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Summary 

 

Foraging behaviour is thought to be ubiquitous across the animal kingdom. Animals 

must typically integrate complex information to decide how long to exploit a ‘patch’ 

of resources before leaving to forage for other, more worthwhile, patches. Optimal 

Foraging Theory predicts how an animal should behave as a function of the travel 

time between patches, and the resources available within each patch. In humans, 

foraging theory has been applied in multiple domains – from information foraging 

accounts of selective attention, to value-based choices in executive function. In this 

research, I asked whether human foraging for reward adheres to the predictions of 

Optimal Foraging Theory developed in non-human animals. Participants in this task 

determined how long to remain in a patch of exponentially decreasing rewards (dwell 

time), based on a predetermined delay (travel time) prior to each patch. Across four 

experiments, I showed that: (1) individuals exploit resource-rich patches for longer 

periods of time when they follow greater versus shorter delays; (2) dwell times are 

based on the mean travel time of the environment, rather than patch-specific delays; 

and (3) dwell times are unaffected by the variance or (4) volatility of delays within 

each environment. Overall, these findings are consistent with the predictions of 

Optimal Foraging Theory, and indicate the generalisability of this theory to human 

decisions. This study paves the way for further research into the components of 

choice behaviour that may be pathologically altered in patients with disorders of 

motivated decision-making, such as Parkinson’s disease.  
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Should I Stay or Should I Go? Human studies of foraging for reward 

Chapter 1: Introduction 

When should we move on to greener pastures? Not unlike animals foraging for food, 

humans constantly make decisions determining when they should stop and move on 

to what lies next: looking for cheap petrol as the tank nears empty; working 

extensively on a project when there is another deadline to meet; choosing which 

checkout line to join at the grocery store; or determining which jobs to apply for given 

their benefits and drawbacks. This type of decision-making underlies foraging. 

Foraging is typical in ecological studies of animal behaviour where animals forage for 

food in a patchy environment, and have evolved to optimise their reward intake when 

foraging. This phenomenon is consistent across the taxa. How do animals optimise 

their foraging behaviour? When do they determine when to stop exploiting the patch 

they are currently in and move on to explore the environment?  

 

In this chapter, I will outline theories of foraging behaviour within the context of 

behavioural ecology, and theories of optimal foraging that have been developed. I will 

then consider the way in which optimal foraging theory has been applied to humans to 

model human decision-making in foraging-type tasks.  

 

Optimal Foraging Theory 

From the 1960s, behavioural ecology was centred on understanding the behaviour 

exhibited by animals to maximise their reward intake. This foraging phenomenon was 

observed across the taxa, and raised the question of how animals adapt their foraging 

behaviour to the demands of the environment. In particular, a key question was 

whether animal behaviour conformed to that of an optimal forager.  



	 6	

 

Although several accounts of optimal foraging behaviour had emerged, the observed 

behaviours perceived to be optimal were based on species-specific observations of 

foraging behaviour in certain environmental contexts. Therefore, there was disparity 

concerning the foraging behaviours deemed to be optimal which is attributable to the 

differences among species, in particular: the way in which an animal transports itself 

by flying, swimming, walking, or running; whether the diet requirements involved 

capturing prey or searching for seeds; the availability of food, and whether it was 

scarce or plentiful; and whether the environment had seasonal constraints, such as 

extreme cold or heat. Thus, optimal foraging behaviour was attributed to a wide array 

of factors. Consequently, the foraging behaviour that was deemed to be optimal for 

one species would not be optimal – or even possible – for another species. For 

example – and perhaps intuitively – predatory animals that hunt their prey in large 

groups behave markedly different to animals foraging for food while at risk of 

predation.  

 

Although the elements thought to comprise optimal foraging behaviour were 

predominantly disparate, there was some consistency in the observational accounts of 

forging behaviour; which allowed for a general model of optimal foraging to be 

developed.  

 

The General Model of Optimal Foraging Theory  

Optimal foraging models are established on the basis that an animal aims to maximise 

the net reward gained. The general model of optimal foraging states that an animal’s 

behaviour is best described according to three assumptions that the animal must 
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make: decision assumptions, currency assumptions, and constraint assumptions. 

Decision assumptions refer to the type of choice to be made by the animal, and 

generally consist of the animal deciding: which prey to consume, when to leave a 

patch, and where food is located within the environment (Stephens & Krebs, 1986). 

Currency assumptions refer to the evaluation of the costs (time or delays) and benefits 

(rewards) associated with a choice, and the rate or amount of reward to be gained. 

Further, it is assumed that the animal seeks to maximise its gains and minimise the 

associated costs. For example, when making a choice, an animal has to consider the 

amount of reward to be gained by spending a certain amount of time waiting for the 

reward. Constraint assumptions are the factors that limit and define the relationship 

between the currency and the decision variables (Stephens & Krebs, 1986). These 

factors assume that: a predator searches and exploits patches exclusively and cannot 

exploit a patch while in the process of searching for a new one; patches are 

encountered sequentially and randomly; and the foraging predator behaves as though 

it knows all the information relevant to exploring and exploiting its environment 

(Stephens & Krebs, 1986). Together, these assumptions provide a framework for 

which the optimisation of foraging behaviour, as exhibited by animals, can be 

systematically described. 

 

A seminal paper in the literature (Shoener, 1971) comprehensively reviewed optimal 

foraging theories developed at the time. This paper outlined the factors integral to 

determining what comprises optimal foraging behaviour, which include the 

expenditure of energy, as well as the time required, for the pursuit, handling, and 

consumption of prey (Schoener, 1971). Further, optimal foraging is determined by the 

caloric content of food, the abundance of food, and the size of prey relative to that of 
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the predator, as the predator is thought to forage optimally when it maximises the net 

energy (or reward) intake. Despite the comprehensiveness of Shoener’s (1971) review 

of optimal foraging theory, the temporal factor pertaining to the optimal feeding 

period was noted as being an important component in foraging theory; however a 

formal theory had not yet been proposed.  

 

The Marginal Value Theorem 

The optimal time when a predator should leave a reward patch to explore the 

environment had not yet been investigated when Shoener (1971) compiled and 

reviewed the evidence for optimal foraging behaviour in animals. An important 

contribution to optimal foraging theories that addressed this unexplored area was 

provided by the proposal of the Marginal Value Theorem (MVT) by Charnov (1976). 

This theorem directly addressed the temporal factor involved in determining the 

optimal point at which an animal decides to finish exploiting its current patch to move 

on and explore the next patch. It is important to note that the MVT predicts optimality 

in foraging by considering the average time an animal will spend traveling to different 

patches in an environment, and the average rate at which the patch resources are 

depleted in an environment. To this end, the MVT predicts optimal foraging 

behaviour based on the average delays and rewards within an environment.  

 

Charnov’s (1976) model of the MVT is such that the foraging environment contains 

resources clustered in individual ‘patches,’ which a predator needs to spend time 

travelling between and within. The key question, which the MVT attempts to model, 

is how long predators will exploit a current patch before moving on to the next. 

Specifically, the MVT has three assumptions:  
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1) Decisions made by the animal are done so as to maximise the net rate 

of energy intake (Charnov, 1976).  

2) If the environment is comprised of different types of patches, the 

patches are randomly distributed throughout the environment. 

3) The rate of energy intake (reward gained) for a patch decreases as the 

amount of time the predator spends in that patch increases, as the 

predator diminishes the availability of resources to itself (Charnov, 

1976).  

For example, when a foraging predator first enters a patch, the rate at which reward 

(food) is gained is rapid as the resource (food) is readily available (Figure 1). 

However, as time progresses the rate at which the predator gains reward gradually 

decays as the resources within the patch are depleted. The MVT states that the 

optimal amount of time that the predator should spend exploiting a particular patch 

depends on both the mean reward rate of that environment, and the time that the 

animal has spent travelling to reach patches within that environment. Thus, the 

optimal point at which an animal should leave the patch it is presently in is when the 

rate at which rewards are gained drops to the average rate for the environment 

(Charnov, 1976). A corollary of the MVT is that an animal should spend longer 

exploiting a patch which follows a longer travel time, or which is associated with a 

slower reward rate.   
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The MVT has evolved into a classical model of optimal foraging theory and has been 

applied to several qualitative and quantitative studies to establish predictions of 

animal behaviour when foraging (Cassini, Lichtenstein, Ongay, & Kacelnik, 1993; 

Marshall, Carter, Ashford, Rowcliffe, & Cowlishaw, 2013; Nonacs, 2001; Watanabe, 

Ito, & Takahashi, 2014). The MVT uses a hypothetical animal, which decides when to 

leave a patch based on its measure of the rate of gain in a patch comparative to the 

overall rate of gain within its environment. Importantly, the MVT does not serve as a 

Figure 1. The Marginal Value Theorem (MVT), adapted from Charnov (1976). This figure depicts the 
optimal time when an animal should leave a patch, as predicted by the MVT. Within a patch, the rewards 
that an animal accumulates exponentially decrease over time, as the animal consumes the resources with 
the patch. The MVT predicts that the optimal dwell time for an organism within a patch should be when 
the rate of reward accumulation per unit of time (indicated by the tangent to the reward accumulation 
curves) equals the mean reward rate for the environment (taking into account the time spent travelling to 
the patch and the time spent within the patch)(i.e., when the marginal value of the patch approaches zero). 
Note that the MVT predicts optimal dwell times based on the average features (travel times and reward 
rates) of patches within an environment.  
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patch-leaving rule, or depend on the assessment of individual patches, but rather 

derives the best procedure for maximising the long-term reward gained from a known 

set of rules and information pertaining to the environment (Stephens & Krebs, 1986). 

Further, it has been noted that although the MVT is a valuable heuristic tool, there is a 

distinct separation between the model and the actual testing of foraging behaviour 

(Nonacs, 2001). The MVT thereby serves as a point from which foraging behaviour 

can be examined, however, deviations from the predictions of the MVT in testing 

must be attributed to the complexity of the natural environment in which foraging 

decisions occur. This is important to note as the MVT predicts the optimum of the 

temporal factor involved in foraging, utilising an objective and theoretical approach 

which incorporates a set of assumptions and constraints, in order to make the model 

functional. This does not imply that predators will perform optimally and adhere to 

the predictions of the MVT; rather, the MVT serves as a guideline that predicts 

optimal foraging behaviour. An important question then is: how well do animals 

perform relative to the optimum predicted by the MVT? Deviations from the optimal 

prediction must be accounted for by considering the influence of other factors 

(Schoener, 1971), in addition to accounting for the environmental factors specific to 

the study .  

