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ABSTRACT

A multimodal biometric system is considered to be more reliable for person iden-

tification. It uses multiple biometric credentials/traits to identify a person rather

than a single biometric trait. It uses multiple sensors to acquire biometric traits.

This system allows capturing either samples of multiple biometric traits or mul-

tiple samples of a single biometric trait. This system improves the accuracy and

dependability by providing an optimal False Acceptance Rate (FAR) and False

Rejection Rate (FRR).

Hardware implementation of a multimodal biometric system, in resources-

constrained embedded systems, poses great challenges. Although there has been

a substantial amount of work on combining different biometrics for a variety of

purposes, not much work has focused on the hardware implementation of the

multimodal biometric system. The aim of this dissertation is to build a reliable

multimodal biometric system that takes into account multiple constraints: low

cost, real-time processing, hygienic, straightforward, user-friendly, limited mem-

ory, etc. To achieve this, we present a hardware architecture of a multimodal

biometric system that massively exploits the inherent parallelism.

The proposed system is based on multiple biometric fusions that use two

biometric traits, fingerprint and iris. In fingerprint feature extraction, several

challenges are addressed that directly affect the minutiae extraction process like

fingerprint normalisation, scar removal, orientation estimation, fingerprint en-

hancement, binarization and thinning and feature extraction. In iris recognition,





each individual block involved in feature extraction is optimised independently,

including pupil segmentation, iris segmentation, normalisation and iris feature

enhancement. After completing the software design, its hardware equivalent is

implemented in VHDL. In both biometric identifiers, each sub-block operates

in sequence. For example, in fingerprint identification, first normalisation is per-

formed followed by image enhancement then binarization and thinning and finally

feature extraction. This allows the hardware implementation to form a temporal

parallelism. The temporal parallelism allows the design to be implemented com-

ponent by component. Separate processors are used for each component to form

a pipelined architecture for both biometrics. Finally, the extracted features are

fused with matching-level fusion. To the best of the author’s knowledge, no other

FPGA-based design that uses these two traits exists to date.
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Chapter 1

Introduction

In our vastly interconnected society, the demand for verifying the identity of people is

increasing day-by-day. The level of heightened concerns about security demands a reli-

able user authentication. Cataclysmic events like the disappearance of Malaysian airline

flight MH370 or events like the 9/11 twin-tower attack have raised concern on the issue of

accurate identification in all types of border control environments. Furthermore, the wars

and unfortunate rise of violence from the beginning of the 21st century have increased

the flight of refugees across borders. The increased criminal activities and the tragedy

of human trafficking are pushing governments to evaluate stricter border control security

protocols.

To deal with these critical issues, advanced countries have introduced e-passport pro-

grams for citizen and traveller identification. These e-passports are based on biometric

identification systems. Many countries have a mandatory biometric enrolment of immi-

grants in immigration processing or border crossing environments. Most of the deployed

biometric systems are unimodal and rely on a single biometric credential for authenti-

cation. This limits the identification accuracy because of environment variations, signal

distortion, lack of individuality, and non-universality (in some cases, due to different

1
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pathological conditions; an individual might not be able to provide a particular biometric

trait).

A multimodal biometric system is considered to be more reliable for person identifi-

cation. It uses multiple biometric credentials to identify a person rather than a single

biometric trait. It uses multiple sensors to acquire biometric traits. This allows capturing

either samples of multiple biometric traits or multiple samples of a single biometric trait.

This improves the system accuracy and dependability by providing an optimal False Ac-

ceptance Rate (FAR) and False Rejection Rate (FRR).

Most of the existing multimodal biometric systems are computer based. The authen-

tication is performed in an insecure environment that uses a central server for template

storage. This can cause a critical information leakage issue. Another disadvantage of a

multimodal system is that it requires a large amount of processing as compared to a uni-

modal biometric system. This makes multimodal systems hard to implement for real-time

application, although, in multimodal biometrics, most of the operations are independent.

These can not be performed at the same time because of the serial nature of most pro-

gramming languages, especially the ones used in computers. The implementation of a

multimodal biometric system on hardware can address these critical problems.

1.1 Challenges and Objectives

Real-time image processing systems are hard to design, to perform complex operations

for a certain task on an image a large set of data is required. A good alternative is the use

of hardware design, by prototyping on an FPGA, which offers a compromise between the

hardware-based speed of integrated circuit design and the flexibility of general-purpose

processors. One of the main advantages of using an FPGA for real-time image processing
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applications is its ability to exploit spatial and temporal parallelism. FPGA implementa-

tions have the potential to be parallel using a mixture of these two forms. For example,

in an FPGA, it is easy to partition the image and distribute the partitioned sections to

multiple pipelines which could process data concurrently. This is a subjective task that

totally depends on the processing mode and hardware constraints of the system.

In the literature, a substantial amount of work is reported on combining different

biometrics for a variety of purposes, but not much work focused on real-time multi-

modal biometric system. One reason is that a real-time embedded system in a resource-

constrained environment posses great challenges, as it possesses limited computational

resources and limited memory space. On the other hand, most of the existing multimodal

biometric systems are computationally very expensive and are not suitable for real-time

implementation. Converting the software design to hardware is a very difficult task. For

conversion, it must support spatial/temporal parallelism and fixed-point representation.

To implement a real-time system, these algorithms need to be optimised for memory us-

age, fixed-point representation and computational capacity.

In this dissertation, the objective is to implement a multimodal biometric system on

an FPGA that is best suited for real-time systems. For this purpose, two biometric traits

(fingerprint and iris) are chosen. Most of the problems associated with a software-based

system are addressed in this dissertation. For example, in fingerprint identification, scar

lines hinder the matching performance of a fingerprint identification system. To com-

pensate for major scar lines, a scar removal strategy is proposed and thoroughly studied.

For fingerprint image enhancement, the entropy change for an anisotropic diffusion is in-

vestigated. A unique peak is found, associated with blurring of the dominant structure,

that provides a reasonable stopping rule for the anisotropic diffusion process. A novel

iris segmentation method is proposed that is based on the Laplacian of Gaussian function

and its zero crossings. For a software-based system, rigorous studies are conducted using
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both numerical techniques and experiments. For hardware implementation, the complex

blocks/components of both biometrics, fingerprint and iris, are implemented efficiently.

A novel and efficient hardware implementation for fingerprint image segmentation and

normalisation is proposed. One major hurdle associated with fingerprint filtering tech-

niques is the expensive nature of their hardware implementations. To circumvent this, a

modified anisotropic Gaussian filter is efficiently adopted in hardware. In the proposed

structure, for a middle-range reconfigurable FPGA, both parallel computation-intensive

and real-time goals were achieved. Moreover, this dissertation presents a real-time imple-

mentation of fast iris segmentation and normalisation on an FPGA. Finally, a real-time

FPGA-based multimodal biometric system is designed that combines the matching scores

of both fingerprint and iris.

1.2 Main Contributions

In this dissertation, a novel hardware architecture has been presented for multimodal

biometric authentication systems. Our design is based on two biometric traits, fingerprint

and iris. Each biometric trait is first optimised at the software level, by addressing some

of the issues that directly affect the FAR and FRR. Then the hardware architectures for

both biometric traits are presented, followed by a final multimodal hardware architecture.

The proposed fingerprint normalisation and image-enhancement structure is the fastest,

most cost-effective and most efficient one as compared to most existing FPGA-based

structures. Moreover, the following are some of the key scientific contributions:

• To deal with scars and false conglutinated ridges at the same time, a better strategy

is suggested in the form of first using a scar removal strategy to fill big linear scar

cuts, spread across the surface of the image. Then a follow-up smoothing performed

with a Curved Gaussian filter (a variant of a Curved Gabor Filter). This significantly
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improves the Equal Error Rate (EER) to 3.8 for a scared database.

• A reasonable stopping rule for the anisotropic diffusion process is presented that

uses the entropy change for an anisotropic diffusion of a fingerprint image. This sig-

nificantly reduces the overall computational complexity of the anisotropic diffusion

process.

• A fast and novel method for pupil segmentation is developed based on a shape

detector and an intensity-based threshold. The use of a LoG filter followed by

region growing gives an accurate estimate of the pupil centre and radius. It achieved

almost 99% accuracy on most of the iris databases with on average 0.8 seconds

computational time. Our proposed method is computationally less expensive in

achieving this state-of-the-art iris segmentation accuracy than the similar existing

methods.

• The proposed hardware structure for fingerprint image normalisation manages to

efficiently speed up the image-processing time by a factor of 18 and improve some

of the resource utilisation of the FPGA over the best existing method.

• A correction factor is introduced that effectively segments the foreground segmen-

tation and compensates for the division in the background regions. The proposed

structure not only enhances the EER but also reduces the stress of subsequent

processes like image enhancement and thresholding.

• A new anisotropic diffusion method is presented, modifying the traditional Gabor

filter and decomposing it into an isotropic and an anisotropic Gaussian filter. By

this decomposition, it manages to efficiently speed up the image-processing time by

a factor of 9 and improve the resource utilisation of the FPGA over the best existing

FPGA structure.
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• The author managed to develop a single-pass fingerprint-minutiae-extraction struc-

ture for an FPGA without using any external memory (SRAM/DRAM). As far as

the author know, no other structure is based on a single-pass process.

• A real-time implementation of iris segmentation is proposed that fully utilises the

parallel and pipelined architecture of an FPGA.

1.3 Dissertation Outline

This dissertation follows the non-traditional “Thesis-by-Publication” format which has

been approved by the Macquarie University Higher Degree Research Office. It consists

of a general introduction, background, and a list of the PhD candidate’s major scientific

publications. The thesis materials are the original texts and graphics of author’s publi-

cations, published or under review, that have been reformatted to improve readability.

The outline of the thesis is summarised in Fig. 1.1. There are two main components of

the proposed design: software and hardware. In the software design, some of the issues

are addressed that affect the recognition rate of these two biometric. Then, in hardware

design, both parallel computation-intensive and real-time goals were achieved.

Chapter 2 gives a brief overview of unimodal and multimodal biometric systems. A

comprehensive review of the literature available on the approaches and methodologies and

the hardware designs of multimodal system is included in this chapter, followed by the

potential applications and a summary of the proposed design.

In Chapter 3, a scar-removal strategy for fingerprint image enhancement is presented.

A fingerprint recognition system can create problems if the sensor is unable to capture a

good fingerprint image due to uneven light effects or if scars or cuts are present on the

finger tip. This directly affects the performance of the system. To overcome these, an
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explicit filling process is proposed that is a mix of Fourier and spatial-domain strategies. In

the proposed method, a Fourier-domain directional field is used to trace an appropriate

candidate for the scar pixels to be replaced with. There are four major contributions:

an efficient technique for background homogenisation that tackles uneven light effects,

the process of locating scars, orientation field estimation by oriented diffusion, and the

scar filling strategy. This process can act as a front end to the subsequent Gabor and

anisotropic diffusion filtering.

Fundamentally, the anisotropic diffusion process is an iterated one, that starts with

a poor-quality image, and converges to a completely blurred mean-value image, with no

significant structure left. Though the process starts by doing a desirable job of cleaning

noise and filling gaps, called under-smoothing, it quickly passes into an over-smoothing

phase where it starts destroying the important structure. Chapter 4 addresses this concern

of finding the boundary between the under-smoothing and over-smoothing regions. To

find the best stopping criterion, a spatial entropy change is used as a measure that provides

important clues to describe that boundary. This not only enhances the performance of

the diffusion process but also minimise the computational cost.

Accurately segmentation and normalisation of the iris image plays a vital role

towards the accuracy of the iris recognition system and is a computationally intensive

task. In Chapter 5, a hybrid approach is presented to achieve iris localization based on a

Laplacian of Gaussian (LoG) filter, region growing, and zero crossings of the LoG filter.

The use of LoG as blob detector along with its zero crossings makes the iris segmentation

process fast, robust and computationally less expensive, and best suited for real-time

implementation.

In Chapter 6, a modified fingerprint local normalisation is proposed that enhances the

contrast of the foreground ridge/valley area uniformly. Low-pass Gaussian filtering is

employed to estimate the local mean and variance. Generally, using a Gaussian filter



1.3 Dissertation Outline 9

gives the best results because the smooth transition can minimise artefacts (it has good

stop-band performance in the frequency domain). To circumvent the amplification of

background noise, a multiplication correction factor is introduced that is a monotonically

increasing function of local variance values. The hardware structure for fingerprint image

normalisation manages to efficiently speed up the image-processing time by a factor of

3 to 4 and improve some of the resource utilisation of the FPGA over the best existing

hardware structure.

One major hurdle associated with fingerprint filtering techniques is the expensive

nature of their hardware implementations. To circumvent this, in Chapter 7, a modified

anisotropic Gaussian filter is efficiently adopted in hardware. In the proposed structure,

we address several challenging problems for real-time fingerprint image enhancement. As

far as the author knows, the proposed structure is the fastest, most cost-effective and

most efficient one as compared to most existing FPGA-based structures.

Chapter 8 introduces a novel approach for automatic pupil segmentation. The proposed

algorithm uses a local histogram-based threshold, area and eccentricity that looks for the

region that has the highest probability of having the pupil. In order to implement it on

an FPGA, a parallel technique is used in which the properties of regions are calculated

simultaneously using an efficient connected-component method. This formulation makes

this technique much faster and more efficient than the existing one. Later, a real-time

iris segmentation technique is described, that results in a faster implementation of iris

segmentation and normalisation on an FPGA.

One major hurdle associated with iris segmentation techniques is the use of iterative

processes that lead to expensive hardware implementations. To circumvent this, Chapter

9 introduces a threshold of the signed image obtained from the background subtracted

image along with morphological operators to localise the pupil. This makes the iris

segmentation process improved based on the previous approach presented in Chapter 8.
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The outer boundary is located by first normalising a selected image region that contains

the iris, and then using a first-order gradient operator. This makes the implementation of

the parallel and pipelined architecture of an FPGA easier and more efficient as compared

to other existing algorithms.

In Chapter 10, these two traits are efficiently combined in a matching score-level fusion

and the hardware architecture is presented. Concluding remarks are drawn in Chapter

11 and a non-exhaustive list of future research directions is included.



Chapter 2

Background and Related Work

This chapter provides background knowledge regarding multimodal biometric approaches

and methodologies, hardware implementation and potential applications. An introduc-

tion to the unimodal biometric system is provided followed by its limitations. Then, the

importance of a multimodal biometric system along with its working process is discussed.

The limitations of existing software-based multimodal systems and the difficulties of im-

plementing in hardware addressed in this dissertation are discussed. Finally, the chapter

concludes with a summary of designs proposed in this dissertation.

2.1 Biometric

Biometric technology deals with measurable, albeit distinctive, characteristics that are

used to label and to a large extent describe individuals [1]. These characteristics are

often categorised as behavioural versus physiological. Physiological ones deal with the

shape/propert of the body. Examples include DNA, face recognition, palm print, retina,

hand geometry, iris recognition and fingerprint. Behavioural ones recognise people’s be-

havioural patterns such as voice print or typing rhythm. Biometric-based systems are

11
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becoming the foundation of highly secured personal identification and verification solu-

tions. A biometric can not be easily transferred between individuals, therefore it is able

to provide personal data privacy and confidential financial transactions. If the verification

procedures are made more user-friendly then the scalability for integrating biometrics can

be extended to a variety of processes. Biometric-based authentication applications include

network, workplace, single sign-on, entry access, data safeguarding, application login, web

security, transaction security and remote access to resources. A biometric authentication

is considerably more accurate and convenient than the conventional methods (e.g. Usage

of personal identification number or passwords). The use of biometric nullifies the need

to remember or carry any password or PIN. The inexpensiveness and rising popularity of

such methods make the technology more acceptable.

2.1.1 Limitations

In recent years, biometric-based identification systems have been used in a number of

real-world applications (e.g. defence establishments, airports, banks, amusement parks,

etc.), as they offer reasonably good performance [2]. To date, even the most advanced

biometric systems face numerous problems. A variety of factors are associated with these

problems, including the algorithms or data used and the system design [3]. The following

are the factors that limit the use of a biometric system:

1. Lack of universality: Although all biometric features are universal, every person

does not possess the same physical features [4]. Due to the complexity and wide

variety of the human body, it is possible that a person might not contain all the

biometric features. In such cases, a biometric system will fail to recognise that

person;
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2. Trouble with data sensors: The input data from the sensor are often affected by

noise, including several that include either user physical and physiological condi-

tions (cut fingers, cold, etc) or the environmental conditions (power, insufficient

light, etc.). The use of improperly maintained or defective sensors produces noisy

biometric data that can result in poor recognition [5] ;

3. Distinctiveness ability: Most of the biometric features do not have the same distinc-

tiveness degree (for example, fingerprint-based biometric systems are more selective

than hand-geometry-based ones) [6];

4. The limitation of the discrimination of biometric systems due to a low inter-class

and high intra-class variability. Large intra-class variation-based biometric datasets

result in a lower recognition performance [7];

5. At a certain level, the recognition performances of the systems have an upper limit;

6. Unacceptable error rates for the unimodal biometric systems;

7. In biometrics, a fraud is possible through the cloning of a biometric trait, voluntarily

or involuntarily. For example, in fingerprinting gummy fingers can be used to deceive

a biometric system [8] ;

2.2 The requirements of multimodal biometric sys-

tem

Multimodal biometric systems are a recent approach that was developed to overcome the

problems of the unimodal biometric systems [9]. These systems demonstrate significant

improvements over unimodal biometric systems, in higher accuracy and higher resistance

to spoofing. A multimodal biometric system aims to reduce one or more of the following:
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• Susceptibility to artefacts or mimics

• Failure- to-enrol rate (FTE)

• False acceptance rate (FAR)

• False rejectance rate (FRR)

There are several more requirements, such as

• Use of multiple traits/characteristics makes the multimodal system more reliable

[10].

• A multimodal biometric system increases the secrecy and security of user data [11].

• The system still can provide security by employing another identifier even if any of

the identifiers fails to work for any known or unknown reasons [12].

• In a multimodal biometric system, fusion strategies are conducted to combine deci-

sions from each subsystem and then come up with a conclusion [12]. This makes a

multimodal system more accurate.

• In multimodal systems liveliness detection techniques can be applied to provide

knowledge about the liveliness of the sample being entered [13]. This makes them

capable of detecting and handling spoofing [14].

2.3 Operation of Multimodal Biometric System

Like a unimodal biometric system, a multimodal biometric system operates in the follow-

ing two modes:

• Identification
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• Verification

Identification is the process that determines the identity of an unknown person. In iden-

tification mode, the input sample data is compared with subjects stored in the database.

Verification is a process that accepts or rejects an identity claimed by a person. In veri-

fication, the input sample data is compared to the data of the claimed identity, either to

accept or reject the claim. Verification is also known as authentication. The focus of this

dissertation is on authentication. A multimodal biometric system has similar modules to

a conventional unimodal system, like:

• Feature extraction module

• Decision-making module

• Capturing module

• Comparison module

A multimodal biometric system uses a fusion technique to integrate the information from

two different authentication systems. Fig. 2.1 shows the block diagram of a multimodal

biometric system. Fusion can be done:

• During feature extraction;

• During decision making;

• During the comparison of live samples with stored biometric templates.



16 Chapter 2. Background and Related Work

Templates

Templates

Templates

Fusion Fusion Fusion

Feature

Extraction

Module

Feature

Extraction

Module

Matching

Module

Matching

Module

Decision

Module

Decision

Module

MM DM DM

Accept/

Reject

Accept/

Reject

Accept/

Reject

Accept/

Reject

Accept/

Reject

F
in
g
er
p
ri
n
t

Ir
is
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2.4 Biometric Fusion

In multi-modal biometrics different methodologies are used to combine features of multiple

biometrics. Normally, these are divided into two broader categories: Forms of fusion and

Fusion levels.

2.4.1 Forms of Fusion

Fusion in the context of biometrics can take the following forms:

• Single biometric, multiple representations.

• Single biometric, multiple matchers.

• Multiple biometric fusion.

• Hybrid system.

Single Biometric, Multiple Representations

This type of fusion uses a single biometric indicator with multiple representations. Each

representation possesses its own classifier. The similarity scores that are reported by

these classifiers are then merged. For example, the single biometric indicator fingerprint

represented by multiple prints. Each fingerprint has its own classifier that generates a

matching score.

A fingerprint classification system proposed by Cappelli et al. [15] combines a KL

transform-based classifier with a structural classifier. The generated scores are integrated

by the two classifiers. A double-sigmoid function is used to map the scores into a com-

mon domain and then a weighted average is taken in the new domain. Multiple classifiers

for fingerprint indexing are also used by Jain et al. [10]. Their technique uses a set of

10 neural network classifiers and a k-nearest neighbour classifier to classify fingerprints.
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[16,17] suggested general strategies for combining multiple classifiers. All the approaches

presented in [16] attempt to reduce or re-rank a given set of classes. These are relevant

to the identification problem in which a large number of classes (identities) are present.

In this type of approach, fusion takes place at the matching stage. To avoid performance

degradation, the classifiers have to be carefully selected [18].

Single Biometric, Multiple Matchers

A single-biometric multiple-matcher fusion technique incorporates multiple matching strate-

gies in the matching module of a biometric system and combines the scores generated by

these strategies [19, 20]. A logistic function used by Jain et al. [21] maps the match-

ing scores obtained from two different fingerprint matching algorithms into a single score.

Such an integration strategy improved the overall performance of a fingerprint verification

system. This type of fusion can also take place at the matching stage [22]. In this case

there should be multiple matchers that operate on the same biometric data representation.

Multiple Biometric Fusion

Although single-biometric multiple representations and single-biometric multiple matchers

improved the accuracy of biometric systems over single biometrics systems, they still

have some disadvantages, as they use only a single indicator of biometric. To further

improve the accuracy and security of a multi-modal biometric system, multi-biometric

fusion is introduced. Multi-biometric fusion refers to the fusion of multiple biometric

traits. This kind of system seeks to improve reliability (accuracy) and the speed of a

biometric system, by integrating matching scores obtained from multiple biometric sources

[23]. In the literature, to combine these various sources a variety of fusion schemes have

been described. These include sum and product rules [24], Support Vector Machine (SVM)
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[25] , majority voting [26], K-NN classifiers [27], Bayesian methods, decision trees [28] .

In this dissertation, we work on multi-biometric fusion rather than other fusion schemes.

At the matching score level, the normalisation of the scores obtained from the different

domain experts is an important aspect that has to be addressed in the fusion process [29].

The scores obtained from multiple domains are mapped into a common domain before

combining them. This is a two-step process. In the first step, a robust statistical technique

is used to estimate the distributions of scores for each domain. In the second step, these

distributions are then translated or scaled into a common domain [30].

Hybrid Systems

For robust authentication, in hybrid systems, more than one of the scenarios discussed

above are used [31, 32]. For example, a hybrid biometric system may use three face-

matching algorithms and two iris-matching algorithms in one iris-and-face based multi-

modal biometric system [33].

2.4.2 Fusion Levels in Biometrics

Fusion is a broad term that is not limited to biometrics only. In the field of statistical

pattern classification, biometric fusion is considered as a special case of combining multiple

classifiers. Fusion methods are used in diverse fields like analysis of medical test results,

analysis of satellite imagery, and internet search engines. Biometric fusion is not a new

idea. In large-scale fingerprint systems, for years, various aspects of fusion have been

an integral part of the successful implementation of biometric systems. Normally, in

biometrics there are three levels of fusion: one is decision level, the second one is score

level, and the third is feature level. Mostly in multiple biometric fusion either decision-

level fusion or feature-level fusion is used. The system designed in this dissertation used

decision level fusion.
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Fusion at sensor level combines the raw data from various sensors Ross [31], as shown

in Fig. 2.2. This type of fusion is best suited for multi-sensor and multi-sample systems.

In sensor-level fusion, the multiple modalities must be estimated accurately or known in

advance. In the raw data, these multiple modalities must be compatible with the feature

level. For example, in face recognition, to generate a 3D texture image of a face, 2D

texture information with a 3D depth information can be fused. This fused image can

to be utilised for both feature extraction and matching Hsu [34]. Liu and Chen [35]

used a mosaic method to combine multiple instances of faces captured using a single

camera to obtain better recognition performance. Raghavendra [36] used particle swarm

optimisation (PSO) to combine information obtained from palmprint and face image. For

feature extraction and classification, nearest neighbour and Kernel Direct Discriminant

Analysis (KDDA) are used.

Feature-Level Fusion

Feature-level fusion combines different feature sets extracted from multiple biometric

modalities into a single feature vector, as shown in Fig. 2.3. The features extracted
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from different biometric traits can be concatenated to a single vector, as they are inde-

pendent of each other. The combined feature vector possess a higher dimensionality and

represents a person’s identity in a different hyperspace [31]. Feature reduction techniques

can be used to extract useful features from the larger set of features. Concatenation is not

possible for feature sets that are not compatible, e.g. eigenface coefficients and fingerprint

minutiae.

Feng et al. [37] developed a system by using two biometric traits called palmprint and
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Figure 2.3: Feature-level fusion

face. For fusion, a concatenation method is applied using a feature-level fusion tech-

nique. Two feature-extraction approaches, Independent Component Analysis (ICA) and

Principal Component Analysis (PCA), are used to compare the recognition performance.

In both multimodal and unimodal validation frameworks, ICA performed better than

PCA. A hand-based verification system proposed by Kumar et al. [38] combines geo-

metric features of the hand with palmprint at the feature-level, and match-score level.

Their experimental results show that match-score-level fusion performs much better than

feature-level fusion. Fierrez-Aguilar et al. [39] used a max and sum rule for fusing the

local and global features of the signature. Y. Wang et al. [40] used iris and fingerprint

traits of an individual for their multimodal biometric system. Their method is based on
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two strategies. In the first, they compute the weighted and un-weighted sum, and then

Fisher’s discriminant analysis and a neural network are used with a radial basis function.

X. Lu et al. [41] used three different types of feature sets of face images. Three classifiers,

namely Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and

Independent Component Analysis (ICA) were integrated at the match-score level. For

fusion, two strategies, radial base function and sum rate, were used. Ross and Govindara-

jan [42] used RGB colour channels of the face images to describe an intra-modal fusion.

Linear Discriminant Analysis is independently used on each colour channel. The resultant

feature sets were fused at both match-score and feature levels.

Matching-Score Level Fusion

In matching-score level fusion, the similarity score provided by a matching module, with

input features and a template feature vector, is combined, as shown in Fig. 2.4. This

method is also known as confidence-level fusion or measurement-level fusion. These tech-

niques attempt to minimise the FRR for a given FAR [43]. Matching-score fusion can be

classified by the two different approaches on the basis of match-score processing, either

by combining the feature vector or by classifying the feature vector [44]. In match-score

level fusion, the normalisation of the match score plays a vital role, because of the dissim-

ilar match score that is generated by the multiple modalities. In the literature, various

normalisation techniques have been proposed. L. Hong and A. K. Jain [44] fused finger-

print and face traits at the match-score level for person identification. To further improve

the accuracy, they use a normalisation technique. A. Ross et al. [45] proposed a hybrid

fingerprint recognition system that consists of minutiae and ridge flow information for

fingerprint matching. Then the generated scores are combined with the match-score level

fusion. Two different fingerprint acquisitions are used by Conti et al. [46] in their proposed

multimodal biometric system. The matching module integrates fuzzy-logic methods for
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matching-score fusion. Their experimental results have shown an improvement of 6.7%

over a unimodal authentication system. Yang and Ma [47] used palm print, fingerprint

and hand geometry for personal identity verification. Unlike other multimodal biometric

systems, these three biometric features can be taken from the same image. To establish

identity, matching-score level fusion is implemented at different levels. First, the fusion of

the palmprint and fingerprint features is performed, followed by a matching-score fusion

between the palm-geometry unimodal system and the multimodal system. The system

was tested on a database self-constructed for 98 subjects. Subbarayudu and Prasad [43]

present experimental results of a unimodal palmprint system, a unimodal iris system and

a multibiometric system (palmprint and iris). Each system provides a matching score

that indicates the similarity of the feature vector with the template vector.
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Figure 2.4: Matching score level fusion
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Decision-Level Fusion

In decision-level fusion, decision thresholds are first estimated for each classifier from the

matching score. The different biometric data is integrated at a later stage than the multi-

biometric system using feature level fusion or matching score level fusion strategies, as

shown in Fig. 2.5. Various techniques are used to obtain a consolidated decision including

majority voting, AND/OR, decision table, weighted majority voting, Dempster-Shafer

theory of evidence and Bayesian decision. Decision-level fusion operates only on binary

information, therefore it is less sophisticated than other fusion methods [31]. Prabhakar

et al. [18] proposed a multi-algorithm system that combines one texture-based classifier

(match filter) and three minutiae-based algorithms (string, Hough and dynamic base) at

the decision-level for fingerprint verification. To combine the biometric matching scores,

rank-level fusion has been rarely used. Yu et al. [48] combined finger geometry, fingerprint

and palmprint at the decision-level fusion. To perform fusion, three fusion rules, including

majority voting, AND rule, and OR rule, are employed.

2.5 Hardware Designs of Multimodal Biometric

One of the disadvantages of a multimodal system is that it requires a larger amount of

processing than a unimodal biometric system. As the biometric algorithms work on un-

compressed images, a large number of operations are required for processing. This makes

a multimodal system hard to implement as an embedded system, especially for a real-time

application, although, in a multimodal biometric, most of the operations are independent.

Because of the serial nature of most programming languages, especially the ones used in

computers, these biometric operations can not be performed at the same time. The im-

plementation of a multimodal biometric system in hardware can address these critical

problems.
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From the literature, it is found that only few multi-modal biometric systems are im-

plemented as embedded systems. One reason is that a real-time embedded system in a

resource-constrained environment poses great challenges, as it possesses limited compu-

tational resources and limited memory space. On the other hand, most of the existing

multimodal biometric systems are computationally rather expensive and are not suitable

for real-time implementation. Converting the software design to hardware is one of the

most difficult tasks. Therefore it is least developed, more so with fingerprint and iris

multimodal biometrics.

Sonal et al. [49] implement a palm-vein identification system in hardware. For hard-

ware implementation a Blackfin ADSP-561 processor is used, whereas the C language is

used for the algorithms used for matching of palm veins. Template matching and prin-

cipal component analysis (PCA) are used as verification algorithms for palm veins and

are integrated at match-score level. Yoo et al. [50] have developed two DSP systems for
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face-fingerprint and iris-fingerprint recognition. In their system, the most computation-

ally expensive tasks are implemented on an FGPA in order to increase the system speed.

They used a Xilinx XC3S4000 on-board FPGA and an ARM920T DSP clocked at 400

MHz, and a 128 MB SDRAM. However, no fusion strategy was applied in the embedded

biometric system.

Audrey et al. [51] propose a contactless multimodal biometric system that combines

two modalities: face and palmprint, by using fusion at the score level. This hardware

architecture has been implemented on DSP and FPGA. Wang. J et al. [52] proposed a

multimodal biometric system that implements fingerprint and voiceprint. Matching-score

level fusion was applied to voiceprint and fingerprint. They used an ARM9-Core based

S3C2440A microprocessor that works at 400 MHz and the Microsoft Windows CE op-

erating system. R. Moganeshwaran et al. [53] used fingervein and fingerprint for their

multimodal biometric system. Two biometric traits, fingervein and fingerprint, are used

and the whole process is implemented in SOC FPGA. The biometric fusion strategy ap-

plies at the matching-score level. Conti et al. [54] proposed a multimodal technique for

an embedded fingerprint recogniser. In this technique, fingerprint minutiae points along

with fingerprint singularity points are used for robust user authentication. For biometric

fusion a matching-score fusion module is used.

2.6 Potential Applications

Automated methods are required by the defence and intelligence communities that are

capable of rapidly determining an individual’s true identity. They should identify previ-

ously used identities and past activities. A law-enforcement community and homeland

security require technologies to identify criminals in the civilian law-enforcement environ-

ment and to secure borders. Key applications include an interface for criminal and civil
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applications, border management, and first-responder verification.

Enterprise solutions require an oversight of technologies, processes and people. These

days, the network infrastructure is playing a critical role to functions of business, gov-

ernment, and web-based business models. Ensuring one’s identity and securing access

to these systems are essential. On the other hand, business transactions and personal

information require secure, cost-effective and user-friendly solutions to prevent a fraud.

Key application areas include online customer verification, customer verification at the

physical point of sale, etc.

The following Application characteristics drive the need for multi-modal biometrics:

• Usage Environment Suitability

• Risk and Viability of Spoofing

• Integrity/Accuracy Requirements

• Universal Enrolment Requirements

• Transaction Time Flexibility

The target applications of multi-modal biometrics are:

1. Strong Potential for Multi-modal Solutions

(a) Civil ID

(b) Physical Access

(c) Criminal ID

2. Moderate Potential for Multi-modal Solutions

(a) ATM/Kiosk

(b) PC Access/Network
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3. Modest Potential for Multi-modal Solutions

(a) POS/Retail

(b) eCommerce

(c) Surveillance

(d) Telephony

2.7 Summary of Proposed Design

The aim of this dissertation is to build a reliable multimodal biometric system that re-

spects multiple constraints: low-cost, real- time processing, hygienic, straightforwardness,

user-friendliness, limited memory, etc. To achieve this, we present a hardware architec-

ture of a multimodal biometric system that massively exploits the inherent parallelism.

The proposed system is based on multiple biometric fusion that uses two biometric traits,

fingerprint and iris. Both fingerprint and iris are highly accurate biometric traits. A

fingerprint recognition system can create problems if the sensor is unable to capture a

good fingerprint image due to uneven light effects or if scars or cuts are present on the

fingertip. Sometimes, under certain conditions, a user is not able to give his/her proper

iris image due to eye disease, problematic iris scanners, ambient light, or absence of that

trait. These directly affect the recognition of a biometric system. In the literature, there

is little consideration on combining these two biometric traits. The combination of these

two traits can attain the best recognition performance for high-safety applications [55].

In this dissertation, these two traits are efficiently combined at decision level fusion and

their hardware architecture is presented. Fig. 2.7 shows the block diagram of the pro-

posed architecture. To the best of the author’s knowledge, no other FPGA-based design

exits that used these two traits. Other performance figures, such as overall computational

speed, resource utilisation, recognition rate and memory usage, described in the following
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chapters, were also found to be very promising.



Chapter 3

A spatial domain scar removal

strategy for fingerprint image

enhancement1

This chapter is an adapted version of a journal article. The section headings from the

journal article have been retained. Figures, equations, tables, and references have been

re-numbered and are in line with the thesis format. This chapter presents a software-based

technique for a scar-removal strategy for fingerprint image enhancement. With respect

to our proposed design, this chapter falls in the fingerprint subsystem. It covers three

modules of the fingerprint subsystem, as highlighted in Fig. 3.1.

1Published as: Mohammad A. U. Khan, Tariq M. Khan, D. G. Bailey and Yinan Kong,“A spatial

domain scar removal strategy for fingerprint image enhancement,”Pattern Recognition, Elsevier , vol. 60,

pp. 258-274, 2016.
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3.1 Abstract

Fingerprints are the oldest and most widely used form of biometric identifica-

tion. Many researchers have addressed the fingerprint classification problem

and significant progress has been made in designing automatic fingerprint

identification systems (AFIS) over the past two decades. However, some de-

sign factors such as lack of reliable minutia extraction algorithms, difficulty

in quantitatively defining a reliable match between fingerprint images, poor

image acquisition, low contrast images create bottlenecks in achieving the de-

sired performance. Noticeable among them is the fact that digitally acquired

fingerprint images are rarely of perfect quality to be used directly with AFIS;

one important step is fingerprint enhancement. Conventional fingerprint en-

hancement methods, such as Gabor and anisotropic filters, do fill the holes
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and gaps in ridge lines but lack the necessary capability to tackle scar lines.

For scar lines, an explicit filling process is proposed that is a mix of Fourier

and spatial domain strategies. The proposed method is to make use of the

Fourier domain directional field to trace an appropriate candidate for the

scar pixels to be replaced with. The necessary components of the process are

locating scars, estimating directional field, and the filling strategy. This pro-

cess can act as front-end to the subsequent Gabor and anisotropic diffusion

filtering. The simulation results for synthetic, as well as real fingerprints,

show improved performance regarding better extraction of genuine minutia

points.

3.2 Introduction

Fingerprint biometric is getting increasingly employed in commercial, civilian, military,

and financial institutions. A fingerprint is formed as an impression of the pattern of

ridges on a finger. A ridge is defined as a single curved segment, and a valley is a region

that lies in between ridges, as depicted in Fig. 3.2. Ridge have lower reflectance than a

valley, and thus, appear darker. However, from the detection point of view, they both

can be detected with a single ridge detector with opposing polarity. An ideal ridge/valley

gray-level cross-sectional profile can be approximated by a Gaussian function. Ridges

and valleys both run in parallel in most of the fingerprint, however, at some locations

they either merge or terminate, resulting in important minutia points. The minutia, the

local discontinuities in the regular ridge flow pattern, provide the necessary features for

identification. Minutia comes in two types: ridge bifurcations and terminations. Ridge

bifurcations are the points where a ridge splits into two branches, and terminations are

where the ridge ends. Details such as the type, orientation, and location of the minutiae
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are taken into account when performing minutiae matching for identification [56].

Extraction of ridge-valley patterns from acquired images should be accurate and per-

fect in the sense that subsequent automated processing can take place reliably. In reality,

acquired fingerprint images are rarely of perfect quality. They may be degraded and

corrupted with elements of noise due to many factors including variations in skin and im-

pression conditions at the time of acquisition that will result in scars, breaks, too oily or

too dry conditions. The two major degradations, apart from small holes in ridge structure,

include the presence of scar lines and falsely mixed ridges. Out of these major problems,

the problem of scars needs special attention, as it can not be resolved by conventional

enhancement. The presence of scars can lead to a significant number of spurious minutiae

being created and genuine minutia being ignored. A scar removal strategy should be con-

sidered as part of more robust fingerprint image enhancement. In general, a Fingerprint

image enhancement aim is to improve the overall performance of the AFIS by minimiz-

ing the number of verification or identification errors [57]. The importance of fingerprint

image enhancement can be illustrated by the fact that only a few fingerprint recognition

algorithms do not use this step. Analysis of the Fingerprint Verification Survey 2004 [58]

“FVC2004” reveals that 25 of 29 participating algorithms perform image enhancement

before feature extraction and matching.

