then allowed to decay, it does

not matter which spin ground state the NV centre ends up in, so it can be treated as main-

taining its spin. The dark states were included separately as a possible path of decay. In

this way, each NV centre is either a spin projection-0 or a spin projection-1 2-level system.

Thus for each spin polarization, cooperatively acting NV centres form a Dicke ladder with

an additional decay channel representing ‘dark’ decay.

Figure 3.4: Electronic energy level diagrams for A) a real NV centre at room temperature B) a
2-level approximation of an NV C) a 3-level approximation of an NV and D) a 5-level approximation
of an NV. Solid red lines denote optical transitions, and dashed blue lines indicate non-radiative
transitions.
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In our new model we wish to consider symmetry-breaking effects such as the dipole-

dipole interactions. We thus cannot use the angular momentum space;we use instead the

full tensor-product space. Thus we can describe each NV centre with as many levels as we

choose. However the Hilbert space of n NV centres, modelled with m energy levels each, has

dimension mn, so the complexity of the computation scales rapidly. Thus, we choose three

ways of approximating each NV centre — with 2, 3 and 5 levels, as shown in Figure 3.4. The

2-level approximation neglects the non-radiative ISC transitions, though it still captures the

essential physics of superradiance. Without the singlet states, the ms = 0 and ms = ±1

populations are identical, so the approximation can be thought of as describing either one

of the spin populations, or some arbitrary mixture of them. The 3-level approximation

incorporates the effects of the intersystem crossing [81]. This third level, I, represents

both the 1A1 and 1E singlet levels, as the systems decay quickly from 1A1 to 1E. The

photons emitted are at 1042 nm [81], so they can be filtered out. The 3-level structure

represents either an ms = 0 or an ms = ±1 population, as these have different rates of

non-radiative decay. An NV centre which decays via I can change its spin, as requirement

of spin conservation is only a property of optical transitions [82]. However, in the case of

superradiance modelling, once an NV centre is in either of the ground levels, it is trapped so

we do not need to treat the ground energy levels as distinct. When the system is continuously

excited, as is the case for superabsorption, the spin of the ground states does matter. To track

this, the 5-level approximation was used, which incorporates both spin populations. The

decay rates used were, as given in Ref. [6], 3E →3 A2 with 2π× 12.3 MHz, 3E(ms = 1)→ I

with 2π × 9.4 MHz and 3E(ms = 0) → I with 2π × 1.8 MHz. The rates for non-optical

decay out of the singlet states are more controversial — it is often thought that decay into

the ms = ±1 state is negligible compared to decay into the ms = 0 state [83], however more

recent work has shown the two rates to be similar [84], with the decay into the ms = 0

state being about 1.2 times the decay into the ms = ±1 state. We use this ratio, combined

with the lifetime of the singlet states rates (371 ± 6) ns [84], to determine the rates from

the singlet states to the ms = 0 and ms = ±1 ground states to be 2π × 0.234 MHz and

2π × 0.195 MHz, respectively.
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3.2 Orientation of centres

The diamond lattice consists of two interpenetrating face-centred cubic (fcc) Bravais lattices,

displaced along the body diagonal of the cubic cell by one quarter the length of the diagonal.

It can be regarded as a face-centred cubic lattice with the two point primitive basis 0 and

(a/4)(x+y+z), a (0.356 nm, at 293 K) being the length of the conventional cubic cell. Every

carbon atom is bonded to four carbon atoms, forming a tetrahedral structure (Fig. 3.5C)

[1]. This restricts each NV centre to one of four possible orientations. As an NV centre is

not invariant under a permutation of the nitrogen and the vacancy, the NV centre can point

in one of two directions for each orientation, to give eight possible alignments. The four

orientations are important when considering the polarization of light emitted, and the eight

orientations are significant to the dipole-dipole interaction, as permutation of the nitrogen

and the vacancy changes the direction of the permanent electric dipole.

Figure 3.5: A) Construction of a tetrahedron (red) by connecting four non-adjacent vertices of a
cube (blue) reveals the angle between orientations to be 2 tan−1

√
2 ≈ 109.5o. B) Four orientations

that an NV could take, indicating the Euler angles. C) The tetrahedral structure of diamond.

Without loss of generality, we fix one of the orientations along the z axis, chosen as our

axis of quantization. In the spherical basis, with respect to the quantization axis, dipole

transitions can decay into linearly polarized π photons with spin projection 0, and circularly

polarized σ+ and σ− photons with spin projection ±1. A change of spin via an optical

transition must be accompanied by a photon of opposite spin. As NV centres forbid spin

changing transitions, only π photons are emitted with respect to the NV centre’s orientation.

Photons must be in the same basis to be compared, so we choose the basis of the z axis

orientation. The π photons emitted from other orientations can be converted to this basis

via the Wigner D matrices [85]. For rotation operator R(α, β, γ) the Wigner D matrices are
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Dj
m′,m(α, β, γ) ≡ 〈jm′|R(α, β, γ)|jm〉 . As we are concerned with spin conserving transitions

which have been projected into other states, we have the initial state |j,m〉 = |1, 0〉, which

maps to a superposition of |j,m′〉 = |1,−1〉, |j,m′〉 = |1, 0〉 and |j,m′〉 = |1, 1〉. The rotation

operator describes a rotation by the Euler angles α, β and γ about the z, y and z axes,

respectively. Matrix ordering means that operations are performed from the right, so this is

written R(α, β, γ) = Rz(γ)Ry(β)Rz(α), where the rotation by α is performed first.

Orientation α β γ
0 0 0 0

1 0 2 tan−1
√

2 π/3

2 2π/3 2 tan−1
√

2 π/3

3 4π/3 2 tan−1
√

2 π/3

The application of these coefficients in the Wigner D matrices gives the coefficients for the

transformation of the basis vectors [86]

Orientation 0: ē∗0 → ē∗0

Orientation 1: ē∗0 → −
2

3
ē∗− −

1

3
ē∗0 +

2

3
ē∗+

Orientation 2: ē∗0 →
(

1

3
+

i√
3

)
ē∗− −

1

3
ē∗0 +

(
−1

3
+

i√
3

)
ē∗+

Orientation 3: ē∗0 →
(

1

3
− i√

3

)
ē∗− −

1

3
ē∗0 −

(
1

3
+

i√
3

)
ē∗+

(3.1)

As these polarizations are distinguishable, the NV centres only act collectively for photons

emitted into the same polarization. Thus separate collective operators are required for each

polarization. In the experiments our group conducted, no filtering of polarization was done,

so the photons emitted from each polarization are incoherently summed. P (σ|i) gives the

proportion of the photon emitted from the ith NV centre which is σ polarized. An NV in

orientation 0 emits a photon into the π polarisation (P (π|i) = 1, P (σ±|i) = 0). An NV in

another orientation emits a photon into a superposition of the polarizations, with weightings

P (π|i) = 1/9 and P (σ±|i) = 4/9.

3.3 A collection of NV centres

We have previously discussed the behaviour of a single NV centre. In the case of an ensemble

of NV centres, the dipole-dipole interactions and dephasing must also be considered.
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3.3.1 Dipole-dipole interactions

The part of the Hamiltonian describing the energy of the interaction of the ith dipole with

the external electric field at its position is Ĥint = −d̂(i) · Ê(ri). The configuration of the

molecular orbitals in the 3E energy level of an NV centre gives rise to a permanent electric

dipole d̂
(i)
per = d

(i)
per |e〉 〈e|(i), where the permanent electric dipole vector d

(i)
per = dperε

(i) has

magnitude dper = 3.976×10−30 C m and is aligned with the vertical axis of the NV centre, as

described by the unit vector ε(i) [87, 88]. The 3A2 energy level also has a permanent electric

dipole of magnitude 1.126× 10−34 C m [89], however this will be neglected as it is negligible

in comparison. NV centres can also have an induced dipole moment d̂
(i)
eg which describes the

transition between 3E and 3A2. As the diagonal components of the dipole operator describe

the permanent dipole, the off diagonal elements describe the transition dipole. We thus have

d̂
(i)
eg = d

(i)
eg (|e〉 〈g|+ |g〉 〈e|). As the induced dipole moment also lies on the vertical axis of

the NV centre, we can write d
(i)
eg = degε

(i). The magnitude of deg can be calculated from the

optical decay rate as deg =
√

3πε0~ΓZPL

nDk
3
0

. This is similar to the expression in the Gross and

Haroche review paper [9], with the important distinction that as this is in a solid material,

where k0 is the wavenumber in vacuum, the density of states calculation introduces a factor

of nD, the index of refraction of diamond. ΓZPL = 0.03Γtot is used as the transition dipole

moment and describes the purely optical transition. As the transition dipole moment is a

property of the NV centre, not its environment, the bulk decay rates are used. However, the

precise rate depends on the way that interactions are mediated. If interactions are electrically

mediated, as is the case with dipoles interacting with the surrounding electric field, ΓZPL,vac

is appropriate. In contrast, if the interactions are photon mediated, as for the transitional-

dipole-transitional-dipole interaction, the appropriate rate is ΓZPL,bulk = nDΓZPL,vac [90].

For notational purposes, the electronically mediated transitional dipole magnitude will be

denoted deg, while the optically mediated transitional dipole magnitude will be relegated to

d′eg =
√
nDdeg. Taking Γtot = 2π × 12.3 MHz [83] thus gives deg = 2.980−30 C m. These two

terms give the total dipole operator d̂(i) = d̂
(i)
per + d̂

(i)
eg .

The kth mode of the electric field at point ri will consist of (i) the vacuum field Ê
(k)
vac(ri),

(ii) the (classical) laser field E
(k)
laser(ri, t) (both discussed in Appendix A) and (iii) the electric
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field of surrounding dipoles and charges. This laser field is not present for superradiance,

but we can include it to study coherent dynamics. The electric field from the permanent

dipoles d̂
(j)
per of the surrounding NV centres is

Êper(ri) =
∑
j 6=i

1

4πε0

3(d̂
(j)
per · nij)nij − d̂

(j)
per

|rij|3
(3.2)

where rij ≡ ri − rj and nij ≡ rij/|rij|. As the electric field from surrounding charges is

static, this will cause permanent shifts in the energy levels of the nearby NV centres and

hence in their emission frequencies. This is accounted for by considering spectrally identical

domains. The interaction of the dipoles of the ith NV centre with the surrounding fields is

therefore

Ĥ
(i)
int =− d̂(i)

per · Ê(k)
vac(ri)− d̂(i)

per · E
(k)
laser(ri, t)− d̂(i)

per ·
∑
j 6=i

Ê(j)
per(ri)

− d̂(i)
eg · Ê(k)

vac(ri)− d̂(i)
eg · E

(k)
laser(ri, t)− d̂(i)

eg ·
∑
j 6=i

Ê(j)
per(ri)

(3.3)

The first and second terms describe the interaction of the ith permanent dipole with the

electric vacuum field and electric laser field respectively. As detailed in Appendix A, these

terms disappear under the rotating wave approximation. The third term describes the

interaction of the ith permanent dipole with the electric field created by the rest of the

permanent dipoles.