 

Alternative Theories of Optimal Foraging 

Although the MVT is a prominent model of optimal foraging behaviour, its simplistic 

and deterministic nature has been criticised. Specifically, the optimal foraging 

behaviour predicted by the MVT denotes: that an animal has complete knowledge of 

the environment (including the capture rates of prey in the environment) (Watanabe et 

al., 2014); there are no limitations to the amount of time an animal has to forage for 
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reward; and the foraging behaviour of the animal is not effected by the variance (or 

volatility) within the environment. As a result, it is important to note other prominent 

theories that have provided accounts for the foraging behaviour of animals in a patchy 

habitat, which consider the environmental factors neglected by the MVT.    

 

Hunting by Expectation. Gibb's (1966) proposed the ‘hunting by expectation’ 

hypothesis, based on his observations of the feeding habits of birds on larvae that had 

been laid in pinecones during the winter. The birds consumed fewer larvae when they 

encountered resource-rich pinecones (which contain many larvae), compared to when 

they encounter resource-poor pinecones with fewer larvae. Gibb (1966) attributed this 

behaviour to the birds’ ability to learn to expect a certain amount of larvae within a 

pinecone. The hunting by expectation hypothesis is similar to the MVT as it considers 

the overall reward available in the environment, and is based on the foraging animal’s 

complete knowledge of the environment. However, the hunting by expectation 

hypothesis is based on the animal’s past foraging experience from which an 

expectation regarding the type of reward and amount of reward is derived (Hodges, 

1981). This hypothesis has been widely scrutinised as it has not been widely observed 

in birds or other species, nor is it supported by the original data, but rather hinges on 

Gibb’s interpretation of the results (Bateson & Klopfer, n.d.; Krebs, Ryan, & 

Charnov, 1974). Alternatively, it was proposed that the behaviour exhibited by the 

birds was instead indicative of the birds having developed a ‘giving-up time’ strategy 

(John R. Krebs et al., 1974). 

 

Giving-Up Time. The ‘giving-up time’ (GUT) was an important contribution to the 

optimal foraging literature, and notably, is a concept derived purely from empirical 
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observations of behavioural responses to uncertainty, as opposed to mathematical 

models, such as the MVT (McNair, 1982; Tinbergen, Impekoven, & Franck, 1967). 

An important distinction of the GUT from the MVT is that it pertains to individual 

patches and is determined by the quality of different patches within the same 

environment, and is used to explain foraging behaviour a posteriori. Specifically, the 

GUT takes into account the quality of a patch and measures the amount of time that 

passes between the points at which the animal finds the last reward in a patch until it 

decides to leave the patch. The term ‘giving-up time’ was coined by Croze, who 

explained that the GUT “… is taken to be a quality of the [animal’s] persistence – and 

expression of the amount of effort the predator is willing to allot in pursuing one more 

of a particular prey” (as cited in McNair, 1982, pp. 512). Specifically, the GUT 

denotes that an animal will use its experiences of patches within the environment to 

determine how long to dwell in a patch based on when the last prey was captured 

within the patch; thereby establishing a temporal threshold. For example, if a giraffe 

has determined it can gain 80 acacia leaves (rewards) in 1 hour, it will remain 

searching for leaves to eat from the same acacia tree so long as it continues to gain 80 

acacia leaves within that threshold of time. However, if an hour passes and the giraffe 

has not gained the expected 80 acacia leaves, it will leave the tree and move on to the 

next. Importantly, the GUT threshold is determined by the quality of patches within 

the same environment. The animal determines the quality of patches by evaluating the 

costs and benefits of an individual patch relative to that of other patches in the 

environment. That is, if the costs and benefits for one patch type (A) are 

comparatively better than those of other patch types (B and C), the GUT will be larger 

for A than it will be for B and C (McNair, 1982). Therefore, in an environment in 

which the rewards in patches have diminishing returns (as they do in the MVT), an 



	 14	

animal will “on average, spend more time in ‘good’ patches than poor ones” (McNair, 

1982). Although some studies (John R. Krebs et al., 1974) have found the GUT to 

yield results consistent with the predictions of the MVT, an important distinction is 

that the GUT considers the quality of individual patches in an environment and does 

not assume the foraging animal to have complete knowledge of its environment. In 

light of this, some have posited that the use of a GUT may result in a foraging animal 

performing more optimally than the MVT predicts, as it is able to learn about changes 

in its environment and adapt its behaviour accordingly and efficiently.  

 

The Stochastic Model. An element of learning is necessary for all circumstances 

under which a predator does not have complete information of its environment. 

Whereas the hunting-by-expectation hypothesis posited that birds learned to forage 

based on expectations derived from previous experiences, and the GUT was 

established through an animal’s previous experiences, another prominent contribution 

to optimal foraging theory is Oaten's (1977) stochastic model. In this model, the 

predator has incomplete information regarding its foraging environment, and thereby 

cannot predict the average reward available within the environment. This contrasts 

with the MVT, which assumes the animal is omniscient and thereby adheres to an 

optimal foraging procedure based on the average environmental features (i.e. average 

reward available). The stochastic model thereby posits that a predator will use its 

recent experiences of patch types and encounters with prey to inform its foraging 

decisions. Further, optimal foraging theory denotes an optimal predator to be seeking 

to maximise its long-term reward intake. Thus, a predator foraging in the stochastic 

model will use the information recently gained, such as past patch encounters, to 

deduce aspects of the patch distribution, and inform its decisions as they relate to 
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potential future decisions (Green, 1979; Oaten, 1977). As a result, the varied 

distribution of patches within an environment are thought to make the predator 

perform better in terms of maximising the reward gained, than if it adhered to the 

predictions of the MVT; given that foraging decisions are made based on the 

information specific to the types of patches comprising the environment as opposed to 

the average reward available in the environment (Green, 1979). 

 

Foraging in a Variable Environment. An important consideration for optimal 

foraging theories has been the variance of rewards (or delays) within an environment, 

and the extent to which the variance influences the foraging behaviour of animals. 

Based on the predictions of the MVT, an environment comprised of different patch 

types that are randomly distributed should have no effect on the animal’s foraging 

behaviour, as the animal is predicted to forage in accordance with the mean rate of 

reward or delay in the environment. However, studies have shown foraging behaviour 

to be different to that predicted by the MVT when the features in the environment are 

variable (Bateson & Kacelnik, n.d.; Bond, 1980). Given that the predictions of the 

MVT are based on the long-term rate-maximisation by using the mean reward within 

the environment, the variance of rewards in different patches should not have any 

affect on a forager’s behaviour. However, the individual patches comprising an 

environment may be treated differently by a forager depending on the variance of 

reward or delay within a patch (Bateson & Kacelnik, n.d.). Specifically, when the 

mean rate of reward is the same for two reward options, but the variance of the reward 

options is differentiated, animals have demonstrated that the optimal choice is always 

the option with the smaller variance (Barnard & Brown, 1987; Barnard, Brown, 

Houston, & McNamara, 1985; Caraco, 1981).  
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Time Horizon. Optimal foraging theories assume an animal behaves so as to 

maximise its long-term reward gains while foraging. The predictions of the MVT 

propose a procedure for optimal foraging behaviour that will achieve this goal; 

however, the MVT does not consider limitations to the amount of time an animal has 

to do this. The ‘time horizon’ considers the foraging behaviour of animals in a 

naturalistic environment, in which the duration of daytime and approach of nightfall 

have been found to influence the foraging behaviour of animals (Barnard & Hurst, 

1987; Caraco, 1980, 1981; Kolling, Wittmann, & Rushworth, 2014; John R. Krebs & 

Kacelnik, 1984). For example, during the day animals will pursue prey choices that 

will gradually help them meet their energy intake requirements for the day. However, 

as nightfall approaches, animals begin to pursue prey choices that are riskier but may 

yield more energy, particularly if the animal has not yet met its energy intake 

requirements necessary for them to survive the night. Therefore, deviations from the 

optimal foraging behaviour predicted by the MVT are probable when naturalistic time 

constraints are considered.  

 

The MVT has been proven to be quite robust in its predictions of optimal foraging 

behaviour in animals with one of its main strengths being its simplicity (Cassini, 

Kacelnik, & Segura, 1990; Cassini et al., 1993; Cowie, 1977; Nonacs, 2001; Pyke, 

1980; Walton, Ruxton, & Monaghan, 1998; Watanabe et al., 2014). Therefore, 

although the MVT was developed in 1976, it is still used today in various incarnations 

to describe optimal foraging. However, as can be seen in the aforementioned review, 

other theories provide accounts for the perceived shortcomings of the MVT; the most 

notable of which is the GUT theory as it is a posteriori measure of animal behaviour 
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for individual patches, and the behavioural response of animals to environmental 

variations. This then leads to question how the optimal foraging predictions of the 

MVT might hold in predicting human foraging behaviour.  

 

How Humans Forage 

Not unlike animals, humans exhibit foraging behaviour within their environment, 

with time and opportunity costs being constantly weighed. For example, farmers 

harvesting rice fields need to decide when to stop harvesting rice in one field and 

move on to the next, or individuals searching for information on the Internet must 

decide when sufficient information has been gained before moving on to the next 

page. In humans, foraging theory has been applied to decision-making in foraging-

type tasks only within the last decade, and has been examined in eye-tracking studies 

of visual search and visual attention, though more predominantly, foraging theory has 

been applied to studies of humans foraging for information. In particular, Information 

Foraging Theory (IFT) was developed to examine the way in which individuals 

search, gather, and use information (Pirolli and Card (1999). Not unlike optimal 

foraging theories in animals, this theory assumes that individuals modify their search 

strategies so as to “maximise their rate of reward” gain, and investigates the foraging 

strategies used by individuals, depending on the constraints of their environment 

(Pirolli & Card, 1999). More recently, IFT has been used in collaboration with visual 

search and attention research, and several studies have demonstrated the ways in 

which information foraging is influenced by factors including size, shape, colour, and 

orientation, as noted in visual search studies (Buscher, Cutrell, & Morris, 2009; 

Cutrell & Guan, 2007; Duggan & Payne, 2011). As a result, accounting for the ways 

in which the aforementioned factors influence eye movements during visual search 



	 18	

would expedite the ways in which visual search and information foraging could 

potentially be optimised. 