Fingerprint image enhancement can start with conventional noise-reduction tech-

niques present in image processing literature. General purpose noise-reduction techniques

were not found to be as successful as expected. Their failure could well be attributed to

the non-stationary nature [59] of a fingerprint surface. A fingerprint has a regular texture

with well-defined orientation and frequency that only remains constant in a small neigh-

bourhood. Later on, techniques emerged for fingerprints that include local neighbourhood

information during the noise-removal filtering operation. Notable among them is the most

widely cited method employed by Hong et al. [60], which is based on the convolution of
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Figure 3.2: Fingerprint image showing noticeable scars.

the fingerprint with Gabor filters tuned to the local orientation and ridge frequency. The

method comprises of normalisation, ridge orientation estimation, ridge frequency estima-

tion and filtering stages. The normalisation step is to provide a uniform background to

the acquired fingerprint that may not be the case due to imperfections in the fingerprint

capture process. An orientation image is then calculated in the form of a matrix with

directed vectors pointing the ridge orientations at each location. The orientation image

associated with a fingerprint displays a slowly varying orientation character in a local

neighbourhood; a fact found extremely useful while devising scar filling strategy in later

sections. The next step is the estimation of ridge frequency by projecting grey level profile

along an axis orthogonal to the local orientation. Based on local orientation and ridge

frequency, an even symmetric two-dimensional Gabor filter is computed as given by:

g (x, y; θ, f, σx, σy) = exp

{

−
[

x2
θ

2σ2
x

+
y2θ
2σ2

y

]}

cos (2πfxθ) (3.1)

where xθ = x cos θ + y sin θ, yθ = y cos θ − x sin θ and θ is the orientation of the filter

and f is the local ridge frequency. The xθ and yθ are the respectively rotated coordinates

with fixed σx and σy as standard deviations, along the major and minor axes. In the
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spatial domain, a 2D Gabor filter is a product of 2D Gaussian kernel with a sinusoidal

function. It has the attributes of frequency tuning and orientation selectivity. Therefore,

it can be regarded as an excellent 2D bandpass filter with strong directionality [60]. Due

to their plain wave filtering characteristics, they have been found appropriate for texture

representation and discrimination [61]. Due to sinusoidal grating characteristics present in

fingerprint images, Gabor filtering is successful in restoring distorted fingerprints [57,62].

The method works on rectangular blocks of pixels and thus, results in fast computations

and provided a pleasant look to the image contrast. However, in AFIS, the main thrust

is to get better in terms of matching accuracy for detected minutia points. Whereas, the

Gabor filter ignores minutia points for improving periodic texture. This fact can be easily

observed in Fig. 3.4 where the minutia points are blurred in the final enhanced version.

Later on, it was suggested that the ridge/valley pattern may not contain just one sinu-

soidal frequency but multiple harmonics. Therefore, authors in [63] proposed a modified

Gabor filter by replacing the cosine function with an alternate periodic function having

two periods T1 and T2, different for inter-ridge and inter-valley distances. Though this

modification results in a better ridge-valley pattern representation, the matching score for

minutia is not significantly improved. Both techniques are based on the sole assumption

that oriented patterns in a local neighbourhood form a periodic plane wave with well-

defined frequency range and orientation, which may not be true at minutia points and

other singularities. Therefore, at singularities where the curvature is large, these models

are bound to create spurious ridge structures. Although this can be avoided by using an

adaptive strategy where one can force only low-pass filtering at singular points, the exact

mechanism of this adaptation is a difficult task, especially in noisy fingerprints.

To avoid ridge frequency dependence, some researchers simplified the Gabor filter.

They came up with a new contextual filter that makes use of exponential part of Ga-

bor function and is changing only with local ridge orientation. These filters are called
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anisotropic filters. Perona and Malik [64] did the pioneering work. They suggested sim-

ulating heat diffusion process in a heterogeneous medium for edge enhancement. They

selectively applied the low-pass filtering with complete inhibition at the edge points. Im-

proving on this fundamental idea, Almansa [65] and Wickert [66], used low-pass filtering

(diffusion techniques) based on a multi-scale analysis. They posed the ridge/valley pattern

as a multi-scale structure by first applying an iterative process for local feature estima-

tion with the appropriate scale and then use a low-pass filter. Yang et al. [67] proposed

another kind of structure adaptive anisotropic filtering technique. Instead of using local

gradients as a means of controlling the anisotropy of filters, it uses both a local intensity

orientation and anisotropic measure to control the shape of the filter. Although the filters

proposed by Yang [63] and Almansa [65] are both structure-adaptive anisotropic filters,

Almansa’s filter is iterative while that of Yang is not. In these approaches, whenever a

ridge edge is encountered the circular filter kernel is deformed into an ellipse with the

major axis aligned in parallel with the edge. Therefore, smoothing is performed along

but not across the ridge lines [68]. Thus, instead of inhibition, steering and shape adap-

tation takes place. The success of anisotropic filters in preserving the ridge bifurcations is

well-established. However, sometimes if the length of the major axis associated with the

ellipse is not controlled, it may get too long and result in connecting the ridge endings

with other nearby ridges. This results in converting the true ridge terminations into false

ridge bifurcations. Although this does not seem at first to be a problem, as the minutia

position and count are undisturbed, a type mismatch error will happen (that is, changing

a ridge termination to ridge bifurcation). Moreover, since anisotropic diffusion filter only

involves smoothing over an elliptical neighbourhood in the vicinity of a given pixel with

total disregard to the sinusoidal wave pattern, their smoothing ability is limited, and also

tend to reduce the overall image contrast. It can be concluded from the literature and

our experience with Gabor and anisotropic filters that the Gabor filter is more aggressive
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in restoring the lost data while blurring singularities like minutia points. The anisotropic

filter, on the other hand, proceeds more gently having better representation for singular-

ities but encounters greater difficulty in large noisy areas for restoring the required shape

for the subsequent minutia extraction module.

Figure 3.3: Curved Gabor filter support region for a curved portion of a fingerprint.

We see that it clearly capture the curvature of the ridges.

In an attempt to further increase the smoothing power of Gabor function without

affecting feature shape, a Curved Gabor filter is introduced [57]. The ridges and valleys

are smoothed, but their shape is kept intact. This happens due to the simple reason that

conventional Gabor and Anisotropic filters both relies on piece-wise straight filter region

while the Curved Gabor takes advantage of natural curvature inherent in fingerprint im-

ages. This results in a curved filter kernel that goes along the bent ridges and valleys as

illustrated in Fig. 3.3. Since it is made to follow the ridge curvature deliberately, the

curved filter provides not only greater smoothness but also tone down scars. The scar
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suppression happens as the filter remains orthogonal to scar lines at all times. This puts

Curve Gabor filter as one of the effective enhancement algorithms with an ability to im-

plicitly dealing with scars. However, these desirable attribute of Curved Gabor filtering

comes at a price, and that is its associated high computational burden. Curved Gabor fil-

tering as compared to conventional straight Gabor filtering employs a considerable battery

of pre-processing machinery. Finding the curved region of support for each pixel involves

three primary stages: First, computing interpolation necessary to raise the resolution

level of the fingerprint, Second: estimating a highly accurate underlying local orienta-

tions, that is orientation field, and Third: computing accurate local ridge frequencies.

Out of three main requirements as mentioned, the accuracy estimating local orientations

is paramount. The curved region can quickly go astray from its true trajectory if not pro-

vided with true orientation directions. To achieve this, the Directional-filter bank based

orientation estimation [69] is employed here for simulating Curved Gabor filter results,

which is then subsequently smoothed with iterated orientation diffusion [70]. This puts

an extra computational burden on the scheme. Once the orientation field is sufficiently

smoothed, it is used then to find the curved support region for Gabor filter to overlook

most of the scar lines.

The Fig. 3.4 displays a comparison result for fingerprint image enhancement for

a scarred image was taken from FVC2004 database [58]. The observation is that both

Gabor and anisotropic filter do well regarding connecting broken ridges, but they break

down once it comes to removing long linear scars or cuts in fingerprint images. Though

Curved Gabor filter is doing a better job while dealing with scars but comes with a heavy

computational price tag. Apart from these three classical techniques, there are other en-

hancement methodologies specifically suggested for fingerprint image enhancement such

as Chikkerur [71], ROM [72], TwoStep [73], Oriented Deviation based [74], Improved

Gabor-based [75] and Genetic approach [76], present in the literature. They do have their



40
Chapter 3. A spatial domain scar removal strategy for fingerprint image enhancement

(a) (b)

(c) (d)

Figure 3.4: A real life sample image containing scar tested on two well known finger-

print image enhancement methods. a) Scarred Image. b) Enhanced by Gabor filter. c)

Enhanced by Anisotropic filter. d) Enhanced by Curved Gabor filter
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unique merits, but they did not take up the scar issue. To address linear compensable

scars that happen over time, a computationally light but explicit strategy is investigated

in this work that first marks scars pixels for compensation and then fills them from their

surrounding neighbours. Duly compensated these scarred images are then ready to be

treated with fast straight Gabor and Anisotropic filtering techniques to do remaining en-

hancement job.

Scars appear on fingerprints in many ways. Fig. 3.5 shows three noisy images from

the FVC2004 DB2 B database containing scars of different modalities. Friction ridges are

often broken by bending creases, as shown in Fig. 3.6(a) and (b), and sometimes by scars

due to injury, as shown in Fig. 3.6(c) and (d). The focus of the chapter is to deal with scar

lines while creases are unpredictable variations, hard to compensate. The scars can be

categorised into two main types: the compensable scars and the non-compensable scars.

Both look very similar except for two major differences that can be used to distinguish

them:

1. Ridges broken by non-compensable scars are often misaligned and thus degrade the

ridge pattern in a random way. Here the ridge/valley pattern is disrupted, and the

immediate boundary pixels do not provide the consistent direction. Therefore, there

is little hope to compensate these. However, ridges broken by compensable scars

are still aligned very well across the scar region.

2. Non-compensable scars are not as stable as compensable scars. They can come

and go unpredictably in subsequent scans taken over a time line. Non-compensable

scars tend to become narrow or even disappear in inked impressions. They can also

arise in live-scan images of wet fingers or impressions made by excessive pressure

during fingerprint capture. There is not much that can be done with these scars and

hope that they will disappear with enhancement, but algorithms can be devised to

remove or reduce compensable scars.
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(a)

(b) (c)

Figure 3.5: Three sample images containing scars taken from the FVC2004 DB2 B

database [58] . a) sample image 105 5 b) sample image 107 1 c) sample image 107 2

To find reasons for fingerprint scar generation, the origin of the pattern on fingertip

themselves need to be investigated first. Though almost all scientists agree that finger

patterns began developing quite early on after birth and are complete by the end of the

fourth month, there is a lot of speculation about the precise process of their creation.

One widely hold theory states that a middle skin layer, called the basal layer, is pressed

between the inside layer (the dermis) and the outer skin layer (the epidermis). This

causes strains against its neighbours, the pressure, forces the skin to get folded resulting

in valleys and ridges structure [79] appearing on the fingertip. Since the pattern is carved

deep at the interface between the dermis and epidermis, that it becomes nearly perma-

nent throughout the life and cannot be destroyed by superficial skin injuries. Having

said that, there are many documented cases of intentional fingerprint mutilation. But

those involve pretty severe damage to the skin, more specifically between the generating



3.2 Introduction 43

(a) (b)

(c) (d)

Figure 3.6: Flexion creases and scars in fingerprints. (a) A major scar between finger

ridge lines, completely disrupting the flow, (b) a piece-wise linear scar, that can be

compensated. It has kept intact the ridge flow pattern across the scar region. (c) large

area scar with random perturbations, beyond compensation, and (d) a scar with random

ridge/valley pixel distribution, beyond compensation. The image in (b) is cropped from

fingerprint 10 3 in FVC2002 DB1 [77] and the other three images are cropped from

fingerprints F0201, F1022 and F0693 in NIST SD4 [78], respectively.
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layer where the template of the fingerprint survives, and the upper layer, the epidermis.

Accidental cuts with a sharp object also produce scars. But, the most amazing thing is

that damaged skin can reproduce cells to form the fingerprints exactly as they were before

they were damaged. This remedial action happens to the cuts that are on the surface,

but with deep cuts that damaged the inner layer of skin (known as the dermis), then one

gets a permanent scar. In a nutshell, any cut or burn that goes deeper than the outer

layer of the skin can affect the fingerprint pattern in a permanent way. The permanent

new scar can now become a unique aspect of his/her identity. The work presented here,

deals specifically with cuts or scars that heal themselves over a period, and could pose

hindrance in identity verification till that time it restores to its original pattern.

There is some literature on scar removal strategies. The researchers find scar lines

hinder the matching performance of AFIS and have made some attempts to compensate

major scar lines. Oliveira et al. [80] proposed spatial domain based inpainting technique.

They used the diffusion matrix to reconstruct the broken ridges. Gottschlich [81] pre-

sented a line sensor based method to estimate the flow of ridges and valleys for removing

scars. To reconstruct the oriented ridge patterns in an image, Xudong [82], Sulong [83]

proposed a directional filter that strengthens the ridge pattern of local dominant orien-

tation, while suppressing the scar lines that are oriented against the dominant direction.

This method prefers a band-pass directional filter to remove the uneven background and

suppress high-frequency noise. This scheme is devised based on the assumption that fin-

gerprints exhibit everywhere a well-defined local ridge orientation. Although the scheme

was successful to diminish the scar lines at some places, it was not able to eliminate them

entirely from the print, as depicted in Fig. 3.7. As an alternative, a scar removal strategy

is proposed that makes the best use of both worlds frequency domain and spatial domain.

It mixes frequency domain based directional field and spatial domain image inpainting

ideas. From experiments conducted, it is found that the proposed scheme can reconstruct
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the ridge flow in a region crossed by a scar.

Digital inpainting techniques are commonly used to reconstruct small damaged por-

(a) (b)

Figure 3.7: Results of adaptive directional FFT filter on a noisy image containing

scars. (a) input image; (b) enhanced by [82].

tions of an image. They serve a wide range of applications, such as reconstructing scans of

deteriorated images by removing scratches or stains, removing text and logos from still im-

ages or videos, or creating artistic effects. Most inpainting methods work as follows. First,

the image regions that need inpainting are selected. Next, the known image information

is used to fill in the missing areas by propagating inward from the region boundaries. To

produce a good reconstruction, an inpainting technique should attempt to continue lines

of equal grey value as smoothly as possible inside the reconstructed region. In [84], the

image smoothness information is propagated along the isophote directions, estimated by

the image gradient rotated by 90 degrees. The image Laplacian is used to calculate the

gradient. Later, [85] proposed a new technique for inpainting by propagating an image

smoothness estimate along the image gradient. The missing regions are treated as level

sets, and a fast marching method is used to propagate the image information.
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A novel inpainting method is proposed here, to be used with both Gabor-based finger-

print enhancement and diffusion-based fingerprint enhancement. First, identify the scar

region along its boundary. Next, an orientation field is computed using a directional filter

bank in the frequency domain. Employing orientation field information, the movement

can be made along the correct slope from a scar boundary pixel into a non-scar pixel

territory and pick an appropriate replacement candidate there. The boundary scar pixel

value is replaced with that of the candidate pixel value. This way all the boundary scar

pixels filled are found. Now, a new boundary is identified, and filling is continued. This

new boundary keeps moving inward until the scar region is filled.

The rest of the chaper is organised as follows. In Section 3.3, a detailed description

of the proposed scar removal strategy is unveiled with a special focus on its components

such as background variation correction, binary mask creation, the computation of the

orientation image, filling scar region algorithm, and validation with synthetic images. Sec-

tion 3.4 presents experimental results and their quantification for real images followed by

concluding remarks in Section 3.5.

3.3 Scar Removal Strategy

The fingerprints present in public databases and the ones obtained from our campus

students, confirm the presence of major scars with a varying degree of dominance over

the regular ridge/valley pattern. In some cases, a lot more activity is observed associated

with these scar lines to an extent where they become a feature set. The research literature

and the industry connected with access technology agree on the necessity to remove these

scar lines. Medically speaking, a scar is defined as fibrous connective tissue that forms

at the location of an injury such as a cut. With the passage of time, scar tissue may

replace injured skin, but usually paler in coloration due to reduced blood supply. Once
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scanned, scars lines will appear in fingerprint images with a clear interruption of the

regular ridge/valley pattern. Since we are concerned with minutia matching score, the

scar lines may produce false terminations. Also, if the scar happens right at the bifurcation

point or termination point, then it is entirely up to the scar removal strategy to recover

that minutia. Our assessment is that it is hard to recover these damaged minutia points.

However, an attempt can be made to remove the false minutia due to scar lines.

Closely observing the scar lines present in most of the fingerprint images, a direction

mismatch can be observed between scar lines and the ridge flow directions. That is; scar

lines frequently occur in directions approximately orthogonal to those of regular ridge

paths. Therefore, a Fourier-domain directional filter should be able to detect those fault

lines. A Fourier-domain technique for compensating scars in fingerprint images is devised

on the same theme of [86]. The authors proposed to divide the image into blocks. For

each block, the directions are accumulated for the pixels. A specific direction having the

maximum number of occurrences within the block is selected as the dominant direction.

The block is then Fourier transformed and a wedge-shaped directional filter is applied

to filter the contents of the block with the dominant direction. After filtering, the block

is transformed back to the spatial domain with the sense that if there was a scar line

present, then it will be largely diminished. The proposed Fourier-domain technique is

heavily dependent on the pretext that the fingerprint ridge pattern direction changes

slowly and will remain constant in a small neighbourhood. However, it was observed later

in [87] from the examples that while such a scheme does reduce the contrast of scar lines,

it cannot eliminate them entirely. This kind of image enhancement will put the stress on

the binarization process used in later stages. Further, there is a chance that interpolation

will also create some bifurcation points that were originally terminations. The use of the

dominant direction linked with each pixel that is the orientation field provided the basis

for our proposed spatial-domain scar removal strategy.
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Input Image
Background Computing Constructing and Filling scar

Homogenization Binary Mask
Interpolating

Orientation Image
regions

Scar Removed

Image

Figure 3.8: Block diagram of the proposed scar removal method

Spatial-domain scar removal fills the scar region with pixels from nearby ridge/valley

pixels, taking help from the already computed orientation field. The orientation field,

computed by averaging over a block of pixels, is large enough to bypass the scar region,

and its direction remains undisturbed by the scar pixels and follows the general ridge

orientations shown in Fig. 3.9. Knowing the orientation of the scar pixels, the necessary

guidance is obtained to move in a specific direction for finding the replacement. Now

what is left is to pick the appropriate ridge or valley pixel and graft them back at the

scar locations. This method can find some resemblance to medical procedures where the

physical scar tissue is replaced with a similar albeit healthy tissue somewhere else in the

body.

In a formal sense, the spatial scar is removed by image inpainting. For execution, the

area of missing pixels is first defined in the original fingerprint image, named as a mask

image. The mask image is a binary image, where only the missing scar pixels are labelled

as one, the rest have the value zero. To create a mask image for our scarred fingerprints,

a geometric filter is required that provides a strong response to our scar locations and low

response for the rest of the image. Then a threshold will convert this filtered image into

a binary mask image. The block diagram of the proposed method is shown in Fig. 3.8.

3.3.1 Background Homogenization

The acquired fingerprint images often show important background variations, poor con-

trast in some areas and gaps in ridge/valley regions. To reduce the first two imperfections,
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Figure 3.9: Orientation field extracted by directional filter bank.

and generate images more suitable for enhancement and minutia extraction, preprocessing

comprising non-uniform background correction is carried out. The background variations

occur due to the very process of scanning a finger. The finger’s middle surface is thicker

as compared to the surrounding region. This results in more pressure in the middle giving

a darker impression, while the outer surface has less pressure giving a lighter impression.

The fingerprint scanner registers this uneven pressure. Consequently, background vari-

ation will add unnecessary bias for different regions of the same image to disturb the

ridge/valley contrast, especially in the central region. Since the ridge/valley pattern is

identified and classified by its gray-level profile, this effect may worsen the performance

of enhancement and ultimately results in missing genuine minutia.

Firstly, a 3×3 median filter is applied to smooth occasional salt-and-pepper noise.

For estimating background image fB, a large size low-pass filter is required to capture

background variations, which is assumed to be larger in width to the regular ridge/valley

sinusoidal pattern. To start developing a discrete low-pass Gaussian kernel, we choose

σ = 8 pixels. The choice reflects the average size of the ridges in our database images.
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Then making 3σ rule to have 99% confidence interval that two ridges and one valley fit

well within the kernel size. That results in the width of the kernel as 24 pixels. Measuring

across the whole background variation from one edge to the other, we end up with 6σ.

However, as our kernel is in discrete domain, we need to accommodate the centre of the

Gaussian as well. As such, the kernel size is thus: floor(6σ) + 1 or simply 49× 49. When

this filter is applied to the pixels outside the region of the fingerprint near the border,

results are strongly biassed by the external light region. To overcome this problem, out

of the region, grey levels are replaced by the average grey levels in the region of interest.

The filtered image fB is also called the background estimation image. Many algorithms

are reported such as [88], to segment the image into foreground and background area.

We adopted the local variance method that is applied block-by-block to identify the fore-

ground blacks as opposed to background blocks. Accumulating all the foreground blocks,

while eliminating any holes or gaps provide a contagious foreground region, referred to as

a region of interest here. Then, the difference D between the image f and the background

estimation image fB is calculated for every pixel.

D (x, y) = f (x, y)− fB (x, y) (3.2)

To this respect, the literature reports two alternate ways to get down to the corrected

image. One method is based on subtracting the background image from the original im-

age [89], [90], [91] and the second deals with the division of the original image by the

background image [92], [93]. Since division by darker regions will result in numerical

unsuitability, the subtraction strategy is opted, as described in Eq. 3.2. Besides the back-

ground variations in images, there is also signicant contrast variations between database

images due to different pressure conditions in the acquisition process. The difference re-

sults in negative values. By representing the difference in offset binary (by adding 128)
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the pixel values are brought back into the range 0 to 255. i.e.

f {cc} (D) =























0, if D < −128

255, if D > 127

D + 129, otherwise

(3.3)

A contrast-corrected image is obtained by linearly stretching the new image range lo-

cally to fit the range of possible grey levels. The local contrast is estimated by Gaussian

filling abs(D) and using this to scale or scratch the background-corrected image. Fig.

3.10(c) shows the resulting image, fcc, corresponding to the stretched and background

homogenised image. The proposed contrast-correction algorithm is observed to reduce

background intensity variations and enhance contrast in the middle region of the original

fingerprint image. The method was validated for all the images that are processed in the

database.

To validate the results of the background homogenization, binarization using his-

togram before and after homogenization is analysed. The histogram of an image represents

the relative occurrences of the gray-level present in an image [94, 95]. The non-uniform

background and contrast degrade the histogram of an image in a way that it will be hard

to binarize it by a single global threshold. In other words, no single valley will appear

in the resulting histogram. For binarization, Otsu’s method [96] is employed to choose

the threshold to minimise the intra-class variance of the background and foreground. It

is used to find the binary threshold for the original fingerprint and that of the contrast

normalised image. The results are displayed in Fig. 3.11.

3.3.2 Computing Binary Mask Image

Scars in fingerprints happen as thick linear white segments stretching from one corner to

the almost middle part of the print, so it seems plausible to model them as two-dimensional
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(a)

(b) (c)

Figure 3.10: Background homogenization process: Fig. (a) shows an acquired digital

fingerprint. Fig. (b) depicts the estimated non-uniform background. Fig. (c) is an

output result after passing the image through homogenization operation and then linearly

stretched. It can be observed that contrast has been corrected with clear ridge/valley

structure.
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(a) (b)

Figure 3.11: Validation test for background removal output: Fig. (a) shows the bina-

rization of an acquired digital fingerprint using optimal Otsu method. Fig. (b) depicts

the binarization after homomorphic filtering, also using the optimal Otsu method. It

can be observed that binarization results for filtering output show all the regions with

ridge/valley structure intact.
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valley structures. However, we already have many valleys as a regular fingerprint pattern.

The main question is how to separate scars from regular valleys. Fortunately, it was

observed from a large database of acquired images that the scars differ from the regular

valley patterns in the direction as well as width. Ridges and valleys are similar in shape

but have complementary brightness. That is, ridges are darker while valleys are lighter in

contrast. Therefore, a ridge detection filter with a proper width and direction but com-

plementary in brightness should be able to detect scars while avoiding valley patterns.

Several ridge detection filters are available in the literature [97–99]. The specific approach

adopted here is to look for a filter that matches the geometric shape of the scar under

investigation. The scar lines have a deep valley structure that matches well with the

second-order Gaussian filter construction as shown in Fig. 3.12. Although a fourth-order

Gaussian filter proposed in [97] was found to have better directionality property, these

higher-order Gaussian filters are more suitable for junctions or overlapping texture. Since

crossing scar lines are not considered, the proposed algorithm is restricted to second-order

Gaussian derivative filters.

First, the empirical evidence about the width of scar lines is obtained from database

Figure 3.12: A two-dimensional 2nd Order Gaussian Derivative Filter.
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images. Scars were found to vary in width from eight to ten pixels with an average width

of nine pixels. The regular valley lines are almost always four pixels wide with plus or

minus one pixel. This makes it easy for the second-order Gaussian derivative filter to lo-

cate scar lines. Once its parameter σ is defined in the range from four to five that results

in overall width in the range eight to nine pixels, spanning 2σ distance. This parameter

setting will provide us with a second order Gaussian derivative filter matching well with

that of scar lines while avoiding the regular valley lines completely. For the chosen filter

not to miss any scar line and to be flexible, a multi-scale elongated second-order Gaussian

derivative filter is obtained. The elongated second-order Gaussian derivative filter for

image features contains three parameters, that is, its length σu, and the width σv and

orientation. For keeping the elongation, the length σu is tied to be multiple of width σv.

The multiple comes from a set having values {2, 2.5, 3, 3.5}. The width parameter σv is

chosen from a set {4, 5}. The maximum picked among all possible set of values for length,

width and orientations.

For implementing a second-order Gaussian derivative filter, a generalized two-dimensional

Gaussian function is used, given by:

g (u, v) =
1

2πσuσv

exp

(

−
(

u2

2σ2
u
+ v2

2σ2
v

))

. (3.4)

It is observed that this generalized Gaussian function has two independent parameters σu

and σv. Now taking its second-derivative with respect to u only, the following expression

is obtained:

guu (u, v) =
1

2πσ5
uσv

(

u2 − σ2
u

)

exp
−
(

u2

2σ2
u
+ v2

2σ2
v

)

. (3.5)

After sampling the above continuous-function, the discrete kernel is rotated in a specific

orientation. The rotation matrix will provide the transformation from xy co-ordinates to
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uv co-ordinates as follows:

u = x cos θ − y sin θ (3.6)

v = x sin θ + y cos θ. (3.7)

Since the amplitude of the filter will reduce as the σu and σv parameters increase, its

response needs to be normalised to have a fair comparison across all scales. The output

response of the oriented kernel is normalized by multiplying with a factor σ1.5
u σ0.5

v . After

normalisation, the maximum for each pixel is determined, probing all different combina-

tions of length, width and orientations. Let us say, f(x, y) is our fingerprint image, and

gxx(x, y, θ, σu, σv) is the elongated second-order Gaussian derivative filter. Applying filter

the on the image, a new image F is obtained:

F (x, y, θ, σx, σy) = gxx(x, y, θ, σu, σv) ∗ f(x, y). (3.8)

The detection process is illustrated in Fig. 3.13. Since the normalised filter is used, the

absolute value of F peaks for those particular σu and σv that match the scar line profile.

The response of the Gaussian derivative filter to possible scar regions is displayed in Fig.

3.14(a).

It is observed that while creating a mask image for the scar region, sometimes the Gaus-

sian derivative filter detects the valley part of the fingerprint as a possible scar region.

This happens because valleys in fingerprints vary in width, and will pose a possible false

alarm for our scar extraction process. One possible way to circumvent this is to use

the directional ridge field, computed at a pixel that provides local orientation. Now the

probing filter can be steered to avoid the direction of the valley using directional ridge

field. The local ridge/valley directions are already available through the use of directional

filter banks. With this reaction, the Gaussian derivative filter response is shown in Fig.

3.14(b). It can be clearly seen that the filter now avoids valley regions as possible scar

regions.
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(a) (b)

(c) (d)

Figure 3.13: Binary mask preparation: Fig. (a) shows the filtering output for a

fingerprint with a second-order Gaussian derivative filter. The Fig. (b) depicts the

thresholding result to convert the filtering output into a binary mask. Fig. (c) shows

a validation step for overlaying the binary mask values for correctly locating the scar

locations. Fig. (d) overlays the boundary of the scar regions on top of the fingerprint

image, showing that it did capture effectively most of the scars.

Although a possible precaution is adapted to avoid regular valleys as false scars, our

detection is still far from providing a binary mask for the scar regions. This can pose

a potential problem for our subsequent scar filling procedure. Therefore, region growing

morphological operation is used to make up this deficiency [94].
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(a) (b)

Figure 3.14: The effect of avoiding valley regions while detecting scar regions: a) Shows

that the scar detection filter do pick some valley regions in addition to the required scar

regions. b) Depicts the scar detection filter output where steering is limited to avoid

possible valley directions.

A region growing process is an elegant segmentation strategy that starts with initial seed

points and then starts adding pixels that are 8-connected neighbours with a close inten-

sity to that of the seed points. The closeness of intensity is measured by using a reduced

threshold. Thus, the region growing algorithm needs two thresholds, one to create pos-

sible seed points, and the second to enlarge or grow the seeded area. For implementing

region growing, the initial seed points are associated with the already captured scar region

of Fig. 3.15(a) from our second-order Gaussian derivative filtered fingerprint. For this

search, the original threshold is reduced by 10 percent and provide the second threshold.

The final region growing result is shown in Fig. 3.15(b).
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(a) (b)

Figure 3.15: a) Gaussian Derivative Response Thresholded, b) Region Growing Result

3.3.3 Constructing and interpolating orientation image

The orientation image of a fingerprint defines the local orientation of the ridges at each

pixel. The orientation estimation is a fundamental step in the proposed scar-removal

strategy as the subsequent scar pixel replacement stage relies on the local orientation to

effectively select an appropriate neighbour. This section investigates two popular orien-

tation image estimation techniques. One operates in the spatial domain and the second

in the frequency domain.

The spatial domain technique is based on least mean square estimation suggested by [100],

and later on, employed by Hong et al. [60] to compute the orientation image. However,

instead of estimating the orientation block-wise, their method is extended into a pixel-

wise scheme, which produces a finer and much more accurate estimation of the orientation

field. The steps for calculating the local orientation at pixel (x, y) are as follows:

1. For each pixel in the block, compute the gradients Gx(x, y) and Gy(x, y), which are
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the gradient magnitudes in the x and y directions, respectively. These gradients are

calculated using conventional Sobel or Prewitt masks.

2. The local orientation at pixel (x, y) can then be estimated by averaging the orien-

tations within a W ×W window using the following equations:

G1 =

x+W
2

∑

u=x−W
2

y+W
2

∑

u=y−W
2

2Gx(u, v)Gy(u, v), (3.9)

G2 =

x+W
2

∑

u=x−W
2

y+W
2

∑

u=y−W
2

(G2
x(u, v)−G2

y(u, v)), (3.10)

then θ(x, y) =
1

2
arctan

G2

G1
± pi

2
, (3.11)

where the choice ±pi

2
is added to give consistency of the calculated orientation

image such that all orientations are chosen to be either clockwise or anti-clockwise

directions.

The second strategy makes use of the Fourier domain [70]. It starts with decomposing

the given image into multiple directional images using a directional filter bank structure.

For each directional image, a multiscale tower is constructed to look for various linear

segments. A directional energy parameter is computed for each directional image across

all pre-defined scales. The final directional image is computed by comparing the direc-

tional energy strength measure across all possible combinations of scale and direction for

each pixel. This characterises an optimal orientation estimation with low noise power

and reasonable feature localization, as depicted in Fig. 3.16. The Fourier domain method

provides better orientations that align well with ridge directions. Especially in the scar

portion, the Fourier method provides orientations that cross over the region while main-

taining their alignments with the ridge pattern as compared to jagged directions in the

scar regions provided by the spatial domain.
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(a) (b)

Figure 3.16: Comparison of spatial domain vs Fourier domain orientation estimation:

Fig. (a) spatial domain method, Fig. (b) Fourier domain method.

The orientations obtained from the previous step are somewhat noisy. Therefore,

the orientation map needs to be further smoothened. For this purpose, the orientation-

diffusion method is employed as suggested in [70]. The method of orientation-diffusion is

preferred over that of local averaging using a Gaussian filter because it fits better here due

to the cyclic and repetitive nature of our data. The results from conducting orientation

diffusions on a fingerprint directional image are shown in Fig. 3.17.

The obtained orientation image, though less noisy, lacks the proper resolution to be

used in tracing the curved path via connected linear segments that simulate the curved

walk. The curved walk is extended from an initial scar pixel to a pixel of normal territory.

For this purpose, the orientation image is projected into its sine and cosine components.

Then each component is first up-sampled four times along rows and columns using a

23-point FIR interpolation filter. The coefficients of this filter are given by the formula:

bk =
sin(π(k − 11)/4)

π(k − 11)/4
wk k = 0, 1, 2, · · · , 22 (3.12)
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(a) (b)

(c) (d)

Figure 3.17: Stages of orientation diffusion process: Fig. (a) shows the orientations

as a gray-level image, where black represents the 180 degrees and white is for zero degree

direction. A considerable number of discontinuities or steps can be observed. Fig. (b)

shows the image after ten iterations. The orientation image has been diffused with

fewer discontinuities. Fig. (c) shows the progress after 50 iterations. Finally, a smooth

orientation image with 90 iterations can be seen in Fig. (d).
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where wk is a raised cosine window function that will truncate the infinite length sinc

equation, is given by:

wk = 0.54− 0.46 cos(
2πk

22
) k = 0, 1, 2, · · · , 22 (3.13)

also, b11 = 1 is forced to avoid indeterminate form. The interpolated sine and cosine com-

ponents are then used in the inverse tangent formula to derive an interpolated orientation

image.

From the interpolated orientation image and the scarred fingerprint, we can hop four

times from a scarred image pixel to the appropriate neighbour in the unscarred portion of

the fingerprint. The interpolated orientation image guides the movement along piece-wise

linear segments with changing slope to reach the nearest point. More specifically, fol-

lowing equations are used to approach the neighbour of the scar pixels in the immediate

vicinity.

x1 = x0 + 0.25 cos(θ(x0, y0))

y1 = y0 + 0.25 sin(θ(x0, y0)) (3.14)

Here x0 and y0 are the co-ordinates of the scar pixels, detected by the second-order Gaus-

sian derivative filter. The x1 and y1 are the new locations found by traveling 0.25 pixels

in a straight line with slope θ(x0, y0). This process is repeated for four steps with new

locations until it reaches the neighbour pixel in the non-scar region. The reached pixel is

the very next pixel on the same curved trajectory as the scar pixel itself, providing the

appropriate value to be placed at the scar pixel.

To validate the process of tracing curved neighbours with an interpolated orientation

field, the tracing mechanism mentioned above is tested by plotting twenty curved neigh-

bours on each side of a pixel for a steepest ridge tracing of the fingerprint image. Fig.

3.18 depicts the results. A reasonable match for the first few neighbours is observed, but
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the results become quickly unreliable as we travel far from the scarred pixel.

Figure 3.18: Validation test for tracing a curved path: the red pixel is traced for 40

curved neighbours in clockwise (yellow) and anticlockwise (green) directions. A better

tracing with the initial five neighbours on each side can be observed, however, as we

move away the tracing starts losing the ridge.

3.3.4 Filling scar regions

Filling scar regions in a fingerprint can be initiated once the binary mask is generated,

and the interpolated orientation surface is available. The process is started with the

boundary pixels of the scar regions. Then all the boundary pixels are recorded. For

each boundary pixel, its replacement using the interpolated orientation image is found to

reach its immediate curved neighbour of that same ridge or valley trajectory. After filling

the scar pixel, the scar pixel location in the binary mask image is reset to zero. Thus,

the binary scar region mask reduces in size after each iteration. The boundaries start

enclosing on the scar region as shown in Fig. 3.19. Finally, after a couple of iterations, all
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the scar regions are appropriately filled, and the fingerprint image has been compensated.

(a) (b)

Figure 3.19: Result of scar region filling Process: Fig. (a) shows the pre-processed

fingerprint image, depicting considerable scarring. Fig. (b) shows the final result of the

scar filling process, where most of the scars are compensated.

3.3.5 Testing with synthetic scars

For evaluating the effectiveness of our scar removal strategy, synthetic scars for two test

images are generated. The parameters for generating these patterns are chosen. High

spatial frequency is avoided and the spatial frequency region used is matched to the nor-

mal range found in fingerprint images.

The first consists of a sine wave pattern superimposed on a polar plot. The test image

is 500 rows of 500 columns, with the pattern made as a function of angle. The amplitude

of the sine wave is fixed to half while the wavelength of the sine wave varies with radius.

The spatial frequency, therefore, varies from high at the centre of the test image decreas-

ing radially to the lowest at the corners. The interesting patterns observed in the centre
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of the image below result from aliasing. Specifically, the following sine function adopted.

f (x, y) =
1

2
+

1

2
sin

(

50× arctan
(y

x

))

, (3.15)

where x and y are columns and rows respectively relative to the centre of the image. The

radial sinusoidal pattern generated in this way is depicted in Fig. 3.20.

The second test image consists of a concentric circular pattern, where the intensity

(a) (b) (c)

Figure 3.20: Result of scar removal strategy for radial sinusoidal pattern: Fig. (a)

shows the radial pattern with scars artificially created at four different spatial locations.

The scars vary in direction as they progress from start to end. Fig. (b) shows the

result of scar detection using second order Gaussian derivative filter. It can be observed

that only the scar regions are highlighted while suppressing all other image features.

The compensated result is shown in Fig. (c), where the scars regions are filled using

directional field of the image. Though stitches as jagged response can be seen at some

filling locations, the overall pattern is restored reasonably well.

varies radially outward. The spatial frequency is made to vary with increasing radius. The

frequency is low at the centre but gradually increases as the radius increases. Such an

image of concentric rings is referred to as the Jahne test pattern [101]. The mathematical

expression governing the pattern is depicted as:

g(x) = g0 sin(
km|x|2
2rm

)

[

1

2
tanh(

rm − |x|
w

) +
1

2

]

, (3.16)
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where rm is the maximum radius of the pattern, tanh( rm−|x|
w

) as an approximation to a

step function with rm as the location of the step and w is the width of the transition. As

we move out to the corners, we set the parameters so that the maximum instantaneous

frequency of km = 0.5π is reached in the centre of the image edges, and the tapering

function prevents aliasing artefacts from appearing [101]. The curvature at each pixel is

constantly changing, making this a closer approximation to fingerprint images.

Arteficial scars are created in these test patterns approximately perpendicular to the

simulated ridge pattern and then fed to the proposed scar removal process. Fig. 3.20 and

3.21 show the results of the proposed scar removal strategy. The strategy shows promise

in compensating the scars and restoring to a large extent the original test patterns at scar

locations. The jagged behavior at some scar locations is a manifestation of the limitation

of representing angled patterns on an underlying rectangular grid.

