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Abstract

The precision in estimation of unknown parameters can go beyond the classical limits by
using nonclassical properties of quantum mechanics. However, nonclassical properties are
very sensitive to the interaction with environment. This interaction could result in the loss
of photons and low visibility. The purpose of this thesis is to find states and measurement
schemes which give enhancement in estimation accuracy over the classical methods in the
presence of such effects.

We begin with estimation of an unknown phase in a Mach-Zehnder interferometer in the
presence of photon loss. We propose a scheme to produce states which are loss-resistant and
perform very close to optimal states. We propose sequences of such states combined with
single photon states to obtain an unambiguous phase estimate with better accuracy than the
standard quantum limit.

We then consider the case that the loss is due to the interaction of the beam with an
ensemble of atoms. Traditionally, the transition frequencies of atoms are measured via
absorption, but there is also information available in the phase shift. We numerically find
states that give maximum information about the transition frequency, obtained from both the
absorption and the phase and quantified by the Fisher information.

We also consider phase estimation in a Ramsey interferometer using an NV centre
to measure an unknown time-independent magnetic field. The low visibility in Ramsey
measurements requires different measurement schemes than optical interferometers. We
find an optimised adaptive scheme which reaches the limit analogous to the Heisenberg-like
scaling in the estimation of the magnetic field, and outperforms the optimal non-adaptive
scheme.

Finally, we consider continuous measurement on a single spatial mode field with a time-
varying phase. We consider a phase which varies in time with power law spectral density. We
show that by using squeezed coherent states in an adaptive homodyne measurement scheme
we can estimate the phase with accuracy scaling at the Heisenberg limit.
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1
Introduction

The science of high precisionmeasurement using quantummechanics to describe the physical
system is known as quantum metrology. Although quantum mechanics imposes limits on the
possible precision, far better precision can be achieved by taking advantage of nonclassical
properties of quantum mechanical states such as entanglement and squeezing [3–6]. One
notable example is the use of squeezed states of light in gravitational wave detectors. This
was first proposed by Caves [6] and has recently been successfully demonstrated in different
prototypes [7–10]. The direct detection of gravitational waves by the LIGO observatories, an-
nounced in February 2016, marks a significant advance in high precision measurements [11].
That was achieved without squeezing, but injecting the squeezed light in the next generation
of gravitational wave detectors could result in more and frequent discoveries of gravitational
wave sources [12].

One serious impediment to obtaining improved precision with quantum states is that
they are extremely fragile. As a result of the interaction of the system with the surrounding
environment the system becomes entangled with the environment. To provide a description
of the system on its own, the environment needs to be traced out. As a result the system
state becomes a mixed state. This effect of the environment on the system is equivalent to
noise acting on the system. If the state is an entangled state, the noise tends to destroy the
entanglement, and if the state is a squeezed state, the squeezing will be reduced.

In this thesis, we address the effects of interaction with the environment in metrological
schemes. We propose quantum states and measurement schemes that are less affected by this
interaction. In this chapter, we set the foundations by reviewing the essential background.
We start with a quick review of both classical and quantum estimation theory. Then, we
review phase estimation in Mach-Zehnder and Ramsey interferometers. This is followed by
a review of dyne measurements and a summary of the thesis layout.

1.1 Estimation theory
For many quantities in quantum mechanics there is no suitable Hermitian operator to form
an observable [13]. These quantities need to be estimated based on the data obtained
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from measurement of observables [14–16]. As a result of the statistical nature of quantum
mechanics the precision in parameter estimation is limited by statistical bounds.

1.1.1 Classical parameter estimation
In random processes we need to estimate what we wish to know from a finite set of measure-
ments. Suppose we have measurement results {x1, x2, ..., xn} which depend on an unknown
parameter ϕ. Each measurement result is obtained with the conditional probability P

(
x |ϕ

)
,

i.e. the probability of measuring x given the parameter ϕ. For now, take ϕ to be an arbitrary
scalar real-valued parameter with unbounded range (in contrast to phase, where the range is
bounded). We label our estimate of ϕ based on the measurement results by ϕ̌(x1, x2, ..., xn).
The estimate is a function of the random measurement results. Therefore, it is a random
variable itself and is different for each set of the measurement results. For brevity we do not
write the dependence of the estimate on the measurement results explicitly.

An estimator is called unbiased if

〈ϕ̌〉 =
∑

x

ϕ̌ P
(
x |ϕ

)
= ϕ, (1.1)

otherwise it is called biased. The summation is over all the possible measurement results.
The bias is defined as

B(ϕ) ≡ 〈ϕ̌〉 − ϕ. (1.2)

Suppose we have obtained N samples {ϕ̌1, ϕ̌2, ..., ϕ̌N } of the unknown parameter ϕ. Normally,
we don’t know the exact probability distribution of the samples. Therefore, the distribution
mean is estimated by the mean of the samples ¯̌ϕ as

¯̌ϕ =
1
N

N∑
i=1

ϕ̌i . (1.3)

The variance of the distribution, V (ϕ) =
〈(
ϕ̌ − 〈ϕ̌〉

)2〉
=

∑
x
(
ϕ̌ − 〈ϕ̌〉

)2P
(
x |ϕ

)
, may be

simply estimated from the samples using

1
N

N∑
i=1

(
ϕ̌i − ¯̌ϕ

)2
. (1.4)

This is a slightly biased estimate of the variance, because the mean is being estimated from
the samples. (This is a different issue from bias in the estimate of ϕ.) An unbiased estimate
may be obtained simply by replacing N with N − 1, so the estimate is

1
N − 1

N∑
i=1

(
ϕ̌i − ¯̌ϕ

)2
. (1.5)

The goal is to provide an estimate that is best, in the sense of being closest to the actual
value of ϕ. For such an estimate the distribution is centred at the actual value of the parameter,
and its peak is as narrow as possible. The quality of an estimator may be quantified by the
mean square error (MSE) defined as

MSE(ϕ) =
〈
(ϕ̌ − ϕ)2

〉
= V (ϕ) +

(
B(ϕ)

)2. (1.6)
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As is clear, for unbiased estimates, i.e. for estimates where B(ϕ) = 0, the MSE and the
variance are the same. If one were to just consider the variance of the estimators, biased
estimators would appear to give results that are as good as unbiased estimators. One could
place an additional restriction that the estimator is unbiased. Instead the MSE penalises
biased estimators in a natural way.

Note that, for pathological estimators which always give the same value, the MSE is zero
for a particular value of the parameter ϕ. However, if we consider the performance of this
estimator for other values of ϕ the MSE won’t be zero. Therefore, to realistically evaluate the
performance of the estimate we should take the average of the MSE over the full range of the
parameter ϕ. On the other hand, for covariant measurements [17] the probability distribution
of the MSE in the estimate is independent of the parameter. Therefore, we do not need to
take the average for covariant measurements.

Holevo variance

We will consider the specific case of phase, which is bounded to the range [0, 2π) or more
generally [θ0, θ0 + 2π), in which case there are problems with the usual definition of the
variance. One of the problems is that in the limit of a flat distribution we expect the variance
to go to infinity. However, because of the limited range for the phase distribution, we obtain a
finite variance with the usual definition of the variance [18, 19]. Furthermore, if the mean of
the distribution is at one bound of the phase range, the usual definition of the variance results
in very large values.

To avoid these problems, alternative figures of merit are considered which are naturally
modulo 2π. Many of these measures are based on the average of the exponential of the phase,
i.e.

〈
exp

(
iϕ

)〉
[17, 20–22]. One such measure is the Holevo phase variance defined as [17]

VH =
���
〈
ei(ϕ̌−ϕ)〉���

−2
− 1. (1.7)

To penalise biased estimates the Holevo variance can be modified to

VH =
[
Re

〈
ei(ϕ̌−ϕ)〉]−2

− 1, (1.8)

which is the equivalent of the MSE for the Holevo variance. These two definitions of the
Holevo variance are equivalent if the measurement is unbiased in the sense that [23]

ϕ = arg
〈
eiϕ̌

〉
. (1.9)

The Holevo phase variance is approximately the same as the usual variance for distributions
sharply peakedwell away from the bounds of the phase range. For unbiased estimates, Holevo
variance can be estimated from the samples as

�������

1
N

N∑
j=1

ei(ϕ̌ j−ϕ)
�������

−2

− 1. (1.10)

Cramér-Rao bound

Our desired estimate is the one that minimises the MSE. The Cramér-Rao bound gives a
lower bound on the variance of an unbiased estimate (so the variance is equal to the MSE).
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To derive the lower bound, consider the measurement results {x1, x2, ..., xn} obtained with
the conditional probabilities P

(
x |ϕ

)
. We have∑

x

P
(
x |ϕ

)
= 1. (1.11)

For an unbiased estimator we can write

〈ϕ̌〉 = ϕ =
∑

x

ϕ̌ P
(
x |ϕ

)
. (1.12)

Taking the derivative of Eqs. (1.11) and (1.12) with respect to the parameter ϕ we obtain∑
x

∂P
(
x |ϕ

)
∂ϕ

=
∑

x

P
(
x |ϕ

) ∂ ln P
(
x |ϕ

)
∂ϕ

=

〈
∂ ln P

(
x |ϕ

)
∂ϕ

〉
= 0 (1.13)

∂ 〈ϕ̌〉

∂ϕ
=

〈
ϕ̌
∂ ln P

(
x |ϕ

)
∂ϕ

〉
= 1. (1.14)

Using the Cauchy-Schwarz inequality for ∂ ln P(x |ϕ)/∂ϕ and ϕ̌ we obtain

V
(
ϕ
)
≥

1
F
(
ϕ
) , F

(
ϕ
)
=

〈(
∂ ln p

(
x |ϕ

)
∂ϕ

)2〉
(1.15)

where F
(
ϕ
)
is called Fisher information. It is a measure of the information that the experi-

mental setup reveals about ϕ. Equation (1.15) is called the Cramér-Rao bound. According to
this equation, the lower bound on the variance of an unbiased estimator is set by the inverse of
the Fisher information. Repeating the experiment M times increases the Fisher information
by a factor of M and therefore

V
(
ϕ
)
≥

1
MF

(
ϕ
) . (1.16)

Note that, theCramér-Rao bound only gives a lower bound on the variance of an estimate. This
means the variance obtained from the experiment does not necessarily reach this lower bound.
It is possible to saturate the Cramér-Rao bound in the limit of many measurements, but only
for probability distributions with a unique global maximum and finite Fisher information [24].
When the Fisher information is infinite the Cramér-Rao bound is zero, which is not achievable.
The Fisher information can be infinite for a finite mean photon number [25]. This happens
when the variance of the photon number is infinite (despite the mean photon number being
bounded). The reason why the mean photon number should be bounded is that, if it is not
bounded, then the average energy is infinite, which is unphysical. It is trivial to see that the
Fisher information can be infinite in the limit of infinite mean photon number.

Caution is needed in using the Cramér-Rao bound for phase measurements, because it is
not possible for phase estimates to be completely unbiased in the sense that both B(ϕ) and
∂B(ϕ)/∂ϕ are zero for all ϕ [26]. For biased measurements there is an alternative form for
the Cramér-Rao bound [23, 27].

When using the Cramer-Rao bound, the MSE is calculated for a single value of the
parameter ϕ, which is distinct from the approachmentioned above where theMSE is averaged
over the parameter ϕ. When theMSE is averaged over ϕ, the Cramer-Rao bound does not hold.
In the averageMSE approach, one allows any estimator, but estimators that have unreasonable
behaviour, like the pathological example above, will be penalised because they give large
MSE for some values of the parameter. In contrast, when using the Cramer-Rao bound
the requirement that the estimator is unbiased ensures that the estimator is reasonable and
excludes pathological cases. This means that the MSE accurately quantifies the performance
of the estimator, even when it is only evaluated at a single value of ϕ.
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1.1.2 Quantum parameter estimation
The Fisher information is a function of the conditional probability P

(
x |ϕ

)
. In quantum

mechanics, the probability of measurement result x is given via a positive-operator valued
measure (POVM), which consists of a set of positive semidefinite Hermitian operators {Ex }

which sum to the identity. The probability for measurement result x is then given by Tr
(
Ex ρ

)
.

In our case, the state is a function of the parameter ϕ, so the probability for x as a function of
ϕ is given by

P
(
x |ϕ

)
= Tr

(
Ex ρ

(
ϕ
))
. (1.17)

The Fisher information can be maximised by optimising the state of the system and the
POVM. The Fisher information optimised over all the possible quantum measurements is
the quantum Fisher information FQ. The inverse of the quantum Fisher information gives a
further lower bound for the variance, known as the quantum Cramér-Rao bound [28]. For M
repetitions of the experiment we have

V
(
ϕ
)
≥

1
MF

(
ϕ
) ≥ 1

MFQ
(
ϕ
) . (1.18)

In many cases, including phase measurement, the unknown parameter ϕ is imprinted on
the probe state via a unitary operation Uϕ = exp

(
−iϕH

)
, where H is a known Hermitian

operator. For phase, H would be the photon number operator. For a pure probe state the
quantum Fisher information FQ is equal to 4V (H), where V (H) is the variance of H for the
probe state [28, 29]. In this case, the quantum Cramér-Rao bound for M repetitions of the
process is of the form [28, 29]

V
(
ϕ
)
≥

1
4MV (H)

. (1.19)

In the estimation of a general parameter X , if X can be represented by an observable, the above
equation corresponds to the Heisenberg uncertainty relation for the conjugated variables [30–
32]. There is no phase operator, so the above form of the Heisenberg uncertainty relation
does not hold for phase. In this case the uncertainty relation can be identified with the
Mandelstam-Tamm bound [33].

The unknown parameter, which could be length difference, magnetic field, temperature
or other physical quantities, is imprinted as a phase shift on the probe state. Therefore, the
unknown parameter estimation is a phase estimation problem. To be able to obtain a quantum
enhancement in parameter estimation we need to use nonclassical features such as squeezing
and entanglement. This can be implemented with interferometric or dyne measurements
which we review in the following sections.

1.2 Mach-Zehnder interferometer
AMach-Zehnder interferometer is shown in Fig. 1.1. It consists of two 50/50 beam splitters,
an unknown phase shift ϕ which we would like to measure, another phase shift θ which
is known and can be controlled, and two mirrors. In this section we review the Bayesian
estimation techniques introduced in Refs. [34, 35].

1.2.1 Single photons
First consider having a single photon in one of the input modes and vacuum in the other mode,
represented by the state |1, 0〉. The 50/50 beam splitter (BS) transforms the input creation
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operators to

â†0 →
1
√

2

(
b̂†1 + ib̂†0

)
, â†1 →

1
√

2

(
b̂†0 + ib̂†1

)
, (1.20)

and the phase shifter ϕ transforms the creation operator of the upper mode to

b̂†0 → eiϕĉ†0 . (1.21)

Therefore

|1, 0〉 = â†0 |0, 0〉

7→
1
√

2

(
b̂†1 + ib̂†0

)
|0, 0〉

7→
1
√

2

(
eiθ ĉ†1 + ieiϕĉ†0

)
|0, 0〉

7→
1
2

[
eiθ

(
d̂†0 + id̂†1

)
+ ieiϕ

(
d̂†1 + id̂†0

)]
|0, 0〉

=
1
2

eiθ
[(

1 − ei(ϕ−θ)) |1, 0〉 + i
(
1 + ei(ϕ−θ)) |0, 1〉] . (1.22)

The conditional probability of detecting a photon in the output modes d0 and d1, correspond-
ing to u = 0 and u = 1, respectively, given the phases ϕ and θ is

P
(
u|ϕ, θ

)
=

1 + (−1)u+1 cos
(
ϕ − θ

)
2

. (1.23)

In order to estimate the system phase we calculate the probability distribution of the
system phase ϕ. We repeat the experiment N times and use Bayes’ theorem to calculate
this probability distribution. After each run we update our knowledge of the phase by using
Bayes’ theorem which can be stated as [36]

P(A|B) =
P(B |A)P(A)

P(B)
. (1.24)

q
0

a

1
a

1
b

0
b

0
c

1
c

0
d

1
d

0
c

0
b

Figure 1.1: Mach-Zehnder interferometer. It consists of two beam splitters (BS), two mirrors
(M) and two phase shifters, ϕ and θ. We have labeled the modes after each BS and phase
shifter.
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That is, Bayes’ theorem gives the conditional probability of A given B, P(A|B), from the
conditional probability of B given A, P(B |A), and the probabilities of A and B, P(A) and
P(B). For phase we need a probability density (the integral over a finite range of phase gives
a probability). The form of Bayes’ theorem is unchanged for probability density. Assuming
we have no initial knowledge of the phase, the initial probability density for the phase is flat,
i.e. P

(
ϕ
)
= 1/2π. If we label the measurement result for the first run by u1, according to

Bayes’ theorem we can write

P
(
ϕ|u1, θ1

)
∝ P

(
u1 |ϕ, θ1

)
(1.25)

where the proportional to symbol is due to omitting a normalization factor. After the second
run we update our knowledge of the phase based on the measurement result u2 and the already
obtained knowledge P

(
ϕ|u1, θ1

)
, using Bayes’ rule

P
(
ϕ|u2, θ2

)
∝ P

(
u2 |ϕ, θ2

)
P
(
ϕ|u1, θ1

)
. (1.26)

After repeating this process N times we obtain the probability of ϕ given all the measurement
results. In the limit of many measurements this probability distribution is a Gaussian centred
at the actual system phase with the variance 1/(NF (ϕ)) [37]. However, we stress that here we
use Bayes’ theorem in order to find the phase estimate. We do not quantify the performance
of the estimate in terms of the spread of this probability distribution.

In general the controlled phase θ may be changed after each measurement, and we have
denoted the initial controlled phase by θ1, the controlled phase for the second measurement
by θ2, and so forth. The controlled phases can be independent of the measurement results
(non-adaptive updating) or they can be changed based on the previous measurement results
(adaptive updating). Figure 1.2 shows the probability of the system phase ϕ = π/4 given the
measurement results after 100 measurements using single-photon states. In this figure, we
have incremented the controlled phase by steps of π/100 after each run. If we were fixing
the controlled phase through the whole process, we would obtain two peaks, one centred at
ϕ = π/4 and the another peak, if θ = 0, centred at 7π/4. Incrementing the controlled phase
by π/100 resolves this ambiguity in the phase estimate. The ambiguity in the phase estimate
is because cos

(
ϕ − θ

)
= cos

(
2π − ϕ + 2θ − θ

)
. For θ < ϕ, we obtain two peaks centred at

ϕ and 2π − ϕ + 2θ. To avoid this ambiguity the controlled phase should not be kept fixed
after every measurement.

The calculations for Bayesian updating can be simplified considerably by writing the
conditional probabilities of measurement results P

(
u|ϕ, θ

)
as a Fourier series [34], i.e.