 

Furthermore, some studies have performed well-controlled experiments to examine 

human behaviour when foraging for reward; however, relatively little is known about 

this (Constantino & Daw, 2015; Kolling, Behrens, Mars, & Rushworth, 2012; 

Shenhav, Straccia, Cohen, & Botvinick, 2014). A study conducted by Constantino 

and Daw (2015) examined whether human participants learned the opportunity cost 

associated with gaining reward in such a way that was consistent with either the 

predictions of the MVT, or the temporal-difference learning model; which denotes 

incremental learning that occurs on a patch-by-patch basis. The task used a virtual 

simulation of apple picking, in which participants were presented with an apple tree 

and had to decide whether to harvest the apples (rewards) from the tree and incur a 

short delay, or move on to the next tree, which would incur a longer delay. The 

findings suggested the foraging behaviour of participants was consistent with the 

predictions of the MVT. However, the MVT does not involve learning, as the forager 

is assumed to have complete knowledge of its environment already.  

 

Further, a seminal fMRI study conducted by Kolling et al. (2012) sought to examine 

the neural correlates of human decision-making while foraging for reward. The task 

itself required participants to make a choice to either exploit the current reward option 

or move on to an alternative option, for which the reward was unknown. The results 

showed the ventromedial prefrontal cortex (vmPFC) and the anterior cingulate gyrus 

(ACC) to be involved in evaluating the cost of foraging when making a decision 

between two choices. Specifically, Kolling et al. (2012) purported that their findings 
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were indicative of the vmPFC being involved in encoding the value of well-defined 

options, whereas the ACC was involved in encoding the value of the average 

environment relative to the cost of foraging. By replicating the study, Shenhav et al. 

(2014) challenged the findings of Kolling et al. (2012), arguing that the activity 

observed in the ACC during the foraging task was instead attributable to the difficulty 

of the task decision. The two conflicting results have instigated an on-going debate 

pertaining to the role of the ACC and whether its activity is due to the average value 

of a foraging environment, or the difficulty of foraging decisions. However, although 

these studies concern human foraging decisions, the predictions of the MVT were not 

applied or tested to determine the optimality of human foraging decisions. Thus, it 

cannot be said how well the foraging behaviour of humans in a task adhere to – or 

deviate from – the optimal foraging behaviour predicted by the MVT.  

 

Summary 

The Marginal Value Theorem (MVT) – as applied to behavioural ecological research 

– has been found to be a good predictor of optimal foraging behaviour as animals aim 

to maximise their long-term reward gains. However, the MVT is limited by some of 

its assumptions and is notably not intended to be an accurate predictor of actual 

behaviour, but rather a tool utilised to determine the optimality of foraging behaviour. 

Deviations from the optimal predictions of the MVT have been accounted for by other 

theories – such as the GUT and stochastic models – which consider the limitations of 

the MVT predictions as they pertain to the constraints of the naturalistic environment, 

including the quality of different patches comprising an environment, foraging with 

incomplete information pertaining to the environment, the variance of the 

environment, and the influence of time horizons on an animal’s foraging behaviour. 
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However, these other theories consider foraging behaviour on a patch-by-patch basis 

and do not necessarily consider the overall environmental features, as the MVT does.  

 

Although the MVT has been extensively tested in studies of ecological behaviour, the 

temporal factor involved in optimal foraging, as predicted by the MVT, paves a way 

to determine the extent to which human decision-making in a foraging-type task 

adheres to the predictions of the MVT. Thus far, studies involving the application of 

the MVT to human foraging behaviour are few and far between. Therefore, the 

question is: do the predictions of the MVT regarding optimal foraging decisions apply 

to humans? Specifically, do humans consider the mean features of the environment 

when making foraging-type decisions, or do humans behave in accordance with the 

quality of individual patches? If the former is true, then the MVT is applicable to 

predicting the foraging decisions of humans; if the latter is true, the GUT provides a 

better explanation for human foraging decisions.  

 

In this research, I use four experiments, each of which comprises a different time-

based foraging task. Each task is similar in that points represent the reward gained, 

and are used as incentive, and the duration of the trial imposes a temporal constraint. 

Importantly, to remain consistent with the assumptions of the MVT in this study, I 

ensure that participants have complete knowledge of the task environment in order to 

eliminate learning, as the MVT assumes the forager has complete knowledge of its 

environment. I then ask participants to make decisions about how long to stay in a 

patch and gain reward, given that there was a delay in reaching that patch, and the 

reward is gained at an exponentially declining rate. Further, in light of the temporal 

factor of the MVT’s predictions, I ask participants to complete the Barratt Impulsivity 
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Scale (BIS-11) questionnaire, as previous studies have examined impulsivity as it 

pertains to rewards and delays, and found that traits of impulsivity result in the 

discounting of delayed rewards (Grecucci et al., 2014; Mobini, Grant, Kass, & 

Yeomans, 2007; Patton, Stanford, & others, 1995; Sinha, Manohar, & Husain, 2013).  

 

I predict that participants will dwell longer in patches following longer delays or 

slower reward rates. I also calculate the optimum behaviour – based on the MVT – 

and compare the actual behaviour to the predicted optimum. I further predict that 

participants with BIS-11 scores indicative of impulsive traits will have shorter dwell 

times in the task, with strong correlations between the BIS-11 score and their dwell 

times. In addition, I examine whether the GUT provides a posteriori account for 

deviations of participant performance from the MVT predictions of foraging 

behaviour 

 

	  



	 22	

Chapter 2: Experiment One 

Introduction 

The Marginal Value Theorem (MVT) is a simple, deterministic model that 

accounts for the widely observed optimal foraging behaviour of animals. Specifically, 

the MVT signifies that the optimal time to dwell within a patch is determined by the 

duration of time taken to travel to the patch (delay), and the point at which the rate 

rewards are gained within the patch diminishes below that of the average rate of 

reward available in the environment (Figure 1) (Charnov, 1976). This model 

consistently predicts the optimality of the decisions made by foraging animals 

regarding how long to exploit a patch for reward before moving on to explore the next 

patch. Given that this type of decision is regularly encountered by humans, to what 

extent are human decisions in a foraging task optimal? 

 

 

 

In this experiment, I utilise the predictions of the MVT to determine to what extent 

human decisions in a time-based foraging task are optimal. The MVT predicts that 

Figure 2. Predictions of the MVT as applied to Experiment 1 for (A) Fast reward rates, and (B) Slow reward 
rates. Note that a general prediction of the MVT is that longer mean travel times should lead to longer mean 
dwell times within a patch (A). In addition, patches with slower reward rates should similarly result in longer 
dwell times than patches with faster reward rates (B compared to A).  
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individuals will dwell longer following longer delays, or with slower reward rates 

(Figure 2). Therefore, I examined the optimality of participants’ dwell times when 

presented with either a longer or a short delay, which represents the time animals take 

to travel to a patch; and a fast or slow rate of reward, which represents the different 

rates at which reward is accumulated by animals in a patchy environment. 

Additionally, I examined the extent to which the dwell times of participants deviated 

from the predicted optimum. Furthermore, I examined the variance of participant 

dwell times to determine if dwell times vary as a function of the foraging task 

condition, and if participants change their strategy over the course of a trial.  

 

Methods and Materials 

Subjects. Twenty-one healthy participants volunteered for the first experiment, of 

which 6 were male and 15 were female. Ages ranged from 17 to 31 years (M = 20.24, 

SD = 3.02). All participants were right-handed (N = 21). Three additional participants 

completed the experiment but were excluded from the analysis due to technical issues 

and incomplete data. Participants were pre-screened to ensure they had a good 

command of the English language. Participants were recruited from the Psychology 

Participant Pool at Macquarie University in return for course credit, in addition to the 

possibility of winning a small amount of money based on their performance in the 

task. The Ethics Committee of Macquarie University approved this study, and all 

participants provided informed consent.  

 

Stimuli. The experiment was implemented on Presentation® software (Version 18.3, 

www.neurobs.com). In addition, participant completed the Barratt Impulsiveness 

Scale (BIS-11) prior to commencing the experiment (Patton, Stanford, et al. 1995).   
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Experimental Design. In this experiment, participants’ primary goal was to earn as 

many points as possible. To motivate their performance, they were informed that, if 

their scores were the highest of the preceding 5 participants, they would earn a $10 

bonus (for the first five participants, the comparison scores were based on pilot data). 

This additional reward was in addition to the two course credits they received for 

participation.  

 

Each trial of this task comprised multiple ‘patches’ of reward, in each of which 

participants had the opportunity to earn a maximum of 50 points. These points were 

accrued automatically according to an exponentially decreasing function (Figure 2):  

 

  (Equation 1)   𝑅 𝑡 =  𝐴 ∙ (1− 𝑒!�!) 

 

where 𝑅 𝑡  is the cumulative reward at time t; A is the maximum reward available in 

that trial (which in Experiments 1-4 was set at 50); and ρ is the reward rate (which 

was set at 0.05 vs. 0.1 in Experiment 1). The cumulative rewards were displayed as a 

vertical bar on the right side of the screen, which gradually filled up to indicate the 

number of points accumulated in that patch. To accumulate the maximum reward of 

50 points in each patch, participants would have had to wait 14.4 seconds when the 

reward rate was 0.05, and 11.5 seconds when it was 0.1. Based on these exponentially 

decreasing rewards, participants’ were instructed to indicate by button press when 

they felt it was no longer worth remaining in the current reward patch, and when they 

wished to move to the following patch.  
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Critically, however, at the beginning of each patch, a temporal delay was imposed 

before any rewards could be accumulated (Figure 4). This delay was displayed in the 

form of a semi-circular timer with two-second gradations from 0-seconds to 12-

seconds. In Experiment 1, the possible delays were either 2-seconds or 10-seconds. In 

each case, red shading on the timer would indicate the imposed delay, and an arrow 

would gradually revolve anti-clockwise from the starting position (2s, 10s) to 0-

seconds. At the conclusion of this delay, the reward bar would automatically begin to 

fill with accumulated rewards. 

