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Abstract

Credit granting institutions need to estimate the probability of default, the chance a
customer fails to make repayments as promised (BIS (2006) and IASB (2014)). The Cox
model with time-varying covariates (Cox (1972), Crowley and Hu (1977)) is a technique
often applied due to its substantial benefits beyond classification approaches (such as logistic
regression) whilst achieving similar accuracy (Lessmann et al. (2015), Bellotti and Crook
(2009)).

However partial likelihood estimation of this model has two short comings that remain
unaddressed in the literature: (1) the baseline hazard is not estimated, so calculating prob-
abilities requires a further estimation step; and (2) a covariance matrix for both regression
parameters and the baseline hazard is not produced.

We address these by developing a maximum likelihood method that jointly estimates
regression coefficients and the baseline hazard using constrained optimisation that ensures
the baseline hazard’s non-negativity. We show in a simulation our technique is more accurate
in moderate sized samples and when applied to real home loan data it produces a smoother
estimate of the baseline hazard than the Breslow (1972) estimator. Our model could be used
predict life-time probability of default, required under the International Financial Reporting
Standard (IFRS) 9 accounting standard.



Contents

Dedication iv

Acknowledgements v

Abstract vi

1 Introduction 1
1.1 Background and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background to Survival Analysis 6
2.1 Survival Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Time to Event as a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Types of Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Literature Review 12
3.1 The Cox Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Maximum Penalised Likelihood Estimation for Cox Model . . . . . . . . . . . . . . 17
3.3 Survival Analysis Applied to Credit Risk Modelling . . . . . . . . . . . . . . . . . . 19

4 Maximum Likelihood Estimation for Cox Model with Time-Varying Covariates 22
4.1 Formulation of the Log-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Gradient Vector and Hessian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Helpful Matrix Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Newton Multiplicative-Iterative Algorithm . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Model Implementation in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Results 40
5.1 Test Problem 1: Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Test Problem 2: Application to Credit Risk Data . . . . . . . . . . . . . . . . . . . . 43

6 Conclusion and Discussion 48

A Appendix 51
A.1 Appendix 1: Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Appendix 2: Point-Wise Confidence Interval for Survival Probabilities . . . . . . . . 53

B Supplementary Material 55
B.1 Supplementary 1: Model Implementation R Code . . . . . . . . . . . . . . . . . . . 55

References 65



List of Figures

1.1 Stylised Example of the Survival of Loans . . . . . . . . . . . . . . . . . . 2
1.2 Exposure for the Four Largest Australian Banks . . . . . . . . . . . . . . . 3

3.1 Failure of Four Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Estimated Coefficients from for US Credit Card Data Model . . . . . . . . 21

5.1 Histogram of Simulation Results for γ̂ (with a censoring proportion of 20%),
Comparing Maximum Likelihood (ML - upper panel) and Partial Likelihood
(PL - lower panel) Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Histogram of Simulation Results for γ̂ (with a censoring proportion of 80%),
Comparing Maximum Likelihood (ML - upper panel) and Partial Likelihood
(PL - lower panel) Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Comparison of Baseline Hazard Using: “Breslow + Partial Likelihood (PL)”
verses “Maximum Likelihood (ML)” Estimation . . . . . . . . . . . . . . . 46

A.1 Variance-Covariance Matrix from Partial Likelihood Estimation . . . . . . 53
A.2 Variance-Covariance Matrix from Maximum Likelihood Estimation . . . . 54



List of Tables

2.1 Illustrative Examples of Studies with Survival Data. . . . . . . . . . . . . . 7

4.1 Example Time-Varying Covariate Data Frame . . . . . . . . . . . . . . . . 25
4.2 An Example Baseline Dataframe . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Example Time-Varying Covariate Data Frame . . . . . . . . . . . . . . . . 36

5.1 Comparing the Estimated Effects for γ̂ and β̂ in a Simulation Study using
Maximum Likelihood (ML) and Partial Likelihood (PL) Estimation . . . . 41

5.2 Comparison of Parameter Estimates of the Eleven Baseline and Two Time-
Varying Covariates Using Maximum Likelihood and Partial Likelihood Esti-
mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



1
Introduction

1.1 Background and Aims

The aim of survival analysis is to model the time to an event of interest as a random
variable. Take for example: the time to death of a patient in a clinical trial; the cumulative
usage until the mechanical break-down of an industrial dishwasher; or the time until financial
default of a home loan. The common theme in these three examples here is that subjects
are under observation for a period of time in anticipation that an event of interest will
occur. To help explain such data using available covariates in a regression setting, the semi-
parametric Cox model (1972, 1975) has gained much popularity (see for example, Ren and
Zhou (2011)). The model has also been extended to cater for time-varying covariates, as
introduced by Crowley and Hu (1977) and discussed in Cox and Oakes (1984).

This ability of the Cox model to cater for time-varying covariates provides substantial
benefits, as it allows information not available when a subject enters a study to be used in the
model. For example, we may be interested in the survival of patients with kidney disease.
In a study design that recruits patients at diagnosis, some patients may subsequently (after
entering the study) receive a transplant. This information is likely to be very important as
transplant recipients are expected to have longer survival times. This information can be
included as a time-varying covariate in the model, indicating when recipients during the
period of observation received their transplant.



2 Introduction

While its earliest and most wide-spread application is in biomedical science and industrial
life testing (Kalbfleisch and Prentice, 2002), survival analysis (and particularly theCoxmodel)
is a prevailing method in developing probability of default models for bank loans (Lessmann
et al., 2015). Credit-granting institutions such as banks are interested in such models to help
estimate the probability that a customer fails to repay in a timely manner the monies they
contractually owe (including principle, interest and fees). Estimating probability of default
over a one-year period is a necessary input for banks to calculate their minimum capital
required under the Basel Accords (BIS, 2006).

Survival models also have the added benefit (beyond classification techniques like logistic
regression) as they can be used to determine not only if but when a customer is likely to default
(see for example: Bellotti and Crook (2009), Stepanova and Thomas (2002) and Tong et al.
(2012)). This feature is particularly beneficial in estimating multi-year and/or conditional
probabilities. For example one can estimate the probability a customer defaults within 1 year,
or within 2 years or origination. In addition, one can estimate the conditional probability that
a customer does not default in the first year of a loan, but defaults anytime during the second
year of the loan. In this survival context, one could view loans “surviving” until an event of
interest (in this case default). This is demonstrated in the stylised “survival” function in figure
1.1. This feature of survival analysis could prove useful in estimating the lifetime probability
of default, a key input for banks to calculate their expected credit losses required under
International Financial Reporting Standard (IFRS) 9 accounting standard (IASB, 2014).

Figure 1.1: Stylised Example of the Survival of Loans
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From a broader risk-management perspective, an accurate estimate of probability of
default can help banks appropriately manage the risk of their loan book. Regulators too are
keen to encourage sound risk management practices by banks in order to promote stability
in the financial system, with the events of the Global Financial Crisis in 2008 showing how
rapidly instabilities can spread to other parts of the economy. In an Australian context, the
Australian Prudential Regulation Authority (APRA) provides supervision to 156 authorised
deposit-taking institutions (either banks, building societies or credit unions) with a mission
to “...ensure that in all reasonable circumstances, financial promises made by institutions we
supervise are met within a stable, efficient and competitive financial system”.

These 156 authorised deposit-taking institutions consist of a few very large and many
small institutions. The four largest comprise over 80% of all loan balances while the 10
largest comprise over 90% , and the 20 largest comprise over 95% (APRA, 2016). In
addition, for each of these institutions homes loans are a dominant asset class.

Figure 1.2: Exposure for the Four Largest Australian Banks
(Source: Commonwealth Bank of Australia (2016), Westpac Banking Corporation (2016),
National Australia Bank (2016), Australia and New Zealand Banking Group (2016)).

Focussing on the four largest banks, figure 1.2 displays the regulatory exposure (as at
31st March 2016), split by Basel Asset Class (BIS, 2006). At an overall level, the total
exposure of $3.2 trillion for these four banks put together is twice the 2015 Australian Gross
Domestic Product (GDP) of $1.6 trillion (Australian Bureau of Statistics, 2016). Looking



4 Introduction

at the distribution of exposure by Basel Asset Class, one can see that home loans (coloured
green) account for a substantial proportion of all the four bank’s exposure. It thus stands to
reason that a clear measurement and understanding of the risk of home loans is important for
an individual bank, as well as for stability of the financial system.

Despite its many applications, the Cox model extended for time-varying covariates when
estimated using partial likelihood has two critical shortcomings.

1. The first shortcoming is that while it allows for estimation of regression coefficients, it
does not directly provide an estimate for the baseline hazard, instead treating it as an
arbitrary function of time (Cox and Oakes, 1984). This is not a problem if the only
aim of the analysis is to draw inferences using the estimated coefficients (for example,
determining that the risk of a disease increases with age) or to use hazard ratios (for
example, finding that smokers are 3 times more likely to contract lung cancer than
non-smokers). However, if probabilities are of interest, then an estimate of the baseline
hazard is also needed, in addition to the regression coefficients. Available techniques
include estimators from Breslow (1972) and Kalbfleisch and Prentice (2002), both
of which require as a first step estimated regression coefficients from the Cox model
as inputs. In addition to requiring an extra estimation step, these baseline hazard
estimators produce estimates that are highly volatile.

2. The second shortcoming is that partial likelihood estimation does not produce a co-
variance matrix for both the fitted regression parameters and the baseline hazard. This
means that joint inferences for the regression coefficients and baseline hazard cannot
be drawn. The implication is that point-wise confidence intervals for non-baseline
subjects can not be made directly unless a bootstrapping method is used.

We address both identified shortcomings of partial likelihood estimation by instead using
maximum likelihood estimation for the Cox model with time-varying covariates. These
shortcomings are addressed because: (1) both the regression coefficients and the baseline
hazard are estimated jointly in one algorithm; and (2) a single Hessian matrix is produced
covering all parameters (regression coefficients and the baseline hazard) allowing for joint
inferences.

Note however that simply substituting estimation techniques (from partial likelihood to
maximum likelihood) is inappropriate because while the regression coefficients are free to
take any real value (positive or negative) the baseline hazard must be non-negative. Thus
maximum likelihood estimation of the Cox model poses substantial and steep computational
challenges. To meet these challenges, we develop a new constrained optimisation algorithm
that undertakesmaximum likelihood estimationwhile respecting the non-negativity constraint
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of the baseline hazard. This methodology extends earlier work by Ma et al. (2014) to now
include time-varying covariates in the Cox model.

1.2 Structure of this Thesis

This thesis contains six chapters including the current chapter (Chapter 1). Chapter 2
provides a background to survival analysis and survival data, covering important topics such
as censoring and truncation. Chapter 3 is a literature review, discussing the Cox model
in depth. It covers partial likelihood estimation, extensions of the Cox model to cater for
time-varying covariates and estimation of the baseline hazard. It also covers the maximum
penalised likelihood approach of Ma et al. (2014) for jointly estimating the baseline hazard
and the regression coefficients of the Cox model. The chapter concludes by covering some
literature relating to how survival models have been applied to estimating the probability of
default for bank loans. Chapter 4 contains the novel research component of this thesis. It
extends the maximum penalised likelihood model of Ma et al. (2014) discussed in Chapter
3 to also jointly estimate regression coefficients of time-varying covariates. The chapter
contains the assumptions, derivation of theory and the constrained optimisation algorithm
that we develop specifically for our maximum likelihood approach. The chapter finishes
by discussing the implementation of our approach in R. Chapter 5 tests our new maximum
likelihood method against the partial likelihood method, using both a simulation study and
an application to credit risk data. Chapter 6 ends the thesis with conclusions and discussions
as well as suggested avenues for intended future research. The thesis is supported with an
appendix detailing the proof of the convergence properties of our method, an application of
the delta method for point-wise confidence interval estimation of survival probabilities, as
well as the full R code discussed in Chapter 4 to implement our approach.



2
Background to Survival Analysis

This chapter discusses briefly some important features of survival data and survival
analysis. It outlines the three key elements that must be unambiguously defined in survival
data, and also discusses two types of missing data that can effect survival analysis: censoring
and truncation. It introduces the random variable studied in survival analysis, specifically
the time to an event of interest, and finishes with a broad discussion of the various types of
survival models available using some simple illustrative examples.

2.1 Survival Data

In survival analysis, we are interested in analysing subjects whose response variable is
the length of time until the occurrence of a pre-defined event of interest, typically referred
to as a “failure”. Cox and Oakes (1984) state that survival data requires three elements
unambiguously defined:

1. A time origin, representing when the subject became at risk of the event of interest.

2. A scale measuring the passage of time (for example, days, weeks, months, years).

3. A clearly defined event of interest (also known as a “failure”).

To help solidify this terminology, table 2.1 lists some illustrative hypothetical examples
that we continue to refer to during the course of this chapter. The examples cover a diverse
set of applications of survival analysis, such as: hospital admission; industrial reliability;
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clinical trials; survey results; and financial contracts. For each example listed in the table, the
subjects have unambiguously defined: a time origin; a time scale; and an event of interest.

Example Study Subject Time Time Event of
Origin Scale Interest

How long do patients in their Hospital Number Hospital
50’s remain in hospital after Patients admission of days discharge
admission for a heart attack?

How many hours usage can an Industrial First Cumulative Mechanical
industrial dishwasher dishwashers usage hours use breakdown

withstand before failure?

How long do laboratory rats Laboratory Randomisation Number Death
survive after exposure rats of weeks

to radiation?

How long do recent university Graduates Graduation Number Securing
graduates aged 25 and under take of months a job

to secure their first job?

How long since origination until Home Origination Number Home loan
a residential home loan defaults? loans of years default

Table 2.1: Illustrative Examples of Studies with Survival Data.

Censoring and truncation are two common features of survival data, both of which are
particular types of missing data (Klein and Moeschberger, 2003). Both of these can lead to
incomplete observation time for a subject if either censoring and/or truncation are present
in the study design. As this is a type of missingness, the modelling needs to be adapted
appropriately otherwise the results may be biased (Sterne et al., 2009).

Censoring occurs when the event of interest for a subject is only known to occur during a
certain period of time rather than being precisely known. There are three types of censoring
schemes which can vary between each subject within the study:

• Right censoring, where all that is known is that a subject is still at risk for the event of
interest at a certain point. This is further split into:

– Type I - completely random drop-out and/or the study period ends and the subject
has not yet had an event of interest.

– Type II - the study ends when a fixed number of subjects have an event of interest.

• Left censoring, where all that is known is that a subject has experienced an event prior
to entering into the study.
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• Interval censoring, where the event of interest has occurred during a known interval,
but the precise event time within this interval is not known.

Klein and Moeschberger (2003) state that in many studies, the censoring scheme is
random (often referred to as “non-informative”) type I right censoring. This assumes that the
mechanism for right-censoring is independent from the survival times. It hypothesises that
for each subject there is a right censoring time C and the exact survival time T is observed
if and only if T ≤ C. If T > C then the subject has left the study without having an event
of interest observed and the survival time for this subject is recorded as C. This data can
be represented by the pair of random variables (Y, δ), where Y = min(T,C) represents a
non-negative continuous random variable for the time to the event of interest for a subject,
δ = 1 when an event of interest is observed for the subject and δ = 0 when the subject is
censored.

In contrast to censoring, truncation is a deliberate decision made when constructing the
sample design which determines whether or not a subject enters the study. There are two
types of truncation schemes:

• Right truncation, where only subjects that have already experienced the event of interest
are entered into the study.

• Left truncation, where subjects that survive a sufficient length of time are entered into
the study. This is also known as “delayed entry”, as the subject enters the study after a
period of delay from the origin.

Truncation means that a subject will only enter the study if their survival time exceeds some
threshold value. For those subjects that do enter the study, we observe their corresponding
event time; for those that do not enter the study, they are completely unobserved and not even
their existence is know (Kalbfleisch and Prentice, 2002).

While there are approaches to cater for complex censoring and truncation regimes, given
that uninformative right censoring is in practice the type most commonly encountered in
credit risk modelling, we restrict our methodology and discussion in this thesis to this type of
censoring. The method we develop also assume there is no left truncation. Future research
for our proposed methodology could include extension to (for example) informative right
censoring, interval censoring as well as sample designs with truncation.