3.4 Experimental Results

An interesting application, which motivated the whole development, was to look for so-

lution to the access problem faced by a couple of students at university entrance. The

administration installed U.areU4500 fingerprint scanners to record students entering and

leaving the campus. Some complained of facing difficulties in getting through these scan-

ners. Upon investigation, it was revealed that their fingerprints contain pronounced scars,

which were not there a couple of months back at the registration time. Three samples

od such scared fingerprints are shown in Fig. 3.23. These scared samples were passed

on to the explicit scar removal strategy on a testing basis, and output of scar removal

process is shown in the same figure. The scar removed fingerprints were presented to the

straight Gabor filter for enhancement, and the outputs are as shown in Fig. 3.22. The

matching score was now calculated for these treated and enhanced fingerprints and was
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(a) (b) (c)

Figure 3.21: The result of scar removal strategy for a circular sinusoidal pattern:

Fig. (a) shows a radial pattern with scars artificially created at five different spatial

locations. The scars vary in the direction as they progress from start to end. Fig. (b)

shows the result of scar detection using second order Gaussian derivative filter. It can

be observed that in addition to scar regions, some image features are also being picked

by the filter. However, the image features picked are lower in intensity than the scar

regions, and can be removed from the binary mask using an appropriate threshold. The

compensated result is shown in Fig. (c), where the scars regions are duly filled with a

circular directional field of the image. Though a jagged pattern is visible, that may be

the contribution of following curved patterns on an underlying rectangular grid.

found to be passing the threshold barrier to provide these genuine students with some

relief in accessing the campus facilities.

As stated for Curved Gabor filtering, the explicit scar removal strategy also suffers

from the accuracy of the orientation field. This could act as a major limitation of the

proposed strategy. There are two major effects as follows:

1. Since the orientation field is helping in detection process by avoiding valleys to be

part of scars, in the absence of true orientation field, many valleys appear as scars.

2. The role of orientation field is fundamental to find the neighbouring appropriate

curved pixels to fill the scar region.
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(a) (b)

(c) (d)

Figure 3.22: A student sample, with Gabor filter enhancement with and without explicit

scar removal.

To visualise the impact of estimating orientation field on the scar removal strategy, three

different orientation fields are simulated to be used with the proposed explicit scar removal

strategy. One is the method used by Hong. et. al. [60]. The second method is estimating

orientation field with a directional filter bank (DFB) as outlined in [102]. The third is

the orientation field diffusion method as illustrated in [70]. A campus student challenging
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.23: Three Scared Fingerprints: The first column shows the original scared fin-

gerprints as obtained at the entrance, the second is the output of Scar detection process,

and third column shows the explicit scar removal strategy output.

scarred fingerprint as shown in Fig. 3.24 is selected to see the impact of orientation field

on the final output of the explicit scar removal strategy. The Fig. 3.25 reveals that

Hong-based orientation field is producing poor results for scar removal strategy, while the
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DFB based and the orientation diffusion based are doing almost the identical job. The

orientation diffusion method is the clear winner for the explicit scar removal work, but it

is an iterative algorithm, which requires an appropriate stopping rule.

To quantitatively assess the performance of explicit scar removal strategy on a public

Figure 3.24: A campus student scarred fingerprint to be used for orientation field

impact experiment on explicit scar removal strategy

database, following procedure is adopted. A biometric fingerprint system works in either

verification or identification modes. In verification, a user presents his identity, and the

biometric device verifies that the identity matches with the user, this usually happens for

passport checks at airports. In identification mode, no assumption of identity is made, and

comparison with all templates has to be made, this could be a case of police investigating

a crime scene. The assessment is made in verification mode. A matcher algorithm is

selected, that assigns all authentication attempts a matching score from the interval [0,

1], where 0 means no match and 1 means full match. Next, a threshold is also selected

from the interval [0,1]. If the lowest threshold 0 is selected then not only all genuine users

are admitted but also all impostors are also allowed. On the other hand, if the threshold
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.25: The Impact of Orientation Field Estimation on Scar Removal Strategy:

The first column shows the estimated orientation field, the second is the output of Scar

detection process, and third column shows the explicit scar compensation strategy out-

puts. The first row is for Hong method, the second row is the DFB method output, and

the third row for the orientation diffusion.
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is set to 1, no one is admitted. So for real usage, a threshold in between [0, 1] need

to be chosen. For testing, a whole bunch of operating values, a range of thresholds is

selected starting from 0.2 and reaching up to 0.8 with an equal step size of 0.2. A loop

is then run through these threshold values. For each value of the loop, that is for each

threshold from the range selected, a pair of error rates are computed: FAR (False Accept

Rate) and FRR (False Reject Rate). FAR is calculated as a fraction of impostor scores

exceeding the threshold. FRR is calculated as a fraction of genuine scores falling bellow

threshold. Once all the pairs corresponding to each value of the threshold is computed,

a new measure with the name the Equal Error Rate (EER) can be defined. The EER

value happens at a particular threshold where false accept rate (FAR) and false reject

rate (FRR) are equal. In general, the FAR and FRR will rarely be equal to a threshold,

so a minimum distance pair (FAR, FRR) is selected. We also note mean max/min value

of the minimum distance pair.

The enhancement of low-quality images (occurring, for example, in all databases of

FVC2004 [103]) and very low-quality prints such as latent prints (e.g., NIST SD27 [104])

is still a challenge. For the purpose of describing EER values for the proposed explicit

scar-compensation algorithm, the publicly available fingerprint databases FVC2002, and

FVC2004 were searched to gather a scarred fingerprint database of sixty-five users with

more than two scars on their fingerprints. The choice of fingerprints with more than

two big linear cuts is made to see the reduction in EER values before and after scar

compensation. The database consists of 65 legitimate users, and each user provided his

finger eight times (65× 8 = 520 images in total). Each fingerprint provides one template.

Out of 8 samples, one sample of a user/person is used to create the template. The rest

of the fingerprints are used for verification to receive seven genuine matching scores. All

images of other users are used as impostors. Therefore, a matching score of 64× 8 = 512

impostors is generated. This template generation process is repeated for all images and
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all users and in total 65 × 7 = 455 genuine scores and 512 × 65 = impostor scores are

generated. These scores are then used to generate pairs (FAR, FRR) to choose the best

threshold, a threshold that provides the EER. In our test, the matcher “VeriFinger 5.0

Grayscale” is derived from the Neurotechnology VeriFinger 5.0 software development kit.

For the verification tests, the FVC protocol is followed to ensure comparability of the

results with other researchers [105], with the results listed in Table 3.1. Table 3.1 shows

an improvement in EER values with the use of Explicit scar removal strategy for both

Gabor as well as Anisotropic diffusion methods. Generally speaking, lower the value of

EER, the better is the corresponding enhancement method. The Curved Gabor filter is

found to provide best EER values for the scarred database, as it is well equipped to treat

not only the scars but also separates the conglutinated ridges due to increased bandpass

filtering effect.

Another set of experiments was performed on the FVC2000 database DB3 A that

contains 800 fingerprint images. The program was written in Matlab and runs on a

3.40GHz Core i7 processor with 16Gb memory. The code is available in the form of a zip

file that will be upload to the MATLAB Central site. Image enhancement for the FVC2000

database was performed via proposed scheme, Khan [106], Khan [107] and STFT method

[71]. For feature extraction binarization/thinning based minutiae extraction method and

smoothed orientation image creation proposed by Hong et al. [60] were used. The core

points are detected by the algorithm based on the method described in [108]. Finally,

fingerprint matching method using a hybrid shape and orientation descriptor [109] is

used for matching purpose. This method is chosen as it outperformed many well-known

methods on the FVC2002 database in the FVC2002 competition, considering that the

feature set was not in pristine condition due to the chosen extraction and filtering methods.

The authors of this method also claim that all known competing matching algorithms

tested by the University of Bologna database were beaten by this fingerprint matching
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Table 3.1: EERS in percent for Matcher VeriFinger 5.0 on the original and enhanced

fingerprints of scared database.

Enhanced Method Minimum Average Maximum

Original images 7.4 10.5 12.2

Gabor Filter [60] 4.5 5.3 7.1

Anisotropic Diffuison Filter 4.2 4.8 6.3

Gabor Filter with Scar Compensation 3.3 3.7 4.3

Anisotropic Diffuison Filter with Scar

Compensation

3.5 3.8 4.2

Curved Gabor Filter [112] 2.8 3.1 3.3

method. The code of the method is also available from [110]. Table 3.2 shows the minutiae

matching analysis of STFT with the proposed scar spatial domain scar removal. Table 3.2

shows that by using scar removal as pre-processing before fingerprint image enhancement

can improve the overall performance of the system. In this case, on a noisy database of

FVC2000 containing many images with scar type noise, scar removal enhanced the overall

accuracy of the system from 56.6% to 69.2%. Also, the Youden’s index [111] is increased

from 0.4032 to 0.5032, where a perfect test would have a Youden index of +1.

3.5 Concluding Remarks

The research presented in this chapter is to compensate the effect of scars present in

acquired fingerprints. The scars may happen due to injury where tissue is changed in

coloration, and the ridge/valley structure is interrupted, or due to bending the finger by
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Table 3.2: Analysis of minutiae matching of proposed scar removal method with some

existing fingerprint image enhancement techniques.

Analysis Proposed Khan [106] Khan [107] STFT [71]

Accuracy 69.2% 59.2% 57.5% 56.6

Mis-classification 33.8% 38.7% 39.9% 43.4%

False Negative Proportion 37.6% 42.3% 48.6% 43.3%

Youden’s Index 0.5032 0.4503 0.4103 0.4032

Positive Likelihood Ratio 2.3 2 1.8 1.8

putting uneven pressure during acquisition process with a fingerprint scanner. An explicit

scar removal strategy is proposed, that can be regarded as a pre-processing step where

the orientation field is used to select the right candidate for filling scar regions. The

strategy relies on the fact that in these linear scars, the ridge/valley pattern is still intact

across the scar region. Using this information, the scar boundary is filled with appropriate

normal region pixels using the local orientation field. The explicit scar removal method

shows promise in terms of better matching scores associated with minutia points. It is

believed that these pre-processed scar-compensated fingerprints will boost the reliability

of an AFIS to be used in public access systems.

One serious contender to the Explicit scar removal strategy is the Curved Gabor

filter (GF). The curved GF has the capability to do both: remove scars and separate

falsely conglutinated ridges in wet fingerprints. The limiting factor for Curved GF is the

extraction of the orientation field and estimation of Ridge frequency (RF). Computations

can quickly rise if Curved GF is employed for the whole fingerprint. On the other hand,

using explicit scar removal algorithm at specified scar locations followed by flat Gabor

filtering can save computations with performance closer to that Curved Gabor filter. The
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limitation of the Explicit scar removal strategy is the fact that it is of little use for falsely

conglutinated ridges cases.

To deal with scars and false conglutinated ridges at the same time, a better strategy

could be suggested in the form of first using scar removal strategy to fill big linear scar

cuts, spread across the surface of the image. Then a follow-up smoothing performed with,

Curved Gaussian filter (a variant of Curved Gabor Filter), instead of actual Curved Gabor

filter, to separate conglutinated ridges to a large extent. A Curved Gaussian filter can

be defined along the bent ridge and valley structure, therefore, will be equally effective

but computationally less expensive than Curve Gabor filter due to its limited kernel

support region. Once the scars are filled and conglutinated ridges are diminished, the flat

Gabor filtering can now be called in to impart the required clarity to ridge/valley parallel

structure for subsequent binarization. This can constitute a computationally cheaper but

overall effective solution for low-quality fingerprint enhancement and can well be posed as

a viable alternative to the Curved Gabor filter. This is the topic of our future research.





Chapter 4

Stopping Criterion for Linear

Anisotropic Image Diffusion: A

Fingerprint Image Enhancement

Case1

This chapter is also an adapted version of a journal article. While the section headings

from the journal article have been retained, the figures, equations, tables, and references

have been re-numbered and are in line with the thesis format. This chapter presents a

software-based technique for fingerprint image enhancement in which the entropy change

for an anisotropic diffusion is investigated. A unique peak is found, associated with

a blurring of the dominant structure, that provides a reasonable stopping rule for the

anisotropic diffusion process. With respect to our proposed design, this chapter falls in

1Published as: Tariq M. Khan, Mohammad A. U. Khan, Yinan Kong and Omar Kittaneh,“Stopping

Criterion for Linear Anisotropic Image Diffusion: A Fingerprint Image Enhancement Case,”EURASIP

Journal on Image and Video Processing , (2016) 2016: 6. doi:10.1186/s13640-016-0105-x
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Figure 4.1: Modules of the proposed design under study

fingerprint subsystem. It covers one module of fingerprint subsystem, as highlighted in

Fig. 4.1

4.1 Abstract

Images can be broadly classified into two types: Isotropic and Anisotropic.

Isotropic images contain largely rounded objects while anisotropics are made

of flow-like structures. Regardless of the types, the acquisition process intro-

duces noise. A standard approach is to use diffusion for image smoothing.

Based on the category, either isotropic or anisotropic diffusion can be used.

Fundamentally, diffusion process is an iterated one, starting with a poor qual-

ity image, and converging to a completely blurred mean-value image, with no

significant structure left. Though the process starts by doing a desirable job
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of cleaning noise and filling gaps, called under-smoothing, it quickly pass into

an over-smoothing phase where it start destroying the important structure.

One relevant concern is to find the boundary between the under-smoothing

and over-smoothing regions. The spatial entropy change is found to be one

such measure that may be helpful in providing important clues to describe that

boundary, and thus provides a reasonable stopping rule for isotropic as well

as anisotropic diffusion. Numerical experiments with real fingerprint data

confirm the role of entropy-change in identification of a reasonable stopping

point where most of the noise is diminished and blurring is just started. The

proposed criterion is directly related to the blurring phenomena that is an

increasing function of diffusion process. The proposed scheme is evaluated

with the help of synthetic as well as the real images, and compared with an-

other state of the art schemes using a qualitative measure. Diffusion of some

challenging low-quality images from FVC2004 are also analysed to provide a

reasonable stopping rule using the proposed stopping rule.

4.2 Introduction

In image processing problems, many times one come across the task to enhance flow-like

structures, for instance, the automatic assessment of wood surfaces or fabrics, fingerprint

image analysis, scientific image processing in oceanography [113], seismic image analysis

[114], or sonogram image interpolated for Fourier analysis [115]. All image as mentioned

above have one thing common; they contain elongated structures [107, 116, 117]. Such

images can be referred to as anisotropic. The isotropic, by contrast, is an image category

having largely round objects. The isotropic as well as anisotropic images, once acquired

from their respective sources are mostly noisy. The noise treatment is different based on
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the category they belong. The case of noise smoothing for anisotropic images is more

interesting and is the focus of research presented here.

Classifying images into their category will help to devise a proper noise removal strat-

egy for them. The authors in [118] suggested to use local anisotropy strength as a measure

for an image to classify as anisotropic or isotropic. They later extended their anisotropy

strength definition to construct a complete flow-coordinate system for anisotropic im-

ages. Their proposed anisotropy strength measure computation can be summarised as

follows. First, the image L(x, y) is smoothed with a Gaussian of small standard devia-

tion. The result C(x, y) is then differentiated in x− and y− direction to form Cx(x, y)

and Cy(x, y), respectively. Next the covariance matrix components J1(x, y) = 2Cx(x, y)

and J2(x, y) = C2
x(x, y) − C2

y(x, y), and J3(x, y) =
√

C2
x(x, y) + C2

y(x, y) are computed.

The components are smoothed again with a larger Gaussian. The local orientations and

their anisotropy strength measure are computed as:

θ(x, y) =
arctan

(

J1(x,y)
J2(x,y)

)

2
, (4.1)

and

χ(x, y) =

√

J2
1 (x, y) + J2

2 (x, y)

J3(x, y)
. (4.2)

Applying this definition to our test images, that is, Blackball and Curves image, will result

in a graphical display as shown in Fig. 4.2. The local flow directions are depicted by the

orientations of the small needles superimposed on the image. The length of each needle

is drawn proportional to the amount of local anisotropy at that pixel point. It is noted

that the Blackball image is largely isotropic with no preferred local directions, whereas

the Curves image showed a profound anisotropic character, largely in the vicinity of the

elongated structures. This justifies labelling Blackball image as isotropic and the Curves

image as anisotropic.

The rest of this chapter is organised as follows. Related work is discussed in Section
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(a) (b)

Figure 4.2: Anisotropy strength measure. The figure reveals anisotropy strength mea-

sure in the form of an array of needles on top of the image. The length of needles is

representative of anisotropy strength and the needle direction is an estimation of lo-

cal flow. The blackball image is largely isotropic with little amount of anisotropy at

almost all the points in the image. However, the curve image on the right is largely

anisotropic, with a strong strength measure appearing around the elongated feature of

interest. a represents the black ball image. b is the curve image

4.3. In section 4.4, a discrete image as a spatial distribution is discussed. Spatial Entropy

of Linear Isotropic Diffusion Process is described in section 4.5. Section 4.6 talks about

Spatial Entropy of a Linear Anisotropic Diffusion Process followed by Results and Dis-

cussion in Section 4.7. Finally, the chapter is concluded in Section 4.8.

4.3 Related Work

The research concerned here is to smooth noise present in fingerprint images (a repre-

sentative of anisotropic class) without affecting their ridge/valley pattern. This aim can

be conveniently served in a scale-space construction. A scale-space framework describes

noisy image as a stack of progressively evolving many smooth images, each one with their

corresponding scale [119]. The stack is ordered in increasing smoothness scale, where

the scale varies in fine-to-coarse. The fine-to-coarse transformation is implemented, in
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general, by a linear isotropic diffusion process, governed by a partial differential equation

(PDE) as follows.

Let L(x, y) denote a noisy grayscale input image and L(x, y; t) be an evolving image

at scale t, initialized with L(x, y; 0) = L(x, y). Then, the linear isotropic diffusion process

can be defined by the equation

∂L

∂t
= ∇ · (c∇L) = c∇2L. (4.3)

This equation appears in many physical processes [120,121]. In the context of heat trans-

fer, it is referred to as the famous heat equation. For image processing, the amount of heat

is replaced with the intensity value at a certain location. The diffusivity parameter c is con-

stant across the image, making it a linear isotropic equation. The linear isotropic equation

has an elegant solution L(x, y; t) = G√
2ct(x, y) ∗ L(x, y), where Gσ = 1

2πσ2 exp(−x2+y2

2σ2 ).

This solution provides the required interpretation in the form of low-pass filtering. Due to

low-pass nature of this diffusion, as it progresses from fine scale images to coarser images,

the blurring intensify and may result in removing significant image structure, typically

edges, lines or other details, well before it had taken care of the noise. To protect the

structure in a diffusion process, the diffusivity parameter should be made dependent on

some characterization of image structure. This results in the famous nonlinear isotropic

diffusion process, proposed by [64]. The diffusivity now becomes a function of gradients,

so at the edge point the diffusion is completely inhibited and in smooth regions diffusion

allowed. However, computing gradients for a noisy image is an ill-posed problem. A

remedy was pointed out by [122], that suggests the use of Gaussian smoothing before

computing gradients. This modification lays the foundation for a well-behaved non-linear

isotropic diffusion process. Later on, instead of inhibiting diffusion at edge points, it was

thought of to steer the diffusion in the direction parallel to the edge [106,123–125] rather

than across it. This paved the way for the use of Diffusion matrix. This evolved the

current form of non-linear anisotropic diffusion. The diffusion matrix based equation is
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defined as:

∂tL = ∇ (D∇L) , (4.4)

where D is the 2×2 diffusion matrix. The eigenvectors of the diffusion matrix provide the

required steering while the eigenvalues as a function of gradients, add the non-linearity

character. In our wish to keep connected with the Gaussian convolution interpretation

that provides a mathematical tractability to the whole process, the research reported

here is restricted to the linear anisotropic diffusion case. For that, the eigenvalues of the

diffusion matrix are kept fixed. It is found that the Gaussian convolution connection is

also useful for linking anisotropic diffusion with its earlier counterpart isotropic diffusion

in a more natural way. The support for this modification, came from the argument made

in [124], that a non-uniform Gaussian can act as a solution of the Anisotropic Gaussian

scale-space as long as the diffusion matrix is spatially constant, i.e. it does not depend

on (x, y) spatial location. Keeping in line with this argument, only spatially-invariant

Diffusion matrix is used, however, the steering was allowed. This leaves us with so-

called linear anisotropic diffusion process. The constant eigenvalues are responsible for

the linear part of the name, while the steering of the eigenvectors is what provided the

word anisotropic in the nomenclature. The linear anisotropic diffusion equation has a

convolution solution with a non-uniform Gaussian of the form:

Gλu,λv
(u, v) =

1√
2πλu

exp(− u2

2λ2
u

)
1√
2πλv

exp(− v2

2λ2
v

) (4.5)

where (u, v) are the rotated coordinates obtained using eigenvectors of diffusion matrix.

The eigenvalues λu, λv represent the standard deviations of the Gaussian in u and v di-

rection, respectively. Normally, for noisy images, one of the eigenvalue is set to be much

smaller than the other one, resulting in a non-uniform Gaussian function with more gen-

eralized elliptical support.

Searching for a suitable linear anisotropic diffusion strategy for noisy images in lit-
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erature, we stumble upon considerable activity regarding the impact of a non-linear

anisotropic diffusion equation on noisy images. The non-linear anisotropic literature is

used as a stepping stone to reach a linear anisotropic diffusion strategy. The idea of non-

linear anisotropic diffusion was pioneered by Nitzbeg et al. [126] and Cottet et al. [122].

Later on, Weickert [115] put forward a formal method for enhancing the elongated struc-

ture, referred to as Coherence Enhanced Diffusion (CED). The CED works by steering

the diffusion process in a particular direction with the help of a spatially varying diffusion

matrix. The design was further generalised by adopting a diffusion matrix to learn the

local structure iteratively [127]. Since smoothing elongated structure is desired, the CED

procedure comes in handy. The CED is adopted as it is, but with one major modification.

That is, the eigenvalues are forced to be independent of spatial position without disturb-

ing the eigenvectors. Thus, our proposed linear anisotropic diffusion process will steer

the non-uniform Gaussian to lay along the structure, but its size will remain constant

regardless of the position. Towards the end, we will describe another variant of CED,

where even the steering part of the diffusion matrix will also be pre-computed and kept

constant throughout the evolution process. This is referred to as linear oriented diffusion

process.

The suggested linear anisotropic process for anisotropic images are confronted with

one basic problem: When to stop the diffusion. For the case of a noisy image, the dif-

fusion process initializes with an under-smooth situation that ultimately turns into an

over-smooth one (the mean-value image at the end with no structure). Over-estimating

stopping time will result in an over-smoothed blurry image while under-estimating may

leave significant noise in the image. Therefore, it is crucial that an appropriate time is

selected in an automatic way. The literature activity in this respect can be divided into

two broad categories. One that deals with stopping criterion selection in additive noise

model setting. These methods adopt the stopping time by treating the noisy image as
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the result of a noise addition, where the correlation between the diffused image and the

initial noisy image minimised [115]. The authors in [128] introduced a multigrid algorithm

using a normalised cumulative periodogram. A frequency approach to the problem was

presented in [129]. Whereas, [130] uses the extent of noise smoothing in every iteration

as a stopping parameter for diffusion. Later on, a spatially-varying stopping method was

introduced that increased the computational cost significantly [131]. By identifying it as

a Lyapunov functional of a large class of scalar-valued nonlinear diffusion filters, Weick-

ert [132] introduced decreasing the variance of an evolving image as a stopping tool.

Since additive noise, model may break down for some real-world images, where noise

manifests itself in the form of gaps in regular ridge structures. Therefore, a second cat-

egory of stopping rule was evolved. The category deals with examining entropy profile

of the diffused image and proposed stopping criterion for the evolving image entropy

distance from that of the entropy of the original noisy image [115]. The idea of local

image entropy was introduced in [133], where the measure of local entropy defines the

segmentation boundaries in multiple-object images. Local image entropy definition can

be extended to define a global characteristic of the scale-space image, that is spatial en-

tropy [134].

The research work reported here takes an investigative look at the stopping rule con-

cerning the change in spatial entropy of an image as it goes through diffusion process.

The connection, between last peak in spatial entropy curve and the size of the image

structure, is found to be related to the start of significant information loss. This ob-

servation paves the way to the hypothesis that peak entropy change will happen at the

time instant on diffusion time axis when dominant image structures just start blending

with the background right at their boundaries. This finding, substantiated by extensive

empirical evidence provided here, motivated us to put forward the idea that a maximum

entropy change may well be posed as a good stopping time for the diffusion process.
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4.4 A discrete image as spatial distribution

Consider a discrete fingerprint image L (x, y), where x is the row index and y is the column

index. This discrete image can be realised as spatially distribution light intensity [135].

Each spatial location that is (x, y) in the image registers the number of light quantum-hit.

In this way, we may define

p (x, y) =
L (x, y)

∑

x

∑

y

L (x, y)
(4.6)

This spatial probability perspective was found to corresponds very nicely with the theory

of scale-space [136]. As we move higher in scale-space for an image, and the spatial

smoothing is high, or equivalently the spatial uncertainty increases. In the limit, the

spatial distribution becomes close to uniform distribution. The spatial entropy of an

image is given as

Ht (L) = −
∑

x

∑

y

L (x, y; t)
∑

x

∑

y

L (x, y; t)
log







L (x, y; t)
∑

x

∑

y

L (x, y; t)






(4.7)

As stated in [135], the spatial entropy of the image increases monotonically towards an

equilibrium state logN , where N is dimension N = rows× columns.

4.5 Spatial Entropy of Linear Isotropic Diffusion Pro-

cess

The linear diffusion process implemented by so-called heat equation is the oldest and well-

investigated noise smoothing process in image processing domain. The linear diffusion

process can be visualised as an evolution process with an artificial variable t denoting the
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diffusion time, where the noisy input image is repeatedly smoothed at a constant rate in

all directions. No preference to any direction is what justifies the name isotropic. This

evolution results in scale space representation of the noisy image. As we move up to

coarser scales, the evolving images become more and more simplified since the diffusion

process removes the image structures present at finer scales. In the process, noise also

gets smoothed as it is considered a smaller size object while diffusion just reaches the

point of touching the boundaries of the large dominating structure.

During the process of diffusion from fine scale image to the higher coarser scale images,

the mean of the resulting image remains constant with a monotonic decrease in variance

(a second-order statistics [123]). Later on, it was found that spatial entropy associated

with linear isotropic diffusion process also rises smoothly in a monotonic fashion [134].

Motivating by the smoothness of the spatial entropy graph for the diffusion process,

the first derivative of the entropy function on natural scale parameter τ = log(t) was

investigated. It was shown that entropy change graph do show important peaks related to

dominating structures present in the original fine scale image. However, their experiments

did not involve smoothing noisy images, and the authors fell short of suggesting to use

these peaks as stopping criterion. The empirical evidence is provided here to show that

once a linear isotropic diffusion process is involved in smoothing noisy images, these peaks

will come at a much later stage in diffusion time. Therefore, most of the noise being low

size structure already wiped by the process, and thus the peaks could be regarded as a

suitable stopping time. This proposition is tested by tracking experimental data.

To provide a quantitative measure for checking our test results, two binary statistical

measures are used: Sensitivity and Specificity. This is due to the use of a binary image

as input test, and the final diffused image is thresholded to come up with the final binary

output image. Since we are dealing with binary images, the two measures suits us. The

measures deals with comparing the output binary image A with a standard ground truth
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image B. Let us first define four related quantities: True Positive TP (The black pixels in

image A are also black in image B), False Positive FP ( The black pixels in image A are

white pixels in image B), False Negative FN ( The black pixels of image B are identified

as white in image A, that is we missed the true black pixels), and True Negative TN (The

white pixels in image A are same as white pixels in image B). Sensitivity is given by:

Sensitivity =
number of TP

number of TP + number of FN
. (4.8)

Specificity is more concerned with

Specificity =
number of TN

number of TN + number of FP
(4.9)

First, a linear isotropic diffusion process is conducted for the image without noise. Fig.

4.3(b) shows the entropy curve with natural scale parameter. The monotonic behaviour of

entropy curve is noted. The curve starts increasing from a low value and moves onwards

to an almost stable asymptotic value on a much larger scale. The regularity of the entropy

curve motivates us to compute its derivative on the natural scale parameter. The entropy

change curve for this image diffusion process is depicted in Fig. 4.3(c). One clear peak in

the graph is observed, corresponding well with the radius of the black balls. If the linear

diffusion process is stopped at a scale where the peak in entropy-change happens, then

output resulting diffused image is displayed in Fig. 4.3(d). It is observed that diffused

image is still intact with all the black balls showing their characteristic black colours, with

diffusion just started at the boundaries of these balls. Hoping that this peak in entropy

change will remain fixed at this scale with the noise added to the image, the best possible

stopping time will be the scale of the peak. The sensitivity and specificity numbers for

the comparison of the output diffused binary image with the original are 88% and 96%.

To investigate the shape and location of the peaks in entropy change with noise

added images, we start with lower SNR images. The black balls image is considered with

Gaussian noise added, such that its SNR reduces to 2. The black ball image with SNR=2
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(a) (b)

(c) (d)

(e)

Figure 4.3: Linear isotropic diffusion process. a) shows a black ball test image with

white background. The features present in the image are isotropic in shape with a con-

stant radius of two pixels. b) shows the smooth spatial entropy graph resulting from

diffusion process on natural scale parameter. The entropy change with natural scale

change is displayed in (c), where the peak corresponds to the size of the black balls. The

diffused image resulting from stopping the diffusion process at the location of the peak in

entropy change is shown in (d). The diffused image is converted to binary image using

Otsu optimal threshold of 0.63. The final binary image is displayed as (e).
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(a) (b)

(c) (d)

Figure 4.4: Linear isotropic diffusion process for noisy image. a) shows a noisy black

ball test image with white background. The zero mean Gaussian Noise added such that

SNR reduces to 2 dB. b) shows the spatial entropy-change graph resulting from diffusion

process on the natural scale parameter for a noisy image. Two peaks can be observed,

where the first peak is the result of adding Gaussian noise, and the second peak is

representing the characteristic size of the black balls. The diffused image resulting from

stopping the diffusion process at the location of the second peak in entropy change is

shown in (c). Binarized image as a result of the threshold, set to the mean value of the

diffused image results in (d)

dB is depicted in Fig. 4.4(a). The linear diffusion process was conducted for this noisy

image, to mitigate the effect of Gaussian noise. The resulting entropy change graph is

displayed in Fig. 4.4(b). We see two peaks in the graph. The first peak is largely the

contribution of the noise added to the image. The second peak is due to the presence of

black balls, at the same location where we saw it before in the clean image entropy-change

graph. This validated the claim made in [134], that peaks in entropy change graphs are
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representative of the corresponding sizes of the structures present in the images. The

linear diffusion process can stop at the location of the second peak, the resulting output

diffused image is shown in Fig. 4.4(c)). The image clearly shows a diffused image where

largely the noise is smoothed with the black balls still intact. The diffused image can be

binarized by using its histogram, clearly showing a valley between black and white bars.

Doing so, the image of Fig. 4.4(d) is reached, with sensitivity and specificity numbers,

are 85% and 91%.

To further investigate the entropy change graph of a noisy image, the black ball

image are severely degraded with a large amount of Gaussian noise till its SNR drops to

-3 dB. The noisy black ball image is depicted in Fig. 4.5(a). The linear diffusion process

is applied to this noisy image, with the resulting entropy change graph displayed in Fig.

4.5(b). The presence of two peaks is observed, as previously did in a less noisy image.

However, this time, the peak associated with noise is much large in amplitude to the peak

of the black balls. This clearly is the outcome of a large amount of noise added to the

image pixels. The second peak, though small in amplitude, is still present at the same

location as that of clean image entropy-change graph. By stopping the linear diffusion

process at the second peak location, we get the diffused image is shown in Fig. 4.5(c).

By converting this diffused image by selecting a threshold from its histogram, we reach

the binary result as displayed in Fig. 4.5(d), having sensitivity and specificity numbers

as 78% and 88%.
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(a) (b)

(c) (d)

Figure 4.5: Linear isotropic diffusion process for noisy image. (a) shows a noisy

black ball test image with white background. The zero mean Gaussian Noise added such

that SNR reduces to -3dB. b) shows the spatial entropy-change graph resulting from

diffusion process with respect to natural scale parameter for noisy image. Two peaks

can be observed, where the first peak is much larger in amplitude than the second peak.

The diffused image resulting from stopping the diffusion process at the location of the

second peak in entropy change is shown in (c). Binarized image as a result of threshold,

set to the mean value of the diffused image results in (d)

4.6 Spatial Entropy of a Linear Anisotropic Diffusion

Process

In this section, spatial entropy analysis is carried out for the anisotropic diffusion process.

What we are looking for is the finding whether we will get a smooth spatial entropy

increasing function, and then will we get a distinct peak in the entropy change curve for

the anisotropic diffusion process.
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The anisotropic scale-space for the image L(x, y) can be constructed by the diffusion

equation:

∂L

∂t
= ∇ (D∇L) , (4.10)

where D is the 2×2 diffusion matrix, adapted to the local image structure, via a structural

descriptor, called the second-moment matrix µ, defined as:

S =







s11 s12

s12 s22






=







L2
x,σ Lx,σLy,σ

Lx,σLy,σ L2
y,σ






(4.11)

where L2
x, LxLy and L2

y represents the 2nd order Gaussian derivative filters, in the x and

y directions. This symmetric 2× 2 matrix has two eigenvalues λ1 and λ2, given by:

µ1 = 1/2 (s11 + s12 + α)

µ2 = 1/2 (s11 + s12− α) ,
(4.12)

where

α =

√

(s11− s22)2 + 4s122 (4.13)

The second-moment matrix comes with two eigenvectors. The first normalized eigen-

vector can be written as (cos θ, sin θ)T , and the second orthogonal eigenvector comes out

to be as (− sin θ, cos θ)T . One of these eigenvectors is parallel, and the other is perpendic-

ular to the structure. The parameter θ represents the local orientations of the given image.

What observed here is that eigenvalues are dependent on the local structure. In order

to transform CED process into a linear anisotropic process, fixed values are assigned to

the eigenvalues. Specifically, the eigenvalue associated with eigenvector that goes parallel

to the structure have given a larger value than that of the eigenvalue of an eigenvector

that is perpendicular to the structure boundary. Our specific choice of λ1 and λ2 for this

experiment are

λ1 = 0.1

λ2 = 1− 0.1,
(4.14)
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with a step size of 0.01 to provide a stable diffusion process.

The diffusion matrix D can now be reconstructed with help of its structure-invariant

eigenvalues and structure-dependent eigenvectors as:

d11 = λ1 cos
2 θ + λ2 sin

2 θ

d12 = (λ1 − λ2) sin θ cos θ

d22 = λ1 sin
2 θ + λ2 cos

2 θ

(4.15)

Once the diffusion matrix is constructed, the evaluation process is set to start. The

diffusion process proceeds in four steps.

1. Calculate the second-moment matrix for each pixel.

2. Construct the diffusion matrix for each pixel.

3. Calculate the change in intensity for each pixel as ∇ (D∇L).

4. Update the image using the diffusion equation as:

Lt+△t = Lt +△t×∇ (D∇L) (4.16)

This monotonic decreasing behaviour of the image variance is also evident in the graph

depicted in Fig. 4.6 when we are diffusing our fingerprint image shown in Fig. 4.6. What

can be seen from the graph is that it is fast decreasing in the beginning, but towards the

end, it becomes saturated, providing convergence. Thus, by bounding the relative change

in the variance one can define the diffusion stopping rule. However, this rule does not

guarantee an optimal time to stop the process. It is based on the user defined ratio of

diffused image variance to that of initial image variance. This ratio might be useful if we

want to compare various diffusion schemes. Its utility to provide a well-diffused image with

all the important structure cleaned but intact may be limited. Under the CED process,
the fingerprint image becomes strongly coherent as the number of iterations increased.

In other words, as the scale increases, the image becomes diffused with a corresponding
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Figure 4.6: This graph shows the monotonic decreasing behavior of the variance of the

image for coherence enhanced diffusion(CED)

change in its spatial distribution. Taking pt (x, y) =
L(x,y;t)

∑

x

∑

y

L(x,y;t)
and C =

∑

x

∑

y

L (x, y; t),

we get

Ht (L) = −
∑

x

∑

y

pt (x, y) log pt (x, y) (4.17)

Now, we track the change in entropy with respect to natural scale parameter τ = log t.

The natural scale parameter is defined in [137]. The entropy change is thus,

dHt (L)

dτ
= −

∑

x

∑

y

d

dτ
(pt (x, y) log pt (x, y)) (4.18)

After some mathematical manipulations, reach to the equation:

dHt (L)

dτ
= −

∑

x

∑

y

[1 + log pt (x, y)]
d

dτ
pt. (x, y) (4.19)

Using chain rule τ = log t and dτ = 1
t
dt

dHt (L)

dτ
= −

∑

x

∑

y

[1 + log pt (x, y)]

(

d

dt
pt (x, y)

)

t (4.20)

Now as pt (x, y) =
L(x,y;t)

∑

x

∑

y

L(x,y;t)
= Lt(x,y)

C

dpt (x, y)

dt
=

1

C

dLt (x, y)

dt
(4.21)

dpt (x, y)

dt
=

1

C
∇ (D∇Lt (x, y)) (4.22)
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dpt
dt

=
1

C
∇D∇Lt (4.23)

The Eq. 4.20 lends itself now as

dHt

dτ
= −t

∑

x

∑

y

(

1 + log
Lt

C

)

.
1

C
∇D∇Lt (4.24)

dHt

dτ
= −t

∑

x

∑

y

(1− logC + logLt).
1

C
∇D∇Lt (4.25)

dHt

dτ
= − t

C

∑

x

∑

y

(k + logLt).∇D∇Lt (4.26)

The rate of change in the entropy for the linear isotropic diffusion case is the special case

of 4.26, and this happens when the diffusion matrix D is replaced by a scalar diffusivity,

say c. Spatial entropy change for linear isotropic diffusion process is given by:

dHt

dτ
= −ct

C

∑

x

∑

y

(k + logLt).∇2Lt. (4.27)

For both, anisotropic as well as isotropic cases, the spatial entropy change equation con-

tains the same constant k = 1− logC.