 

Figure 3. Each block comprised multiple trials. Each trial comprised multiple patches, and 
lasted between 105 and 135 seconds. Participants’ goal was to maximise their winnings on 
each trial. Trial conditions (e.g., mean travel time) were varied across blocks, but kept constant 
within blocks, in order to convey to participants the impression of a stable reward environment 
within blocks. 
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Participants were asked to base their decisions of how long to remain in a particular 

patch based on two factors: the delay that was imposed at the beginning of that patch, 

and the exponentially decreasing reward rate. The cumulative reward gained 

throughout the trial was displayed above the reward bar in each patch.  

 

                      

 

 

 

 

 

 

Figure 4. Sequence of events within a patch. (A) Each patch begins with a timer on the left of 
the screen, which indicates in red the delay imposed in that patch (the ‘travel time’) before 
rewards can be accrued. The timer is divided into 2s increments, ranging from 2s to 10s. The 
display dynamically changes as the arrow counts down from the imposed delay (6s in the 
displayed example). (B) Once the imposed delay has elapsed, participants automatically begin 
accruing rewards in an exponentially decreasing fashion, with the cumulative reward displayed 
as the height of a yellow bar on the right side of the screen. The maximum reward available on 
each trial is 50. Participants indicated by button press when they are satisfied with the rewards 
they have accumulated in that patch, and were ready to move to the next patch. [(C) is not 
necessary here] (D). Participants then progress instantly to the next patch, with their cumulative 
reward in the patches to that point displayed above the reward bar on the right.  
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In Experiment 1, I manipulated the rate of reward accumulation (0.05 (‘slow’) vs. 

0.01 (‘fast’)), and the duration of the imposed delay occurring before reward 

accumulation (2s v 10s). Each of these four conditions was tested across separate 

blocks, with block order randomised across participants. Participants were informed 

as to which condition they were going to complete prior to commencing a block, and 

all participants undertook at two-minute practice trial prior to each block. Each block 

was divided into five trials of approximately two minutes duration, and each trial 

comprised multiple patches (the precise amount was determined by participants’ 

decisions). The duration of each trial varied randomly from 1 minute 45 seconds, to 2 

minutes 15 seconds, to ensure that participants could not strategise their responses 

based on the precise duration of each trial. Participants thereby had no indication of 

how much time remained in a trial. Upon termination of the trial the screen stopped, 

or ‘cut off’, at whatever point the patch within the trial was at – whether it be the 

delay count down or the accumulation of rewards. At the end of each trial, 

participants’ total winnings for that trial were displayed on the screen.   

 

Results 

Mean Dwell Times. To test the hypothesis that dwell times should increase with 

greater delays and slower reward rates, I ran a within-subjects repeated measures 

analysis of variance (ANOVA) on the factors of Reward Rate (fast, slow) and Delay 

(2s, 10s) on mean dwell times for each patch. This analysis showed a significant main 

effect of Reward Rate, F(1, 20) = 11.565, p = .003, such that the dwell times were 

longer for the slow Reward Rate, M = 11.57s, SD = 4.25s, relative to the fast Reward 

Rate, M = 9.58s, SD = 3.41s. Further, the main effect of Delay was significant, F(1, 

20) = 23.545, p < .001, such that the dwell times were longer for the long Delay, M = 
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11.94s, SD = 3.81s, relative to the short Delay, M = 9.20s, SD = 3.66s. There was no 

significant interaction, F(1, 20) = 1.334, p = .262. This demonstrates that participants 

were willing to dwell for longer periods of time when presented with longer delays, 

and slower reward rates.  

 

 

Standard Deviation of Dwell Times. Another important question is how reward rate 

and delay influenced the variability of participants’ responses. To determine the 

variability of participants’ responses, the standard deviation of dwell times within 

each patch was calculated for each Reward Rate (fast, slow) and Delay (2s, 10s). 

These standard deviations were then subject to the analogous 2x2 within-subjects 

repeated measures ANOVA, as in the analysis on mean dwell times. The main effect 

of Reward Rate was significant, F(1, 20) = 14.436, p = .001, and showed less 

variability in dwell times for the fast Reward Rate, M = 3.92s, SD = 1.66s, compared 

to the slow Reward Rate, M = 5.31s, SD = 2.60s. Further, this analysis showed a 
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Figure 5. Mean dwell time (+/- 1 standard deviation) as a function of condition. Dwell times were 
shorter for the short vs. long delay, and for the fast vs. slow reward rate.   
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significant effect of Delay, F(1, 20) = 49.153, p < .001, such that there was less 

variance in dwell times for the short Delay, M = 3.53s, SD = 1.68s, relative to the long 

Delay, M = 5.70s, SD = 2.32s. There was no significant interaction, F(1, 20) = 2.228, 

p = .100. In summary, faster reward rates and shorter delays led, not only to shorter 

dwell times, but correspondingly less variance, compared to conditions with slower 

reward rates or longer delays.  

 

 

 

 

Changes in Strategy Across an Individual Trial. Recall that the MVT predicts 

optimal performance based on mean patch delays and mean reward rates of each trial. 

However, there is evidence that animals may change their foraging behaviour as they 

approach a fixed deadline (e.g., sundown) (Bateson & Kacelnik, n.d.; Kirk, Esler, & 

Boyd, 2007; Krebs & Kacelnik, 1984a; Shettleworth, 1985). Do dwell times in this 

task change as a function of trial time? The dwell times for the first and last patches 
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Figure 6. Mean variance of dwell time (+/- 1 SD) for each trial. The variances of dwell 
times were greater for longer delays and slower rewards (*, p < 05).  
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within each trial were calculated to determine if there were changes in trial strategy as 

a function of trial time. . Importantly, the last patch was considered to be the patch 

preceding the patch during which the trial terminated. This circumvented any 

confounds pertaining to the dwell time being interrupted and cut short by the 

termination of the trial.  I ran a within-subjects repeated measures ANOVA on 

Reward Rate (Fast, Slow), Delay (2s, 10s), and Patch Position (first, last) on dwell 

times for each trial. The main effect of Patch Position was significant, F (1, 20) = 

16.065, p = .001, and showed longer dwell times for the first patch, M = 11.80s, SD = 

5.31s, compared to the last patch, M = 9.39s, SD = 5.05s, in a trial. This analysis also 

revealed main effects of Reward Rate, F(1, 20) = 17.378, p = .000, and Delay, F(1, 

20) = 46.668, p = .000, which were all qualified by a significant interaction between 

Delay and Patch Position, F(1, 20) = 4.694, p = .043, as well as a significant three-

way interaction, F(1, 20) = 39.983, p = .000. Decomposing this three-way interaction 

with Bonferroni-adjusted comparisons revealed that dwell times were significantly 

shorter in the first relative to the last patch only for the extreme conditions – that is, 

for the fastest reward rate at the shortest delay (first patch, M =9.20s, SD = 4.22s; last 

patch, M =3.9s, SD = 2.20s), and at the slowest reward rate at the longest delay (first 

patch, M = 15.66s, SD = 5.91s; last patch, M = 12.73, SD = 4.67s). However, there 

were no differences in dwell times between the first and last patch for the 

intermediate conditions (fast reward rate, long delay: first patch, M = 11.71s, SD = 

3.90s; last patch, M =11.15s, SD = 3.67s; slow reward rate, short delay: first patch, M 

=11.02s, SD = 5.40s; last patch, M = 10.16s, SD = 4.33s) [Figure 7]. 
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This demonstrates that there is a change in participant behaviour as the dwell time in a 

patch is dependent on how much time has elapsed for the trial, but only for the 

extreme conditions.   
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Figure 7. Mean dwell times (+/- 1 standard deviation) collapsed across trials for the 
first compared to the last patch in a trial. Dwell times were longer for the first patch than 
the last patch (*, p < .05).  

Figure 8. Mean dwell times (+/- 1 standard deviation) collapsed across trials for first v. 
last patch in each condition. Dwell times were shorter for the last patch in a trial 
compared to the first patch (*, p < .05).  
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Performance Relative to Optimal.  Given the precise predictions that the Marginal 

Value Theorem (MVT) posits on optimal dwell times, it is possible to derive the 

optimal dwell time for each condition of this experiment (Figure 9). In order to 

determine the optimum time to leave each patch, we need to determine when the rate 

of reward accumulation falls below the patch average given the mean delay. The point 

at which these two functions intersect is given by solving the following equation:  

 

(Equation 2)    !
!�!

𝑡 + 𝑑 =  1− !
!�!

 

 

where d = the delay in each patch,  ρ is the reward rate, and t is the dwell times in 

seconds. Solving this equation for t given each d and ρ gives the following optimal 

dwell times:  

 

d ρ Optimal Dwell Time 

2 0.1 5.27s 

2 0.05 27.4s 

10 0.1 11.5s 

10 0.05 33.6s 

 

 

To determine whether optimal dwell-times were significantly different to the 

optimum, I ran Bonferonni-corrected one-sample t-tests, comparing the mean dwell 

times in each of the four conditions against the optimal dwell time for those 

conditions (adjusted p-value = 0.05/4 = 0.0125; Figure 9). For the fast Reward Rate, 
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there was no difference between participants’ dwell times and the optimum when the 

delay was long (p = .236, M = 10.67s, SD = 3.12s), but participants dwelled 

significantly longer than optimal when the delays were short (p = .001, M = 8.49s, SD 

= 3.40s). In contrast, however, the mean dwell times for the slow Reward Rate were 

significantly less than optimum for the short (p = .000, M = 9.92s, SD = 3.85s) and 

long Delay (p = .000, M = 12.21s, SD = 4.07s). Overall, this indicates that the 

Marginal Value Theorem was mostly poor at predicting participant performance, with 

participants dwelling either significantly shorter or longer than would be optimal 

under most conditions.  
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Figure 9. Performance relative to optimum. Optimal dwell time for each condition, as predicted 
by the MVT, represented by the red dotted line. Standard deviation bars that are >1 indicates 
participants dwelled longer than optimum; <1 indicates participants dwelled less than optimum 
(*, p < .05). 
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Correlations.  Using the scores attained from the Barratt Impulsivity Scale (BIS-11), 

I ran bivariate correlations between the overall experiment duration (comprised of the 

sum of participant dwell times and patch delays), and the first- and second-order 

subscales, and results of the BIS-11 questionnaire. Importantly, the foraging task in 

this experiment was comprised of temporal components to which participants were 

required to respond to. Further, traits of impulsivity are denoted by variations in 

temporal responses to stimuli (Bonnelle et al., 2015; Grecucci et al., 2014; Patton et 

al., 1995; Radakovic & Abrahams, 2014). For this reason, the overall experiment 

duration was used as it provided a comprehensive measure of participants’ 

engagement with the temporal requirements of the task: delay and dwell time. 