Ĥ(i)
per-per = −d̂(i)

per ·
∑
j 6=i

Ê(j)
per(ri) =

d2
per

4πε0

∑
j 6=i

ε(i) · ε(j) − 3(ε(i) · nij)(ε(j) · nij)
|rij|3

|e〉 〈e|(i) ⊗ |e〉 〈e|(j)

(3.4)

The fourth term gives the interaction of the transition dipole with the surrounding vacuum

field. In the typical master equation treatment, this gives rise to a term with a real part,

which represent the conversion of excitations in the system to photons in the environment

and is described with a Lindblad decay term, and an imaginary part, which represents a

photon-mediated energy exchange between dipoles [9, 42, 91]. The induced electric field

term is

E(j)
eg (ri) =

1

4πε0n3
D

3(d
(j)
eg · nij)nij − d

(j)
eg

|rij|3
(3.5)

with the additional factor of n3
D arising as this is a photon-mediated process. Recalling that
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the magnitude for the transition dipole moment is d′eg =
√
nDdeg, we get

Ĥ
(i)
dd = −d̂(i)

eg ·
∑
j 6=i

Ê(j)
eg (ri)

=
d2
eg

4πε0n2
d

∑
j 6=i

ε(i) · ε(j) − 3(ε(i) · nij)(ε(j) · nij)
|rij|3

(
ŝ

(i)
+ ⊗ ŝ

(j)
− + ŝ

(j)
+ ⊗ ŝ

(i)
−

) (3.6)

The rotating wave approximation has been made to get rid of non-energy conserving terms,

as discussed in Appendix A. The fifth term describes the interaction of the transition dipole

with the laser, which is detailed in Appendix A. The sixth term describes the interaction of

a transition dipole with the electric field of the permanent dipoles and, similarly to the first

and second terms, vanishes under the rotating wave approximation.

Considering the dipole-dipole interactions in further detail, assuming a separation of r0 =

7 nm (as is typical of our nanodiamonds), we can compute the energy of a pairwise interaction

of parallel dipoles which are perpendicular to the vector separating them. Expressing the

energy as a frequency, E = ~Ω, we get Ωdd =
d2eg

4πε0n2
dr

3
0~

= 2π × 59.9 MHz and Ωper-per =
d2per

4πε0r30~
= 2π× 625 MHz. These strengths are consistent with Ref. [92], with the discrepancy

arising from their use of a different bulk rate. As these terms both scale with r3
0, it is

clear that the permanent dipole term will always be much larger, as Ωper-per : Ωdd = d2
per :

d2
eg/n

2
D ≈ 10 : 1.

3.3.2 Dephasing

Dephasing is a loss of coherence between spins, whereby the system recovers classical be-

haviour from a quantum system. It can be understood in Bloch sphere representation, in

which the Bloch vector represents the collective state of the system. Decoherence corre-

sponds to the accumulation of phases between individual spins, which results in the Bloch

vector shrinking in the xy plane. As can be seen from Fig. 3.6, these phases are introduced

by rotations around the z axis. In a tensor-product basis, dephasing equates to decreases

in the off-diagonal terms in the density matrix. In NV centres in nanodiamonds, this is

caused by different mechanisms based on interactions with the environment: charge traps,

phonons and nearby spins. Dephasing can be either local, in which a local phase shift is

caused by proximal effects, or global, in which all the centres are affected in an identical
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way. For instance, molecular vibrations cause local dephasing, while long range phonons

act globally. In the study of decay, global dephasing does not have any effect because while

coherences between Dicke states decohere, populations in Dicke states do not change. How-

ever, when there is continuous laser driving, as is the case when studying superabsorption

or trapping [93], global dephasing means that the system decoheres from the laser, so it will

cause decoherence.

Since the BJ model looks at populations not coherences, only the diagonal elements of

the density matrix are tracked. Therefore within this model, local dephasing could not be

implemented in the usual way described above. As such, a phenomenological approach to

dephasing was taken, as described in Section 4.1. The basic premise of this model is that

dephasing results in a shrinking of the Block vector in the xy plane, which can be modelled

as decreasing the number of NV centres that contribute to the collective spin.

In the present model, local dephasing is included through rotations in z, made via ŝz

operators. As dephasing is caused by an interaction of the system with the environment, the

master equation treatment means that the dephasing is included through Lindblad terms

with the jump operator ŝz.

Figure 3.6: The individual spins (top) are added to give the Bloch vector for the collective
systems. The left, middle and right images represent the initial state, local dephasing and global
dephasing respectively. Note that in the central figure, the Block vector resulting from four locally
dephasing spins could equally be composed of three spins with no dephasing. This gives rise to the
dephasing treatment in the BJ model.
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3.4 Distinguishability of NV centres

Dicke’s original description of superradiance assumes perfectly indistinguishable emitters so

close together in space that the location of photon emission cannot be determined. This

indistinguishability is at the heart of the collective behaviour of the emitters. The pho-

tons emitted from NV centres in nanodiamond are not perfectly indistinguishable. First,

NV centres are not spectrally identical, and second, they are not arbitrarily close together

compared to the wavelength of radiation. However, there is strong experimental evidence

that collective behaviour can persist for high-density NV nanodiamonds [6]. In this section,

we determine the degree to which indistinguishability breaks down, due to both the spatial

distribution of NV centres, and their spectral heterogeneity.

3.4.1 Spatial distinguishability

Dicke superradiance assumes that the separation between centres is much less than the wave-

length of radiation, meaning that emitted photons cannot be distinguished from one another

by their spatial phase. However, the experiments of our group at Macquarie University deal

with nanodiamonds of size (110±30) nm. NV centres have a ZPL of λ = 639 nm in vacuum,

which translates to λ′ = λ/nD = 264 nm in the diamond material itself, where nD = 2.42 is

the diamond index of refraction. Thus Dicke’s original assumption is not entirely valid for

the ensemble of NV centres within a nanodiamond.

To determine if we need to consider the issue of spatial distinguishability, we first de-

termine the plausibility of NV centres which are well separated in space having the same

spatial phase. If spectral domains are likely to be localised in space, we don’t need to con-

sider the effect of spatial distinguishability as the spectral distinguishability will have already

destroyed the collectivity.

The transition frequency of a centre is determined by its local environment. We can thus

consider the transition frequency of an NV centre as a function of position in the diamond

lattice. The Borsuk-Ulum theorem states that every continuous function from an n-sphere

into Euclidean n-space maps some pair of antipodal points to the same point [94]. Thus, if

we assume a background electric vector field or strain tensor field within the nanodiamond is
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Figure 3.7: A: the total paths (blue) along which the spatial phase for NV centres is determined.
B: Separation of these paths into contributions to a global phase (green) and a local phase (red).

differentiable, then for any spherical surface inside there must exist two antipodal points with

the same field strength. Since it is the strength of these fields that determines the electronic

structure of the NVs, this suggests that locations in the diamond with the same frequency

need not be close together. Thus it is reasonable to consider domains of NV centres with

the same frequency which are not physically co-located in the diamond.

In our new model, we determine a degree of distinguishability due to position. The time

it takes a photon to travel from the NV centre to the detector a distance ~r away results

in a phase exp(i~k′ · ~r), where ~k′ is the wavevector which combines weighted portions of the

wavevectors of the diamond, vacuum and optical elements. In the experimental setup, the

emitted light is transmitted a long distance before being measured by the detector. As this

distance is much greater than the width of the nanodiamond, the light from all NV centres

can be approximated as travelling parallel, so the ~k vectors are all the same. Consider the

plane through the centre of the nanodiamond perpendicular to ~k. The phases can be broken

into a global phase, which is acquired from the path between the plane and the detector,

and a local phase, which depends on the distance vector ~r
(i)
⊥ of the individual NV centre

from the plane (Fig. 3.7). Note that a negative sign indicates centres on the detector side of

the plane. The global phase can be neglected, and the local phase thus only involves travel

through the nanodiamond, so k′ = nDk.

The state of one photon emitted from n excited NV centres into polarization σ and k-

vector ~k is
∑n

i=1 σ̂iâ
†
~k
D

(i)
σ |vac〉 ⊗ |n

2
, n

2
〉, where D1

σ,0(αi, βi, γi) has been abbreviated to D
(i)
σ .

The state of one photon with normals ~r
(i)
⊥ to the plane emitted from n excited NV centres into

polarization σ and k-vector ~k is
∑n

i=1 σ̂
−
i â
†
~k
D

(i)
σ exp(inD~k ·~r(i)

⊥ ) |vac〉⊗|n
2
, n

2
〉 . The probability

of detecting n indistinguishable photons can be calculated as the overlap of the states.
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P (Indist.(σ)) =

∣∣∣∣∣∣∣
〈vac| ⊗ 〈n

2
, n

2
|
[∑n

i=1 σ̂
−
i â
†
~k
D

(i)
σ

]†∑n
i′=1 σ̂

−
i′ â
†
~k
D

(i′)
σ exp(inD~k · ~r(i′)

⊥ ) |vac〉 ⊗ |n
2
, n

2
〉

〈vac| ⊗ 〈n
2
, n

2
|
[∑n

i=1 σ̂
−
i â
†
~k
D

(i)
σ

]†∑n
i′=1 σ̂

−
i′ â
†
~k
D

(i′)
σ |vac〉 ⊗ |n

2
, n

2
〉

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣〈vac| â~kâ
†
~k
|vac〉 ⊗ 〈n

2
, n

2
|
∑n

i=1 σ̂
+
i σ̂
−
i D

∗(i)
σ D

(i)
σ exp(inD~k · ~r(i)

⊥ ) |n
2
, n

2
〉

〈vac| â~kâ
†
~k
|vac〉 ⊗ 〈n

2
, n

2
|
∑n

i=1 σ̂
+
i σ̂
−
i D

∗(i)
σ D

(i)
σ |n2 ,

n
2
〉

∣∣∣∣∣
2

=

∣∣∣∣∣
∑n

i=1D
∗(i)
σ D

(i)
σ exp(inD~k · ~r(i)

⊥ )∑n
i=1D

∗(i)
σ D

(i)
σ

∣∣∣∣∣
2

=
1

(
∑n

i=1D
i∗
σ D

i
σ)2

( n∑
i=1

Di∗
σ D

i
σ cos(nD~k · ~r(i)

⊥ )

)2

+

(
n∑
i=1

Di∗
σ D

i
σ sin(nD~k · ~r(i)

⊥ )

)2


(3.7)

Clearly if the local displacements are equal for each centre, the probability of indistin-

guishable photons is 1. If many centres are randomly distributed within a large region, the

probability of indistinguishable photons becomes very small. Through periodic construction

where nD~k · ~r(i)
⊥ goes to multiples of 2π, we can get collective effects even over large spatial

displacements. However, if these displacements are too large, collectivity will start to break

down due to the retardation time [95–98].

We thus have an expression for the fraction of decay that is indistinguishable at the

detector, assuming all NV centres are excited. This can be used as an estimate of indis-

tinguishability, regardless of the excitation of each NV centre. We use this expression as a

weighting factor for the maximally indistinguishable part of decay. The remaining fraction

is treated as undergoing completely distinguishable decay. This is only an estimate of the

behaviour, as the amount of indistinguishability, given a general state, is quite complicated.

However, it still provides some insight into how much indistinguishability we lose as a result

of the spatial variance of the NV centres. From subsequent simulations of the system, we

conclude that NVs which are spatially separated across the whole diamond can still act co-

operatively, however the penalty imposed is that, for domain sizes of up to 10, only around

60 to 80% of their total photon emission will be collective.

We also consider the limiting behaviour in the case of large n. For large n, Di∗
σ D

i
σ ≈ 1/3

(as for σ = 0, there is a 1/4 chance of it being 1, and a 3/4 chance of it being 1/9, and for
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σ = ±1, there is a 3/4 chance of being 4/9). Thus for large n, the above expression becomes

P (Indist.) =
1

n2

( n∑
i=1

cos(nD~k · ~r(i)
⊥ )

)2

+

(
n∑
i=1

sin(nD~k · ~r(i)
⊥ )

)2
 (3.8)

In addition, for a large number of spins the second term tends to zero as as sin(θ) is an odd

function and the θi = nD~k · ~r(i)
⊥ ’s can be assumed to be symmetrically distributed. Thus

for large n, the fraction of indistinguishability is simply the square of the mean of cos(θi).