P
(
u|ϕ, θ

)
=

1
2π

∑
j

a je−i jϕ. (1.27)

Since the probability distribution is real we have a∗j = a− j . The probability given in Eq. (1.23)
can be written as a trivial three-term Fourier series with a0 = 1, a1 = e−iθ/2 and a−1 = eiθ/2,
and a j = 0 for all other j. The coefficients of the Fourier series after ` runs are updated
according to

a(`)
j = a(`−1)

j +
u`
2

(
eiθa(`−1)

j−1 + e−iθa(`−1)
j+1

)
(1.28)

where u` is the measurement result of the `th run, and ` = 0 corresponds to the initially flat
probability distribution for which a(0)

0 = 1 and a(0)
j = 0 for j , 0. In more general cases with

different input states, the probability distribution for the detections can still be written as a
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Figure 1.2: The probability distribution for the system phase after 100 measurements using
single-photon states. This is an example for randomly generated measurement results, and
the actual system phase is π/4 ≈ 0.8.

Fourier series, and this approach still works. The unknown phase ϕ is estimated based on the
updated probability for the phase P

(
ϕ|u, θ

)
according to

ϕ̌ = arg
∫ 2π

0
eiϕP

(
ϕ|u, θ

)
dϕ = arg (a−1) (1.29)

where a−1 is the coefficient of the e−iϕ term in the Fourier expansion. This estimate of the
phase minimises the variance V

(
ϕ
)
[35].

The variance of the estimate of ϕ can be estimated from the error propagation formula [38]

V
(
ϕ
)
=

V
(
Â
)

���∂
〈

Â
〉
/∂ϕ

���
2 , (1.30)

where Â is the observable from which the estimate of the phase is obtained. According to
this equation the variance of the phase can be decreased not only by decreasing the variance
in Â, but also by increasing the gradient of

〈
Â
〉
with respect to phase. For the single photon

case the observable Â can be taken as Â = |1, 0〉 〈0, 1| + |0, 1〉 〈1, 0| [39]. For this observable
we obtain

〈
Â
〉
= P

(
1|ϕ, θ

)
− P

(
0|ϕ, θ

)
= cos

(
ϕ − θ

)
, and therefore the gradient is obtained

as ∂
〈

Â
〉
/∂ϕ = sin

(
ϕ − θ

)
.

The Fisher information, given in Eq. (1.15), can be written as

F =
∑

u

1
P
(
u|ϕ, θ

) (
∂P

(
u|ϕ, θ

)
∂ϕ

)2

. (1.31)

For the state |1, 0〉, using the probability given in Eq. (1.23), we obtain F = 1. For N copies
of the state |1, 0〉, the additivity of the Fisher information gives F = N . We group together
the N copies of the single photons and consider it as a single state with N photons. From the
Cramér-Rao bound the variance of an unbiased estimate of the phase is lower bounded as

V (ϕ) ≥
1
N
. (1.32)
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Recall that in general it is not possible to have an unbiased estimate of the phase.

To find the quantum lower bound we calculate the quantum Fisher information. The state
|1, 0〉 is a pure state and the phase shift action, U = exp

(
ib̂†0b̂0ϕ

)
, is a unitary operator where

b̂†0b̂0 is the photon number operator in the upper arm of the interferometer. Therefore, as we
discussed in Section 1.1.2, the quantum Fisher information can be obtained from the variance
of the generator of the phase shift b̂†0b̂0 for the state just before the phase shift. The variance
is easily calculated to be V (b̂†0b̂0) = 1/4. Therefore, we have FQ = 4V (b̂†0b̂0) = 1, and for a
state consisting of N copies of the single photon states, due to the additivity of the quantum
Fisher information we obtain FQ = N . In fact, this is just a special case of the general result
that the quantum Fisher information is achieved by photon counting for pure states that are
symmetric between the arms of the interferometer [40].

Since the quantum Fisher information is equal to the Fisher information, further optimisa-
tion over themeasurement scheme cannot increase the Fisher information for this unentangled
state. However, the variance will depend on the measurement scheme. For example adaptive
schemes will improve over non-adaptive schemes. It is only the lower bound provided by
the Cramér-Rao bound which is unchanged. This lower limit on the variance, is known as
the standard quantum limit (SQL). It is the lowest variance possible with states that can be
regarded as “quasi-classical”, in the sense that they have properties that can be described
by classical physics. Single photons are often regarded as nonclassical, because they have a
Wigner function that take negative values. However, for coherent states, which are usually
regarded as quasi-classical, with mean photon number n̄ in one of the input modes and vac-
uum in the other input mode we obtain the same scaling i.e. 1/n̄. In other words, the SQL
scales with the inverse of the number of photons or mean photon number in the state.

It is clear that the lower limit on the variance can be decreased by increasing the resources,
quantified by the total number of photons. Instead of increasing the resources, we aim to
achieve more accurate measurements with the same resources by using more sophisticated
techniques. This can be achieved by using input states with nonclassical properties such as
entanglement.

1.2.2 NOON states

A well-known type of entangled states is NOON states. They were first considered in
Ref. [41] in the study of decoherence on the Schrödinger cat states, and rediscovered in
Refs. [39, 42] in the context of quantum imaging and quantum metrology. A NOON state
is an equal superposition of N photons in one arm and 0 in the other arm and vice versa,
i.e. ( |N, 0〉 + |0, N〉) /

√
2 [43]. Note that, the convention is that the NOON state is the state

in the arms of the interferometer, rather than the state prior to the initial beam splitter. The
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phase shifts and the last beam splitter transform the NOON state according to

1
√

2
(|N, 0〉 + |0, N〉) =

1
√

2N!

[(
b̂†0

)N
|0, 0〉 +

(
b̂†1

)N
|0, 0〉

]

7→
1
√

2N!

[(
ĉ†0eiθ

)N
|0, 0〉 +

(
ĉ†1eiϕ

)N
|0, 0〉

]

7→
1

√
2N+1N!

[
eiNθ

(
d̂†1 + id̂†0

)N
|0, 0〉 + eiNϕ

(
d̂†0 + id̂†1

)N
|0, 0〉

]

7→
1

√
2N+1N!


eiNθ

N∑
n1=0

(
N
n1

)
in1

(
d†1

)N−n1 (d†0)n1

+eiNϕ
N∑

n1=0

(
N
n1

)
iN−n1

(
d̂†0

)n1 (d̂†1)N−n1

|0, 0〉

7→
1

√
2N+1N!

N∑
n1=0

(
N
n1

) (
d̂†1

)n2 (d̂†0)n1 eiNθ
[
in1 + in2 eiN (ϕ−θ)

]
|0, 0〉 ,

(1.33)

where n1 and n2 = N − n1 correspond to the number of photons in the two output modes.
The probability of detecting n1 photons in one of the output modes and n2 in the other is
proportional to

P
(
n1, n2 |ϕ

)
∝

���i
n1 + in2 eiN (ϕ−θ) ���

2

∝ 1 + cos
[
N (ϕ − θ) − (n1 − n2) π/2

]
∝

{
1 + (−1)(n1−n2)/2 cos

[
N (ϕ − θ)

]
, N even

1 − (−1)(n1−n2+1)/2 sin
[
N (ϕ − θ)

]
, N odd (1.34)

The expressions on the last line above are obtained by noting that for N even, n1 − n2 is also
even and (n1 − n2)π/2 is an integer multiple of π. Similarly for N odd, n1 − n2 = 2n1 − N
is also odd. For even N the power of (−1) is (n1 − n2)/2, and for odd N the power is
(n1 − n2 + 1)/2. In each case this quantity is an integer, and the probability only depends
on its parity. Note the N-fold phase enhancement in the output conditional probabilities.
This makes the conditional probability vary N times faster, and therefore the gradient of the
probability increases by a factor of N . This is shown in Fig. 1.3. This enhancement in the
phase shift, known as super-resolution, results in 1/N enhancement in the precision. This can
be seen from the error propagation formula given in Eq. (1.30). In this case, the observable
can be taken as ÂN = |N, 0〉 〈0, N | + |0, N〉 〈N, 0| and the error propagation formula gives
V

(
ϕ
)
= 1/N2 [39].

Considering the proportionality factor in Eq. (1.34) and using Eq. (1.15), the Fisher
information of a NOON state is obtained as F = N2. A NOON state is a pure state, therefore
its quantum Fisher information can be calculated easily by taking the variance of the photon
number operator b̂†0b̂0. The quantum Fisher information of a NOON state is equal to the
Fisher information, FQ = N2. Because the NOON state is path symmetric, the quantum
Fisher information will be achieved with photon counting [40]. From the quantum Cramér-
Rao bound, the variance of an unbiased phase estimate is obtained as V (ϕ) ≥ 1/N2. This
lower bound is the ultimate bound allowed by quantum mechanics and is often called the
Heisenberg limit [44]. The Heisenberg limit scales with the inverse of the square of the
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Figure 1.3: The output conditional probability. Green, solid line: three-photon NOON state.
Black, dashed line: single photon state.

number of photons in the state. Note that, if we consider M repetitions of the state there will
be an extra 1/M factor in the SQL and the Heisenberg limit.

Photon loss and NOON states

Although NOON states attain the Heisenberg scaling and have super-resolution, they are very
sensitive to photon loss [45, 46]. Loss of even one photon from a NOON state destroys the
entanglement and the phase information of the state; if a single photon is lost, detection of
that photon would be sufficient to tell an observer which arm has all N photons. In other
words, if the photon is lost from the upper arm, the NOON state collapses to |N − 1, 0〉 and if
the photon is lost from the lower arm, the state collapses to |0, N − 1〉. Neither of these states
is sensitive to phase; for one state the phase shift only gives an undetectable global phase on
that state and for the the other state there is no photon passing through the phase shift.

In reality, when a photon is lost there is no observer detecting the lost photon. However,
the effect on the state is as if the photon were detected and the result, i.e. the knowledge of
which arm the photon was in, were discarded. This means that a single photon lost gives
an incoherent mixture of |N − 1, 0〉 and |0, N − 1〉. In fact, it is not even known how many
photons are lost. Therefore, the state will be a mixed state with different numbers of photons
lost. The number of photons lost will only be known after detection, provided the initial
number of photons is known.

Phase ambiguity

Another issue with NOON states is that the estimate of the phase obtained from NOON states
is ambiguous. This is because the measurement results give Nϕ mod 2π rather than ϕ mod
2π. In other words, if we obtain an estimate of the phase ϕ̌, the actual value of the phase
could be ϕ = ϕ̌ + mπ/(N − 1) where m could be any integer between 0 and N − 1. To
remove this ambiguity we need to have additional knowledge of the phase. This information
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could be known prior to the measurement or obtained by extra measurement steps. A number
of approaches have been proposed to resolve this ambiguity [47–50]. The quantum phase
estimation algorithm discussed in the following section is an effective tool to remove this
ambiguity.

1.3 Quantum phase estimation algorithm
The quantum phase estimation algorithm (QPEA) is an algorithm to measure the phase of an
eigenvalue eiϕ of a unitary operator U. Here, rather than using the inverse quantum Fourier
transform, which requires entangling gates, we give the version that uses local measurements
and feedback [51, 52]. The QPEA has widely been used in optical [26, 49, 50] and solid state
systems [53–57] to measure a physical phase instead of an eigenvalue.

The circuit diagram for the QPEA is shown in Fig. 1.4. The algorithm uses an eigenstate
of the unitary U, |u〉, and K + 1 control qubits in the state |+〉 = ( |0〉 + |1〉) /

√
2 which are

measured in sequence. The algorithm estimates the phase ϕ, that can be expressed with K +1
binary digits, i.e. it can be expressed as the binary fraction

ϕ = 2π
K∑

k=0

uk

2k = 2π × (0.u0.u1...uK ). (1.35)

where uk can take the values 0 or 1. Each qubit controls a power of U applied to the input
state |u〉. In particular, the kth qubit, |+〉k , controls the application of U2k on the input state.
This introduces the phase shift exp(i2kϕ) on the |1〉 component of the kth qubit, i.e. evolves
the qubit to

|+〉k →
1
√

2

(
|0〉 + ei2kϕ |1〉

)
. (1.36)

The qubit is thenmeasured in the X basis and based on the measurement result, the phase shift
R(θ) = |0〉 〈0|+eiθ |1〉 〈1| is applied to the subsequent qubits. That is, there is no initial phase
rotation, so none is indicated in the diagram in Fig. 1.4. The first measurement is performed
on |+〉K . If the phase ϕ can be exactly expressed as 2π × (0.u0...uK ), the measurement result
gives uK . Based on this measurement result, the feedback phase is set to uKπ/2K so that we
have ϕ− θ = 2π × (0.u0...uK−1). The next measurement is on |+〉K−1 and it gives uK−1. This
continues until all the digits of ϕ are determined.

The QPEA can be implemented in a Mach-Zehnder interferometer by using a sequence
of NOON states starting from a 2K -photon NOON state followed by a 2K−1-photon NOON
state down to a single photon state. The controlled application of the unitary U is simply
the action of the unknown phase shift in one of the arms of the interferometer. The phase
shift R(θ) corresponds to the controlled phase shift θ in the other arm of the interferometer.
This phase is controlled for each NOON state based on the previous measurement results. In
this interferometric version, the phase rotations on each qubit are all bundled together as one
controlled phase.

If the phase can be expressed exactly with K bits, the phase estimate obtained from the
QPEA corresponds to the actual phase. However, if the phase is unknown and not necessarily
a binary fraction of finite length, the QPEA gives only SQL scaling for the variance of the
phase estimate [49]. To achieve the Heisenberg scaling the QPEA needs to be generalized.
In the generalized form of the QPEA each power of U, i.e. U2k , or equivalently each 2k-
photon NOON state, for k = K, ..., 0, needs to be repeated M times [49, 50]. Using Bayesian
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Figure 1.4: Quantum phase estimation algorithm diagram to estimate a phase with four binary
digits. Double lines represent classical rails.

updating and adaptive feedback, this scheme can reach the Heisenberg scaling for constant
M , provided M ≥ 4 [49]. In this generalization, at each step the feedback phase is chosen to
minimise the Holevo variance of the phase estimate after the next detection. To minimise the
Holevo variance one needs to maximise ���

〈
eiϕ̌

〉��� (see Eq. (1.7)). Note that, whenmeasurements
are performed with 2k-photon NOON states, the phase is known modulo 2π/2k . Therefore,
we instead need to maximise ���

〈
ei2k ϕ̌

〉���.
In general, M can be taken to be a function of K and k. A variation commonly considered

is linear scaling with k as M (K, k) = G + F (K − k) for F > 0. As is clear, G is the number
of applications of U2K or equivalently the number of repetitions of the 2K -photon NOON
state. As k is reduced the number of repetitions increases. The motivation for this variation is
that measurements with smaller values of k distinguish between the multiple phase estimates
obtained by larger values of k. Inaccuracy in distinguishing between these phase estimates,
results in a large variance. Moreover, since smaller values of k require less resources, it is
better to have larger number of measurements for small values of k to avoid large variances
in the phase estimate.

For appropriately chosen values of G and F even a non-adaptive QPEA scheme reaches
the Heisenberg scaling [50]. In the non-adaptive scheme, the controlled phase is incremented
by π/M (K, k) after measurement on each of the 2k-photon NOON states, independent of the
measurement results. In this case, the number of repetitions needs to be a function of k and
in comparison to the adaptive scheme, the number of repetitions needs to be larger.

The measurement scheme we will use in Chapter 2 is inspired by the adaptive form of the
QPEA. In Chapter 4 we use both adaptive and non-adaptive forms of the generalized QPEA.

1.4 Ramsey interferometry
The Ramsey interferometer is formally equivalent to the Mach-Zehnder interferometer. It
is used for precise measurement of transition frequency in atoms [58] and to measure other
physical quantities that affect the transition frequency such as magnetic field [59]. A diagram
of the Ramsey interferometer is shown in Fig. 1.5. It consists of two π/2 Rabi pulses, which
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Figure 1.5: Ramsey interferometry. A π/2 pulse prepares an equal superposition of the
ground and excited state of a two level atom, initially in the ground state. The atom then goes
through a free evolution. This is followed by another π/2 pulse which projects the atom into
one of the states depending on the phase ϕ imprinted on the superposition state.

are equivalent to the two beam splitters in the Mach-Zehnder interferometer, and a free
evolution, equivalent to the phase shift in the Mach-Zehnder interferometer.

Consider a two-level atom initially prepared in its ground state. The first π/2 Rabi pulse
prepares an equal superposition of the ground and excited state, |0〉 and |1〉, respectively.
The system then undergoes a free evolution for a fixed time t0 in which the relative phase
shift ∆Et0/~ = ωt0 is induced between the two states, where ∆E is the energy difference
between the two states, ω is the transition frequency, ~ is the reduced Planck constant and t0
is the evolution time. The second π/2 pulse is then applied and the final state is measured.
Depending on the relative phase shift, the atom is measured in either the ground or the excited
state.

Treating the two-level atom as a qubit, the state evolution from the initial state to the final
state can be described as

|0〉
Ry ( π2 )
−−−−−→

1
√

2
( |0〉 + |1〉)

Rz (ϕ)
−−−−−→

1
√

2

(
|0〉 + eiϕ |1〉

)
Ry ( π2 )
−−−−−→

{
p
(
0|ϕ

)
=

(
1 + cos ϕ

)
/2

p
(
1|ϕ

)
=

(
1 − cos ϕ

)
/2 (1.37)

Here, ϕ = ωt0, Ri (ϕ) = exp(−iϕSi) is the rotation operator on the Bloch sphere along the i
axis, with Si being the spin operator. If we consider the interaction time to be 2k multiple
of t0, for an integer k, we obtain 2k-fold phase shift. This is mathematically equivalent to a
2k-photon NOON state in the Mach-Zehnder interferometer. The methods we discussed in
the previous section can also be implemented in Ramsey interferometry to resolve ambiguity
in the phase estimate and obtain the limit analogous to the Heisenberg limit for the variance
of the phase estimate [54, 60, 61].

1.5 Dyne measurements
The phase of a beam in a single spatial mode can be estimated from measurements of
quadratures of the field. Measurements of this type include homodyne (where just one
quadrature is measured), heterodyne (where both quadratures are measured), and adaptive
measurements that approximate homodyne measurements. In general, these measurements
can be called dyne measurements [18, 62, 63]. A diagram of a dyne measurement is shown
in Fig. 1.6. Consider a single-mode field such as a continuous coherent state ���α = |α | e

iϕ
〉
.
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Figure 1.6: Adaptive measurement of the phase ϕ imposed on a single-mode beam. This
scheme approximates the homodyne measurement. The single mode is combined with a
strong local oscillator (LO) on a 50/50 beam splitter (BS). Based on the result of detectors
D1 and D2 the processor adjusts the phase of the local oscillator θ.