2.2 Time to Event as a Random Variable

For the random variable T introduced in section 2.1 above, Klein and Moeschberger
(2003) outline several related functions describing its distribution, where knowledge of one
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function will allow recovery of all the others.

One of the most frequently used methods to describe the distribution of the random
variable T is the survival function S(t), which describes the probability of a subject surviving
beyond time t. It is also the complement of the cumulative distribution function F (t). The
survival function is

S(t) = P[T > t] = 1 − F (t) = 1 −
∫ t

0
f (u)du (2.1)

where f (t) denotes the density function of T . The hazard function h(t) is fundamental to
survival analysis, and plays a central role in the Cox model. The hazard function represents
the instantaneous probability of an event of interest occurring for a subject, conditional on
the subject not having experienced the event yet. The mathematical expression for the hazard
is

h(t) = lim
∆t→0

P[t < T ≤ t + ∆t |T > t]
∆t

=
f (t)
S(t)

. (2.2)

This leads into the cumulative hazard function H (t) =
∫ t
0 h(u)du which represents the

accumulated exposure to the event of interest.

2.3 Types of Survival Analysis

Censored time-to-event data was first studied and analysed by actuaries (Fisher and Lin,
1999), but now there are a wide variety of survival analysis techniques. These leverage
the functions introduced in section 2.2 (which assumed homogeneous survival times for
subjects) by extended them to compare survival between two or more groups or conditionally
explaining survival using available covariates in a regression setting. There are broadly three
categories of analysis techniques (see for example Hosmer et al. (2008)) which we outline
below and highlight with examples.

The first are non-parametric techniques, for which no functional form is assumed for the
distribution of failure times. Prominent methods include the Kaplan-Meier (1958) survival
function estimator which estimates S(t) and the Nelson-Aalen cumulative hazard estimator
(Nelson (1969, 1972) and Aalen (1978)) which estimates H (t). For instance, returning to the
examples we introduced in table 2.1, these models could help answer the following questions:

• Do male heart attack patients remain in hospital longer than female patients?

• Does brand “A” dishwasher withstand longer cumulative usage than brand “B”?

• Do the rats who receive a new chemotherapy treatment live longer than rats who receive
the existing treatment?
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• Do art graduates take longer to find employment than science graduates?

• Do new customers who have no previous relationship with the bank default on home
loans sooner than customers who have a previous affiliation with the bank?

The distinguishing feature here is that there are two (or more) discrete groups that we wish
to analyse survival time for. Tests for significant differences in survival between groups can
be undertaken, for example using the log-rank test (Mantel (1966), see also Peto and Peto
(1972)).

The second type of survival analysis are semi-parametric techniques, which assumes
a functional form for the covariates using a regression approach, but make no additional
assumptions for the distribution of survival times. The Cox model (1972, 1975) is a widely
used semi-parametric model for h(t).

The third type of survival analysis are parametric techniques, which assumes a functional
form for both covariates and the distribution of survival times using a regression approach.
Examples include accelerated failure time models that use the Weibull, exponential and
log-normal distributions for survival times (Kalbfleisch and Prentice, 2002).

Both semi-parametric and parametric survival analysismake use of a richer set of available
candidate explanatory covariates that are thought to be related to survival. Hosmer et al.
(2008) cites the attraction of such regression techniques is that plausible models may be
easily fit, evaluated, and interpreted. Again referring to table 2.1, with additional covariates
available, these models could help answer the following questions:

• How does patient age and hospital district impact duration of stay in hospital?

• How does the amount of soap and number of dishes impact the cumulative usage of
dishwashers?

• How does chemotherapy dose and rat weight impact survival?

• How does GPA and geographic location affect job prospects for graduates?

• How does loan-to-value ratio and customer age impact the time to home loan default?

The distinguishing feature here is that there are multiple and (typically) continuous covariates
available to help explain survival.

Often there are covariates whose value for a given individual may change over time
during their observation in the study (Cox and Oakes, 1984). These types of variables are
called time-varying (or time-dependent) covariates and differ fundamentally from baseline
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covariates, whose values are measured only once for each subject at entry to the study and
either do not change or do change but are not tracked over time. Referring to table 2.1,
with the addition of time-varying covariates, we could ask the following questions regarding
survival times:

• How does a patient’s daily blood pressure impact duration of stay in hospital?

• What effect does maintenance during the observational period have on the cumulative
usage of dishwashers?

• How does an increase in chemotherapy dose during the period of observation impact
survival of rats exposed to radiation?

• How does a change of city of residence during observation affect job prospects of
graduates?

• How does average house price movements over time impact the time to home loan
default?

The common theme for all of these examples is that for some subjects, additional information
becomes available after they enter the study. The Cox model extended for time-varying
covariates allows this subsequently available information to be used in the model. We
elaborate deeper in later chapters, but the most common approach to estimate the regression
parameters of the Cox model extended for time-varying covariates uses the partial likelihood.
This estimation approach has several deficiencies which our alternative maximum likelihood
estimation approach (developed in this thesis) addresses.



3
Literature Review

The literature review in this chapter covers three main topics. The first is an in-depth
technical background and discussion of one of the work-horsemodels of survival analysis: the
Cox (1972, 1975) model. The discussion covers both the proportional hazards version (which
contains only baseline covariates), as well as the extension by Crowley and Hu (1977) to cater
for time-varying covariates. It also discusses techniques to estimate the baseline hazard (in
particular those by Breslow (1972) and Kalbfleisch and Prentice (2002)). The second section
of this chapter covers recent work by Ma et al. (2014) who develop an approach to jointly
estimate the regression coefficients and the baseline hazard for the Cox model with only
baseline covariates. The third and final section contains a literature review of key papers
that apply survival analysis to probability of default modelling, with a particular focus on
applications that include time-varying covariates.

3.1 The Cox Model

3.1.1 Baseline Covariates

The Cox (1972, 1975) model is the corner-stone of modern survival analysis (Zheng
and Lin, 2007). Kalbfleisch and Prentice (2002) describe one of its chief benefits is that it
allows an intuitive explanation of the hazard conditional on explanatory covariates. Suppose
we have p explanatory covariates arranged in the vector xT

i = [x1, ..., xp] available for each
subject i = 1, ..., n which are thought to explain time to an event of interest. The covariate
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vector xT
i may contain variables that can help to answer the simple example questions in

section 2.3, including quantitative variables (such as customer age or loan balance), qualitative
variables (such as treatment group or product type) as well as potentially interactions between
covariates.

In the seminal papers in 1972 and 1975, the Cox model is specified as

hi (ti |xi) = h0(ti)exiT β (3.1)

where βT = [β1, ..., βp] are regression coefficients for the covariate vector xi
T , and h0(t) is

an arbitrary unspecified function of time called the baseline hazard that combines multiplica-
tively with the covariate effects to act on the hazard function. This leads to the conditional
survival function Si (ti |xi) = S0(ti)[e

xT
i
β ], where S0(t) is the baseline survival function.

With only baseline (fixed-time) covariates, the Cox model is commonly referred to
as the “proportional hazards” model, because hazards between subjects are proportional
(Kalbfleisch and Prentice, 2002). That is, the ratio of hazards between two different subjects
i and k

hi (t |xi)
hk (t |xk )

=
h0(t)exTi β

h0(t)exT
k
β
= e(xTi −xT

k
) β (3.2)

is constant over time. This value is called the relative risk (Klein and Moeschberger, 2003)
or the hazard ratio (Hosmer et al., 2008). It is important to test that the assumption of
proportional hazards holds when applying the Cox model to a dataset. This can be conducted
using either scaled Schoenfeld (1981) residuals or by plotting log-log survival curves (Cox
and Oakes, 1984). If these tests detect a violation of the proportional hazards assumption,
then one remedy can be to include a time-varying covariate in the model (see Hosmer et al.
(2008) for further details).

To estimate the effects βT = [β1, ..., βp] in equation (3.1), using observed data (Ti, δi, xi),
one uses Cox’s partial likelihood (Cox 1972, 1975). The Cox partial likelihood can be derived
as a profile likelihood using the likelihood adapted for censored data (Klein andMoeschberger
(2003), Johansen (1983)).

Rather than detailing the derivation of the partial likelihood, we instead outline an intuitive
derivation from Cox and Oakes (1984). In the absence of tied failure times, let τ1 < τ2 <

... < τd be the ordered failure times amongst the n subjects in the sample, where d is the
total number of subjects in the sample ever observed to experience the event of interest and
(n− d) is the total number of censored subjects. Let R (τj ) be the risk set which is comprised
of all subjects still under observation in the study (ie: either not yet censored and not yet
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encountered an event of interest) just before the jth failure time, j = 1, ..., d. Figure 3.1 below
demonstrates this setup for four subjects who participate in a total of three risk sets between
them. The risk set at the first ordered failure time τ1 is R (τ1) = {1, 2, 3, 4}, which is a risk
set that contains all four subjects. This is because just before the time τ1, all four subjects
remain at risk of the event of interest. The risk sets for the second (τ2) and third (τ3) failure
times are R (τ2) = {1, 2}, and R (τ3) = {2} respectively. Subject 4 appears in the first risk
set, but is censored between the ordered events times τ1 and τ2 and so does not participate in
the second or subsequent risk sets.

Figure 3.1: Failure of Four Individuals
(Source: Cox and Oakes (1984))

As per Klein and Moeschberger (2003), the conditional probability that subject i fails at
τj with covariates xT

i given that one individual fails from the risk set R (τj ) is

P[subject i fails at τj | one failure at τj]

=
P[subject i fails at τj | subject i survives to τj]

P[one failure at τj | subject i survives to τj]

=
exTi β∑

k∈R (τj ) exT
k
β
.

(3.3)

The partial likelihood is formed by multiplying these conditional probabilities over all d

observed failure times from the sample, resulting in the partial likelihood function

L(β) =
d∏

j=1

exTj β∑
k∈R (τj ) exT

k
β
. (3.4)

While not a true likelihood, the partial likelihood is treated as such with inference carried out
by the usual means (Hosmer et al., 2008). The numerator depends only on information from
the individual subject who experiences an event of interest at τj , whereas the denominator
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captures information from all subjects in the risk set (ie: those who have not yet experienced
an event of interest and/or have not yet been censored). Estimation is carried out using the
log-partial likelihood function

l (β) =
d∑

j=1

[
xT

j β − ln
( ∑

k∈R (τj )

exT
k
β

)]
. (3.5)

The maximum partial likelihood estimator, denoted β̂, is obtained by differentiating equation
(3.5) with respect to β and solving ∂l (β)/∂ β = 0. The variance estimator is obtained in a
similar manner for maximum likelihood, as the inverse of the negative second order derivative
of the log-partial likelihood via the observed information I (β). Klein and Moeschberger
(2003) discuss how these equations are amended for tied survival times.

3.1.2 Time Varying Covariates

Definitionally, the covariates xT
i are measured only at baseline when the subject enters

the study. The Cox model assumes that the values of these covariates remain fixed for each
subject during the period of observation. An example is a patient‘s gender in a clinical trial,
or the original loan amount requested by the customer when they applied for a home loan.
Often there are covariates whose values potentially change for each subject over the period
of observation while they are in the study. Examples of time-varying covariates could be a
subject’s blood-pressure measured at regular intervals (perhaps weekly) during the period of
observation or monthly changes in house prices pledged as security for home loans. In this
thesis, we define zi (ti)T = [z1(ti), . . . , zq(ti)] be a tuple of q time varying covariates for the
ith subject.

Analysing the famous Stanford heart transplant data, Crowley and Hu (1977) extend the
Cox model to cater for time-varying covariates. Their model uses (in addition to baseline
covariates) transplant status and transplant age to predict survival of patients. The method
developed and applied byCrowley andHu (1977) estimates the regression coefficients for both
baseline and time-varying covariates using an amended version of the partial likelihood. The
amendment allows the same subject to have potentially different values for their covariates
in different risk sets. This assumes that the covariate process zT

i (t) is known for any time
which the subject is under observation (Klein and Moeschberger, 2003). Note however that
the partial likelihood only requires values of zT

i (t) to be precisely known at the d failure times
(Therneau et al., 2015). Making this amended to the partial likelihood in equation (3.4) to
now include time-varying covariates zT

i (t) with regression coefficients γ results in
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L(β, γ) =
d∏

j=1

exTj β+zT
j

(τj )γ∑
k∈R (τj ) exT

k
β+zT

k
(τk )γ

. (3.6)

Parameter estimation and inference proceeds as per section 3.1.1 for the case with only
baseline covariates.

3.1.3 Baseline Hazard Estimation

In many applications of the Cox model, recovery of survival probabilities (rather than
simply just the regression coefficients) are of interest. Royston (2011) opines this should
entail an explicit (preferably smooth) estimate of the baseline hazard function h0(t). For
example, van Houwelingen (2000) states:

“It is the duty of the [statistician] involved in reporting the prognostic model to give all
the information needed to build further on their model. For Cox models that should also
include the baseline hazard or survival rate, if possible smoothed somehow or given in an
approximate functional form using fractional polynomials, exponentials, rational functions
or something similar.”

Given that the partial likelihood specifically does not estimate the baseline hazard h0(t),
recovery of survival probabilities requires an additional estimation step. This will allow
estimation of the baseline survival function S0(t), which can be combined with the estimated
effects to recover the survival conditional on the covariates xT

i , namely S(t |xi) = S0(t)exp(xTi β).

There are two common estimators available for this. The unifying theme between the
two approaches is that they are both an additional estimation step which requires as input the
regression coefficients β̂ (and γ̂ if time-varying covariates are also included) from the Cox
model. The first of these is the Breslow (1972) estimator of the cumulative baseline hazard
function H0(t), which can be derived by maximising a profile likelihood conditional on the
log-hazard ratio estimates. This estimator has the undesirable feature that it produces point
estimates of h0(t) that are very “noisy” and unstable (Hosmer et al., 2008). This estimator
reduces to the non-parametric Nelson-Aalen estimator of the cumulative hazard when there
are no covariates present (Klein and Moeschberger, 2003), hence it is sometimes referred to
as the Nelson-Aalen-Breslow estimator. The second estimator is the Kalbfleisch and Prentice
(2002) estimator of the baseline survival function S0(t) which mirrors the derivation of the
Kapaln-Meier non-parametric estimator. Rodriguez (2005) sketches an outline of how the
estimator is constructed. Like the Breslow (1972) estimator, it also produces “noisy” and
unstable point estimates of h0(t). It reduces to the non-parametric Kaplan-Meier estimator
when no covariates are present (Hosmer et al., 2008).
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There have more recently been developments in the literature beyond the above two
estimators for the baseline hazard. In general these later methods rely on a log-transform of
h0(t) which guarantees positivity but will not allow the baseline hazard to ever equal zero.
Clearly the baseline hazard h0(t) won’t be zero for all values of time t, but there may be some
period of time when the baseline hazard is equal to zero. For example, the Breslow (1972)
and Kalbfleisch and Prentice (2002) estimators will provide for ĥ0(t) = 0 for some values
of t. This shortcoming is addressed by our proposed method (which we outline in the next
chapter) by explicitly constraining the baseline hazard to be non-negative – that is, our hazard
estimates can be either positive or exactly zero for any value of t.

Royston (2011) proposes a method to approximate the log-baseline hazard (which en-
sures positivity of the baseline hazard) using fractional polynomials and restricted cubic
splines. However, similar to the Breslow (1972) and Kalbfleisch and Prentice (2002) meth-
ods, Royston’s method requires as input the estimated regression coefficients from the partial
likelihood method. This means that Royston does not attempt to estimate both the effects and
the baseline hazard jointly.

Cai et al. (2010) estimate the hazard using linear splines to model the log-hazard (which
ensures positivity of the hazard) with smoothing parameters estimated by restrictedmaximum
likelihood (REML). The authors recast the problem as a mixed-effects Poisson regression
with an offset term, which allows estimation in standard statistical packages, such as SAS
or R. Their methodology does not cater for conditional explanation of survival times using
covariates. This work extends that from Cai and Betensky (2003), which focussed on
estimating the log-hazard using linear splines for interval censored data.

Kneib and Fahrmeir (2004) provide several extensions to the Cox model, calling their
model a mixed-hazard regression. Their extensions include modelling log-baseline hazard
(to ensure positivity of the baseline hazard) using penalised splines, as well as allowing for
time-varying covariates.