The same tests, as were performed earlier for linear isotropic diffusion process, are con-

ducted for linear anisotropic diffusion process. The test anisotropic image for this purpose

consists of three curves, as shown in Fig. 4.7. At the heart of the anisotropic process is

the construction of diffusion matrix D. The diffusion matrix handles steering the elliptical

Gaussian to go around the structure. The geometric visualisation in the form of ellipses

corresponding to point-wise diffusion matrix is displayed in Fig. 4.7, where it can be seen

that they align well with the local flow of the curve. The diffusion parallel to the edges

is enabled due to the large eigenvalue while avoiding the cross-over edge problems due to

small eigenvalues. The linear anisotropic diffusion character is made evident by having

constant eccentricity for all the ellipses across the image. The term anisotropic used here
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is related to changing direction of the ellipse at each pixel due to the diffusion matrix

eigenvector adaptability with the given local structure. Therefore, with each iteration,

the ellipse do grow without changing the eccentricity ratio and for a given diffusion time,

the size of the ellipse remains constant throughout the image. Since the major axis of the

ellipse is parallel to the edge of the curve, so no harm in increasing it. The minor axis of

the ellipse is aligned with the width of the curve. So increasing the ellipse minor axis will

eventually make the ellipse protrude outside the boundary of the curve, and the disturbed

structure is obtained, and that is precisely where the diffusion should stop eventually.

Figure 4.7: Geometric interpretation of diffusion matrix. The figure shows part of the

anisotropic curve image. The diffusion matrix associated with each pixel is depicted as

ellipses on top of the image. It is observed that ellipses are steered to follow with the

curve flow direction

First, linear anisotropic diffusion process was applied to a clean curve image. The entropy

and entropy change graphs as depicted in Fig. 4.8(b),(c). Both graphs are smooth and

well-behaved, validating the notion that the linear anisotropic diffusion process is a lot

like their isotropic counterparts. A prominent peak is located at τ = 4 in the entropy

change graph, representing the characteristic width of the curves present in the image. By

stopping the diffusion process by that peak location, the diffused image is shown in Fig.

4.8(d). The image is largely undisturbed with small diffusion effects at the boundaries

and ends of the curves. The quantitative measures, of sensitivity and specificity, for the
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(a) (b) (c)

(d) (e)

Figure 4.8: Linear anisotropic diffusion process. a) shows a flow-like test image having

three black curves with a white background. The features present in the image are elon-

gated in shape with a constant width of two pixels. b) shows the smooth spatial entropy

graph resulting from diffusion process with respect to the natural scale parameter. The

entropy change with natural scale change is displayed in (c), where the peak corresponds

to the width of the curves. The diffused image resulting from stopping the diffusion pro-

cess at the location of the peak in entropy change is shown in (d). The diffused image

is converted to the binary image using Otsu optimal threshold of 0.63, as shown in (e)

output image, are computed as 82% and 89%. The peak in entropy change graph, thus,

presents itself as a suitable stopping time for the linear anisotropic diffusion process.

The experiment for linear anisotropic diffusion process was also conducted for an ex-

tremely noise situation. A Gaussian noise is added to the original curve image such that

the resulting SNR is lowered to become -10dB. The noisy curve image is displayed in

Fig. 4.9(a). After the completion of the linear anisotropic diffusion process, the entropy

change graph is obtained as depicted in Fig. 4.9(b) and (c), respectively. It is clearly
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observed that the curve for entropy change is steeply coming down in the beginning and

then hits a bottom. After the minimum is reached, it rises again to display a peak at the

characteristic width of the curves in the noisy image. The noise can be largely curtailed

by stopping the diffusion process at the peak. The diffused image stopped by the peak is

shown in Fig. 4.9(d). The image do show a large smoothing of the noise with minimum

disturbance to the structure of interest. Thresholding the image by Otsu method, a fi-

nal binarized image is obtained, as shown in Fig. 4.9(e). The quantitative measures of

sensitivity and specificity for the binarized output image are recorded as 75% and 84%.

4.7 Results and Discussion for Real Fingerprint Im-

ages

This section deals with real fingerprint images. We look into their acquisition process.

Then process them for uniform background and later investigate their spatial entropy

characteristic as the image evolves under linear anisotropic process. The first test that

we performed is to check the anisotropic strength measure for the acquired fingerprint.

The Fig. 4.10 shows results of the test. It is observed that the regular ridge/valley

pattern found in the fingerprint image is largely anisotropic in nature. This justifies the

employment of linear anisotropic diffusion process for smoothing these images.

The acquired fingerprint images often show important illumination variations, poor

contrast in some areas and gaps in ridge/valley regions. To reduce the illumination

imperfections and generate images more suitable for enhancement and minutia extraction,

a preprocessing comprising the non-uniform illumination correction is applied. It occurs

due to the very process of scanning a finger. The middle finger surface is thicker as

compared to the surrounding region. This results in blocking the light in the middle

while the outer surface is fairly highly illuminated. The fingerprint scanner registers
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Figure 4.9: Eight linear anisotropic diffusion process for noisy image. a) shows a flow-

like noisy test image having three black curves with a white background. The Gaussian

noise is added to bring down the SNR of the resulting image to be -10 dB. b) shows

the smooth spatial entropy graph resulting from diffusion process on the natural scale

parameter. The entropy change with natural scale change is displayed in (c), where a

distinct peak is still observable. The diffused image resulting from stopping the diffusion

process at the location of the peak in entropy change is shown in (d). The diffused image

is converted to binary image using Otsu optimal threshold of 0.55, as shown in (e).
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Figure 4.10: Anisotropic strength measurement for real fingerprint images. This figure

shows an acquired digital fingerprint with local anisotropy strength displayed as length of

the needles on top of the image. We observe a large presence of significant anisotropy

in the image

this uneven illumination. Consequently, background variation will add bias for different

regions of the same image to disturb the ridge/valley contrast. Since the ridge/valley

pattern is identified and classified by its gray-level profile, this effect may worsen the

performance of diffusion and disturb our spatial entropy analysis. With the purpose of

removing this disturbing factor from our experimental analysis, a Homomorphic filtering

approach is adopted. The process is described below.

In basic terms, homomorphic filtering assumes that an image can be represented in

terms of product of illumination and reflectance. That is,

L(x, y) = i(x, y)× r(x, y), (4.28)

where L(x, y) is the fingerprint image, i(x, y) is the background illumination image, and

r(x, y) is the reflectance image [138]. Reflectance r arises due to the object itself, but

the illumination image i is independent of the object, is a pure representation of lighting

conditions at the time of the image capture. To compensate for the non-uniform illumi-
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nation, the illumination image part has to be made constant. Illumination is assumed to

be slowly varying lending itself in the low-frequency region as compared to the reflectance

image that contains abrupt changes, showing a considerable high-frequency attitude.

For implementing homomorphic filtering, we first transform the multiplicative model

of image formation to additive model by moving to the log domain.

ln(L(x, y)) = ln(i(x, y)) + ln(r(x, y)). (4.29)

Then, a low-frequency filter is used with an appropriate cutoff to get a background il-

lumination image i(x, y) estimate. The difference d(x, y) between original image L(x, y)

and background illumination i(x, y) is calculated for every pixel,

d(x, y) = L(x, y)− i(x, y). (4.30)

To this respect, literature reports illumination-correction methods based on the subtrac-

tion of the background illumination image from the original image [89], [90] and [139].

The background image is shown in Fig. 4.11. After subtraction, a greyish look image is

obtained, as depicted in Fig. 4.11(b). Finally, an illuminated-corrected image is obtained

by transforming linearly new image pixels into the whole range of possible grey levels [0-1]

using the linear stretch. Fig. 4.11(c) shows the new image corresponding to stretched and

uniformly illuminated image. The proposed illumination correction algorithm is observed

to reduce background intensity variations and enhance contrast in the middle region than

the original fingerprint image. The method was validated for all the images that processed

in the database.

To validate the effect of the homomorphic filtering, the histogram analysis is inves-

tigated before and after homomorphic filtering stage. Histogram of an image represents

the relative occurrences of the gray-level present in an image. According to [95, 138], the

non-uniform illumination will modify the histogram of an image in a way that it can not

be binarized by a single global threshold. For this purpose, the Otsu’s method [96] is used,



4.7 Results and Discussion for Real Fingerprint Images 105

(a) (b) (c)

Figure 4.11: Non-uniform illumination correction. a) shows an acquired digital fin-

gerprint. b) depicts the estimated illumination surface, clearly showing non-uniform

background lighting conditions. c) is an output result after passing the image through

homomorphic filtering operation and then linearly stretched. We observe that illumina-

tion has been corrected with clear ridge/valley structure
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which chooses the threshold to minimise the intraclass variance of the background and

foreground, to compute the binary threshold for the original fingerprint and that of the

uniformly illuminated image. The results are displayed in Fig. 4.12. The uniformly

(a) (b)

Figure 4.12: Validation test for homomorphic filtering output. a) shows the binariza-

tion of an acquired digital fingerprint using the optimal Otsu method. b) depicts the

binarization of the uniformly illuminated fingerprint with homomorphic filtering, also

using the optimal Otsu method. We observe that binarization results for filtering output

shows all the regions with ridge/valley structure intact

illuminated fingerprint image is now fed to the linear anisotropic diffusion process. The

image went through diffusion evolution process from a small scale τ = log(t) = −3 till

tau = log(t) = 5. The normal width of the ridges found to be 9, with half the width

equal to 4.5. The spatial entropy graph is depicted in Fig. 4.13. We see a smooth curve

with ever increasing entropy values. The entropy change graph in Fig. 4.13(b) displays

a clear peak at τ = log(t) = 1, that results in t = 2.13. The scale value t in fingerprint

images is linked to the width of the ridges as proposed in [124]. By stopping the process

at τ = 1, a diffused image is obtained as shown in Fig. 4.13(c). If we let the diffusion

process continues for long time (τ = 5), we get a mean image as shown in Fig. 4.13(d).

What remains to be tested is the comparison of entropy-change based stopping crite-
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Figure 4.13: Spatial Entropy for a real fingerprint image under linear anisotropic

diffusion process. a) displays spatial entropy graph of an acquired digital fingerprint. b)

depicts the entropy-change graph with one clear peak. the peak goes well with half-width

of the average ridge present in fingerprint image. The diffused image obtained by peak

of entropy-change is depicted in (c). While the image shown in (d) is the image we will

ultimately get if we let the diffusion go on for a long enough diffusion time
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Figure 4.14: Comparison between spatial entropy-based and correlation-based stopping

rule. a) displays spatial entropy change graph of an acquired digital fingerprint as a

black curve and the correlation coefficient between (input noisy image - diffused image)

and diffused image. b) shows stopping the diffusion process at the minimum of the

correlation coefficient curve. The diffused image still shows signs of interrupted ridges

rion with that of correlation-based method, presented in [140]. If the unknown additive

noise n is uncorrelated with the unknown signal u(t), it could be reasonable to minimize

the covariance of the noise u(0)−u(t) with the signal u(t). The covariance is represented

by the correlation coefficient and is given by,

corr (u (0)− u (t) , u (t))

= corr(u(0)−u(t), u(t))√
var(u(0)−u(t) )·var(u(t))

(4.31)

and choose the stopping time T so that the expression 4.31 is as small as possible.

Later on, the authors in [141] proposed to use the quality of the edges in the process

of finding the optimal time to stop the diffusion process. To assess the quality of our

fingerprint edge structures, the edge contrast measure is used which is defined in [142].

The edge quality index is referred to as the edge based contrast measure (EBCM). The

EBCM is based on the observation that human perception mechanisms are very sensitive

to contours (or edges). The larger the width of the edge pixels, the larger will be this
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: Progression of Diffusion for A fingerprint image. Image binarized using

global threshold using Otsu method with respect to various location of the entropy-change

graph: a) displays image at τ = −1.2, the location specified by the correlation method.

Similarly, (b) at τ = 0.9, (c) at τ = 1, (d) at τ = 1.1, (e) at τ = 1.4, and (f) at

tau = 2. We observe that as the diffusion increases, the gaps within ridges started to

fill. However, after a certain limit as τ = 1, the closer ridges started to get merged into

one. The ellipse is drawn of the portion of the fingerprint to facilitate observation
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Figure 4.16: Comparison of fake minutia point of the proposed method with

correlation-based and EBSM methods. a), (d), and (g) are the graph shows the compar-

ison of stopping time for correlation-based in green and proposed method in blue. b),

(e),(h) are the fingerprint images diffused and stopped by the correlation-based optimal

stopping method. c), (f), and (i) are the final optimal stopped images for the proposed

method
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quality index. In our diffusion process, the edges are larger in width due to the poor image

quality, so this EBCM is larger at the beginning of the diffusion process. After certain

iterations, the smoothness of the noise happens, and the edges improve with less width

and a lower value for the EBCM. After reaching a certain minimum, the edges again starts

to widen due to over-smoothing, and the corresponding EBCM values increase. The best

stopping time could be the minimum of the EPCM values, as shown in Fig. 4.14.

Image enhancement for fingerprint images is essentially to raise the contrast of ridge/valley

structure, such that enhanced version is more suitable for binarization that will eventu-

ally be used for automated identification system. To perform the evaluation of the real

fingerprint image after diffusion, the third party minutia extractor as provided in [143]

is used. The noisy acquired images were stopped at three different time instants due to

correlation method, EPCM, and the proposed entropy-change based, and the resulting

three output diffused images were then compared quantitatively. Analysis of the diffused

image yields a list of candidate minutiae. However, due to the use of non-optimal stopping

time, there are usually a large proportion of false minutiae, i.e. points that have been

incorrectly identified as minutiae. This diffusion process directly affects the binarization

which creates wrong minutiae, as shown in Fig. 4.15. Therefore, the total number of can-

didate minutiae detected in three types of diffused images indicate the relative degree of

noisiness still present in them, and will cause false minutiae. Fig. 4.16 depicts a compar-

ison of fake minutiae of the proposed method with correlation-based and EBSM method.

Table.4.1 has been generated for the six test images from the university campus students,

that indicate that correlation based stopping method and EPSM-based stopping criterion

had detected considerable more minutiae, indicating the immature diffusion of the noisy

input image. The correlation-based stopping generated on the average 350 minutiae per

image (4 times the ground truth image) while EPSM provided 210 minutiae per image

(2.4 times the ground truth). The proposed entropy-change generated 145 minutiae per
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Table 4.1: A comparison: Total minutiae found by the detection algorithm enhanced

by Edge Width Based, Correlation Based and Entropy-change based. The sample image

are used from FVC2004 DB2 B 101 1 to 101 6

Edge Width Based Correlation Based Entropy-change based

Image1 220 367 155

Image2 200 333 135

Image3 222 370 150

Image4 208 330 140

Image5 224 380 160

Image6 206 320 130

image (1.65 time ground truth).

Another set of experiments was conducted to assess the suitability of proposed stop-

ping criterion for some extremely low-quality fingerprint images present in the FVC2004

database to assess the ultimate strength of the proposed stopping rule. One such chal-

lenging image is displayed in Fig. 4.18(b). The fingerprint shows broken ridges, salt and

pepper noise, non-uniform illumination, and on top of it a dark square patch right at

the centre. The image was preprocessed first with small median filter of size 3 × 3 to

tackle salt and pepper noise and was then made to go through Homomorphic filtering to

eliminate to a larger extent the non-uniform background variations.

After initial treatments, the image was passed on to a linear diffusion process to join

broken ridges while avoiding the mixing of ridge/valley pattern. A modified coherence

enhancing diffusion (CED) as suggested earlier in linear anisotropic section proves to be

of little success for diffusing low-quality fingerprints. This is due to the finding that our

earlier attempts at introducing constant eigenvalues with CED process ( to transform

CED into a linear anisotropic process) seems to inadequate for low-quality fingerprint im-
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Figure 4.17: Performance of proposed stopping rule for a low-quality image. A sample

image from FVC2004 database is displayed in (a). Its non-uniform illumination image

is extracted as shown in (b). The (c) depicted the uniform image. Spatial entropy

points for the uniform image are plotted in (d). A piecewise smooth spline was fitted

due to noisy nature of the entropy points, and subsequently, its derivative is computed

as shown in (e), proving a smoothed entropy-change curve with increasing logarithmic

scale. The optimally diffused image stopped at the farthest peak in entropy-change curve

is displayed in (f). The contrast-adjusted image through linear stretch is shown in (g).

Finally, a 9 × 9 block-based binarization was used to come up with a clean binary image

as depicted in (h)
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6.5 Linear model Poly1:
     f(x) = p1*x + p2
Coefficients (with 95% confidence bounds):
       p1 =      0.3627  (0.293, 0.4323)
       p2 =        2.04  (1.519, 2.561)

Goodness of fit:
  SSE: 0.1482
  R-square: 0.9812
  Adjusted R-square: 0.9765
  RMSE: 0.1925

(c)

Figure 4.18: Linear relationship between stopping point and average ridge width. The

figure shows the fitting of a linear curve through some discrete points for the stopping

point of the entropy-change versus logarithmic scale curve, corresponding to the furthest

peak. For creating increasing large ridge widths, the center-cropped zoomed images of

same dimension are being employed. The figure shows the first and the last such zoomed

images. Fig. (a) Shows the first zoomed image and (b) displays the last image in zoomed

series. c) gives a comparison of average ridge width with Logarithmic scale for farthest

peak in Entropy change
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age diffusions. The spatial entropy curve was found to be increasing in the beginning but

show a dip in spatial entropy values towards the end (large logarithmic scales). A search

was conducted to look into some recent robust variant of CEDs while dealing with low-

quality fingerprints. The search culminated into a new class of diffusion process that was

developed specifically for low-quality challenging fingerprints. The new process deploys

a pre-computed orientation field to transform the Coherence-enhancing diffusion process

into that of linear oriented diffusion process [144], much more robust to the extremely

noisy situations. The new process was studied with special care for its spatial entropy

behaviour while smoothing low-quality fingerprints. The spatial entropy was found to

be monotonically growing quantity as a function of increasing logarithmic scale. This

desirable behaviour was found to be consistent across many database images that were

tested here. The large part of the stable behaviour for entropy graph can be attributed

to the injection of pre-computed orientation filed that was extremely helpful to steer the

diffusion matrix in right direction in sensitive later stages of the diffusion process, where

large scales were involved. Specifically, the linear oriented diffusion process was adopted

for experimentation here with two fixed eigenvalues as λ1 = 0.01 and λ2 = 1− 0.01. The

diffusion matrix was constructed as before:

d11 = λ1 cos
2(θ) + λ2 sin

2(θ), (4.32)

d12 = (λ1 − λ2) sin(θ) cos(theta), (4.33)

d11 = λ1 sin
2(θ) + λ2 cos

2(θ), (4.34)

but with one major change that is θ is now pre-computed orientation field from the use

of directional filter bank framework for the image [102]. The orientation field θ was kept

constant in the whole evolution process. The diffusion process was evolved starting from

scale τi = log(t = exp(−3)) and reaching final scaleτf = log(t = exp(5.5)) (providing

mean value image) with a step size of t = exp(−3). The spatial entropy was computed
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along the way and reported to be growing entity with steady value at the end, as depicted

in Fig4.17(d). The entropy graph contains a multitude of discontinuities corresponding

to a small leftover noise particles in the fingerprint after preprocessing. The curve can be

smoothed by fitting a piecewise spline while caring for some real big discontinuities. To

do so, a smoothing spline function was fitted to the noisy entropy curve with a coarser

soothing parameter of value 0.95 on a scale of [0, 1]. The entropy change curve is con-

structed from fitted spline curve and is depicted in Fig. 4.17(e). It shows a number of

peaks representing different structures dominating at different scales. There may well

be some small broken parts of otherwise long ridges. The last peak at the farthest end

represents the largest dominating structure that may be linked tom average ridge width of

the fingerprint. By stopping the linear diffusion process at that peak τ = 3.2, the diffused

image is displayed in Fig. 4.17(f). The uneven image contrast can be straightforwardly

improved using well-known block-based contrast enhancement scheme such as Contrast

limited adaptive histogram equalisation (CLAHE) [145], to provide an evenly-contrasted

image, as in Fig. 4.17(g). The contrast-adjusted image was then binarized with a block-

by-block process to result in Fig. 4.17(h). The binarized result shows a clear fingerprint

with ridge/valley structure largely intact (minimum mixing of nearby ridges) with greatly

diminishing the intensity of noise. Most of the genuine minutia points (ridge ending and

bifurcation points) are still valid and can be easily detected by the subsequent extraction

process.

To quantitatively assess the performance of proposed stopping rule for image diffusion,

a measure goodness index(GI), was adopted from an earlier fingerprint image enhance-

ment[1]. This goodness index (GI) is defined as follows:

GI =

r
∑

i=1

qi [pi − ai − bi]

r
∑

r=1

qiti

, (4.35)
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where, p represents the paired minutiae (between the manually extracted and machine

extracted), a represents the missing minutiae, b represents the spurious minutiae and t

represents the true minutiae. The measure is suppose to give a number between 0 and 1.

This goodness index is applied on Fig. 4.18(b). The GI without enhancement is found to

be 0.34, with enhancing using CED [127] is 0.45 and after applying the proposed method

is 0.52. A larger test is performed on the 40 images of FVC2000 DB4 B (101 to 105). The

averaged GI without enhancement comes out to be 0.26, with enhancing using CED [127]

is 0.37 and after applying the proposed method is 0.43.

The proposed stopping rule being an iterated process can be analysed with its com-

putation complexity profile. The stopping rule involves three nested loops. First one is

the do-while loop that let the process runs till it reaches the farthest peak in the entropy

change graph, and the remaining two are FOR loops that span the dimensionality of the

fingerprint. Therefore, an estimate of the computational complexity associated with the

proposed stopping rule can be described as a product N ×M × ITERATIONS, where

N and M represents the rows and columns of the fingerprint and ITERATIONS are the

count of repetitions to reach the required peak. Since the peaks represent the dominating

structure, which is this case is the width of the ridges, an experiment was conducted to

see that linkage more explicitly. A sequence of same dimension fingerprint images was

created by increasing zoom values and centre cropping the resultant image. For each of

these images, an identical linear diffusion scheme with pre-computed orientation filed was

run to locate the desired peak in their respective entropy-change graphs. A plot in Fig.

4.18 is shown connecting logarithmic scale at which the process stopped and the average

width of the ridges in the respective zoomed images. The graph in fig shows the dots,

obtained from this experiment, and were fitted with a linear curve having 95% confi-

dence interval. The logarithmic scale, at which the diffusion process stopped, in turn, can

provide the number of iterations knowing the step size involved in the diffusion process.
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Thus, given dimension of the input fingerprint and an estimate of the average ridge width,

a reasonable guess at the computation complexity of the proposed stopping rule can be

reached.

4.8 Conclusion

In this chapter, the entropy-change for an anisotropic diffusion of a fingerprint image is

investigated. A unique peak is found, associated with blurring of the dominant structure.

This provides a reasonable stopping rule for the anisotropic diffusion process, whose goal

is to smooth the image without disturbing the structural information. The numerical

results validated the existence of the boundary between under-smooth and over-smooth

regions of anisotropic diffusion.



Chapter 5

A fast and accurate iris

segmentation method using an LoG

filter and its zero-crossings1

This chapter is an adapted version of a journal article. The section headings from the

journal article have been retained. Figures, equations, tables, and references have been re-

numbered and are in line with the thesis format. This chapter presents a hybrid approach

to accurately localise the iris from an eye image. With respect to our proposed design,

this chapter falls in the iris subsystem. It covers four modules of the iris subsystem, as

highlighted in Fig. 5.1.

1Published as: Tariq M. Khan, Mohammad A. U. Khan, Donald G. Bailey and Yinan Kong,“A fast

and accurate iris segmentation method using an LoG filter and its zero-crossings,”IEEE Transactions on

Information Forensics and Security submitted
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Figure 5.1: Modules of the proposed design under study

5.1 Abstract

This chapter presents a hybrid approach to achieve iris localization based on

a Laplacian of Gaussian (LoG) filter, region growing, and zero-crossings of

the LoG filter. In the proposed method, an LoG filter with region growing is

used to detect the pupil region. Subsequently, zero-crossings of the LoG fil-

ter are used to accurately mark the inner and outer circular boundaries. The

use of LoG based blob detection along with zero-crossings makes the inner and

outer circle detection fast and robust. The proposed method has been tested on

three public databases: MMU version 1.0, CASIA-IrisV1 and CASIA-IrisV3-

Lamp. The experimental results demonstrate the segmentation accuracy of

the proposed method. The robustness of the proposed method is also vali-

dated in the presence of noise, such as eyelashes, a reflection of the pupil,
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Poisson, Gaussian, speckle and salt-and-pepper noise. The comparison with

well-known methods demonstrates the superior performance of the proposed

method’s accuracy and speed.

5.2 Introduction

The use of fraudulent identities is considered to be a key enabler of serious organised crime

and even terrorism. Biometrics is a fast developing science that can provide a higher level

of security, convenience, and efficiency to protect against identity theft than traditional

password-based methods for user authentication. Humans have many biometric traits

such as a face, hand geometry, fingerprint, voice and iris [146,146,147], that can be used

for identity verification. However, iris recognition is found to be accurate and one of the

more reliable methods due to its high degree of uniqueness and randomness, even between

identical twins, and remains constantly stable throughout an adult’s life [148, 149].

The iris is a nearly circular shaped region between the sclera and the pupil. It is an in-

ternal organ that is well protected from the environment and can be seen from outside the

body [150]. It consists of many features like furrows, freckles, stripes, coronas, ligaments,

arching, zigzag collarette, ridges, rings, and crypts [151–153]. These features are statis-

tically stable, unique, and are randomly distributed in the human iris region [154, 155].

These properties make the iris a secure and reliable source of personal identification [156].

Generally, the essential steps within an iris recognition system are: eye image acquisi-

tion, segmentation of the inner and outer boundary of iris, extraction of unique features,

feature matching and finally the recognition of a person [148], as shown in Fig. 5.2. Of

these steps, the segmentation of the inner and outer boundary of iris plays a vital role

towards system accuracy. Iris segmentation localises two different boundaries. First, it

segments out the pupil’s outer boundary, known as the pupillary or inner boundary of
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the iris, and then the outer or limbic boundary of the iris. Iris segmentation is a compu-

tationally intensive task in iris recognition [148].

Although state-of-the-art methods [157–160] are very effective for iris recognition, their

performance is greatly affected by iris segmentation. The reasons are as follows:

• Iris segmentation defines the contents of the features that are subsequently pro-

cessed, by normalisation, feature extraction, and matching. Thus the accuracy of

iris recognition is directly related to iris segmentation. Inaccurate iris segmentation

is reported to be the main cause of failure in iris recognition systems [153].

• Processing speed is a bottleneck in practical applications, while in iris recognition

the most time-consuming module is iris segmentation [157, 161].

There are several challenges in practical iris segmentation. Some of them are the image

acquisition angle, pupil dilation, occlusion, focus, and image clarity. Pupillary and limbic

boundaries are nonmuscular, which can lead to inaccuracy if fitted with simple shape as-

sumptions. All of these challenges makes the iris segmentation process difficult. Therefore

a fast, accurate and robust iris segmentation algorithm is highly desirable.

In the literature, different techniques are proposed for fast and accurate iris segmen-

tation. These can be divided into two broad categories: Shape-based detectors [152, 157]

and intensity-based thresholding [146, 148, 149]. Generally, shape-based detection gives

better accuracy but is slower in processing. On the other hand, intensity-based threshold

methods are fast, but they are less accurate than the shape-based detectors.

In this chapter, we investigate the combination of a fast shape-based detector with an

intensity-based threshold to accurately segment an iris. A Laplacian of Gaussian (LoG)

filter is used as a shape detector along with region growing and an intensity-based thresh-

old is efficiently used to locate the true pupil region. Then the zero-crossings of the LoG

filter are used to mark the true inner and outer boundaries of the iris. The combination
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Figure 5.2: Block diagram of an iris recognition system

of these filters not only gives better accuracy than intensity-based threshold methods but

also gives much better processing speed than shape-based detectors. The rest of this

chapter is organized as follows.Background and related work is presented in Section 5.3.

Section 5.4 give details of proposed method. Experimental results are presented in Sec-

tion 5.5. Computational cost and limitation are discussed in section 5.6 followed by the

conclusion of this chapter in Section 5.7.

5.3 Background and related work

In iris segmentation, the first step is to find the pupil centre and then to fit a circle to

localise the pupil boundaries [148]. The centre of the iris lies within the pupil, but the two

circles are not concentric. An accurate localization of the pupil reduces the search space

for the centre of the iris. Duagman proposed an edge-based detector using an integral

differential operator (IDO) [162]. The operator searches over the image domain (x, y) for

the maximum in the blurred partial derivatives with respect to increasing radius r, of

the normalised contour integral of I(x, y). The complete operator behaves as a circular

edge detector, blurred at a scale set by σ, searching iteratively for the maximal contour

integral. A circular Hough transform is used to detect the inner and outer boundaries of

the iris. Three parameters (x0, y0, r) are used to define each circle, where (x0, y0) is the
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center and r is the radius of the circle. Similarly, a mixture of the gradient edge-map and

the circular Hough transform was used by Wildes [152] to pinpoint the iris boundaries.

The literature provides evidence that histogram and threshold based techniques are

faster than using the Hough transform [163]. In histogram-based techniques, threshold-

ing is used for locating the pupil considering it as the darkest region in an eye image

[146]. For pupil detection, Zhang [164] first divided the eye image into small rectangular

blocks of fixed size and then found the average intensity value of each block. Dey [165]

used down-sampling on the input image before pupil and iris localization. To find all the

connected components, first, contrast scratching is applied to the down-sampled image

followed by the image binarization.

Ibrahim et al. [148] used histogram-based and standard deviation based adaptive

thresholding to localise the pupillary boundary. A range of grey levels that has the high-

est probability of the pupil is found by moving a circular window. The window that

contains a grey level peak with a minimum standard deviation of x- and y- coordinates

is selected as the pupil region. This technique may fail for images containing other ob-

jects such as eyelashes, eyebrows, hair, and possibly the black-frame of glasses. Similarly,

Khan et al. [146] used histogram-based thresholding along with eccentricity to extract

the pupillary boundary. Their technique lacks the ability to handle multiple objects in a

given binary image. Use of eccentricity on its own could be misleading if a small object

(other than the pupil) has smaller eccentricity in an image. To overcome these issues, Jan

et al. [166] proposed a technique in which a common eye position is generalised by using

integral image projection functions. Then it was binarized by using an adaptive threshold

via a histogram bisection method. It is controlled by a parameter vector that is recorded

by eccentricity, image statistics, and the two-dimensional (2D) object geometry. Then

the limbic boundary is identified in the horizontal direction by using gradient informa-

tion. Lastly, the iris boundaries are localised by using a mixture of radial gradients. This
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method gives effective results for iris databases but with certain limitations. First, the

dark locations (e.g. pupil, etc.) were highlighted because of the property of integral image

projection. If other low-intensity regions (e.g., eyebrows, eyelashes, hair, and the frame of

glasses) block the dark regions (e.g. pupil, etc.), then the integral image projection may

fail to highlight it because of the coordination failure of the horizontal and vertical pro-

jection functions. Secondly, the useful combination of area and eccentricity of 2D objects

are used to locate the pupil in a binary image but, as was discussed earlier, the results

are better for a perfectly round pupil, but method may not provide the desired results for

a distorted pupil, for example, CASIA- IrisV3-Interval and CASIA-IrisV4-Thousand iris

databases.

Although in literature, many different iris segmentation methods have been proposed,

many of them are either computationally or present relatively high or unacceptable seg-

mentation error rates. The iris image segmentation algorithm proposed in this chapter

consists of two major modules, namely pupil detection, and limbic boundary localiza-

tion including eyelid/eyelash detection. The implemented algorithms avoid unnecessary

processing over image regions that do not contain relevant information for iris image seg-

mentation, and consequently iris recognition.

5.4 Proposed method

We have proposed a two-stage method for iris localization. In stage 1, the pupil (iris inner

boundary) is localised, an important step in iris segmentation for two reasons:

1. In the iris images, if the pupil is wrongly localised, then there are often errors in

detecting the limbic boundary, as the iris’s outer boundary localization methods use

the pupil circle parameters as inputs [146, 166–168].
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2. The time consumed in pupil localization is much more than for the limbic boundary

localization because the whole eye (iris) image is processed in pupil localization,

whereas a sub-image can be processed for the limbic boundary localization [167,168].

In stage 2, the limbic boundary is localised. The details of the proposed method are given

in the next subsections.

5.4.1 Pupillary boundary localization

There are many methods reported in the literature for detecting circular objects in an

image. Intensity-based thresholding can be treated as blob detection, in which the pupil

is treated as a circular black region on a bright background. Such techniques assume that

the gray-level intensity of the pupil in an eye image is less than for any other region (e.g.,

iris, sclera, and skin parts). Some researchers use this assumption to localise coarse pixels

in the pupil region using a histogram or threshold and then use gradient-based techniques

to segment the boundaries of the iris [146,148,169]. These techniques may not work for an

eye image containing other low-intensity regions. When the pupil is shaded by eyelashes,

thresholding fails to locate the true centre and radius of the pupil region. For example,

Fig. 5.3(e) and 5.3(f) clearly show that [148] fails to get a proper pupil region because

of noise. To overcome this, [170] proposed some solutions that make the implementation

computationally expensive. Another disadvantage of [170] is the use of iterative processes

that limit its real-time implementation.

To provide a robust, computationally light and non-iterative solution for finding the disc,

we adopted a scheme that combines both a shape-based detector and an intensity-based

threshold. We treated the pupil as a blob and tune a Laplacian of Gaussian (LoG) [171]

operator to detect the edges or blobs at a particular scale. It is based on filtering an

image with a Gaussian of particular standard deviation σ, also known as the scale factor.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5.3: Comparison of [146,148] with proposed method. (a) and (b) are two noisy

images from the MMU v1 database. (c) and (d) show the pupil extracted by [148]. (e)

and (f) show the pupil extracted by the proposed method. (g) and (h) show the normalised

pupil using [148]. (i) and (j) show the normalised pupil by the proposed method.

The 2-D LoG function with Gaussian standard deviation σ has the form:

h (x, y; σ) = − 1

πσ4

[

1− x2 + y2

2σ2

]

e−
(x2+y2)

2σ2 (5.1)

The scale normalised version of the LoG filtered defined in Eq. 5.1 is modified as [171]:

hSN (x, y; σ) = σ2 × h (x, y; σ)

= − 1
πσ2

[

1− x2+y2

2σ2

]

e−
(x2+y2)

2σ2

(5.2)

The selection of σ depends on the blob size. A Gaussian has several advantages that

facilitate blob detection. First, the Gaussian is separable; that makes it computationally
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efficient. Second, the Gaussian is smooth and localised in both spatial and frequency

domains. This smoothing provides a good compromise in terms of suppressing false edges.

The LoG acts as a bandpass filter because of its differential and smoothing behaviour. As

the Laplacian is a linear operator, Gaussian filtering followed by differential is the same

as filtering with a Laplacian of Gaussian.

To provide a robust and computationally light solution for finding the disc, we adopt

the following strategy. An iris image I (x, y) from the MMU-V1 database is taken as

sample, as shown in Fig. 5.4(a). The image contains a black disc in the centre of the eye

with small clumps of undesirable foreground pixels, e.g. salt noise. Though a median-

based operator can be used to tackle such high-frequency noise, it can be computationally

expensive. Therefore, it can be replaced with a morphological opening that does a similar

job with fewer resources. The smoothed image is shown in Fig. 5.4(b).

The next processing step is to apply the LoG filter. The LoG filter is an anisotropic filter

(a) (b)

Figure 5.4: Preprocessing: (a) Sample input image. (b) Image filtered with morpho-

logical opening with a disc structuring element of radius 5 pixels.

that has been used effectively in the past to detect blobs [172]. For iris segmentation, the

pupil circular region can be taken as a black blob on a white background. To facilitate

the LoG application, the iris image is first converted to a tri-level image. In the tri-level

image, the pupil is represented by black intensity, the outer circular region around the

pupil with white intensity, and the rest of the image as grey intensity. This particular
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swapping of the white and grey level regions facilitates the application of the LoG filter,

by giving a larger contrast between the inner and outer circles as shown in Fig. 5.5(b).

Conversion to a tri-level image requires two thresholds: T1 and T2. The first

(a)

(b) (c)

Figure 5.5: Median Filtering: (a) Sample input image. (b) 2D representation of a

LoG filter. (c) image (a) converted to a tri-level image

threshold T1 is chosen as a level below which we have a large confidence of picking

the pupil. The second threshold T2 is an intensity level beyond which we have a high

confidence to get the rest of the image. The result is therefore given by

Triimg =























0 if Ismooth < T1

1 if T1 < Ismooth < T2

0.5 if Ismooth > T2

(5.3)
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The problem of choosing the thresholds has been facilitated by preprocessing the image

with morphological operator opening. This greatly reduces the stress of finding accurate

thresholds T1 and T2. For the sake of experiments, we choose T1=0.2 and T2=0.5 for a

scaled IRIS image in the [0-1] range. The tri-level intensity converted image is displayed

in Fig. 5.5(c). The figure shows the effectiveness of tri-level scaling.

A LoG filter given in Eq. 5.1 is applied on Triimg as

ILoG = Triimg ∗ h (x, y, σ) , (5.4)

where σ = R is the average pupil radius of a particular database. By applying this LoG

with such a coarse scale, the output images ILoG possesses strong contours due to the

heavy smoothing, as shown in Fig. 5.6(a). The LoG filtering provides the maximum

response in the pupil region. Now a mask is created that corresponds to the pixel of ILoG

with maximum response as

Igmask =











1, if ILoG > λa

0, otherwise
. (5.5)

where λa is set to some value above the mid-grey level, such as 0.6 for ILoG scaled in [0-1]

range. Fig. 5.6(b) shows the mask image that is used for generating the first seed image.

This mask image Igmask is then multiplied pixel-wise by the Ismooth image to get the first

seed image as

Igseed = Ismooth. ∗ Igmask (5.6)

Fig. 5.6(c) shows that this seed image contains the pupil. The next task is to choose

an appropriate seed point among this seed image using centroid of the seed image. This

point is used as a seed point for the region growing method [94]. Region growing is a

segmentation strategy that starts with a pool of only one initial seed point and then

adds more pixels to the pool that are 8-connected neighbours with similar intensity to
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(a) (b)

(c) (d)

Figure 5.6: LoG filtering: (a) LoG filtered image. (b) Mask created by thresholding the

LoG filtered image. (c) seed image created from threshold image. (d) Segmented pupil

by proposed method

that of the earlier seed points. The tri-level image loses important texture information,

therefore, the LoG-filtered image is used only for finding seed point where the region

growing is performed on the Ismooth. The initial seed point is grown to a target pool of

pixels using a similarity measure where the intensity of the seed point is compared with 8

neighbours using a 5 percent rule. Fig. 5.6(d) shows a segmented pupil using the proposed

method. By using LoG filtering along with region growing, most of the problems reported

in [146, 148, 169] for pupil segmentation are addressed.