To determine the mean of cos(θi) we assume a sphere of radius θmax = nDkrD of randomly

distributed NV centres, where rD is the radius of the nanodiamond. Any given θ corresponds

to a slice of this sphere. For large n, we can take the sum over the centres to be an integral

over θ, where the probability of θ is illustrated in Figure 3.8.

Mean of cos(θi) =

∫ θmax

−θmax

(probability of θ)× cos(θ)

=

∫ θmax

−θmax

Volume of slice

Volume of sphere
× cos(θ)

=

∫ θmax

−θmax

π(θ2
max − θ2)dθ
4
3
πθ3

max

× cos(θ)

=
3 sin θmax

θ3
max

− 3 cos θmax

θ2
max

(3.9)

We thus have

P (Indist.) =
9

θ4
max

(
sin2 θmax

θ2
max

− 2 sin θmax cos θmax

θmax

+ cos2 θmax

)
. (3.10)

It thus clear that configurations of many NV centres with a large spatial distribution have

a quickly vanishing fraction of indistinguishability, with scaling like 1/θ4
max. Indistinguisha-

bility is clearly maximal for an infinitely small spatial distribution. As θmax increases, the

indistinguishably quickly vanishes, going to zero at θmax ≈ 4.49. If θmax is increased beyond

this, the indistinguishability can come back ever so slightly, but even at the first fringe it

never exceeds 1%.

This large n limit gives a much higher fraction of indistinguishability than what we

calculate for the small numbers of centres. For nanodiamonds of diameter 110 nm, the

proportion of spatially indistinguishable emission is 99%. Indeed, a 639 nm nanodiamond

(equal diameter to the wavelength) will still have collectivity around 75% in the limit of
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Figure 3.8: Left: The probability of any point in a sphere of radius θmax having a distance
from the equatorial plane of θ can be calculated as the ratio of the slice of volume with distance
θ to the volume of the entire sphere. The slice of volume with distance θ is the cylinder with
radius

√
θ2

max − θ2 and thickness dθ. Centre and Right: Plots of indistinguishability as a function

of θmax = nD~k · ~r(i)
⊥ . The central plot shows the true values of indistinguishability, while the plot

on the right has been rescaled to enhance visibility of the peaks.

high densities. This treatment agrees with previous demonstrations that in the case of a

pencil-like cloud, superradiance is exhibited most strongly at the extremes of the cloud —

corresponding to the ~k vectors for which there is minimal distinguishability [2] [99].

3.4.2 Spectral distinguishability

To determine whether photons are likely to be spectrally distinguishable, we need to deter-

mine the likelihood that they have significant overlap in frequency. Photons arising from

decay are defined by a Lorenzian which is characterised by an optical linewidth Γ. The

central frequency of this decay can vary from centre to centre due to imperfections in the

surrounding lattice, including strain, nearby charge traps or foreign atoms. If the spectral

separation between two photons is much larger than the linewidth, then they are spectrally

distinguishable. If, in contrast, the separation is within the linewidth, photons become

gradually indistinguishable (see Figure 3.9).

A natural assumption is to consider NV centres as sufficiently indistinguishable when their

transition frequencies do not differ by more optical decay rate, which for our nanodiamonds

ranged from 2π × 3.2 MHz to 2π × 12.7 MHz, as the optical decay rate is given by the

homogeneous linewidth. Sufficiently indistinguishable NV centres form a frequency domain,

within which there can be slight variation. In the recent paper, the BJ model determines
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the maximal domain size for each of the 100 nanodiamonds examined. While many of the

nanodiamonds exhibit maximal domain sizes of one or two, there is a significant fraction of

them that require domain sizes of up to 10 to explain the observed decay rates. The fastest

nanodiamond identified has a maximum domain size of 50 NV centres.

Figure 3.9: A) Distinguishable photons: the spectral separation is five times the linewidth,
so the photons are considered distinguishable. B) Indistinguishable photons: the linewidth is five
times the separation; qualifying indistinguishability in this case is non-trivial. C) Comparison of
widths: The spectrum of a single NV centre gives the ≈ 100 THz envelope in which a photon could
be emitted. For multiple NV centres, these spectra can be displaced by ≈ 1 THz. A single photon
is given, which has a room temperature linewidth ≈ 1 THz. However, to act collectively, photons
must be within the optical decay rate ≈ 10 MHz.

We now consider the scale of the frequencies present. NV centres in bulk diamond have a

ZPL at 637 nm with a linewidth of several nm at room temperature, which is on the order of

THz [45]. At cryogenic temperatures the linewidth approaches the lifetime-limited value of

the optical decay rate, 12.2 MHz [88]. In nanodiamond, we assume that the linewidths of all

photons emitted will be similar to the linewidth of the ZPL in bulk. From Fig. 3.1, we see

that photons from an NV centre can be emitted anywhere within around a 100-THz window

due to phonon broadening. In addition, in different nanodiamonds, the entire spectrum can

shift up or down by 1-2 nm, corresponding to THz shifts. Within the same nanodiamond

the distribution of transition frequencies is hard to resolve. However, it is likely that the

variation in transition frequencies is either less than or equal to the variation in a single

diamond. However, as this variance is significantly smaller than the 100-THz range over

which a photon can be emitted, it will be neglected. Thus at room temperature, photons

with THz linewidth can be emitted with central frequencies anywhere in a 100-THz range.

This range is much greater than the MHz range over which NV centres are indistinguishable,
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so the small spectral domain sizes are plausible.

Even NV centres in the same frequency domain will not be precisely identical — there will

be some small variances between the ZPL frequencies. This was neglected in the BJ model.

In our new model, we include it by assigning a unique transition frequency to each NV

centre. These frequencies are centred around the ZPL, and follow a Gaussian distribution.

The width of the Gaussian distribution should reflect the width over which NV centres are

able to act collectively — the optical decay rate.

The energy splitting between the fine structure ground ms = 0 and ms = ±1 states is

2.88 GHz [54], while the energy splitting between the fine structure excited ms = 0 and

ms = ±1 states is 1.42 GHz [100]. This leaves a 1.46 GHz splitting between the ms = 0

transition photons and ms = ±1 transition photons. As this splitting is much smaller than

the 100-THz variance of ZPL, it implies that ms = 0 and ms = ±1 transitions of the same

frequency can act collectively. This is distinct from the treatment in the BJ model. To model

this collective behaviour between the two spin population requires the full 5-level model.

We have determined that each NV centre can emit photons anywhere within a 100-THz

frequency range. This could imply collective domains are not fixed; an NV which emits

a photon and is re-excited will be unlikely to emit the second photon into the same spec-

tral domain. Over the course of multiple excitations, many NV centres will each offer a

single-photon donation to the collective domain at a particular frequency. However, experi-

ments showed that the individual nanodiamonds exhibited consistent fluorescent behaviour

for repeated average measurements, which would contradict the former conclusion. One

possibility is that there is some mechanism, supported in only 10% of the diamonds studied,

which drives NV centres to emit their photons at an identical frequency. It could be that the

collective behaviour causes frequency locking in addition to phase locking. It could other-

wise be a phonically driven effect, in which the phonon emitted from one transition induces

similar phonons. The energy of a photon + phonon transition must equal the energy of the

ZPL transition. Thus, for NV centres of the same ZPL transition, identical phonons must

be accompanied by spectrally identical photons. Another possibility is that on average, the

statistics play out such that the mean maximum domain size is greater than 50, but in
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most diamonds dipole-dipole interactions and dephasing quench the collectivity. This inter-

pretation suggests that “domain size” is actually a measure of the quenching mechanisms.

Regardless, from this discussion we see that domain size is unlikely to correspond to a literal

number of NV centres which will act cooperatively every time they are excited, but rather

it is a figure of merit describing the level of the collectivity observed. In this thesis, we

do not attempt to determine the physics underpinning the formation of spectrally identical

domains, but we instead focus on how dark decay, orientation effects, dipole-dipole interac-

tions, dephasing, spatial variance and small spectral variation within a domain of collectivity

can influence the collective behaviour.

3.5 Number of centres

The dipole-dipole interaction is a pairwise interaction, so for n centres there are n(n−1)/2 of

these terms to consider. The nanodiamonds studied by our group have a density of ≈ 3×106

NV centres per µm3, and a size (110 ± 30) nm, which means around 4000 NV centres per

nanodiamond, or 8 million interaction terms. However, it is only a significantly smaller

subset of them are interacting cooperatively — estimated to be between n = 2 and 50 [6].

As we are interested in the collectively acting NV centres, we only consider these subsets.

In the BJ model interactions with NV centres outside the individual domains are ne-

glected. In our new model, the NV centres in a specific domain are in principle influenced

by all other NV centres through dipole-dipole interaction. However, as the dipole-dipole

interaction scales inversely with the cube of separation, it is most significant for local NV

centres. We thus consider only the collectively acting NV centres, in a smaller nanodiamond

such that the density of NV centres is maintained. Thus n ∈ {1, 13} NV centres will be

modelled, with a mean separation of 6.93 nm, giving a diameter of 6.93 3
√
n nm. As the

cooperatively acting NV centres are now artificially closer than they would have been, this

must be accounted for in the calculation of indistinguishably due to spatial separation by

rescaling the distances to reflect their true values.



You make experiments and I make theories.

Do you know the difference? A theory is some-

thing nobody believes, except the person who

made it. An experiment is something every-

body believes, except the person who made it.

Albert Einstein

4
Details of the simulation

In this chapter we discuss the two different models used to describe superradiance in NV

centres. While I briefly discuss some of the details of the BJ model, the main attention lies

on the model developed in this thesis which attempts to include the realistic details of NV

centres, as detailed in the previous chapter.

4.1 BJ model

The BJ model is built on Dicke’s original construction, assuming maximal symmetry. Each

NV centre is modelled as a 2-level spin system, with the ground state |gσ〉 representing either

the ms = 0 the or ms = ±1 3A2 levels, and the excited state |eσ〉 representing either the

ms = 0 or the ms = ±1 3E levels. Furthermore, the model assumes the ms = 0 and ms = ±1

populations to be completely separate. This assumption is questioned in Section 3.4.2.

An ensemble of n NV centres is modelled as a Dicke ladder with n+ 1 levels. In order to

account for the known properties of NV centres, dephasing and dark decay are introduced

with realistic values. The BJ model neglects the microscopic details and only tracks popu-

lations in the collective states P
(σ)
J,M(t) = 〈J,M, σ|ρ̂(σ)(t)|J,M, σ〉 and in the (non-collective)

30
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single-spin excited states. This works as Dicke superradiance is not dependent on the coher-

ences between Dicke states. Thus, instead of solving the full master equation (Eq. 2.3), the

problem is reduced to a set of rate equations. As discussed in section 3.3.2, dephasing occurs

Figure 4.1: Level scheme underlying the BJ model: Blue lines represent collective decay,
red lines represent dephasing into a smaller angular momentum space. There is no dephasing from
the |J, J〉 states as they are eigenstates of the dephasing and projection operators, and are thus
unaffected.

because of coupling of the NV centres to the phononic bath and nearby spins. Dephasing

at single-spin dephasing rate Γd, takes a single centre out of the collective space. Thus

with some probability, the collective state |J,M〉 is projected into a smaller collective state,

|J − 1,M − 1〉, plus an independent excited centre. The total fluorescence from the system

thus consists of emission from both the collective space and the independently decaying cen-

tres. In addition, as discussed in Section 3.1, there is dark decay via the singlet states in the
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singlet manifold. The additional dark pathways were added to the rate equations as:

d

dt
P

(σ)
J,M(t) = Γ (J(J + 1)−M(M + 1))P

(σ)
J,M+1(t)︸ ︷︷ ︸

collective decay in

−Γ (J(J − 1)−M(M − 1))P
(σ)
J,M(t)︸ ︷︷ ︸

collective decay out

+ Γ
(σ)
dp 2

(
J +

1

2

)(
1−

∣∣∣∣M + 1
2

J + 1
2

∣∣∣∣2
)
P

(σ)

J+ 1
2
,M+ 1

2

(t)︸ ︷︷ ︸
dephasing in

−Γ
(σ)
dp 2J

(
1−

∣∣∣∣MJ
∣∣∣∣2
)
P

(σ)
J,M(t)︸ ︷︷ ︸

dephasing out

+ ΓσtoISC (J +M + 1)P
(σ)

J+ 1
2
,M+ 1

2

(t)︸ ︷︷ ︸
dark decay in

−ΓσtoISC (J +M)P
(σ)
J,M(t)︸ ︷︷ ︸

dark decay out

(4.1)

The BJ model explains the experimental observations very well and supports the inter-

pretation of the data in terms of superradiance. It does not capture the complex details of

NV centres. Instead it absorbs most of the microscopic details in the heuristic parameter of

domain size. As the BJ model is not the main focus of study in this thesis, the interested

reader is referred to the superradiance paper for more details [6]. In this thesis we compare

the outcomes of the new model with the predictions of the BJ model by numerically solving

both alongside each other.