However, the results yielded no significant correlations (Appendix A). 

 

Discussion. In this experiment, I examined the extent to which human decision-

making in a foraging task adheres to – or deviates from – the predictions of the 

Marginal Value Theorem (MVT), and thereby, the extent to which foraging decisions 

are optimal. The key results of this task were that dwell times were shorter and less 

variable with shorter delays and faster reward rates. Overall, this is consistent with the 

predictions of the MVT. Further, these results show that participants changed their 

behaviour as they approached a deadline, and tended to dwell for shorter periods of 

time as they approached the deadline. However, this behaviour was only observed in 

the extreme conditions (fast reward rate, short delay; slow reward rate, long delay). 

Furthermore, participants’ performance was optimal only in an ‘intermediate’ 

condition (fast reward rate, long delay), but not in the others. This suggests a possible 

framing effect in participants’ responses.  
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Recall that the MVT predicts dwell times based on the average features of the 

environment (e.g., the average reward rate and patch delays). Experiment 1 provides 

evidence broadly consistent with the MVT, but in the special case in which the mean 

delays and reward rates of each patch were identical across entire trials and across 

each block. A stronger, more ecologically valid, test of the MVT would be to compare 

behaviour across environments (or trials) which differ according to their mean patch 

delays, but within which individual patch delays differ. This will be the subject of 

Experiment 2. 
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Chapter 3: Experiment Two 

Introduction 

The Marginal Value Theorem (MVT) denotes that the optimal point to leave each 

patch is determined by the average reward available within the environment. 

Therefore, the dwell times for each condition should be relative to the mean delay of 

each environment. Having established that behaviour in Experiment 1 was largely 

consistent with the predictions of the MVT in the particular case when patch delays 

were constant, Experiment 2 aimed to test the prediction that dwell times are 

determined by the average environmental features (e.g., dwell times), rather than 

features of individual patches. In order to provide enough power for the analyses, both 

the reward rate and the delay could not be varied, so I chose to fix the reward rate and 

vary the patch delay; however, varying the reward rate is an equally valid 

manipulation that could be looked at in future experiments.  

 

Experiment 2 involved comparing dwell times across trials, which differ in their mean 

patch delays (4 vs 8 seconds). Unlike Experiment 1, however, patches within each 

trial varied within a range of +/- 2 seconds of the trial mean. Specifically, when the 

mean patch delay for a condition was 4 seconds, the possible patch delays were 2, 4, 

and 6 seconds. In contrast, when the mean patch delay for a condition was 8 seconds, 

the possible delays were 6, 8, and 10 seconds.  

 

Two important features of this design are worth noting. First, the 6-second patch 

delay was used in both trial types, and therefore allowed me to distinguish the effect 

of mean delays on the patches with identical delays. Second, this experimental design 

allowed me to examine the effect of mean trial delay (mean of 4s versus mean of 8s) 



	 37	

on dwell times, while holding constant the variability of trial delays (the range for 

both trial types is +/- 2 seconds).  

 

Methods and Materials 

Subjects. A total of 21 healthy participants volunteered for Experiment 2, of which 4 

were male and 17 were female. Ages ranged from 19 to 40 (M= 21.29, SD = 5.35). 

All participants were right-handed (N = 21). Inclusion criteria were identical to those 

of Experiment 1. 

 

Experiment Design. This experiment was similar to that of Experiment 1, with two 

main differences: The Reward Rate was set at ρ = 0.1 in order to increase the power 

of this experiment by increasing the number of trials, and patch Delays were varied 

within each trial. In Experiment 1, all patches within a trial involved the identical 

delay (i.e., either 2 seconds or 10 seconds). In Experiment 2, I manipulated the mean 

delay in each trial while varying the specific delays of individual patches. 

Specifically, each trial in this experiment either had a mean delay of 4 seconds or 8 

seconds. Trials themselves were composed of patches with delays that were either 

equal to the mean trial delay, or 2 seconds longer or faster than the mean delay. Thus, 

trials with a mean delay of 4-seconds comprised patches that had delays of 6, 8, or 10 

seconds. The experiment was divided into four blocks, with two blocks containing 

trials with mean delays of 4-seconds, and the remaining two containing trials with 

mean delays of 8-seconds, counterbalanced in A B A B or B A B A fashion. It is 

important to note that the two conditions of this experiment vary the mean delay of 

each trial, while holding the delay variance constant (the range in both conditions is 
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+/- 2 seconds from the mean). This allowed me to examine the effect of manipulating 

mean delay independent of variance.  

 

              

 

 

 

 

 

Results 

Mean Dwell Times. I ran a within-subjects repeated measures ANOVA on Mean 

Trial Delay (4s, 8s) and Patch Delay (less than, equal to, or greater than the trial 

mean) on mean dwell times in each patch. This analysis showed a significant main 

effect of Mean Trial Delay, F(1, 20) = 8.347, p = .009, such that dwell times were 

longer for the long Mean Trial Delay, M = 9.46s, SD = 3.23s, than for the short Mean 

Trial Delay condition, M = 7.55, SD = 2.98s. Mauchly’s Test indicated that the 

assumption of sphericity had been violated for the factor of Patch Delay, x2(2) = 

15.151, p = .001, and was thereby corrected using Greenhouse-Geisser estimates of 

sphericity, ε = .645. However, there was no significant main effect of Patch Delay, 

Figure 10. Possible patch delays for each trial (+/- 2s) relative to the mean 
trial delay, as presented to participants when the task was explained. Each 
block comprised multiple trials. Each trial comprised multiple patches with 
different delays according to the trial type (short or long). A block of ‘short’ 
trials would have several patches with 2, 4, or 6s delays. A block of ‘long’ 
trials would have several patches with 6, 8, or 10s delays.  
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F(1.291, 25.815) = 4.161, p = .43, or interaction, F(1.812, 36.231) = .142, p = .848. 

Importantly, this confirmed and extended the findings from Experiment 1 and the 

predictions of optimal foraging, by showing that longer delays resulted in longer 

dwell times, and shorter delays resulted in comparatively shorter dwell times.  
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Figure 11. Mean dwell time (+/- 1 SD) collapsed across patches within a trial. Each trial 
is comprised of patches that impose either a short (mean of 4s) or long (mean of 8s) initial 
delay. Participants dwelled significantly longer in trials comprising mean patch delays of 
8s vs. 4s (*, p < .05). 
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Standard Deviation of Dwell Times. As in Experiment 1, I examined variability in 

dwell times by calculating the standard deviation for each trial type, and subjected 

this to a within-subjects repeated measures ANOVA on Mean Trial Delays (short, 4s; 

long, 8s) and Patch Delays (less than, equal to, or greater than the trial mean). This 

analysis showed a significant main effect of Mean Trial Delay, F(1, 20) = 4.596, p = 

.045, such that there was less variance of dwell times for the short Mean Trial Delay 

(M = 3.67s, SD = 1.48s) than for the long Mean Trial Delay (M = 4.97, SD = 2.74s). 

There was no significant main effect of Patch Delay, F(2, 40) = 1.815, p = .176, or 

interaction, F(2, 40) = .070, p = .933. The lower variance in dwell times for trials with 

shorter mean delays is in keeping with the shorter mean dwell times for that 

condition, and is consistent with the findings from Experiment 1. 
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Figure 12. Mean dwell time (+/- 1 SD) for each patch within a trial. Each trial is 
comprised of patches that impose either a short (mean of 4s, in blue) or long (mean of 
8s, in orange) initial delay. Each patch within a trial involved a delay that was either 
equal to the mean, or 2s longer or shorter than the mean.  
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Changes in Strategy Across an Individual Trial. As in Experiment 1, this analysis 

showed a significant main effect of Patch Position, F(1, 20) = 16.050, p = .001, such 

that dwell times were longer for the first patches in a trial (M = 9.52s, SD = 3.93s) 

compared to the last patches (M = 8.34s, SD = 3.23s). Furthermore, in line with the 

mean dwell time results, the main effect of Mean Trial Delay was significant, F(1, 20) 

= 6.848, p = .017, such that dwell times were longer for the long Mean Trial Delay 

(8s) (M = 9.65, SD = 2.98s) and shorter for the short Mean Trial Delay (4s) (M = 

8.21s, SD = 3.15s). Importantly, neither the main effect of Patch Delay, nor any of the 

higher order interactions were significant (Mean Trial Delay, F(1, 20) = 1.436, p = 

.245; Patch Delay, F(1, 20) = .226, p = .799; three-way interaction, F(1.516, 30.322) 

= .240, p = .726). These results show participants to dwell for shorter periods of time 

in the last patches of a trial compared to the first patches of a trial.  
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Figure 13. Mean variance of dwell time (+/- 1 SD) for mean trial delays. Variance of 
mean dwell times were greater for mean trial delays 8s vs. 4s (*, p < .05).  
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Performance Relative to Optimum. As in Experiment 1, the optimum dwell time 

for each patch given the mean patch delays can be calculated using Equation 2. 

Solving Equation 2 for t given d = 4 or 8s gives the optimal dwell time as:  

 

d ρ Optimum 

4s 0.1 7.79s 

8s 0.1 10.46s 

 

 

Based on the predictions of the MVT, the mean dwell times for each condition should 

be a function of the mean delay of each environment. I conducted one-sample t-tests 

comparing participant dwell times for each trial in each condition to the optimal dwell 

time for that condition. Bonferroni-correction for multiple comparisons was applied to 

prevent false positive results, with the critical p-value being 0.05/2 = 0.025. With this 
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Figure 14. Mean dwell times (+/- 1 SD) collapsed across trials for the first 
compared to the last patch in a trial. Dwell times were longer for the first patch than 
the last patch (*, p < .05).  
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correction, participant dwell times were not significantly different from the optimum 

for the short (4s) Mean Trial Delay (p = .838, M = 7.93s, SD = 3.18s) or for the long 

(8s) Mean Trial Delay (p = .166, M = 9.48s, SD = 3.12s). This suggests that 

participant performance in each condition was not significantly different to the 

predictions of the MVT.   