3.2 MaximumPenalisedLikelihoodEstimation forCoxModel

Maet al. (2014) develop an approach to simultaneously estimate the regression coefficients
and the baseline hazard for the Cox model that contains only baseline (non-time-varying)
covariates. The approach uses maximum penalised likelihood (MPL), where a penalty is
used to impose a degree of smoothness to the baseline hazard. The parameters are fit using
constrained optimisation to respect the non-negativity of the baseline hazard. Starting with
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the hazard hi (t) = h0(t)exTi β, the joint likelihood for all subjects (i = 1, . . . , n) is

L(β, h0(t)) =
n∏

i=1
Li (β, h0(t)) (3.7)

where for the ith subject with event time ti, we have Li (β, h0(ti)) =
[

fi (ti)
] δi × [Si (ti)](1−δi ),

δi = 1 for subjects that are observed to have an event of interest and δi = 0 otherwise. The
log-likelihood is then

l (β, h0(t)) = ln
(
L(β, h0)

)
=

n∑
i=1

δi ln
(

fi (ti)
)
+ (1 − δi) ln (Si (ti)) . (3.8)

Substituting into equation (3.8) the fact that ln (Si (ti)) = −Hi (ti) and fi (ti) = hi (ti)Si (ti), the
log-likelihood becomes:

l (β, h0(t)) =
n∑

i=1
δi [ln (hi (ti)) + ln (Si (ti))] + (1 − δi) ln (Si (ti))

= −

n∑
i=1

Hi (ti) +
n∑

i=1
δiln (hi (ti))

(3.9)

After the covariates xT
i are introduced, equation (3.9) becomes

l (β, h0(t)) = −
n∑

i=1
H0(ti)exTi β +

n∑
i=1

δi
(
log (h0(ti)) + xT

i β
)
. (3.10)

Because h0(t) has infinite dimension, the authors introduce a basis function to approximate
the baseline hazard h0(t) =

∑m
u=1 θuψu(t), where ψu(t) is the basis function of u dimension

and θu are values that require estimation when fitting the model. The authors impose two
conditions on model fitting: (1) a smoothness constraint by adding a penalty term to the
log-likelihood, denoted λJ (h0(t)); and (2) requiring all values of θu to be greater than or
equal to zero. This results in needing to undertake constrained maximisation of the penalised
log-likelihood function

Φ(β, h0(t)) = l (β, h0(t)) − λJ (h0(t)). (3.11)

Defining the basis for the cumulative baseline hazard as Ψu(ti) =
∫ t
0 φu(v)dv, the cumulative

hazard is written as:

H0(t) =
∫ t

0
h0(s)ds =

m∑
u=1

θu

∫ t

0
ψ0(s)ds =

m∑
u=1

θuΨu(t). (3.12)
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This results in the penalised log-likelihood

Φ(β, h0(t)) = −
n∑

i=1

m∑
u=1

θuexTi βΨu(ti)+
n∑

i=1
δi *

,
ln *

,

m∑
u=1

θuψu(t)+
-
+ xT

i β
+
-
−λJ (h0(t)). (3.13)

This thesis extends the above work to allow time varying covariates in the Cox model.
While the maximum penalised likelihood approach uses a penalty term λJ (h0(t)) to help
control the smoothness of the baseline hazard, our maximum likelihood approach will instead
control this via selecting the number of and distance between knots for the basis function
ψ(t).

3.3 Survival Analysis Applied to Credit Risk Modelling

Survival analysis appears widely in the literature as a method to estimate the probability
that a bank loan will default (Lessmann et al., 2015). Survival analysis can be used to
determine not only if, but when, a customer is likely to default, which is one of the key
advantages beyond logistic regression, the most commonly employed method in industry.
One of the earliest such applications was by Narian (1992), but several authors have since
added to the literature. We review some of the key contributions to the literature that apply
survival analysis to estimate probability of loan default.

Banasik et al. (1999) investigate using survival analysis for credit scoring, which is
designed to answer the question of how likely an applicant for credit is to default by a given
time in the future. The paper compares four models (logistic regression, the Cox model and
the Weibull and exponential accelerated lifetime models) finding they all perform similarly
given the data in their study. The paper also recognises the competing risk nature of credit
risk data, and outlines (but does not fit) an approach that models loan default as the event of
interest and successful repayment as a competing risk.

Bellotti and Crook (2009) show that using time-varying macroeconomic variables in the
Cox model improves the accuracy of estimating the probability of default compared to both
a Cox model (without time-varying covariates) and a logistic regression. The authors also
argue that given credit data is typically in a panel format, where new accounts enter, old
accounts leave and each account is observed for a sequential period of time, it naturally
allows the use of survival models with time varying covariates. They also state an additional
advantage of survival analysis is that it provides probability of default estimates over many
different horizons, where logistic regression is restricted to a just single horizon.
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A masters thesis by Man (2014) develops a probability of default model using consumer
and corporate data from Rabobank. Man develops an algorithm to undertake the binning of
covariates using the hazard function (rather than the industry standard weight of evidence
(Good, 1950)) as well as devising a method to compare predictions from a survival model and
a logistic regression. The results confirms that survival models perform similarly to logistic
regression, a finding repeated by other authors (see for example Stepanova and Thomas
(2002)). Despite these performance similarities, Man (2014) states that survival models have
certain advantages over logistic regression, specifically: (1) less data is discarded because
survival analysis can utilise censored observations; and (2) logistic regression only estimates
the survival probability for a fixed time interval (for example over one year).

Im et al. (2012) develop a Cox model to predict default risk for a sample of United
States credit card data. They identify that macroeconomic effects have a marked impact
on observed default rates, doubling due to the global financial crisis. Their method does
not macro-economic variables as covariates, instead including indicator variables for each
calendar quarter, an effect the authors call a “time dependency factor”. The authors point out
that this is not only a function of the macroeconomic effects but also includes the aggregated
effects of all time-dependent factors that are not otherwise accounted for in the remaining
predictor variables in the model. Their paper plots the resulting coefficients, which we
reproduce in figure 3.2 below. Their model correctly detects the increase in default risk due
to the financial crisis in late 2008 and the bursting of the dot-com bubble in early 2004.
However the model also detects an apparent increase in the risk of default in the last quarter
of 2005, but this was instead subsequently diagnosed by the authors to be the result of a
change in collection policy at the bank concerned. The paper concludes with comments that
this approach to modelling the macro-economic effects using survival analysis is novel, but
would pose substantial challenges if the model were implemented to estimate out-of-time
predictions. The authors suggest two alternate methods to counter this shortcoming, both of
which use constant extrapolation beyond the in-sample training data.
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Figure 3.2: Estimated Coefficients from for US Credit Card Data Model
Source: Im et al. (2012) (figure 3)

Tong et al. (2012) constructs a mixture-cure model, which blends a logistic regression
and a Cox model to estimate not only if a customer is likely to default (susceptibility) but
when they are likely to default given they are susceptible (survival time). The authors state
this type of approach explicitly recognises and caters for the competing risk of successful
loan repayment, and has been employed previously to model long-term survival of cancer
patients for two distinct subpopulations — those cured who will never relapse; and those
uncured who remain susceptible to the event. The model is trained using data from a United
Kingdom personal loan portfolio, and the results are compared to three other alternative
models: (1) a Cox model; (2) logistic regression, targeting accounts that default during the
agreed loan term; and (3) logistic regression, targeting default during 1 year cohorts every
anniversary from inception (this is the standard technique used in industry for estimating
probability of default). Model parameters for the mixture cure model are estimated using the
expectation-maximisation (EM) algorithm (Dempster et al., 1977).



4
Maximum Likelihood Estimation for Cox

Model with Time-Varying Covariates

We have discussed previously in this thesis that survival analysis is a widely applicable
method of analysing censored time-to-event data. The corner-stone of survival analysis is
the Cox (1972, 1975) model, which Crowley and Hu (1977) have extended to include time-
varying covariates. Our literature review in Chapter 3 also demonstrates that survival analysis
is an applicable method for a bank to estimate the probability of default for loans it grants to
customers, with several studies having been published in the literature.

In this chapter, we develop the theory, methodology and algorithm for our maximum
likelihood estimation approach for the Cox model with time-varying covariates. This tech-
nique is specifically developed to correct shortcomings of the partial likelihood estimation
approach, the prevailing method used to estimate the Cox model, and adds to the literature in
two important ways. The first is joint estimation of both the regression coefficients as well
as the baseline hazard (introduced through a basis function) by maximising a full likelihood
using a constrained optimisation algorithm that respects the non-negativity constraint of the
baseline hazard. The second is the provision of a Hessian matrix that allows calculation
of a variance-covariance matrix for both the estimated regression parameters as well as the
baseline hazard, meaning joint inferences for all the model parameters can be drawn.

We demonstrate clearly as this chapter progresses that maximum likelihood estimation of
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the Cox model with time-varying covariates poses steep computational challenges. Simply
exchanging partial likelihood with maximum likelihood estimation is inappropriate unless
the estimation is constrained to respect the non-negativity for the baseline hazard. As such,
our solution to these computational challenges discussed in this chapter represents the novel
research component of this thesis.

This chapter has six sections. The first three sections broadly focuses on the technical
derivation (using calculus and matrices) for our maximum likelihood estimation approach.
Section 4.1 outlines the technical details to develop the log-likelihood for the Cox model with
time-varying covariates. Importantly, we detail how to include an m dimension basis function
for the baseline hazard as well as stating a critical assumption that we rely upon to calculate
the integral for the cumulative hazard. Section 4.2 takes this log-likelihood from section
4.1 and calculates the gradient vector and Hessian matrix. Section 4.3 defines many helpful
matrices related to the gradient vector and Hessian matrix that are particularly beneficial
when discussing and implementing the optimisation algorithm in R.

The last three sections broadly focusses on the algorithm and implementation of our
maximum likelihood approach. Section 4.4 covers the Newton Multiplicative-Iterative algo-
rithm that undertakes the necessary constrained maximum likelihood estimation to estimate
the model parameters involved in the log-likelihood formulated in section 4.1. Section 4.5
proves that our solution using the Newton Multiplicative-Iterative algorithm converges to the
correct solution. Section 4.6 discusses the detail of our R implementation.

4.1 Formulation of the Log-Likelihood

In this section, we start with the Cox model with time-varying covariates, and end with
the log-likelihood we need to undertake constrained maximisation on to calculate the model
parameters.

The Cox model relies on the hazard for the ith subject. Including both baseline (time-
invariant) and time-varying covariates, the hazard is

hi (t) = h0(t)exTi β+zT
i

(t)γ
= h∗0i (t)exTi β (4.1)

where we define an adjusted baseline hazard as h∗0i (t) = h0(t)ezT
i

(t)γ. Because it has infinite
dimension, we introduce a set of m basis functions for the baseline hazard, so that

h0(t) =
m∑

u=1
θuψu(t). (4.2)
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The baseline cumulative hazard follows

H0(t) =
m∑

u=1
θuΨu(t) (4.3)

where
∫ t
0 ψu(s)ds = Ψu(t). From equation (4.3), the cumulative hazard for the ith subject is

given by
Hi (t) = H∗0i (t)exTi β (4.4)

where
H∗0i (t) =

∫ t

0
h∗0i (s)ds =

∫ t

0
h0(s)ezT

i
(s)γds. (4.5)

Recall that the log-likelihood, as derived in equation (3.9) is

l (β, γ, θ) = −
n∑

i=1
Hi (ti) +

n∑
i=1

δi log(hi (ti)). (4.6)

The next step is to substitute the hazard hi (t) from equation (4.1) and the cumulative hazard
Hi (t) from equation (4.4) into this log-likelihood in equation (4.6). However first we need
to perform the integral in equation (4.5), which requires knowledge of the functional form of
ezT

i
(t).

To do this, we use of the same assumption employed when using partial likelihood to
estimate the Coxmodel with time-varying covariates. Specifically we assume that the value of
the time-varying covariates remains constant between the observed event times in our sample
data, and we therefore only require the value of time-varying covariates at the observed event
times (Therneau et al. (2015)). This assumes that for each subject i, there will be ji constant
values for each of the q time-varying covariates from time t = 0 to the observed event time
t = ti, measured at the intervening times: ri1, ri2, ..., ri ji−1, ri ji = ti.

We elaborate by taking a brief aside to discuss a simple example. Table 4.1 shows a small
dataframe with three subjects (numbered 1, 2 and 3) who have three event times (which occur
at time 3, 1 and 2 for each subject respectively) at which time each subject had an event of
interest (signified by the value of status equal to 1). This gives observed event times of t1 = 3,
t2 = 1 and t3 = 2. Because there are three event times in our sample, each subject requires up
to three records in the time-varying covariate dataframe, one corresponding to each observed
event time detailing the values of all the q time-varying covariates, but only until such time
as the subject exits the study (either from an event of interest or by being censored). For
subject 1, this requires j1 = 3 records in the dataframe because it leave the study at time
t = 3. For subject 2, this requires only j2 = 1 record in the dataframe, because it leaves the
study at time t = 1. For subject 3, j3 = 2 records are required in the datafame because it
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leaves the study at time t = 2. At every one of these intermediate ji times, the values of each
time-varying covariate is assumed to be known and is required by our maximum likelihood
estimation approach.

Subject Time Status ri ji z1(ri ji ) ... zq(ri ji )

1 1 0 1 5 1
2 0 2 4 0
3 1 3 2 1

2 1 1 1 8 0

3 1 0 1 3 1
2 1 2 2 1

Table 4.1: Example Time-Varying Covariate Data Frame

Ending the aside, we apply the assumption that the values zT
i (t) are constant between the

time periods [rik, ri(k+1)] to equation (4.5). This results in

H∗0i (t) =
∫ ri1

0
h0(s)ezT

i
(s)γds

+

∫ ri2

ri1
h0(s)ezT

i
(s)γds

+ . . .

+

∫ ri ji

ri ji−1
h0(s)ezT

i
(s)γds

(4.7)

and allows us to bring the term ezT
i

(t)γ outside each of the integrals, resulting in

H∗0i (t) ≈ H0(ri1)ezT
i

(ri1)γ

+ (H0(ri2) − H0(ri1)) ezT
i

(ri2)γ

+ . . .

+
(
H0(ri j ) − H0(ri j−1)

)
ezT

i
(ri j )γ .

(4.8)

Substituting equations (4.1), (4.4) and (4.8) into the log-likelihood given previously in

equation (4.6) results in

l (β, γ, θ) = −
m∑

u=1
θuΨ

∗
u (t) +

n∑
i=1

δi

(
ln

(
h∗0i (ti)

)
+ xT

i β
)

(4.9)
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where we define

Ψ
∗
u (t) =

n∑
i=1

[
Ψu(ri1)ezT

i
(ri1)γ

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ

+ . . .

+
(
Ψu(ri ji ) − Ψu(ri ji−1)

)
ezT

i
(ri ji )γ

]
exTi β .

(4.10)

4.2 Gradient Vector and Hessian Matrix

In preparation for developing the algorithm to estimate the model parameters, we need to
calculate the first, second and cross derivatives of the log-likelihood in equation (4.9) with
respect to β, γ and θ. Note that β and γ are p × 1 and q × 1 vectors of baseline and time-
varying regression coefficients respectively, and that θ is a m × 1 vector of the coefficients
of the baseline hazard’s basis function. Combining these three vectors into a single vector
η = [βT, γT, θT ]T , we thus need to find the following gradient vector

∂l
∂η
=

[
∂l
∂ βT ,

∂l
∂γT ,

∂l
∂θT

]T
(4.11)

and the following Hessian matrix

∂2l
∂η ηT =



∂2l
∂ β∂ βT

∂2l
∂ β∂γ

∂2l
∂ β∂θ

∂2l
∂γ∂ β

∂2l
∂γ∂γT

∂2l
∂γ∂θ

∂2l
∂θ∂ β

∂2l
∂θ∂γ

∂2l
∂θ∂θT



. (4.12)

We begin with finding the first derivatives for the gradient vector:

∂l (β, γ, θ)

∂ βc
= −

n∑
i=1

m∑
u=1

θu

[
Ψu(ri1)ezT

i
(ri1)γ

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ

+ . . .

+
(
Ψu(ri ji ) − Ψu(ri j−1)

)
ezT

i
(ri ji )γ

]
exTi βxic

+

n∑
i=1

δi xic

for c = 1, . . . , p;

(4.13)
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∂l (β, γ, θ)

∂γk
= −

n∑
i=1

m∑
u=1

θu

[
Ψu(ri1)ezT

i
(ri1)γ zik (ri1)

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ zik (ri2)

+ . . .