4.2 The new model

The model developed in this thesis sheds new light on superradiance from NV centres,

and at the same time provides some comparison to the predictions to the BJ model. In

particular, we now include the fact that (i) NV centres emit photons into an orientation-

dependent superposition of polarizations (ii), NV centres can interact with one another via

the permanent and transitional dipole-dipole interactions and (iii) NV centres within the

same collective domain show a distribution of transition frequencies and spatial locations.

Moreover (iv), the effects of phononic coupling are treated here as true dephasing, rather

than the phenomenological approach in the BJ model.

The Dicke ladder picture cannot describe symmetry breaking effects, such as dipole-

dipole interactions and orientation dependent emission. In our new model, we use the

full tensor product space instead. For a 2-level description of n collectively acting NV
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centres, instead of a Dicke ladder of states |n/2,M〉 for M ∈ {n/2, n/2}, states are ex-

panded in a basis |ψ1ψ2...ψn〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ... ⊗ |ψn〉, where |ψi〉 ∈ {|e〉 , |g〉} for the

2-level approximation, |ψi〉 ∈ {|e〉 , |g〉 , |ISC〉} for the 3-level approximation, and |ψi〉 ∈

{|e1〉 , |e0〉 , |g1〉 , |g0〉 , |ISC〉} for the 5-level approximation. The density matrix of our sys-

tem is thus

ρ̂ =
∑

ψ1ψ2...ψn

ψ′1ψ
′
2...ψ

′
n

P
ψ′1ψ

′
2...ψ

′
n

ψ1ψ2...ψn
|ψ1ψ2...ψn〉 〈ψ′1ψ′2...ψ′n| (4.2)

where P
ψ′1ψ

′
2...ψ

′
n

ψ1ψ2...ψn
is a matrix element. The total Hamiltonian determines the system and

environment’s time evolution through the von Neumann equation, ∂ρ̂
∂t

= − i
~ [Ĥ, ρ̂]. Over time,

the system and the environment becomes entangled. To simplify our problem, we trace over

the environmental degrees of freedom to obtain the Born-Markov master equation for the

reduced state dynamics of the system of NV centres, with Lindblad terms to account for the

interaction of the system with the environment. The derivation of the Born-Markov master

equation and its application to similar systems follows the standard procedure [9, 42, 91],

and due to the limited space in this thesis it is not presented here. However, construction

of the Hamiltonian relevant to our system, its transformation to the rotating frame, the

statement of the subsequent master equation in Schrödinger picture and transformation to

a frame rotating at the mean transition frequency can be found in Appendix A.

The master equation is numerically solved using MATLAB. In the following we describe

the different steps in the simulations. These are: initialization of parameters (Section 4.2.1),

configuration of the system (Section 4.2.2), comparative simulations between desired effects

(Section 4.2.3), and results, in particular photon emission rates (Section 4.2.4).

4.2.1 Parameters

The program is designed for flexibility. We specify the number of NV centres to be simulated,

whether the each NV centre is modelled with 2-, 3- or 5-levels, and in the case of a 2- or

3-level description, which spin system is being modelled (ms = 0 or ms = ±1). The physical

arrangement (positions and orientations) of NV centres can be chosen, as can the initial

state. For most of this thesis we are interested in comparisons with the simulations for

the superradiance experiment in Ref. [6], which were done with the BJ model, thus the
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parameters can be chosen to replicate any of the four sample nanodiamonds.

4.2.2 Configuration of the system

All the configuration and pre-calculations are done within a MATLAB function file. This

involves defining the physical constants and spin matrices, configuring the NV centres within

the diamond and giving them an initial state in accordance with the choice made in the

previous section, and defining all parts of the master equation.

NV centres corresponding to a single collectively acting domain are distributed in a

sphere of diameter 7 3
√
n nm, which represents the physical size of a diamond of n collectively

acting NV centres with density is 3 × 106 NV centres per µm3, to match nanodiamonds

used in the BJ experiment [6]. As the size associated with the n collectively acting NV

centres is only used for calculation of the strength of the dipole-dipole interactions, we can

simply rescale the dipole-dipole interactions to describe diamonds of other densities. The

indistinguishability due to spatial variation is unaffected by this, as it is calculated based on

the size of the 110 nm diamond, under the assumption that NV centres are spread across

the whole diamond.

Presets in the code allow the spatial distribution to be either random, or in a ring on

the xy plane with diameter 2/3 that of the sphere. Each NV centre can be (i) randomly

assigned one of the eight possible alignments (4 orientations × 2 directions), (ii) oriented

along the z axis and randomly aligned in one of the two possible directions, or (iii) oriented

upwards along the z axis. Random distribution and orientation of NV centres best matches

the experimental situation of high-density NV nanodiamonds as used in the BJ paper. The

single orientation case is of interest theoretically, as it allows us to simulate observable

superradiance with a smaller number of centres. In addition, recent reports indicate the

possibility of creating ensembles of NV centres which are parallel [49, 51, 52].

The BJ paper reports autocorrelation measurements that reveal super-Poissonian statis-

tics for the fastest nanodiamonds. This is consistent with the initial state being maximally

mixed across the highest J collective space, hereafter referred to as the Dicke mixed state.
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In Fig. 4.1, this corresponds to an even mixture of the states on the leftmost Dicke lad-

der. In our simulations, we study two initial states: the Dicke mixed state and the fully-

excited state. The fully-excited state in the 2- and 3-level models corresponds to the state

|ee...e︸ ︷︷ ︸
n

〉 = |e〉 ⊗ |e〉 ⊗ ...⊗ |e〉︸ ︷︷ ︸
n

. The Dicke mixed state across J = n/2 is

1√
2J + 1

J∑
M=−J

|J,M〉 〈J,M | (4.3)

This can be converted to the product basis via the Clebsh-Gordan coefficients

|J,M〉 =

√
(M + J)!(J −M)!

(2J)!

∑
π

|g . . . g︸ ︷︷ ︸
J−M

e . . . e︸ ︷︷ ︸
J+M

〉 (4.4)

The initial state for the 2- and 3-level maximally mixed case is thus

1

2J + 1

J∑
M=−J

|J,M〉 〈J,M | = 1

2J + 1

J∑
M=−J

(M + J)!(J −M)!

(2J)!

∑
π

|g . . . g︸ ︷︷ ︸
J−M

e . . . e︸ ︷︷ ︸
J+M

〉
∑
π

〈g . . . g︸ ︷︷ ︸
J−M

e . . . e︸ ︷︷ ︸
J+M

|

(4.5)

For the 5-level model, NV centres were randomly split into the two spin populations to best

reflect the polarization found in the BJ experiment (between 0.5 and 0.56) [6].

The behaviour of the system of NV centres evolving collectively in the presence of envi-

ronmental dephasing and possible laser excitation is given by the master equation

dρ̃

dt
= − i

~
[H̃S + H̃dd + H̃per-per + H̃SL, ρ̃]︸ ︷︷ ︸

coherent evolution

− Γ

2

∑
σ

P (Indist.(σ))×D[Ŝσ−]ρ̃︸ ︷︷ ︸
collective decay

− Γ

2

n∑
i=1

(
1−

∑
σ

P (Indist.(σ))P (σ|i)

)
×D[ŝ

(i)
− ]ρ̃︸ ︷︷ ︸

independent decay

−
∑
σ

Γ
(σ)
dp

2
D[Ŝσz ]ρ̃︸ ︷︷ ︸

global dephasing

−
n∑
i=1

Γ
(σ)
dp

2
D[ŝ(i)

z ]ρ̃︸ ︷︷ ︸
local dephasing

− Γ0toI

2

n∑
i=1

D[ŝ
(i)
0toI ]ρ̃−

Γ1toI

2

n∑
i=1

D[ŝ
(i)
1toI ]ρ̃︸ ︷︷ ︸

decay from the excited states into the ISC

− ΓIto0

2

n∑
i=1

D[ŝ
(i)
Ito0]ρ̃− ΓIto1

2

n∑
i=1

D[ŝ
(i)
Ito1]ρ̃︸ ︷︷ ︸

decay from the ISC into the ground states

(4.6)

where P (σ|i) is the proportion of emission into the σ polarisation from the ith atom, defined

in Section 3.2. The spin matrices are defined in Appendix A. This equation is written in the

frame rotating with respect to ω0, the angular frequency corresponding to a ZPL of 639 nm.
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The first part of the Hamiltonian in Eq. 4.6 describes the bare atomic system

H̃S =
n∑
i=1

~(ωi − ω0)ŝ(i)
z (4.7)

where ωi is the angular frequency of the ith NV centre. When choosing not to include spectral

inhomogeneity within a collective domain, the ωi’s are all identical, ie ωi = ω0 ∀ i ∈ n, so this

term vanishes. The second part of the Hamiltonian describes the dipole-dipole interaction of

the transition dipoles (Eq. 3.4). The third part of the Hamiltonian corresponds to the dipole-

dipole interaction of the permanent dipoles (Eg. A.29). The final part of the Hamiltonian

describes the interaction of the ensemble with a resonant π polarized continuous laser for

the study of superabsorption and is given by

H̃SL =
n∑
i=1

−~Ω(i)(ε(i) · ε)ŝ(i)
x . (4.8)

where ε gives the polarization of the laser and Ω(i) is the rabi frequency. The remaining

terms are the Lindblad terms of the form

D[Ŝ]ρ̃ = Ŝ†Ŝρ̃+ ρ̃Ŝ†Ŝ − 2Ŝρ̃Ŝ† (4.9)

which account for the interaction between the system and the photonic and vibronic envi-

ronments. All these parts of the master equation can be independently included or excluded

to determine their effect on the outcome of the numerical simulation. The laser term is in

the simulation to allow for possible later study of superrabsoption.