The phase ϕ can be measured by measuring the electric field of the beam. The electric field
operator is

~̂E =

√
~ω

2ε0V

(
~e âei

(
~k .~r−ωt

)
+ ~e

∗

â†e−i
(
~k .~r−ωt

) )
(1.38)

where ~ is the reduced Planck constant, ε0 is the vacuum permittivity, V is the quantization
volume, ω is the angular frequency, ~e is the polarization vector, and a and a† are annihilation
and creation operators. This operator is proportional to the quadrature operator

X̂θ = âe−iθ + â†eiθ (1.39)

where θ = ωt − ~k .~r .
To measure θ, the field is combined at a 50/50 beam splitter with a strong coherent state

which can be treated classically, and is known as the local oscillator (LO). The LO acts as a
phase reference. The annihilation operators of the two output ports of the beam splitter, d̂0
and d̂1 at time t can be written as [64]

d̂i (t) =
1
√

2

(
â + (−1)iγ

)
, i = 0, 1 (1.40)

where â is the annihilation operator of the coherent state, and γ is the amplitude of the LO.
The photodetection rate in each of the outputs is given by〈

d̂†i (t)d̂i (t)
〉
=

1
2

〈(
â† + (−1)iγ∗

) (
â + (−1)iγ

)〉
=

1
2

(
|α |2 + |γ |2 + (−1)i2Re

(
αγ∗

))
.

(1.41)
Denoting the number of photocounts in each output in the time interval [t, t + δt) by δNi, the
difference photocurrent between the two output ports of the beam splitter can be be written
as

I (t) = lim
δt→0

lim
|γ |→∞

δN0 − δN1

|γ | δt
(1.42)
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The expectation values of the increments δNi in the limit δt → 0 can be written as

〈dNi (t)〉 =
〈
b̂†i (t) b̂i (t)

〉
dt. (1.43)

For the continuous coherent state |α〉 this gives [64]

I (t)dt = 2Re
(
αe−iθ(t)

)
dt + dW (t), (1.44)

where θ(t) is the phase of γ and dW (t) is a Wiener increment. Note that, 〈I (t)〉 =
〈
X̂θ

〉
.

Thus, photocurrent measurement is measurement of the θ quadrature. Based on the difference
photocurrent an estimate of the phase can be obtained through Bayesian updating [65–67]
or based on mathematical functions [19, 64, 68–71]. The technique we are following in this
thesis is the latter.

In heterodyne measurements, the phase of the LO is varied linearly, i.e. it is set to
θ(t) = θ0 + ∆t, where t is time, ∆ is detuning and θ0 is the phase at t = 0. The difference
photocurrent has equal information about Xθ=0 and Xθ=π/2. The phase estimate ϕ̌(t) can be
obtained from an appropriate functional of the measured photocurrent.

If the signal phase is known approximately, a lower phase variance can be obtained by
setting the phase of the LO to θ = ϕ + π/2 to measure the phase quadrature Xϕ+π/2. This
is known as homodyne measurement. If we don’t have any information about the phase
in advance, we can use adaptive homodyne measurement in which the phase of the LO is
changed during the measurement. The result of the previous measurements is used to obtain
an estimate of the phase ϕ̌. The LO phase is then set to θ(t) = ϕ̌(t) + π/2. [68, 72].

For a phase that varies as a Wiener process, i.e.,

dϕ
dt
=
√
κξ (t), (1.45)

where κ is the noise strength and ξ is a real Gaussian white noise defined as〈
ξ (t)ξ (t′)

〉
= δ(t − t′), (1.46)

using a coherent state in an adaptive homodyne scheme gives N−1/2/2 for the variance of
the phase [64, 70, 71]. A squeezed state, on the other hand, gives N−2/3 scaling for the
phase variance [64, 70, 71]. In Chapter 5 we show that using squeezed states in an adaptive
homodyne scheme we can obtain Heisenberg scaling for a more general time varying phase.

1.6 Thesis layout
Having set the basis in this chapter, in the following chapters we address the following
problems in quantum metrology.

In Chapter 2, we study the effect of photon loss in Mach-Zehnder interferometer. We
propose a set of states that are resistant to photon loss and are obtained by processing the
output from parametric down-conversion. We use sequences of such states in an adaptive
measurement scheme in order to obtain an unambiguous phase measurement that beats the
standard quantum limit.

In Chapter 3, we find optimal states for spectroscopy in an interferometric scheme. We
consider a Mach-Zehnder interferometer with an ensemble of atoms in one of its arms. We
show that at frequencies near the transition frequency of atoms, additional information about
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the transition frequency can be obtained from the phase. We consider the information about
the transition frequency obtained from both the absorption and the phase shift, as quantified
by the Fisher information. We examine the use of multiple single-photon states, NOON
states, and numerically optimised states that are entangled and have multiple photons.

In Chapter 4, we move to Ramsey interferometry and magnetic field sensing using an
NV centre. In this collaborative work with experimentalists we consider non-adaptive and
a range of adaptive phase estimation algorithms to get an unambiguous estimate of an
unknown time-independent magnetic field. We show that, although non-adaptive protocols
reach the Heisenberg scaling, there is an optimised adaptive protocol that outperforms the
non-adaptive protocol. We show that the enhancement obtained by the optimised adaptive
protocol is significant if the overhead time, i.e. initialisation and measurement time are taken
into account.

In Chapter 5, rather than single shot measurements considered up to that point in the
thesis, we consider continuous measurements. Moreover, rather than entanglement, we
exploit squeezing, another nonclassical property. The phase we consider in this chapter is a
fluctuating phase with power law spectral density, imposed on a continuous squeezed state.
We show that by using squeezed states in an adaptive homodyne measurement scheme we
can reach the Heisenberg scaling for the variance of the phase estimate.
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2
Loss resistant unambiguous phase

measurement

2.1 Introduction

In the previous chapter we explained that although NOON states give the highest Fisher
information per photon in phase estimation, they perform poorly in the presence of photon
loss. However, it has been shown that there are other states that beat the SQL in the presence
of loss. Examples of such states are low-photon number NOON states combined with single
photon states [73], entangled coherent states [74], the combination of a coherent state and
a squeezed vacuum state [75] corresponding to the original proposal of Caves [6], and the
states that are optimised to be robust to photon loss [76–83]. Nevertheless, when there is
photon loss the lower limit to the phase uncertainty is just a constant factor improvement over
the SQL in the limit of large N [80, 81, 84, 85].

In considering optimised states for two-mode interferometry, they can be taken to be of
the form

∑N
k=0 ψk |N − k, k〉. The total photon number can be taken to be a single value N ;

there is no advantage in using a superposition over different total photon numbers, because the
detection process determines the number of photons and destroys such superposition. In the
case of NOON states, one has ψk nonzero only for two values of k, whereas general optimised
states would allow all ψk to be nonzero. This raises a challenging state engineering problem
[86–89]. Such a general state could, for example, be produced by using N independent single
photons [90].

The standard method to produce single photons is to use down-conversion, and postselect
on detection of a single photon to obtain a single photon in the other output. This means that
such a scheme would be very wasteful, because 2N photons would need to be produced to
obtain a state with N photons. In this chapter, we first propose a scheme to produce states
using all photons output by the down-conversion. We then show how to use sequences of
such states with different total numbers of photons in order to obtain unambiguous phase
estimates. This is done in much the same way as has been done for NOON states [26, 49, 91].
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2.2 The state preparation scheme
We start with an M-port linear optical device (LOD) shown in Fig. 2.1. An LOD can be
decomposed into a triangular array of beam splitters and phase shifters [92]. Any M port
LOD can be represented by an M × M unitary matrix U with elements Ui j . It transforms
input photon creation operators â†i to the output creation operators b̂†i according to

â†i 7→
M∑

j=1
Ui j b̂

†

j . (2.1)

Our aim here is to propose an LOD scheme to generate two-mode multi-photon entangled
states in the output which are resistant to photon loss. The most general two-mode N-photon
pure state can be written as

|ψ〉out =

N∑
k=0

ψk |N − k, k〉 =
N∑

k=0
ψk

1
√

k!(N − k)!

(
b̂†1

)N−k (
b̂†2

) k
|0, 0〉, (2.2)

where the quantities ψk are the probability amplitudes of the photon number components.
When the loss is equal in both arms, as we consider here, optimal states for phase estimation
are symmetric between the paths [77], so we aim to have ψk = ψN−k in our output state. We
postselect vacuum in the other M − 2 output modes of the LOD in order to maximise the
number of photons in the output.

Spontaneous parametric down-conversion (SPDC) is the most common source of photon
pairs used in experiments. In order to make our state preparation scheme experimentally
feasible, we consider the output from SPDC as the input to the LOD. The SPDC state can be
written as [93]

|ψ〉SPDC ∝ |0〉s |0〉i + ξ |1〉s |1〉i + ξ
2 |2〉s |2〉i + ξ3 |3〉s |3〉i + ...., (2.3)

where the subscripts s and i stand for signal and idler; these will be omitted from this point
on for brevity. We also use the proportionality symbol to indicate that a normalization
constant has been omitted. The quantity ξ depends on the interaction time between the
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Figure 2.1: A linear optical device (LOD) with two SPDC states and vacuum modes as input.
|ψ〉out is the desired output state, and there is postselection on vacuum in the other modes.
The two SPDC input states can be simplified to one.
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optical nonlinear crystal and pump laser, the strength of the nonlinearity in the crystal and
the power of the pump laser.

If we input the LOD with one SPDC source, recording a total of N = 2n photons in the
output postselects only the dual Fock state |n, n〉 as input

|n, n〉 =
1
n!

(
â†1

)n (
â†2

)n
|0, 0〉 . (2.4)

Note that here we are considering a simplified model where the value of n is known, whereas
in practice it may not be known if there is loss. If vacuum is postselected in M − 2 of the
output modes (so the 2n photons are detected in the first two modes), the output state can
be represented by removing all the terms containing b̂†i for i ≥ 3. Transforming creation
operators in Eq. (2.4) by Eq. (2.1), and omitting b̂†i with i ≥ 3 gives the output state in the
form

|ψ〉out =
1
n!

[
χ1

(
b̂†1

)2
+ χ2b̂†1b̂†2 + χ3

(
b̂†2

)2] n
|0, 0〉 (2.5)

where χ1, χ2, χ3 are the factors determined by the unitary matrix U.
Alternatively, consider the case where there were two SPDC sources used, as in Fig. 2.1.

Allowing different factors ξ1 and ξ2, the input state can be written as

|ψ〉in ∝
(
|0, 0〉 + ξ1 |1, 1〉 + ξ2

1 |2, 2〉 + ξ
3
1 |3, 3〉 + ...

)
⊗

(
|0, 0〉 + ξ2 |1, 1〉 + ξ2

2 |2, 2〉 + ξ
3
2 |3, 3〉 + ...

)
∝ eξ1 â†1 â†2+ξ2 â†3 â†4 |0, 0〉|0, 0〉

=

∞∑
n=0

1
n!

(
ξ1â†1 â†2 + ξ2â†3 â†4

)n
|0, 0〉|0, 0〉. (2.6)

Recording a total of 2n photons in the output modes of LOD postselects the state

|ψ〉in ∝
1
n!

(
ξ1â†1 â†2 + ξ2â†3 â†4

)n
|0, 0〉|0, 0〉 (2.7)

as the input state. If vacuum is postselected in all but two of the output modes, we again
obtain a state of the form given in Eq. (2.5). Similarly, if we were to consider an arbitrary
number of SPDC sources, we would again obtain the same form of state. Therefore there is
no advantage in considering larger numbers of SPDC sources, and we consider an LOD fed
with only one SPDC source and vacuum to the remaining modes. As we aim for a symmetric
state we set χ1 = χ3. It is also convenient to denote χ = χ2/χ1, which makes it clear that
the states are parametrized by just one real number.

Thus, we consider an M-port LOD in which all but two of the input modes are vacuum
and also all but two of the output modes are postselected as vacuum, but we are allowing
a potentially large number of modes. The scheme can be simplified to a four-port LOD in
the following way. Figure 2.2(a) shows a five-port LOD with three vacuum input modes and
postselection of vacuum at three modes in the output, with the LOD simplified to a triangular
array of beam splitters and phase shifts [92]. For simplicity, the beam splitters shown in the
diagram also include phase shifts, rather than showing the phase shifts separately. It can be
seen that there are six beam splitters that have vacuum input and output [those below the
dashed line in Fig. 2.2(a)]. These beam splitters leave the field unchanged, and can be omitted.
Therefore, the scheme can be simplified to the four-port LOD shown in Fig. 2.2(b). Similarly,
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(a)

(b)

Figure 2.2: (a) A triangular array of beam splitters and phase shifts fed with a two-mode
input state |ψ〉in and three vacuum modes, |0〉. The phase shifts are included with the beam
splitters (shown as thick black lines) for simplicity. Output photons are detected in two of the
modes, |ψ〉out, and vacuum is postselected in three of the output modes. All the beams below
the dashed line contain vacuum. (b) The five-port LOD can be simplified to a four-port one
by keeping only the beam splitters above the dotted line.

1
j

2j

2R

1R
3R

0

out
y

ü

ý

þ

n

n

0 0c

1c
2c

0a

0b

1b
2b

3b 4b

4a

4c

Figure 2.3: The state preparation scheme for loss-resistant states. It is a three-port interfer-
ometer consisting of three beam splitters with reflectivities R1, R2, R3 and two phase shifters
ϕ1, ϕ2. The initial dual Fock state |n〉 |n〉 gives the 2n-photon loss-resistant state in the output,
as indicated in Eq. (2.16).

if we started with an arbitrary number of modes (> 4), the scheme could be simplified to four
modes in exactly the same way.
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This shows that we can simplify to four modes, but we have found an even simpler scheme
using three modes, as shown in Fig. 2.3. In this figure, R1, R2, R3 are reflectivities of beam
splitters and ϕ1, ϕ2 are phases of phase shifters. We use â†0, b̂†0, ĉ†0 for the creation operators
of the input modes. We denote the successive transformations by the subscripts, i.e. we use
the subscript 1 after the first beam splitter, 2 after the second beam splitter and the phase shift
ϕ1, 3 after the third beam splitter and 4 for the output modes. We label the transmissivity of
the ith beam splitter by Ti.

Consider the input state as

|ψ0〉 = |n, n, 0〉 =
1
n!

(
â†0

)n (
b̂†0

)n
|0, 0, 0〉 . (2.8)

Here, we assume that states with a given value of n can be produced on demand. This is
a simplifying assumption for a source that is more controllable than SPDC. The first beam
splitter leaves the first mode unaffected, â†0 = â†1, and transforms the other two modes to

b̂†0 = i
√

R1b̂†1 +
√

T1ĉ†1, ĉ†0 = i
√

R1ĉ†1 +
√

T1b̂†1. (2.9)

Therefore, the state after the first beam splitter is

|ψ1〉 =
1
n!

(
â†1

)n (
i
√

R1b̂†1 +
√

T1ĉ†1
)n
|0, 0, 0〉 . (2.10)

The second beam splitter transforms â†1 and b̂†1 to

â†1 = i
√

R2â†2 +
√

T2b̂†2, b̂†1 = i
√

R2b̂†2 +
√

T2â†2 . (2.11)

The phase shift gives ĉ†1 = eiϕ1 ĉ†2 . Thus we obtain the state

|ψ2〉 =
1
n!

(
i
√

R2â†2 +
√

1 − R2b̂†2
)n (

i
√

R1
(
i
√

R2b̂†2 +
√

T2â†2
)
+

√
T1eiϕ1 ĉ†2

)n
|0, 0, 0〉 .

(2.12)
The final beam splitter leaves the first output mode unaffected, â†2 = â†3, and for the other
modes gives

b̂†2 = i
√

R3b̂†3 +
√

T3ĉ†3, ĉ†2 = i
√

R3ĉ†3 +
√

T3b̂†3. (2.13)

This gives the following state

|ψ3〉 =
1
n!

(
i
√

R2â†3 +
√

T2
(
i
√

R3b̂†3 +
√

T3ĉ†3
))n

×
(
i
√

R1
(
i
√

R2
(
i
√

R3b̂†3 +
√

T3c†3
)
+

√
T2â†3

)
+

√
T1eiϕ1

(
i
√

R3ĉ†3 +
√

T3b̂†3
))n

× |0, 0, 0〉 . (2.14)

Acting the last phase shift and postselecting the vacuum in one of the output modes, replacing
ĉ†3 with zero, gives the unnormalized state

|ψ〉out =
1
n!

(
i
√

R2â†4 + ieiϕ2
√

T2R3b̂†4
)n

×
(
i
√

R1T2â†4 + b̂†4eiϕ2
(
eiϕ1

√
T1T3 − i

√
R1R2R3

))n
|0, 0〉. (2.15)

To obtain the state

|ψ〉out ∝
[(

b̂†1
)2
+ χb̂†1b̂†2 +

(
b̂†2

)2] n
|0, 0〉 (2.16)
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with χ ∈ [0, 2], we can use the reflectivities and phase shifts as

ϕ1 = arcsin
(

1
2

( χ − 1)
√

2 + χ
)
, ϕ2 = arccos

(
χ

2

)
,

R1 =
1

1 + χ
, R2 =

1
2 + χ

, R3 =
1

1 + χ
. (2.17)

For the two-photon state with n = 1, the output state as given in Eq. (2.16) can be expanded
as

|ψ〉out ∝
√

2 |0, 2〉 + χ |1, 1〉 +
√

2 |2, 0〉 . (2.18)

For n = 2, which is the four-photon state, we get the following expansion

|ψ〉out ∝ |0, 4〉 + χ |1, 3〉 +
2 + χ2
√

6
|2, 2〉 + χ |3, 1〉 + |4, 0〉. (2.19)

Unlike NOON states, the above states have terms other than |N, 0〉 and |0, N〉. This makes
these states more resilient to photon loss; in other words, loss of a single photon does not
destroy the phase sensitivity of the states. Our proposed states still have some ambiguity
in phase estimation, but by combining them with single photon states the ambiguity can be
removed. By adjusting the reflectivities of the beam splitters and phases of the phase shifters
we can choose the value of χ and optimise for phase measurement with loss.

In the case of two-photon states, the preparation technique is enough to obtain arbitrary
symmetric states, and so is sufficient to obtain the optimal states. In contrast, for the four-
photon states we would need two independent parameters. As there is only one parameter,
χ, which can be varied, we cannot obtain the exactly optimal states of the form

|ψ〉ex ∝ |0, 4〉 + χ′1 |1, 3〉 + χ
′
2 |2, 2〉 + χ

′
1 |3, 1〉 + |4, 0〉, (2.20)

where χ′1 and χ′2 are independent real variables. However, we will show that we can obtain
results close to optimum. In the following sections we show the effect of photon loss on
states of the form (2.16) when using an adaptive phase measurement scheme, as depicted in
Fig. 2.4.