+
(
Ψu(ri ji ) − Ψu(ri ji−1)

)
ezT

i
(ri ji )γ zik (ri ji )

]
exTi β

+

n∑
i=1

δi zik (ti)

for k = 1, . . . , q; and

(4.14)

∂l (β, γ, θ)

∂θu
= −

n∑
i=1

[
Ψu(ri1)ezT

i
(ri1)γ

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ

+ . . .

+
(
Ψu(ri ji ) − Ψu(ri ji−1)

)
ezT

i
(ri ji )γ

]
exTi β

−

n∑
i=1

δi
ψu(ti)∑m

a=1 θaψa (ti)

for u = 1, . . . ,m.

(4.15)

Next, we find the second derivatives:

∂2l (β, γ, θ)

∂ βc β f
= −

n∑
i=1

m∑
u=1

θu

[
Ψu(ri1)ezT

i
(ri1)γ

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ

+ . . .

+
(
Ψu(ri ji ) − Ψu(ri ji−1)

)
ezT

i
(ri ji )γ

]
exTi βxic xi f

for c, f = 1, . . . , p;

(4.16)
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∂2l (β, γ, θ)

∂γk∂γg
= −

n∑
i=1

m∑
u=1

θu

[
Ψu(ri1)ezT

i
(ri1)γ zik (ri1)zig (ri1)

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ zik (ri2)zig (ri2)

+ . . .

+
(
Ψu(ri j ) − Ψu(ri ji−1)

)
ezT

i
(ri ji )γ zik (ri ji )zig (ri ji )

]
exTi β

for k, g = 1, . . . , q; and

(4.17)

∂2l (β, γ, θ)

∂θu∂θv
=

n∑
i=1

δi
ψu(t)ψv (t)( ∑m
s=1 θsψs (t)

)2 for u, v = 1, . . . ,m. (4.18)

The final step is finding the cross-derivatives:

∂2l (β, γ, θ)

∂ βc∂γk
= −

n∑
i=1

m∑
u=1

θu

[
Ψu(ri1)ezT

i
(ri1)γ zik (ri1)

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ zik (ri2)

+ . . .

+
(
Ψu(ri ji ) − Ψu(ri j−1)

)
ezT

i
(ri ji )γ zik (ri ji )

]
exTi βxic

for c = 1, . . . , p , k = 1, . . . , q;

(4.19)

∂2l (β, γ, θ)

∂ βc∂θu
= −

n∑
i=1

[
Ψu(r1)ezT

i
(ri1)γ

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ

+ . . .

+
(
Ψu(ri ji ) − Ψu(ri ji−1)

)
ezT

i
(ri ji )γ

]
exTi βxic

for c = 1, . . . , p , u = 1, . . . ,m; and

(4.20)
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∂2l (β, γ, θ)

∂γk∂θu
= −

n∑
i=1

[
Ψu(ri1)ezT

i
(ri1)γ zik (ri1)

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ zik (ri2)

+ . . .

+
(
Ψu(ri j ) − Ψu(ri ji−1)

)
ezT

i
(ri ji )γ zik (ri ji )

]
exTi β

for k = 1, . . . , q , u = 1, . . . ,m.

(4.21)

4.3 Helpful Matrix Notation

In order to help implement our model in R (a matrix language), we outline some helpful
vectors and matrices.

Let 1n be an n × 1 vector of 1’s, and ξ be an n × 1 vector with the ith element set to 1
if the subject is observed to have an event of interest, and 0 otherwise. In addition, let A be
an n × n diagonal matrix with diagonal elements H∗01(t1)exT1 β, . . . , H∗0n(tn)exTn β. For the
baseline (time-invariant) covariate data, let X be an n × p matrix of covariate observations

X =



x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...

xn1 xn2 . . . xnp



. (4.22)

Then we can write
∂l
∂ β
= XT (−A 1n + ξ) (4.23)

and
∂l2

∂ β∂ βT = −XT AX . (4.24)

Similarly, let 1N be an N ×1 vector of 1’s, where N =
∑

i ji. In addition, let ζ be an N ×1
vector with the elements ( j1, j1 + j2, . . . , N ) set to 1 if the ith subject is observed to have an
event of interest and zero otherwise. All other remaining elements of ζ are set to zero. In
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addition, let B be an N × N diagonal matrix

B = diag



∑m
u=1 θu

(
Ψu(r11) − Ψu(r10)

)
ezT1 (r11)γexT1 β∑m

u=1 θu

(
Ψu(r12) − Ψu(r1)

)
ezT1 (r12)γexT1 β

...∑m
u=1 θu

(
Ψu(r1 j ) − Ψu(r1 j−1)

)
ezT1 (r1 j )γexT1 β∑m

u=1 θu

(
Ψu(r21) − Ψu(r20)

)
ezT2 (r21)γexT2 β∑m

u=1 θu

(
Ψu(r22) − Ψu(r21)

)
ezT2 (r22)γexT2 β

...∑m
u=1 θu

(
Ψu(r2 j ) − Ψu(r2 j−1)

)
ezT

n
(r2 j )γexT2 β∑m

u=1 θu

(
Ψu(rn1) − Ψu(rn0)

)
ezT

n
(rn1)γexTn β∑m

u=1 θu

(
Ψu(rn2) − Ψu(rn1)

)
ezT

n
(rn2)γexTn β

...∑m
u=1 θu

(
Ψu(rn j ) − Ψu(rn j−1)

)
ez

n
(rn j )γexTn β



. (4.25)

For the time-varying covariate data, let Z be an N × q matrix of data where

Z =



z1(r11) z2(r11) . . . zq(r11)
z1(r12) z2(r12) . . . zq(r12)

...
...

. . .
...

z1(r1 j1 ) z2(r1 j1 ) . . . zq(r1 j1 )
z1(r21) z2(r21) . . . zq(r21)
z1(r22) z2(r22) . . . zq(r22)

...
...

. . .
...

z1(r2 j2 ) z2(r2 j2 ) . . . zq(r2 j2 )
...

... . . .
...

z1(rn1) z2(rn1) . . . zq(rn1)
z1(rn2) z2(rn2) . . . zq(rn2)

...
...

. . .
...

z1(rn jn ) z2(rn jn ) . . . zq(rn jn )



. (4.26)

Then we can write
∂l
∂γ
= ZT (−B 1N + ζ ) (4.27)

and
∂2l

∂γ∂γT = −ZT BZ . (4.28)
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For estimation of θ, the necessary notation is given next in section 4.4. For the Hessian
matrix, the following additional definitions are helpful.

∂2l
∂θ∂θT

= PT
1 C1P1, where P1 is an n×mmatrixwith each rowcontaining the basis functionψu(t)

for the ith subject, andC1 is an n×n diagonal matrix with elements ξ1/h0(t1)2, . . . , ξn/h0(tn)2.

∂2l
∂ β∂θT

= XTC2P2, where P2 is an n × m matrix with each row containing the integral of the

basis function Ψu(t) for the ith subject, and C2 is an n × n diagonal matrix with elements
ex1T β, . . . , exnT β. The X matrix was outlined previously in equation (4.22).

∂2l
∂ β∂γT

= XT
repBZ , where Xrep is an N × p matrix that replicates the rows in the X matrix ji

times for each of the i subjects. The B and Z matricies were outlined previously in equations
(4.25) and (4.29).

∂2l
∂γ∂θT

= ZTC3P3, where C3 is an N × N matrix that replicates the rows in C2 ji times for
each of the i subjects. P3 is the following N × m matrix

P3 =



(
Ψ1(r11) − Ψ1(r10)

)
ezT1 (r11)γ . . .

(
Ψm(r11) − Ψm(r10)

)
ezT1 (r11)γ(

Ψ1(r12) − Ψ1(r11)
)
ezT1 (r12)γ . . .

(
Ψm(r12) − Ψm(r11)

)
ezT1 (r12)γ

...
. . .

...(
Ψ1(r1 j ) − Ψ1(r1 j−1)

)
ezT1 (r1 j )γ . . .

(
Ψm(r1 j ) − Ψm(r1 j−1)

)
ezT1 (r1 j )γ(

Ψ1(r21) − Ψ1(r20)
)
ezT2 (r21)γ . . .

(
Ψm(r21) − Ψm(r20)

)
ezT2 (r21)γ(

Ψ1(r22) − Ψ1(r21)
)
ezT2 (r22)γ . . .

(
Ψm(r22) − Ψm(r21)

)
ezT2 (r22)γ

...
. . .

...(
Ψ1(r2 j ) − Ψ1(r2 j−1)

)
ezT

n
(r2 j )γ . . .

(
Ψm(r2 j ) − Ψm(r2 j−1)

)
ezT

n
(r2 j )γ

... . . .
...(

Ψ1(rn1) − Ψ1(rn0)
)
ezT

n
(rn1)γ . . .

(
Ψm(rn1) − Ψm(rn0)

)
ezT

n
(rn1)γ(

Ψ1(rn2) − Ψ1(rn1)
)
ezT

n
(rn2)γ . . .

(
Ψm(rn2) − Ψm(rn1)

)
ezT

n
(rn2)γ

...
. . .

...(
Ψ1(rn j ) − Ψ1(rn j−1)

)
ez

n
(rn j )γ . . .

(
Ψm(rn j ) − Ψm(rn j−1)

)
ez

n
(rn j )γ



. (4.29)
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4.4 Newton Multiplicative-Iterative Algorithm

In constrained optimisation, the Karush–Kuhn–Tucker (KKT) conditions (Karush (1939),
Kuhn and Tucker (1951)) represent first-order necessary conditions for an optimal solution
(Luenberger and Ye, 2008). For our constrained optimisation problem, the KKT conditions
for the estimation of β, γ and θ are

∂l
∂ βc
= 0, for c = 1, ..., p, (4.30)

∂l
∂γk
= 0, for k = 1, ..., q, and (4.31)

∂l
∂θu
= 0 if θu > 0 or

∂l
∂θu

< 0 if θu = 0, for u = 1, ...,m. (4.32)

Using the derivations of the first-order and second-order derivatives in the section 4.2,
we set up the following 3-step maximisation scheme. Beginning with estimates of β(s), γ (s)

and θ (s) at step (s), we adopt the updating algorithm:

Step 1: use l
(
β(s), γ(s), θ (s)

)
to update β(s+1) so that l

(
β(s+1), γ(s), θ (s)

)
≥ l

(
β(s), γ(s), θ (s)

)
Step 2: use l

(
β(s+1), γ(s), θ (s)

)
to update γ (s+1) so that l

(
β(s+1), γ(s+1), θ (s)

)
≥ l

(
β(s+1), γ(s), θ (s)

)
Step 3: use l

(
β(s+1), γ(s+1), θ (s)

)
to update θ (s+1) so that l

(
β(s+1), γ(s+1), θ (s+1)

)
≥ l

(
β(s+1), γ(s+1), θ (s)

)
.

This algorithm continues iterating until reaching either: (1) a desired level of tolerance in the
difference between the parameter estimates at step (s + 1) and step (s); or (2) a maximum
number of iterations.

To estimate β, we employ the Newton method (Luenberger and Ye, 2008). One iteration
of the Newton algorithm for solving equation (4.30) for β, starting with β(s) and using a
line-search ω(s)

1 which guarantees an increase in log-likelihood, is given by

β(s+1) = β(s) + ω(s)
1

(
XT A(s) X )−1XT (−A(s) 1n + ξ). (4.33)

We employ a near-identical application of the Newton method (Luenberger and Ye, 2008) to
estimate γ. One iteration of the Newton algorithm for solving equation (4.31) for γ, starting
with γ (s) and using a line-search ω(s)

2 which guarantees an increase in log-likelihood, is give
by

γ (s+1) = γ (s) + ω(s)
2

(
XT B(s) X )−1XT (−B(s) 1∑

n ji
+ ζ ). (4.34)
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For θ, we need to solve relationship (4.32) while respecting the non-negativity constraint
θ ≥ 0, thus we need a constrained optimisation. For this, we develop the multiplicative-
iterative (Ma, 2010) component of our algorithm. First, we set equation (4.15) to zero, and
then re-write the equation such that the left-hand and right-hand sides are strictly positive,
we also multiply both sides of the equation by (the non-negative) parameter θu, giving

θu

{ n∑
i=1

δi
ψu(ti)∑m

a=1 θaψa (ti)

}
= θu

{ n∑
i=1

[
Ψu(ri1)ezT

i
(ri1)γ

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ

+ . . .

+
(
Ψu(ri ji ) − Ψu(ri ji−1)

)
ezT

i
(ri ji )γ

]
exTi β

}
.

(4.35)

Given that both the right and left hand sides of equation (4.35) are positive, then the ratio in
equation(4.36) is also positive. Ma (2010) suggests this ratio as a natural updating scheme
that begins with the intermediate step

θ
(s+ 1

2 )
u =

θs
u ×

( ∑n
i=1 δi

ψu (ti )
h0i (ti )

)
+ εu∑n

i=1

[
Ψu(ri1)ezT

i
(ri1)γ

+ (Ψu(ri2) − Ψu(ri1)) ezT
i

(ri2)γ
+ . . .

+
(
Ψu(ri j ) − Ψu(ri j−1)

)
ezT

i
(ri j )γ +

]
exTi β + εu

(4.36)

where εu is a small positive value included in both the numerator and denominator to avoid
division by zero.

Following the details outlined in Ma et al. (2014), we extend to account for the additional
set of regression parameters γ for the time-varying covariates. When θ (s)

u > 0 then updates

θ
(s+ 1

2 )
u given by equation (4.36) are all non-negative. Moreover, if θ (s)

u > 0, then θ (s+ 1
2 )

u = 0
only if

∑n
i=1 δiψu(ti)/h0i (ti) = 0 and εu = 0. Although it maintains θ (s+1)

u ≥ 0, the iteration in
equation (4.36) may fail to increase l

(
β(s+1), γ(s+1), θ (s)

)
, leading to possible divergence. To

rectify this problem, we use a line-search step to give θ (s+1)
u such that l

(
β(s+1), γ(s+1), θ (s+1)

)
≥

l
(
β(s+1), γ(s+1), θ (s)

)
. First, we rewrite equation (4.36) as

θ
(s+ 1

2 )
u = θ (s)

u + v
(s)
u

∂l
(
β(s+1), γ(s+1), θ (s))

∂θu
(4.37)

where v (s)
u = θ

(s)
u /w(s)

u with w(s)
u defined as the denominator in the right hand side of equation

(4.36). Clearly, when θ (s)
u , 0 we have v (s)

u ≥ 0. When θ (s)
u = 0 we set v (s)

u = 0 only if
∂l

(
β(s+1), γ(s+1), θ (s))/∂θu < 0, since θ (s)

u has already satisfied the KKT condition in this
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case. Otherwise, we set v (s)
u = c/w(s)

u , where c is a small constant such as 10−5. Equation
(4.37) means that θ (s+ 1

2 )
u emanates from θ (s)

u in the gradient direction of θ with a non-negative
size step v (s)

u . In the context of a line search, the search direction is θ (s+ 1
2 )

u − θ (s)
u . Letting

α(s) > 0 be the search step size, then θ (s+1)
u is obtained using

θ (s+1)
u = θ (s)

u + α
(s) (θ

(s+ 1
2 )

u − θ (s)
u ). (4.38)

We only require that α(s) ≤ 1 as this guarantees θ (s+1)
u ≥ 0.

4.5 Convergence Properties

We now discuss the convergence properties of the Newton Multiplicative-Iterative al-
gorithm defined in section 4.4. This discussion very closely mirrors that from Ma et al.
(2014).

Theorem 1. Consider the Newton Multiplicative-Iterative Algorithm developed in section
4.4. Assume that β ∈ Rp and γ ∈ Rq, which are respectively p and q dimensional real spaces.
In addition, assume that θ ∈ Rm

≥0 is a non-negative m-dimension real space. Let M1, M2 and
M3 be respectively be the iteration mappings of the algorithm defined in section 4.4, so that

(1) β(s+1) = M1
(
β(s); γ (s), θ (s)) ,

(2) γ (s+1) = M2
(
γ (s); β(s+1), θ (s)) , and

(3) θ (s+1) = M3
(
θ (s); β(s+1), γ(s+1)) .