4.2.3 Evolution

The evolution of the density matrix is found by numerically solving the master equation,

including terms as desired. This is done both with the standard MATLAB ODE solver

(“ode45”), as well as with a self-coded fourth order Runge-Kutta (rk4) solver. The ode45

solver is faster, but the rk4 solver can handle larger numbers of centres. In addition, using

two independent methods provides a check on the correctness and accuracy of the algorithms

employed.

ode45 was our first choice for numerically solving the master equation. However, it does

have a drawback — like all built-in MATLAB integrators, ode45 is built to solve for scalar-



4.2 The new model 37

or vector-valued differential equations, not matrix-valued ones. This is an issue as the master

equation describes the differential equation of a matrix (the density matrix). Thus, in order

to use ode45, we must first vectorise our system — done by vertically stacking the columns

of the density matrix to get a vectorised state |p̂〉 and using the superspace version of the

master equation [101]

d

dt
|p̂〉 = [−i(Ĥ⊗ Î)+ i(Î⊗ Ĥ>)+Γ(Ĵ⊗ Ĵ∗)− Γ

2
(Ĵ†Ĵ⊗ Î)− Γ

2
(Î⊗ Ĵ>Ĵ∗)] |p̂〉 = Â |p̂〉 (4.10)

where Ĵ is a general jump operator, and Γ is the associated rate. We have used this approach

(albeit with more jump operators) to simulate the master equation. The vectorised state

is converted back to matrix form after evolution. At each timestep the vectorised state is

stored, and the Â matrix is determined. The state is a vector of length m2n, where m is

the number of levels and n is the number of NV centres. For 10 centres modelled as 2-level

systems this number is larger than 1 million; if we instead want use the 5-level model this

results in more than 95 trillion elements for every timestep. The Â matrix then has m4n

elements, so for 10 2-level systems this is 1012 elements, and for 10 5-level systems it is

9× 1027 elements. It is only once the system has been solved for the full timespan that the

linearised density matrices can each be converted to the two numbers required — the rates

of π and σ photon emission. Sparse matrices were used to reduce the memory requirements,

but there were still enough non-zero elements to make large calculations prohibitive with the

available RAM. The memory requirements of the system can be minimised by passing ode45

a vector of time coordinates to store data for. However, the adaptive timestep means that

we can only gain an advantage if we are prepared to sacrifice the quickly varying behaviour.

To simulate as many NV centres as possible, we also solved the master equation with

an rk4 integrator, which allowed direct integration of the matrix-valued differential equation

and did not require vectorisation. This does not have an adaptive timestep, so it is slower.

However, it is much less memory intensive as the matrices involved are all size mn, and at

each timestep we can calculate the rates of π and σ photon emission before solving for the

next timestep, so only the density matrix information for the current timestep needs to be

stored.
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4.2.4 Photon emission

The rate of photon emission can be determined from the number of photons in the optical

mode at a given time t, N(t) = 〈â†â〉ρ̂E(t). This is determined from the master equation by

calculating the excitations in our system, multiplied by the rate of optical decay Γ. If the NV

centres are all emitting identical light, this energy is 〈S̃+S̃−〉ρ̃ = Tr(ρ̃S̃+S̃−) = Tr(ρ̃Ŝ+Ŝ−)

where Ŝ+ and Ŝ− are the collective raising and lowering operators in the Schrödinger picture.

This simplification from rotating frame to Schrödinger frame is possible as our choice of

frame rotating with a collective frequency for all centres means that the phases on the

raising and lowering operators in the rotating frame S̃+ and S̃− will cancel exactly. This

gives the rate of photon emission dN(t)/dt = ΓTr(ρ̃Ŝ+Ŝ−) However, when multiple NV

orientations are included, photons can be emitted into a superposition of polarizations σ.

Collective effects only occur within each polarization, so the rate of photon emission is

dN(t)/dt = Γ
∑

σ Tr(ρ̃Ŝσ+Ŝ
σ
−). In addition, we have to pay attention to distinguishability of

centres introduced by the spatial variance (section 3.3.1). We thus have a fraction of the

photons emitted that are indistinguishable, and a fraction which are distinguishable. The

total rate of photon emission is therefore given by

Γ
∑
σ

P (Indist.(σ))Tr(ρ̃Ŝσ+Ŝ
σ
−) + Γ

n∑
i=1

(
1−

∑
σ

P (Indist.(σ))P (σ|i)

)
Tr(ρ̃ŝ

(i)
+ ŝ

(i)
− ). (4.11)

The number of photons emitted over time is calculated by numerically integrating Eq. 4.11.
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certain aesthetic criteria - that is, in relation

to how much it describes, it must be rather

simple.

John von Neumann

5
Results and discussion

In this chapter we discuss a number of simulation results based on our new model. We go

beyond previously explored NV physics and now take into account additional effects, such as

dipole-dipole interactions. We determine the level of superradiance for a system starting in

the fully excited state by the presence and size of a superradiant ‘burst’ — a photon emission

rate which is initially equal to that for independent emission but then grows to be higher

than it. We discuss certain physical aspects of the superradiance from NV centres in detail:

the orientation dependence of collective emission (Section 5.1), the impact of the number of

levels modelled per NV (Section 5.2), the effect of dipole-dipole interactions, dephasing and

spectral and spatial inhomogeneities on a typical domain of NV centres (Section 5.3), and

the behaviour when the typical separation between NV centres is decreased (Section 5.4).

5.1 Orientation of NV centres

As discussed in Section 3.2, NV centres of different orientations emit photons into a differ-

ent superposition of polarizations. Fig. 5.1 provides an example of this; the NV centres
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are treated as 2-level systems which are spatially and spectrally indistinguishable, with no

dipole-dipole interactions and no dephasing — thus exhibiting superradiance as originally

formulated by Dicke. Parallel orientations show typical Dicke superradiance, in which all

photons are emitted into the same polarization mode. Random oriented NV centres exhibit

decreased superradiance, as photons are emitted into different polarizations, reducing co-

operativity. In both cases, the cooperatively acting NV centres show emission rates larger

than that of independent emitters, as is characteristic of superradiance. There will however

always be some cooperative behaviour, as the possible orientations are not at right angles

to each other, so at least one NV centre will have to contribute to both polarization modes.

Figure 5.1: Pure Dicke superradiance: These two plots show Dicke superradiance — collec-
tive decay in the absence of dipole-dipole interactions, dephasing, and spatial and distinguishability.
8 NV centres are initialised in the fully-excited state (A) and the Dicke mixed state (B). The insets
show the configurations of NV centres for the randomly oriented cases. The x, y and z compo-
nents have been scaled by the average separation between NV centres. The arrows represent the
orientations and locations of the dipoles.

Random orientation does still allow for domains of a single orientation; they have a proba-

bility of 1/4n−1 of occurring. Given the large numbers of domains, there are almost certainly

domains which are fully or mostly parallel. This minority of domains is likely responsible

for the bulk of the superradiance. With NV centres in diamond engineered to have the same

orientation, we would therefore expect stronger superradiant effects. Henceforth, we limit

our simulations to NV centres of a single orientation to study the other effects.
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5.2 Number of levels

We can model each NV centre with a 2-, 3- or 5-level energy level structure. The 3- and

5-level models include dark decay via the singlet states, reducing the number of photons and

consequently the superradiance exhibited.

In Fig. 5.2 A) we compare the 2- and 3- level models. The 2-level model exhibits

Dicke superradiance, while in the 3-level model the superradiant burst is clearly reduced

due to non-radiative decay via the singlet states. The smaller area under the emission curve

indicates the emission of fewer photons in total. The ms = 0 and ms = ±1 spin-projection

populations show two different bursts as they have separate rates of non-radiative decay. As

the rate of optical decay (2π × 2.5 MHz) is of similar size to the rate of non-radiative decay

from the ms = 0 excited state (2π× 1.8 MHz), the superradiant burst for the ms = 0 line is

significantly decreased but still remains. In the ms = 0 case, the rate of non-radiative decay

(2π× 9.4 MHz) is significantly larger, so superradiance is more appreciably quenched. From

this, we deduce that the domains most likely to exhibit observable cooperativity are those

with all or most NV centres in the ms = 0 state.

In Fig. 5.2 B) we examine four NV centres treated with the 5-level model. We see that

for four NV centres (two in each spin state) the collective behaviour is not significantly dif-

ferent to that of independent emitters. This is because the ms = ±1 centres rapidly decay

to the ground state via predominantly non-radiative means, leaving only two centres decay-

ing cooperatively optically while competing with the non-radiative channels. We conclude

that the number of ms = 0 centres in each domain most significantly affects the observed

superradiance. Thus, whether or not the ms = 0 and ms = ±1 spin projection centres act

collectively with each other, which was debated in Section 3.4.2, becomes a non-critical issue.

While the 3- and 5-level models reflect the physics of the NV centre more accurately,

they make the simulations more challenging in terms of computational demand. For this

thesis, simulation were performed on a desktop computer, so we choose to concentrate on

computationally easier problems. Thus to simulate a larger number of spins, we focus on the

2-level model. This allows us to simulate more NV centres and to eliminate the non-radiative
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Figure 5.2: Changing the number of levels modelled: A) the rate of photon emission
from 6 parallel fully excited NV centres is shown, modelled as 2- and 3-level systems. B) the rate of
photon emission from 4 parallel fully excited NV centres modelled as a 5-level system is depicted.
Two of these NV centres start in the ms = 0 state and two start in the ms = ±1 state. The
independent emission line is modelled by considering a single NV centre in an equal superposition
of the ms = 0 and ms = ±1 excited states. The ratio of ms = 0 to ms = ±1 states was chosen to
best reflect the ratio found in the experiment.

paths which decrease superradiance. We stress that in our subsequent simulations, as we ne-

glect the non-radiative decay, our simulations are not directly comparable with experimental

results. We use the 2-level model to gain insight into the way different details of the NV

centres effect the collective behaviour, relative to one another. To compare to experiment,

the 5-level models should instead be used. However, due to the rapid non-radiative decay

from the ms = ±1 excited state which quenches majority of the superradiance, the 3-level

model of just the ms = 0 state provides a reasonable picture of the superradiance decay.

5.3 A typical domain of NV centre

In Fig. 5.3 we examine the effects of dipole-dipole interactions, dephasing and spatial and

spectral variance. Limiting our discussion to parallel 2-level NV centres, we examine 8 NV

centres starting in the fully excited state. We see that dipole-dipole interactions, dephasing

and spatial and spectral variance can significantly reduce the overall superradiance. The

spatial variance explicitly reduces the overall collectivity. The spectral variance introduces

non-uniform local dephasing which, like the normal local dephasing, decoheres the system
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towards independent behaviour. Both dipole-dipole interactions are shown to have strong

effects. In fact, for NV centres separated by a mean of 7 nm, as is typical of our diamonds

[6], the permanent dipole-dipole interaction completely quenches any superradiance. The

BJ model is not well fitted by the dephasing model, let alone the all effects model. This

suggests that the BJ model is an insufficient description when dipole-dipole interactions are

included at this density.

Figure 5.3: Quenching superradiance: 8 NV centres starting in the fully-excited state are
simulated. The effect of incorporating each realistic aspect of the NV centre individually and the
result of combining all these effects are shown. The permanent dipole-dipole interaction line, the
all effects line and the independent emission line lie on top of one another, indicating that the
permanent dipole-dipole interaction has quenched all collective behaviour. The BJ model (with
the non-radiative decay rate set to 0) is shown for comparison.

This result shows us that at this density, a domain of NV centres is unlikely to exhibit

superradiance. This agrees with experimental findings that ∼ 10% of the nanodiamonds

studied exhibited any evidence of collective behaviour, and even then, they generally had
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Figure 5.4: Increasing the separation: Rate of photon emission with all effects for varying
separations between 8 parallel NV centres which are A) randomly distributed and B) in a ring.

only a small number of NV centres per domain.

5.4 Varying the NV typical separation

We see in Fig. 5.3 that superradiance is most significantly quenched by dipole-dipole inter-

actions, which scale inversely with the cube of separation. The density of NV centres we

chose was informed by the typical density in the diamond studied. Within and between the

diamonds there is natural variation in the exact number and distribution of NV centres. In

Fig. 5.4 we see the effect of the spacing of NV centres. In these plots, we have included all

the effects in each run, however we have varied the mean separation of dipoles by uniform

expansion of the physical system. In the plot on the left, we show a random configuration

of NV centres. As the separation grows by factors of 2, 3 and 4, the dipole-dipole terms are

reduced by factors 23, 33 and 43, respectively. This reduction allows greater superradiance,

as is indicated by the gradual return of the superradiance ‘burst’.