 

 

 

Correlations. Congruent with the correlations conducted in Experiment 1, the scores 

attained from the Barratt Impulsivity Scale (BIS-11) were used to determine if there 

were any correlations between traits of impulsivity and the overall experimental 

duration; which was comprised of the total sum of dwell time and delay time over the 

course of the experiment for each participant. I ran bivariate correlations between the 

overall experiment duration and the first- and second-order subscales and results of 
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by the MVT, represented by the red dotted line. Standard deviation bars that are >1 indicates 
participants dwelled longer than optimum; <1 indicates participants dwelled less than optimum.  
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the BIS-11 questionnaire. However, the results yielded no significant correlations (rS 

> .02, p > .05) [Appendix B].  

 

Discussion. In this experiment, I examined the extent to which human decision-

making adheres to – or deviates from – the predictions of the Marginal Value 

Theorem (MVT) in a foraging task where the mean delay is varied for each condition, 

while the variance of delays remains the same. The results showed participants to 

dwell longer for reward when presented with longer delays, and dwell comparatively 

shorter for reward when presented with shorter delays. Further, the variance of dwell 

times in each condition showed participant dwell times to be less varied in the short 

delay condition relative to the long delay condition. These findings are largely 

congruent with the results in Experiment 1.  

 

Critical differences in this experiment pertain to the presence of different delays in 

each condition (environment), and the way in which this element tested the 

predictions of the MVT by determining if participants performed optimally based on 

the average delay for each condition. In this experiment, participant performance 

relative to the predicted optimal dwell time for each condition showed participants to 

be dwelling nearly optimally. Interestingly, this suggests that behaviour within each 

patch was determined by the overall trial mean – not the individual patch delay. In 

addition, the dwell time for the 6-second delay was longer for the longer Mean Trial 

Delay (8s) than for the shorter Mean Trial Delay (4s).  

 

Together, Experiment 1 and Experiment 2 have both provided evidence in favour of 

the MVT predictions; that is, the predictions indicate that dwell times are determined 
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by the mean environmental features. In this experiment, the mean delay was varied 

for each condition, while the variance of delays varied equally by 2-seconds (less 

than, equal to, or greater than the mean delay). The results are compelling as 

participants’ dwell according to the predictions of the MVT, and thereby largely 

confirm the results from Experiment 1. The MVT implies that the variance of an 

environment does not influence dwell times. However, there is evidence that 

environmental variance (or volatility) should make a difference (Bond, 1980; 

McNamara & Houston, 1992). Therefore, in order to further examine the adherence of 

human foraging decisions to the predictions of the MVT successively, the mean in 

each condition should be kept constant while the variance of the corresponding delays 

differs in each condition. This will be the subject of Experiment 3.  
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Chapter 4: Experiment Three 

Introduction 

The results from Experiment 1 and Experiment 2 were consistent with the optimal 

foraging predictions of the MVT, as participants dwelled longer when mean trial 

delays were longer. Specifically, Experiment 2 showed participants adhered to the 

predictions of the MVT when the variance of delays, relative to the mean trial delay, 

was held constant (+/- 2-seconds). However, the MVT provides no predictions 

regarding optimal dwell time when the environmental delays are varied, but rather 

maintains that it is the mean rewards or delays in an environment that are pertinent to 

a forager’s decisions. Therefore, Experiment 3 aimed to examine the extent to which 

human decisions in a time-based foraging task adhere to the MVT predictions of 

optimal foraging. Further, Experiment 3 aimed to determine if the variance of delays 

in each environment changed the performance of participant dwell times relative to 

the optimal predictions of the MVT.  

 

The results from Experiment 1 and Experiment 2 confirmed the optimal foraging 

predictions of the MVT, as participants dwelled longer when mean trial delays were 

longer. Experiment 2 examined the effect of altering mean patch delays across a trial, 

while varying the individual delays within each patch. Importantly, in Experiment 2, 

the mean patch delays across a trial were varied, but the range of patch delays was 

held constant (+/- 2 seconds of the mean patch delay). Although the mean delay is the 

basis on which the predictions of the MVT are made, other studies have contended 

that foraging behaviour is not only determined by the mean delay in an environment, 

but also the extent to which patch delays within the environment are varied (M. 

Bateson & Kacelnik, n.d.; Caraco, 1980, 1981; Caraco, Martindale, & Whittam, 1980; 
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J. R. Krebs, Kacelnik, & Taylor, 1978). Thus, Experiment 3 aimed to determine if the 

extent to which the delays are varied in an environment changed the dwell times 

relative to the optimal predictions of the MVT. 

 

Experiment 3 involved comparing dwell times across trials, which differed in their 

variance of patch delays such that one trial type was comprised of patches with delays 

that were +/- 2-seconds from the mean trial delay, and the other with patches that 

were +/- 4-seconds from the mean trial delay. Unlike Experiment 2, however, the 

mean trial delay for both trial types was held constant at 6-seconds. Specifically, 

when the variance of patch delays was +/- 2-seconds, the possible patch delays were 

4, 6, and 8 seconds. In contrast, when the variance of patch delays was +/- 4-seconds, 

the possible patch delays were 2, 6, and 10 seconds. An important feature of this 

design worth noting is the constant mean trial delay, which allowed me to distinguish 

the effect of patch delay variance from the mean (+/- 2s or +/- 4s) on dwell times. 

This could potentially inform the predictions of the MVT regarding optimal foraging 

predictions in a patchy environment with low or high variance in delays for each 

patch. 

   

Methods and Materials 

Subjects. A total of 22 healthy participants volunteered for Experiment 3, of which 7 

were male and 15 were female. Nineteen were right-handed, and 3 were left-handed. 

Ages ranged from 18 to 36 (M = 21.3, SD = 3.87). Inclusion criteria were identical to 

the preceding experiments.   
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Stimuli. The stimuli for this experiment were identical to those in Experiments 1 and 

2.  

 

Experimental Design. This experiment was similar to Experiment 2, except that, 

here, I manipulated the variance of delays within each trial, while holding the mean of 

each trial type constant. For all trials in this experiment, the mean trial delay was set 

at 6s. However, in one condition, the delay variance in each trial was low (with patch 

delays of +/- 2 seconds, i.e. 4s, 6s, or 8s), and in the other, the delay variance was 

high (with patch delays of +/- 4 seconds, i.e. 2s, 6s, or 10s). As in Experiment 2, there 

were four counterbalanced blocks of trials, with the Low and High Delay Variance 

conditions run over two blocks each.  

 

          

 

 

	 Figure 16. Possible delays for each patch in a trial. The possible patch delays (+/- 2s or +/- 
4s) relative to the mean trial delay, as presented to participants when the task was explained. 
Each block comprised multiple trials. Each trial comprised multiple patches with different 
delays according to the trial type (short or long). A block of ‘short’ trials would have several 
patches with 4, 6, or 8s delays. A block of ‘long’ trials would have several patches with 2, 6, 
or 10s delays.  
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Results 

Mean Dwell Times. I ran a within-subjects repeated measures ANOVA on the Trial 

Delay Variance (high, +/- 4s; low, +/- 2s) and the Patch Delay (less than, equal to, or 

greater than the mean) on mean dwell times within each patch. This analysis showed 

no significant main effect of Trial Delay Variance, F(1, 21) = .111, p = .743. 

Mauchly’s Test indicated that sphericity had been violated for the factor of Patch 

Delay, x2(2) = 24.814, p = .000, and was corrected with the Greenhouse-Geisser 

estimate, ε = .585. There was a significant main effect of Patch Delay at the p < .05 

level, F(1.169, 24.550) = 11.860, p = .001, which Bonferonni-corrected t-tests in a 

post-hoc analysis showed that patch dwell times progressively decreased with 

increasing patch delays, such that dwell times for patch delays less than the mean (M 

= 10.21s, SD = 3.52s) were longer than the dwell times for patch delays equal to the 

mean (M = 8.66s, SD = 3.40s), and greater than the mean (M = 7.71s, SD = 2.95s) 

(less vs. equal, p = .003; less vs. greater, p = .006; equal vs. greater revealed a trend at 

p = .066). There was no significant interaction, F(2, 42) = 1.420, p = .253. These 

results indicate that the extent to which the delays were varied in each condition had 

no effect on participant dwell times.  
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Figure 18. Mean dwell time (+/- 1 standard deviation) for each patch within a trial. 
Each trial is comprised of patches that impose either a low (+/- 2s, in blue) or high 
(+/- 4s, in orange) mean delay variance. Each patch within a trial involved a delay 
that was either equal to the mean, less or greater than it. Participants dwelled 
significantly longer in trials comprising patch delays that were less than the mean trial 
delay (*, p < .05).  

Figure 17. Mean dwell time (+/- 1 standard deviation) collapsed across patches within a 
trial. Each trial is comprised of patches that impose either a delay of low variance (+/-2s) 
or high variance (+/- of 8s) initial delay. 
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Standard Deviation of Mean Dwell Times.  In order to examine the extent to which 

participant dwell times differed in each condition, I ran a within-subjects repeated 

measures ANOVA on Trial Delay Variance (Low, High) and Patch Delays (less than, 

equal to, or greater than the trial mean) on the standard deviation of the dwell times. 