Assume that the matrix A (which is a function of β) and B (which is a function of γ) as
defined in section 4.2, both satisfy the condition that A1/2X and B1/2Z have full column rank
for β ∈ Rp and γ ∈ Rq respectively and that θ ∈ Rm

≥0. With starting values β(0) ∈ Rp and
γ (0) ∈ Rq and θ (0) ∈ Rm

≥0, then the algorithm produces a sequence {β(s) , γ(s) , θ (s)} which
converge to a solution satisfying the KKT conditions outlines in equations (4.30, 4.31, 4.32).

The proof is available in appendix A.1.

We make the following comments regarding the Newton Multiplicative-Iterative Algo-
rithm developed in section 4.4.

1. From equation (4.24) and equation (4.28), ∂l2

∂ β∂ βT
and ∂l2

∂γ∂γT
are positive definite if both

A1/2X and B1/2Z have full column rank for β ∈ Rp and γ ∈ Rq and θ (0) ∈ Rm
≥0.
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2. We use an indicator basis function for ψ(t), such that the width for each basis encom-
passes (approximately) the same fixed number of observed events.

3. Our algorithm converges quickly for small to moderate sized datasets, typically in a
few seconds for about 10, 000 subjects and about 10 variables.

4.6 Model Implementation in R

This chapter’s previous five sections stepped through several important components
needed to implement our model. It started with the setup of the log-likelihood (section
4.1), calculation of the gradient vector and Hessian matrix (section 4.2) as well as additional
helpful matrix notation (section 4.3). It next developed a Newton Multiplicative-Iterative
algorithm to undertake constrained optimisation for parameter estimation (section 4.4), and
showed it converges to the correct solution (section 4.5). In the final section of this chapter,
we discuss the model implementation of the Newton Multiplicative-Iterative Algorithm for
constrained optimisation. We implement our model in the R programming language (R Core
Team, 2016), with the full computer code provided in appendix B.1.

A key requirement of our implementation is the need for two input dataframes: one each
for the baseline and time-varying covariates. The best manner in which to demonstrate this
is via a small worked example. Suppose we have n = 3 subjects, for which have p = 2
baseline and q = 2 time-varying covariates. Suppose further that for our data there are three
event times at t = 3, 1 and 2 respectively for subjects 1, 2 and 3. The first of the two input
dataframes governs baseline covariates, and contain one row for each subject. The columns
detail the subject identifier, event time, and status (1 for observed event, 0 otherwise). The
remaining p = 2 columns contain the data for the baseline covariates. This is demonstrated
in table 4.2 below.

Subject Time Status x1 x2

1 3 1 104 1
2 1 1 55 0
3 2 1 23 1

Table 4.2: An Example Baseline Dataframe

The second of the two input dataframes governs the time-varying covariates, containing
multiple rows for each subject (as outlined previously in section 4.1). Based on the unique
observed event times from the data (in our case, these are the times t = 1, 2 and 3), each
subject will have a record for each of these observed event times, up until when the given
subject leaves the study. Table 4.3 demonstrates this for our example. Subject i = 1 has an
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event time of t1 = 3, so it has three records in the dataframe. Subject i = 2 has an event
time of t2 = 1, so it has only one record while subject i = 3 has an event time of t3 = 2, so
it has two records. The columns for this dataframe begin with a subject identifier, as well as
a variable recording the ji time-points (ri ji ) when the time-varying covariates are measured
for each of the i subjects. The final q = 2 columns contain the values of the time-varying
covariates. Note that the key feature of this dataframe is that the values of the time-varying
covariates can potentially (but not necessarily) change over time for a given subject.

Subject ri ji z1(ri ji ) z2(ri ji )

1 1 5 1
1 2 4 0
1 3 2 1
2 1 8 0
3 1 3 1
3 2 2 1

Table 4.3: Example Time-Varying Covariate Data Frame

A key difficulty to overcome in themodel implementation is how to undertake calculations
for this expanded time-varying covariate dataframe. One natural method to do this in R is
to separate the Z matrix into a list of n matrices, one each for every individual subject,
and use functions such as lapply and mapply to undertake the necessary calculations. To
demonstrate this for the data in tables 4.2 and 4.3, the baseline covariate matrix (X ) and
time-varying covariate matrix (Z), as defined (in the general case) earlier in section 4.2 are

X =



x11 = 104 x12 = 1
x21 = 55 x22 = 0
x31 = 23 x32 = 1



(4.39)

and

Z =



z1(r11) = 5 z2(r11) = 1
z1(r12) = 4 z2(r12) = 0
z1(r13) = 2 z2(r13) = 1
z1(r21) = 8 z2(r21) = 0
z1(r31) = 3 z2(r31) = 1
z1(r32) = 2 z2(r32) = 1



. (4.40)

Our implementation separates the time-varying covariate matrix Z into a list of matrices
Z .list = [Z1, Z2, Z3], with one component matrix for each subject defined as
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Z1 =



z1(r11) = 5 z2(r11) = 1
z1(r12) = 4 z2(r12) = 0
z1(r13) = 2 z2(r13) = 1



, (4.41)

Z2 =
[
z1(r21) = 8 z2(r21) = 0

]
, and (4.42)

Z3 =



z1(r31) = 8 z2(r31) = 0
z1(r31) = 3 z2(r31) = 1
z1(r32) = 2 z2(r32) = 1



. (4.43)

Again, the full model implementation R code is available in appendix B.1, but the below R
code shows how we split the Z matrix into the required list of matrices

# Make a list storing one z matrix for each subject

Z.list=lapply(split(Z[,var.z],Z[,1]),FUN=as.matrix).

An identical process is used to separate other matrices into lists of matrices, for example the
R code below shows how to create the a list of n matrices for the basis function ψ(t)

# Make a list storing one phi matrix for each subject

psi=lapply(Zsplit.time,

FUN=basis_mpl,

knots=knots,

basis=control$basis,

order=control$order,

which=1).

This approach works well but given R is memory resident, this can cause some per-
formance issues. For example, testing our implementation using a 12 × 100,000 baseline
dataframe and a 2 × 5,000,000 time-varying dataframe takes 20 minutes and about 20 it-
erations to converge to a tolerance of 1 ×10−4. We use an Intel i5 CPU with 3.2GHz, a
solid-state SD hard-drive and 32GB of SD3-RAM. An alternate implementation could use a
single matrix but control subject identification in R using indices. We plan this as an avenue
for future research.

As the user interface to our model implementation we create the cox_mle_tvc() func-
tion, which will jointly estimate regression coefficients and the baseline hazard of the Cox
model with time-varying covariates. The function is called in the following manner:
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cox_mle_tvc ( formula , data , formula.z , data.z , riji , subject , control , ... )

A call to the cox_mle_tvc() function requires the following six mandatory arguments, as well
as allowing for additional optional arguments which are passed to the cox_mle_tvc.control():

formula A formula object, with the response on the left of a ∼ operator, and baseline
covariates on the right separated by a “+” sign. The response must be a survival
object as returned by the survival::Surv() function. A value of status=1 signifies
that subject i was observed to have an event, while status=0 signifies the subject
was censored. For example: Surv ( time , status ) ∼ x1 + x2 .

data The baseline data.frame that contains the baseline covariate information, as well
as the event time and status indicator used in the formula object. The
dataframe also requires each entry to be signified by a unique subject identifier
for each subject i.

formula.z A linear predictor for the time-varying covariates. This should not be a formula
object, but covariates need to be preceded by a ∼ operator prior to listing
the time-varying covariates on the right separated by a “+” sign.
For example: ∼ z1 + z2 .

data.z The time-varying covariate data.frame, that has been expanded so that there is
one record for every event time for every subject, up to the time that the subject
leaves the study. For subject i, there are ji records in the dataframe. One
method to achieve this is to use the function survival::survSplit()

riji The ji time-points at which the time varying covariates are observed for
subject i.

subject The unique identifier for subject i.

... Other (optional) arguments which are passed to the control function
cox_mle_tvc.control ().

The function returns an object of the class cox_mle_tvc, which is a list containing the results
of the fitting algorithm. Example code to call the function is

fit.MPLt <– cox_mle_tvc(formula = Surv(time, status) ∼ x1 + x2,
data = baseline,
formula.z = ∼ z1 + z2,
riji = time_reps,
subject = id,
data.z = time_varying).

The cox_mle_tvc.control() function has the following optional arguments that allow the user
to control various aspects of the model fit. Any arguments not supplied by the user will be
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assigned the indicated default values.

max.iter The maximum number of iterations for the Newton Multiplicative-Iterative
algorithm. The default value is 10,000.

n.events_basis The number of observed events to include in each basis of the baseline
hazard. With n.obs representing the number of observed events, the
default is calculated using round(3.5 log(n.obs) - 7.5).

tol The convergence tolerance value, which is the smallest change in the
parameter estimates between iterations that when achieved indicates
convergence has occurred. The default value is 1 × 10−6.

min.theta The size for the individual elements in the θ vector that are considered
indistinguishable from zero. The default value is 1 × 10−10.

kappa The initial step-size in the line search. The default value is 0.6.



5
Results

This chapter comprises two sections, each containing a test problem on which we evaluate
and apply our method. The first test problem covers a simulation study, where we compare
our maximum likelihood method against the partial likelihood method for estimating the
parameters of the Cox model with time-varying covariates. We use this simulation study
to focus solely on comparing the ability of the methods to recover regression coefficients
across different sample sizes and censoring proportions. We don’t use this simulation study
to compare the ability of the methods to estimate baseline hazards or provide a full variance-
covariance matrix for the model parameters, instead leaving this to the second section of this
chapter.

The second section of this chapter applies both the maximum likelihood and partial
likelihood methods to the second test problem, which models the time to default for home
loan data. We compare the regression coefficients but additionally we also compare the
estimated baseline hazard from the maximum likelihood method to that estimated using the
Breslow (1972) estimator, which relies on regression coefficients estimated using the partial
likelihood. We also discuss, using the delta method (Xu and Scott-Long, 2005), how the
full variance-covariance matrix can be used to construct point-wise confidence intervals for
survival probabilities for non-baseline subjects.
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5.1 Test Problem 1: Simulation Study

For the first test problem for our maximum likelihood method, we simulate survival data
from a distribution with the hazard function

hi (t) = h0(t)eβxi+γzi (t) (5.1)

where we select the true population effects to be known values of β = −3.3 and γ = 4.0.
The baseline covariate x is a continuous variable while the time-varying covariate z(t) is
a discrete variable. We simulate x and z(t) using the genTDCM function available in the R
package genSurv (Araujo et al., 2015). The R code to draw one sample is

# Draw a sample of 2000 for survival data with time-varing covariate

tdcmdata <- genTDCM(n=2000, dist="weibull", corr=1,

dist.par=c(2,3,2,3),model.cens="uniform",

cens.par=2.5, beta=c(-3.3,4), lambda=1).

Our simulation study involves drawing M = 500 Monte Carlo simulations across two
sample sizes (n = 100 and n = 2000) and two approximate censoring proportions (π = 20%
and π = 80%). For each of these, we estimate the baseline and time-dependent effects
using our maximum likelihood method ( β̂ML, γ̂ML) and compare these to estimates from the
partial likelihood method ( β̂PL, γ̂PL). Uninformative right censoring times are drawn from
a uniform distribution whose upper bound is selected to approximately achieve the desired
sample censoring proportion. The baseline hazard is assumed to be exponential distributed
with rate = 1. Table 5.1 below summarises the bias, standard deviation (Sd) and mean-square
error (MSE) for the regression coefficients calculated from the simulation study.

n=100 n=100 n=2000 n=2000
π = 20% π = 80% π = 20% π = 80%

γ̂ PL Bias 0.909 1.49 0.006 0.007
Sd 3.915 4.808 0.15 0.18

MSE 16.122 25.295 0.022 0.033
ML Bias 0.153 0.832 0.044 0.046

Sd 1.089 1.555 0.153 0.181
MSE 1.207 3.104 0.025 0.035

β̂ PL Bias -0.056 -0.258 -0.006 -0.022
Sd 0.333 0.866 0.061 0.118

MSE 0.114 0.815 0.004 0.014
ML Bias -0.091 -0.443 -0.017 -0.045

Sd 0.293 0.84 0.062 0.117
MSE 0.094 0.901 0.004 0.016

Table 5.1: Comparing the Estimated Effects for γ̂ and β̂ in a Simulation
Study using Maximum Likelihood (ML) and Partial Likelihood (PL) Estimation

The results show that while both methods can recover the effect for the baseline covari-
ate (β) with comparable accuracy, the maximum likelihood method has superior accuracy
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recovering the effect for the time-varying covariate (γ) for n = 100. This is evidenced by the
bias, standard deviation and mean-square error all being smaller for the maximum likelihood
estimation of γ̂. Of particular note are the mean-square error for γ̂ which are between eight
and twelve times greater for the partial likelihood approach than for the maximum likelihood
approach.

These conclusions are further substantiated in the histograms in figures 5.1 and 5.2, which
compare the simulated results for γ̂ with n = 100. Overlaid are vertical lines representing
the true effect of γ = 4.0 (blue line) and the calculated of mean (red line) of γ̂ from the
M = 500 sample simulation study. Across both sampling proportions (of 20% and 80%)
the histograms confirm that the maximum likelihood estimation recovers the true population
parameter for the time-varying covariate more accurately and with lower bias than the partial
likelihood method.

Figure 5.1: Histogram of Simulation Results for γ̂ (with a censoring proportion of 20%),
Comparing Maximum Likelihood (ML - upper panel) and Partial Likelihood (PL - lower

panel) Estimation
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Figure 5.2: Histogram of Simulation Results for γ̂ (with a censoring proportion of 80%),
Comparing Maximum Likelihood (ML - upper panel) and Partial Likelihood (PL - lower

panel) Estimation

5.2 Test Problem 2: Application to Credit Risk Data

The second test problem for our maximum likelihood method is to compare it against the
partial likelihood method using an applied dataset. We use a credit risk dataset consisting
of a sample of approximately 10 years of defaulted and non-defaulted home loans. The data
contains approximately n = 100, 000 loans with a censoring rate of over 98%. The event
of interest is the default at any time during the life for each home loan. For this sample,
left-truncated observations are removed.

Data validation and filtering is conducted using SAS 9.3 (SAS Institute Inc, 2016). We
construct a model with the following 11 baseline covariates and 2 time-varying covariates
which we briefly introduce below (note that covariates listed with a * have been mean-
corrected).

1. Mortgage Insured – Does the home loan have lenders mortgagee insurance? (Yes /
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No)?

2. Borrower’s Occupation – Professional / Trades / Sales / Other

3. Borrowers – How many borrowers are there for this home loan (either 1 or 2+)?

4. Salary Credits – Do the borrowers deposit salary directly into the home loan account
(Yes/No)?

5. Credit Card – Do the borrowers have a credit card? (Yes/No)

6. Personal Loan – Do the borrowers have a personal loan? (Yes/No)

7. RepaymentMethod –Are repayments principle and interest (P&I) or interest only (IO)?

8. Repayment Frequency – Are repayments made monthly or fortnightly/other

9. Borrower Tenure* – How many months has the borrower been a customer of the bank
(integer 0,1,2...)?

10. Total Home Loans* – Total number of home loans the borrowers have (integer 1, 2, ...)

11. Opening Balance* – The original balance when the home loan opened ($millions)

12. Dynamic Loan to Value Ratio* – The current loan balance divided by the current
estimate of the value of the home securing the loan. This is a time-varying covariate,
as both the numerator and denominator of this ratio vary over time.

13. Worst Delinquency in Last 6Months – The highest number ofmissedmonthly payments
within the last 6months, lagged by a period of 12months. This variable can take integer
values of 0, 1, 2, ... . This is a time-varying covariate because delinquency status (the
number of repayments behind a customer is) definitionally begins at zero at origination
but can change to values greater than zero over time.

Prior to presenting results of the model fitting, we add some general comments regarding
these covariates. The first 11 covariates are baseline covariates, which means that their
values are measured only at the beginning of the loan and their values either: (1) don’t change
over time (for example, whether lenders mortgagee insurance is in force, or the number of
borrowers for a home loan); or (2) do change over time but their values are not tracked (for
example, the borrower’s occupation, or other product holdings). The final two variables are
time-varying covariates, whose values are tracked and potentially change over time.