2.3 Photon loss
When using nonclassical states in optical interferometers, photon loss is the most important
source of decoherence. A standard way to model photon loss in these systems is to introduce
fictitious beam splitters in the arms of the interferometer [83]. Here, we consider the same
amount of loss in both arms. The transmissivity, η, of the fictitious beam splitters determines
the efficiency of the system. Note that, equal losses at any point in the interferometer are
equivalent, so the loss in the arms of the interferometer is equivalent to having inefficient
detectors with equal efficiency.

The loss-resistant states in Eq. (2.16) can be written in the standard form

|ψ〉in =

N∑
k=0

ψk |N − k, k〉, (2.21)

where the amplitudes of the photon number components, ψk , are no longer independent, but
instead are all determined by the single parameter χ, introduced in the previous section. We
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Figure 2.4: Adaptive phase measurement scheme. ϕ is the unknown phase, θ is the controlled
phase and D1 and D2 are the photon detectors in the two outputs. The grey diagonal lines in
the two arms are the fictitious beam splitters with transmissivity η modeling photon loss.

denote the action of the phase shift on the state by Ψk = ψk ei(N−k)ϕeikθ . The fictitious beam
splitters are depicted as being after the phase shifts (see Fig. 2.4). The overall effect on the
state is the same regardless of whether the beam splitters are before or after the phase shifts,
but we just adopt this convention for the calculations. The fictitious beam splitters transform
the creation operators of the upper and lower arms, â†4 and b̂†4, according to

â†4 =
√
η â†5 + i

√
1 − η â′†4 , b̂†4 =

√
η b̂†5 + i

√
1 − η b̂′†5 . (2.22)

where â′†4 and b̂′†4 are the creation operators of the loss modes. Thus, after loss the state
|N − k, k〉 becomes

N−k∑
n=0

k∑
m=0

in+m
√

CN−k
n Ck

m
(√
η
)N−n−m (√

1 − η
)n+m

|N − k − n, k − m, n,m〉, (2.23)

where the third and fourth modes in the state are the loss modes and Ck
m =

(
k
m

)
is the binomial

coefficient. If we denote the total number of photons lost as L = n + m, and trace over loss
modes, the reduced density operator can be written as

ρ =

N∑
L=0

L∑
m=0

N−L∑
r,s=0
Ψr+mΨ

∗
s+m AN,L,r,m A∗N,L,s,m |N − L − r, r〉〈N − L − s, s |, (2.24)

where
AN,L,r,m ≡

√
ηN−L (1 − η)LCN−r−m

N−L−r Cr+m
r . (2.25)

After loss, a 50/50 beam splitter acts on the state. Calculating the output density operator, its
diagonal elements give the output detection probabilities

PL,k (ϕ, θ) =
L∑

m=0

N−L∑
r,s=0

min(r,k)∑
r2=BkNLr

min(s,k)∑
s2=BkNLs

Ψr+mΨ
∗
s+m AN,L,r,m A∗N,L,s,m

(
1
2

)N−L

(−1)r2+s2

×
(N − L − k)!k!

√
(N − L − r)!r!(N − L − s)!s!

(
N − L − r

k − r2

) (
r
r2

) (
N − L − s

k − s2

) (
s
s2

)
, (2.26)
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where L is the total number of photons lost, Bk N L` = max(0, k − N + L + `) (for ` = r or s),
and k is the number of photons detected in one of the output ports (which can be from 0 to
N − L).

For the two-photon input state, Eq. (2.18), there are six different possible detection results:

• if no photons are lost (L = 0), then we can detect zero, one or two photons in output
mode 2 (k = 0, 1, 2),

• if one photon is lost (L = 1), then we can detect zero or one photon in output mode 2
(k = 0, 1), and

• if both photons are lost (L = 2), then the only possible detection result is vacuum
(k = 0).

Similarly for the four-photon state, Eq. (2.19), there are fifteen possible detection results. In
Eq. (2.26), we have labeled possible detection results with the number of photons lost and
the number of photons detected in mode 2, but the detections are of the number of photons in
modes 1 and 2. The number of photons lost is determined from the initial number of photons
and the total number of photons detected. The larger number of possible detection results in
comparison to the lossless case makes the calculations more computationally difficult.

Because the probabilities depend on the Ψk coefficients, which in turn contain exponen-
tials of the phase ϕ, the probabilities PL,k (ϕ, θ) can be written as a Fourier series

PL,k (ϕ, θ) =
1

2π

∑
j

a jei jϕ. (2.27)

When updating the phase probability by Bayes’ theorem, explained in Section 1.2, the
probability can be represented by a finite number of the Fourier coefficients.

In the following section we describe how our proposed states can be utilized in an adaptive
measurement scheme to obtain phase variances less than the SQL.

2.4 The measurement scheme
The measurement scheme we propose is similar to the generalized quantum phase estimation
algorithm (GQPEA), in the sense that a sequence of states is input to the interferometer. The
states in this case are the loss-resistant states and they are input into the lossy interferometer.
In the GQPEA the input states are NOON states, and the algorithm works based on the parity
of the photon number difference in the output (see Eq. (1.34)). For either case, even or odd
parity, the phase shift is Nϕ, N being the photon number. However, for the loss-resistant
states proposed here, due to the presence of extra terms in the superposition, we have multiple
outcomes. In other words, each of the possible detection results has a probability depending
on the phase in a different way, and it is not possible to estimate the phase based on just the
parity. Moreover, the possible combinations of detections is further increased by the loss.
Here, in contrast to the GQPEA, we do not restrict ourselves to M (K, k) = K + G(K − k)
number of copies of each state. Instead, for a given total number of photons we find the
number of copies of each state numerically. Moreover, we start the sequence with single
photons rather than the highest photon number state.

We use the terminology “detection” for the measurement of an individual state, to contrast
with the overall measurement of the phase, combining results of the individual detections.
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We combine the results of detection of each of these successive states with single photon
states to provide an overall measurement of the phase that is unambiguous. Moreover, we
use feedback to adjust the controlled phase θ based on the previous detection results and
controlled phases.

The globally optimal controlled phase is the one that minimises the final phase variance,
but finding such a controlled phase requires aminimisation over an exponentially large number
of variables. Here we adopt the approach of finding the locally optimal phase, that minimises
the variance in the phase estimate after the next detection [26, 34]. This terminology is
distinct from another type of terminology in optimisation, where locally optimal means
that a parameter is optimal just for a region about that value, as opposed to optimal for all
values. There are proposals to find the globally optimal phase in a more restricted sense
that avoids needing an exponential number of variables [60, 94, 95], but those are still more
computationally intensive than finding the locally optimal phase.

The measure we use for the variance of the phase is the Holevo phase variance, VH =

µ−2 − 1, explained in Section 1.1.1. Here, µ, called sharpness, is

µ =
���
〈
ei(ϕ̌−ϕ)〉��� , (2.28)

where the average is over the measurement results uk . ϕ̌ is an unbiased estimator of the phase
in the sense that ϕ =

〈
eiϕ̌

〉
. Similar to Chapter 1 we use the vee accent ϕ̌ to indicate the phase

estimator. The unbiased phase estimator with the smallest variance is ϕ̌ = arg
〈
eiϕ

〉
[34].

This average is over ϕ using the probability distribution for the phase given the measurement
results [26]. As we explained in Section 1.1.1, the variance of the phase for an unbiased
estimate is lower bounded by the inverse of the Fisher information according to the Cramér-
Rao inequality

V
(
ϕ
)
≥

1
F (ϕ, θ)

, (2.29)

where the Fisher information is

F
(
ϕ, θ

)
=

∑
uk

1
P
(
uk |ϕ, θ

) (
∂P

(
uk |ϕ, θ

)
∂ϕ

)2

. (2.30)

Note that this is for the usual variance, rather than the Holevo variance. The Fisher in-
formation effectively represents the amount of information about ϕ which is contained in
the measurement result (though it is not quantified in bits as in the case of entropy). The
probability P(uk |ϕ, θ) is the probability of the measurement result uk given the system and
controlled phases ϕ and θ. It is the probability given in Eq. (2.26).

Optimal states for phase measurement with loss are typically evaluated via the Fisher
information [76–81]. Often the quantum Fisher information is used, which gives a corre-
sponding quantum Cramér-Rao bound [28]. The quantum Fisher information corresponds
to a maximum of the Fisher information over all measurements. However, in practice the
measurements are limited to photon counting 1. For this reason we only consider the Fisher
information. Using the Fisher information to evaluate our proposed four-photon loss-resistant
states as given in Eq. (2.19), they are nearly as good as the general optimal states. As is
shown in Fig. 2.5 the results are almost indistinguishable for η < 0.7.

However, the Fisher information only provides a lower bound on the variance. To provide
a better test of our states, we consider the phase variance produced by measurements. The

1Recall that for pure path-symmetric states the quantum Fisher information is achievedwith photon counting.
Here we have path-symmetric states but they are not pure.



28 Loss resistant unambiguous phase measurement

+++++++++++++++++++++

ò

ò

ò

ò

ò

ò
ò

ò
ò

ò
òòòòòòòòòòò

ç

ç

ç

ç

ç

ç
ç

ç
ç

ç
ççççççççççç

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

Η

M
a
x

o
f

F
Hj

,Θ
L

Figure 2.5: Maximum of classical Fisher information F (ϕ, θ) versus efficiency η. ◦ : four-
photon exact optimal state, Eq. (2.20), maximized over χ′1, χ

′
2, ϕ and θ. N: four-photon

loss-resistant states, Eq. (2.19), maximized over χ, ϕ and θ. +: four single-photon states.

scheme we propose for phase estimation is as follows. We use a sequence of N1 single-photon
states followed by N2 two- and N4 four-photon loss-resistant states given in Eqs. (2.18) and
(2.19). The value of χ must be determined for each kind of state for each amount of photon
loss in the system. We denote the values of χ for the two- and four-photon loss-resistant states
by χ(2) and χ(4), respectively. We have found the values of χ(2) and χ(4) by a numerical
search for the values that minimise the phase variance, for a specific value of loss. For η = 0.6
we found the optimal value of χ(2) to be 1.7 or 1.8, while we found χ(4) to be 1.3 (for a total
number of photons up to N = 30).

Perhaps surprisingly, these values do not maximise the Fisher information given in
Eq. (2.30); an example is shown in Fig. 2.6. In this figure, the Fisher information is shown for
the two-photon loss-resistant state for the system phase ϕ = π/4 and controlled phase θ = 0,
and the maximum is for χ ≈ 0.8. We also show the phase variance for a sequence of seven
single photons followed by one two-photon loss-resistant state. That is, there is one state
dependent on the value of χ, and the remaining states are to resolve the phase ambiguity.
In this case, the minimum is for χ ≈ 1.7, which is a radically different value to that which
maximises the Fisher information.

We use Bayes’ theorem to update the probability of the system phase given the measure-
ment results um and controlled phases θm

P(ϕ|~um, ~θm) ∝ P(um |ϕ, θm)P(ϕ|~um−1, ~θm−1) (2.31)

where ~um = (u1, u2, . . . , um) is the vector of successive measurement results and ~θm =

(θ1, θ2, . . . , θm) is the vector of the corresponding controlled phases (i.e.u j is themeasurement
result with controlled phase θ j). We also adopt the notation that ~u0 and ~θ0 are the empty
vectors. The proportionality factor is just a normalization constant, which is trivial to
calculate. We assume that the phase is initially unknown, so the initial probability distribution
is flat, and P(ϕ|~u0, ~θ0) = 1/2π. The probability P(um |ϕ, θm) is that given in Eq. (2.26). We
set the first controlled phase to zero. This gives the same result as a random phase, because we
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Figure 2.6: Fisher information, F (ϕ, θ) and Holevo phase variance, VH, versus χ for η = 0.6.
Solid green line: Fisher information for ϕ = π/4, θ = 0 versus χ calculated using Eq. (2.30)
for the two-photon state given in Eq. (2.18). Dashed black line: phase variance versus χ for
the sequence of seven single photons followed by one two-photon loss-resistant state in the
adaptive measurement protocol. The Fisher information gives a lower bound to the phase
variance, rather than an exact phase variance, so the value of χ that maximises the Fisher
information need not be the value that minimises the phase variance.

average over the system phase and only the relative phase between the arms is significant. The
other controlled phases are obtained by maximising the sharpness after the next detection. In
particular, the optimal θm is the one that maximises

µ(θm) =
1

2π

∑
um

������

∫ 2π

0
dϕ eiϕ

m∏
k=1

P(uk |ϕ, θk )
������
, (2.32)

where the summation is over all the possible results for the m’th measurement, and the
product over k corresponds to the updates of the probability distribution according to Bayes’
rule [26]. Because the probabilities are represented as a Fourier series, as in Eq. (2.27), the
integral over ϕ simply yields the coefficient of the e−iϕ term, a−1. Therefore this sum may be
obtained by summing the predicted values of |a−1 | after the next detection.

For the case of measurement with a single photon without loss, the formula for the
controlled phase from Ref. [34] may be used. In the presence of loss the only extra detection
result is where the photon is lost with a probability that is independent of the system and
controlled phases. This just adds an extra constant to the sharpness and does not change the
phases that maximise it. Therefore the formula from Ref. [34] may still be used. That is, we
take one of the following three phases

θ0 = arg
(
ba∗ − c∗a

)
, θ± = arg

*....
,

√√√
c2 ±

√
c2

2 + |c1 |2

c1

+////
-

, (2.33)

where

c1 =
(
a∗c

)2
−

(
ab∗

)2
+ 4

(
|b|2 − |c|2

)
b∗c,

c2 = −2i Im
(
a2b∗c∗

)
, (2.34)
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and a, b and c are functions of Fourier coefficients for the probability distribution: a = a−1,
b = 1

2 a−2, c = 1
2 a0. The optimal phase out of the above three possible phases is determined

numerically.
The situation is more complicated with two- and four- photon loss-resistant states. For the

simpler states considered in Ref. [1], it is possible to use the above formula in the two-photon
case. However, here we have the complication that there is an additional |1, 1〉 term in the
state, and we also need to take account of the case where one photon is lost. This means that
the formula no longer applies. For this reason we determined the optimal controlled phase
numerically for the two- and four-photon cases.

We have calculated the exact phase variance by considering all the possible measurement
results, of which there are 3N1 × 6N2 × 15N4 (considering loss in all parts of the sequence).
We sum over the sharpness for each sequence of measurement results as [26]

µ =
1

2π

∑
~um

������

∫ 2π

0
dϕ eiϕ

m∏
k=1

P
(
uk |ϕ, θk

) ������
. (2.35)

To speed up the calculations it is useful to note that a measurement where n of the single
photons were not lost is the same as one where there were n single photons without loss.
This is because, if a single photon is lost there is no phase information and the probability
distribution and controlled phase need not be updated. Using µ̃n to denote the sharpness
resulting from the sequence nN2N4 with no loss on the single photons, the actual sharpness
of the sequence N1N2N4, when there is loss in all parts, is given by

µ =

N1∑
n=0

(
N1

n

)
ηn(1 − η)N1−n µ̃n. (2.36)

In the above equation,
(

N1
n

)
ηn(1− η)N1−n is the probability of n photons remaining out of N1

single photons. If we performed the calculation in the obvious way, where there are three
possible measurement results for each single photon, the number of measurement results to
sum over for the single photons would be 3N1 . By performing the calculation in this way, the
number needed is 1 + 2 + . . . + 2N1 = 2N1+1 − 1, which is considerably less.

It is possible to consider arbitrary sequences of states, where the one-, two-, and four-
photon states are used in any order. To simplify the range of possible sequences to search
over, we grouped together states of the same photon number. A similar approach was used
in Ref. [1] for the lossless case, where numerical testing with small total numbers of photons
found that this was optimal. Note that due to the adaptive nature of the measurement scheme
the order of one, two- and four-photon states is important. In this case, we found the optimal
values of N1, N2 and N4 in the N1N2N4 sequence; i.e., single photons were followed by two-
then four-photon loss-resistant states.

We performed numerical searches over possible combinations of numbers of states
N1N2N4 to find the sequences which give the least variance for a range of total photon
numbers N = N1 + 2N2 + 4N4. The sequence configurations for some of the total numbers
of photons are given in the table below (see Appendix A.1 for the extended table of results).

N N1 N2 χ(2) N4 χ(4)

9 7 1 1.7 0 -

13 7 1 1.7 1 1.3

30 2 2 1.8 6 1.3
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Figure 2.7: The scaled phase variance NVH versus total number of photons N for η = 0.6
for: only single photon states (SQL) (solid line) and optimal sequence of single photon states
combined with two- and four-photon loss-resistant states (shown by ×).
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Figure 2.8: The phase variance VH versus total number of photons N for η = 0.6 for three
different input states. ×: optimal sequence of single photon states combined with two- and
four-photon loss-resistant states. Solid line: only single photon states (SQL). •: the scheme
proposed in [1].

The results of the numerical optimization for η = 0.6 are plotted in Fig. 2.7. In this figure,
the result for just single-photon states (with η = 0.6) is shown for comparison, and can be
regarded as equivalent to the SQL. To show the difference between the optimal sequence of
loss-resistant states and single photon states in this figure we have plotted the scaled phase
varianceNVH . Up to a total number of nine photons there is no advantage in using optimised
multiphoton states, but after that the optimal sequence beats the SQL.
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In Fig. 2.8 we have also shown the variance calculated using the states and sequences
proposed in [1]. The two- and four-photon states proposed in [1] are obtained by setting χ = 0
in Eqs. (2.18) and (2.19). These states give variances which are considerably larger than those
obtained from single-photon states. This seems surprising, because using a sequence of states
with different numbers of photons should be able to outperform a scheme limited to single-
photon states. However, that requires choosing the values of N1, N2, and N4 appropriately,
and the order that the states are used. In this case, we have considered the scheme of [1]
using the values of N1, N2, and N4 that were chosen to minimise the variance without loss. It
is clear that the optimal values of these quantities must be dependent on the loss; that is, the
improvement over the scheme of [1] is primarily due to choosing the state sequences in such
a way as to optimise the measurements for loss.

2.5 Conclusion
In this chapter we proposed an approach to generate multi-photon entangled states which
are optimal for phase measurement in the presence of photon loss. In order to provide a
technique that is experimentally feasible, we have considered methods of processing SPDC
sources in order to provide improved loss tolerance. For two-photon states the method
produced optimal states, but the technique is not able to exactly produce the optimal four-
photon states. However, as shown in Fig. 2.5, the maximum of Fisher information for our
proposed four-photon loss-resistant states is almost the same as the exact optimal states up to
η = 0.7.

We proposed techniques of combining these loss-resistant states in order to provide an
unambiguous measurement of the phase. Surprisingly, we find that the parameters that
minimise the phase variance are not the same as those that maximise the Fisher information.
This is likely because the lower bound set by the Fisher information is only achieved in the
asymptotic case of large numbers of copies of the state, whereas we are considering a small
number of copies.