This analysis showed no significant main effect of Trial Delay Variance, F(1, 21) = 

.678, p = .420, such that the variance of dwell times for each Trial Delay Variance 

were not significantly different for the Low Trial Delay Variance condition (M = 

3.74s, SD = 1.08s) or the High Trial Delay Variance condition (M = 3.97s, SD = 

1.56s). Mauchly’s Test indicated the assumption of sphericity had been violated for 

Patch Delay, x2(2) = 8.250, p = .016, and was corrected for with the Greenhouse-

Geisser estimate, ε = .747. There was no significant main effect of Patch Delay, 

F(1.495, 31.390) = 1.462, p = .245, or interaction, F(2, 42) = .643, p = .531. Overall, 

this shows no effect on patch delay variability on the standard deviation of responses.  
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Figure 19. Difference of mean dwell time (+/- 1 standard deviation) for each trial.  
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Changes in Strategy Across an Individual Trial. To determine whether behaviour 

changed over the course of a trial, I compared the first and last patches with the 

analogous ANOVA to Experiments 1 and 2, on the factors of Mean Delay Variance 

(low, high), Patch Delay (less than, equal to, or greater than the mean), and Patch 

Position (first, last) on dwell times for each trial. This analysis showed a significant 

main effect of Patch Position, F(1, 21) = 8.402, p = .009, such that dwell times were 

longer for the first patches in a trial (M = 9.95s, SD = 3.90s) compared to the last 

patches (M = 8.89s, SD = 3.24s). Mauchly’s Test indicated the assumption of 

sphericity had been violated for Patch Delay, x2(2) = 20.438, p = .000, and was 

thereby adjusted for with Greenhouse-Geisser estimate, ε = .610. There was a 

significant main effect of Patch Delay which was consistent with the analysis on 

Mean Dwell Times, F(1.219, 25.608) = 6.316, p = .014, showing that dwell times 

were longest for patch delays that were less than the mean (M = 10.52s, SD = 3.61s) 

and became progressively shorter for patch delays that were equal to (M = 9.31s, SD 

= 3.45s) and greater than (M = 8.43s, SD = 3.53s) the mean. There was no significant 

main effect of Mean Delay Variance, F(1, 21) = .157, p = .696, or interactions of 

Patch Position with Mean Delay, F(1, 21) = 2.231, p = .150, Patch Delay, F(1.167, 

24.517) = .764, p = .410, or three-way interactions, F(1.233, 25.889) = 2.412, p = 

.128. As in the preceding experiments, these results showed participants to dwell for 

shorter periods of time in patches closest to the trial deadline, relative to longer dwell 

times for patches at the beginning of the trial.       
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Performance Relative to Optimal. Using a similar mathematical approach to 

Experiments 1 and 2, solving Equation 2 where d = 6s and ρ = 0.1 gives an optimal 

dwell time of 9.27 seconds. The MVT predicts the dwell times for each type of trial 

(condition) should be relative to the mean delay of each environment. To determine 

the mean dwell time for each trial type relative to the optimum (for mean delay of 6s 

for both trial types), I conducted one-sample t-tests comparing participant dwell times 

for each condition to the optimal dwell time (determined by the mean trial delay of 

6s). Bonferroni-correction for multiple comparisons was applied to prevent false 

positive results, with the critical p-value being 0.05/2 = 0.025. With this correction, 

participant dwell times were not significantly different from the optimum for the Low 

Trial Delay Variance condition (p = .655, M = 9.01s, SD = 2.66s) or for the High Trial 

Delay Variance condition (p = .926, M = 9.20s, SD = 3.29s). This thereby indicates 

that participants were performing in accordance with the predictions of the MVT 

regarding optimal foraging behaviour.  

0

2

4

6

8

10

12

14

16

M
ea

n 
D

w
el

l T
im

e 
(in

 s
ec

on
ds

)

Patch Position
First Patch Last Patch

*	

Figure 20. Mean dwell times (+/- 1 standard deviation) collapsed across trials for the 
first compared to the last patch in a trial. Dwell times were longer for the first patch 
than the last patch (*, p > .05).  
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Correlations. Correlations between total experimental duration and measures of the 

BIS-11 revealed no significant correlations (all rS > .007; all p > .05) [Appendix C].  

 

Discussion. In this experiment, I examined the effect of altering the variance of patch 

delays within a trial, while holding the mean patch delay of those trials constant. The 

results showed mean dwell times were not affected by the variance in patch delays. 

Given that the optimal dwell time predictions of the MVT are based on the mean 

environmental delays, the findings from this experiment are consistent with the 

predictions of the MVT in this regard. Furthermore, these results are in line with the 

predictions made based on the findings from Experiment 2, which showed the mean 

delay of the environment to be a determinant of participant dwell times. In 

Figure 21. Performance relative to optimum. Optimal dwell time for each condition, as predicted 
by the MVT, represented by the red dotted line. Error bars that are >1 indicates participants 
dwelled longer than optimum; <1 indicates participants dwelled less than optimum.  
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Experiment 3, the mean delay was found to determine participants’ dwell times in 

each patch, and further demonstrated the variance of delays to have no effect; and 

thereby is consistent with the findings from Experiment 2. 

 

In this experiment, I examined the effect of varying patch delays on participant dwell 

times by manipulating the range of delays (+/- 2s vs +/- 4s), while holding the mean 

patch delays constant. The results showed the dwell times for each condition to be 

consistent with the predictions of the MVT, and thereby adhere to the mean delay of 

the environment. However, ecological studies have shown that animals have a 

tendency to be sensitive to the variance of patches throughout an environment 

(Bateson & Kacelnik, n.d.; McNamara & Houston, 1992; Smith, 1974). In particular, 

the variance of patches in an environment does not only pertain to the range of patch 

delays, but also to the volatility of patch delays in an environment. The volatility of 

patch delays in an environment thereby denotes the extent to which the next patch 

delay is consistent with the current patch delay, and therefore stable. 

 

Thus, another way to examine the effect of varying patch delays is by manipulating 

the variance of delays – in terms of the frequency with which patch delays change or 

remain the same over the course of a trial – while holding the mean and the range of 

the delays constant. This will be the subject of Experiment 4.  
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Chapter 5: Experiment Four 

Introduction  

Ecological studies of foraging behaviour have found animals to be sensitive to the 

variance of patches throughout an environment (M. Bateson & Kacelnik, n.d.; Caraco, 

1981; McNamara & Houston, 1992; Pyke, 1984). The MVT does not make 

predictions regarding the volatility or variance of reward rates (or delays) within an 

environment; and only refers to the variance of an environment to ascertain that 

different patch types should be randomly distributed throughout the environment 

(Charnov, 1976).  However, several studies have contended that – in addition to the 

mean of the environment – the variance of reward rate (or delay) across patches in an 

environment is critical to an animal’s foraging decisions (Caraco, 1980; Green, 1979; 

Iwasa, Higashi, & Yamamura, 1981; McNair, 1982; Oaten, 1977; Pyke, 1984; 

Schoener, 1971; Stephens & Charnov, 1982)  

 

As established in Experiment 2 and Experiment 3, the dwell time for each condition is 

determined by the mean delay of each environment and is consistent with the 

predictions of the MVT; which denotes the dwell time within a patch is dependent on 

the average reward or delay in the environment. Importantly, Experiment 3 showed 

that dwell time is not determined by the variance of patch delays relative to the mean. 

However, another way to examine the effect of varying patch delays on dwell times is 

by manipulating the variance of delays, in regards to the frequency with which patch 

delays changes or remain the same in an environment, while holding the mean and the 

range of the delays constant.  
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In this experiment, each trial was either ‘stable’, comprising infrequent changes in 

patch delays, or ‘volatile’, in which changes in patch delays were more frequent.  

 

 
Methods and Materials 

Subjects. A total of 22 healthy participants volunteered for the fourth experiment, of 

which 2 were male, and 20 were female. Fifteen participants were right-handed and 7 

were left-handed. Ages ranged from 18 to 23 (M = 19.6, SD = 1.7). Inclusion criteria 

were identical to Experiments 1-3. 

 

Stimuli. The stimuli for this experiment replicates those used in previous 

experiments. 

 

Experimental Design. This experiment was similar to Experiment 3, except that here 

I manipulated the volatility of delays within each trial while maintaining the mean 

delay constant. For all trials in this experiment, the mean trial delay was set at 6 

seconds. However, in one condition the volatility of the patch delays was low 

(comprised of 4s and 8s delays that alternated every 5 or 6 patches, with 50% 

probability), and in the other, the volatility of the delay was high (comprised of 4s and 

8s delays that alternated every 1 or 2 patches, with 50% probability). As in 

Experiment 3, there were four counterbalanced blocks of trials, with the Low 

Volatility and High Volatility conditions run over two blocks each, in A B A B or B 

A B A fashion.  
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Results 

Mean Dwell Times. I ran a within-subjects repeated measures ANOVA on the Delay 

Volatility (high, low) and the Patch Delay (4s, 8s) on mean dwell times within each 

patch. This analysis showed no main effect of Delay Volatility, F(1,17) = .006, p = 

.937. This analysis did show a significant main effect of Patch Delay, F(1,17) = 

10.540, p = .005, such that the dwell times were longer after a shorter delay of 4-

seconds (M = 9.84s, SD = 2.83s) and comparatively shorter after a longer delay of 8-

seconds (M = 7.76s, SD = 1.78s). There was no significant interaction, F(1,17) = 

2.020, p = .173. This demonstrates that the volatility of delays did not have an effect 

on participant dwell times, however participants were dwelling longer for reward 

when presented with a short delay (4s), and dwelling less for reward when presented 

with a long delay (8s).  

Figure 22. Possible delays for each patch in a trial. The possible patch delays (+/- 2s or +/- 
4s) relative to the mean trial delay, as presented to participants when the task was explained. 
Each block comprised multiple trials. Each trial comprised multiple patches with different 
delays according to the trial type (short or long). A block of ‘short’ trials would have several 
patches with 4, 6, or 8s delays. A block of ‘long’ trials would have several patches with 2, 6, 
or 10s delays.  
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Figure 23. Mean dwell times (+/- 1 standard deviation) as a function of condition. Dwell times 
were not significantly different.  

Figure 24. Mean dwell time (+/- 1 standard deviation) for each patch within a trial. 
Each trial was comprised of patches that impose a delay (4s or 8s) that changed 
frequently (high volatility; orange) or infrequently (low volatility; blue). Dwell times 
were shorter for the 8s patch delays compared to the 4s patch delays for each trial 
condition (*, p < .05).  
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Standard Deviation of Dwell Times. As in previous experiments, I examined 

variability in dwell times by calculating the standard deviation for each trial type, and 

subjecting this to a within-subjects repeated-measures ANOVA on the conditions of 

Delay Volatility (Low, High) and Patch Delay (4s, 8s) on the standard deviations of 

the dwell times. This analysis showed no significant main effect of Delay Volatility, 

F(1,17) = .871, p = .364, or of Delay, F(1, 17) = .583, p = .456. There was no 

significant interaction, F(1,17) = .545, p = .470. This demonstrates that the amount of 

time participants spent dwelling in each patch did not vary significantly between 

conditions or between patch delays.  