From Fig. 5.3(e) and 5.3(f) it can be observed that the pupil region reconstructed

by the proposed method is an improvement on [146, 148, 169]. But in extremely noisy

conditions, this still can give some error in finding the accurate centre and radius of the

pupil, Fig. 5.7(b) provides evidence of this situation. Therefore, to further strengthen

the proposed method, zero-crossings of the LoG-filtered image are also obtained. The
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zero-crossings give the true edges of the pupillary boundary. This can help the proposed

method to find more accurately the centre and radius of the pupil.

The behaviour of the LoG zero-crossings edge detector is largely governed by the

standard deviation of the Gaussian used in the LoG filter. It is common to see several

spurious edges detected away from any obvious edges. To deal with spurious edges the

first order differential information of the image is required. This information will provide

The gradient magnitude at the zero crossing of the LoG-filtered image. Discarding the

zero crossings with a magnitude lower than a threshold will retain only the stronger edges.

To implement the zero-crossings of the LoG filter, the morphological filtered image Ismooth

is convolved with a LoG filter with σ = 2 , having filter size n = ⌊(3σ)× 2 + 1⌋. Then the

zero-crossings of this LoG filtered image are obtained with a threshold of λc = 0.15 for

the MMU v1 database. Fig. 5.8(b) shows the result of zero-crossings. The images of the

database are preprocessed with Gaussian smoothing before calculating their first order

differential strength measure. A single value of λc is appropriate to suppress spurious edges

related to insignificant zero crossing points. The value of λc is chosen after performing

several experiments on the MMU-v1 database. It is observed that if the value of λc

is increased then it gives fewer edges, and in some cases it affects the pupil and iris

boundary edges. On the other hand, if a smaller value is chosen then noise in the zero-

crossing image increases and makes it harder to locate the pupil. From Fig. 5.8(b) it

can be seen that the zero-crossings image has unwanted noise that needs to be cleaned

up. Connected components of the zero-crossing image are found and those with fewer

fifty pixels are removed. This removes small unwanted regions without affecting the pupil

and iris boundaries, as shown in Fig. 5.8(c). The seed point calculated for the region

growing is used as a reference point to extract the true circle from the zero-crossings. From

this reference point, the boundary of the pupil is scanned radially in the zero crossing

image. From Fig. 5.7(c) it can be seen that the circle is broken because of eyelashes and
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eyelids. The zero-crossings help to find the true broken region. By using interpolation,

the remaining part of the circle can easily be predicted. Fig. 5.7(d) clearly shows that,

by using zero-crossings, the proposed method can extract the true centre and radius of

the pupil from a noisy iris image.

(a) (b)

(c) (d)

Figure 5.7: LoG filtering on noisy image: (a) Sample noisy image of MMU v1

database. (b) Detected pupil by proposed method. (c) Zero-crossing of LoG filtered

image. (d) Result of proposed zero-crossings on (a).

5.4.2 Limbic boundary localization

Limbic boundary extraction is also difficult for the following reasons: first, the eyelids and

eyelashes may partially occlude the iris outer boundary. Second, the contrast between

the iris and sclera regions is usually low. Lastly, as the pupil always exists within the iris

region, the pupil and limbic boundaries could be assumed as two nonconcentric circles;

however this assumption is not always true [163]. Basit [169] picked a horizontal line
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(a)

(b) (c)

Figure 5.8: LoG zero crossing: (a) Zero crossing without morphological filtering. (b)

Zero crossing with morphological filtering. (c) Zero crossing after cleaning with area

property.

from the centre of the pupil and used a gradient to find the edges. Based on these edges,

the pupil centre and the radius are calculated. [146, 148, 173] used a similar technique

in which two secure regions are defined. Then their gradients are computed, followed by

excluding wrong boundary points using a distance error transform. One disadvantage

of these techniques is that they bias their localization of the limbic boundary in the

horizontal direction. Also, these techniques may not work for an eye image having low-

intensity regions.

To resolve these issues, we adopted a scheme that first finds the true orientation of

the eye in the image. First, Ismooth is filtered using a LoG filter of σ = R. This is then
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thresholded to select the top 70% of positive values. The largest connected component

that overlaps the detected pupil is then selected, as shown in Fig. 5.9. The detected eye

image is approximately ellipse shaped with major axis almost double the minor axis. The

orientation of the eye is found from the orientation of the major axis of the ellipse. There

are several advantages to finding the true orientation of the eye. First, if the major axis is

treated as the x-axis [146,148,173] then the chances of getting noise in the stable zone will

be very low. This will certainly increase the accuracy of these algorithms. It also makes

it easier to find the area affected by the eyelashes and eyelid (occlusion zone). Second,

the orientation also facilitates the iris normalisation and matching process.

To extract the outer boundary of the iris, the eye image is divided into four regions:

left stable zone, right stable zone, upper occlusion zone, and lower occlusion zone, as

shown in Fig. 5.10(a). Usually, the upper occlusion zone affects the iris region more than

lower occlusion because of the eyelashes and eyelid. The detection of these zones not only

plays a vital role in limbic boundary localization but also in iris normalisation. In this

chapter, this issue is addressed by first detecting the true outer boundary of the iris in the

secure regions and then in the occlusion zones. To accurately detect the outer boundary of

the iris, the cleaned zero-crossing image is used. Both secured zones are radially scanned

in a similar manner as in [146, 173]. Fig. 5.11 shows the iris outer boundary extracted

from the secured region. The average distance of the outer boundary in the stable zones

from the centre of the pupil is calculated and is designated as the iris radius Iradius. Using

this radius, the search is extended into both occlusion zones. Any discontinuity shows

that the region is affected by eyelids/eyelashes, as shown in Fig. 5.11(b). Therefore, using

these boundary points, the affected region in the iris can easily be marked, as shown in

Fig. 5.10(c). Finally, the disconnected outer circle is interpolated to give the true centre

and radius of the limbic boundary, as shown in Fig. 5.11(c).
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Binary Mask used to find out the true orientation of eye image. (a), (b),

and (c) are three sample eye images of MMU database. (d), (e), and (f) are the binary

masks of (a), (b), and (c) obtain by using LoG filtering.

5.5 Experimental results

The validity of the proposed method is evaluated on three public databases, namely:

MMU version 1.0 database [174], CASIA-IrisV1 database [175] and CASIA-IrisV3-Lamp

database [175]. The accuracy rate is used to measure the performance of the proposed

method. The accuracy rate (Ar) is based on the accuracy error Ae, which is defined as

Ae =
|Na −Ndet|

Ntotal

× 100, (5.7)

where Ndet and Na are the numbers of detected and actual iris pixels, respectively. The

actual iris pixels are calculated manually as suggested in [148]. If Ae is less than 10%,

then the detected iris is considered to be the true iris. Ar is defined as

Ar =
Nsuccess

Ntotal

× 100, (5.8)
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(a) (b) (c)

Figure 5.10: (a) Iris image divided into different zones, (b) Zero-crossings of LoG

filtered image. (c) Detected eyelashes in iris and pupil region.

where Ntotal is the total number of images in the database and Nsuccess is the total number

of eye images in which the iris has been successfully localized. The following sections

describe the details of the experimental results.

5.5.1 Experimental setup 1

In this experiment, results are collected using data from the MMU version 1.0 database.

This database contains 450 images of 45 subjects, i.e., 10 images per subject. The res-

olution of each image is 320×240 pixels. The proposed method has been tested on the

whole database. An accuracy rate of 100% is achieved on both the inner and the outer

boundary of the iris. Fig. 5.12 shows the results of the proposed method on some of the

randomly selected images from this. Table 5.1 compares the accuracy of the proposed

method with several existing methods on the MMU version 1.0 database.

5.5.2 Experimental setup 2

The second experiment is performed on the CASIA Ver 1.0 iris database. This database

contains 756 eye images of 108 subjects, 7 images per individual. The resolution of

each image is 320×280 pixels. Using the mixture of LoG filtering and zero-crossings of
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(a) (b)

(c)

Figure 5.11: (a) Extracted secure region. (b) Extended search of boundaries in turbu-

lence zones. (c) Interpolated iris.

Table 5.1: Comparison of some recent segmentation algorithms applied to the MMU

database (Results are taken from [165]).

Method Accuracy

Masek [176] 83.9%

Daugman [162] 85.6%

Ma et. al. [153] 91%

Daugman [154] 98.2%

Somanth et. al. [165] 98.4%

Proposed 100%
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Results of proposed method on some noisy images of the MMU version

1 database.

LoG filter we achieve 100% accuracy on this database for both the inner and the outer

boundary of the iris. Fig. 5.13 shows the results of the proposed method on some of the

randomly selected images from CASIA-IrisV1. Table 5.2 compares the proposed method

with existing methods using CASIA-IrisV1.

5.5.3 Experimental setup 3

In this experiment, results are collected using data from the CASIA-IrisV3-Lamp iris

database. This database contains 16440 images of 441 subjects. Each subject contributed

40 images, 20 images of the each eye with a resolution of 640×480 pixels. The proposed
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Table 5.2: Comparison of some recent segmentation algorithms over the CASIA 1.0

database (Results taken from the published work).

Method Accuracy

Mateo [177] 95%

Yuan,W [178] 99.45%

Wildes [152] 99.9%

Cui [179] 99.34%

Daugman [151] 98.6%

A.Basit [169] 99.6%

Proposed 100%

method was tested on images from the first 102 subjects. The accuracy rate using the

CASIA-IrisV3-Lamp database is 99.68%. Table 5.3 shows the accuracy rate of the pro-

posed method on CASIA-IrisV3-Lamp database. Fig. 5.14 shows the results on some

randomly selected images from the CASIA-IrisV3-Lamp database.

Table 5.3: Comparison of some recent segmentation algorithms using the CASIA-

IrisV3-Lamp (Results taken from [148]).

Method Accuracy

Masek [176] 79.02%

Ibrahim [148] 98.28%

Proposed 99.55%
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Results of proposed method on some noisy images from the CASIA Ver

1.0 database.

5.6 Computational cost and limitations

The average computational cost is computed for 100 randomly selected eye images from

the MMU version 1.0, CASIA Ver 1.0, and CASIA-IrisV3-Lamp databases. MATLAB

built-in facility is utilised to obtain the optimal results. Table 5.4 shows a comparison

on the computational cost of the proposed method and three similar states of the art

method.

In the presence of dense eyelashes and eyebrows, as shown in Fig. 5.15, the proposed
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Results of proposed method on some noisy images from the CASIA-

IrisV3-Lamp database.

method fails to locate the true pupillary boundary. Such dense eyebrows and eyelashes

effect the LoG filtering along with the region growing. Although, this can be handled

by setting a different σ for LoG filter and tuning the region growing, for the generic

parameters that are set for the whole database, it fails to locate true pupillary boundary.

Similarly, if the iris region is affected with dense eyelashes then a single value of λc fail to

suppress the effect of eyelashes in the iris region.
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Figure 5.15: Iris image severally occluded by the eyelashes and eyebrows.

Table 5.4: Processing speed (in seconds) comparison of the proposed with some of the

existing methods

Method MMU version 1.0 CASIA Ver 1 CASIA-IrisV3-Lamp

Ibrahim [148] 0.95 1.1 2.2

Jan [166] 1.5 1.7 3.0

Labati [180] 2.6 3.0 Not available

Proposed 0.44 0.5 1.4



144
Chapter 5. A fast and accurate iris segmentation method using an LoG filter and its

zero-crossings

5.7 Conclusion

This chapter presents a fast and an accurate iris segmentation technique for iris biomet-

rics. There are four major contributions. First, we develop a fast and novel method for

pupil segmentation that is based on a shape detector and an intensity-based threshold.

The use of a LoG filter followed by region growing gives an estimate of the pupil centre

and radius.

The true pupillary boundary is refined using the zero-crossings of a second LoG filter.

Next, the true orientation of the eye in the image is estimated using a third LoG filter.

The orientation facilitates the process of locating the true limbic boundary of the iris and

eyelids. Using the zero-crossings of the LoG, the search is initially started from the stable

zones and then extended to the occlusion zones. The discontinuities are located, which

give indications of eyelids in the iris region. Finally, using the interpolation the iris outer

boundary as well as eyelid arcs are estimated. The proposed method also works well in

estimating the inner and outer boundary of the iris in the case of partially opened eye

images and scattered eyelashes.

The extensive experimental results on three iris databases show that the proposed

method is computationally less expensive in achieving the state-of-the-art iris segmenta-

tion accuracy.



Chapter 6

Efficient Hardware Implementation

Strategy for Local Normalisation of

Fingerprint Images1

This chapter is an adapted version of a journal article. The section headings from the

journal article have been retained. Figures, equations, tables, and references have been

re-numbered and are in line with the thesis format. This chapter presents a hardware-

based local normalisation technique that can handle the background noise amplification.

The proposed normalisation is efficiently implemented in hardware and its efficiency is

compared with other state of the art hardware normalisation techniques. With respect

to our proposed design, this chapter falls in the fingerprint subsystem. It covers only one

module of the fingerprint subsystem, as highlighted in Fig. 6.1.

1Published as: Tariq M. Khan, Donald G. Bailey, Mohammad A. U. Khan and Yinan Kong ,“Efficient

Hardware Implementation Strategy for Local Normalisation of Fingerprint Images,”Journal of Real-Time

Image Processing , DOI 10.1007/s11554-016-0625-8
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Figure 6.1: Modules of the proposed design under study

6.1 Abstract

Global techniques do not produce satisfying and definitive results for fin-

gerprint image normalisation due to the non-stationary nature of the image

contents. Local normalisation techniques are employed, which are a better al-

ternative to deal with local image statistics. Conventional local normalisation

techniques involve pixel-wise division by the local variance and thus has the

potential to amplify unwanted noise structures, especially in low activity back-

ground regions. To counter the background noise amplification, the research

work presented here introduces a correction factor that, once multiplied with

the output of the conventional normalisation algorithm, will enhance only the

feature region of the image while avoiding the background area entirely. In

essence, its task is to provide the job of foreground segmentation. A mod-
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ified local normalisation has been proposed along with its efficient hardware

structure. On the way to achieve real-time hardware implementation, cer-

tain important computationally efficient approximations are deployed. Test

results show an improved speed for the hardware architecture while sustaining

reasonable enhancement benchmarks.

6.2 Introduction

In the research work presented, fingerprints are chosen as a test case for the proposed

modified local normalisation. Fingerprint image enhancement is held as an important

pre-processing step for automatic fingerprint identification systems (AFIS) [181]. This

step can directly impact the overall efficiency of a given AFIS. The scanned fingerprint

images often show important contrast variations, poor brightness in some areas and gaps

in ridge/valley regions. These occur due to the very process of scanning a finger. The

finger’s middle surface is thicker than the surrounding region. This results in uneven

pressure across the finger. The fingerprint scanner registers this phenomenon as a varying

contrast across the fingerprint image [119]. Consequently, background variation will add

bias for different regions of the same image to disturb the ridge/valley contrast. Since

the ridge/valley pattern is identified and classified by its gray-level profile, this effect may

worsen the performance of image enhancement algorithms. Since the end goal of a fin-

gerprint image identification system is to convert the gray-level image to binary image,

the ridge/valley intensity difference should be as wide as possible to achieve an efficient

result. From classification theory point-of-view, binarization is easier if the pixel value

distributions of the ridges and valleys are well separated (large inter-class difference) and

homogenous within themselves (small intra-class variance). This can only be achieved

when the image is properly normalised.
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The fingerprint image normalisation process needs an analysis of the various image

degradation sources. Generally, a fingerprint image may have narrow dynamic range due

to the poor quality of the scanning device or uneven finger pressure at the time of acqui-

sition. Contrast enhancement is a commonly used fingerprint normalisation strategy. In

the context of fingerprint image enhancement, the contrast may be defined as the small-

est intensity difference between a pixel belonging to ridge region with a nearby pixel of a

valley region [182]. Another related terminology used for fingerprint images is their mean

pixel intensity (or brightness). The image brightness can be altered by a straightforward

method of either adding or subtracting a constant value to all the pixels with almost no

effect on the contrast of the image. Since contrast enhancement is a more complicated

process, therefore, the focus of the research work presented here is to devise an effective

algorithm for improving the local contrast of fingerprint images. This will directly affect

the quality of the ridge extraction process using thresholds.

In the literature, different techniques have been used to cope with contrast enhance-

ment. Range normalisation may contain gamma intensity correction, histogram manipu-

lation and normal distribution [183]. Some of the range normalisation techniques do not

produce satisfying and definitive results for fingerprint image normalisation. However,

histogram manipulation, contrast stretching, and Wiener filtering [183] have been shown

to be moderately effective as an initial processing step to enhance fingerprints.

The process of contrast improvement can be illustrated by running some popular fin-

gerprint image normalisation algorithms on a sample image taken from the FVC2004

database [58] as shown in Fig. 6.2(a). The acquired fingerprint image shows considerable

local variability, as a result, some ridges appear to be washed away. Further, there is a

dark patch right at the centre of the image, making it difficult to threshold the image

directly.

The image was processed first with the widely used Hong method [60]. The method
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was later adopted by [184], [185], and [186] for their hardware implementation for its

computationally simple structure. Fig. 6.2(b) depicts the result of Hong method. The

(a) (b) (c) (d)

Figure 6.2: a) Sample image FVC2004\Dbs\DB2 A\33 3. b) Image enhanced by

global normalisation [60]. c) Image enhanced by block normalisation [187]. d) Image

enhanced by the proposed method.

contrast at different parts of the image is equalised. The pixel values are now distributed

over the whole display range. The dark patch, however, is still persistent, suggesting that

Hong method is unable to deal with local strong variations.

Later it was suggested by [188], and [189] that local image statistics, such as mean and

variance in a small neighbourhood, have to be incorporated in the contrast improvement

strategy. The local normalisation method comprises of first dividing the image into ap-

propriate small neighbourhoods, and then normalising these neighbourhoods with respect

to their local mean and variance. This will result in shaping these neighbourhoods to

have a ridge/valley pattern with better contrast. Mathematically, it can be represented

as

g (x, y) =
I (x, y)−mf (x, f)

σf (x, y)
(6.1)

where I(x, y) is the input image, mf (x, y) is an estimation of a local mean of I(x, y) and

σf (x, y) is an estimation of the local contrast (such as the standard deviation). In line

with this suggestion, a block normalisation algorithm is implemented in [187]. The result



150
Chapter 6. Efficient Hardware Implementation Strategy for Local Normalisation of

Fingerprint Images

of the method with 17× 17 large window and 5× 5 small window is shown in Fig. 6.2(c).

Although the contrast is restored with no black patch at the centre, the amplitude of the

granular noise in the background is significantly lifted. This happens due to the fact that

the background area has almost zero local variance [190], thus resulting in division a small

number, which amplifies the noise structure.

In this chapter, a modified local normalisation procedure is proposed that enhances

the contrast of the foreground ridge/valley area uniformly with almost no normalisation

for the background region. To do so, local image statistics are involved for segmentation of

the fingerprint image into foreground and background regions. However, rather than use

a binary segmentation, a gradual process in the form of a continuous function to avoid

undesirable edge effects. To estimate the local mean and variance low-pass Gaussian

filtering is employed. Generally, using a Gaussian filter gives the best results because

the smooth transition can minimise artefacts (it has good stop-band performance in the

frequency domain). To circumvent the amplification of background noise, this chapter

proposes a correction factor in the form of a monotonically increasing function of local

variance values.

The rest of the chapter is organised as follows. Related work is presented in Section

6.3. In Section 6.4 the proposed image normalisation algorithm is described. Section 6.5

presents the hardware adaptation of the proposed algorithm. In Section 6.6 experimental

results are discussed and finally the chapter is concluded in Section 6.7.

6.3 Related Work

Local normalisation methods that have been used for fingerprints include local histogram

equalisation [183], and local histogram matching [191]. [192] proposed a local normalisa-

tion technique for fingerprint image normalisation based on block processing. The mean
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and variance for normalisation are calculated on a block-by-block basis. Block processing

is significantly faster than normal local normalisation, as all of the pixels within a block

are processed using the same mean and same variance. [187] also presented a block-based

local normalisation algorithm in which an entire block of pixels of size W ×W is involved

to compute the local normalisation parameters.

From a hardware implementation perspective, applying a large number of filters com-

monly requires a significant amount of computing resources. The best way to achieve

good real-time performance is to utilise the parallel processing capabilities of hardware.

Although several FPGA implementations have been presented in the literature for fin-

gerprint image normalisation, most of them use the global mean and variance. [184]

implemented a fingerprint image normalisation similar to the one proposed by [60]. In

this implementation, global and local means as well as global and local variances are lin-

early mixed to process a 16×16 block. [186] used an 8×8 block instead of 16×16. In this

technique, parallel processing is used, which increases the overall speed of the system as

compared to [184]. [185] also used Hong’s technique for image normalisation. He divided

the image into four sub-images for parallel processing. Vitabile, Qin and Fons implemen-

tations all require two processing passes for the whole image.

In this chapter a local normalisation technique based on Gaussian filtering is used to

estimate the local mean and variance on a pixel-by-pixel basis. This is shown to be effec-

tive and makes its hardware implementation easier than the existing local normalisation

techniques. Filtering and normalisation are pipelined so that only one pass through the

whole image is required, which significantly speeds up the proposed technique compared

to the existing implementations.



152
Chapter 6. Efficient Hardware Implementation Strategy for Local Normalisation of

Fingerprint Images

6.4 Modified Local Normalisation

The acquired fingerprint image from the sensor usually faces the problem of a non-uniform

background and spatially varying contrast. The non-uniform background can be at-

tributed due to many sources arising in the fingerprint sensors: ageing filaments, faulty

reference voltages, contaminated apertures, or non-uniform support film fabrication [193].

Removal of the non-uniform background is important for later processing stages such as

image registration based on correlation and segmentation based on intensity thresholds.

The conventional normalisation model is based on two phases; removing the non-

uniform background and then restoring the local contrast, as depicted in Fig. 6.3. The

first phase is to estimate the non-uniform background for an acquired image using a low-

pass Gaussian filter with smoothing parameter σ1 and then subtracting this Gaussian-

weighted average from each pixel of the original image. The parameter σ1 can be set

by utilising the fact that the filtered image should contain only the background changes

(low-frequency content) and with almost no trace of features (which are high-frequency

content). Therefore, σ1 should be comparable to the size of the largest feature of inter-

est present in the acquired image. A smaller σ1 will incorporate some of the fingerprint

ridge details into the background while a much larger σ1 will not capture some of the

background variations across the image as shown in Fig. 6.4. Since a fingerprint image

is characterised by its locally periodic ridge/valley structure, the value of σ1 can be set

equal to the width of the average ridge. Specifically, for the experiments conducted for

the FVC2004 fingerprint images, the size of σ1 was set to 5.

Although, background subtraction is successful in removing variation in the back-

ground, it does not address the variation in local contrast. The second phase is to nor-

malise the contrast as shown in Fig. 6.3. In the second phase, the local variance of the

image is computed as an estimate of the local contrast. The subtracted image is divided

pixel-wise by the standard deviation of its spatial neighbours to normalise the contrast.
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Figure 6.3: Conceptual model for image local normalisation.

(a) (b) (c) (d)

Figure 6.4: Impact of σ1 on fingerprint background removal: a) Sample image from

FVC2004\Dbs\DB2 A database. b) σ1 = 1. c) σ1 = 5. d) σ1 = 10.
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Again, the size of the local variance filter depends on the size of the texture elements.

Large texture elements require a larger window [189]. After background removal, squaring

the pixel value will double the base frequency. So σ2 is commonly taken to be σ1/2 [194].

Areas of no ridge/valley structure have low values for the local variance leading to the

amplification of the low-amplitude noise structure as evident in Fig. 6.5. Subsequent fin-

gerprint image enhancement such as anisotropic diffusion, commonly used for enhancing

elongated ridge-valley structure [195], [106] may also enhance the noise creating artificial

linear features in the background as shown in Fig. 6.6.

Therefore, it is necessary to suppress the background noise while keeping the fore-

ground feature enhancement at a maximum. One approach is to apply the division selec-

tively to only those regions where there is ridge/valley structure. This requires classifying

image pixels into two categories: an active region of interest and a non-active smooth

background region. To do so, a metric is needed that produces low values for a quiet

background and high values for active regions. This can be derived from the local vari-

ance, which has already been calculated. We propose a function of local variance which

is used as a multiplying factor for the outcome of the second phase image. The factor is

defined as

M = 1− exp

(

−
σ2
f

2C2

)

(6.2)

where σ2
f is the local variance and C is a user-defined parameter to regulate the noise

suppression power in background areas. The value of C is in the range 0-1, however,

in our experiments, the value of 0.3 was adequate in all cases. The graph of the factor

with increasing values of local variance is shown in Fig. 6.7. The factor is small for low

contrast, and then it rises at a rate controlled by the constant C, to reach an ultimate

value of 1. This correction factor can be introduced as a third processing phase, as shown

in Fig. 6.8. Fig. 6.9 compares the effect of normalisation with and without the correction

factor on three noisy images.
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The whole process of modified local normalisation can be illustrated with three

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 6.5: Modified local normalisation illustration. Starting row-wise, the original

images are shown in Fig. (a)-(c). Fig. (d)-(f) depicts the estimated non-uniform back-

ground, and Fig. (g)-(i) shows the uniform background images obtained by subtraction.

Next the local variance image is computed, and displayed in Fig. (j)-(l). The division

of the uniform background image by the local variance image is shown in Fig. (m)-(o).

We observe a large noise amplification phenomenon. To mitigate it, a correction factor

is introduced, and its impact is shown in Fig. (p)-(r).

example images shown in Fig. 6.5. Row 1 shows three sample image taken from FVC2004

DB1 A. Row 2 shows the Gaussian filtered images having σ1 = 5. Row 3 shows the mean
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(a) (b)

(c) (d) (e)

Figure 6.6: The impact of diffusion process on normalisation: a) Sample image. b)

Image normalised with factor. c) Image normalised without factor. d) Diffused image

after normalising with factor. e) Diffused image after normalising without factor.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.9: Impact of correction factor M . Column 1 shows sample images. In

column 2, image are normalised without multiplication by M . In column 3, images are

normalised including M .
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subtracted images. Row 4 shows the variance images, with σ2 = σ1

2
. Row 5 shows the

normalised image without using the proposed multiplying factor. Row 6 shows the nor-

malised images of the proposed method.

It can be argued that the use of a correction factor is doing the job of background

segmentation. Usually, the local variance is used to find a contiguous block of the active

region by thresholding [196], [88]. This results in a binary mask as shown in Fig. 6.10.

By comparing the binary mask with that of the correction factor impact, we find that

the suggested correction factor is an increasing function based on local variance values,

and provides better control over designating the ridge/valley regular structure versus the

background, as shown in Fig. 6.11.

Although this technique provides good results, when it comes to its hardware imple-

(a) (b) (c)

Figure 6.10: a) Sample Image. b) Binary mask created using local variance based

thresholding. c) mask created by multiplicative factor M .

mentation, it has a few drawbacks. Calculating the local variance a requires square root

which in hardware becomes costly. Another problem with the use of standard deviation

as an estimate of the local contrast is that it tends to be more sensitive to larger values.

An alternative approach to estimating the local contrast is to take the average absolute

value.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.11: Row 1 shows three sample noisy images. Row 2 shows the results of the

proposed normalisation method. In Row 3 the images are first segmented using local

variance measure and then normalised without multiplying the correction factor M .
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6.5 Image Normalisation Hardware Structure

The aim of this work is to design an efficient algorithm for fingerprint image local nor-

malisation that best suits a hardware implementation. For this purpose, a new method

for image normalisation is proposed which is efficiently implemented in hardware. Our

Input
Image

Gaussian filter

σ=5

-

Absolute
x0.75

Gaussian filter
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Clip
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÷ × +
Clip
[0 255] Normalised
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Figure 6.12: Proposed model for image local normalisation for hardware implementa-

tion.

suggested hardware architecture for this modified local normalisation process is shown in

Fig. 6.12. First, a Gaussian filter with of σ1 = 5 is applied to the input image I. Then,

the difference D between the image I and the background estimation mf is calculated for

every pixel:

D (x, y) = I (x, y)−mf (x, y) (6.3)

The next step is to estimate the local contrast within the image. Rather than use the

standard deviation, the average absolute value is used instead. The magnitude is obtained

by applying the absolute operator to the image pixels. Through experiments, it was

noticed that better results were obtained when using dynamic range compression after

the absolute value. For this purpose, the power-law transformation with γ = 0.75 is

employed here to compress the high contrast pixels relative to those with low contrast.

Fig. 6.13 shows the effect of the power-law transformation with different γ values on the

absolute difference image. This is then averaged locally with another Gaussian filter, with
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σ2 = 2.5, to estimate the local contrast. Rather than implementing the correction factor

M on hardware, a similar effect can be obtained by clipping the local contrast into the

range [50-255]. This avoids over enhancing noise by low contrast values while retaining

the relative strength of already high contrast regions. The resultant image is divided by

the local contrast, and the output is scaled by a factor of 128, and the offset by 128 to

get an unsigned image suitable for display:

Gout =























0, if gf < −1

255, if gf > 1

128× gf + 128, otherwise

(6.4)

6.5.1 Gaussian Filter Implementation

In two dimensions, the Gaussian function is

G (x, y) =
1

2πσ2
e−

x2+y2

2σ2 =
1√
2πσ

e−
x2

2σ2 × 1√
2πσ

e−
y2

2σ2 (6.5)

For large σ, the size of the filter needs to be large, which makes the hardware implemen-

tation expensive. Although a smaller rectangular filter can be used to achieve the same

level of smoothing, its poor frequency response can give artefacts especially for regular

patterns such as those within fingerprints. For this reason, a Gaussian filter is used. For

the hardware implementation, a size of σ = 5 is used with a 19× 19 window. Truncating

the window limits the stop-band of the Gaussian filter at high frequencies to -30 dB.

As the Gaussian is separable, this allows the filter to be implemented as a cascade of

one-dimensional Gaussian filters (1×19 and 19×1). Fig. 6.14 shows the implementation

of 1×19 and 19×1 Gaussian filters with σ = 5. Although the filter can be decomposed to

only use adders [197], the need of such decomposition is less important on modern FPGAs
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.13: Impact of proposed power-law transformation on absolute difference im-

age: a) Sample noisy image. b) Power-law transformation with γ = 0.75. c) Power-law

transformation with γ = 0.5. d) Power-law transformation with γ = 0.25. e) Nor-

malised image with γ = 0.75. f) Normalised image with γ = 0.5. g) Normalised image

with γ = 0.25
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where high-speed pipelined multipliers are plentiful. The optimised hardware multipliers

are hard to out-perform with the relatively slow adder logic of the FPGA fabric [198].
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Figure 6.14: Hardware implementation of a (1 × 19 and 19 × 1) Gaussian filter with

σ = 5. The Gx are filter coefficients. For the vertical filter, the boxes represent row

buffers.

6.5.2 Remaining Operations

The power law transformation is easiest to implement as a lookup table. The input is the

difference image from stage 1, with the lookup table also performing the absolute values

operation. The remaining operations: clipping, scaling and division are relatively straight

forward to implement.



6.6 Experimental Results and Discussion 165

6.6 Experimental Results and Discussion

The experiments were performed on the FVC2004 (Fingerprint Verification Competition)

database which consists of four sub-bases, in which images are captured with four different

sensors. DB1 A, DB2 A, DB3 A, DB4 A. Each sub-base includes 800 fingerprints, of

which 8 are of the same person. Each sub-base has a different image size. The detail of

the sub-base sizes is given below:

• In sub-bases DB1 A the size of the fingerprint image is 480× 640

• In sub-bases DB2 A the size of the fingerprint image is 364× 328

• In sub-bases DB3 A the size of the fingerprint image is 480× 300

• In sub-bases DB4 A the size of the fingerprint image is 384× 288

For simulation, the program was written in MATLAB and run on a 3.40 GHz Core i7

processor with 16 Gb memory. Image normalisation is used as a pre-processing step for

fingerprint image enhancement. For image enhancement, coherence enhanced diffusion is

used [57]. This is a well-known algorithm which is used to smooth the ridge structure in

fingerprint images. The diffusion process ends after 40 iterations (steps=40) with a step

size of 0.25.

For real-time implementation, VHDL is used for fingerprint normalisation, and the

design is tested on a Cyclone III FPGA and simulated with ModelSim.

To assess the efficiency of the verification system the FAR (false acceptance rate) and

FRR (false rejection rate) are calculated as:

FAR =
Number of rejected genuine claims

Total Number of genuine accesses
× 100 (6.6)

FRR =
Number of accepted imposter claims

Total Number of imposter accesses
× 100 (6.7)
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Finally, the EER (equal error rate) was used as a success rate indicator, marking the

point where FRR and FAR are equal.

EER =
FAR + FRR

2
, if FAR = FRR (6.8)

Another metric is the ZeroFMR which is the lowest value of FRR, where false mismatch

does not occur anymore.

Table 6.1 compares the equal error rate EER (%) and ZeroFMR (%) assessment of the

proposed algorithm with the existing algorithms. It can be observed that Kocevar block-

local normalisation is more accurate than the global normalisation method proposed by

Hong. Kocevar normalised the image with 3 different block sizes, 2× 2, 4× 4 and 8× 8.

His 2 × 2 normalisation gives better results than the other two. However, using a small

window affects the processing speed of the system. The authors claim that 8 × 8 block-

local normalisation best suits real-time application. Regarding performance, the proposed

normalisation method is more accurate than existing methods. If we compare our method

with 2× 2 block-local normalisation then our method gives better accuracy. One reason

is the use of a correction factor to suppress the noise amplification in the background area

that enhances the overall performance of the proposed method. The hardware realisation

gave slightly worse performance than the software algorithm, because of the simplifications

and approximations made to give an efficient implementation. Its performance was still

similar to the best of the competing state-of-the-art methods.

6.6.1 Comparison to Other Hardware Architectures

In Table 6.2 the proposed FPGA-based structure is compared with existing FPGA-based

implementations in terms of processing speed and hardware resources. For the compar-

ison, a random fingerprint image of size 512 × 256 is used. It can be observed that the

proposed method is significantly faster than all the existing methods. The existing hard-
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Table 6.1: Equal error rate EER (%) and ZeroFMR (%) assessment of proposed algorithm with existing algorithms, average

over all the images from DB1 A and DB1 B of FVC2004 database.

FVC2004 Compared Algorithm EER (%) ZeroFMR (%)

DB1 A

No enhancement 16.07 64

Oriented linear diffusion without normalisation 21.29 63.71

Oriented linear diffusion + [184] normalisation 12.02 54

Oriented linear diffusion + [186] normalisation 9.74 38.1

Oriented linear diffusion + [187] 2× 2 block-local normalisation 9.08 30.36

Oriented linear diffusion + [187] 4× 4 block-local normalisation 9.93 39.93

Oriented linear diffusion + [187] 8× 8 block-local normalisation 11.53 51.54

Oriented linear diffusion + Proposed Method MATLAB 8.57 29.5

Oriented linear diffusion + Proposed Method FPGA 8.91 30.7
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ware architectures require two passes for image normalisation. One disadvantage of a

two-pass process is that it requires the complete image to be stored during processing

i.e. large images cannot be processed completely on an FPGA due to a lack of sufficient

on-chip memory. The data transfer overhead in transferring the full image to and from

external SRAM makes the Fons method slower. The use of a single pass with streamed

processing makes the proposed architecture significantly faster than the Fons algorithm.

On the other hand, one disadvantage of using a Gaussian filter is that it requires more

memory for the row buffers and also multipliers to implement it on hardware, which can

be observed in Table 6.2. This directly affects the overall resource usage. If we compare

the resource usage with Fons, the proposed method require more memory and embedded

multipliers than the Fons method because of the use of a Gaussian filter twice in the nor-

malisation. We consume fewer registers and logic cells than the Fons method, although

a direct comparison is a little misleading because our design makes use of embedded

multipliers which reduces our logic requirements. All of these factors directly affect the

maximum operating frequency of the design. Our design operates at 128.3 MHz, while

the Fons design operates at 50 MHz. In total, the proposed method consumes resources

comparable to the Fons method with almost 20 times faster image processing time and

much better performance in terms of image normalisation. A detailed compilation report

of the proposed method on the different image sizes of the FVC2004 database is presented

in Table 6.3; a compilation report of existing methods is not available on this databases

for comparison. The only change for the different database is the size of the memory for

the row buffers.

Fig. 6.15 compares the impact of the proposed and Hong normalisation algorithm which

is used by most of the existing hardware methods. For this test, three sample images are

taken from the FVC2004 database. For thresholding Otsu’s thresholding method is used

[96]. Thresholding plays a vital role in minutiae extraction. It can be seen that the pro-
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posed algorithm normalises the image better than Hong. Because of better binarization,

the stress on the subsequent process, image enhancement as well as thresholding, is less

than other methods. It is found that with the proposed normalisation method a simple

thresholding method can give much better results, which is not possible with the image

statistics based normalisation methods.

6.7 Conclusion

The research presented here deals with lifting the contrast of poor quality fingerprint

images. The images often suffer due to the local variations, which can be corrected by

subtracting local mean and then normalising the local contrast. However, this amplifies

noise in the background. A correction factor is introduced that effectively segments the

foreground and compensates for the division in background regions.

The software normalisation system introduced here is translated into an efficient hard-

ware architecture, whose efficiency is compared with other state of the art hardware nor-

malisation systems. Our hardware structure for fingerprint image normalisation managed

to efficiently speed up the image processing time by a factor of 18 and improve some of

the resource utilisation of the FPGA. For real-time applications, the speed of fingerprint

image processing is very important, especially with databases that include a high num-

ber of fingerprints. One of the main advantages of using FPGAs for the implementation

of image processing applications is that their structure can exploit spatial and temporal

parallelism. The proposed structure for fingerprint image normalisation speeds up the

processing time on FPGA-based implementations and also achieves better enhancement

results on a public FVC2004 with local normalisation and oriented linear diffusion than

existing methods. Although the structure of ridges and valleys does not change in the nor-
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Table 6.2: Comparison of the proposed method with some existing FPGA based normalisation methods on a sample image

of size 256× 512

Technique Processing time (ms) Registers Logic

cells

Memory

bits

Embedded

multipliers

Maximum operating

frequency [MHz]

[184] 85 N/A N/A N/A N/A N/A

[199] 25 1384 4729 38912 0 50

[185] 21 N/A N/A N/A N/A 20.9

Proposed Method 1.16 1016 1901 58484 18 128.3
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Table 6.3: Compilation report of the proposed algorithm on a low cost Cyclone III FPGA

Resources Available FVC DB1 A

480× 640

FVC DB2 A

364× 328

FVC DB3 A

480× 300

FVC DB4 A

384× 288

Logic Elements 15408 1901(12%) 1901 (12%) 1901(12%) 1901 (12%)

Combinational function 15408 1750 (11%) 1750 (11%) 1750 (11%) 1750 (11%)

Dedicated logic register 15408 1016(7%) 1016 (7%) 1016 (7%) 1016(7%)

Memory bits 516k 106k (21%) 81k (16%) 106k (21%) 86k (17%)

Embedded Multipliers 112 18 (16%) 18 (16%) 18 (16%) 18 (16%)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6.15: The impact of proposed local normalisation method on low contrast fin-

gerprint images. Column 1 shows three sample images taken from FVC2004 database.