By using the sequence of loss-resistant states, we showed it is possible to beat an SQL
defined by the corresponding scheme with independent single photons. In comparison, if
the measurement scheme of Ref. [1] is used, the phase variance is much greater. In order to
obtain the best performance, the state sequence should be chosen based on the loss. Moreover
optimizing the parameters for the loss-resistant states will provide an additional improvement.

In the next chapter we numerically find the optimal states of the form given in Eq. (2.21),
for the task of spectroscopy of an ensemble of atoms in an interferometric system.
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Quantum enhanced spectroscopy

3.1 Introduction

In Chapter 2 we explained that NOON states are very sensitive to loss, and there exist
other quantum states that give better performance for phase measurement in the presence
of absorption [76, 77, 79, 96]. Even with such states, the advantage over the standard
quantum limit in phase estimation is reduced by loss. However, we can take advantage of
the sensitivity of nonclassical properties of quantum states to absorption. The sensitivity
of quantum coherence can be used efficiently to estimate absorption [97], and also estimate
physical quantities that the absorption depends on.

In Ref. [98] a sub-shot-noise measurement of absorption is obtained using heralded single
photons. In that work, a non-interferometric setup was used, therefore all the information is
obtained from absorption, and the quantum enhancement results from sub-Poissonian statis-
tics of single photons. According to the Kramers-Kronig relation, absorption is accompanied
by a phase shift [99]. However, the information from the phase is only accessible if we take
advantage of superposition and interference.

In Ref. [100] optimal states for simultaneous estimation of loss and phase are found. Such
states are of the form

∑N
k=0 ψk |N − k, k〉 with a large weight on the loss mode to improve the

estimation of loss. Here, we find the optimal states of similar form to estimate a parameter
that both loss and phase depend on.

The system we are considering in this chapter is an ensemble of atoms. We are interested
in measuring a transition frequency of the atoms. If this ensemble is probed by a beam of
photons, the absorption of photons, and phase shift imposed on the probe, both depend on the
transition frequency of atoms. We consider a Mach-Zehnder interferometer with the atomic
ensemble placed in one of the arms of the interferometer. We optimise over the state in the
arms of the interferometer and find the state from which we obtain maximum information
about the atomic transition frequency.
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Figure 3.1: A Mach-Zehnder interferometer with an ensemble of atoms placed in the upper
arm. D1 and D2 are photon number detectors in the output modes.

3.2 Interferometric scheme
Consider a Mach-Zehnder interferometer, shown in Fig. 3.1, with an ensemble of atoms
placed in the upper arm of the interferometer. Here we consider an ensemble of identical
two-level atoms in the absence of Doppler broadening and dipole dephasing. 1 This simple
model gives a good qualitative description of the problem. Assuming that all atoms interact
equally with the input quantum state and that there is no interaction between atoms, using
the dipole and rotating-wave approximation the susceptibility of the ensemble is given by
[101, 102]

χ(∆) = χ′(∆) + i χ′′(∆) =
2Naµ

2

~ε0

∆ + iγs

∆2 + γ2
s
, (3.1)

where ∆ = ω −ω0 is the detuning between ω0, the transition frequency of atoms, and ω, the
frequency of input photons, γs is the spontaneous decay rate of the excited state, Na is the
number density of atoms, µ is the electric dipole moment, ~ is the reduced Planck constant
and ε0 is the vacuum permittivity. Details of the derivation of this susceptibility based on
interaction of an ensemble of atoms with quantized light are given in Refs. [101, 102]. The
imaginary and real parts of the susceptibility are plotted in Fig. 3.2. In this figure we have
used data for the D1 transition line of Sodium fromRef. [103], i.e. µ = 0.704×10−29 C·mand
γs = 61.354× 106 s−1. For the number density of atoms we have usedNa = 2.5× 1016 m−3.

Knowing the susceptibility of the atomic medium, the effect of the atomic ensemble in the
upper arm of the Mach-Zehnder interferometer can be modeled by the beam splitter model
proposed in Refs. [104, 105]. Normally, one beam splitter is used to model loss in each of the
arms of a Mach-Zehnder interferometer. However, here we consider a line of n = L/δz beam
splitters where each beam splitter represents one of the atoms in the ensemble (see Fig. 3.3).
Here, L is the length of the ensemble, and δz is the spacing between two beam splitters. With
the choice of a line of beam splitters the overall result will be the same as using a single beam
splitter. However, with the line of beam splitters we obtain the transmissivity of the atom
cell which needs to be conjectured if a single beam splitter was used. The kth beam splitter

1Doppler broadening and dipole dephasing are avoided to simplify the model. Doppler broadening means
atoms traveling with different velocities with respect to the light beam have a modified detuning. In the presence
of Doppler broadening each atom sees a different effect and the coherent effect washes away. This effect can
be avoided using a cloud of trapped cold atoms. On the other hand, dipole dephasing can only change the
coherence between two atomic levels. This adds an extra constant to the spontaneous decay rate γs in Eq. (3.1).
This extra constant does not change the results.
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Figure 3.2: The real (solid line) and the imaginary (dashed line) parts of susceptibility, χ′
and χ′′ respectively, calculated using Eq. (3.1) for the D1 transition line of sodium.
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Figure 3.3: Beam splitter model to model the interaction of photons with the ensemble of
atoms.

transforms the creation operator â†k according to

â†k =
√

t(ω)â†k+1 +
√

r (ω)b̂†k, (3.2)

where t(ω) and r (ω) are the transmissivity and reflectivity of the beam splitter, ω is the
frequency of input photons, and bk is the loss mode of the kth beam splitter. After passing
through n beam splitters, the creation operator of the input mode â†in is transformed to

â†in =
(√

t(ω)
)n

â†out +
√

r (ω)
n∑

k=1

(√
t(ω)

)n−k
b̂†k . (3.3)

The effect of the atomic ensemble is obtained by taking the limits

n = L/δz → ∞, δz → 0, r (ω) → 0, (3.4)

such that the attenuation coefficient defined by K (ω) = |r (ω) |/δz remains finite. We can
write

|t (ω) |n = (1 − |r (ω) |)n = (1 − K (ω)L/n)n → e−K (ω)L, (3.5)

where the arrow is for the limit n → ∞. Choosing the phase of the output creation operator,
â†out, in Eq. (3.3) such that it produces the conventional propagation phase, exp

(
iη (ω)ωL/c

)
,

expressed in terms of refractive index η(ω), we have(√
t(ω)

)n
= e(iη(ω)ω/c−K (ω)/2)L . (3.6)
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Figure 3.4: The transmissivity T (dashed line) and the phase shift ϕ (solid line) versus
detuning ∆ for the D1 transition line of sodium, L = 1 cm and N = 2.5 × 1016 m−3.

The attenuation coefficient and the index of refraction are determined by the susceptibility of
the medium according to [105]

η (ω) + i
c

2ω
K (ω) =

√
1 + χ ≈ 1 +

1
2

(
χ′ + i χ′′

)
, (3.7)

where c is the speed of light, χ′ and χ′′ are the real and imaginary parts of the susceptibility.
Here, we have omitted the dependence of χ on ω for brevity, and the approximation is due
to χ being small. The real part of susceptibility, χ′, describes dispersion and the imaginary
part, χ′′, describes absorption by the medium.

In the limits of Eq. (3.4), the summation is converted to integration, and the discrete loss
modes b̂†k are converted to continuous mode variable b̂†(z) according to

n∑
k=1
→

1
δz

∫ L

0
dz, b̂†k →

√
δzb̂†(z). (3.8)

Therefore, Eq. (3.3) can be written as

â†in = â†oute
−iωL

c

√
1+χ − i

√
ω

c
χ′′

∫ L

0
e−iωc (L−z)

√
1+χ b̂†(z)dz. (3.9)

According to Eqs. (3.3), (3.6) and (3.7), the transmissivity of the ensemble, T , and the
phase shift imposed on the state from the ensemble, ϕ, can be written in terms of imaginary
and real parts of the susceptibility

T = e−χ
′′ωL/c, ϕ = −

χ′ωL
2c

. (3.10)

The quantitiesT and ϕ are plotted in Fig. 3.4. This figure is plotted forω0 = 2π(508.33) THz,
which is the D1 transition line of sodium [103], and L = 1 cm. As can be seen from Fig. 3.4,
for detunings close to zero, ϕ has the highest slope. However, in this region, T is very small.

In the following section we find the optimal states to measure the transition frequency of
the atoms i.e. ∆ in this scheme.



3.3 Optimised states 37

3.3 Optimised states
We consider the general form of the state in the arms of the interferometer to be

|ψ〉 =

N∑
k=0

ψk |N − k, k〉, (3.11)

i.e. a pure state with the total photon number of N . We use Fisher information as the measure
to quantify the metrological value of the states. According to the Cramér-Rao bound [28]
the variance in estimating a parameter, ∆ in this case, using an unbiased estimate, is lower
bounded by the inverse of the Fisher information F (∆)

var(∆) ≥ 1/F (∆). (3.12)

Here, we are considering photon number detection in the output modes, thus we are using
classical rather than quantum Fisher information. The Fisher information represents the
amount of information about ∆ contained in the measurement results. It is given as

F (∆) =
∑
n1,n2

1
Pn1,n2 (∆)

(
∂Pn1,n2 (∆)

∂∆

)2

, (3.13)

where Pn1,n2 (∆) is the probability of detecting n1 and n2 photons in the output ports.
Considering the state given in Eq. (3.11), acting the atom cell transformation given in

Eq. (3.9) on the first mode, and the last 50/50 beam splitter of the interferometer on both
modes, we obtain

Pn1,n2 (ω) =
n1+n2∑
k=0

n1+n2∑
k ′=0

n2∑
u=n2−k

n2∑
v=n2−k ′

ψkψ
∗
k ′

n1!n2!(N − n1 − n2)!
√

k!k′!(N − k)!(N − k′)!

(
1
2

)n1+n2

(−1)k−n2

×
*...
,

N − k′

N − n1 − n2

+///
-

*...
,

N − k
N − n1 − n2

+///
-

*...
,

n1 + n2 − k
u

+///
-

*...
,

n1 + n2 − k′

v

+///
-

*...
,

k
k + u − n2

+///
-

*...
,

k′

k′ + v − n2

+///
-

×
(
1 − e−ωL χ′′/c

)N−n1−n2 eiωχ′L(k−k ′)/(2c)e−ωL χ′′(2n1+2n2−k−k ′)/(2c), (3.14)

where ω = ∆ + ω0 is the frequency of the photons in the input state. Note that we have only
considered the loss due to the atomic ensemble. More generally there might be additional
loss in the system which we don’t consider here. Because we are quantifying the metrological
value of the states via the Fisher information, we regard the optimal states to be those which
maximise the Fisher information. We have found the optimal values of ψk numerically
using the particle swarm optimization (PSO) algorithm explaind in Appendix A.2. In this
optimization problem a swarm of particles searches the space of ψk coefficients for those that
maximize the Fisher information. Here, in our simulationswe used χ = 0.729, cl = cg = 2.05
with 10 particles and 100 iterations.

We have found that the optimal state for a specific type of atoms, only depends on the
number density of atoms Na or the length of the ensemble L. This can be explained in
the following way. In Eqs. (3.10) and (3.14), we have dependence on the parameters of the
system via ωχ′L and ωχ′′L, which can be written as

ωχL = ω( χ′ + χ′′)L =
2Naµ

2Lω0

~ε0γs

(
∆/γs + i

) (
1 + ∆/γs

)
1 +

(
∆/γs

)2 . (3.15)
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For a given type of atom the multiplying factor at the front can only be varied via Na or L
. The other parameters, µ, ω0 and γs can be varied by changing the type of atom. These
parameters affect the variation of ωχ in three ways:

1. They change the multiplicative factor at the front. As that factor can also be changed
by varying Na or L, that does not give any qualitatively different results than simply
changing Na or L.

2. The parameter γs appears in the ratio ∆/γs, and therefore provides a scaling to the
variation of ωχL with ∆. It therefore does not qualitatively change the results.

3. The parameter ω0 appears in the factor (1 + ∆/ω0). This factor affects the variation
very little, because we consider a parameter regime where ∆/ω0 � 1.

In the following we take L constant at 1 cm and discuss the two cases: Na > 1017 m−3

(large Na) and Na < 1017 m−3 (small Na).

3.3.1 Large Na

For Na > 1017 m−3, we have found that numerically optimised states of the form given in
Eq. (3.11) perform better than NOON states and independent single photons. In Fig. 3.5
we have compared the Fisher information of the N-photon optimal state, N independent
single photon states |1, 0〉⊗N , N copies of a single-photon NOON state (|1, 0〉 + |0, 1〉) /

√
2,

and an N-photon NOON state ( |N, 0〉 + |0, N〉)/
√

2. This figure is plotted for N = 2 (upper
row) and N = 10 (lower row). In this figure, we have used ω0 = 2π(508.332) THz,
which is the transition frequency of the D1 line of Sodium [103], and an atom density of
Na = 2.5 × 1017m−3.

Figure 3.5 shows that, even for N = 2, the enhancement obtained by optimal states is
significant. For larger photon numbers, as is shown in the graphs for N = 10, there is no
further significant improvement in the enhancement of the optimal states. Moreover, the
optimal states with high photon numbers are not experimentally achievable with current
technology. On the other hand, the optimal states for N = 2 can be generated with a scheme
similar to the one proposed in Chapter 2.

Note that, close to resonance, for copies of single-photon NOON states the maximum
peak is higher than independent single photons and N-photon NOON states. This is as
would be expected, since single-photon NOON states are the least sensitive NOON states to
loss. From Fig. 3.5(c), we see that ten-photon NOON states perform worse than independent
single photons close to resonance. However, far from resonance, their Fisher information is
even higher than the numerically obtained optimal states. The reason why this is possible is
that the optimal states are only optimal in the sense of giving the largest maximum Fisher
information, but it is possible for other states to have larger Fisher information for detunings
where the optimal states do not give their maximum Fisher information. On the other hand,
as can be seen in Fig. 3.5(a), two-photon NOON states are less sensitive to loss (compared
to ten-photon NOON states), and close to resonance they perform better than independent
single photons.

The other thing to note from Fig. 3.5 is that to be able to work in the region with maximum
Fisher information we need to have prior knowledge of the detuning. This is because the
peaks of maximum Fisher information are quite narrow. In other words this scheme could be
used to measure hyperfine splitting of atomic levels, or measuring external effects, such as
magnetic field, on the transition frequency of atoms.
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Figure 3.5: Fisher information F (∆) versus detuning ∆ for N = 2 photons [(a) and (b)] and
N = 10 [(c) and (d)]. In (a) and (c), the solid black lines are for N independent single photons
|1, 0〉⊗N , and the dashed red lines are for N-photon NOON states ( |N, 0〉+ |0, N〉)/

√
2. In (b)

and (d) the dashed green lines are for N-photon optimal states, and the solid orange lines are
for N copies of single-photon NOON states ( |1, 0〉 + |0, 1〉)⊗N/

√
2N .

In Fig. 3.6 we have plotted the values of the coefficients of the optimal states, ψk in the
superposition (3.11), for a range of photon numbers from N = 2 to N = 10. This figure shows

Figure 3.6: Coefficients ψk of the optimal states for number density of atoms N =

2.5 × 1017 m−3 for four values of the total photon number N .
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that the optimal states have higher amplitudes for the terms with higher photon numbers in
the arm that contains the atomic ensemble. This variation is what would be expected because
when there are more photons in the arm with the ensemble, they are more likely to be lost,
giving more information about ∆.

3.3.2 Small Na

For smaller values of Na than considered in the previous subsection, the range of the phase
shift is small (see Fig. 3.7). In this case, the optimal state is N independent single photons,
|1, 0〉⊗N . Having all the photons in the upper arm, only the loss is being probed, and no
information is being obtained from the phase shift. The phase shift must be significant
so that we can take advantage of interferometric schemes in spectroscopy. Surprisingly for
Na = 2.5×1016 m−3 themaximumof the Fisher information for N independent single photons
is even higher than the maximum of the Fisher information for the N-photon numerically
optimised states with a larger number density of atoms which were considered in the previous
subsection (see Fig. 3.8).

Figure 3.7: Transmissivity T and phase shift ϕ versus ∆, for a range of values of number
density of atoms N . Solid-red line: N = 2.5 × 1015 m−3. Dashed-green line: N =
2.5 × 1016 m−3. Dotted-black line: N = 2.5 × 1017 m−3.
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Figure 3.8: Fisher information versus ∆ for total number of photons N = 2, for the optimal
states of a range of number densities of atoms N . Solid-red line: N independent single
photons with N = 2.5 × 1015 m−3. Dashed-green line: N independent single photons with
N = 2.5×1016 m−3. Dotted-black line: numerically optimized statewithN = 2.5×1017 m−3.

This could be understood from the variation of the transmissivityT and phase shift ϕwith
Na, shown in Fig. 3.7. For smaller values of Na the range of the phase shift is also smaller,
which eliminates the advantage in using entangled states. In this case, the Fisher information
is coming from the variation in the absorption. As Na is decreased further, the dip in the
absorption is reduced which results in a smaller Fisher information. For the higher densities,
there is a larger phase shift, but it is in a region where the absorption is very high.

3.4 Conclusion
In this workwe found optimalmulti-photon states for measurement of the transition frequency
of atoms. The scheme proposed here is an interferometric scheme with photon number
detection in the output. In order to find the best states for measurement of the transition
frequency, we numerically optimized for the states that provide the largest Fisher information.

For the number density of atoms we considered initially, the imposed phase on the probe
is large, and it is advantageous to using information from both the absorption and the phase
shift for measuring the transition frequency. In this case, the optimal state is an entangled
multi-photon state. This optimal state has a large weighting on the state with all photons
in the arm with the atomic ensemble. On the other hand, for a smaller number density of
atoms, the phase shift imposed on the probe is small and therefore the information from the
phase shift is not significant enough to give any advantage. In this case, the optimal state is
independent single photons. In other words, it is advantageous to pass all the photons through
the atom cell and obtain all the information from absorption.

Surprisingly there is a value of the number density, N = 2.5 × 1016 m−3 for which N
independent single photons have the highest Fisher information. This Fisher information is
even higher than the Fisher information for the N-photon numerically optimized states with
a larger number density of atoms. Therefore, if we have control over the number density of
atoms it is better to choose this number density and probe the ensemble with independent
single photons.
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More generally, it would be possible to consider loss in both arms of the interferometer
in addition to the atom cell. For different amount of loss the optimal states needs to be found
which is left for future work.



4
Magnetometry with an NV centre

4.1 Introduction
In the past two chapters, we investigated phase estimation in optical interferometers. Another
area of interferometry is Ramsey interferometry. Ramsey interferometry with atoms and
solid-state systems has been used extensively in frequency measurement [58], and measure-
ment of physical quantities that affect the frequency, such as magnetic field [59]. In solid-state
systems, of particular interest is the electron spin of the nitrogen-vacancy (NV) centre, be-
cause it has long coherence time [106, 107] and it can be optically initialised and read out
[108, 109]. The electron spin of NV centre has been used to measure a range of physical
quantities such as electric field [110], magnetic field [55, 56, 111, 112] and temperature
[113].