In the figure on the right we consider a symmetric arrangement where parallel NV centres
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are equally spaced in a ring perpendicular to their orientation. This configuration would be

extremely unlikely to occur naturally. However, this configuration is interesting to consider

for the study of isolated effects, and as it is one which could be engineered. There is an

extensive body of work surrounding the creation of diamond with NV centres in specific

locations [47, 48, 64, 102–107]. To date, NV centres can be can be placed at specific sites,

up to an error on the order of 10 nm. For our purposes, this error is too high. Nonetheless,

if NV centres are created in a ring, they could potentially be aligned to lie on the same

orientation by strain engineering [52] or atomistic mechanisms [108]. In Fig. 5.3 we short-

cut all the engineering difficulties by simulating the behaviour of 8 parallel NV centres in

a ring. Here, a mean separation of r between centres results in a diamond of size 2r. The

ring radius r/3, gives the separation between centres to be πr/6. By observing the photons

from directly above or below this ring, the geometry ensures that the path lengths between

each NV and the detector will be identical, so the spatial indistinguishability is guaranteed.

The superradiance burst in the plot on the right is higher than those with dipole-dipole

interactions in previous figures, indicating that the symmetry of the system preserves far

more superradiance than the random arrangement case. Again, by increasing the spacing,

superradiance is enhanced.

In Fig. 5.5, we examine how our new model compares to the Dicke model, to the BJ

model, and to independent emission. The simulation of 8 NV centres is initialized in the

Dicke mixed state to see how these models would provide a different interpretation of the

experimental behaviour. To examine the situation where dipole-dipole interactions are not

overpowering, we choose a mean separation of 21 nm. Such a large mean separation is un-

likely to occur for the diamonds with the densities of our experiments, but exhibits more

superradiance if it does occur. Comparing Dicke superradiance with the independent emis-

sion, we see that Dicke superradiance exhibits a steeper slope. The more centres in the

collectively acting domain, the bigger this disparity. However, in Fig. 5.5 we also see the

realistic details of an NV centre — dipole-dipole interactions, dephasing, spatial and spectral

inhomogeneities — cause an even greater slope. This is because the system is very quickly

decohering out of the collectively acting states to return to independent behaviour. The most
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Figure 5.5: Recovering superradiance: Here we consider a fortuitous configuration of 8
NV centres, in which the typical separation between NV centres is 21 nm (as opposed to 7 nm),
which allows for some superradiance to persist. The simulation is started in the Dicke mixed state,
which corresponds to the initial state in the experiments. We have limited the NV centres to one
orientation, but their spatial distribution and alignment with the z axis (parallel or anti-parallel)
is random.

dramatic effect is the dipole-dipole interaction, which is the most sensitive to the configu-

ration of NV centres in the diamond. Consider again Fig. 2.2, containing the experimental

results for the nanodiamonds studied. If there is no collective behaviour, the emission must

follow the single NV line. However, by varying the dipole-dipole interaction, a domain of

any size can be made to have an arbitrarily steep gradient. Thus while independent emission

cannot cause a steep slope, the steepness of the slope is not sufficient to determine domain

sizes. This is why, in the BJ paper, the domain sizes were further confirmed with g2(0) cor-

relation measurements. We have not yet completed g2(0) calculations as part of this work,

but intend to do so.

We have determined that superradiance is more likely to occur when NV centres are well
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Figure 5.6: The decay rate as a function of diamond size (left) and density (right) for each

of the 100 nanodiamonds in the experiments our group undertook. The densities were measured
via continuous fluorescence measurements and are thus in arbitrary units. The colour coding
corresponds to the size of the diamonds, with red < 70 nm < green < 110 nm < blue. Figures
from Ref. [6].

separated from their neighbours. In practice, increasing the spacing comes at cost of either

increasing the size of the diamond, and hence introducing more distinguishability due to

spatial separation, or of decreasing the number of NV centres in the diamond, and hence

the number and size of collective domains. In Fig. 5.6 from Ref. [6], we determine that

nanodiamonds below 80 nm are unlikely to exhibit superradiance, but above this threshold

there is no strong relation between size and density. This is shown by plotting decay rate as

a function of diamond size. As is discussed above, decay rate is not perfectly correlated with

the amount of superradiance, but a faster than exponential decay rate is always present when

there is any collective behaviour. This is consistent with our modelling which shows that as

the size of the nanodiamond increases, the increased likelihood of collectively acting domains

is counteracted by the increased distinguishability due to spatial separation. In the paper [6],

we also determine that nanodiamonds with high densities (measured via the total photons

detected) cannot have large decay rates, meaning they are not exhibiting superradiance.

This is consistent with our findings above that high densities prevent superradiance as the

dipole-dipole interactions become too large.
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5.5 Summary of results

Through simulation, we are able to explore the rich tapestry of effects in NV centres. We

find that randomly-oriented NV centres exhibit significantly less superradiance than parallel

centres.

We considered 2-, 3- and 5-level models of the NV centre. While the 5-level model is

most realistic, the rapid rate of dark decay from the ms = ±1 state means that it is domains

of predominantly ms = 0 systems which contribute to superradiance. This means that

where we want to study the domains contributing to the observed superradiance, the 3-level

model is sufficient. In practice however, we tended to simulate the 2-level model, as this still

provides information about relative influence of microscopic physics on the emission rates.

Each of the effects we studied, spatial and spectral variance, dephasing and dipole-dipole

interactions, reduced superradiance. The most significant is the permanent dipole-dipole in-

teraction which, for the typical spacing of NV centres in our diamonds, completely quenches

the superradiance. However, in engineered arrangements where the NV centres have a lower

density than for those used in our experiments, we see that the subsequent decrease in the

dipole-dipole terms permits superradiance to survive. This is consistent with the experimen-

tal findings that nanodiamonds of high densities will not exhibit superradiance.
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mathematical theorising, no matter how lucid,
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exactest experience. Without this philosophic

attitude, his work would not have been possi-

ble.

Albert Einstein

6
Outlook

In this thesis we have developed a mathematical model to simulate superradiance from NV

centres. With this model, we determine that superradiance can exist in NV-rich nanodia-

monds, but in the presence of orientation effects, non-optical decay, dipole-dipole interac-

tions, dephasing and spatial and spectral inhomogeneity, it is elusive. Far from being guar-

anteed, superradiance occurs under specific circumstances, in certain spatial arrangements

and for particular densities of sufficiently indistinguishable NV centres. This is consistent

with the experimental findings in the BJ paper that superradiance is exhibited in ∼ 10%

of nanodiamonds studied. Of the effects considered, the optical and permanent dipole-

dipole interactions are responsible for the most significant quenching of superradiance at

the NV centre densities used in the experiments. We find that for these densities, the phe-

nomenological dephasing description in the BJ model is insufficient to properly describe

these interactions.
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In addition to studying superradiance observed in the BJ experiment, this work can be

used to inform the engineering of enhanced superradiance. We predict that nanodiamonds

with parallel NV centres in slightly lower densities than those used in Ref. [6] will exhibit

stronger superradiance.

Further work remains to transition this simulation from toy model into a more accu-

rate representation of the fundamental physics of NV centres. For instance, the spatial

variance could be treated explicitly, and the spatial distribution of emitted light explored.

Understanding the spectral distinguishability of photons arising from the phonon-broadened

optical spectrum of NV centres remains a topic of future study.

Another area of future work is to adapt our model to predict the occurrence and strength

of superradiance in other diamond defects, such as SiV and GeV centres. These are par-

ticularly interesting as they do not have the permanent dipole-dipole interaction which was

the single most destructive effect studied. However, superradiance in SiV and GeV centres

may be hindered by other effects, such low quantum efficiencies. Whether these competing

effects will ultimately yield higher levels of superradiance remains an open question. We

can similarly adapt our model to describe low-temperature physics. Although the effect of

dephasing from phonon-coupling will be reduced, the question of whether this will result in

enhanced superradiance is again not obvious, since spin-orbit coupling makes some optical

transitions more distinguishable. The results predicted through this future work can be

experimentally tested — I personally aim to conduct a theoretical and experimental study

into superradiance in SiV centres.

We would also like to study superabsorption [42], and examine whether NV (or other)

centres are a viable system for the demonstration and applications of this phenomenon.

In addition, further research includes developing more sophisticated numerical techniques

to increase the number of NV centres that can be modelled, such as writing a more sophisti-

cated integrator, running the simulations on a supercomputer, or using quantum trajectories.

The work done in this thesis represents a significant advance from the BJ model, allowing

a richer description of superradiance from NV centres. Through improvements to the model

and adaptation to different systems, we hope to shed further light into cooperative behaviours

in NV centres and similar diamond defects.



It is the theory which decides what we can

observe.

Albert Einstein

A
Formulation of the master equation

The Hamiltonians are defined in the Schrödinger picture and transformed to the Dirac pic-

ture for the rotating wave approximation and the derivation of the Born-Markov Master

equations. The Born-Markov Master equation is not derived as it is a well-known result,

and as this thesis is subject to a tight page limit; instead the general result is applied to our

system. The resultant master equation is converted to a new frame for simulation.

A.1 Definitions of NV centre operators

The excited and ground states of a single NV centre modelled as a 2-level atom are repre-

sented as |e〉 = (1 0)> and |g〉 = (0 1)> respectively. The spin n/2 matrices are used to

represent n centres acting collectively. These matrices are conventionally defined as hav-

ing a factor of ~, but in this thesis we use a ~-less form. For spin 1/2, these matrices are

ŝx = 1
2

(|g〉 〈e|+ |e〉 〈g|), ŝy = i
2

(|g〉 〈e| − |e〉 〈g|) and ŝz = 1
2

(|e〉 〈e| − |g〉 〈g|), The ladder

operators, ŝ+ = |e〉 〈g| and ŝ− = |g〉 〈e|, represent the creation and destruction of excitations

in the system. We also introduce the matrix ŝe = |e〉 〈e|.
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For the 3-level system, an additional level is introduced representing the intermediate

singlet levels, denoted I, giving |e〉 = (1 0 0)>, |g〉 = (0 1 0)> and |I〉 = (0 0 1)>. The 3-level

operators have the same bra/ket expressions as the 2-level operators, with the exception of

the new operators which we must introduce to describe a transformation from the excited

state to the I level ŝtoI = |I〉 〈e| and from I to the ground states ŝfromI = |e〉 〈I|.

For the 5-level system, each operator can act on the m = 0 subspace or on the m = ±1

subspace. For a single centre, the possible states are |e1〉 = (1 0 0 0 0)>, |e0〉 = (0 1 0 0 0)>,

|g1〉 = (0 0 1 0 0)>, |g0〉 = (0 0 0 1 0)> and |I〉 = (0 0 0 0 1)>. The new operators

which act on spin-1 centres are ŝ1,x = 1
2

(|g1〉 〈e1|+ |e1〉 〈g1|), ŝ1,y = i
2

(|g1〉 〈e1| − |e1〉 〈g1|),

ŝ1,z = 1
2

(|e1〉 〈e1| − |g1〉 〈g1|), ŝ1,+ = |e1〉 〈g1|, ŝ1,− = |g1〉 〈e1|and ŝ1,e = |e1〉 〈e1|. and

the new operators which act on spin-0 centres are ŝ0,x = 1
2

(|g0〉 〈e0|+ |e0〉 〈g0|), ŝ0,y =

i
2

(|g0〉 〈e0| − |e0〉 〈g0|), ŝ0,z = 1
2

(|e0〉 〈e0| − |g0〉 〈g0|), ŝ0,+ = |e0〉 〈g0|, ŝ0,− = |g0〉 〈e0| and

ŝ0,e = |e0〉 〈e0| Frequently operators will act on both subspaces; these are denoted ŝ = ŝ1 + ŝ0.