Moving to the model results, table 5.2 displays that the parameter estimates from the
maximum likelihood and partial likelihood methods. These results show that the estimated
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regression coefficients and standard errors from the models are very similar, and both result
in intuitive parameter estimates. That is, positive parameter estimates suggest an increasing
risk of default while negative parameter estimates suggest a decreasing risk of default.

Partial Likelihood Maximum Likelihood
Name Level Estimate Std Err Estimate Std Err

Mortgage Insured Yes 0.1615 0.0557 0.1599 0.0556
Borrower’s Occupation Profession −0.5542 0.0647 −0.5543 0.0647

Trades 0.0036 0.0595 0.0034 0.0595
Other −0.3496 0.0953 −0.3478 0.0953
Sales 0 − 0 −

Borrowers 2+ −0.3184 0.0484 −0.3183 0.0484
Salary Credits Yes −0.3240 0.2123 −0.3225 0.2123
Credit Card Yes −0.2775 0.0515 −0.2778 0.0515
Personal Loan Yes 0.2666 0.1019 0.2670 0.1019
Repayment Method IO 0.1720 0.0522 0.1729 0.0522
Repayment Frequency Monthly 0.1728 0.0600 0.1715 0.0560
Customer Tenure (Months) −0.0021 0.0003 −0.0021 0.0003
Total Home Loans (Count) −0.1112 0.0186 −0.1111 0.0186
Opening Balance ($millions) 0.5131 0.1183 0.5124 0.1183
Dynamic Loan to Value Ratio (t) 2.7924 0.1303 2.7917 0.1303
Worst Delinquency in Last 6 Months (t-12) 2.9979 0.06328 2.9983 0.0632

Table 5.2: Comparison of Parameter Estimates of the Eleven Baseline and Two
Time-Varying Covariates Using Maximum Likelihood and Partial Likelihood Estimation

To help interpret the estimated effects from the fitted models, we group them into 6
categories of risk drivers and make the following conclusions.

1. Contractual – Mortgage insured home loans have a higher risk of default. This is
sensible as typically banks require borrowers whose loans have high loan-to-value ratio
to obtain lenders mortgagee insurance.

2. Borrower – The riskiest occupations are trades closely followed by sales with profes-
sionals being the least risky. This may be detecting “professionals” have more stable
income than “trades” and “sales”.

3. Depth of Relationship – Home loans held by two or more borrowers, borrowers with
multiple home loans, borrowers who have longer affiliation, borrowers who deposit
salary into their home loan and borrowers with credit cards but not personal loans all
have lower risk. Borrowers with whom the bank have a deep and enduring relationship
with are lower risk.

4. Self Selection – Borrowers who elect to pay interest only, or repay monthly have higher
risk as these borrowers are less likely to prepay their loans

5. Financial – Home loans with higher original balances are higher risk. Home loans
with a higher loan to (house) value ratio have a higher risk, which is an effect that the
models caters for changes in over time.

6. Credit quality – Home loans that have been delinquent in the past are much higher risk,
which is an effect that the models caters for changes in over time.
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We note that the two most important drivers of the model are the time-varying covariates.
Dynamic loan to value ratio and delinquency are the most significant variables in the model
with z-test statistics respectively of 21.46 (2.79/0.13) and 47.46 (2.99/0.063). This is a
fantastic applied example of the power and benefit of using time-varying covariates in a
survival model.

The next aspect of comparison for this test problem is to compare the baseline hazards.
The previously described shortcoming of the partial likelihood method is that it does not
produce an estimate of the baseline hazard. This is precisely one of the key benefits of our
maximum likelihood approach, as it jointly estimates regression coefficients and baseline
hazard.

In order to compare our estimate of the baseline hazard between the maximum likelihood
and partial likelihood methods, we use the Breslow (1972) estimator which relies on partial
likelihood regression coefficients as input. Figure 5.3 compares results of the Breslow
estimator (blue line); overlaid is the baseline estimate from the maximum likelihood method
(red line) along with the associate 95% confidence interval (grey shaded area).

Figure 5.3: Comparison of Baseline Hazard Using:
“Breslow + Partial Likelihood (PL)” verses “Maximum Likelihood (ML)” Estimation

While in general the two estimates tend to follow each other, it is very clear that the
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Breslow estimate exhibits a substantially larger degree of volatility than the estimate from the
maximum likelihood method. Interpreting the hazard in this applied credit risk setting, we
observe that the risk of default begins at a low level up to 24 months from origination, then
increases and somewhat plateaus for the remaining time.

The final aspect of comparison is to discuss the additional information available in the
variance-covariance matrix using maximum likelihood compared to using partial likelihood.
Usingmaximum likelihoodwe have estimated p+q = 15 regression coefficients (including the
additional dummies for categorical variable “borrower occupation”) as well as simultaneously
estimating m = 11 values for θ from the baseline hazard. The resulting 27 × 27 variance-
covariance matrix captures the joint sampling variation of these 27 parameters. On the other
hand the partial likelihood only produces a 15 × 15 variance-covariance matrix, capturing
only the joint variation in the regression parameters, and not that of the baseline hazard.
Appendix A.2 provides the numerical results for both of these variance-covariance matrices
for the home loan data.

Both estimation approaches provide enough information to conduct hypothesis tests and
contrasts for the regression coefficients. In addition, there are methods to calculate the
standard error of the Breslow baseline hazard estimator (see for example (Kalbfleisch and
Prentice, 2002)). Hence both the partial likelihood and maximum likelihood approaches
can provide point-wise confidence intervals for the survival function for a baseline subject.
However the reduced amount of information available in the variance-covariance matrix
obtained under the partial likelihood approach, means it cannot provide confidence intervals
for non-baseline subjects. Our maximum likelihood approach corrects this. Appendix A.2
provides further details, but given that the maximum likelihood estimates are asymptotically
normally distributed, the confidence intervals can be obtained using the Delta method (Xu
and Scott-Long, 2005). Recall that we defined in section 4.2 that β, γ and θ can be combined
into a single vector ηT = [βT, γT, θT ]. Noting that the survival function for a non-baseline
subject is a function of both time and η, the Delta method provides

V ar
[
S(t, η)

]
=
∂S(t, η)

∂ηT V ar (η)
∂S(t, η)

∂η
(5.2)

where ∂S(t, η)\∂η is the derivative of the survival function with respect to η. We have not
undertaken this work for this thesis, but calculating the variance for non-baseline subjects in
this manner remains an avenue of future research, particularly for our R implementation.
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Conclusion and Discussion

Survival data arises when the random variable under study is the time to an event of
interest. Regression techniques have gained popularity as a statistical method to explain
variation in survival times using available predictive covariates (Hosmer et al., 2008). For
survival analysis, the Cox partial likelihood model (1972, 1975), including its extension
by Crowley and Hu (1977) to cater for time-varying covariates, has become the favoured
regression technique (Ren and Zhou, 2011). While there are potentially a variety of wide
applications for survival analysis, its use has predominantly used in biomedical science and
industrial life testing (Kalbfleisch and Prentice, 2002).

Survival analysis (and particularly the Cox model) is a widely adopted method in mod-
elling probability of default by banks (Lessmann et al., 2015), who are interested in under-
standing the probability that a customer will fail to repay in a timely manner the monies
they contractually owe (including principle, interest and fees). An estimate of probability of
default is a key input for banks to calculate their minimum capital required under the Basel
Accords (BIS, 2006). In the context of estimating probability of default, survival models
allow an additional benefit in that they can estimate not only if but also when a customer is
likely to default (see fore example: Bellotti and Crook (2009), Stepanova and Thomas (2002)
and Tong et al. (2012)), a particularly useful aspect which can be leveraged to estimate the
probability of default over multiple horizons rather than simply a single fixed horizon as
well as allowing for time-varying covariates. In conjunction with allowing for time-varying
covariates, these advantages of survival analysis could both prove useful in estimating the
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lifetime probability of default, a key input for banks to calculate their expected credit losses
required under International Financial Reporting Standard (IFRS) 9 accounting standard
(IASB, 2014).

Despite its many applications, the much famed partial likelihood method used to estimate
the Cox model with time-varying covariates contains two distinct short comings: (1) the
baseline hazard is not estimated by the model, so that recovery of survival probabilities
requires a further estimation step after fitting, such as that provided by either Breslow (1972)
orKalbfleisch andPrentice (2002); and (2) the partial likelihood does not produce a covariance
matrix for both fitted parameters and the baseline hazard, meaning joint inferences of the
model parameters cannot be made.

This thesis has developed a new methodology to address these two shortcomings. It does
this by simultaneously estimating using maximum likelihood both regression coefficients
and the baseline hazard for survival data whose sample design include uninformative right-
censoring and time-varying covariates. Our approach adds to the literature by: (1) estimating
model parameters using maximum likelihood; and (2) providing an estimate of the baseline
hazard using a piece-wise constant basis which removes reliance on a secondary estimation
step. We develop the necessary theory to estimate our model, including gradient vectors
and the Hessian matrix, and implement this in the R programming language. Our approach
devises a Newton Multiplicative-Iterative method (Ma, 2010) in order to jointly estimate
the regression parameters and baseline hazard, which addresses the steep computational
challenge of needing to respect the non-negativity constraint of the baseline hazard.

We compare our proposed model with the partial likelihood method in combination with
the Breslow (1972) baseline hazard estimator, using both a simulation study and a real-world
application to model time to home loan default. The results of the simulation study show
superior performance of the maximum likelihood method over the partial likelihood method
to recover the true population parameters in small to moderate sized samples. When applied
to a sample of home loans, our results show that both baseline and time-varying estimated
regression coefficients agree closely between the approaches, however the maximum likeli-
hood estimate of the baseline hazard has markedly lower volatility. We posit that a potential
extension of ourmodel could include life-time probability of default prediction for bank loans,
a requirement for expected credit loss calculation as per the IFRS 9 accounting standard.

While the work in this thesis advances the literature in survival modelling, there re-
mains key channels for further research. These encompass methodology, comparison, and
computational considerations.

Regarding methodology, there are several aspects we intend to research further. The
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first would be catering for competing risks. For example, for time to bank loan default, a
competing risk is successful full loan repayment. Currently, such competing risks are treated
in our methodology as uninformative right-censoring, which may not be fully reflective of
the data generating process. A second extension would be allowing for not only time-varying
covariates (z(t)), but also time-varying effects (β(t) and γ(t)) associated with both the
baseline and time-varying covariates. A third avenue of extending the model is to allow for
recurrent events. Currently our method is only able to predict the time to the first default,
with second and subsequent defaults removed from the training data. A fourth extension
would be to adapt the methodology to other censoring and potentially truncation regimes,
such as informative right censoring, interval censoring and left-truncation.

Regarding model comparison, we have left as an avenue of future research the explicit
comparison of survival probabilities between the maximum likelihood and partial likelihood
methods. This is because we have deliberately focussed on joint estimation of the regression
coefficients and the baseline hazard, which we have been able to undertake and demonstrate
without (thus far) needing to explicitly compare survival probabilities. In our chosen applied
setting of estimating the probability of default, this will be a vital area of research. This will
likely involve testing the Cox model against the most commonly used model in credit default
modelling, the logistic regression.

Regarding computation, we comment that the required non-negativity constraint on the
baseline hazard estimation substantially increases the complexity of the computation for
model fitting, and some computational aspects of the model implementation in R could be
refined to help improve the speed of the algorithm. Aspects of the algorithm that require
further research and refinement could include using indices rather than lists of matrices, or
leveraging non-base R packages that are designed for speed optimisation, such as (for example)
the data.table and the dplyr packages. The Rmodel implementation deliberately avoided
using these to as to reduce the reliance third-party software and packages which may undergo
unannounced changes and in turn impact our model implementation. The ultimate aim is to
release an R package to the CRAN.

In closing, we remind the reader that our research provides several enhancements the
prevailing available methodologies to estimate the Cox mode with time -varying covariates.
These are: (1) joint estimation of regression coefficients and (smoothed) baseline hazard; (2)
calculation of a variance-covariance matrix that will allow point-wise confidence intervals for
non-baseline survival probabilities. Ourmethodology also providesmore accurate parameters
estimates (in smaller sample sizes) and can allow the baseline hazard to equal zero for some
values of t.
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A.1 Appendix 1: Proof of Theorem 1

We provide a brief outline of the proof of Theorem 1.

1. The Newton Multiplicative-Iterative Algorithm developed in section 4.4 involves three
steps. The first two are Newton steps, one each for updating β and γ where their
mappings are denoted by M1 and M2 respectively. The third step is the Multiplicative-
Iterative step for updating θ, denoted by its mapping M3. These mappings M1, M2 and
M3 satisfy:

• β(s+1) = M1
(
β(s); γs, θ (s)) with l

(
β(s+1), γ(s), θ (s)

)
≥ l

(
β(s), γ(s), θ (s)

)
• γ (s+1) = M2

(
γ (s); βs+1, θ (s)) with l

(
β(s+1), γ(s+1), θ (s)

)
≥ l

(
β(s+1), γ(s), θ (s)

)
• θ (s+1) = M3

(
θ (s); βs+1, γ(s+1)) with l

(
β(s+1), γ(s+1), θ (s+1)

)
≥ l

(
β(s+1), γ(s+1), θ (s)

)
2. Both XT AX and ZT BZ are non-singular if A1/2X and B1/2Z both have full column

rank their gradients given in equation (4.23) and equation (4.27) are both finite. Thus
the Newton updates in equations (4.33) and (4.33) are bounded. We also assume that
β(s) ∈ B and γ (s) ∈ G, where B = {β : | βc | ≤ B̃ < inf,∀ c} and G = {γ : |γk | ≤ G̃ <

inf,∀ k}.

3. Update θs+1 from equations (4.37) and (4.38) is bounded if θ (s) is bounded, so we can
assume θ (s) ∈ T where T = {0 ≤ θu ≤ T < in f ,∀ u}.
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4. Letting M = M3 ◦ M2 ◦ M1, which defines the iteration mapping for the The Newton
Multiplicative-IterativeAlgorithm, such that l

(
β(s+1), γ(s+1), θ (s+1)

)
= M

(
β(s), γ(s), θ (s)

)
.

5. Let Λβ = { β̂} be the β stationary points set (ie: when ∂l
∂ β = 0 for c = 1, ..., p). Let

Λγ = {γ̂} be the γ stationary points set (ie: when ∂l
∂γ = 0 for k = 1, ..., q). Let Λθ = {θ̂}

be the θ stationary points set (ie: ∂l
∂θu
= 0 if θu , 0 and ∂l

∂θu
< 0 if θu = 0 for u = 1, ...,m.

Let Λ = Λβ × Λγ × Λθ .

6. for Mapping M and the Cartesian product set B × G × T , these satisfy: (1) Mapping
M is defined on the set B × G × T ; (2) The set B × G × T is closed and bounded,
and thus compact; (3) It is easy to verify that the M1 is continuous and hence closed
for all β ∈ Rp, M2 is continuous and hence closed for all γ ∈ Rq, and M3 is closed
for θ < Λ. Thus M is closed for (β, γ, θ) < Λ; (4) l

(
β, γ, θ

)
is continuous and

satisfies l
(
β(s+1), γ(s+1), θ (s+1)

)
≥ l

(
β(s), γ(s), θ (s)

)
on B × G × T , where equality

holds only when the maximum penalised likelihood solution is achieved. The Newton
Multiplicative-Iterative Algorithm developed in section 4.4 is convergent if the initial
values satisfy: | β(0)

c ≤ B̃ |, ∀ c; |γ (0)
k ≤ G̃ |, ∀ k; and 0 < θ (0)

u T̃, ∀ u.