In this chapter, we give the theoretical background of the experiment done in Ref. [61].
I contributed to the numerical and theoretical part of this collaborative work with experi-
mentalists. In this experiment, a single electron spin in diamond is used to measure a time-
independent magnetic field using single-shot readout and real-time feedback in the system.
We first review Ramsey interferometry with an NV centre. We then use a non-adaptive and a
range of adaptive phase estimation algorithms to get an unambiguous estimate of an unknown
magnetic field. We show that, although non-adaptive protocols reach the Heisenberg-like
scaling, there is an optimised adaptive protocol that outperforms the non-adaptive protocol.

4.2 Ramsey interferometry
The nitrogen-vacancy (NV) centre is a defect in the diamond lattice that consists of a sub-
stitutional nitrogen atom and a vacancy at its adjacent lattice position (see Fig. 4.1(a)). The
experiment in Ref. [61] is performed with a negatively charged NV centre, denoted by NV−.
The electronic energy level structure of NV− has a spin triplet (S = 1) ground (3 A2) and
excited states (3E), shown in Fig. 4.1(b) [114]. The labeling of the energy levels is based
on the standard notation for C3V group symmetry operations [115]. In the ground state, the
ms = ±1 is lifted from the ms = 0 state by 2.87 GHz due to spin-spin interaction. In the
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Figure 4.1: (a) An NV centre is formed by a substitutional nitrogen atom with a vacancy
in its adjacent lattice position in a diamond lattice. This figure is adapted from Ref. [2] (b)
The energy level structure of a negatively charged NV centre. (c) The pulse sequence used
to estimate the magnetic field. The black line represents the microwave (MW) field used for
coherent control of the spin. The phase θ of the second π/2 pulse is the controlled phase
which determines the measurement basis. The orange line represents the optical field used
for initialisation and measurement.

presence of an external magnetic field #»
B the ms = ±1 state splits due to the Zeeman effect.

The Hamiltonian of the interaction with the magnetic field #»
B is Hint = γ

#»
B .

#»
S , where #»

S is
the spin 1 operator, and γ = 28 MHz· mT−1 is the gyromagnetic ratio.

In Ramsey interferometry, first a π/2 microwave (MW) pulse resonant with |ms = 0〉 and
|ms = −1〉, denoted by |0〉 and |1〉, respectively, prepares the superposition state ( |0〉 + |1〉)/

√
2.

This state then evolves under the Hamiltonian Hint for time τ to
(
|0〉 + e−iϕ |1〉

)
/
√

2, where
ϕ = γBτ. The phase ϕ can be estimated bymeasuring the spin in a suitable basis, by adjusting
the phase θ of a second π/2 pulse. For magnetic fields past a certain value, the phase will
wrap around and give the same measurement results, so magnetic fields past a certain value
cannot be distinguished unambiguously. To have ϕ in the range of (−π, π], the magnetic field
must be in the range (−Bmax, Bmax], where Bmax = π/

(
γτ

)
.

In a Ramsey interferometer, if all the measurements have the same interaction time τ, the
lower bound of the uncertainty in the phase estimate, for the total interaction time T = Nτ,
scales as σϕ ∼

√
τ/T [112]. This corresponds to the uncertainty of the field scaling as

σB ∼
1

γ
√
τT

(4.1)

which we call standard measurement sensitivity (SMS). The uncertainty can be decreased
by increasing τ, but this also reduces the magnetic field range. The dynamic range, defined
as the ratio of the maximum detectable magnetic field to the uncertainty in the field, is then
bounded as

Bmax

σB
≤ π

√
T/τ. (4.2)
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However, using multiple interaction times in an estimation sequence, with the minimum
interaction time τ and the total interaction time T , the lower bound on the phase uncertainty
scales as 1/T [54], which corresponds to an enhancement in the dynamic range by a square
factor, i.e.

Bmax

σB
. T/τ. (4.3)

Note that there still needs to be some minimum interaction time τ, because that is what limits
Bmax. The enhancement is analogous to the square enhancement obtained by using NOON
states in optical interferometers [60]. We will call this scaling "Heisenberg-like", because it
is analogous, but distinct from the enhancement obtained with multiple entangled systems.

The ultimate goal in magnetometry is to obtain the highest dynamic range, i.e. the highest
precision over the largest range. This is a phase estimation problem for which the methods of
optical interferometers can be used. A significant difference betweenmeasurements in optical
and Ramsey interferometers is that Ramsey measurements have lower visibility. The initial
visibility is low and it also reduces exponentially with interaction time. Prior to this work,
there was speculation that adaptive schemes can outperform non-adaptive schemes when the
visibility is low; simpler adaptive schemes did not outperform the non-adaptivemeasurements
[54, 57]. This is surprising since typically adaptive schemes give better measurements, and
in many cases far better measurements [26]. A sufficiently general adaptive scheme should
always be able to match a non-adaptive scheme, because the non-adaptive scheme is just a
special case. In the following section, we show that there is an optimised adaptive protocol
that outperforms the non-adaptive protocol even for low visibilities.

4.3 Phase estimation
We convert the task of estimating the unknown time-independent magnetic field B to the task
of estimating the unknown phase ϕ, imprinted on the spin state, due to the interaction with
the magnetic field. Similar to Chapter 2, we use the terminology “detection” for individual
measurements as opposed to the overall measurement combining the results of the sequence.

We use the generalized quantum phase estimation algorithm, explained in Section 1.3,
to estimate the system phase ϕ. We perform a sequence of detections that consists of K + 1
different interaction times with the shortest interaction time being τ. We start with the
longest possible interaction time t = 2Kτ, and perform a sequence of measurements with
interaction times reduced by successive factors of 2, i.e. the sequence of interaction times is
2Kτ, 2K−1τ, ..., 20τ [54]. For each interaction time we perform some number of repetitions.
More specifically, if the longest interaction time is 2Kτ, we perform M (K, k) repetitions for
the interaction time tk = 2kτ where

M (K, k) = G + F (K − k). (4.4)

Here, G is the number of detections for the longest interaction time, 2Kτ. The number
of detections increases by F when the interaction time is divided by 2. The motivation
for performing the largest number of detections for the shortest interaction time is that the
shortest interaction time makes the largest distinction in phase and therefore errors are most
detrimental. Using a larger number of repetitions for shorter interaction times provides a
larger reduction in the error for less cost.

We update the probability of the system phase given the detection results according to
Bayes’ rule:

P
(
ϕ| #»u `

)
∝ P

(
u` |ϕ

)
P
(
ϕ| #»u `−1

)
. (4.5)
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Here, ϕ = γBτ, #»u ` is the vector of ` measurement results u1, u2, ...., u` where u` =
0, 1 represents measuring |ms = 0〉 and |ms = −1〉 in the `th detection, respectively. The
proportional to symbol is due to omitting a term in Bayes’ rule that does not depend on ϕ.
Because it does not depend on ϕ it only gives a normalisation to the probability distribution,
which can be calculated at the end. P

(
u` |ϕ

)
is the conditional probability of the measurement

result u` given the system phase ϕ, and is given by [116]

P
(
u` = 0|ϕ

)
=

1 + f0 − f1

2
+

f0 + f1 − 1
2

e−(2kτ/T∗2 )2
cos

(
2kϕ − θ

)
,

P
(
u` = 1|ϕ

)
= 1 − P

(
u` = 0|ϕ

)
. (4.6)

Here, θ is the controlled phase, T∗2 is the decay rate of the spin coherence, τ is the shortest
interaction time, and f0 and f1 are the maximum probabilities of getting u` = 0 and u` = 1,
respectively. The Gaussian decay factor e−(2kτ/T∗2 )2

accounts for the bath-induced dephasing
[116].

We assume the only knowledge we have about the system phase ϕ is that it is confined
in the interval (−π, π], thus P

(
ϕ|u0

)
= 1/(2π). In other words, we assume that the initial

probability distribution for the magnetic field is flat over the possible range of values, which
then translates to the probability distribution for the phase. It is worth mentioning that the
flat distribution is not as natural for magnetic fields as it is for phase measurements. Different
initial distributions might be more appropriate for specific applications, but in the absence
of another proposed distribution we use the flat distribution to represent minimal initial
information.

The total measurement interaction time is

T =
K∑

k=0
2kτMk = τ

[
G

(
2K+1 − 1

)
+ F

(
2K+1 − 2 − K

)]
. (4.7)

We quantify the resources by the total interaction time. In our simulations we used τ = 20 ns
which is the value used in the experiment. We use the Holevo variance to estimate the
accuracy of the phase estimate

VH =
���
〈
eiϕ̌

〉���
−2
− 1, (4.8)

where ϕ̌ is an unbiased estimate of the phase. The Holevo variance can be calculated
efficiently if we represent the probability distribution for the phase in a compact form using
a Fourier series;

P
(
u` |ϕ

)
=

∑
j

a jei jϕ. (4.9)

Because Eq. (4.6) can be written with three Fourier terms, Bayes’ rule gives the following
updating rule for the Fourier coefficients

a(`)
j =

1 + (−1)u` ( f0 − f1)
2

a(`−1)
j

+
f0 + f1 − 1

4
e−(2kτ/T∗2 )2 (

ei(ulπ+θl )a(`−1)
j−2k + e−i(u`π+θ` )a(`−1)

j+2k

)
. (4.10)

In the following, we describe a range of measurement protocols. We first start with a non-
adaptive protocol in which the controlled phase is incremented independent of the detection
results. This is followed by adaptive protocols in which the controlled phase is determined
based on previous detection results.
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Figure 4.2: The scaled variance for a non-adaptive protocol where the number of repetitions
for each interaction time varies as in Eq. (4.4), with F = 5 for a range of values of G.

4.3.1 Non-adaptive protocol
In the non-adaptive protocol [54], the controlled phase is not updated based on previous
detection results, but is swept between 0 and π for detections with the same interaction time,
according to predefined values. If we perform Mk detections for the interaction time tk , the
controlled phase is incremented by a step of π/Mk after each detection. In other words, the
mth controlled phase θm for the interaction time tk is set to

θm =
mπ
Mk

, m = 1, ..., Mk . (4.11)

This protocol was experimentally demonstrated in Refs. [55] and [56].
We seek to find the most accurate non-adaptive protocol. We will then compare the

performance of this optimised non-adaptive protocol with adaptive protocols. To find the
optimised non-adaptive protocol we find the values of G and F that are optimal, in that they
yield the smallest variance. By extensive numerical search over a range of G from 1 to 20
and range of F from 0 to 20, we have found that the best value of F is 5. For this value of
F, the scaled variance does not change significantly for different values of G. This is shown
in Fig. 4.2 in which the scaled variance VHT/τ is plotted versus T/τ for F = 5 and a range of
values of G. In other words, there is no optimal value of G, so it is convenient to take G = 1
to minimise the number of detections and therefore the interaction time.

In Fig. 4.3 the scaled variance VHT/τ is shown for G = 1 (top) and G = 5 (bottom)
for a range of F from 0 to 5. Note that, once the longest interaction time 2Kτ reaches T∗2
(T∗2 = 96 µs) there is no further improvement in sensitivity, and the scaled variance starts
increasing.

4.3.2 Adaptive protocols
For adaptive protocols we consider three methods to update the controlled phase: limited-
adaptive, full-adaptive, and optimised-adaptive protocols. The details of each protocol are
given below.
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Figure 4.3: The scaled variance, VHT/τ, versus T/τ for the non-adaptive protocol for G = 1
(top) and G = 5 (bottom) for a range of values of F. Here we have used the experimental
parameters f0 = 0.88, f1 = 0.993 and T∗2 = 96µs.

Limited-adaptive protocol

In this protocol, proposed by Cappellaro [117], the controlled phase is updated only when
the interaction time is changed. In other words, when the interaction time is changed from tk
to tk−1, the controlled phase is updated by

θ =
1
2

arg
(
a−2k

)
. (4.12)



4.3 Phase estimation 49

We set the controlled phases in the interaction time 2Kτ to zero. When the interaction time
is changed from 2Kτ to 2K−1τ we calculate the controlled phase using the above equation
with k = K and use this phase for all the MK−1 detections. We do not recalculate θ for
every single detection in this interaction time, the same phase as the first detection is being
used. In a similar manner we calculate all the other controlled phases for different interaction
times. This controlled phase maximises the sharpness after the first detection with a given
interaction time. This is similar to the strategy we used in Chapter 2.

In Fig. 4.4 we have plotted the simulations for this protocol for G = 1 (top) and G = 5

Figure 4.4: The scaled variance,VHT/τ, versusT/τ for the limited-adaptive protocol forG = 1
(top) and G = 5 (bottom) for a range of values of F. This figure is plotted for f0 = 0.88,
f1 = 0.993 and T∗2 = 96µs.
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Figure 4.5: Minimum of the scaled variance versus F for two protocols; limited-adaptive and
non-adaptive.

(bottom) for a range of values of F. Compared to the non-adaptive protocol, the limited-
adaptive protocol reaches the Heisenberg-like scaling for F = 2 (if G = 1) and F = 1 (if
G = 5). It is easier to compare two protocols if we plot the minimum of the scaled variance
versus F. This is shown in Fig. 4.5. It can be seen that up to F = 3 the limited-adaptive
protocol outperforms the non-adaptive protocol. However, for F > 3 as is shown in Fig. 4.3,
the non-adaptive protocol reaches the Heisenberg-like scaling and it gives lower variance
than the limited adaptive protocol.

The number of detections for a sequence of K + 1 interaction times, i.e. the sequence
2Kτ, 2K−1τ, ..., τ, is

K∑
k=0

[G + F (K − k)] =
1
2

(K + 1) (KF + 2G) . (4.13)

Each detection corresponds to a Ramsey measurement. Each Ramsey measurement requires
time for the intialisation and detection, in addition to the interaction time. In the experiment
in Ref. [61], the initialisation time was 40 µs and the measurement time was 200µs. We call
this extra 240 µs time for each detection “overhead time”. The total overhead time in µs is
therefore 240 times the total number of detections.

Toverhead = 240 ×
1
2

(K + 1) (KF + 2G) . (4.14)

In all the plots, except in Fig. 4.10, we have only included the interaction time, and haven’t
considered the overhead time. In practice, it is important to minimise the total time of the
sequence, including the overhead time. Therefore, the sequence that reaches the Heisenberg-
like scaling with smaller F is a better sequence. Moreover, non-adaptive protocols can
always be obtained as a special case of a sufficiently general adaptive protocol. Because the
limited-adaptive protocol can be outperformed by the non-adaptive protocol, there must be
other adaptive protocols with better performance.
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Full-adaptive protocol

In this case the controlled phase is not only updated when the interaction time is changed,
but also updated after each detection for a given interaction time tk = 2kτ. In this protocol,
after each detection with interaction time tk , the phase is updated by

θ =
1
2

arg
(
a−2k+1

)
. (4.15)

This is essentially continuing to use the same formula for each detection with interaction time
tk as for the first detection after the interaction time is changed. Note that, in this protocol
θ is recalculated after each detection, which is distinct from the limited-adaptive protocol in
which θ is calculated for the first detection with interaction time tk , and kept fixed for all the
remaining detections with this interaction time.

This controlled phase is basically the best estimate of the phase modulo π/2k instead of
π/2k−1. This is surprising, because normally in adaptive schemes the best estimate is used
to approximate a homodyne measurement. The reason is that a π phase ambiguity does not
matter for the controlled phase θ. In other words, adding π to the controlled phase only
exchanges the detection results u` = +1 and u` = 0. If we add π to the controlled phase and
we get u` = 0 as the detection result, all the following calculations are the same as if we hadn’t
added π and the detection result was u` = +1. This means that the final phase variance does
not change. This choice of controlled phase is different from the scheme we used in chapter
2. There, the controlled phase was chosen to maximise the average sharpness after the next
detection result. We have seen through numerical simulations that such a scheme does not
work well here.

Figure 4.6 shows the scaled variance obtained by this protocol for G = 1 and G = 5 for
a range of values of F. The improvement achieved by the full-adaptive protocol over the
limited adaptive protocol is shown in Fig. 4.7. However, as can be seen in this figure, the
non-adaptive protocol for F = 5 still has better performance. The minimum of the scaled
phase variance for the non-, limited- and full-adaptive protocols is plotted in Fig. 4.8. This
figure shows the enhancement obtained by updating the phase after each detection. Moreover,
it shows that the non-adaptive protocol performs better than even the full adaptive protocol
for values of F > 3. We will now show that there is an optimised adaptive protocol which
performs better than the non-adaptive protocol for all values of F.

Optimised adaptive protocol

In this protocol, we add phase increments θincr to the controlled phases based on the full-
adaptive protocol. We found that this gives better results than adding the increments to the
limited-adaptive or non-adaptive protocols. The increments in the phase are obtained by
numerically minimising the final phase variance through the particle swarm optimization
(PSO) algorithm [60], explained in Appendix A.2. The search space of the PSO algorithm
for this case is the phase increments after each detection. Each increment only depends on
the last detection result and the number of previous detections. This is not the most general
possible scheme. The most general possible is prohibitively difficult to calculate because the
number of possible increments is exponential in the number of detections. In our simulations
for particle swarm optimization, we used 10 particles and 400 iterations. For the constants
we used cg = cl = 2.05 and χ = 0.729.

Figure 4.9 shows that the optimised adaptive protocol for G = 1, F = 2 performs as well
as the best non-adaptive protocol (G = 1, F = 5). Moreover, the optimised adaptive protocol
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Figure 4.6: The scaled variance, VHT/τ, versus T/τ for the full-adaptive protocol for G = 1
(top) and G = 5 (bottom) for a range of values of F.

for G = 1, F = 3, and also G = 5, F = 2 outperforms the optimised non-adaptive protocol. If
we consider the overhead time, the enhancement obtained by the optimised adaptive protocol
is significant. This is shown in Fig. 4.10. As would be expected the optimised adaptive
protocol for G = 1, F = 1 has the best performance when overhead time is considered. As
can be seen in Fig. 4.9, F = 1 gives Heisenberg-like scaling. Moreover, because it has the
smallest number of detections, it has the lowest overhead time.

To compare all the protocols we have shown the minimum of the scaled phase variance
for the non-, limited-, full-, and optimised adaptive protocols in Fig. 4.11. This figure shows
that the optimised adaptive protocol outperforms the non-adaptive protocol for all values of
F.
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Figure 4.7: Scaled variance of the optimised non-adaptive protocol (G = 1, F = 5) compared
to the best limited- and full-adaptive protocols.