As for the 3-level case, we also require operators which transform from the excited states

to the I level ŝ1toI = |I〉 〈e1| and ŝ0toI = |I〉 〈e0| and from the I level to the ground states

ŝIto1 = |e1〉 〈I| and ŝIto0 = |e0〉 〈I|.

To describe n NV centres, the Hilbert space of each system is tensored together giving

H = H1 ⊗H2 ⊗ ...⊗Hn. From the single centre operators, local and global operators can

be constructed. Local operators act on an individual centre i as ŝ(i) = 1mi−1 ⊗ s ⊗ 1mn−i

while global operators act on all centres together as Ŝ =
∑n

i=1 ŝ
(i) where n is the number of

centres being modelled, and m is the number of levels each centre is modelled as having.

A.2 Hamiltonian in the Schrödinger picture

The Hamiltonian can always be decomposed into a system part, an environment part and an

interaction between these two parts. In our case, the system describes the ensemble of n NV

centres, and the environment describes surrounding electric fields. This includes the vacuum

field, the laser field (for superabsorption only) and the electric field created by the permanent

electric dipoles of NV centres in their excited states. In addition, there is a static electric

field arising from stray charges in the nanodiamond, which gives rise to energy shifts in the
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NV centres. However, in our modelling spectral inhomogeneity is accounted for separately,

so we will neglect this term here.

A.2.1 The system part of the Hamiltonian

For the 2-level case, each ith NV centre has the bare Hamiltonian Ĥ
(i)
S = E

(i)
e |e〉i 〈e| +

E
(i)
g |g〉i 〈g| where Ee is the energy of the excited state and Eg is the energy of the ground

state. By subtracting
E

(i)
e +E

(i)
g

2
× 1 and defining ωi =

E
(i)
e −E

(i)
g

~ , the equivalent form Ĥ
(i)
S =

~ωiŝ(i)
z is obtained. Thus the bare Hamiltonian describing the n spin-1/2 systems can be

expressed

ĤS =
n∑
i=1

~ωiŝ(i)
z . (A.1)

For the 3 and 5-level systems, the energy of the additional levels must be accounted for. The

bare Hamiltonian describing the energy levels for the 3-level case is

ĤS =
n∑
i=1

E(i)
e |e〉i 〈e|+ E(i)

g |g〉i 〈g|+ E
(i)
I |I〉i 〈I| (A.2)

and the bare Hamiltonian describing the energy levels for the 5-level case is

ĤS =
n∑
i=1

E(i)
e1
|e1〉i 〈e1|+ E(i)

g1
|g1〉i 〈g1|+ E(i)

e0
|e0〉i 〈e0|+ E(i)

g0
|g0〉i 〈g0|+ E

(i)
I |I〉i 〈I| . (A.3)

A.2.2 The environment part of the Hamiltonian

The environment we wish to model includes the vacuum field, the laser field (for superab-

sorption only) and the electric field created by the permanent electric dipoles of NV centres

in their excited states.

The part of the Hamiltonian corresponding to the vacuum field is

ĤE =
∑
j

~ωj â†j âj. (A.4)

where j = {k, σ} is the tuple summarising the k vector k and a polarization σ of the photon.

If there is a laser, it is treated as a coherent state. Coherent states are defined math-

ematically as â |α〉 = α |α〉 where α is a complex number with |α|2 representing the mean

number of photons in the state. To describe a laser, the coherent state has a time dependence
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exp(−iωLt). Thus at the frequency of the laser, ωL, âkL,σ → âkL,σ + ασ exp(−iωLt), where

α is a coherent laser light state with k vector kL and polarization σ ∈ {±1, 0}. Thus

ĤL =
∑
σ

~ωL(α∗σâkL,σ exp(iωLt) + ασâ
†
kL,σ

exp(−iωLt)) +
∑
σ

~ωLα∗σασ (A.5)

The final term is an energy shift, so it can neglected defining the zero energy state of the

environment to be −
∑

σ ~ωλLα∗σασ.

As we are interested in the optical phenomena, we will only consider the electric field in

the context of its interaction with the collection of NV centres.

A.2.3 The interaction part of the Hamiltonian

The interaction between the NV centres and the field is described using the dipole approxi-

mation. For the ith particle at position ri and time t, interacting with the jth mode of the

EM field, this interaction is described by

Ĥ
(i,j)
int = −d̂(i) · Ej(ri, t) (A.6)

where d̂(i) is the dipole moment operator of the NV centre, and Ej(ri, t) describes the EM

field.

Dipole term

The dipole operator d̂ = qr̂ is analogous to its classical counterpart, where the displacement

operator r̂ takes the operator information.

For a typical quantum optics system, the only dipole moment of interest is the transition

dipole moment, d̂
(i)
eg , describes the electric transition between the ground an excited states.

The argument goes that can be expanded in the 2-level basis

d̂i = 1d̂i1

= (|g〉i 〈g|+ |e〉i 〈e|) d̂i (|g〉i 〈g|+ |e〉i 〈e|)

= |g〉i 〈g| d̂i |g〉i 〈g|+ |g〉i 〈g| d̂i |e〉i 〈e|+ |e〉i 〈e| d̂i |g〉i 〈g|+ |e〉i 〈e| d̂i |e〉i 〈e|

(A.7)

|g〉 and |e〉 are eigenstates of the parity operator P̂ , meaning that P̂ |g〉 = |g〉 and P̂ |e〉 = |e〉
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However, the parity operator clearly inverts the displacement operator as P̂ r̂P̂ = −r̂. Com-

bining these relations, it is evident that the diagonal terms of the dipole moment operator

must vanish.

〈g| d̂ |g〉 = 〈g| qr̂ |g〉 = 〈g| P̂ qr̂P̂ |g〉 = −〈g| qr̂ |g〉 = −〈g| d̂ |g〉 = 0 (A.8)

Also, i 〈g| d̂i |e〉i is the transition dipole moment which describes the electric dipole moment

associated with the transition from the excited to the ground state. Similarly, i 〈e| d̂i |g〉i
is the transition dipole moment which describes the electric dipole moment associated with

the transition from the ground to the excited state. By conservation of energy, these must

be the same, and they will both be abbreviated to d
(i)
eg . This gives the result

d̂i = d(i)
eg (|g〉i 〈e|+ |e〉i 〈g|) = 2d(i)

eg ŝ
(i)
x . (A.9)

The transition dipole operator has magnitude deg = 2.980−30 C m, as calculated in Section

3.3.1.

However, NV centres are an atypical quantum optics system, as the ground and excited

states are not eigenstates of parity. This is because the NV centre does not have inversion

symmetry. Thus the NV centre doesn’t have vanishing diagonal dipole moment terms. In

fact, for the excited state, the NV centre has a very strong permanent dipole moment of

magnitude dper = 3.976× 10−30 C m, which is aligned with dangling bond from the nitrogen

atom to the direction of the vacancy [87, 88]. We will treat this as a separate dipole operator,

d̂
(i)
per = d

(i)
per |e〉 〈e|(i) = d

(i)
perŝe(i). The ground state also has a permanent dipole moment, but

as this is so much smaller than the other dipole moments (dper′ = 1.126× 10−34 C m [89]) it

will be neglected. We thus have two parts to our dipole operator to consider.

In the 3- and 5-level models, as we are only concerned with allowed optical transitions,

transitions into and out of the intermediate singlet levels are forbidden, as are non spin

conserving transitions. Thus the 3-level model has an identical transition dipole operator as

for the 2-level model, and the transition dipole operator for the 5-level model is

d̂i = 2
(
d(i)
e1g1

ŝ
(i)
1,x + d(i)

e0g0
ŝ

(i)
0,x

)
. (A.10)

As the intermediate singlet levels have the same electron configuration as the ground state,
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a′21 a
2
1e

2, we assume that they will similarly have a negligible permanent dipole moment.

Electric field term

The jth mode of the vacuum electric field at the position of the ith NV centre is

Ê(j)
vac(ri) = E0

(
exp (i(kj · ri + φj)) âj + exp (−i(kj · ri + φj)) â

†
j

)
/2 (A.11)

where E0 is a real vector containing the field strength and direction.

For the case of a laser operating at a frequency ωL, direction kL and possible polarizations

σ, again with eq. (A.2.2), the electric field is

E
(j)
laser(ri, t) = E0 (exp (i(kj · ri − iωlt+ φj))αj + exp (−i(kj · ri − iωLt+ φj))α

∗
j

)
/2

(A.12)

where j = {kL, σ}. We also have the electric field set up by the surrounding permanent

dipoles, which is

Êper(ri) =
∑
i′ 6=i

1

4πε0

3(d̂
(i′)
per · nii′)nii′ − d̂

(i)
per

|rii′ |3
(A.13)

Interaction

The Hamiltonian describing the interaction of the NV centres with the environment is there-

fore

Ĥ
(i)
int =− d̂(i)

per · Ê(j)
vac(ri)− d̂(i)

per · E
(j)
laser(ri, t)− d̂(i)

per ·
∑
i′ 6=i

Ê(i′)
per(ri)

− d̂(i)
eg · Ê(j)

vac(ri)− d̂(i)
eg · E

(j)
laser(ri, t)− d̂(i)

eg ·
∑
j 6=i

Ê(i′)
per(ri)

(A.14)

The first term describes the interaction of the permanent electric dipole with the vacuum

field

Ĥper-vac = −
n∑
i=1

∑
j

d(i)
per · E0

(
exp (i(kj · ri + φj)) ŝ

(i)
e âj + exp (−i(kj · ri + φj)) ŝ

(i)
e â
†
j

)
.

(A.15)
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The second term describes the interaction of the permanent electric dipole with the laser

field.

Ĥper-L = −
n∑
i=1

∑
σ

d(i)
per · E0

(
exp (i(kj · ri − iωLt+ φj)) ŝ

(i)
e αkL,σ

+ exp (−i(kj · ri − iωLt+ φj)) ŝ
(i)
e α

∗
kL,σ

)
.

(A.16)

The third term describes the interaction of the permanent dipoles with the electric field of

the surrounding permanent dipoles

Ĥper-per =
d2

per

4πε0

∑
j 6=i

ε(i) · ε(j) − 3(ε(i) · nij)(ε(j) · nij)
|rij|3

|e〉 〈e|(i) ⊗ |e〉 〈e|(j) . (A.17)

The fourth term describes the interaction of the transition dipole with the vacuum

ĤSE = −
n∑
i=1

∑
j

~Ω(i)
(

exp (i(kj · ri + φj)) ŝ
(i)
x âj + exp (−i(kj · ri + φj)) ŝ

(i)
x â
†
j

)
(A.18)

where

Ω(i) =


d
(i)
e1g1
·E0

~ if the ith NV is in ms = ±1

d
(i)
e0g0
·E0

~ if the ith NV is in ms = 0
(A.19)

is the rabi frequency. The fifth term describes the interaction of the transition dipole with

the laser.

ĤSL = −
n∑
i=1

∑
σ

~Ω(i)
(
exp (i(kj · ri − ωLt+ φj)) ŝ

(i)
x αkL,σ + exp (−i(kj · ri − ωLt+ φj)) ŝ

(i)
x α

∗
kL,σ

)
.

(A.20)

The final term describes the interaction of the transition dipoles with the electric field of the

surrounding permanent dipoles.