7. Finally, let β(s) → β̃, γ (s) → γ̃ and θ (s) → θ̃ as s → ∞. β̃ satisfies the condition
that ∂l ( β̃,γ̃,θ̃)

∂ β = 0 from equation (4.30). γ̃ satisfies the condition that ∂l ( β̃,γ̃,θ̃)
∂γ = 0 from

equation (4.31). For θ̃, if θ̃u , 0, it must have ∂l ( β̃,γ̃,θ̃)
∂θu

= 0 as per equations (4.37)

and (4.38). If θ̃u = 0, since θ (0)
u > 0, it must have Nu = 0 and ∂J ( β̃,γ̃,θ̃)

∂θu
> 0, thus

∂l ( β̃,γ̃,θ̃)
∂θu

< 0, ie: ( β̃, γ̃, θ̃) ∈ Λ. �
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A.2 Appendix 2: Point-Wise Confidence Interval for Sur-
vival Probabilities

Ourmaximum likelihoodmethod provides a full variance-covariancematrix for the p+q+

m baseline, time-varying and baseline hazard parameters. This can be used in conjunction
with the delta method to estimate the confidence intervals of non-baseline subjects. The
Delta method provides a relationship for the sampling distribution of a transform of a set of
multivariate normally distributed variables. Following Xu and Scott-Long (2005), if η is a
vector of random variables such that

√
n
(
η̂ − η

)
D
→

(
0,V ar

[
η̂
] )

(A.1)

then
√

n
(
S(t, η̂) − S(t, η)

)
D
→

(
0,
∂S(t, η)

∂ηT V ar (η)
∂S(t, η)

∂η

)
. (A.2)

The final part of this appendix prints the variance-covariance matrices for the Cox model
for time to home loan default. The first matrix is estimated using maximum likelihood, and
thus contains elements for not only the regression coefficients, but also the baseline hazard.
The second matrix is estimated using partial likelihood, and thus contains elements only for
the regression coefficients. Note that the order of the regression coefficients in both matrices
matches that in table 5.2 in section 5.2.

Figure A.1: Variance-Covariance Matrix from Partial Likelihood Estimation
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Figure A.2: Variance-Covariance Matrix from Maximum Likelihood Estimation
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B.1 Supplementary 1: Model Implementation R Code

Here we present our the R code implementation of our model. The code leverages the
existing R package survival_mpl (by Couturier et al. (2014)), whose documentation states
that is “inspired” but the functionality of the base package survival (by Therneau (2015)).
Both packages are available from the CRAN. The R code to implement the survival_mpl
was translated and kindly shared by Dr Maurizio Manuguerra.

#==============================================

cox_mle_tvc=function(formula,data,formula.z,riji,subject,data.z,

subset,na.action,control,...){

# get and organise information

# (same tests as in coxph(), thanks to the survival package)

mc = match.call(expand.dots = FALSE)

m = match(c("formula","data","subset","na.action"),names(mc),0)

mc.orig = mc

mc = mc[c(1,m)]

if (m[1]==0){stop("A formula argument is required")}

data.name = if(m[2]!=0){mc[m[2]][[1]]}else{"-"}

mc[[1]] = as.name("model.frame")

mc$formula = if(missing(data)) terms(formula)

else terms(formula, data=data)

mf = eval(mc,parent.frame())

if (any(is.na(mf))) stop("Missing observations in the model variables")

if (nrow(mf) ==0) stop("No (non-missing) observations")

mt = attr(mf,"terms")

# extract response
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y = model.extract(mf, "response")

type = attr(y, "type")

if(!inherits(y, "Surv")){stop("Response must be a survival object")}

if(type!="right"&&type!="counting"){

stop(paste("Cox model doesn’t support \"", type, "\"

survival data",sep = ""))

}

t_i = y[,1L]

observed = y[,2L]==1L

n = length(t_i)

n.obs = sum(observed)

# control arguments

extraArgs <- list(...)

if (length(extraArgs)) {

controlargs <- names(formals(cpox_mle_tvc.control))

m <- pmatch(names(extraArgs), controlargs, nomatch=0L)

if (any(m==0L))

stop(gettextf("Argument(s) %s not matched", names(extraArgs)[m==0L]),

domain = NA, call. = FALSE)

}

if (missing(control)) control <- cpox_mle_tvc.control(n.obs, ...)

# ties

t_i.obs = t_i[observed]

ties = duplicated(t_i.obs)

if(any(ties)){

if(control$ties=="epsilon"){

if(length(control$seed)>0){

old <- .Random.seed

on.exit({.Random.seed <<- old})

set.seed(control$seed)

}

t_i.obs[ties] = t_i.obs[ties]+runif(sum(ties),-1e-11,1e-11)

t_i[observed] = t_i.obs

}else{

t_i.obs = t_i.obs[!ties]

n.obs = length(t_i.obs)

}

}

# X and centered X matrix

X = model.matrix(mt, mf, contrasts)

X = X[,!apply(X, 2, function(x) all(x==x[1])), drop=FALSE]

if(ncol(X)==0){

X = matrix(0,n,1)

noX = TRUE

}else{ noX = FALSE}

p = ncol(X)

mean_j = apply(X, 2, mean)

#XC = X - rep(mean_j, each=n)

XC=X

mean_j=rep(0,p)

# knot sequence and psi matrices

knots = knots_mpl(control, t_i.obs, range(t_i))

m = knots$m

psi = basis_mpl(t_i,knots,control$basis,control$order,which=1)

PSI = basis_mpl(t_i,knots,control$basis,control$order,which=2)

R = penalty_mpl(control,knots)
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# Z variables

var.z=all.names(formula.z)

var.z=var.z[-which(var.z %in% c(’~’,’+’,’.’))]

# Narrow the Z matrix

var.riji=mc.orig[[which(names(mc.orig)==’riji’)]]

var.subj=mc.orig[[which(names(mc.orig)==’subject’)]]

var.riji=as.character(var.riji)

var.subj=as.character(var.subj)

Z=data.z[,c(var.subj, var.riji, var.z)]

noZ=FALSE

q=ncol(Z)

# Z matricies, with appropriate individual psi and PSI matricies

# make a list storing z matrix for each subject

Zsplit=lapply(split(Z[,var.z],Z[,1]),FUN=as.matrix)

# Create matrix of last values of z for each subject

last.z=lapply(Zsplit,

FUN=tail,

n=1)

last.z=do.call(rbind, last.z)

rownames(last.z)=NULL

# make a list storing times for z matrix for each subject

# a list of n maxricies of dimension j_{i} x q

Zsplit.time=lapply(split(Z[,var.riji],Z[,1]),FUN=as.matrix)

# psi for each z matrix

# a list of n maxricies of dimension j_{i} x m

Npsi=lapply(Zsplit.time,

FUN=basis_mpl,

knots=knots,

basis=control$basis,

order=control$order,

which=1)

# PSI for each z matrix, set minimum to zero

# a list of n maxricies of dimension j_{i} x m

NPSI=lapply(Zsplit.time,

FUN=basis_mpl,

knots=knots,

basis=control$basis,

order=control$order,

which=2)

NPSI=lapply(NPSI, FUN=function(x) {ifelse(x<0,0,x)})

# Difference in zPSI - First differences, but retaining the first element

# Result is a list of n vectors j_{i} x m

NPSIdiff=lapply(NPSI,

FUN=function(val) {rbind(val[1,] ,val[-1L,] - val[1:dim(val)[1]-1,])})

# Initial value for Gamma

q=length(var.z)

Gamma=as.matrix(rep(0,q))

#Most narrow version of Z

Z=as.matrix(data.z[,c(var.z)])
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# Create status

status=matrix(c(as.integer(observed),

seq(1,length(observed))),

ncol=2)

status.list=lapply(split(status[,1],status[,2]),FUN=as.matrix)

# Create long status

longstatus.list=mapply(FUN=function(val1,val2) {

matrix(c(rep(0,length(val1)-1),val2), ncol=1)},

val1=Zsplit.time,

val2=status.list,

SIMPLIFY = FALSE)

longstatus=do.call(rbind,longstatus.list)

#==============

lambda = control$smooth

Beta = rep(0,p)

Theta = rep(1,knots$m)

correction = 1

full.iter = 0

this.max.iter=control$max.iter[1]

this.max.iter=1

for(iter in 1:this.max.iter){

fit <- coxphfit(

status = as.integer(observed), longstatus=longstatus,

X=XC, meanX = mean_j, R = R,

psi = psi, PSI = PSI,

Z=Z, Zsplit=Zsplit, Zsplit.time=Zsplit.time, last.z=last.z,

Npsi=Npsi, NPSI=NPSI, NPSIdiff=NPSIdiff,

Beta0 = Beta, Theta0 = Theta/correction, Gamma0=Gamma,

lambda = as.double(lambda), kappa = control$kappa,

convVal = control$tol, minTheta = control$epsilon,

maxiter = control$max.iter[2])

}

#================

if(control$max.iter[1]>1) control$smooth = lambda

M_theta_m1 = fit$coef$Theta

H = as.matrix(fit$matricies$H) ;rownames(H)=colnames(H)=NULL

p = length(fit$coef$Beta)

m = length(fit$coef$Theta)

q = length(fit$coef$Gamma)

Minv_2 = Hinv = matrix(0,p+q+m,p+q+m)

pos = c(rep(TRUE,p), rep(TRUE,q), !(abs(M_theta_m1)<1E-5) & !(fit$GradTheta< -1E-2))

# Hessian

temp = try(solve(H[pos,pos]),silent=TRUE)

if(class(temp)!="try-error"){

Hinv[pos,pos] = temp

cov_NuNu_H = Hinv

se.Eta_H = suppressWarnings(sqrt(diag(cov_NuNu_H)))

}else{

cov_NuNu_H = matrix(NA,p+m,p+m)

se.Eta_H = rep(NA,p+m)

}

# Graph data

se.Theta=se.Eta_H[(p+q+1):(p+q+m)]

se.Theta2=se.Theta[c(1,1:m)]
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Theta2=fit$coef$Theta[c(1,1:m)]

graphData=data.frame(Alpha=knots$Alpha,

Theta=Theta2,

se.Theta=se.Theta2,

low=Theta2-1.96*se.Theta2,

high=Theta2+1.96*se.Theta2)

# output

fit$knots = knots

fit$control = control

fit$call = match.call()

fit$dim = list(n = n, n.obs = sum(observed), n.ties = sum(ties),

p = p, q = q, m = knots$m)

fit$data = list(time = t_i, observed = observed, X = X, Z = Z,

name = data.name, graphData=graphData)

fit$matricies=list(H=H, cov_NuNu_H=cov_NuNu_H, se.Eta_H=se.Eta_H)

class(fit) = "cox_mle_tvc"

fit

}

#==============================================

#==============================================

# Function to update H0star using Gamma and Theta

calc<-function(NPSIdiff, Zsplit, thisGamma, thisTheta)

{

# Multiply 2 lists of n matricies j_{i} x q and q x 1

# Result n vectors j_{i} x 1

eZGamma=lapply(Zsplit, FUN= function(val) {exp(val%*%thisGamma)})

# replicate the number of columns for exp(zT.Gamma)

thism=dim(thisTheta)[1]

eZGamma.repm=lapply(eZGamma, FUN=function(val){

matrix(rep(val, time=thism), ncol=thism)})

# Element wise multiplication

NPSIdiff_by_eZGamma=mapply(FUN=function(val1,val2){val1 * val2},

val1=NPSIdiff,

val2=eZGamma.repm,

SIMPLIFY = FALSE)

# Create PSIstar - nXm

PSIstar.list=lapply(NPSIdiff_by_eZGamma, FUN=colSums)

PSIstar=do.call(rbind,PSIstar.list)

# Create H0star - nX1

H0star=PSIstar %*% thisTheta

return(list(H0star=H0star,PSIstar=PSIstar,

NPSIdiff_by_eZGamma=NPSIdiff_by_eZGamma))

}

#==============================================

#==============================================

coxphfit <- function(status, longstatus, X, meanX, R, psi,

PSI, Z, Zsplit, Zsplit.time, last.z, Npsi, NPSI, NPSIdiff,

Beta0, Gamma0, Theta0, lambda, kappa, convVal, minTheta,

maxiter){

p = ncol(X)

n = nrow(X)
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m = ncol(R)

N = dim(Z)

l = p+m

# Initialise

Theta0 = as.matrix(Theta0) # mx1

PsiTheta = PSI %*% Theta0 # nxm x mx1 = nx1

psiTheta = psi %*% Theta0 # nxm x mx1 = nx1

Mu = exp(X %*% Beta0) # nxp x px1 = nx1

PsiThetaMu <- PsiTheta*Mu # element-wise nx1

psiThetaMu <- psiTheta*Mu # element-wise nx1

RTheta = R %*% Theta0 # mxm x mx1 = mx1

#==============

# Initialise

q=ncol(Z)

l = p+m+q

Zu=exp(last.z%*% Gamma0) # nxq x qx1 = nx1

# Initialise H0star using Gamma0 and Theta0

calc0=calc(NPSIdiff=NPSIdiff, Zsplit=Zsplit,

thisGamma=Gamma0, thisTheta=Theta0)

H0star=calc0$H0star

# ith component is the ith obs contribution to loglik

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

# 1xn x nx1 = 1x1 scalar

pen <- as.numeric(crossprod(Theta0,RTheta))

# 1x1 scalar, the penalised likelihood

ploglik0 = (1-lambda)*sum(loglik) - lambda*pen

Gamma=Gamma0

Beta=Beta0

Theta=Theta0

#==============

# Save values

ploglikMat=matrix(rep(0,(maxiter+1)*3), ncol=3, nrow=maxiter+1)

ploglikMat[1,]=ploglik0

BetaMat =matrix(rep(0,(maxiter+1)*p), nrow=maxiter+1, ncol=p)

GammaMat=matrix(rep(0,(maxiter+1)*q), nrow=maxiter+1, ncol=q)

ThetaMat=matrix(rep(0,(maxiter+1)*m), nrow=maxiter+1, ncol=m)

BetaMat [1,]=Beta0

GammaMat[1,]=Gamma0

ThetaMat[1,]=Theta0

#==============

# Update Beta

for(iter in 1:maxiter){

# Update beta

StatusMinH0starMu = status-H0star*Mu

GradBeta <- t(X) %*% StatusMinH0starMu

#HessianBeta <- t(X) %*% diag(as.numeric(H0star*Mu)) %*% X

HessianBeta <- as.matrix(t(X) %*% Diagonal(n=n, x=H0star*Mu) %*% X)

StepBeta <- solve(HessianBeta) %*% GradBeta

Beta <- Beta0 + StepBeta

##

Mu = exp(X %*% Beta)

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

ploglik = (1-lambda)*sum(loglik) - lambda*pen
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# Adapt Newton step if needed

r=0

while(ploglik < ploglik0){

r=r+1

StepBeta = StepBeta/kappa

Beta <- Beta0 + StepBeta

Mu = exp(X %*% Beta)

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

ploglik = (1-lambda)*sum(loglik) - lambda*pen

if (r>500) break

}

ploglik0=ploglik

ploglikMat[1+iter,1]=ploglik0

#==============

# Update gamma

# List of n matricies j_{i} x m

NPSIdiff_by_eZGamma=calc0$NPSIdiff_by_eZGamma

# List of n matricies j_{i} x 1

NPSIdiff_by_eZGamma_by_Theta=lapply(NPSIdiff_by_eZGamma,

FUN=function(val1){val1 %*% Theta})

# List of n vectors j_{i} x 1

NPSIdiff_by_eZGamma_by_Theta_by_Mu=mapply(FUN=function(val1,val2) {

val1*val2},

val1=NPSIdiff_by_eZGamma_by_Theta,

val2=Mu,

SIMPLIFY = FALSE)

# Elements matrix B

# Vector N x 1 (N= sum of j_{i})

Belement=do.call(rbind, NPSIdiff_by_eZGamma_by_Theta_by_Mu)

# Newton

longStatusMinBelementexpandMu = longstatus-Belement

GradGamma <- t(Z) %*% longStatusMinBelementexpandMu

HessianGamma <- t(Z) %*% Diagonal(n=length(Belement), x=Belement)

%*% as.matrix(Z)

StepGamma <- solve(HessianGamma) %*% GradGamma

Gamma <- Gamma0 + StepGamma

Gamma=as.matrix(Gamma)

# Update H0star using Gamma and Theta0

Zu=exp(last.z%*% Gamma)

calc0=calc(NPSIdiff=NPSIdiff, Zsplit=Zsplit, thisGamma=Gamma,

thisTheta=Theta)

H0star=calc0$H0star

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

# nx1 + element-wise nx1 = nx1

# (ith component is the ith obs contribution to loglik)

# 1x1 scalar, the penalised likelihood

ploglik = (1-lambda)*sum(loglik) - lambda*pen

# Adapt Newton step if needed

r=0

while(ploglik < ploglik0){

r=r+1

StepGamma = StepGamma/kappa

Gamma <- Gamma0 + StepGamma
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Gamma=as.matrix(Gamma)