Column 2 shows the output of Hong normalisation method applied on columns 1 images.

Column 3 shows threshold images after normalised by Hong method. Column 4 shows

the output of proposed normalisation method applied on columns 1 images. Column 5

shows threshold images after normalised by proposed method.
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malisation process, normalisation can influence the structure in further fingerprint image

enhancement procedures with contextual filters.





Chapter 7

Efficient Hardware Implementation

For Fingerprint Image Enhancement

Using Anisotropic Gaussian Filter1

This chapter is an adapted version of a journal article. The section headings from the

journal article have been retained. Figures, equations, tables, and references have been

re-numbered and are in line with the thesis format. This chapter presents a fast and

efficient hardware implementation of fingerprint image enhancement. In the proposed

method, the traditional Gabor filter is modified and decomposed it into an isotropic and

an anisotropic filter. By this decomposition, we manage to efficiently speed up the image-

processing time and improve the resource utilisation of the FPGA. With respect to our

proposed design, this chapter falls in the fingerprint subsystem. It covers four modules of

the fingerprint subsystem, as highlighted in Fig. 7.1.

1Published as: Tariq M. Khan, Donald G. Bailey, Mohammad A. U. Khan and Yinan Kong,“Efficient

Hardware Implementation For Fingerprint Image Enhancement Using Anisotropic Gaussian Filter,”IEEE

Transactions on Image Processing , minor revision submitted.
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Figure 7.1: Modules of the proposed design under study

7.1 Abstract

A real-time image filtering technique is proposed which could result in faster

implementation for fingerprint image enhancement. One major hurdle as-

sociated with fingerprint filtering techniques is the expensive nature of their

hardware implementations. To circumvent this, a modified anisotropic Gaus-

sian filter is efficiently adopted in hardware. In the proposed structure, for a

middle-range reconfigurable FPGA, both parallel compute-intensive and real-

time demands were achieved. Test results show an improved speed for its hard-

ware architecture while maintaining reasonable enhancement benchmarks.
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7.2 Introduction

Biometrics is a fast progressing science that deals with human identification by using

their traits or characteristics. The science is especially interested in measurable, albeit

distinctive, characteristics to label and to some extent describe individuals [60]. These

characteristics are often categorised as behavioural versus physiological. Physiological

characteristics deal with the shape of the body. Examples include the face, DNA, palm

print, hand geometry, retina, iris and fingerprints. Behavioural characteristics are related

to the pattern of behaviour of an individual, including but not limited to typing rhythm,

gait, and voice. Among all the characteristics, a fingerprint is the most widely used.

Fingerprint identification is one of the oldest biometric techniques that has proven its

worth in numerous applications [106]. Every person has a unique and immutable finger-

print that can be acquired by a scanner. A fingerprint surface consists of parallel ridges

and furrows. However, at some points, one ridge splits into two (ridge bifurcations) and,

at other points may even terminate and continue no more (ridge endings). These local

ridge singularities (deviations from normal parallel behaviours), also known as minutiae

points, are distinctive [200] and it is these that are primarily utilised for identifying indi-

viduals.

Although associating identity with a fingerprint impression can be accomplished through

image correlation-based methods [201], more commonly, minutiae points are matched

[119, 202]. The minutiae-based representation consists of the set of ridge endings and bi-

furcations along with their spatial location and direction on the fingerprint surface. Having

a small template size and high accuracy, the minutia-based representation is considered

favourite by many experts as compared to correlation based methods [203]. Minutiae-

based fingerprint matching is widely used by both machines and human experts. This

representation has now become a standard, mostly used by forensic experts, for the ex-

change of information between different systems across the world [204].
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To make use of a minutia-based representation, it is essential that the minutiae are

extracted accurately. Extraction starts with the acquisition of fingerprints by a scanner.

Acquired fingerprint images often show important variations, with poor contrast in some

areas and gaps in ridge and valley regions. These occur due to the very process of scan-

ning a finger. The finger’s surface is not flat. Consequently, there is more pressure on the

middle of the finger than the edges, giving better contrast in the centre relative to the

edges [202]. This results in background variation for different regions of the same image

that disturb the ridge and valley contrast. Since the ridge and valley pattern is identified

by its gray-level profile, this effect may adversely affect the performance of the subsequent

fingerprint recognition algorithms.

Fingerprint image normalisation and enhancement is, therefore, essential pre-processing

before minutiae extraction. General-purpose noise-reduction techniques, including local

averaging, were not found to be as successful as expected. Their failure could well be

attributed to the non-stationary nature [59] of a fingerprint surface. Filtering at its most

abstract level can be considered as applying some prior knowledge to improve the signal-

to-noise ratio. For images, a classic prior is a smoothness, which implies the application of

a low-pass filter to smooth the image. However, a fingerprint has a regular texture with

well-defined local orientation and frequency. To exploit this prior, techniques emerged

for fingerprint enhancement that include local neighbourhood information during noise

filtering. Notable among them is the Gabor filter [60], parameterized with orientation

and frequency. The even symmetric two-dimensional Gabor filter kernel is given by:

G (x, y; θ, f, σx, σy) = e
−
(

x2
θ

2σ2
x
+

y2
θ

2σ2
y

)

cos (2πfyθ) (7.1)

where

xθ = x cos θ + y sin θ

yθ = y cos θ − x sin θ,
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θ is the orientation of the ridges and f is the local ridge frequency. xθ and yθ respectively

are the rotated coordinates with fixed σx and σy as standard deviations parallel and per-

pendicular to the ridges respectively. The Gabor filter is a band-pass filter with centre

frequency f , and band-width defined by σx and σy.

Hong [60] introduced Gabor filtering to enhance fingerprint images and provided a

systematic approach to set its parameters in a local neighbourhood. There are several

works extended from [205], and most of these focused on the enhancement of performance.

For example, Yang [63] introduced a modified Gabor filter (MGF) resulting in better fin-

gerprint verification.

Unfortunately, Gabor filtering has a high computational complexity. In [206], a set of

8-fixed orientation based separable 2-D Gabor filters is introduced to reduce the computa-

tional complexity of conventional Gabor filters used in [60]. Nevertheless, their enhanced

image quality was only marginally inferior to the traditional 2-D Gabor filter. Watcha-

reeruetai [205] proposed a generalised separable Gabor filter for any orientation based on

Hong’s work, resulting in lower computational complexity, better enhancement, and less

memory space for the Gabor filtering process. They kept the frequency constant because

the frequency does not change much throughout the fingerprint image.

One key limitation of Gabor filtering is that it assumes a given ridge frequency. Al-

though this is true for most of the image, it is not true around minutiae points. Conse-

quently, in maintaining the regular texture of the ridges and valleys, the minutiae points

are distorted, and this can affect the accuracy of matching. For fingerprint images, the

exact estimation of ridge frequency is a very difficult and time-consuming task, especially

in noisy regions and in regions where minutiae and singular points exist. In fact, these

singularities, where the curvature is large, do not have any frequency and a wrong as-

sumption can create spurious ridge structures.

To avoid ridge frequency dependence altogether, the prior for fingerprints becomes
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limited to its high value of anisotropy, which can be processed by using an anisotropic fil-

ter. The pioneering work was done by Perona and Malik [64]. They suggested employing

the heat equation in a heterogeneous medium for edge enhancement. The scheme allowed

both steering and scaling of an anisotropic Gaussian. However, the number of basis filters

is large, and the basis filters are nonseparable, increasing the high computational cost.

Geusebroek [207] proposed decomposing the anisotropic Gaussian into two Gaussian line

filters in non-orthogonal directions. Choosing the axis to decompose the filter along turns

out to be extremely efficient from a computing perspective. In a practical setting, not

knowing the axis of orientation for each pixel poses a problem. Therefore, a large num-

ber of filters are usually applied at different scales and orientations, and the maximum

response per pixel over all the filters is accumulated.

Applying a large number of filters commonly requires a significant amount of comput-

ing resources. The best way to achieve good real-time performance is to implement it in

hardware utilising the parallel processing. Although several efficient FPGA implementa-

tions have been presented in the literature for separable as well as non-separable filters,

research on the oriented filter implementation on an FPGA is limited. Fons [186, 208],

Qin [184] and Gracia [209] used conventional Gabor filters for FPGA-based fingerprint

image enhancement. Qin used a 16×16 blocks for Gabor filter implementation. Fons

used a directional 7× 7 Gabor filter. For image normalisation, both Qin and Fons used a

two-pass local mean and a local variance-based normalisation method.

For large windows, several decompositions can be used, for example, [210] approx-

imates a large circularly symmetric filter by octagons. Joginipelly [211] proposed an

efficient implementation of an oriented Gaussian smoother on an FPGA. They decom-

posed the 2-D filter into 1-D filters and then used pipelining to obtain higher throughput.

Their implementation only has a single orientation; for multiple orientations, they require

multiple filters in parallel. This limits the applicability of these filters for fingerprint im-
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age enhancement.

In this chapter, a decomposition of the anisotropic Gaussian is used in which the im-

age is diffused by first applying a small two-dimensional isotropic Gaussian filter followed

by a relatively large anisotropic Gaussian line filter aligned to the ridge direction. We

extended the work of Joginipelly by being able to change the orientation of the final line

Gaussian on a pixel by pixel basis. To implement a real-time system, these algorithms are

efficiently enhanced for fixed-point representation and optimised for memory and compu-

tational capacity. The significance, or the innovation, of this work, is a novel architecture

to steer the orientation of an anisotropic Gaussian filter on a pixel by pixel basis. We

also implement a fingerprint image-enhancement algorithm on an FPGA, which is well

suited for real-time systems. The proposed implementation is faster and consumes fewer

resources than existing methods.

The rest of the chapter is organized as follows. The proposed algorithm is described

in Section 7.3. In Section 7.4, the FPGA implementation of the proposed structure is

presented. The experimental results, and performance with several datasets, of the pro-

posed method are illustrated in Section 7.5. In Section 7.6, we make some conclusions

and suggest future work.

7.3 Proposed Method

7.3.1 Image Normalisation

In fingerprints, the input images that are obtained from sensors may have imperfections

or poor quality due to non-uniformity. The accuracy of fingerprint recognition can be

improved considerably by normalising the image for background variations and contrast

before filtering. In the literature, most researchers implement an adaptive normalisation
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algorithm based on local mean and variance [184,186]. This type of normalisation requires

two processing passes of the whole image [186]. Therefore, a frame buffer is required to

perform this task. To eliminate multiple image passes, a new algorithm is proposed,

which is not only well suited for hardware implementation but also gives much better

results than the local-property-based normalisation. The block diagram of the proposed

algorithm is shown in Fig. 7.2.

A Gaussian filter with a window size of 3.5σ is used, where the chosen σ = 5 is the

Input
Image

Gaussian filter

σ=5

-

Absolute
x0.75

Gaussian filter

σ=2.5

Clip
[50 255]

÷ × +
Clip
[0 255] Normalized

Image
128 128

value

fB
Local contrast

gf Gout

Figure 7.2: Block diagram of the proposed local-normalisation algorithm.

average ridge width of the fingerprint. The application of the filter results in blending the

dominating structure with the background and results in a blurred image that contains

the slowly-varying illumination pattern. Then, the difference D between the image f and

the background estimation image fB is calculated for every pixel

D (x, y) = f (x, y)− fB (x, y) (7.2)

The background subtraction process is effectively a high-pass filter that allows the struc-

ture of interest to pass. Though the filter provides us with a uniform background image,

its contrast can vary significantly throughout the image. Therefore, contrast enhance-

ment has to be performed next to normalise object intensities about the background.

The magnitude is used to estimate the local contrast. Then a power-law transformation

(with γ = 0.75) compresses the high-contrast pixels about those with low contrast. Then
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another Gaussian filter, with σ = 2.5, is applied on the power-law transformed image to

average that locally. The resultant image is clipped in between [50-255] to avoid over-

enhancing noise and to retain the relative strength of already high-contrast regions. This

provides a measure of the local contrast within the image. The difference image is nor-

malised by this local contrast. The result of this division is scaled by a factor of 128 and

offset by 128 to enable negative values to be elevated for accommodation in the dynamic

range of the monitor. In the end, the image is clipped to the allowed pixel range [0-255]

to give the normalised output image.

7.3.2 Orientation Estimation

The patterns present in a fingerprint image demonstrate strong local directionality that

has to be taken into account while filtering the image for enhancement. The local ridge

orientations θx,y are to be estimated from the neighbourhood. In the literature, many

researchers propose different techniques to get robust orientation estimation [70, 81, 106].

Although these techniques give excellent orientation estimation they are iterative, making

them less suited to hardware. In this chapter, the procedure outlined in [212] was adopted

for this purpose. First, discrete derivatives Gx and Gy in x and y directions are calculated

by employing a Gaussian smoothed kernel, with a small standard deviation to mitigate

noise. Then, covariance matrix data for the fingerprint image was calculated for each

pixel as Gxx = G2
x, Gxy = GxGy, and Gyy = G2

y. The covariance matrix elements were

further smoothed with a Gaussian having σ = 1. Since the gradient vectors on each

side of a ridge are opposite to each other, if we smooth the orientation by taking the

average of gradient angles directly in a local block, the opposite gradients would cancel

each other. To solve this problem, Kass and Witkin [118] proposed a simple and clever

idea of doubling the gradient angles before averaging. In practice, 2θ are the angles of
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squared gradient vectors and are related to the covariance matrix elements by [212]:

sin (2θ) =
2Gxy

√

4G2
xy + (Gxx −Gyy)

2
(7.3)

cos (2θ) =
Gxx −Gyy

√

4G2
xy + (Gxx −Gyy)

2
(7.4)

These doubled angles are smoothed with a Gaussian of σ = 7. Finally, the orientation is

estimated by

θ =
π

2
+

arctan
(

sin(2θ)
cos(2θ)

)

2
(7.5)

The visual inspection of the estimated orientations provide a good match with local ridge

directions as depicted in Fig. 7.3.

7.3.3 Separable Gaussian filter

In this chapter, an anisotropic directional Gaussian filter is used to enhance the ridge

structure and reduce noise. Its kernel is given by

Gdir (x, y; θ, f, σx, σy) = e
−
(

x2
θ

2σ2
x
+

y2
θ

2σ2
y

)

(7.6)

To make the implementation process simpler, Gdir is decomposed into two filters. Since

σ2
y ≪ σ2

x, the filter can be decomposed into a small isotropic filter

Giso (y; σy) = e
−x2+y2

2σ2
y (7.7)

and an anisotropic filter

Gani (xθ; θ, σθ) = e
− x2

θ

2σ2
θ (7.8)

where σ2
θ = σ2

x − σ2
y ≈ σ2

x and xθ = x cos θ+ y sin θ. The oriented Gaussian filter is imple-

mented by first convolving by an isotropic 2-D Gaussian filter of size σy. The resulting

image is then convolved with a 1-D Gaussian in the θ direction. Allowing θ to vary from



7.3 Proposed Method 185

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7.3: Impact of proposed proposed method on low contrast fingerprint images.

Column 1 shows three fingerprint images . Columns 2 show the output of proposed local

normalisation on those images. Column 3 show the ridge orientation map and column

4 show the result of guided line Gaussian filter on noisy images.
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pixel to pixel gives a steerable Gaussian filter, which yields an anisotropically smoothed

image.

7.4 FPGA Implementation

Real-time image processing systems are hard to design using a software. The reason is

that a large data set is required to represent an image, and complex operations are needed

to perform a certain task. Consider that a video rate of 60 frames per second, a single

operation performed on every pixel of a 640×480 colour image (VGA) equates to 18.4

million operations per second. Thus, the alternative is to make use of hardware design,

by prototyping it on an FPGA. FPGAs offer a compromise between the flexibility of

general-purpose processors and the hardware-based speed of an integrated-circuit design.

One of the main advantages of using FPGAs for the implementation of image processing

applications is that their structure can exploit spatial and temporal parallelism. FPGA

implementations have the potential to be parallel using a mixture of these two forms.

For example, the FPGA could be configured to partition the image and distribute the

resulting sections to multiple pipelines, all of which could process data concurrently. Such

parallelization is subject to the processing mode and hardware constraints of the system.

Converting the software design to an efficient hardware design is one of the most difficult

steps in embedded system design.

In software, usually one operation is performed at a time and its result is stored

in RAM for the next operation. This is the reason why it takes a longer time to per-

form certain tasks which comprise multiple sequential operations, while in hardware these

components can be combined to create parallel computing structures [197]. Almost all

image-processing algorithms contain operations that execute in sequence. This is a form
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of temporal parallelism [197]. Hence, this structure is ideal to have a separate processor

for each operation, as a pipelined architecture, as shown in Fig. 7.4. When processing

images, data can usually begin to be output from an operation long before the complete

image has been processed by that operation. The time between when data is first input

to an operation and the corresponding output is available is the latency of that operation.

When each operation only uses input pixel values from a small, local neighbourhood then

its latency is lowest. This is because each output only requires data from a few input pixel

values. Operation pipelining can give significant performance improvements when all of

the operations have low latency because a downstream processor may begin performing

its operation before the upstream processors have completed.

The proposed algorithm for fingerprint image enhancement contains different opera-

Operation 1 Operation 2 Operation 3 Operation 4

Processor 1 Processor 2 Processor 3 Processor 4

Figure 7.4: Temporal parallelism exploited by using a processor pipeline.

tions that execute in sequence. Temporal parallelism creates a different processor for each

operation. In general, each processor performs an operation on an M×N window. Each

clock cycle, a new pixel is input and processing begins for the current window position.

When processing is complete, after some latency, an output pixel is produced each clock

cycle. In this way, scanning a window through the image is equivalent to streaming the

image through a processor, one pixel per clock cycle. Processing a window requires more

than one-pixel input. Pixels from the previous M-1 columns and N-1 rows are cached

using row buffers as described in [197]. One problem with filtering is managing what hap-

pens when the window is not completely within the input image [197]. Very few papers
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consider these boundary conditions since the design to handle them properly can take

more effort than to manage the normal case where all of the data is available. In this

chapter, to tackle these boundary conditions border pixel duplication is used.

Fig. 7.5 shows the block diagram of the proposed hardware structure, where an input

image stream is normalised and enhanced directly as it is streamed to the output. In the

proposed structure, each processor or block is designed carefully so that the minimum

latency can be achieved and the overall system can get full advantage of the pipelined

parallel computing structures.
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Figure 7.5: Block diagram of the proposed hardware for fingerprint image enhance-

ment.
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Figure 7.6: Block diagram of the proposed local normalisation algorithm for hardware

implementation.

7.4.1 Image Normalisation

This step is typically carried out to reduce the variation in the grey scale image without

changing the image structure or texture information. Fig. 7.6 shows the block diagram of
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the proposed local normalisation algorithm hardware. The input image is first smoothed

through a large 2-D Gaussian filter of σ = 5. The 2D Gaussian filter is implemented

as a cascade of one-dimensional Gaussian filters (1×19 and 19×1). The details of the

Gaussian filter implementation are given in the next subsection. Then the output of

this Gaussian filter is subtracted from the delayed image. Appropriate X and Y delays

are used with respect to the size of the Gaussian filter to get the delayed image. The

power-law transformation is performed on the absolute value of the difference image. The

power-law transformation is implemented in hardware by using a lookup table. This

power-law transformed image is smoothed by a second Gaussian filter of σ = 2.5. The

delayed image is divided by the output of the Gaussian filter. The resultant image is

rescaled by a factor of 128, offset by 128, and clipped to give the normalised image.

Gaussian Filter Implementation

A Gaussian filter is used for image blurring and removing noise or high-frequency com-

ponents of an image. In two dimensions, the Gaussian filter kernel is:

G (x, y; σ) =
1

2πσ2
e−

x2+y2

2σ2 (7.9)

For large σ, the size of the filter increases significantly, which makes a hardware imple-

mentation expensive. For the hardware implementation, a size of σ = 5 is used with a

19×19 mask. Truncating the window limits the stopband attenuation of the Gaussian

filter at high frequencies to 50 dB.

As the Gaussian is separable, this allows the filter to be implemented as a cascade of

one-dimensional Gaussian filters (1×19 and 19×1. Although the filter can be decomposed

to only use adders [156,197], the need for such a decomposition is less important on mod-

ern FPGAs, where high-speed pipelined multipliers are plentiful. The symmetrical nature

of the Gaussian filter allows the number of multipliers to be halved by folding the data
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path, and performing the addition before the multiplication, as shown in Fig. 7.8
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Figure 7.7: Block diagram of a 2D Gaussian filter implementation.

7.4.2 Orientation Estimation

Reliable orientation-field (OF) estimation plays a vital role in fingerprint image enhance-

ment. It is one of the most important preprocessing steps. The performance of the

proposed guided Gaussian filter is dependent on the orientation field as well as two ad-

ditional tuning parameters: σx and σy the standard deviations of the Gaussian envelope.

For this purpose, the non-iterative gradient-based method [212] described in section II B

is implemented in hardware. The block diagram of the proposed hardware is shown in

Fig. 7.9. The input stream data is first smoothed by a Gaussian filter of σ = 1 (with a

5×5 window) to reduce the noise before calculating the discrete derivatives. The output of

the Gaussian filter is then passed through a Sobel filter. This gives the partial derivatives

of intensity, Gx and Gy, as outputs, as shown in Fig. 7.10. Using these derivatives the

covariance matrix data G2
x, GxGy and G2

y is calculated. Another Gaussian filter of σ = 1

is applied on these covariance matrices and then sin(2θ) and cos(2θ) are calculated. A

modified CORDIC can be used to calculate both Eq. 7.3 and Eq. 7.4 in one operation

(avoiding the need for square roots and divisions), as shown in Fig. 7.11. This efficiently
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uses CORDIC in vectoring mode to determine 2θ combine with a second CORDIC in

rotation mode to calculate sin(2θ) and cos(2θ). Since the angle determined by first the

CORDIC is used to rotate the vector for the second CORDIC, both iterations can be

combined, as shown in Fig. 7.12. The double angles are further smoothed by a larger

Gaussian of σ = 8 (using a 29×29 window). The final orientation is estimated by arctan-

gent of these double angles. For this purpose, a CORDIC unit using the vectoring mode

calculates the arctangent. Fig. 7.13 shows the block diagram of the unrolled CORDIC

iteration. The Gaussian filters are decomposed and implemented as a cascade in a similar

manner to that shown in Fig. 7.7 and Fig. 7.8.
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Figure 7.10: Sobel filter implementation
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Figure 7.12: Iterations combined CORDIC for calculating sin2θ and cos2θ.

7.4.3 Guided-Line Gaussian filter

The aim of this work is to design an efficient algorithm for fingerprint image enhancement

that best suits a real-time hardware implementation. For this purpose, the guided Gaus-

sian function is further decomposed into a 2-D isotropic filter and a 1-D an anisotropic

filter. For the 2-D filter, σy = 0.5 using a 5×5 window.

7.4.4 Oriented-Line Gaussian Filter Implementation

The next step is to design the hardware for the oriented Gaussian. Usually, σx > σy

so a larger filter size is required. Fig. 7.15 shows a line Gaussian filter directed at an
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Figure 7.13: Block diagram of the unrolled CORDIC iteration.

angle of 45◦. A direct 2-D implementation would require a 25 × 25 window where the

filter coefficients change every pixel depending on θ. If we analyse Fig. 7.15, it can be

observed that out of 625 pixels, only 25 pixels have non-zero values. To implement this

oriented-line Gaussian filter efficiently, this filter is converted into a 1-D line Gaussian

filter. It is observed that for a 25× 25 window if an angle tolerance of 5.625◦ (180◦/32) is

used then it does not significantly affect the smoothing performance of the filter. A larger

window may require better angle resolution. This tolerance combine with the isotropic
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Figure 7.14: Block diagram of Oriented Gaussian filter implementation.
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Gaussian pre-filter enables nearest-neighbor interpolation to be used to select each pixel

from the window to filter. This significantly reduces the hardware complexity.

To convert the 2-D filter into 1-D, the window is divided into two sub-windows hwind

and vwind, which are used to filter angles that are primarily horizontal and vertical

respectively, as shown in Fig. 7.16. With nearest neighbours, interpolation angles within

vwind require one pixel from each row within the window while those in hwind require one

from each column. For hwind with streamed image data, the columns within the window

arrive in successive clock cycles leading naturally into a transpose filter structure as shown

in Fig. 7.18. Multiplexers select the appropriate row for each coefficient depending on

the angle corresponding to the centre of the window. For vwind, one pixel is taken

from each window row. The orientation is controlled by implementing variable delays

for each window row. These allow a different delay to be selected at each clock cycle.

The pixels corresponding to the required delays are selected and then multiplied by the

Gaussian filter weights. These are summed to get the filter output value. The number

of multipliers can be reduced to half in vwind by exploiting symmetry as shown in Fig.

7.19(c). Conceptually the variable delays are implemented using a multiplexer as shown in

Fig. 7.19(a). However, to reduce the logic resources, this is implemented using a selected

binary delay as shown in Fig. 7.19(b). Finally, either the output of vwind or hvind is

selected based on the dominant direction of the oriented Gaussian, as shown in Fig. 7.20.

7.5 Experimental Results

The experiments were performed on the FVC2004 database [58] that consists of four sub-

bases, in which images are captured with four different sensors. DB1 A, DB2 A, DB3 A,

DB4 A. This database was used to enable comparison with existing algorithms. Each
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Figure 7.18: Proposed hwind structure. a) Pipelined transpose filter structure. b)

Adapted for steerable filter. The multiplexers select inputs from the appropriate rows

depending on the orientation.

sub-base includes 800 fingerprints, of which 8 are of the same person. Each sub-base has

different fingerprint image sizes:

• In sub-bases DB1 A the size of the fingerprint image is 480× 640

• In sub-bases DB2 A the size of the fingerprint image is 364× 328

• In sub-bases DB3 A the size of the fingerprint image is 480× 300

• In sub-bases DB4 A the size of the fingerprint image is 384× 288

For simulation, the program was written in MATLAB and run on a 3.40 GHz Core i7

processor with 16 Gb of memory. For real-time implementation, VHDL is used and the

design is tested on a Cyclone III FPGA using Quartus II, and simulated using ModelSim.

To assess the efficiency of the verification system the FAR (False Acceptance Rate) and

FRR (False Rejection Rate) are calculated by

FAR =
Number of rejected genuine claims

Total Number of genuine accesses
(7.10)
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FRR =
Number of accepted imposter claims

Total Number of imposter accesses
(7.11)

Finally, the EER (Equal Error Rate) was used as a success rate indicator, marking the

point where FRR and FAR are equal.

EER =
FAR + FRR

2
, if FAR = FRR (7.12)

Table 7.1 shows the Equal error rate EER (%) assessment of the proposed algorithm com-

pared with existing algorithms which are similar to the proposed algorithm. Marko [187]

proposed a block-local normalisation and normalized the image with 3 different block sizes

2 × 2, 4 × 4 and 8 × 8. He claimed that 8 × 8 block-local normalisation is best suited

for real-time application, only if the required accuracy of the system is not too high. For

fingerprint image enhancement, both algorithms are used as a pre-processing step with

the Yang algorithm [213] and oriented linear diffusion [112]. Although the EER of the

proposed algorithm is slightly higher than some of the existing algorithms, it is still very

good for an FPGA-based real-time system. Also in this chapter, we put more emphasis

on the speed as well as the parallel compute-intensive demands of the fingerprint image-

enhancement process with respect to FPGA rather than its EER.

Fig. 7.3 depicts the results of the proposed fingerprint image-enhancement algorithm

on a noisy image. In column 1, three noisy fingerprint images are chosen. The proposed

local normalisation algorithm is applied to these images. The second column of Fig. 7.3

clearly depicts that the nonuniformity of the poor-quality images is removed in an efficient

way. Column 3 shows the orientation map of the local normalised images, calculated by

using Eq. 10.3. Finally, column 4 shows the result of an oriented-line Gaussian filter on

the noisy images. The second row shows that it is necessary to remove the non-fingerprint

background because the noise from enhancing the contrast can result in false ridges and

false features. It is also essential to accurately estimate the orientation field because errors

can blur the fingerprint pattern, potentially resulting in false minutiae points. In Table
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Table 7.1: Equal error rate EER (%) assessment of proposed algorithm with existing

algorithm.

FVC2004 Compared algorithms EER (%)

DB1 A

Oriented linear diffusion + normalisation 9.74

Oriented linear diffusion + 2× 2 block-local normalisation 9.08

Oriented linear diffusion + 4× 4 block-local normalisation 9.93

Oriented linear diffusion + 8× 8 block-local normalisation 11.53

Two stage enhancement (Yang) 2×2 block-local normalisation 7.50

Two stage enhancement (Yang) 4×4 block-local normalisation 7.17

Two stage enhancement (Yang) 8×8 block-local normalisation 7.26

Proposed Method 9.03

DB2 A

Oriented linear diffusion + normalisation 11.02

Oriented linear diffusion + 2× 2 block-local normalisation 9.99

Oriented linear diffusion + 4× 4 block-local normalisation 11.27

Oriented linear diffusion + 8× 8 block-local normalisation 13.62

Two stage enhancement (Yang) 2×2 block-local normalisation 7.75

Two stage enhancement (Yang) 4×4 block-local normalisation 7.70

Two stage enhancement (Yang) 8×8 block-local normalisation 8.97

Proposed Method 9.71
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7.2, the relative processing speed of the proposed FPGA-based implementation and the

proposed MATLAB-based algorithm is presented. The proposed FPGA implementation

is over 300 times faster than the MATLAB-based implementation on a PC. The reason

for the high speed is the efficient use of parallelism in the FPGA.

Table 7.2: Processing speed of proposed FPGA based algorithm with proposed PC based

MATLAB structure

FVC2004 MATLAB(PC) FPGA FPGA vs MATLAB

FVC DB1 A 4.78 0.0140 340×

FVC DB2 A 1.86 0.00594 313×

FVC DB3 A 2.24 0.00712 315×

FVC DB4 A 1.72 0.00558 308×

7.5.1 Comparison to Other Hardware Architectures

For complete fingerprint image enhancement, the proposed method is compared with

two prominent FPGA-based fingerprint image-enhancement algorithms, one proposed by

Fons [186] and the other proposed by Qin [184]. In the literature, Fons was the fastest

and the most efficient algorithm for fingerprint image enhancement. Table 7.3 compares

the processing time of the proposed algorithm with the Fons and Qin algorithms. The

proposed FPGA implementation is approximately 9 times faster than the Fons FPGA

implementation. There are two reasons for this speed improvement. The first is the use of

an oriented line Gaussian filter instead of a Gabor filter used by Fons. Second, our whole

algorithm is single-pass while the segmentation and normalisation components of Fons

are two-pass. One disadvantage of the two-pass process is that it requires the complete

image to be stored off chip, large images cannot be processed completely on an FPGA
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due to a lack of sufficient on-chip memory. To process a single pixel a two-pass algorithm

requires a minimum of 2 clock cycles. If we compare the proposed method with Fons,

the proposed method requires fewer registers and logic cells. Table 7.4 gives a detailed

hardware resource comparison of the proposed method with Fons [199]. A sample image

of size 512×256 is used for this comparison. Again, the proposed normalisation require

fewer registers as well as logical cells than the Fons method. We require more memory

than the Fons method because of the use of a Gaussian filter twice in the normalisation.

However, these figures are a little misleading because our architecture does not require

off-chip memory which Fons does (not listed in the table). In terms of performance, the

proposed normalisation performance is much better than Fons. For orientation estimation,

Fons used Hong’s method that does not tackle the noise present in the orientation. In the

proposed method, a large Gaussian filter is used to mitigate the effects of noise present

in the orientations. Although in terms of resources this is bit costly, as can be seen in

Table 7.4, it gives better smoothing than Fons. For the final filtering stage, the proposed

method’s performance is much better than Fons. It consumes fewer memory bits and logic

cells and is almost 7 times faster. This is achieved by using the oriented line Gaussian and

its separability property along with efficient hardware implementation using parallelism

of streamed data.

7.6 Conclusion and Future Work

In this article, we address several challenging problems for real-time fingerprint image

enhancement. A new architecture for anisotropic diffusion is presented, decomposing it

into an isotropic and an anisotropic filter. By this decomposition, we manage to efficiently

speed up the image-processing time and improve the resource utilisation of the FPGA.
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Table 7.3: Comparison of the proposed method with some existing FPGA based nor-

malisation methods on a sample image of size 256 × 512.

Method Processing time (ms) Registers Logical Cells Memory Bits

Gracia FPGA

[209]

522 N/A N/A N/A

Qin FPGA [184] 165 N/A N/A N/A

Fons FPGA [186] 60 12811 28756 289k

Proposed FPGA 6.9 9590 18160 329k

Table 7.4: Detailed hardware resources comparison of proposed method with Fons [199]

on a sample image of size 256× 512 .

Process Method Processing

Time (ms)

Registers Logic

Cells

Memory

Bit

Normalisation
Fons 25 1384 4729 38912

Proposed 6.4 917 2286 59522

Orientation Est.
Fons 25 1513 9123 36864

Proposed 6.6 3335 7597 164864

Filtering
Fons 35 5022 11639 65536

Proposed 5.4 5334 8268 58464
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To further improve the performance of the filter, the input image is homogenised by a

new local image normalisation. The proposed normalisation method not only best suits

hardware implementation but also gives much better results than the existing methods.

Although the EER of the proposed algorithm is higher than some existing algorithms,

our main achievement is the speed, as well as the parallel, compute-intensive demands of

the fingerprint image-enhancement process with the FPGA rather than its EER. As far

as the authors know, the proposed structure is the fastest, most cost-effective and most

efficient one as compared to most existing FPGA-based structures. As a future work, the

authors aim to develop the remaining stage of an algorithm to reach a complete embedded

Automatic Fingerprint Identification System (AFIS). We also plan to investigate the

further optimisation of the orientation estimation and anisotropic filtering stages of the

algorithm.





Chapter 8

Hardware Implementation Of Fast

Pupil Segmentation Using Region

Properties1

This chapter is an adapted version of a journal article. The section headings from the

journal article have been retained. Figures, equations, tables, and references have been re-

numbered and are in line with the thesis format. This chapter presents a local histogram-

based and region properties based automatic pupil segmentation method. The proposed

method is efficiently implemented in hardware. With respect to our proposed design,

this chapter falls in the iris subsystem. It covers two modules of the iris subsystem, as

highlighted in Fig. 8.1.

1Published as: Tariq M. Khan, Yinan Kong and Mohammad A. U. Khan“Hardware Implementation

Of Fast Pupil Segmentation Using Region Properties,”Processing of SPIE - The International Society of

Optical Engineering, vol. 9534, pp. 95340F-1-95340F-10, January 2015.
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Figure 8.1: Modules of the proposed design under study

8.1 Abstract

This chapter presents a novel approach for automatic pupil segmentation.

The proposed algorithm uses local histogram-based threshold, area and eccen-

tricity that looks for the region that has the highest probability of having the

pupil. The proposed algorithm is implemented on FPGA using a non-iterative

scheme along with hardware optimised median filter and connected component

logic algorithm. The proposed algorithm is tested on two public databases

namely: CASIA v1.0 and MMU v1.0. Experimental results show that the

proposed method has satisfying performance and good robustness against the

reflection in the pupil.
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8.2 Introduction

An automated real-time biometric system such as the fingerprint or iris recognition has

been successfully deployed in several large-scale public applications to reduce the identity

fraud and increase the reliability and convenience for users. Usually, these systems are

implemented on microprocessors working at clock frequency in GHz range. The average

execution time to segment an iris code is about 30ms on Intel Pentium 4 at 3.2 GHz with

1 GB RAM [214]. Such software implementations restrict biometric-based applications

to specific markets, because of microprocessor cost. On the other hand, the low-cost

devices available in the market are too slow for intensive computation. For example,

3162 ms are required to execute an iris recognition algorithm on an ARM922 T at 160

MHz, which is almost 80 times slower than high-performance microprocessors [215]. Field

Programmable Gate Array (FPGA) platforms with a large number of embedded memory

blocks and registers, parallel DSP blacks and high-speed memory and storage interface

provides an attractive solution for these intensive computation based systems.

Given the importance of digital image processing and the significance of their imple-

mentations on hardware to achieve better performance, this work addresses implemen-

tation pupil segmentation algorithm on FPGA using VHDL language. To achieve high

speed with less use of memory, we propose a design and implementation of parallelized

pupil localization using an efficient connected component method. The main contribu-

tion is the parallel architecture design that utilises on-chip memory controller to achieve

our real-time image processing goal. The image is stored in FPGA built-in memory to

support the parallel architecture.
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8.3 Related Work

It is observed that iris patterns have high dimensionality which makes the recognition

decision very much reliable. Generally, an iris recognition system can have four parts

[179]:

1. Image Acquisition

2. Segmentation

3. Normalisation and iris code generation

4. Template matching/Recognition

In many machine vision applications, such as iris recognition, pupil tracking [216], ocular

torsion measurement [217], pupil size estimation [218], pupillometry [219], point of gaze

extraction [220]. The inner boundary location (pupil localization) of an iris is considered

as one of the most important pre-processing steps. As performance and accuracy of any

pupil-based system depend on pupil localization thus, it is very important to develop an

accurate and fast pupil localization method for these systems.

Pupil is nearly a circular region located in the centre of the iris of the eye. Its basic

function is to control the amount of light that enters the eye [221]. Pupil absorbs most of

the light that enters the eye. Due to this reason, it appears black. Most of the algorithms

use two methods to locate the pupil region either by finding its edges using circular mask

since pupil is nearly a circular region [148] or by using thresholding as it is the dark-

est region in an eye image. One of the most common methods for edge detection using

circular mask is Hough transform [222]. This method requires extensive computations.

Bai et al. [223] used a global histogram technique for binarization in order to locate the

pupil region. It is an effective method to some extent, but if the grey level of the other

part of eye falls below the grey level of pupil region, then it is unable to detect the pupil



8.3 Related Work 211

region correctly. Talal et al. [149, 224] introduced a new feedback method for pupil and

iris localization which locates the pupil on the basis of adaptive thresholding that looks

for the region that has the highest probability of having the pupil in an iterative manner.