ĤS-per =
degdper

4πε0nD

∑
i′ 6=i

ε(i) · ε(i′) − 3(ε(i) · nii′)(ε(i′) · nii′)
|rii′ |3

s(i)
x ⊗ s(i′)

e (A.21)

The parts of the Hamiltonians interacting with the laser and vacuum fields have phase

terms exp(±ikj · xi) and exp(±iφj). This first term is a spatially dependent phase, which is

dealt with in Chapter 2, and results in a metric of spatial indistinguishability. The second

term is neglected, as it is constant so just results in a constant rotation. These phase terms

are thus neglected in the following discussion.
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A.3 Hamiltonian in the interaction picture

In general, one can move to a rotating frame by choosing Û = exp(−iÂt/~), and transforming

the states as |ψ̃〉 = Û † |ψ〉. The corresponding Hamiltonian is H̃ = Û †ĤÛ − Â as

i~
dÛ † |ψ〉
dt

= i~Û †
d |ψ〉
dt

+ i~
dÛ †

dt
|ψ〉 = Û †Ĥ |ψ〉 − ÂÛ † |ψ〉 = (Û †ĤÛ − Â)Û † |ψ〉 . (A.22)

For the Dirac/interaction frame, take Â = ĤS + ĤE. The rotated Hamiltonian is thus

H̃ = exp(i(ĤS + ĤE)t/~)(ĤS + ĤE + ĤL + Ĥper-vac + Ĥper-L + Ĥper-per + ĤSE + ĤSL + ĤS-per)

× exp(−i(ĤS + ĤE)t/~)− ĤS − ĤE

= exp(iĤEt/~)ĤL exp(−iĤEt/~) + exp(i(ĤS + ĤE)t/~)Ĥper-vac exp(−i(ĤS + ĤE)t/~)

+ exp(i(ĤS + ĤE)t/~)Ĥper−L exp(−i(ĤS + ĤE)t/~)

+ exp(i(ĤS + ĤE)t/~)Ĥper−per exp(−i(ĤS + ĤE)t/~)

+ exp(−i(ĤS + ĤE)t/~)ĤSE exp(−i(ĤS + ĤE)t/~)

+ exp(iĤSt/~)ĤSL exp(−iĤSt/~)

= H̃L + H̃per-vac + H̃per-L + H̃per-per + H̃SE + H̃SL + H̃S-per

(A.23)

These Hamiltonians can be determined using the fact that the operators acting on the field

commute with those acting on the system, and with the Baker-Campbell-Hausdorff relation,
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to give, for example in the 2-level picture

H̃L =
∑
σ

~ωL(α∗σâkL,σ exp(i(ωL − ωj)t) + ασâ
†
kL,σ

exp(−i(ωL − ωj)t)

H̃per-vac = −
n∑
i=1

∑
j

d(i)
per · E0

(
exp (−ωjt) ŝ(i)

e âj + exp (iωjt) ŝ
(i)
e â
†
j

)
H̃per-L = −

n∑
i=1

∑
σ

d(i)
per · E0

(
exp (−iωLt) ŝ(i)

e αkL,σ + exp (iωLt) ŝ
(i)
e α

∗
kL,σ

)
H̃SE =

n∑
i=1

∑
j

−~Ω(i)

2

(
ŝ

(i)
− âj exp (−i(ωj + ωi)t) + ŝ

(i)
− â
†
j exp (i(ωj − ωi)t)

+ ŝ
(i)
+ âj exp (−i(ωj − ωi)t) + ŝ

(i)
+ â
†
j exp (i(ωj + ωi)t)

)
H̃SL =

n∑
i=1

∑
σ

−~Ω(i)

2

(
ŝ

(i)
− ασ exp (−i(ωL + ωi)t) + ŝ

(i)
− α

∗
σ exp (i(ωL − ωi)t)

+ ŝ
(i)
+ ασ exp (−i(ωL − ωi)t) + ŝ

(i)
+ α

∗
σ exp (i(ωL + ωi)t)

)
H̃per-per =

d2
per

4πε0

∑
j 6=i

ε(i) · ε(j) − 3(ε(i) · nij)(ε(j) · nij)
|rij|3

s(i)
e ⊗ s(i′)

e

H̃S-per =
degdper

4πε0nD

∑
i′ 6=i

ε(i) · ε(i′) − 3(ε(i) · nii′)(ε(i′) · nii′)
|rii′ |3

(s
(i)
+ exp(iωit) + s

(i)
− (−iωit))⊗ s(i′)

e

(A.24)

Using the rotating wave approximation, any terms where there is an addition of angular

momentum frequencies can be discarded as they are very fast oscillating. These terms were

unphysical anyway as they had excitations lost and photons destroyed together, or excitations

gained and photons created together, which both violate conservation of energy. As there

is summation over all ωj, the terms with ωj − ωi where the two frequencies are very close

will dominate the system, so these frequencies will either be approximated as the same, or

the term will be discarded. Similarly, we also discard ωL + ωi terms, as these will be faster
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rotating than ωL + ωi terms. The Hamiltonians are thus

H̃L =
∑
σ

~ωL
(
α∗σâkL,σ + ασâ

†
kL,σ

)
H̃SE =

n∑
i=1

∑
j

−~Ω(i)

2

(
ŝ

(i)
− â
†
j + ŝ

(i)
+ âj

)
H̃SL =

n∑
i=1

∑
σ

−~Ω(i)

2

(
ŝ

(i)
− α

∗
σ exp (i(ωL − ωi)t) + ŝ

(i)
+ ασ exp (−i(ωL − ωi)t)

)
H̃per-per =

d2
per

4πε0

∑
j 6=i

ε(i) · ε(j) − 3(ε(i) · nij)(ε(j) · nij)
|rij|3

s(i)
e ⊗ s(i′)

e .

(A.25)

and H̃per-vac, H̃per-L and H̃S-per vanish, as the frequencies cannot cancel. These equations also

hold for the three and 5-level models.

A.4 The Born-Markov Master equation

The derivation of the Born-Markov Master equation and its application to similar systems

to this are well known. It has also been previously shown that the dipole-dipole Hamiltonian

term arises due to the interaction of the system and the environment [9] [91] [42]. The typical

master equation obtained, neglecting the laser part is, in the Schrödinger frame,

dρ̂

dt
= − i

~
[ĤS + Ĥdd, ρ̂]− Γ

2

∑
D[Ŝ]ρ̂ (A.26)

where Ŝ is some jump operator, Γ is the corresponding rate, Ĥdd is the transition dipole-

dipole interaction and

D[Ŝ]ρ̂ = Ŝ†Ŝρ̂+ ρ̂Ŝ†Ŝ − 2Ŝρ̂Ŝ† (A.27)

In our case, the jump operators will be for collective decay and independent decay. We

phenomenologically include a jump term describing dephasing, due to the coupling of the

NV centres to the phononic modes in the diamond. In addition, we introduce the jump

terms into and out of the I state, which could be derived through a non-optical Born-Master

equation derivation. If the laser is on, that gives us an extra Hamiltonian piece. We thus
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have

dρ̂

dt
= − i

~
[ĤS + Ĥdd + Ĥper-per + ĤSL, ρ̂]︸ ︷︷ ︸

coherent evolution

− Γ

2

∑
σ

P (Indist.(σ))×D[Ŝσ−]ρ̂︸ ︷︷ ︸
collective decay

− Γ

2

n∑
i=1

(
1−

∑
σ

P (Indist.(σ))P (σ|i)

)
×D[ŝ

(i)
− ]ρ̂︸ ︷︷ ︸

independent decay

−
∑
σ

Γ
(σ)
dp

2
D[Ŝσz ]ρ̂︸ ︷︷ ︸

global dephasing

−
n∑
i=1

Γ
(σ)
dp

2
D[ŝ(i)

z ]ρ̂︸ ︷︷ ︸
local dephasing

− Γ0toI

2

n∑
i=1

D[ŝ
(i)
0toI ]ρ̂−

Γ1toI

2

n∑
i=1

D[ŝ
(i)
1toI ]ρ̂︸ ︷︷ ︸

decay from the excited states into the ISC

− ΓIto0

2

n∑
i=1

D[ŝ
(i)
Ito0]ρ̂− ΓIto1

2

n∑
i=1

D[ŝ
(i)
Ito1]ρ̂︸ ︷︷ ︸

decay from the ISC into the ground states

(A.28)

The collective operators only act collectively over the same polarization σ and domain l. Us-

ing the transition dipole operator already obtained, the transition dipole-dipole Hamiltonian

is

Ĥ
(i)
dd = −d̂(i)

eg ·
∑
j 6=i

Ê(j)
eg (ri)

=
d2
egnD

4πε0n3
D

∑
j 6=i

ε(i) · ε(j) − 3(ε(i) · nij)(ε(j) · nij)
|rij|3

(
|e〉 〈g|(i) + |g〉 〈e|(i)

)
⊗
(
|e〉 〈g|(j) + |g〉 〈e|(j)

)
=

d2
eg

4πε0n2
d

∑
j 6=i

ε(i) · ε(j) − 3(ε(i) · nij)(ε(j) · nij)
|rij|3

(
ŝ

(i)
+ ⊗ ŝ

(j)
− + ŝ

(j)
+ ⊗ ŝ

(i)
−

)
(A.29)

To make this equation easier to simulate, it is converted from the Schrodinger frame to

frame rotating at the mean angular frequency of the NV centres ω. This is done as per B.2.4,

choosing Â =
∑n

i=1 ~ωŝ
(i)
z . The Hamiltonians thus become

H̃S =
n∑
i=1

~(ωi − ω)ŝ(i)
z

H̃dd =
n∑
i=1

n∑
i′=1, 6=i

3~Γ(i)

4(nDk)3

d̄(i) · d̄(i′) − 3(d̄(i) · n̄)(d̄(i′) · n̄)

|ri,j|3
(
ŝ

(i)
+ ŝ

(i′)
− + ŝ

(i)
− ŝ

(i′)
+

) (A.30)

where the rotating wave approximation has been used in the dipole dipole Hamiltonian to

eliminate ŝ
(i)
+ ŝ

(i′)
+ exp(2iωt) + ŝ

(i)
− ŝ

(i′)
− exp(−2iωt),

H̃per-per = −
d2

per

4πε0

∑
i′ 6=i

ε(i) · ε(i′) − 3(ε(i) · nij)(ε(i′) · nii′)
|rii′|3

s(i)
e ⊗ s(i′)

e (A.31)
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and

H̃SL =
n∑
i=1

∑
σ

−~Ω(i)

2

(
ŝ

(i)
− α

∗
σ exp (i(ωL − ω)t) + ŝ

(i)
+ ασ exp (−i(ωL − ω)t)

)
. (A.32)

In our model, we have only considered the effects of an on-resonance π polarised laser, in

which case this simplifies to

H̃SL =
n∑
i=1

−~Ω′(d̄i · ε̄i)ŝ(i)
x (A.33)

where Ω′(d̄i · ε̄i) = 2<(α)Ω(i).

The Lindblad superoperator terms transform as

D[S̃]ρ̃ = S̃†S̃ρ̃+ ρ̃S̃†S̃ − 2S̃ρ̃S̃†

= Ŝ†Ŝρ̃+ ρ̃Ŝ†Ŝ − 2Ŝρ̃Ŝ†
(A.34)

as using S̃ = exp(iωtŜz)Ŝ exp(−iωtŜz), it is clear that for all of our jump operators, they

will either remain the same under rotation (for s̃z terms), or pick up a phase of exp(−iωt)

(for s̃− terms) or exp(±iωt/2) (for s̃ISC terms), which will cancel exactly with the phase on

the S̃† term.

The expectation value is required for calculation of photon emission, and it is

〈S̃+S̃−〉ρ̃ = Tr(ρ̃S̃+S̃−) = Tr(ρ̃Ŝ+Ŝ−) (A.35)

as again the phase terms will cancel. This gives master equation which calculates ρ̃, but

which is expressed in terms of Schrödinger operators and has expectation values calculated

in terms of Schrödinger operators.

This transformation of frame is advantageous compared to the Schrödinger picture as

while ĤS scales with

ωi ∝
1

Γ−∆
(A.36)

H̃S scales with

ωi − ω ∝
1

Γ−∆
− 1

Γ
=

∆

Γ(Γ−∆)
. (A.37)

H̃S is thus smaller by a factor of ∆/Γ ≈ 1.5× 10−7.
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