Zu=exp(last.z%*% Gamma)

calc0=calc(NPSIdiff=NPSIdiff, Zsplit=Zsplit, thisGamma=Gamma, thisTheta=Theta)

H0star=calc0$H0star

loglik = -H0star*Mu + status*log((psi%*%Theta)*Mu*Zu)

# nx1 + element-wise nx1 = nx1

#(ith component is the ith obs contribution to loglik)

# 1x1 scalar, the penalised likelihood

ploglik = (1-lambda)*sum(loglik) - lambda*pen

if (r>50000) break

}

ploglik0=ploglik

ploglikMat[1+iter,2]=ploglik0

#==============

# Update theta

# nXm /(element-wise) nXm matrix

W <- psi/matrix(psi %*% Theta,nrow=nrow(psi),ncol=ncol(psi), byrow=F)

WTstatus <- t(W) %*% status #mXn x nx1, result is mx1

PSIstar=calc0$PSIstar

PSIstarMu <- t(PSIstar) %*% Mu

GradTheta <- (1-lambda)*(WTstatus-PSIstarMu) - 2*lambda*(R %*% Theta)

sTheta <- Theta/((1-lambda)*PSIstarMu +

ifelse(RTheta>0, 2*lambda*(R %*% Theta0), 0) + 0.3)

StepTheta <- GradTheta*sTheta

Theta <- as.matrix(Theta0) + StepTheta

Theta[which(Theta<minTheta)]=minTheta

calc0=calc(NPSIdiff=NPSIdiff, Zsplit=Zsplit, thisGamma=Gamma, thisTheta=Theta)

H0star=calc0$H0star # nX1

psiTheta = psi %*% Theta # nXm x mX1, result is nX1

RTheta = R %*% Theta # mXm x mX1, result is mX1

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

pen <- as.numeric(crossprod(Theta,RTheta))

ploglik = (1-lambda)*sum(loglik) - lambda*pen

# Adapt Newton step if needed

r=0

while(ploglik < ploglik0){

r=r+1

StepTheta <- StepTheta/kappa

Theta <- as.matrix(Theta0) + StepTheta

Theta[which(Theta<minTheta)]=minTheta

calc0=calc(NPSIdiff=NPSIdiff, Zsplit=Zsplit, thisGamma=Gamma,

thisTheta=Theta)

H0star=calc0$H0star

psiTheta = psi %*% Theta

psiThetaMu <- psiTheta*Mu

RTheta = R %*% Theta

loglik = -H0star*Mu + status*log(psiThetaMu)

pen <- as.numeric(crossprod(Theta,RTheta))

ploglik = (1-lambda)*sum(loglik) - lambda*pen

if (r>500) break

}

# Save the penalised likelihood

ploglik0 <- ploglik

ploglikMat[1+iter,3]=ploglik0



B.1 Supplementary 1: Model Implementation R Code 63

# Check for convergence

varepsilon <- max(c(abs(Beta-Beta0),abs(Gamma-Gamma0),abs(Theta-Theta0)))

if (varepsilon<convVal) break

Beta0 <- Beta

Gamma0 <- Gamma

Theta0 <- Theta

BetaMat [1+iter,]=Beta0

GammaMat[1+iter,]=Gamma0

ThetaMat[1+iter,]=Theta0

#print(iter)

if ( (round(iter/10,6)-floor(iter/10)) == 0) print(iter)

}

#Correction for Theta

correction <- exp(sum(-meanX*Beta))

ploglik <- c(ploglik, correction)

Theta <- Theta*correction

# ================

#Inference for Beta

H0starMu=H0star*Mu

V1 <- - t(X) %*% Diagonal(n=length(H0starMu), x=H0starMu) %*% X

colnames(V1)=rownames(V1)=NULL

HessianBeta <- V1

# ================

# Inference for Gamma

# List of n matricies j_{i} x m

NPSIdiff_by_eZGamma=calc0$NPSIdiff_by_eZGamma

# List of n matricies j_{i} x 1

NPSIdiff_by_eZGamma_by_Theta=lapply(NPSIdiff_by_eZGamma,

FUN=function(val1){val1 %*% Theta})

# List of n vectors j_{i} x 1

NPSIdiff_by_eZGamma_by_Theta_by_Mu=mapply(FUN=function(val1,val2) {

val1*val2},

val1=NPSIdiff_by_eZGamma_by_Theta,

val2=Mu,

SIMPLIFY = FALSE)

# Elements matrix B

# Vector N x 1 (N= sum of j_{i})

Belement=do.call(rbind, NPSIdiff_by_eZGamma_by_Theta_by_Mu)

V2= - t(Z) %*% Diagonal(n=length(Belement), x=Belement) %*% as.matrix(Z)

V2=as.matrix(V2)

HessianGamma <- V2

# ================

# Inference for Theta

#(mxn)x(nxn)x(nxm)=mxm #B

V3 <- as.matrix(t(psi) %*% Diagonal(n=n, x=as.numeric(status/psiTheta^2))

%*% psi)

HessianTheta <- V3

# ================

# Inference for d2l/dbeta dtheta

V13 = - t(X) %*% Diagonal(n=length(Mu), x=Mu) %*% calc0$PSIstar

V13=as.matrix(V13)

colnames(V13)=rownames(V13)=NULL

# ================

# Inference for dl/dbeta dgamma
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# Replicate the rows of X j_{i} times each - result is Nxp matrix

timesToRep=do.call(rbind,lapply(Zsplit,dim))

rows <- rep( 1:nrow(X) , timesToRep[ , 1 ] )

Xrep=matrix(X[rows,], ncol=ncol(X))

V12 = - t(Xrep) %*% Diagonal(n=length(Belement), x=Belement) %*% Z

V12=as.matrix(V12)

# ================

# Inference for dl/dgamma dtheta

# Replicate the rows of Mu j_{i} times each - result is Nx1 vector

timesToRep=do.call(rbind,lapply(Zsplit,dim))

rows <- rep( 1:nrow(Mu) , timesToRep[ , 1 ] )

Murep=matrix(Mu[rows,], ncol=1)

V23= - t(Z) %*% Diagonal(n=length(Murep), x=Murep) %*%

do.call(rbind,calc0$NPSIdiff_by_eZGamma)

V23=as.matrix(V23)

# ================

# H matrix

row1=cbind( V1 , V12 , V13)

row2=cbind(t(V12), V2 , V23)

row3=cbind(t(V13), t(V23), -V3)

Halt=-1*rbind(row1, row2, row3)

H=Halt

M2=Halt

# ================

#Output

return(list(coef=list(Beta=Beta, Gamma=Gamma, Theta=Theta),

loglik=list(iter=iter, ploglik=ploglik[1], correction=ploglik[2],

ploglikMat=ploglikMat),matricies=list(H=H),GradTheta=GradTheta,

History=list(BetaMat=BetaMat, GammaMat=GammaMat, ThetaMat=ThetaMat)))

}

#==============================================

#==============================================

cpox_mle_tvc.control <- function(...)

... unchanged from survivalMPL::coxph_mpl.control

#==============================================

basis.name_mpl <- function(...)

... unchanged from survivalMPL::basis.name_mpl

#==============================================

penalty.order_mpl <- function(...)

... unchanged from survivalMPL::penalty.order_mpl

#==============================================

knots_mpl <- function(...)

... unchanged from survivalMPL::knots_mpl

#==============================================

basis_mpl <- function(...)

... unchanged from survivalMPL::basis_mpl

#==============================================

penalty_mpl <- function(...)

... unchanged from survivalMPL::penalty_mpl

#==============================================



References

Aalen, O. (1978). Nonparametric inference for a family of counting processes. Annals of
Statistics, 6:701.

APRA (2016). Statistics quarterly authorised deposit-taking institution performance
(http://apra.gov.au/adi/publications/documents/3105-qadips-mar-2016.pdf). [Online; ac-
cessed 17/08/2016].

Araujo, A., Meira-Machado, L., and Faria, S. (2015). genSurv: Generating multi-state
survival data. R package version 1.0.3. R package version 1.0.3.

Australia and New Zealand Banking Group (2016). 2016 basel iii pillar 3 disclosure as at 31
march 2016 aps:330 public disclosure (www.anz.com). [Online; accessed 24/07/2016].

Australian Bureau of Statistics (2016). 1345.0 - key economic indicators, 2016 (abs.gov.au).
[Online; accessed 31/07/2016].

Banasik, J., Crook, J., and Thomas, L. (1999). Not if but when will borrowers default. journal
of the Operational Research Society, 50:1185–1190.

Bellotti, T. and Crook, J. (2009). Credit scoring with macroeconomic variables using survival
analysis. Journal of the Operational Research Society, 60:1699–1707.

BIS (2006). International convergence of capital measurement and capital standards a revised
framework comprehensive version. Bank for International Settlements.

Breslow, N. E. (1972). Contribution to the discussion of paper by d.r. cox. j r. Journal of the
Royal Statistical Society: Series B, 34:216–217.

Cai, T. and Betensky, R. (2003). Hazard regression for interval-censored data with penalized
spline. Biometrics, 59:570–579.

Cai, T., Hyndman, R., andWand, M. (2010). Mixed model-based hazard estimation. Working
Paper.



66 References

Commonwealth Bank of Australia (2016). Basel iii pillar 3 capital adequacy and risk disclo-
sures as at 31 match 2016 (www.commbank.com.au). [Online; accessed 24/07/2016].

Couturier, D.-L., Ma, J., and Heritier., S. (2014). survivalMPL: Penalised Maximum Likeli-
hood for Survival Analysis Models. R package version 0.1.1.

Cox, D. (1972). Regression models and life tables. Journal of the Royal Statistical Society,
Series B, 34:187–220.

Cox, D. (1975). Partial likelihood. Biometrika, 62:269–276.

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall, New York,
NY.

Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant survival data. Journal
of the American Statistical Association, 72:27–36.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39 (1):1–38.

Fisher, L. and Lin, D. (1999). Time-dependent covariates in the cox proportional-hazards
regression model. Annual Review of Public Health, 20:145–57.

Good, I. J. (1950). Probability and the Weighting of Evidence. Charles Griffith, London.

Hosmer, D., Lemeshow, S., and May, S. (2008). Applied Survival Analysis: Regression
Modeling of Time to Event Data, second ed. Wiley-Interscience, Hoboken, New Jersey.

IASB (2014). International financial reporting standard 9.

Im, J., Apley, D., Qi, C., and Shan, X. (2012). A time-dependent proportional hazards survival
model for credit risk analysis. Journal of the Operational Research Society, 63:306 –321.

Johansen, S. (1983). An extension of cox’s regressionmodel. International Statistical Review,
51:165–174.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data.
John Wiley and Sons, New York, NY.

Kaplan, E. and Meier, P. (1958). Nonparametric estimation from incomplete observations.
The Journal of the American Statistical Association, 53 (282):457–481.

Karush, W. (1939). Minima of functions of several variables with inequalities as side
constraints. Master’s thesis, M.Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago,
Chicago, Illinois.



References 67

Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis Techniques for Censored and
Truncated Data, Second Edition. Springer, New York, NY.

Kneib, T. and Fahrmeir, L. (2004). A mixed model approach for structured hazard regression.
Sonderforschungsbereich, Paper 400.

Kuhn, H. and Tucker (1951). Nonlinear programming. Proceedings of 2nd Berkeley Sympo-
sium. Berkeley, pages 481–492.

Lessmann, S., Baesens, B., Seowd, H., and Thomas, L. (2015). Benchmarking state-of-the-
art classification algorithms for credit scoring: An update of research. The Journal of the
Operational Research Society, 247:124–136.

Luenberger, D. and Ye, Y. (2008). Linear and Nonlinear Programming, 3 ed. Springer, New
York, NY.

Ma, J. (2010). Positively constrained multiplicative iterative algorithm for maximum pe-
nalized likelihood tomographic reconstruction. IEEE Transactions on Nuclear Science,
57:181–192.

Ma, J., Heritier, S., and Lo, S. (2014). On the maximum penalized likelihood approach for
proportional hazard models with right censored survival data. Computational Statistics
and Data Analysis, 74:142 – 156.

Man, R. (2014). Survival analysis in credit scoring a framework for pd estimation. Master’s
thesis, University of Twente, The Netherlands.

Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its
consideration. Cancer Chemotherapy Reports, 50(3):163.

Narian, B. (1992). Survival analysis and the credit granting decision, in Credit Scoring and
Credit Control, L. C. Thomas, J. N. Crook, D. B. Edelman, eds. Oxford University Press.

National Australia Bank (2016). 2016 pillar 3 report incorporating the requirements of aps330
half year update as at 31 march 2016 (www.nab.com.au). [Online; accessed 24/07/2016].

Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technol-
ogy, 1:27.

Nelson, W. (1972). Theory and applications of hazard plotting for censored failure data.
Technometrics, 14:945.

Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariant test procedures. Journal
of the Royal Statistical Society. Series A (General), 135(2):185.



68 References

R Core Team (2016). R 3.2.3: A language and environment for statistical computing. r
foundation for statistical computing, vienna, austria. url http://www.r-project.org.

Ren, J. and Zhou, M. (2011). Full likelihood inferences in the cox model: an empirical
likelihood approach. Annals of the Institute of Statistical Mathematics, 63 (Issue 5):1005–
1018.

Rodriguez, G. (2005). Non-parametric estimation in survival models. Princeton Lecture
Notes.

Royston, P. (2011). Estimating a smooth baseline hazard function for the cox model. Working
Paper.

SAS Institute Inc (2016). Sas software, version 9.4. cary. url http://www.sas.com.

Schoenfeld, D. (1981). The asymptotic properties of nonparametric tets for comparing
survival distributions. Biometrikal, 68:316–319.

Stepanova, M. and Thomas, L. (2002). Survival analysis methods for personal loan data.
Operations Research, 50(2):277–289.

Sterne, J., White, I., Carlin, J., Spratt, M., Royston, P., Kenward,M.,Wood, A., andCarpenter,
J. (2009). Multiple imputation for missing data in epidemiological and clinical research:
potential and pitfalls. British Medical Journal (BMJ 2009;338:b2393).

Therneau, T., Crowson, C., and Atkinson, E. (2015). Using time depen-
dent covariates and time dependent coefficients in the cox model (https://cran.r-
project.org/web/packages/survival/vignettes/timedep.pdf). R CRAN Vignette.

Therneau, T. M. (2015). A Package for Survival Analysis in S. R package version 2.38.

Tong, E. N., Mues, C., and Thomas, L. C. (2012). Mixture cure models in credit scoring:
If and when borrowers default. European Journal of Operational Research, 218(1):132 –
139.

van Houwelingen, H. (2000). Validation, calibration, revision and combination of prognostic
survival models. Statistics in Medicine, 19:3401–3415.

Westpac Banking Corporation (2016). Pillar 3 report march 2016 incorporating the require-
ments of aps330 (www.westpac.com.au). [Online; accessed 24/07/2016].

Xu, J. and Scott-Long, J. (2005). Confidence intervals for predicted outcomes in regression
models for categorical outcomes. The Stata Journal, 5 (4):537–559.

Zheng, D. and Lin, D. (2007). Maximum likelihood estimation in semiparametric regression
models with censored data. Journal of the Royal Statistical Society B, 69(Part 4):507–564.


	Dedication
	Acknowledgements
	Abstract
	Introduction
	Background and Aims
	Structure of this Thesis

	Background to Survival Analysis
	Survival Data
	Time to Event as a Random Variable
	Types of Survival Analysis

	Literature Review
	The Cox Model
	Maximum Penalised Likelihood Estimation for Cox Model
	Survival Analysis Applied to Credit Risk Modelling

	Maximum Likelihood Estimation for Cox Model with Time-Varying Covariates
	Formulation of the Log-Likelihood
	Gradient Vector and Hessian Matrix
	Helpful Matrix Notation
	Newton Multiplicative-Iterative Algorithm
	Convergence Properties
	Model Implementation in R

	Results
	Test Problem 1: Simulation Study
	Test Problem 2: Application to Credit Risk Data

	Conclusion and Discussion
	Appendix
	Appendix 1: Proof of Theorem 1
	Appendix 2: Point-Wise Confidence Interval for Survival Probabilities

	Supplementary Material
	Supplementary 1: Model Implementation R Code

	References