Figure 4.8: Minimum of the scaled variance versus F for full-, limited- and non-adaptive
protocols.

non-adaptive

optimised adaptive

optimised adaptive

optimised adaptive

optimised adaptive

Figure 4.9: The scaled varianceVHT/τ versusT/τ0 comparing the optimised adaptive protocol
with a range of values of G and F with the optimised non-adaptive protocol G = 1, F = 5.
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optimised adaptive

optimised adaptive

optimised adaptive

optimised adaptive

non-adaptive

Figure 4.10: The scaled variance including the overhead time; VHTtotal/τ versusTtotal/τ where
Ttotal = T + Toverhead with Toverhead given in Eq. 4.14.

Optimised adaptive

Non-adaptive

Limited-adaptive

Full-adaptive

Figure 4.11: The minimum of the scaled variance versus F for optimised, full-, limited- and
non-adaptive protocols.

4.4 Conclusion
In this chapter, we gave simulations for different protocols in estimation of a time-independent
magnetic field using a single electron spin in an NV centre. We showed that non-adaptive
protocols reach Heisenberg-like scaling. However, there is an optimised adaptive protocol
which requires a smaller number of detections and outperforms the optimised non-adaptive
protocol. The enhancement obtained by the optimised adaptive protocol is significant if the
overhead time is considered. In this optimised adaptive protocol, the phase is updated after
each detection via increments found by the PSO algorithm. The numerical simulations given
here are confirmed in the experiment done in Ref. [61]. This optimised adaptive protocol is
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probably not the ultimate optimal adaptive protocol. Further improvements might be obtained
by taking into account the full measurement history.
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5
Estimation of a time varying phase

5.1 Introduction

In the previous chapters we considered estimation of a constant phase in interferometric
schemes. For a constant phase the SQL in the phase variance scales as 1/N and theHeisenberg
limit scales as 1/N2, N being the total number of photons. However, in many applications the
phase varies with time. Examples of such are a signal with a time varying phase to transmit
information, and phase estimation in gravitational wave detectors. Another scenario is phase
estimation in the presence of phase diffusion, considered in Refs. [118, 119]. This is distinct
from what we are considering in this chapter.

We consider phase variation that is stationary and has Gaussian statistics. Such phase
variation can be characterised just by its spectral density, which we take to have power law
scaling, i.e. κp−1/|ω |p for large frequency ω. The constant κ is a constant of proportionality,
which is given with a power of p − 1 so that it has units of frequency. For such a varying
phase the SQL scales as

(
κ/N̄

) (p−1)/p
and the Heisenberg limit scales as

(
κ/N̄

)2(p−1)/(p+1)
,

N̄ being the photon flux of the beam [120, 121]. For p → ∞ this time varying phase is
analogous to a constant phase, and the stochastic limits in phase estimation approach the
constant phase limit.

The stochastic Heisenberg limit can be obtained, up to a constant factor, by sampling
regularly spaced sequence of pulses each measured by a canonical phase measurement [121].
However, it is not possible to deterministically realise canonical measurements with linear
optical elements. Similar scaling for a constant phase can be achieved using adaptive homo-
dyne measurements. Moreover, the sampling approach requires the pulses to be very short
so that the phase is effectively constant during each sample. It therefore requires very fast
adaptive measurements where a controlled phase is varied orders of magnitude faster than
the system phase [121]. It is much more practical to consider a continuous beam, where the
controlled phase need only be varied slowly.

In prior work it has been shown that, for phase variation withWiener statistics, continuous
squeezed states in an adaptive homodyne scheme give Heisenberg scaling for the variance of
the phase estimate [64, 70, 122]. For the Wiener process the spectrum has power law scaling
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Figure 5.1: The scheme for adaptive homodyne measurement of the phase ϕ imposed on
a squeezed coherent state generated by a cavity with decay constant γ. D1 and D2 are the
photodetectors. I (t) is the difference photocurrent between the two outputs of the 50/50
beam splitter (BS). The processor adjusts the phase of the local oscillator (LO) labeled by θ
based on I (t).

with p = 2. In this chapter, we show that with such an adaptive scheme we can also obtain
Heisenberg scaling for p > 1.

5.2 Adaptive homodyne measurement with squeezed states
A diagram of an adaptive homodyne scheme is shown in Fig. 5.1. As we explained in Chapter
1, in adaptive homodynemeasurements the field, whichwe here take to be a squeezed coherent
state, is combined with a strong local oscillator (LO) on a 50/50 beam splitter. The difference
photocurrent in the outputs of the beam splitter is then used to adjust the phase of the LO for
the following measurements [68, 72]. The continuous squeezed coherent beam is produced
in an optical parametric oscillator (OPO) [123]. In this method a nonlinear medium inside
a cavity is pumped with a coherent beam. The light leaked out of the cavity provides the
continuous beam. The decay constant of the cavity is denoted by γ.

The output photon flux from the cavity can be written in terms of the quadrature operators
just outside the cavity and before the phase, denoted by X̂ and Ŷ , as [71]

4N̄ =
〈
X̂
〉2
+

〈
Ŷ
〉2
+

〈
: ∆X̂2 + ∆Ŷ 2 :

〉
. (5.1)

Here,
〈
X̂
〉
= 0 and

〈
Ŷ
〉
= E, where E is the coherent amplitude of the field. The normally

ordered variances of the quadratures are [124, 125]〈
: ∆X̂2 :

〉
=

〈
: X̂2 :

〉
−

〈
: X̂ :

〉2
= −

γε

1 + ε
,〈

: ∆Ŷ 2 :
〉
=

γε

1 − ε
, (5.2)

where ε is a parameter related to the squeezing parameter r according to

ε =
er − 1
er + 1

. (5.3)
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This gives

N̄ =
E2

4
+
γ

2
sinh2

( r
2

)
. (5.4)

We denote the quadrature operators of the field inside the cavity by x̂ and ŷ. The
Heisenberg equation of motion for these quadrature operators can be written as [70, 126]

dx̂
dt
= −x̂γ(1 + ε)/2 +

√
γξ̂, (5.5)

d ŷ
dt
= −ŷγ (1 − ε) /2 +

√
γη̂. (5.6)

Here, ξ̂ and η̂ are the quadrature noise operators, and we have considered the squeezed
quadrature to be x̂. The phase ϕ is imposed on the squeezed state before it combines on a
50/50 beam splitter with a LO which has phase θ. The output quadrature at angle θ − ϕ is
obtained as [70, 126]

Î = cos
(
θ − ϕ

) (√
γ x̂ − ξ̂

)
+ sin

(
θ − ϕ

) (√
γ ŷ + E − η̂

)
. (5.7)

This corresponds to the measured difference photocurrent in the output modes.
Equations (5.5), (5.6) and (5.7) can be solved by replacing the quadrature operators with

the corresponding quadrature variables for theWigner distribution, and replacing Î, the output
quadrature, with the difference photocurrent in the output [70]. Therefore, we can write

dx
dt
= −xγ(1 + ε)/2 +

√
γξ (5.8)

dy
dt
= −yγ (1 − ε) /2 +

√
γη (5.9)

I = cos
(
θ − ϕ

) (√
γx − ξ

)
+ sin

(
θ − ϕ

) (√
γy + E − η

)
. (5.10)

Here, ξ and η are Gaussian increments satisfying 〈ξ (t) ξ (t′)〉 = 〈η (t) η (t′)〉 = δ (t − t′).
One way to numerically integrate these equations is to directly discretise the equations over
time steps of length ∆t [70]. The method we describe here is to instead integrate the
differential equations over a time step of length ∆t. This method is still not exact because we
assume that the system and controlled phases are constant over these time intervals. That is,
the remaining approximation in the discretisation is now in taking the phases to be constant
over the time intervals. Provided the time intervals are short, the approximation will be
accurate, and it will be more accurate than the approximation without the integrals.

Integrating Eqs. (5.8) and (5.9) we obtain

x (t) = eγ(1+ε)(t0−t)/2x0 +
√
γ

∫ t

t0

du eγ(1+ε)(u−t)/2ξ (u), (5.11)

y (t) = eγ(1−ε)(t0−t)/2x0 +
√
γ

∫ t

t0

du eγ(1−ε)(u−t)/2η(u), (5.12)

where x0 and y0 are the values of x and y at t = 0. To obtain the effect of a step from time t0
to t1 we integrate I over this interval. Therefore, we need to integrate √γx − ξ and √γy − η.



60 Estimation of a time varying phase

We have

√
γ

∫ t1

t0

dtx =
√
γx0

∫ t1

t0

dteγ(1+ε)(t0−t)/2 + γ

∫ t1

t0

dt
∫ t

t0

du eγ(1+ε)(u−t)/2ξ (u)

= x0
2√γ

γ (1 + ε)

(
1 − e−γ(1+ε)∆t/2

)
+ γ

∫ t1

t0

du ξ (u)
∫ t1

u
dt eγ(1+ε)(u−t)/2

= x0
e−r + 1
√
γ

(
1 − e−γ(1+ε)∆t/2

)
+

(
e−r + 1

) ∫ t

t0

du ξ (u)
(
1 − eγ(1+ε)(u−t1)/2

)
,

(5.13)

which gives∫ t1

t0

dt
(√
γx − ξ (t)

)
= x0

e−r + 1
√
γ

(
1 − e−γ(1+ε)∆t/2

)
−

(
e−r + 1

) ∫ t

t0

du ξ (u)eγ(1+ε)(u−t1)/2 +

∫ t

t0

e−rξ (u) du.

(5.14)

In the above equations we have defined ∆t = t1 − t0. Similarly for √γy − η we obtain∫ t1

t0

dt
(√
γy − η(t)

)
= y0

er + 1
√
γ

(
1 − e−γ(1−ε)∆t/2

)
−

(
er + 1

) ∫ t

t0

du η(u)eγ(1−ε)(u−t1)/2 +

∫ t

t0

erη(u) du.

(5.15)

We define

χx ≡

∫ t

t0

du ξ (u)eγ(1+ε)(u−t1)/2, χy ≡

∫ t

t0

du η(u)eγ(1−ε)(u−t1)/2 (5.16)

ψx ≡

∫ t

t0

du ξ (u)e−r, ψy ≡

∫ t

t0

du η(u)er . (5.17)

In terms of these new variables the integral of I can be written as∫ t1

t0

dt I = cos
(
θ − ϕ

) [
x0

(
e−r + 1

) (
1 − e−γ(1+ε)∆t/2

)
/
√
γ −

(
e−r + 1

)
χx + ψx

]

+ sin
(
θ − ϕ

) [
E∆t + y0

(
er + 1

) (
1 − e−γ(1−ε)∆t/2

)
/
√
γ −

(
er + 1

)
χy + ψy

]
.

(5.18)

The expectation values of χ` and ψ` for both ` = x, y are zero because ξ and η both have
mean zero. Therefore the variances are as the following〈

χ2
x

〉
=

∫ t

t0

du eγ(1+ε)(u−t1) =
(
e−r + 1

) (
1 − e−γ(1+ε)∆t

)
/2γ, (5.19)

〈
χ2
y

〉
=

∫ t

t0

du eγ(1−ε)(u−t1) =
(
er + 1

) (
1 − e−γ(1−ε)∆t

)
/2γ, (5.20)〈

ψ2
x

〉
= e−2r

∆t,
〈
ψ2
y

〉
= e2r

∆t, (5.21)
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and the covariances are

〈χxψx〉 =

∫ t

t0

du eγ(1+ε)(u−t1)/2e−r = e−r (e−r + 1
) (

1 − e−γ(1+ε)∆t/2
)
/γ, (5.22)

〈
χyψy

〉
=

∫ t

t0

du eγ(1+ε)(u−t1)/2er = er (er + 1
) (

1 − e−γ(1−ε)∆t/2
)
/γ. (5.23)

We also define

m(1)
x ≡

(
e−r + 1

) (
1 − e−γ(1+ε)∆t/2

)
/
√
γ, (5.24)

m(1)
y ≡

(
er + 1

) (
1 − e−γ(1−ε)∆t/2

)
/
√
γ, (5.25)

and Ωx = ψx − λx χx and Ωy = ψy − λy χy in such a way that the covariances 〈Ωx χx〉 and〈
Ωy χy

〉
are zero. This could be obtained by having

λx =
〈χxψx〉〈
χ2

x

〉 , λy =

〈
χyψy

〉〈
χ2
y

〉 . (5.26)

In terms of these scaling factors we can write

x (t1) = e−γ(1+ε)∆t/2x0 +
√
γ χx, (5.27)

y (t1) = e−γ(1+ε)∆t/2y0 +
√
γ χy, (5.28)

I (t1) = I (t0) + cos
(
θ − ϕ

) (
m(1)

x x0 +Ωx + m(4)
x χx

)
+ sin

(
θ − ϕ

) (
m(1)

y y0 + E∆t +Ωy + m(4)
y χy

)
, (5.29)

where m(4)
x = λx − e−r − 1 and m(4)

y = λy − er − 1.
In the numerical simulationswe use these formulae to improve the accuracy, and determine

the controlled phase θ from the photocurrent. Before explaining how this is done, we first
give the details for the time variation of the system phase ϕ.

5.3 System phase time variation
We consider a time-varying system phase ϕ which is stationary and has Gaussian statistics.
Here, we mean stationary in the wide sense [127]. For a wide-sense stationary process, the
mean value of the phase, 〈ϕ(t)〉 is independent of time, and its autocorrelation function,
Σ(t1, t2) = 〈ϕ(t1)ϕ(t2)〉 is only a function of t1 − t2 [127]. Moreover, we assume the spectral
density of the process, defined as the Fourier transform of the autocorrelation function,

Σ̃(ω) =
∫ ∞

−∞

Σ(t) e−iωt dt, (5.30)

has power law scaling for large ω, i.e. Σ̃(ω) ∼ κp−1/|ω |p. The multiplicative factor κ is a
constant with units of frequency, and is the inverse of the characteristic time of the spreading
of the process. To ensure that the spectrum is limited at ω = 0, we consider the spectral
density to be [121, 128]

Σ̃(ω) =
κp−1

ωp + Γp . (5.31)
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Γ is a constant and is the characteristic time for the relaxation of the phase towards zero [121].
Now we show how a time-varying phase with such spectral density can be generated. If

we take the Fourier transform of the phase ϕ(t) and calculate the two-frequency expectation
value we obtain

〈ϕ̃(ω1)ϕ̃(ω2)〉 =
∫ ∞

−∞

∫ ∞

−∞

dt1 dt2〈ϕ(t1)ϕ(t2)〉e−i(ω1t2−ω2t2)

=

∫ ∞

−∞

∫ ∞

−∞

dt1 dt2 Σ(t1 − t2)e−i
[

1
2 (ω1+ω2)(t1−t2)+ 1

2 (ω1−ω2)(t1+t2)
]

=

∫ ∞

−∞

∫ ∞

−∞

dT d∆Σ(∆)e−i
[

1
2 (ω1+ω2)∆+(ω1−ω2)T

]

= 2πδ(ω1 − ω2)
∫ ∞

−∞

dT Σ(∆)e−i
[

1
2 (ω1+ω2)∆

]

= 2πδ(ω1 − ω2)Σ̃(ω1). (5.32)

Here, we have used the change of variables T = (t1 + t2)/2, ∆ = t1 − t2, and in the last line
we have replaced (ω1 + ω2)/2 by ω1 because of the delta function δ(ω1 − ω2). Note also
that, because the phase ϕ(t) is real, ϕ̃(−ω) = ϕ̃∗(ω). As a result, we can write the Fourier
transform of the phase in the form

ϕ̃(ω) =
√

2πΣ̃(ω)ξ (ω), (5.33)

where ξ (ω) has the correlations

〈ξ (ω1)ξ∗(ω2)〉 = 〈ξ (ω1)ξ (−ω2)〉 = δ(ω1 − ω2). (5.34)

Taking the inverse Fourier transform of ϕ̃(ω) we obtain

ϕ(t) =
1

2π

∫ ∞

−∞

dω
√

2πΣ̃(ω)ξ (ω)eiωt . (5.35)

Calculating the correlation function we obtain

〈ϕ (t + τ) ϕ (t)〉 =
1

2π

∫ ∞

−∞

dω1

∫ ∞

−∞

dω2

√
Σ̃ (ω1) Σ̃ (ω2) 〈ξ (ω1) ξ (ω2)〉 eiω1(t+τ)eiω2t

=
1

2π

∫ ∞

−∞

dω Σ̃ (ω) eiωτ . (5.36)

This confirms that ϕ(t) has power spectral density Σ̃(ω).
To generate this phase in our simulations we generate discretised complex white noise

and use a discretised Fourier transform. We take ξ (ω) to be approximated by

ξ (ωk ) ≈
(
zk,1 + izk,2

)
/
√

2δω, (5.37)

where zk,1 and zk,2 are normally distributed random numbers with zk,1 = z−k,1, zk,2 = −z−k,2.
We approximate the integral in Eq. (5.35) by

ϕ(tn) ≈
1
√

4π

∑
k

√
δω

√
Σ̃ (ωk )

(
zk,1 + izk,2

)
eiωk tn . (5.38)
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Figure 5.2: A Gaussian random process with power law spectral density 1/(ωp + Γp), with
p = 2, Γ = 10−3, and δt = 10−3.

Taking tn = nδt, ωk = kδω and δωδt = 2π/N the above equation becomes

ϕ(tn) ≈
1
√

4π

∑
k

√
δω

√
Σ̃(ωk )

(
zk,1 + izk,2

)
ei2πnk/N

=
1

√
2Nδt

∑
k

√
Σ̃ (ωk )

(
zk,1 + izk,2

)
ei2πnk/N

≈
1

√
2Nδt



N−1∑
k=0

√
Σ̃(ωk )

(
z′k,1 + izk,2

)
ei2πnk/N +

N−1∑
k=0

√
Σ̃(ωk )

(
z′k,1 − izk,2

)
e−i2πnk/N



=

√
2

Nδt


Re *

,

N−1∑
k=0

√
Σ̃(ωk )

(
z′k,1

)
e−i2πnk/N +

-
− Im *

,

N−1∑
k=0

√
Σ̃(ωk )

(
zk,2

)
e−i2πnk/N +

-


(5.39)

where z′k,1 = zk,1 for k , 0 and z′0,1 = z0,1/2. Figure 5.2 shows the generated noise for p = 2
and Γ = 10−3. As p is increased the time variation of the phase becomes slower.

5.4 Feedback phase

To estimate this time-varying phase, we change the LO phase, θ, based on the difference
photocurrent given in Eq. (5.29) during the course of the measurement. As we mentioned in
Section 1.5, the LO phase could be updated by Bayesian updating [65–67] or based on the
functionals of the photocurrent record [64, 70]. The Bayesian updating is highly numerically
intensive for this problem. Moreover, it is shown in Ref. [70] that Bayesian updating gives
only a few percent enhancement over the other method. Therefore, we follow Refs. [64, 70]
and update the phase based on the functionals of the difference photocurrent.