Khan et al. [146] proposed an eccentricity based histogram method to locate the pupil

region which overcomes the problem that pupil should always have minimum grey level

value. This method is iterative wherein each iteration two regions are constructed by

bisection method, then morphological operators are applied on these constructed regions

for removing the unwanted noise. This formation makes it computationally intensive ap-

proach. Another drawback of this method is in bisection process. If the algorithm picks a

wrong side then it can never locate true pupil which ultimately cost more iterations than

normal.

Most of the discussed algorithms are computationally expensive, because of their iter-

ative nature. Iterative algorithms require the complete image to be stored on the off-chip

memory during processing. The data transfer overhead in transferring the full image to

and from off-chips memory makes these algorithms slower. FPGAs typically have an or-

der of magnitude slower clock speed than high-end processors. For improvement, a gain

of factor 10 is required. A memory-based algorithm cannot achieve this much gain fac-

tor. Also, these algorithms have been optimised for serial implementation, adapting to a

parallel implementation is not trivial.

In this chapter, we propose a new method which finds the pupil by eccentricity and

area of the regions belongs to three dominating peaks of the histogram of the low grey

level region. In order to implement it on FPGA, a parallel technique is used in which

region properties of all three regions are calculated simultaneously using an efficient con-

nected component method. This formation makes this technique much faster and more

efficient than [146]. Rest of the chapter is organised as. Section 8.4 details the proposed

method. In section 8.5 hardware implementation is presented. Experimental results and
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quality measure are discussed in Section 8.6. Finally, Section 8.7 presents our concluding

remarks.

8.4 Proposed Method

There are several issues to be handled for segmenting iris. Firstly, static threshold fails

to binarize iris image for varying illumination. Secondly, iris occlusion by eyelids and

eyelashes degrades the performance of localization module. Thirdly, during image acqui-

sition, the spot of light creates specular highlights on pupil which adds noise to input and

hinder localization. Lastly, the gaze of an individual may not be centred. Such images are

usually acquired in a non-cooperative environment. If we use eccentricity based thresh-

olding [146] without any pre-filtering then we cannot get a circular pupil region as shown

in Fig. 8.2. In order to mitigate these effects, a non-iterative eccentricity based method

is proposed. In the proposed method 7x7 median filter is used as pre-filter to cater the

problem of varying illumination. As eyelids and eyelashes badly affect the structure of

pupil and it is hard to locate pupil with just eccentricity therefor area and eccentricity are

used together for locating the pupil region. The block diagram of the proposed method

is given in the Fig. 8.3. The details of the proposed algorithm are given below:

Figure 8.2: Binarization using adaptive threshold

Step I: To mitigate the effects of noise, a 5 × 5 median filter is used which facilitates

the thresholding process to construct pupil region as much circular as possible.
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Figure 8.3: Block digram of proposed scheme for pupil localisation

Also set i = 1.

Step II: Histogram of the enhanced image is calculated. As mentioned previously, pupil

is a dark region in an eye image and its grey level value always falls below 70

[146]. For further processing, the grey levels above 70 are neglected for CASIA

v1.0[175] and above 50 are neglected for MMU v1.0 database [174].

Step III: Highest peak Hp of the histogram is found and a region is constructed by

selecting grey levels ranging from Hp − ε to Hp + ε , where ε is a small real

value.

Step IV: Eccentricities and Areas of the entire connected components are calculated and

the minimum eccentricity region Ei in pre-set area range is found.

Step V: Set highest peak value in the histogram to zero and increment i by 1.

Step VI: Repeat Step III-IV until i < 4.

Step VII: The minimum eccentricity region, in the predefined area bound, corresponds

to the pupil region.

8.5 Hardware Implementation

The proposed pupil algorithm contains following two main blocks, as shown in Fig. 8.4:

1. Median Filter
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2. Area and eccentricity calculation using connected components
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Figure 8.4: Proposed parallel structure for hardware implementation

8.5.1 Median Filter

The median filter of a sequence can be found by choosing the middle value of the sorted

sequence. Median filtering is usually based on date sorting algorithms, like insertion

sort, quick sort, and bubble sort. In literature, several authors used these techniques

for implementing median filters on hardware [225–227]. If we use bubble sort to find

out a median of a sequence of size (2N + 1) then it requires N(2N + 1) sorting units

and (2N + 1) registers. On the other hand, if we increase windows size, the number

of compare-and-swap units increases significantly. The authors in [228] used cumulative

histogram based implementation which uses 256×245-bits codes saved in 8 Block RAM’s

(BRAM). Although histogram based method is fast than sorting based methods but it

is inefficient because of high memory use. In this chapter, a directional median filter is

used [229]. This filter uses only 32 × 32 bit codes which reduce the BRAM utilisation

and also a number of clock cycles. In image processing, to implement a filter on image

sliding window is used. For a 5 × 5 filter, when a window slides over the image old 5

pixels are removed with new 5 pixels. To read the first window 25 clock cycles are needed

and 5 clock cycles to update the window. With this formation, median filter overlap
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with maximum 5 pixels for each direction. For every new window, four new cumulative

histograms corresponding to four directions are built. [229] proposed three methods for

median filter implementation on FPGA. From Table 8.1, it can be seen that different

methods have different advantages in terms slices occupied, LUTs used and the number

of clocks. In real time pupil segmentation, less number of clock cycle with the minimum

resource are required therefore, we use method 3 as it best suits for our application.

Table 8.1: Median filters resource utilisation for 200x200 image on Virtex 5 FPGA

Method Slices occu-

pied

Slice LUTs

used

Slice register

used

Number of

clock cycles

Method 1 28% 12% 20% 24%

Method 2 24% 14% 8% 24%

Method 3 28% 16% 20% 8%

Figure 8.5: Direction considered for directional median filter implementation

8.5.2 Area And Eccentricity Calculation Using Connected Com-

ponent Labeling

To calculate the eccentricity and area of all the regions of the threshold image, the first step

is to locate all the regions in the image. For this purpose, connected components labelling
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algorithms are used. Classic connected components labelling algorithm [230] requires two

raster-scans. In the first scan, four neighbours are examined to determine the label of the

current pixel. In the second pass, a merge table is used to relabel all pixels within an image.

Jablonski and Gorgon [231] have implemented a two-pass algorithm on FPGA. [232]

introduced a high-speed parallel algorithm. Although parallel algorithms give considerable

speed improvement over the classic one but these are very resource intensive, requiring a

large number of essentially identical processor. Some resource efficient iterative algorithms

have been implemented on FPGA [233,234] which uses very simple processing, but require

multiple passes. D. G. Bailey [235] introduced a single pass algorithm which eliminates

the need for a frame buffer and significantly reduces the latency. This removes the need

for processing the labelled imaged. In this chapter, a similar single pass algorithm is used

for connected component labelling. Fig. 8.6 shows the architecture of the implemented

connected component labelling algorithm. The algorithm implemented requires a Line

FIFO for intermediate label storage and a Lookup Table (LUT) memory. Control Unit is

used to Label the connected components and stores their area and other region properties

in the LUT. Finally, Decision Unit finds the minimum eccentricity region in the defined

area.

Figure 8.6: Connected component labeling block architecture
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Control Unit

The data is fed sequentially to the Control Unit. If the input pixel is zero, the pixel label

is set to zero. If the pixel value is one, the pixel should be labelled. Fig. 8.7 shows the

block diagram of Control Unit. The label is decided on the base of three pixels: Current

pixel (Cp), North pixel (Np) and West pixel (Wp) as mentioned in [236]. Fig. 8.8 shows

the flowchart of the algorithm used in Control Unit for labelling. In this algorithm, an

additional flag will be raised which indicates the need of a merging label. Decision Unit

needs to update this merge part to make the implementation optimal.

Figure 8.7: How Control Unit Works

Decision Unit

Decision Unit checks the LUT in a descending order. First, it checks the merge flag, if

it is non-zero then it adds the area value to the appropriate label and also adjusts the

Minx, Miny, Maxx and Maxy accordingly. If the merge flag is non-zero then it checks

the area, if it is in the defined range then it calculates the eccentricity and compares it

with the one stored in the cache. If the new eccentricity value is less than the old one

then the new one is replaced with old one. This process continues and the final value

of the cache represents the lowest eccentricity value in the defined area range. Fig. 8.9

shows the working procedure of Decision Unit.
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Figure 8.8: Connected component labeling block flowchart

Figure 8.9: How Decision Unit Works
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8.6 Experimental Results

To check the authenticity of the proposed pupil localization method, the MATLAB based

algorithm is tested on two most widely used databases mainly MMU v1.0 [174] and CASIA

v1.0 [175]. MMU v1.0 database contains 460 images from 46 subjects with 320 × 240-

resolution whereas CAISA v1.0 database contains 756 images of 320×280 resolution. For

experiments on CASIA v1.0 database, only those connected components are compared

having an area in between 2000-6000 and eccentricity less than 0.7. On the other hand,

for MMU v1.0, for area 700-3000 is used and for eccentricity 0.75 is used as a threshold.

Pupil localization of MMU v1.0 database is more difficult as compared to CASIA v1.0

because of reflection present in the pupil region shown in Fig. 8.11. The accuracy of the

proposed algorithm is 100% on both databases, for the analytical measure, we adapt the

same procedure which is used by [224]. In a noisy environment, the bisection method

[146] fails to locate the true pupil region. Fig. 8.12(a) shows a noisy image of CASIA-Iris-

Twins v4.0 if we apply bisection method [146] then both upper and lower level high peaks

refer to the non-pupil region. In such case, if the eccentricity of the upper level is lower

than low level then this algorithm fails to locate true pupil region. On the other hand, if

we use proposed method then second highest peak can easily locate the true pupil region

as shown in Fig. 8.12(d). It is found that the proposed algorithm is much faster than the

other region properties based algorithm proposed by [146, 148, 149, 224]. Table 8.2 shows

the average speed comparison of proposed method with [146, 224].

8.7 Conclusion

In this chapter, a new method of pupil segmentation based upon local histogram and

standard deviation has been proposed. Using the standard deviation and finding the

region that has the highest probability of having the pupil region from the local histogram



220
Chapter 8. Hardware Implementation Of Fast Pupil Segmentation Using Region

Properties

Table 8.2: Comparison of Average speed of proposed method with [146,224] in seconds

Method CASIA v1.0 MMUv1.0

M. Talal[224] 0.46 0.43

Khan [146] 0.49 0.45

Proposed 0.145 0.13

Table 8.3: Comparison of Accuracy Rates on MMU v1.0 database

Masek [176] as reported in [165] 93.33%

Ma et. al. [153] as reported in [165] 97.87%

Wildes [152] as reported in [165] 98.87%

Daugman [162] as reported in [165] 99.77%

M. Talal[224] 99.77%

Proposed 100%

has overcome the drawbacks faced while locating pupil by using the global histogram.

Experiments on MMU v1.0 and CASIA v1.0 iris databases show very satisfactory results.

In CASIA v1.0, the pupil area is replaced by a circular region with a constant grey-level

that makes it easy for the automatic pupil segmentation.

In the case of MMU v1.0, there is a reflection in the pupil that makes it difficult for

the pupil segmentation. From Table 8.1 and Table 8.3, it is clear that the performance of

our proposed method is not affected by the reflection in the pupil and it is still capable

of segmenting the pupil from the eye image.
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(a)

(b) (c)

(d) (e)

Figure 8.10: Comparison of bisection method with proposed one on CASIA-Iris-Twins

v4.0. (a) Sample Image. (b) Histogram showing two highest peaks, one in an upper

region and one in a lower region. This histogram is calculated using algorithm proposed

by [146] (c) Histogram of the proposed method which shows three dominating peaks (d)

Region constructed by using Highest peak 2 (e) Region constructed by using Highest peak

1
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(a) (b)

(c) (d)

Figure 8.11: Examples of MMU v1.0 database after applying the proposed method

(a) (b)

(c) (d)

Figure 8.12: Examples of CASIA v1.0 database after applying the proposed method



Chapter 9

Real-time implementation of fast iris

segmentation and normalisation on

FPGA1

This chapter is an adapted version of the journal article. The section headings from the

journal article have been retained. Figures, equations, tables, and references have been re-

numbered and are in line with the thesis format. This chapter presents a fast and efficient

implementation of iris segmentation on an FPGA. With respect to our proposed design,

this chapter falls in the iris subsystem. It covers four modules of the iris subsystem, as

highlighted in Fig. 9.1.

1Published as: Tariq M. Khan, D. G. Bailey, Yinan Kong, Mohammad A. U. Khan,“Real-time imple-

mentation of fast iris segmentation and normalisation on FPGA,”Journal of Real-Time Image Processing

, submitted
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Figure 9.1: Modules of the proposed design under study

9.1 Abstract

This chapter presents a real-time iris segmentation technique that results in a

faster implementation of iris segmentation on an FPGA. One major hurdle

associated with iris segmentation techniques is the use of iterative processes

that lead to expensive hardware implementations. To circumvent this, the

proposed algorithm uses a threshold of the signed image obtained from the

background subtracted image along with morphological operators to localise

the pupil. The outer boundary is located by first normalising a selected image

region that contains the iris, and then using a first-order gradient operator.

The proposed algorithm is implemented on an FPGA using a non-iterative

scheme. Three Iris public databases, namely: CASIA-IrisV3-Lamp, CASIA

v1.0 and MMU v1.0, are used to test the proposed algorithm. Test results
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show an improved speed for its hardware architecture.

9.2 Introduction

Identity fraud and terrorism pose a great threat at the present day, so security is of the

utmost concern. Biometrics is a developing technology that provides a higher level of

security, convenience, and efficiency than traditional password methods for user authen-

tication. The primary advantage of biometric-based authentication is that it cannot be

forgotten, stolen or misplaced. Humans have many biometric features such as a face,

hand geometry, fingerprint, voice, and iris. Iris recognition is accurate and reliable due to

its high degree of uniqueness and randomness, even between identical twins and remains

constantly stable throughout an adult’s life [146, 148].

It is observed that iris patterns have a high dimensionality that makes the recogni-

tion decision very reliable. A typical iris recognition system has, in general, common

steps [179] that start with the acquisition of eye image, segmentation of the iris area,

extraction of unique features, matching the features and recognition of a person. Among

these essential steps, iris segmentation or boundary localisation plays a significant role in

system accuracy because it is the vital step of the whole system. It has been observed that

the most computationally intensive task in iris recognition is iris segmentation [146]. Iris

segmentation localises two different boundaries; the first is an inner boundary that seg-

ments the pupil from the iris, known as the pupillary boundary and the second is the outer

boundary of the iris, known as the limbic boundary. These boundaries generally need to

be found before filtering to remove any extraneous noise, such as the eyelashes, specular

reflections and eyelids in the desired iris region. Duagman proposed an edge-based de-

tector using an integral differential operator (IDO) [162]. The operator searches over the

image domain (x, y) for the maximum in the blurred partial derivatives with respect to



226
Chapter 9. Real-time implementation of fast iris segmentation and normalisation on

FPGA

increasing radius r, of the normalised contour integral of I(x, y). The complete operator

behaves as a circular edge detector, blurred at a scale set by σ, searching iteratively for

the maximal contour integral. A circular Hough transform is used to detect the inner and

outer boundaries of the iris. Three parameters (x0, y0, r) are used to define each circle,

where (x0, y0) is the center and r is the radius of the circle. The circular Hough transform

(CHT) was used by Wildes [152] to pinpoint the iris boundaries. However, most segmen-

tation methods execute perfectly well for ideal iris images that are obtained under very

controlled settings. In controlled settings, the image acquisition uses a very constrained

approach, for example, the subject should use no contact lenses or glasses, and he/she

should stand at a fixed distance and stare directly into the camera. On the other hand,

less controlled settings lead to non-ideal data [237] in which the image is received from

a potentially moving subject at a larger distance. Due to this, many non-ideal problems

may arise in the captured image. For example, the image can be blurred, the contrast can

be poor, the illumination can be non-uniform, with specular reflections, the image can be

off axis or at an angle, and there may be other objects in the iris region, such as eyelids,

eyelashes, hair, the frame of glasses, or contact lenses.

Although there has been substantial work on combining different biometrics for a vari-

ety of purposes, not much work has focused on the implementation of a biometric system

for real-time systems. Because of the limited computational resource and memory space,

the currently available embedded devices are not suitable for the real-time implementa-

tion of a biometric application system. To implement a real-time system, the biometric

algorithms need to be efficiently enhanced within a fixed-point representation and opti-

mised for memory and computational capacity. The significance, or the innovation, of

this work, is the implementation of an iris recognition system on an FPGA, that is best

suited for real-time systems. To achieve high speed with less memory, a threshold-based

method is used that efficiently locates the iris boundaries by using morphological oper-
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ators and region properties. Our main contribution is a real-time implementation of iris

segmentation that fully utilises the parallel and pipelined architecture of an FPGA.

The rest of the chapter is organised as follows: Related worked is discussed in Section

9.3. Section 9.4 details the proposed method. In Section 9.5, a hardware implementation

is presented. Experimental results and quality measures are discussed in Section 9.6.

Finally, Section 9.7 presents our concluding remarks.

9.3 Related work

There are a lot of different methods being used for iris segmentation, for example edge de-

tectors [238], histogram, active contour models [239] and taking thresholds [146,149] etc.

Methods that involve thresholding and histogram processing are comparatively speedy

[146]. It is believed that the threshold and histogram based methods are better suited for

FPGA implementation than the more complex methods, that involve the circular Hough

transform or active contour models. Ibrahim et al. [149, 224] used histogram-based and

standard deviation based adaptive thresholding to localise the pupillary boundary. A cir-

cular moving window is used to locate the pupil by finding the range of grey level that has

the highest probability of the pupil. The window with the grey level peak having a mini-

mum standard deviation of x- and y- coordinates is selected as the pupil region. Ibrahim

didn’t use any other considerations before compiling this decision. But the method fails

if we apply a standard deviation to a binary object containing some binary objects that

cause regions that are low in intensity, for example, hair, eyelashes, and glasses frame. In

the same way, Khan et al. [146] used threshold, histogram, and eccentricity to identify

the pupillary boundary. This is an iterative method that uses a histogram-based bisection

method to construct two regions, and then morphological operators are applied to these

constructed regions for removing the unwanted noise. A region with low eccentricity is se-
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lected for next iteration. This formation makes it a computationally intensive approach.

Another drawback of this method is in the bisection process. If the algorithm picks a

wrong side, then it can never locate the true pupil and may ultimately cost more itera-

tions than normal. But, like Ibrahim et al. [146], they also were unsuccessful in proposing

any technique to deal with multiple binary objects in a single binary image. Moreover,

using eccentricity to localise it can be deceptive as well because, other than the pupil, any

small object in an eye image may have a similar eccentricity value.

Most of the discussed algorithms are computationally extensive, making them harder

to implement efficiently on an FPGA. In the literature, there are a few FPGA implemen-

tations of iris segmentation, but most of them do not support real-time implementation.

In [240], a modified form of [146] is proposed that used a histogram-based threshold and

region properties for pupil segmentation. As discussed earlier, the use of eccentricity

can be deceptive, which is one drawback of this implementation. The use of connected

component analysis three times also makes this implementation very costly. Lastly, the

image needs to be saved twice, which is the main hurdle for a real-time implementation.

When processing streamed images, the bandwidth bottleneck of reading in the image data

destroys many of the benefits gained by pipelining the operations. Ngo et al.[241] pro-

posed a real-time iris segmentation by using an edge detector. Instead of using a circular

Hough transform, a modified circle detection method is proposed which has three steps:

1) forming the circles with different parameters, 2) reading the pixels that are part of

the circles and 3) accumulating the values and computing a percentage match. Although

this technique is very efficient and well suited for real-time implementation, it is still a

computationally expensive technique.
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9.4 Proposed Method

9.4.1 Pupil Segmentation

There are several issues to be handled for segmenting the pupil from an eye image. Firstly,

a static threshold fails to capture a binary image under varying illumination. Secondly,

occlusion by eyelids and eyelashes degrades the performance of the localisation module.

Thirdly, during image acquisition, the spot of light creates specular highlights on the pupil

which adds noise to the input and hinders localisation. Lastly, the gaze of an individual

may not be centred. Such images are usually acquired in a non-cooperative environment.

To mitigate these effects, a non-iterative eccentricity-based method is proposed.

Thresholding using mean subtraction

The acquired images often show important background variations and poor contrast in

some areas. One of the reasons of this background variation is the spot of light that

creates specular highlights on the pupil and adds noise to the input, as shown in Fig.

9.2(a). To reduce these imperfections, and generate images more suitable for thresholding,

preprocessing comprising non-uniform background correction is carried out. The block

diagram of the proposed background removal algorithm is shown in Fig. 9.3.

To mitigate the brightness variations in the image, the first step to be carried out is

background image subtraction. A Gaussian filter with a window size of 3.5 × σ is used,

where the chosen σ = 5. Selection of σ is critical. It depends not only on the size of the

image but also on the size of the pupil and iris. The application of the filter results in

blending the dominating structure with the background and results in a blurred image

that contains the slowly varying illumination pattern. Then the difference D between the

image f and the mean image fB is calculated for every pixel:

D (x, y) = f (x, y)− fB (x, y) (9.1)
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(a) (b) (c) (d)

Figure 9.2: Stages of homogenized threshold process: (a) shows the input sample image.

(b) shows the image after applying a Gaussian filter of σ = 5. (c) shows the difference

image. Finally, (d) shows the threshold image.

Input
Image

Gaussian filter

σ=5

- Threshold
Normalized

Binary image

fB

Figure 9.3: Block diagram of the thresholding using mean substraction.

This is a high-pass filter that allows the structure of interest to pass. The filter provides

us with a uniform background image as shown in Fig.9.2(c). From this background

subtracted image, the image is thresholded at 0, effectively giving a sign image, as shown

in Fig.9.2(d).

Morphological Operation (Erosion and Dilation)

Morphology is a broad set of image-processing operations that process images based on

shapes [242]. In morphological operations, a structuring element is applied to an input

image to create an output image of the same size. The shape and size of the structuring

element have a great impact on the outcome of a specific morphological operation [242].

Two morphological operators, erosion and dilation, are used to remove the small binary

objects from the threshold image. As the pupil is a circular region, therefore a circular
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structuring element is used. First, an erosion operation is applied on the threshold fol-

lowed by dilation. A disk of radius 5 is used as a structuring element for erosion whereas

a disk of radius 7 is used for dilation.

Isolating pupil by analyzing connected components

This preprocessed image is binary, consisting of some regions against a background. La-

belling is used to assign each connected region a unique label, enabling distinct objects

to be distinguished. Then each region is processed (based on its label) to extract features

of the object represented by the region. The eccentricity of the pupil is nearly equal to

zero. To overcome the problem of other small objects having low eccentricity, we use area

along with eccentricity to isolate the pupil from other regions. By using area informa-

tion, regions smaller than 200 pixels are ignored. A region with the lowest eccentricity is

selected. The eccentricity is calculated by

Ess =

√

Maj2 −Min2

Maj2
(9.2)

where Maj andMin are the lengths of the major and minor axes. This ratio for a circular

object is zero. For an ellipse, it is between zero and one. Fig. 9.4 (d) shows the pupil

isolated using eccentricity and area.

Now the next task is to locate the centre coordinates and the radius of this isolated

pupil. By using the boundary box, the boundaries of the pupil region are located. The

radius Rpupil of the pupil is determined by

Rpupil =
max (x)−min (x)

2
, (9.3)

where x is the column coordinates of the detected pupil pixels. The central column Ccol

of the the pupil is calculated as

Ccol =
max (x) +min (x)

2
(9.4)
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In the case of a partially opened eye, where the upper or the lower boundary of the pupil

is covered by the eyelids, it is not possible to locate the correct central row of the pupil.

Instead of finding max(y) and min(y) for the central row, Crow is calculated as

Crow = max(x)− Rpupil, (9.5)

where y is the row coordinates of the detected pupil pixels.

(a) (b) (c) (d)

Figure 9.4: Stages of pupil localization process: (a) the sample input image. (b)

thresholded image using mean subtraction. (c) after applying morphological operations

on b). (d) the isolated pupil using eccentricity and area.

9.4.2 Transformation to Polar Coordinates

In iris recognition, iris segmentation involves either localisation of the inner and outer

boundaries simultaneously (mostly using edge detection and Hough transform) or location

the inner boundary followed by the outer boundary (mostly using histogram or region

property based methods). In the literature, almost all researchers transform the iris to

polar coordinates after iris segmentation. In region property based techniques [146, 243]

for outer boundary localisation, first, a region of interest is defined and then that is

converted from rectangular to polar coordinates about the centre of the pupil. Finally, a

gradient is used on that polar region to locate the limbic boundary. The image is then re-

sampled between the pupillary and limbic boundaries to give the transformed image. Such
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a double conversion is challenging in a streamed hardware implementation. Therefore we

propose to first transform a selected image region that contains the iris, then the outer

boundary of the iris is located from the in polar coordinates image. After conducting

a series of experiments on available iris databases (CASIA-3 and MMU) and samples of

real-time images taken from a camera, it is found that iris region always lies in a circular

region whose radius is within three times the radius of the pupil [146]. All the portion of

the eye image beyond this circular region can be ignored [146].

Due to the features of the iris image, the upper and lower parts of the iris image may

be influenced by eyelashes and eyelids [243]. From the literature, it is found that usually

the upper region is more affected than the lower one [244], as shown in Fig. 9.5. As the

iris has a rich texture, just half of the iris pattern can be used for recognition purposes

[245].

For transformation, the first image is cropped to a smaller rectangular region that

(a) (b)

Figure 9.5: Iris sample images: Both show the upper iris region badly affected by

eyelashes and eyelids.

contains the lower part of the iris, as shown in Fig. 9.6(c). Now the image is transformed

by assuming the radius of the iris is three times the radius of the pupil. The image is

mapped from Cartesian coordinates to polar coordinates by

I (r, θ) = I (x (r, θ) , y (r, θ)) (9.6)
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(a) (b) (c)

(d) (e) (f)

Figure 9.6: (a) the input sample image. (b) Pupil localized image. (c) Cropped image

that contains the lower part of the iris. (d) Threshold cropped image of the lower part

of the iris. (e) the transformed image. (f) the thresholded transformed image.

where x (r, θ) = r cos θ, y (r, θ) = r sin θ, Rpupil < r < 3 × Rpupil and 180◦ < θ ≤ 360◦.

This reverse map converts the output coordinates to get the corresponding pixel in the

source image. Bilinear interpolation is used to derive the output pixel value from the four

nearest pixels, where (xi, yi) are the integer parts of the coordinates, an (xf , yf) are the

fractional parts.

Iyi = I [xi, yi] + xf (I [xi + 1, yi]− I [xi, yi])

Iyi+1 = I [xi, yi + 1] + xf (I [xi + 1, yi + 1]− I [xi, yi + 1])

I [x, y] = Iyi + yf (Iyi+1 − Iyi)

(9.7)

9.4.3 Iris Segmentation

Once the image is transformed, locating a rectangular outer boundary is much easier than

locating the circular boundary. The transformed image usually possesses background

illumination which makes the process of finding the true outer boundary difficult. One



9.4 Proposed Method 235

(a) (b) (c)

(d) (e) (f)

Figure 9.7: Six samples of segmented pupil using proposed method

way to tackle this kind of problem is to homogenise the range of features by a local

homogenization method. The problem with local homogenization is that if it tries to

enhance the foreground feature area, the background noise is also amplified. Another

disadvantage of using homogenization at this stage is that it will make the system more

costly. Therefore, instead of finding the boundary of the originally transformed image,

the transformed threshold image is used. A first-order gradient is applied vertically to

the transformed threshold image, as shown in Fig 9.8. This gradient image is summed up

row-wise and the maximum value is picked to give the true outer boundary of the iris.

Finally, by using this the true outer boundary original transformed image is updated, as

shown in Fig. 9.8 e).
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(a) (b) (c)

(d) (e)

Figure 9.8: (a) Transformed cropped image. (b) transformed threshold image. (b)

Vertical gradient on a). Vertical gradient on b). (e) Localised iris using (d).

9.5 Hardware implementation for a real-time iris seg-

mentation system

For efficient implementation, it is desirable to minimise the resources used by an algorithm.

An important resource is a memory required to buffer any intermediate image and data.

While high-end FPGAs have sufficient memory on a chip to hold a complete image, such

devices are relatively expensive making them less suited for commodity applications. To

minimise the memory required it is, therefore, desirable to perform all of the processing

on the image data as it is streamed into the FPGA. This leads naturally to a pipelined

implementation, with separate modules for each operation within the chain and processing

of pixel-based data at the input data rate. For real-time processing, it is also desirable

to reduce the latency between the data input and the classification results output. Our

goal is to implement a real-time iris segmentation system that is capable of supporting

human identification based on a large database. To do this, we propose a parallel and

pipelined architecture for an FPGA-based system. Fig. 9.9 shows the block diagram of

the proposed method.
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Figure 9.9: Block diagram of the proposed real-time Iris segmentation

9.5.1 Pupil Segmentation

We propose a method that extracts the pupil from the streamed data. The hardware

structure of the proposed method is described in the following subsections.

Mean subtraction and thresholding

Subtracting the local mean typically carried out to reduce the variation in the gray-scale

image without changing the image structure or texture information. Although the mean

can be computed efficiently using a rectangular box filter, The poor frequency response

can lead to texture artefacts. A Gaussian weighted filter, although more expensive, has

better high-frequency characteristics, and overcome these problems. The input image is

first smoothed through a 2-D Gaussian filter of σ = 5. The output of this Gaussian filter is

subtracted from the delayed image. Appropriate X and Y delays are used to synchronise

the stream with the filtered image. The Y delays can reuse the row buffers of the 1× 21

Gaussian filter. The image is thresholded at 0 by keeping only the sign bit.

In two dimensions, the Gaussian function is

G (x, y) =
1

2πσ2
e−

x2+y2

2σ2 (9.8)

For large σ, the size of the filter increases significantly, which makes a hardware imple-

mentation expensive. For σ = 5 truncating the window to 21 × 21 limits the stopband
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attenuation at high frequencies to 50 dB.

As the Gaussian is separable, this allows the filter to be implemented as a cascade of

one-dimensional Gaussian filters (1×21 and 21×1). Fig. 9.10 shows the implementation

of a (1 × 21 and 21 × 1) Gaussian filters. Note, symmetry is exploited to reduce the

number of multipliers.
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Figure 9.10: Hardware implementation of a (1 × 21 and 21 × 1) Gaussian filter with

σ = 5. The Gx are filter coefficients. For the vertical filter, the boxes represent row

buffers.

Morphological Operations (Erosion and Dilation)

Binary morphological filters require simple processing and modest storage [197]. This

makes their FPGA implementations easier. In the proposed method, a disc is used as a

structuring element for both erosion and dilation. Therefore, for hardware implementa-

tion, a non-rectangular window is created using a parallel decomposition [246]. The size

and shape of the structuring element determine the number of parallel filters. Fig. 9.12
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Figure 9.11: Hardware structure for 5×5 circular erosion using parallel decomposition.
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Figure 9.12: Hardware structure for 7×7 circular dilation suing parallel decomposition.

shows the hardware structure of 5 × 5 erosion with circular structuring element, where

R represents a row delay. The parallel decomposition consists of a 5 × 3 and a 3 × 5

filter. To align the two rectangular structuring elements correctly, 3 × 1 and 1 × 3 must

be delayed by one column or row respectively. Fig. 9.12 shows the hardware structure of

7×7 dilation. The parallel decomposition of this filter consists of a 3×7, 5×5, and 7×3

filter.

Isolating pupil by analyzing connected components

Connected-components labelling is an important step that is used to assign a unique label

to a connected group of pixels. By using this unique label, it enables distinct objects to

be distinguished. Unfortunately, the classical connected-components labelling algorithm

[247] requires two passes through the image, requiring buffering of the intermediate image.
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Figure 9.13: Hardware architecture of connected component analysis

To overcome these constraints, Klaiber et al [248] proposed a single pass connected

component analysis algorithm that is well suited for FPGAs. It is implemented as a

window filter, as shown in Fig. 9.13, with the pixel labels shifted along each clock cycle as

the window is scanned across the image. The neighbourhood context provides the label

of the four pixels adjacent to the current pixel. The labels from the previous row are

cached using a row buffer. A label selection block is used that selects the label for the

current pixel based on the labels of its neighbours. The eccentricity of the components

is calculated based on the second moments of the connected region. Data for calculating

the moments (
∑

x,
∑

y,
∑

x2,
∑

y2, Area) and bounding box are directly accumulated

as the image is streamed in. The data is merged when components merge, and the final

feature data for each connected component is available as soon as it is detected that the

component is completed.
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9.5.2 Rectangular to polar transformation

After locating the centre and radius of the pupil, the buffered data image is randomly

accessed. The region that contains both pupil and the iris is cropped. This region is

located by only taking those pixels that fall in the box of length and width 6×R, where

R is the radius of the pupil. This cropped region is buffered for the conversion from

cartesian to polar coordinates. For transformation, bilinear interpolation is used as given

in Eq. 9.7. The direct approach to do bilinear interpolation requires four clock cycles to

access four neighbours. In this chater, all four input pixels are accessed within a single

clock cycle by using a careful cache design proposed by [197]. For this purpose, the

cropped region is buffered in four RAM instead of one with the data partitioned so that

odd and even addresses are stored in separate banks enabling all four input pixels to be

accessed simultaneously. To control the cache, the expired data is replaced with new data.

The image is scanned in successive rows so that when a pixel is not used in a column it

is replaced with next corresponding pixel from the frame buffer.

9.5.3 Iris Segmentation

To extract the limbic boundary, AND operation is applied to adjacent rows of the trans-

formed threshold image to detect the edge. The output is summed row-wise and the

maximum indicates the true outer boundary of the iris.

9.6 Experimental results

To check the authenticity of the proposed iris localisation method, the software-based

design is tested on three widely used databases: MMU v1.0 [174], CASIA v1.0 [175] and

CASIA-IrisV3-Lamp iris database. For simulation, the program was written in MATLAB

and run on a 3.40 GHz Core i7 processor with 16 Gb memory. The CAISA v1.0 database
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contains 756 images of 320 × 280 pixel resolution and the MMU v1.0 database contains

460 images from 46 subjects with 320 × 240 pixel resolution. The CASIA-IrisV3-Lamp

iris database contains 441 subjects and each subject gives 40 images with a resolution

of 640 × 480. For our experiments, only the first 102 subjects are tested. For pupil

localisation, on MMU v1.0 and CASIA v1.0, 100% accuracy is achieved. A detailed

accuracy comparison of the proposed method with the existing methods on the MMU

v1.0 CASIA v1.0 databases is given in Tables 9.1 and 9.2. The accuracy rate on the 102

subjects of the CASIA-IrisV3-Lamp database is 99.3 % which compares well with existing

methods as shown in Table 9.3.

In terms of average processing speed, the proposed algorithm is much faster than

the other region-properties based algorithm [146, 148, 149, 224]. Table 9.4 compares the

average speed of the proposed method with [146, 224].

9.6.1 Comparison to Other Hardware Architectures

For real-time implementation, VHDL is used, and the design is tested on a Cyclone IV

FPGA and simulated with ModelSim. For testing, a sample image of size 240 × 320 of

MMU database is used. The processing speed of the proposed FPGA-based structure on

the three databases is given in Table 9.5. It should be noted that the proposed algorithm

is significantly faster on the FPGA than in software. In Table 9.6 the detailed hardware

resource utilisation of the proposed fingerprint recognition system is presented. In the

literature, Ngo [241] is the fastest and the most efficient algorithm for Iris segmentation.

Table 9.8 compares the processing time of the proposed algorithm with the Ngo and

some other existing hardware implementations of iris segmentation. The proposed FPGA

implementation is 25% faster than the Ngo FPGA implementation. Table 9.7 gives a

detailed hardware resource comparison of the proposed method with Ngo. The primary

reason for the significant reduction is that in the proposed method, region properties
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Table 9.1: Comparison of Accuracy Rates of the proposed method with existing methods

using the MMU v1.0 database

Masek [176] as reported in [165] 93.33%

Ma et. al. [153] as reported in [165] 97.87%

Wildes [152] as reported in [165] 98.87%

Daugman [162] as reported in [165] 99.77%

Somnath et al. [165] 98.41%

M. Talal [224] 99.77%

Proposed 100%
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Table 9.2: Comparison of Accuracy Rates of the proposed method with existing methods

using the MMU v1.0 database

Mateo [177] 95%

Cui [179] 98.60%

Yuan [178] 99.45%

M. Talal[148] 99.90%

Proposed 100%

Table 9.3: Comparison of Accuracy Rates of the proposed method with existing methods

using the CASIA-IrisV3-Lamp database.

Masek [176] as reported in [165] 79.02%

M. Talal [148] 98.28%

Proposed 99.3%
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Table 9.4: Average processing time comparison of the proposed method with [146,224]

(in seconds)

Method CASIA v1.0 MMUv1.0

M. Talal [224] 0.46 0.43

Khan [146] 0.49 0.45

Proposed 0.145 0.13

are efficiently utilised to locate the true boundary of the iris. Ngo used edge detection

along with circle detection that makes the implementation costly in terms of resource

utilisation. A sample image of size 256×256 is used for this comparison. The proposed

method require fewer registers, logical cells and the memory bits than the Ngo method.

In terms of performance, the proposed method is better than Ngo.

9.7 Conclusion

In this chapter, a new method of iris segmentation is presented that uses morphological op-

erators along with two region properties, eccentricity and area. The pupil is segmented by

thresholding the sign image obtained from the background subtracted image. Then noise

is suppressed by using morphological operators, and finally, the pupil region is separated

by using two region properties, area and eccentricity. This makes the implementation of

the parallel and pipelined architecture of an FPGA easier and more efficient than other

existing algorithms with 80% reduction in resources compared with Ngo’s implementa-
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Table 9.5: Comparison on average processing time of the proposed FPGA structure

with [156] (in milliseconds)

Database Proposed Khan [156]

MMU v1.0 6.5 19

CASIA v1.0 10 27

CASIA-IrisV3-Lamp 26 76

Table 9.6: Detailed Hardware resource utilisation of the proposed iris segmentation on

a low-cost Cyclone IV GX FPGA

Modules Available Pupil

Segm.

Normalisation Iris Segm.