The relevant information from the measurement record can be formulated in the following
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quantities [64, 70]

A(t) =
∫ t

−∞

e χ(u−t)eiθ I (u) du, (5.40)

B(t) = −
∫ t

−∞

e χ(u−t)e2iθ du, (5.41)

where χ is a scaling parameter which scales the weight e χ(u−t) given to the difference
photocurrent at time u, I (u). The phase estimate at time t, ϕ̌(t), is a function of the two
functionals A(t) and B(t) according to

ϕ̌(t) = arg (C(t)), C(t) = A(t) + χB(t)A∗(t). (5.42)

However, it is found that using this phase estimate as the LO phase gives poor results [64, 70].
This is because for very good estimates of the phase in the feedback the results do not
distinguish easily between the system phase and system phase plus π. Therefore, many of
the results are off by π which results in a large phase variance [18]. Thus, following the
technique of previous works [64, 70] we set the LO phase to

θ(t) = arg
(
C1−δ (t) Aδ (t)

)
+ π/2, (5.43)

and find the optimal value of δ numerically. Recall that, in Section 4.3.2 we explained that
changing the controlled phase by π does not make any difference to the final phase variance.
If we were only attempting to measure the phase at a final time, then it would not matter if
there were errors of π in the phase estimate at intermediate times, because errors of π in the
controlled phase do not adversely affect the results. This means that it would be reasonable
to use arg (C(t)) as the phase estimate at intermediate times. However, because we require
accurate estimates of the phase at all times, we must be able to resolve the π ambiguity at all
times, and it is better to use the LO phase given in Eq. (5.43).

5.5 Numerical results
We find the minimum variance for each value of N̄ numerically. If we scale the time by
κ, we obtain the dimensionless parameters N̄ /κ, γ/κ, and χ/κ. In addition to these three
parameters, the other parameters that we can vary are the dimensionless parameters r and δ.
Here, we consider arbitrary squeezing and do not consider any limitations for the squeezing
parameter, r . This is because we want to find the ultimate scaling obtained with this scheme
regardless of current technological status of sources of squeezing. For each value of N̄ /κ we
have found the minimum variance by a numerical search for the four parameters γ/κ, χ/κ,
δ, and er . In order to do this, we systematically incremented the value of each parameter in
turn to find the values that give the minimum variance.

For N̄ /κ < 5 × 107 we used the Holevo variance,

Re


1
M

M∑
i=1

ei(ϕ̌i−ϕ)


−2

− 1. (5.44)

For N̄ /κ ≥ 5 × 107 the formula for the standard mean-square error given as

1
M

M∑
i=1

(
ϕ̌i − ϕ

)2, (5.45)
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approximates the Holevo variance more accurately than using the formula for the Holevo
variance. This is due to roundoff error using the formula for the Holevo variance. To give
the system of equations time to reach its steady state, we did not sample the error up to time
100/χ in our simulations. We then estimated the variance by sampling the error for every
time step up to 300/χ. Even though the error was sampled every time step, the samples are
strongly correlated for times below 1/χ. Therefore the number of independent samples is
effectively the multiple of 1/χ used for the time. We performed 26 independent integrations
from time 0 to 300/χ. Therefore, the effective number of independent samples of the error
was 200 × 26. This includes those from different times within one integration.

To calculate the integrals (5.40) and (5.41) we use time steps of δt = 1/
(
103 χ

)
and

approximate the integrals with

A(t + δt) ≈
(
1 − χδt

)
A(t) − I (t)eiθδt, (5.46)

B(t + δt) ≈
(
1 − χδt

)
B(t) + e2iθδt, (5.47)

where we have used the approximation e χδt ≈ 1 − χδt and assumed I does not change in the
interval [t, t + δt).

We found the values of the parameters er , χ, γ and δ that give the minimum MSE for a
range of values of p. We then used linear regression to find the scaling of each parameter as
a function of N̄ /κ for a general value of p and found

er ∼
(
N̄ /κ

) (p−1)/(2p+2)
, χ/κ ∼

(
N̄ /κ

)2/(p+1)
,

γ/κ ∼
(
N̄ /κ

) (p+3)/(2p+2)
, δ ∼

(
κ/N̄

) (p−1)/(p+2)
,

MSE ∼
(
κ/N̄

)2(p−1)/(p+1)
. (5.48)

The optimal values of er , χ/κ, γ/κ and δ, are shown in Figs. 5.3 and 5.4. The minimum
MSE is shown in Fig. 5.5 for a range of values of p. For the case of p = 4, it was not possible
to push N̄ /κ to large values. This is due to the rapid decrease of the MSE for large values of
p and the resulting roundoff error in the simulations.

The scaling obtained for the MSE with the adaptive homodyne scheme using squeezed
state is of the Heisenberg scaling. In Fig. 5.6 we have compared the scaling constant of the
proposed scheme here with the Heisenberg limit, and the pulsed measurement proposed in
Ref. [121]. For large values of N̄ the scaling constant for the Heisenberg limit is [121]

cz =
11

420

( p3

4

)2/(p+1)
(

1
4πλ

)2(p−1)/(p+1)

, (5.49)

with λ ≈ 0.7246 and p3 = (p+1)(p+2)(p+3). The scaling constant for the MSE achievable
by the pulsed method of Ref. [121] is

cA =
p + 1
p − 1

(
4|zA |

3/27
) (p−1)/(p+1)

π2p/(p+1), (5.50)

with zA ≈ −2.338. As can be seen from this figure, the pulsed method (with assumed ideal
phase measurements) performs better than the continuous squeezing method (with adaptive
homodyne measurements) for large p.

In Fig. 5.7 we have plotted the system phase and the estimated phase obtained based on
Eq. (5.42) for p = 1.5, and p = 3. The initial period of transience of the phase estimate can
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be seen in this figure. The phase estimate is initially far from the system phase but as we
obtain more information from the measurements it locks into the system phase and follows
its fluctuations quite well.

Figure 5.3: The optimal values of the parameters χ and er versus N̄ /κ for a range of values
of p. Black line: p = 1.25, green line: p = 1.5, red line: p = 2, yellow line: p = 2.5, purple
line: p = 3, and blue line: p = 4.



5.5 Numerical results 67

Figure 5.4: The optimal values of the parameters γ and δ versus N̄ /κ for a range of values
of p. Black line: p = 1.25, green line: p = 1.5, red line: p = 2, yellow line: p = 2.5, purple
line: p = 3, and blue line: p = 4.
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Figure 5.5: The scaled MSE versus N̄ /κ for a range of values of p. Black line: p = 1.25,
green line: p = 1.5, red line: p = 2, yellow line: p = 2.5, purple line: p = 3, and blue line:
p = 4.

Figure 5.6: The scaling constant of the MSE for the Heisenberg limit (green line), cz given
in Eq. (5.49), the pulsed measurement (black line), cA given in Eq. (5.50), and the homodyne
scheme with a continuous squeezed state (red line).
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Figure 5.7: System phase (black line) and the estimated phase (green line) for N̄ /κ = 108.
Top: p = 1.5, bottom: p = 3.

5.6 Conclusion
In this chapter, we investigated estimation of a time-varying phase in an adaptive homodyne
scheme using a continuous squeezed state. We considered a phase with time-invariant
Gaussian statistics and power law spectral density. We showed that assuming it is possible to
achieve arbitrarily high squeezing, this scheme gives Heisenberg scaling for the variance of
the phase. Moreover, we showed that the scaling constant obtained with the adaptive method
is larger than the scaling obtained with the sampling method proposed in Ref. [121].

An interesting topic for future work is estimation of a time varying phase with entangled
states in an interferometric scheme. As we discussed in Chapters 2 and 3 for the case of a
constant phase, not all the entangled states can beat the SQL. The entanglement useful for
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estimating a constant phase can be characterized by the Fisher information [129]. It would
be interesting to characterize the entanglement useful for estimation of a time-varying phase.
Other possible areas for further study are to consider non-Gaussian correlations in the phase
variation and also the effect of loss in the system.



6
Conclusions

In this thesis we investigated methods to achieve improved precision in measurement of
noisy quantum systems. The focus of this work was on adaptive measurement schemes.
We considered phase estimation in optical and solid-state systems. In the optical case, we
considered estimation of a phase in a Mach-Zehnder interferometer in the presence of photon
loss, and estimation of a time-varying phase imposed on a continuous beam in a single spatial
mode. The solid-state system we considered was an NV centre. In such a system, the noise
results in low visibility.

We started with phase estimation in a Mach-Zehnder interferometer. We proposed a
scheme to generate multi-photon entangled states which are close to optimal for phase
measurement in the presence of photon loss. We considered loss in both arms of the
interferometer, and to simplify the calculations we considered the same amount of loss in
both arms. In order to provide a technique that is experimentally feasible, we proposed a
scheme that uses an SPDC source to produce loss-resistant states. The scheme is able to
produce 2n-photon states (n = 1, 2, ...), which are loss-resistant. By loss-resistant we mean
that the state is still useful for measurement in the presence of loss and ideally is the state
which yields the most accurate measurements with that loss.

We proposed an adaptive technique which uses sequences of these loss-resistant states
together with single-photon states in order to provide an unambiguous estimate of an unknown
phase. This adaptive technique is inspired by the generalized form of the quantum phase
estimation algorithm. We found the optimal sequence by a numerical search over the range
of possible sequences. We found that for small total photon numbers it is optimal to use only
single-photon states. As the number of total photons gets larger, we obtain an enhancement
in the precision by using two-photon optimal states, and for larger total photon numbers by
using four-photon optimal states in the sequence, and so forth. We showed that by using the
optimal sequence of states, we are able to obtain variances smaller than the SQL, defined by
the corresponding scheme with independent single photons.

We then considered a special case in which both loss and the phase shift depend on the
parameter we wish to measure, which is the transition frequency of atoms. We considered
an ensemble of two-level atoms in one of the arms of a Mach-Zehnder interferometer. The
interaction of the probe state in the arms of the interferometer with the atomic ensemble
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results in the photon loss, and imposes a phase shift on the state. We formulated this
interaction by the beam splitter model. In this case, both the loss and the phase shift depend
on the transition frequency of the atoms. We considered a weighted superposition of dual
Fock states in the arms of the interferometer. We found the optimal state for estimating the
transition frequency of the atoms by a numerical search for the coefficients that provide the
largest Fisher information. In other parts of the thesis we have considered unambiguous
measurements, whereas for this case, due to the complexity of this scheme, we have not
considered techniques to obtain an unambiguous measurement, and just used the Fisher
information.

We found that the loss and the phase shift strongly depend on the number density of
atoms. For large number densities, the phase imposed on the probe is large. Therefore, there
is an advantage in using both the phase shift and loss to measure the transition frequency of
atoms. In this case, the optimal state is an entangled multi-photon state, which has a large
weighting on the state with all photons in the arm with the atomic ensemble. However, for
small number densities, the phase shift imposed on the probe is not large enough to obtain
significant information from the phase shift and optimal states obtain all the information from
absorption. This results in unentangled Fock state as the optimal state which is equivalent
to sending independent single photons through the atomic ensemble. In other words, the
optimal state is that with all photons in the arm with the atomic ensemble. Therefore,
there is no advantage in using an interferometric scheme in this case. Surprisingly, there
is a number density of atoms for which independent single photons have the highest Fisher
information, even higher than the Fisher information for the numerically optimised states
with a larger number density. Comparing the plots of the imposed phase shift on the state and
the absorption for a range of number densities clarified this. This showed that the optimal
number density is the one for which the absorption covers the full range of 0 to 1, but is only
close to 1 over a narrow range. This is in contrast to situations where there is a wide region
where the absorption is very close to 1. Those will give larger phase shifts but because the
absorption is so high the large phase shift is not useful for measurement.

Another consideration is that the Fisher information takes its maximum value over a
relatively narrow range of frequencies, and otherwise it is close to zero. Thus, an approach for
eliminating ambiguities as has been considered for NOON states would not work. Therefore,
we need to have prior information about the transition frequency. In other words, this scheme
can be used to measure small changes in the transition frequency.

Next, we studied measurement of an unknown time-independent magnetic field with the
electron spin of an NV centre. We investigated the performance of a non-adaptive protocol
and various adaptive protocols. The estimation of the magnetic field in this case is equivalent
to phase estimation in aMach-Zehnder interferometer. However, in the case of magnetometry
not only is the variance of the estimated magnetic field important but also the range of the
detectable magnetic field. Therefore, we aimed to maximise the dynamic range, which is
defined as the ratio of the maximum detectable magnetic field to the uncertainty in the field.

We used the generalized form of the quantum phase estimation algorithm to obtain an
unambiguous estimate of the magnetic field. We used a sequence of Ramsey measurements
with multiple interaction times. The sequence starts with the longest interaction time, and
the interaction time is then decreased by successive powers of 2 until the shortest interaction
time is reached. For each interaction time, there are a number of detections before the next
interaction time is used. The number of detections for each interaction time is increased as the
interaction time is decreased. This is necessary to resolve the ambiguity accurately. We found
the best non-adaptive scheme numerically, which gives variance for the measurement scaling
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as the inverse of the square of the total interaction time. This scaling is analogous to the
Heisenberg limit in optical interferometry. Despite the speculations about the performance
of adaptive schemes in magnetometry with an NV centre, we showed that there is an adaptive
scheme that reaches the Heisenberg-like scaling. Compared to the non-adaptive protocol, this
protocol requires a lower number of detections, and therefore shorter total interaction time,
and gives lower variance for the estimate of the magnetic field. For a general measurement
scheme there would be a different controlled phase based on each possible measurement
record. Instead we consider controlled phases that are determined by increments based on the
most recent detection result and the number of the detections in the sequence. The adaptive
scheme that is optimal for this set of possible schemes is then found by particle swarm
optimisation. The enhancement obtained by this adaptive protocol over the non-adaptive
protocol is significant when the overhead time, consisting of initialisation and measurement
time, is taken into account.

Finally, we looked into tracking a time-varying phase imposed on a continuous beam in a
single spatial mode. This case is very important because time-varying signals are frequently
encountered in practice, for example in gravitational wave detection or communication.
Moreover, a continuous beam is easier to produce in practice. For a time-varying phase,
the SQL and Heisenberg limit are different from the corresponding limits for a constant
phase [121]. We considered the phase as a stochastic process with power law spectral
density, i.e. 1/ωp, for p > 1. The Wiener process is the case for which p = 2. We considered
using squeezed states with adaptive feedback based on the photocurrent difference in the
output modes. We showed that by numerically optimising over the squeezing and other
experimental parameters we can reach the Heisenberg scaling in tracking such a time-varying
phase.
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A
Appendices

A.1 Optimal sequence for loss resistant phase estimation

In this appendix we give the optimal sequence for estimation of an unknown phase in a lossy
interferometer with efficiency η in both arms (see Fig. 2.4). The optimal sequence given
here is found for η = 0.6. The sequence starts with single photons followed by two-photon
and four-photon optimal states given in Eqs. (2.18) and (2.19). In the table given below,
N = N1 + 2N2 + 4N4 is the total number of photons in the sequence, where N1, N2, and N4
are the numbers of single-photon, two-photon, and four-photon states in the sequence. For
N < 9 the sequence only has single-photon states and there is no advantage in using two-
and four-photon states. The values given for the parameters χ(2), and χ(4) are the values that
minimize the Holevo variance for the given amount of loss.

N N1 N2 χ(2) N4 χ(4)

9 7 1 1.7 0 -

10 8 1 1.7 0 -

11 7 2 1.7 0 -

12 8 2 1.7 0 -

13 7 1 1.7 1 1.3

15 9 1 1.7 1 1.3

16 8 2 1.7 1 1.3

17 7 3 1.7 1 1.3

18 6 4 1.7 1 1.3

19 5 3 1.7 2 1.3

20 6 3 1.7 2 1.3
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A.2 Particle swarm optimisation
In this appendix we give details of the particle swarm optimisation (PSO) algorithm we
used in Chapters 3 and 4. The PSO is a powerful algorithm to find the global minimum or
maximum when we have little knowledge about the underlying function and we don’t know
if the candidate solutions are near or far from the global optimums. The PSO algorithm
is a population based search technique. That is, it represents the state of the algorithm by
a population which is iteratively modified until a termination criterion is satisfied. First
introduced by Eberhart and Kennedy in 1995 [130, 131], this algorithm is inspired by the
behaviour of groups of some species of animals such as flocks of birds and schools of fish,
where a desired position such as a food source is located by team work.

Suppose we have a d-dimensional function f
(

#»x
)
= f (x1, x2, ..., xd) and we want to

find the global minimum or maximum of this function. In the PSO algorithm a group of
particles, called a swarm is considered in the search space of the problem. Here, particles
are conceptual entities. Each particle evaluates the function at its current location. Each
particle then determines its movement through the search space based on its own current and
previous best position and the best position of other members of the swarm. To each particle
three d-dimensional vectors are assigned: its position #»x = (x1, x2, ..., xd), the best position
it has found #»x` = (x`1, x`2, ..., x`d) and its velocity #»v = (v1, ..., vd). The initial position of
the particles and the initial velocity are chosen randomly. The velocity #»v and position #»x
of each particle is updated to #»v ′ and #»x ′ based on its previous best position #»x`, and the best
position found so far in the entire swarm #»xg as [132]

#»x ′ = #»x + #»v ′,
#»v ′ = χ

[
#»v + cgrg

(
#»xg − #»x

)
+ c`r`

(
#»x` − #»x

)]
. (A.1)

Here rg and rl are uniform random numbers in the interval [0, 1] generated at each step. The
constant χ is known as a constriction factor and is determined from the other two constants
cg and c` according to [132]

χ =
2

���2 − c −
√

c2 − 4c���
, c = cg + c` . (A.2)

To ensure quick convergence of the algorithm the constant c is taken to be 4.1, and for
simplicity cg and c` are normally taken to be equal and therefore c` = cg = 2.05 [132]. After
some number of repetitions the whole swarm is collectively merging to the optimum of the
function, in a similar way as a school of fish merge for food. The number of repetitions is
either set by the user or it is determined by a termination criterion.

Each of the terms in Eq. (A.1) plays a role in the PSO algorithm. The first term in
Eq. (A.1) keeps the particle moving in the same direction as it was moving. The second term
makes the particle to move towards the region of the search space in which it has found its
best value. The third term moves the particle towards the region of the space in which the
swarm has found its best value. The random values rg and r` gives a stochastic nature to
the velocity updating formula. This causes the particle to move semi-randomly towards the
particles previous best position and the swarm’s best position.

To stop the particles from going beyond the search space, the maximum of the velocity
needs to be restricted. For a search space bounded by [xmin, xmax], normally vmax is taken
to be vmax = k (xmax − xmin)/2 with 0.1 ≤ k ≤ 1. The number of particles is usually
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chosen between 10 and 50. In our algorithms we used 10 particles and we did not achieve
enhancement by increasing the number of particles up to 40.

The PSO algorithm has been used extensively in solving optimisation problems in a range
of fields including parameter estimation and quantum metrology [60, 61, 94, 95, 133].
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