Logic Elements 149760 2910 997 986

Logic register 149760 1174 735 607

Memory bits 6M 712k 364k 336k

tion. To locate the outer boundary of the iris, a different technique is proposed that first

transforms a selected image region that contains the iris, to polar coordinates and then

the outer boundary of the iris is located from the transformed image. Experiments on

MMU v1.0, CASIA v1.0 and CASIA-IrisV3-Lamp iris databases show that the algorithm

improves on the current sate of the art results.
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Table 9.7: Performance Comparison with existing implementation for iris segmenta-

tion

Hardware Method Comp. Time

DSP [249] Edge + Hough ∼ 683

FPGA [215] Edge + Hough ∼ 69.8

FPGA [250] Edge + Hough ∼ 56.5

FPGA [241] Edge + Circle ∼ 7.42

Proposed FPGA Region Property ∼ 5.6

Table 9.8: Resource Utilization comparison of proposed method with Ngo[241]

Modules Ngo[241] Proposed Reduction

Logic Elements 223013 4913 97.8%

Logic register 166196 2516 98.5%

Memory bits 7112k 1412k 80%





Chapter 10

Hardware Implementation of

Multimodal Biometric using

Fingerprint and Iris1

This chapter is an adapted version of a journal article. The section headings from the

journal article have been retained. Figures, equations, tables, and references have been re-

numbered and are in line with the thesis format. This chapter presents a fast and efficient

implementation of multimodal biometric on an FPGA. For multimodal, two biometric

traits fingerprint and iris are used. Some of the optimised structures discussed in previous

chapters are used in this chapter. Although this chapter covers all the blocks of our

proposed design but there are four main contributions discussed in it, as highlighted in

Fig. 10.1.

1Published as: Tariq M. Khan, D. G. Bailey, Yinan Kong and Mohammad A. U. Khan,“Hardware

Implementation of Multimodal Biometric using Fingerprint and Iris,”Machine Vision and Applications ,

Submitted.

249



250
Chapter 10. Hardware Implementation of Multimodal Biometric using Fingerprint and

Iris

Matching

DATABASE

Matching

Fusion Decision

Fingerprint Subsystem

Iris Subsystem

In
p
u
t
Im

a
g
e

In
p
u
t
Im

a
g
e

Fingerprint
Matching

Score

Iris
Matching
Score

Proposed Design

Orientation Estimation

Enhancement

Binarisation

Minutiae Extraction

Modules

Normalisation

Scar Removal

Feature Extraction

Iris Segmentation

Normalisation

Pupil Segmentation

Pre-filtering

Modules

Figure 10.1: Modules of the proposed design under study

10.1 Abstract

In this chapter, a hardware architecture of a multimodal biometric system

is presented that massively exploits the inherent parallelism. The proposed

system is based on multiple biometric fusion that uses two biometric traits,

fingerprint and iris. Each biometric trait is first optimised at the software

level, by addressing some of the issues that directly affect the FAR and FRR.

Then the hardware architectures for both biometric traits are presented, fol-

lowed by a final multimodal hardware architecture. To the best of the authors

knowledge, no other FPGA-based design exists that uses these two traits.
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10.2 Introduction

In recent years, biometric authentication is gaining popularity because of its reliability

and accuracy over possession-based (e.g. ID card) and knowledge-based (e.g. pass code)

authentication methods. Biometric identifiers can not be forgotten, guessed, misplaced

or easily copied. However, despite the advantages of biometric authentication, biometric

traits face numerous problems. These include inter-class similarity, intra-class variation,

spoofing attacks and universality of the trait. Apart from these, it also suffers from an

enrolment problem because of noisy data resulting from defective sensors. Environmen-

tal variations, signal distortion, background noise, and changes in biometric features can

cause inherent variations in the biometric measurements. Therefore, a single biometric

trait may not be sufficiently robust.

A multimodal biometric system is introduced to overcome these problems. It uses

multiple sensors to acquire biometric traits. This allows: (i) multiple units of the same

biometrics (middle and index fingerprints), multiple sensors of same biometrics (Capac-

itive and Optical fingerprint sensor), (iii) multiple representation and matching of the

same biometric (texture-based or minutiae-based fingerprint ), (iv) multiple samples of

the same biometrics (three templates of left index fingerprint), and (v) multiple biomet-

rics (face and iris or fingerprint and iris). Because of this, a multimodal biometric system

is less affected by noise, it overcomes the non-universality problem, it provides a storage

security environment and it improves the matching accuracy. Due to these advantages, it

has received a considerable amount of attention from researchers.

Most of the existing multimodal biometric systems are computer based. The authen-

tication is performed in an insecure environment that uses the central server for template

storage. This can cause a critical information leakage issue. Another disadvantage of

a multimodal system is that it requires a large amount of processing as compared to a

unimodal biometric system. This makes a multimodal system less suitable for real-time
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application although, in multimodal biometric, most of the operations are independent.

Because of the serial nature of most programming languages, especially the ones used

in computers, these can not be performed at the same time. The implementation of a

multimodal biometric system in hardware can address these critical problems.

In this chapter, we present the hardware architecture of a multimodal biometric that

comprises multiple biometrics (fingerprint and iris). The proposed architecture provides

massive exploitation of the inherent parallelism. The rest of the chapter is organised as fol-

lows: Related work is discussed in Section 10.3. In Section 10.4, proposed software-based

design for fingerprint feature extraction is discussed. A proposed software-based design

for iris feature extraction is discussed in Section 10.5. Section 10.6 details the matching

and fusion. The hardware implementation of the proposed multimodal biometric system

is presented in Section 10.7. Experimental results are discussed in Section 10.8. Finally,

Section 10.9 presents our concluding remarks.

10.3 Related Work

From the literature, it is found that only a few multi-modal biometric systems have been

implemented as embedded systems. One reason is that a real-time embedded system in

a resource-constrained environment poses great challenges, as it possesses limited com-

putational resources and limited memory space. On the other hand, most of the existing

multimodal biometric systems are computationally very expensive and are not suitable

for real-time implementation. Converting a software design to hardware is one of the

most difficult tasks. Therefore it is the least developed, more so with fingerprint and iris

multimodal biometrics.

Sonal et al. [49] implement a palm-vein identification system in hardware. For hard-

ware implementation a Blackfin ADSP-561 processor is used, whereas the C language is
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for the algorithms used for matching of palm veins. Template matching and principal

component analysis (PCA) are used as verification algorithms for palm-veins and are in-

tegrated at a match-score level. Yoo et al. [50] have developed two DSP systems for

face-fingerprint and iris-fingerprint recognition. In their system, the most computation-

ally expensive tasks are implemented on an FGPA in order to increase the system speed.

They used a Xilinx XC3S4000 onboard FPGA and an ARM920T DSP clocked at 400

MHz, and a 128 MB SDRAM. However, no fusion strategy was applied in the embedded

biometric system.

Audrey et al. [51] propose a contactless multimodal biometric system that combines

two modalities: face and palmprint, by using fusion at the score level. This hardware

architecture has been implemented on DSP and FPGA. Wang et al. [52] proposed a mul-

timodal biometric system that implements fingerprint and voiceprint matching. Matching-

score level fusion was applied to voiceprint and fingerprint. They used an ARM9-Core

based S3C2440A microprocessor that works at 400 MHz and the Microsoft Windows CE

operating system. Moganeshwaran et al. [53] use finger vein and fingerprint for their

multimodal biometric system. Two biometric traits, finger vein and fingerprint, are used

and the whole process is implemented in an SOC FPGA. The biometric fusion strategy

applies at the matching score level. Conti et al. [54] propose a multimodal technique for

an embedded fingerprint recognizer. In this technique, fingerprint minutiae points along

with fingerprint singularity points are used for robust user authentication. For biometric

fusion, a matching score fusion module is used.

10.4 Fingerprint Feature Extraction

In a fingerprint recognition system, reliable extraction of the minutiae (the ridge bifur-

cations and terminations) from the input fingerprint image is the most critical step, that
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directly affects the recognition rate. The performance of minutiae an extraction algo-

rithm heavily depends on the quality of the input image. This necessitates the use of

good-quality input scans of fingerprints [119]. In reality, the acquired fingerprint images

cannot be considered as good-quality scans in all circumstances. The presence of dirt or

oil on the surface of the finger may result in a blurred scan. Furthermore, due to the

electronic noise present in scanner electronics, the fingerprint scans may not be of clear

quality. Mostly, the noise in a fingerprint image manifests itself in cuts or interrupted

ridge lines. For an automatic fingerprint identification system (AFIS) to work reliably,

these broken ridge lines need to be restored via an enhancement process [251].

The minutiae extraction algorithm processes the fingerprint image in several stages in

order to find the singular points related to bifurcation and termination of ridges. The

number of stages and the processing involved in each one differ slightly depending on the

algorithm employed, being in our case five stages that are briefly described in this section.
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Figure 10.2: Block diagram of fingerprint feature extraction process

10.4.1 Image Normalisation

Normalisation is a process that changes the range of pixel intensity values. Normalisation

is sometimes called contrast stretching or histogram stretching. In more general fields

of data processing, such as digital signal processing, it is referred to as dynamic range
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expansion [94]. [188] and [189] suggested local image statistics, such as the mean and

variance in a small neighbourhood, to be incorporated in the contrast improvement strat-

egy. The local normalisation method comprises first dividing the image into appropriate

small neighbourhoods and then normalising these neighbourhoods with respect to their

local mean and variance. This will result in shaping these neighbourhoods to have a

ridge/valley pattern with better contrast. Mathematically, it can be represented as

g (x, y) =
I (x, y)−mf (x, f)

σf (x, y)
(10.1)

where I(x, y) is the input image, mf (x, y) is an estimation of a local mean of I(x, y) and

σf (x, y) is an estimation of the local contrast (such as the standard deviation). Although

the contrast is restored with no black patch at the centre, the amplitude of the granular

noise in the background is significantly lifted. This happens because the background area

has almost zero local variance [190], thus resulting in division by a small number, which

amplifies the noise structure. We propose a function of local variance which is used as a

multiplying factor for the outcome of the second phase image. The factor is defined as

M = 1− exp

(

−
σ2
f

2C2

)

(10.2)

where σ2
f is the local variance and C is a user-defined parameter to regulate the noise

suppression power in background areas. The value of C is in the range 0-1, however, in

our experiments, the value of 0.3 was adequate in all cases.

10.4.2 Orientation estimation

In this chapter, the procedure outlined in [212] was adopted for this purpose. First,

discrete derivatives Gx and Gy in the x and y directions are calculated by employing

a Gaussian smoothed kernel, with a small standard deviation to mitigate noise. Then,

covariance matrix data for the fingerprint image was calculated for each pixel as Gxx = G2
x,
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Gxy = Gx × Gy, and Gyy = G2
y. The covariance matrix elements were further smoothed

with a Gaussian filter having σ = 1 standard deviation. Since a ridge line has two edges,

the gradient vectors at both sides of a ridge are opposite to each other. If we want to

calculate θ by directly taking the average of the gradient angles in a local block, the

opposite gradients at both sides of a ridge line are likely to cancel each other. To solve

this problem, Kass and Witkin [118] propose a simple and clever idea of doubling the

gradient angles before the averaging process. These doubled angles are smoothed with a

Gaussian filter of σ = 7. Finally, the orientation is estimated by

θ =
π

2
+

arctan
(

cos(2θ)
sin(2θ)

)

2
(10.3)

10.4.3 Filtering

In this chapter, an oriented Gaussian filter is, proposed by [202], used that works similarly

to an anisotropic diffusion filter. However, for a general Gaussian filter, the separable axes

do not align with the image axes. While separability can be used, it is more complex to

implement in this case. It is even worse for a steerable filter, where the major axis of the

Gaussian kernel changes with each pixel. The oriented Gaussian filter can be expressed

as

Gdir (x, y; θ, f, σx, σy) = exp

{

−1

2

(

x2
θ

σ2
x

+
y2θ
σ2
y

)}

(10.4)

To make the implementation process even simpler, Gdir is decomposed into two filters.

Since σ2
y << σ2

x when filtering ridge patterns (such as fingerprints), the filter can be

decomposed into a small isotropic filter

Giso (y; σy) = exp

{

−1

2

(

x2 + y2

σ2
y

)}

(10.5)

and an anisotropic 1D filter

Gani (xθ; θ, σθ) = exp

{

−1

2

(

x2
θ

σ2
θ

)}

(10.6)
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where σ2
θ = σ2

x − σ2
y ≈ σ2

x and xθ = x cos θ + y sin θ.

10.4.4 Binarisation & Thinning

In binarization, the grey scale image is converted to a binary image where the value of

each pixel can be 1 or 0. A pixel set to 1 corresponds to a background/valley, whereas

a pixel set to 0 is associated with a foreground/ridge. As claimed by [252], the normali-

sation facilitates the binarization, therefore, a simple threshold works equally well as the

famous Otsu [96] thresholding method. The use of a simple threshold makes the hardware

implementation much easier than the existing thresholding methods.

After binarization, the next step is thinning, performed prior to minutiae extraction.

For thinning, Zhang and Suen’s algorithm modified by [253] is used. In this process, 8

adjacent neighbours are evaluated to a central pixel that determines whether to delete

this pixel or not. The original algorithm is modified and the process is based on the

representation of the image with ’1’ for light (white) and ’0’ for dark (black), or a region

point is for pixel value ’0’ and a background point is ’1’.

10.4.5 Minutiae Extraction

After the image pre-processing step, a minutiae extraction process is applied. Minutiae

point detection depends on the pixel value (’0’ or ’1’). This process is quite simple as

it can be carried out by examining the connectivity of the thinned image. Obtaining

the parameters like type and position is quite easy [254]. It depends on the position of

pixel P and its connectivity. If the connectivity is 1 then it corresponds to an End Point

and if the connectivity is 3, it corresponds to a Bifurcation Point (BP) of minutiae. To

reduce false minutiae detected at the edge of the fingerprint image, a process to check a

candidate minutiae point, whether at the edge of the image or not, is applied. Checking

the existence of pixel value ’0’ at the right, left, top or bottom of candidate minutiae
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Figure 10.3: Block diagram of iris recognition system

points for a specific distance performs this process.

10.5 Iris Feature Extraction

The process of iris recognition can be mainly divided into three main subtasks:

• The task of extracting the iris from an already acquired image i.e. Segmentation.

• The task of straightening the extracted iris i.e. Normalisation.

• The task of extracting the feature from the normalised image i.e. Iris code making.

Fig. 10.3 shows a block diagram of the proposed iris recognition system.

10.5.1 Iris Segmentation and Normalisation

In the field of image processing, or specifically in computer vision, segmentation is defined

as the partitioning of an image into smaller parts or segments which are easier to pro-

cess and analyse [255]. In iris recognition, segmentation mean extraction of the pupillary

and the limbic boundaries of an iris. This can be done by either localising these bound-

aries simultaneously (e.g. Hough transform) or first locating the pupillary and then the

limbic boundary (mostly using region property based methods). Hough-transform based

techniques are iterative and are not suitable for hardware implementation whereas re-

gion property-based techniques are faster and suitable for parallel processing. In region
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property-based techniques, the pupillary boundary is first located. Then using radial

scanning (gradients) and interpolation the limbic boundary is located. Finally, the iris

is normalised by using the information of the segmented iris that requires interpolation

again. Such a double conversion is challenging in a streamed hardware implementation.

To overcome this problem Tariq et al. [256] use interpolation only a single time. In this

chapter, for iris segmentation and normalisation, we adapt the same technique. In this

technique, the pupillary boundary of the iris is first localised using a fast region property

based method. Then, instead of locating the limbic boundary, a region of interest is de-

fined and the resultant image is converted from rectangular to polar coordinates about

the centre of the pupil using

X = r cos (θ) (10.7)

Y = r sin (θ) (10.8)

where r represents radius of the pupil and θ is the the angle in radians. After normalisa-

tion, a gradient-based method is used to locate the true limbic boundary.

10.5.2 Feature Extraction/Iris code making

Image Enhancement

In iris code making, the normalised image is enhanced by a contrast normalisation process

similar to the one proposed by [252]. This local normalisation technique deals with local

image statistics in a better way. Another reason for selecting this technique is that it best

suits hardware implementation. Fig. 10.4 shows a block diagram of the modified local

normalisation technique. In this two phases are used: one that removes the non-uniform

background and the other that restores the local contrast. In the first phase, the input

image is subtracted from the Gaussian-weighted average smoothed by a low-pass Gaussian

filter with σ1. The parameter σ1 can be set by utilising the fact that the filtered image
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should contain only the background changes (low-frequency content). In this chapter,

σ1 = 4 is used. In the second phase, the local variance of the image is computed as an

estimate of the local contrast. To normalise the contrast, the resultant image of the first

phase is divided pixel-wise by the standard deviation of its spatial neighbours. Again, the

size of the local-variance filter depends on the size of the texture elements. As squaring the

pixel value will double the base frequency, σ2 is commonly taken to be σ1/2. Fig. 10.5(d)

shows the enhanced iris image using the proposed method.

(a) (b) (c)

(d)

Figure 10.5: Iris segmentation and enhancement (a) Sample eye image (b) Pupil

segmentation (c) Iris normalisation and segmentation (d) Iris feature enhancement.
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Bitplane Slicing

In bitplane slicing, we first consider each grey-level value in the image, in its binary

equivalent form, and then consider one of the eight bits at a time. For example, when

considering bit plane 0, we check the least-significant bit of each value while forcing all

other bits to zero. Now, if the least-significant bit is 1, we replace the whole number by

grey-level value 1 in the image, and if it is zero we replace the whole number by grey-level

value 0. In this way, bit plane zero is formed for the input image. Similarly, when con-

sidering bit plane 1, we consider the second bit from the right side of the binary sequence

while forcing all others to zero. In this case, however, if the bit under consideration is 1,

the original grey level value is replaced by 2 so we get the binary representation in 0 and

1 form. This process of thresholding continues in this manner for all the seven bit planes.

By applying bitplane slicing on the 8 bits of the image grey-level values, we get 8 slices,

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10.6: Bit Plane slicing: (a) Bit 0. (b) Bit 1. (c) Bit 2. (d) Bit 3 (e) Bit 4.

(f) Bit 5 . (g) Bit 6. (h) Bit 7.

as shown in Fig. 10.6. For iris code generation in our project, we have used the concept

of bitplane slicing [169]. We generate 8 slices of our enhanced normalised image as men-

tioned above.

In this chapter, six of the eight generated slices or planes are used to implement the
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bitplane slicing on the enhanced normalised image. Bit planes 0 and 7 are discarded since

it is clear from the histogram of the iris image that the lowest and highest grey-level com-

ponents do not fall in the iris region of the eye; mostly it consists of the middle grey-level

values. The remaining bitplanes are termed a feature of type 1, 2, 3 and so on. This

method of representing the features in binary codes makes the comparison process more

efficient.

Iris code making

As mentioned above, we have used 6 bitplanes or slices and have neglected the bit planes

0 and 7. By considering the fact that each bit plane has two values, either 0 or a non-zero

value, we have normalised all the non-zero values to 1 in all bitplanes, thus generating

binary codes, so that a matching code can easily be generated. Then by using the 6 bit-

planes normalised to 0’s and 1’s, we generate a code for size M×6, where M is the length of

the 1D-transformed row vector of the normalised iris image. The final matrix is generated

by simply merging the codes of the 5 bitplanes vertically. For testing hardware, 5 people

of MMU-v1 iris database are used. This database has 5 left and 5 right eyes for each

person and the database comprises a total of 44 persons. For iris code generation, three

left and three right eye images are used while the remaining 2 left and 2 right eye images

are used for testing purposes. The iris code is generated according to the following criteria:

• Three images are used for generating each person’s database

• Check the majority bit, which is selected as either 0 or 1 by comparing the code,

for example, by comparing the codes of a person’s left eye1, left eye2 and left eye3,

each of size M× 6 generated by the method mentioned above.

The whole process is well illustrated in Fig. 10.7 where we have 3 left-eye images in
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Figure 10.7: Iris code generated by applying majority bit selection

matrix form which are normalised to 0 and 1 after applying the bitplane slicing. The

fourth matrix is the result of the method mentioned above, and this matrix is later used

for comparison after storing it in the database.

10.6 Matching and Fusion

The proposed approach is based on pair recognition of a fingerprint and iris, and every

part provides its own Matching score. In fingerprints, minutiae matching is based on two

stages: fingerprint alignment and fingerprint matching. In fingerprint alignment, a pair

of minutiae (one from input minutiae and one from the template minutiae) are located

and their polar location in polar coordinates is determined relative to the pair of aligned

minutiae. For this purpose, we follow the technique proposed by Lindoso et. al. [257].

The output of this step gives each minutiae a triplet representation: (r, θ, o) , where θ is

radial angle, r is radial distance and o is relative orientation. Finally, all the minutiae

data set of the input image are compared with all the minutiae date set of the template.

To compensate for errors of location the comparison uses an adaptive elastic algorithm.

The final match ratio for the two fingerprints is stored.

After creating the biometric vectors the homogenous biometric vector from fingerprint

and iris data is composed of binary sequences representing the unimodal biometric tem-

plates. The matching score for the iris is calculated through the Hamming distance (HD)
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between two final fused templates:

HD =
1

N

N
∑

i−1

XOR (Tric (i) , T sic (i)) (10.9)

where Tric is the training feature vector and Tsic is the feature vector of the test image.

Once the matching scores of both biometric traits are obtained then these are fused us-

ing a simple sum rule. If the Fused matching score is larger than a pre-specified threshold,

then the person is accepted or rejected.

10.7 Hardware Implementation

In software, usually one operation is performed at a time and its result is stored in RAM

for the next operation. This is why it takes a longer time to perform a certain task which

comprised of multiple sequential operations. In the hardware, these components can be

combined to create parallel computing structures [197]. Almost all image processing algo-

rithms contain operations that execute in sequence. This is a form of temporal parallelism

[197]. Hence, this structure is ideal to have a separate processor for each operation. This

is also known as a pipelined architecture. When processing images, data can usually begin

to be output from an operation long before the complete image has been processed by

that operation. The time between when data is first input to an operation and the corre-

sponding output is available is the latency of that operation. When each operation only

uses input pixel values from a small, local neighbourhood then its latency is lowest. This

is because each output only requires data from only a few input pixel values. Operation

pipelining can give significant performance improvements when all of the operations have

low latency because a downstream processor may begin performing its operation before

the upstream processors have completed.
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10.7.1 Fingerprint Feature Extraction and Matching

For fingerprint feature extraction the first input image is enhanced. For image enhance-

ment, a dynamically steerable Gaussian filter proposed by [202] is used. It is observed

that with σx = 4 the width of the line Gaussian can be reduced from 25 to 17 pixels

(±2σ) without any significant effect. For this size window, this enables a simpler nearest-

neighbour interpolation to be used, which significantly reduces the hardware complexity.

To convert the 2-D filter into 1-D, the window is divided into two sub-windows hwind

and vwind, which filter angles that are primarily horizontal and vertical respectively, as

shown in Fig. 10.8. Angles within vwind require one pixel from each row within the

window, while those in hwind require one from each column. The pixels corresponding

to the required delays are selected and then multiplied by the Gaussian weights. Finally,

these are summed up to get the final resultant value. After enhancement, the fingerprint

thinning process becomes quite easy. In this process, 8 adjacent neighbours are processed

with respect to a central pixel that determines whether to delete this pixel or not. The

minutiae feature bifurcation and ending are obtained by a cross numbering approach [254].

In hardware, this approach is easy to implement with several resources like addition, sub-

traction, and shift registers.

For fingerprint alignment and matching, a pre-alignment algorithm is used [257].

Fig. 10.9 shows the hardware structure of this pre-alignment algorithm. To implement

this, two memories are required. The first memory M1 consists of two sub-memories to

store the extracted minutiae and related segments like position information and angle,

while M2 stores the minutiae of polar coordinates. In all memories, for angles and coor-

dinates, 8 bits are required while for minutiae only 1 bit is required. In the alignment

block, the best pair of minutiae is searched. All the input minutiae are aligned by using

the difference of position and angle between the two best pairs. The second block com-

putes the modulus and angles using CORDIC. Finally, a matching block compares all the
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aligned minutiae in polar coordinates.
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Figure 10.9: Hardware structure of the fingerprint alignment algorithm

10.7.2 Iris Feature Extraction and Matching

The proposed iris feature extraction is based on five steps, as shown in Fig. 10.10. The

input image is first pre-processed by a mean subtraction. In the mean subtraction op-

eration, the image is smoothed through a 2-D Gaussian filter of σ = 5. The output of

this Gaussian filter is subtracted from the delayed image. The image is then thresholded

at 0 by keeping only the sign bit. Two morphological operators, erosion and dilation,

are applied to this binary image. The resultant image is then scanned for connected-

component analysis. Two region properties, area and eccentricity, are used to isolate the

pupil region from other regions of the eye image. Once the centre and radius of the pupil

are located the image is cropped to contain both the pupil and iris regions. This cropped

image is buffered in SRAM (off-ship memory). Using bilinear interpolation the image is

normalised. Then using the first-order vertical gradient operator the limbic boundary is

isolated to give the normalised iris.

After the normalisation, the image features are enhanced by using a local image nor-
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Figure 10.10: Block diagram of iris features extraction process

malisation. For local normalisation, the background is estimated by subtracting the mean

image from the input image. For local contrast estimation, the magnitude is obtained by

applying the absolute operator. Then dynamic compression is done by using a power-law

transformation with γ = 0.75, applied to compress the high contrast. The resultant image

is averaged locally with another Gaussian. Then by clipping the local contrast into the

range [50-255] noise is suppressed. The resultant image is divided by the local contrast

and the output is scaled to 128 and offset by 128. After enhancement, the next step is to

implement the bit-plane slicing and create a feature vector. Both steps are quite easy to

perform in hardware, as we already deal in bits in hardware. Finally, the input feature

vector is compared with the already stored vector. For testing purpose we only store 5

persons feature in SRAM (off-ship memory).

10.7.3 Fusion

For fusion, for matching the scores of two biometric traits, the sum rule is used [258].

This requires normalising the scores before combining them. The reason is that the two

biometric traits are of a different nature. The normalisation transforms the score into a

common range between 0 and 1 [258]. Finally, the score is summed and the decision made

on the basis of the threshold.
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10.8 Experimental Results and Discussion

Two well-known parameters FAR and FRR are used for the performance evaluation. FAR

is the number of times that access occurred for an incorrectly accepted unauthorised per-

son. FRR is the number of times that the access of an authorised person is incorrectly

rejected. First, a test is conducted on the full FVC2002 DB2A database using our pro-

posed minutiae-based recognition system. This resulted in FAR 1.27% and FRR 18.38%.

For the MMU v1 database [174], the proposed method resulted in FAR 4.29% and FRR

15.77%.

For the multimodal test, a database is created that consists 30 people in the selected

fingerprint database and 30 people in the selected iris database. The classic fusion tech-

nique of matching score level is used for fusion. A Euclidean metric is applied to the HD

of each subsystem. With the proposed approach for the multimodal biometric system, the

following results have been obtained: FAR 1.97% and FRR 12.79%. The literature shows

that fingerprint-based systems have worse accuracy than iris-based systems [259,260]. For

this reason, we give higher weight to iris than fingering (0.4 for fingerprint and 0.6 for

iris).

For the hardware implementation, a low-cost Cyclone IV GX P4CGX150F31FPGA

is used. This FPGA combines an Intel embedded processor with Altera Cyclone IV GX

FPGA. This is a full-featured computer system used for software-hardware co-designs. In

Table 10.1 the detail of the hardware resource utilisation of the proposed iris recognition

system is presented. It can be observed that the proposed method only consumes about

12K Logic elements, almost 12% of the total logic elements available. Our design also

consumes about 10% of the logic registers. In Table 10.1 the detailed hardware resource

utilisation of the proposed fingerprint recognition system is presented. If we compare the

logic element consumption of both biometric traits then the proposed fingerprint recogni-

tion system consumes more logic cells and logic registers than the iris recognition. On the
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other hand, the proposed iris recognition system consumes more memory bits than the

fingerprint recognition system. The reason is that, in iris recognition, the whole image

needs to be buffered once for extracting the outer boundary. Also, the template size of

the iris is much bigger than the fingerprint that requires more memory to store the feature

for recognition.

In Table 10.3, the relative processing speed of the MATLAB-based proposed finger-

print recognition system, iris recognition system and fusion is compared with its FPGA-

based structure. The proposed fingerprint recognition is over 240 times faster than the

MATLAB-based implementation on a PCA. The proposed iris recognition is over 197

times faster than the MATLAB-based implementation. Our complete multimodal bio-

metric system takes about 16 seconds to recognise a person. In the FPGA implementa-

tion, both biometric traits are processed in parallel, significant boosting the overall speed

of the system. Our hardware-based multimodal system takes about 60 milliseconds to

recognise a person; that is over 270 times faster than the MATLAB-based system. The

reason for this high speed is the efficient use of parallelism in the FPGA.

10.9 Conclusion

This chapter presents a reliable multimodal biometric system that satisfies multiple con-

straints: low cost, real-time processing, hygienic, straightforwardness, user-friendliness,

limited memory, etc. To achieve this, we present a hardware architecture of a multimodal

biometric system that massively exploits the inherent parallelism. The proposed system

is based on multiple biometric fusion that uses two biometric traits, fingerprint and iris.

Both fingerprint and iris are highly accurate biometric traits. The proposed system is

efficiently implemented in hardware. As far as the authors know, the proposed structure

is the only one that gives the hardware implementation of a complete multimodal bio-
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metric using fingerprint and iris recognition. The proposed hardware system is over 270

times faster than the MATLAB-based system. We also plan to investigate the further

optimisation of the two biometric traits to improve the FAR and FRR and to further

optimise the hardware resource utilisation.



2
7
2
C
h
a
p
te
r
1
0
.
H
a
rd
w
a
re

Im
p
le
m
en
ta
ti
o
n
o
f
M
u
lt
im

o
d
a
l
B
io
m
et
ri
c
u
si
n
g
F
in
g
er
p
ri
n
t
a
n
d

Ir
is

Table 10.1: Detailed Hardware resource utilisation of the proposed iris recognition system on a low-cost Cyclone IV GX

FPGA

Resources Available Pupil Segmenta-

tion

Normalisation Iris Segmentation

and Enhancement

Iris recognition

Logic Elements 149760 2810 597 2986 5251

Logic register 149760 1174 335 1100 3212

Memory bits 6M 612k 364k 88k 386k
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Table 10.2: Detailed Hardware resource utilisation of the proposed fingerprint recognition stem on a low-cost Cyclone IV

GX FPGA

Resources Available Normalization Orientation

estimation

Filtering Minutiae recogni-

tion

Logic Elements 149760 2286 7597 8268 4297

Logic registers 149760 917 3335 5334 2235

Memory bits 6M 60k 164k 58k 86k
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Iris

Table 10.3: Processing speed (in seconds) of proposed FPGA-based algorithm with

proposed PC-based MATLAB structure

FVC2004

Database Type

Proposed

MAT-

LAB(PC)

Proposed

FPGA

Speedup

Fingerprint

recognition

8.95 0.0360 240×

Iris recognition 5 0.0260 197×

Fusion 2.24 0.0120 188×



Chapter 11

Conclusions and Future Work

11.1 Conclusions

This dissertation presents a hardware implementation of a multimodal biometric system

using fingerprint and iris biometric traits/identifiers. The proposed system is divided into

two main blocks: software design and hardware design. Using MATLAB, a complete

multimodal biometric system is first designed at the software level. The software design

is further sub-divided into two blocks: fingerprint feature extraction and iris feature

extraction. Both biometric identifiers are designed and optimised independently. Each

biometric trait is first optimised at the software level, by addressing some of the issues

that directly affect the FAR and FRR. Then the hardware architectures for both biometric

traits are presented, followed by a final multimodal hardware architecture. The key

contributions of the dissertation can be summarised as follows:

• A novel inpainting method for scar removal is presented that can be regarded as a

pre-processing step in fingerprint image enhancement. The proposed method is com-

putationally less expensive and gives an effective solution for low-quality fingerprint

image enhancement.

275
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• We propose a spatial entropy change that provides a reasonable stopping rule for

isotropic as well as anisotropic diffusion.

• A modified local normalisation procedure is proposed that enhances the contrast

of the foreground ridge/valley area uniformly with almost no normalisation for the

background region. To circumvent the amplification of background noise, a correc-

tion factor is introduced in the form of a monotonically increasing function of local

variance values. Our proposed design is single-pass and does not use any external

memory (SRAM/DRAM). The use of a single-pass with streamed processing makes

the proposed architecture significantly faster than existing implementations. As far

as the authors know, no other design is based on a single-pass.

• An efficient hardware architecture for fingerprint image normalisation is proposed

and its efficiency is compared with other state-of-the-art hardware normalisation

systems. The proposed hardware structure manages to efficiently speed up the

image processing time by a factor of 18, capable of processing one pixel per clock

cycle at over 128.3 MHz. This is achieved by using an oriented line Gaussian and its

separability property along with efficient hardware implementation using parallelism

of streamed data.

• We have presented the design of a steerable anisotropic Gaussian filter for fingerprint

image enhancement. The design allows the orientation of the filter to be changed

with each clock cycle, giving true steerability with a single filter, rather than requir-

ing a bank of filters. The whole design was constructed with a relatively modest use

of resources on a small low-cost FPGA and was able to give a real-time performance,

being capable of processing one pixel per clock cycle at over 90 MHz.

• A reliable orientation-field (OF) estimation is implemented in hardware. The pro-

posed design efficiently uses CORDIC in vectoring mode to determine 2θ, combined
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with a second CORDIC in rotation mode to calculate sin(2θ) and cos(2θ).

• A new local histogram and standard deviation based pupil segmentation method is

proposed. Using the standard deviation and finding the region that has the highest

probability of having the pupil region from the local histogram has overcome the

drawbacks faced when locating the pupil by using the global histogram.

• A fast and novel method for pupil segmentation is developed that is based on a shape

detector and an intensity-based threshold. To estimate the pupil centre and radius,

a LoG filter along with a region growing is used. The true pupillary boundary is

refined using the zero crossings of a second LoG filter. Next, the true orientation of

the eye in the image is estimated using a third LoG filter. Using the zero crossings

of the LoG, the search is initially started from the stable zones and then extended

to the occlusion zones. The discontinuities are located, giving indications of eyelids

in the iris region. Finally, using the interpolation the iris outer boundary as well as

eyelid arcs are estimated.

• A real-time hardware implementation of iris segmentation is presented that uses

morphological operators along with two region properties, eccentricity and area.

The proposed method fully utilises the parallel and pipelined architecture of an

FPGA than other existing algorithms with 80% reduction in resources compared

with Ngo’s implementation. The proposed FPGA implementation is 25% faster

than the Ngo FPGA implementation.

• A reliable multimodal biometric system is presented that respects multiple con-

straints: real-time processing, low cost, hygienic, straightforward, user-friendly,

limited memory, etc. Our proposed architecture massively exploits the inherent

parallelism and achieves a speed 270 times faster than the MATLAB-based system.
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11.2 Future Work

In future the following aspects of a Multimodal biometric system can be considered for

further research and development:

• In future, our aim is to integrate more biometric features like face and speech recog-

nition with our designed system. The use of a common imaging device for capturing

the face and voice template is expected to cut down the overall cost of implementa-

tion. This combination would also boast of high accuracy. The need of integrating

these biometric with our designed system is based on the fact that they have been

used routinely in the law enforcement community. Most successful commercial bio-

metric systems currently rely on either fingerprint, face, iris or voice. Further, these

biometric indicators complement one another in their advantages and strengths.

Another advantage of integrating more biometric features is that, by making use of

multiple methods of identification, a system can preserve higher threshold recogni-

tion settings and a system administrator can make a decision on the level of security

that is needed. For an extremely high-security site/area, one might need to use up

to three biometric identifiers and for a lower security site/area, one could possibly

require one or two credentials. If one of the identifiers fails for any unknown reason,

the system can still utilise another one or two of them to provide accurate identifica-

tion of a person. In this way, it will significantly reduce the probability of admitting

an imposter.

• The proposed scar removal strategy uses several iterative processes for filling the scar

that is poorly less suited for hardware. The proposed design needs to be optimised

for hardware implementation.

• We also plan to investigate further optimisation of the orientation estimation and

anisotropic filtering stages of the algorithm. Orientation diffusion can be replaced
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with Gaussian filtering in the hardware implementation of the fingerprint orien-

tation estimation block. This can improve the overall efficiency of the fingerprint

enhancement module.

• In the presence of dense eyelashes and eyebrows the proposed LoG filter based

iris method fails to locate the true pupillary boundary. Such dense eyebrows and

eyelashes affect the LoG filtering (along with region growing). This can be improved

by using some other tools along with LoG filtering, like the fast Hough transform.

Similarly, instead of a region growing method some other techniques can be applied

to further improve the efficiency of iris segmentation.

• The existing LoG-based iris segmentation is rather costly in terms of its hardware

implementation. Further investigations are required to optimise this technique for

an efficient hardware implementation.

• The proposed hardware architecture of iris segmentation needs to save the image

on off-chip memory SRAM during processing. It requires a minimum of two passes

to segment the pupillary and limbic boundaries. The work can be extended to find

an optimal solution that avoids the SRAM usage.





Appendix A

List of Acronyms

1-D One-dimensional

2-D Two-dimensional

3-D Three-dimensional

ADSP Advanced Digital Signal Processor

AFIS Automated Fingerprint Identification System

ARM Advanced RISC Machines

ATM Automated Teller Machine

BP Bifurcation point

CASIA Chinese Academy of Sciences Institute of Automation
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CED Coherence Enhanced Diffusion

CHT Circular Hough Transform

CLAHE Contrast Limited Adaptive Histogram Equalisation

CORDIC COordinate Rotation DIgital Computer

Cp Current point

DB Database

DFB Directional Filter Bank

DNA Deoxyribonucleic Acid

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

EBCM Edge Based Contrast Measure

EER Equal Error Rate

FAR False Acceptance Rate

FFT Fast Fourier Transform
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FIFO Fist In Fist Out

FIR Finite Impulse Response

FN False Negative

FP False Positive

FPGA Field-programmable gate array

FRR False Rejection Rate

FTE Failure-to-enrol Rate

FVC2002 Fingerprint Verification Competition 2002

FVC2004 Fingerprint Verification Competition 2004

GB Giga bytes

GF Gabor Filter

GHz Gigahertz

GI Goodness Index

ICA Independent Component Analysis
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ID Identification

IDO Integral Differential Operator

KDDA Kernal Direct Discriminant Analysis

LDA Linear Discriminant Analysis

LOG Laplacian of Gaussian

LUT Look Up Table

MATLAB Matrix Laboratory

MGF Modified Gabor Filter

MMU Multimedia University

NIST National Institute of Standards and Technology

NN Neural networks

Np North point

OF Orientation Field

PC Personal Computer
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PIN Person Identification Number

PSO Particle Swarm Optimisation

RAM Random Access Memory

RF Ridge Frequency

RISK Reduced Instruction Set Computing

RGB Red Green Blue

SDRAM Static Dynamic Random Access Memory

SE Structuring Element

SOC System On Chip

SNR Signal to Noise Ratio

SRAM Static Random Access Memory

STFT Short Time Fourier Transform

TN True Negative

TP True Positive
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VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

Wp West Point
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