 

 

 

 

Changes in Strategy Across an Individual Trial. I ran a within-subjects repeated 

measures ANOVA on Delay Volatility (high, low), Patch Delay (4s, 8s), and Patch 

Position (first, last) on dwell times for each trial. This analysis showed a significant 
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Figure 24. Variance of mean dwell times (+/- 1 standard deviation). Less variance for trials 
with greater volatility than trials with low volatility in delays.   
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main effect of Patch Position, F(1, 16) = 6.269, p = .023, such that dwell times were 

longer for the first patches (M = 10.22s, SD = 4.56s) compared to the last patches in a 

trial (M = 9.22s, SD = 2.99s). Consistent with the analysis on mean dwell times, there 

was a significant main effect of Patch Delay, F(1, 16) = 5.735, p = .029, such that 

dwell times were longer for 4-second patch delays (M = 10.61s, SD = 4.66s) and 

shorter for 8-second patch delays (M = 8.41s, SD = 2.35s). There was no significant 

main effect of Delay Volatility, F(1, 16) = .150, p = .704, or interactions of Patch 

Position and Delay Volatility, F(1, 16) = 2.070, p = .170, Patch Delay, F(1, 16) = 

1.756, p = .204, or three-way interaction, F(1, 16) = .017, p = .897. These results 

showed participants dwelled shorter for reward in patches near the end of a trial 

compared to longer dwell times in patches at the beginning of a trial.    
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Figure 25. Dwell times (+/- 1 standard deviation) were longer for the first patch compared to the 
last patch in a trial (*, p < .05). 
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Performance Relative to Optimum. Using a similar mathematical approach to 

Experiments 1, 2, and 3, solving Equation 2 where d = 6s and ρ = 0.1 gives an 

optimal dwell time of 9.27s. To determine the mean dwell time for each condition 

relative to the optimum (6s), I conducted one-sample t-tests comparing participant 

dwell times for each condition to the optimal dwell time. Bonferroni-correction for 

multiple comparisons was applied to prevent false positive results, with the critical p-

value being 0.05/2 = 0.025. With this correction, participant dwell times were not 

significantly different from the predicted optimum for the low Delay Volatility 

condition (p = .406, M = 10.29s, SD = 5.09s), or for the high Delay Volatility 

condition (p = .646, M = 9.07s, SD = 1.75s). This suggests that participant 

performance in each condition was not different to the predictions of the MVT.  
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Figure 26. Performance relative to optimum. Optimal dwell time for each condition, as 
predicted by the MVT, represented by the dotted line. Standard error bars that are >1 
indicates participants dwelled longer than optimum; <1 indicates participants dwelled 
less than optimum. 
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Correlations. Consistent with the correlations conducted in the previous experiments, 

I ran bivariate correlations between the overall experiment duration (total sum of 

dwell time and delay time) and the results of the BIS-11 questionnaire. The results 

yielded no significant correlations (rS > .006, p > .066) [Appendix D].  

 

Discussion. This experiment varied the volatility of patch delays within each trial, in 

order to further examine the effect of variance on participant dwell times relative to 

the optimal dwell times predicted by the MVT. The results showed no difference 

between the volatility and stability of patch delays in a trial, and thereby indicate that 

participants performed in accordance with the predictions of the MVT. Importantly, 

this result is consistent with the findings from Experiment 2 and Experiment 3.   

 

Further, the results from this experiment showed participants dwelled longer in 

patches with a 4-second delay, and dwelled comparatively shorter in patches with 8-

second delays. This pattern of patch behaviour is consistent with the findings from 

Experiment 2 and Experiment 3, in which participants dwelled longer for patch delays 

that were less than the mean delay for each condition, and dwelled progressively 

shorter for patch delays that were equal to, or greater than the mean delay for each 

condition. However, the results from this experiment show participants were 

performing according to optimal for each trial, even though this result was driven by 

longer dwell times in the patches with 4-second delays. Notably, the MVT bases its 

predictions of optimal foraging on the average rate of reward – or delay – in the 

environment, and thereby does not predict behaviour on an individual patch level 

(Charnov, 1976).  
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Chapter 6: Discussion  

In	this	research,	the	primary	goal	was	to	test	the	directional	predictions	of	the	

Marginal	Value	Theorem	(MVT),	and	a	secondary	goal	was	to	examine	the	

performance	of	participants	relative	to	the	optimum.	Each	task	examined	the	

extent	to	which	human	foraging	decisions	adhered	to	–	or	deviated	from	–	what	

the	MVT	had	predicted	to	be	optimal,	and	further	examined	the	effect	that	

different	variables	had	on	participants’	performance.	The	variables	examined	

included:	fast	and	slow	reward	rates	coupled	with	short	or	long	delays	

(Experiment	1);	delays	varied	relative	to	the	mean	trial	delay	(Experiment	2);	

different	degrees	of	delay	variance	from	the	mean	trial	delay	(Experiment	3);	

and	different	frequencies	(volatility)	at	which	the	delay	changed	in	a	trial		

(Experiment	4).	 

 

Trial Times Decided by Mean Trial Delays 

The main goal of this study was to test the prediction of the MVT, which indicated 

individuals should dwell longer in trials (environments) associated with longer delays 

or slower reward rates. This was confirmed in Experiment 1. Experiment 2 further 

confirmed the predictions of the MVT, which noted that these findings should be 

relative to the mean features of the trial environment, rather than the individual 

features of the patches comprising that environment. This is consistent with the 

findings of ecological studies, in which the average dwell time of an animal foraging 

in an environment corresponded to the optimal dwell time predicted by the MVT 

(Cassini et al., 1993; J. N. M. Smith & Sweatman, 1974). Furthermore, participants in 

this study were informed of all the relevant features for the experiments, and thereby 

had complete information on which to base their decisions. Given this, the findings 
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from Experiment 1 and Experiment 2 are also consistent with the predictions of other 

optimal foraging theories – such as hunting by expectation, giving-up time (GUT), 

and stochastic models – which predict that an omniscient animal will forage more 

optimally than a naïve animal (Gibb, 1966; Green, 1979; Hodges, 1981; McNair, 

1982).  

 

The variance and volatility of patch delays did not result in changes in dwell time. 

Although the MVT makes specific predictions about performance relative to the mean 

trial environment, it remains agnostic about whether the variance or volatility of 

features within a trial should affect behaviour. Experiments 3 and 4 found that 

behaviour in the foraging task was not significantly altered by the variance or 

volatility of patch delays. These results suggest that participants used the information 

about the task that was provided, in addition to their knowledge of the trial features 

gained through their experience of trials, to determine the optimal method that 

maximised their reward gain.  

 

Interestingly, in many circumstances, there is evidence that the variance or volatility 

of a trial environment affects decisions (Barnard et al., 1985; Caraco et al., 1980; 

Dukas & Real, 1993; Sutherland & Anderson, 1987). Animals have been found to be 

sensitive to factors of environmental variance or volatility which results in foraging 

behaviour that deviates from the predictions of the MVT (Bateson & Kacelnik, n.d.; 

Caraco, 1981; Real & Caraco, 1986). Further, when the animal is foraging with 

limited knowledge or experience of the environment, the environmental variance or 

volatility further impedes the rate at which it is able to learn about the mean 
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environmental features; such as the extent to which delays or rewards vary, or the 

frequency with which they change (McNamara & Houston, 1992).    

 

However, there are also instances in which decisions are not affected by variance and 

volatility (Gibb & Betts, 1963; Iwasa, Higashi, & Yamamura, 1981; Krebs, Kacelnik, 

& Taylor, 1978; Krebs, Ryan, & Charnov, 1974). In such instances, the foraging 

animal has complete information of the mean environmental features and is thereby 

able to behave in accordance with the mean reward rate, or mean delay, and 

circumvent the hindrance that would otherwise be imposed by the variability or 

volatility of the environment.  

 

The findings of Experiments 3 and 4 are therefore consistent with the latter body of 

evidence, and is overall consistent with the MVT which states that the major 

determinant of foraging behaviour are the mean features (delays or reward rates) of an 

environment. 

 

Mean Trial Performance Relative to Optimum 

To further test the predictions of the MVT, which denoted that participants would 

dwell longer after long delays and slower rewards rates, the mean trial performance of 

participants was compared to the predicted optimal dwell time for each condition. The 

findings from Experiment 1 showed that in the extreme conditions – where short 

delays were coupled with fast reward rates, and long delays were coupled with slow 

reward rates - participant performance deviated from the predicted optimum.  
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This finding is consistent with that of some ecological studies in which the quality of 

an environment resulted in dwell times that were longer or shorter than the MVT 

predicted to be optimal (Cassini et al., 1990; Munger, 1984; Pyke, 1978; Tome, 

1988). The quality is determined by evaluating the mean costs (delay) and benefits 

(rate at which reward is gained) of an environment (trial) compared to that of others, 

given that the goal is to maximise the reward gained. Thus, in Experiment 1, the trial 

that was comprised of short delays and fast reward rates would be of better quality 

than the trial with long delays and slow reward rates. The random counterbalanced 

sequence in which participants completed the conditional blocks might have caused a 

framing effect, which thereby would have enabled participants to assess the 

comparative costs and benefits of each trial to determine the trial quality. The trade-

off of the costs and benefits for each of the four trial blocks would have been further 

instigated if participants were attempting to maximise the reward gained over the 

course of the entire experiment, as opposed to maximising the reward gained within 

each trial, or trial block.  

 

The two intermediary conditions in Experiment 1 – comprised of short delays and 

slow rewards, or long delays and fast rewards – show the foraging behaviour of 

participants to be consistent with the optimum, as predicted by the MVT. The 

foraging behaviour of participants was also consistent with the MVT predictions for 

Experiment 2, Experiment 3, and Experiment 4.  

 

Variance of Mean Trial Times 

Although the findings showed dwell times to be consistent with the predictions of the 

MVT, another important consideration pertains to determining how the trial features 
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influenced the variability of participants’ responses. The results showed that dwell 

times in Experiment 1 and Experiment 2 were less varied for conditions (trials) that 

consisted of fast reward rates or short mean trial delays, than for trials with slow 

reward rates or long mean trial delays. This finding is consistent with the mean trial 

dwell times, which showed that dwell times were shorter for conditions with fast 

rewards or short mean trial delays. Given that the mean dwell times were shorter for 

these trials, it follows that there was less variance in dwell times for the same 

conditions.  

 

The results from Experiment 3 and Experiment 4 showed that the dwell times were 

not significantly different for the conditions (trials) that consisted of high or low delay 

volatility or delay variance. This finding is consistent with the corresponding mean 

trial dwell times, which showed that the mean volatility or variance of trial delay 

determined participants’ dwell times. Importantly, in Experiment 3 and Experiment 4, 

the mean trial delay was 6-seconds for the two types of trials (conditions) comprising 

each task.  

 

Therefore, these findings suggest that when the mean environmental (trial) features 

(delay or reward rate) are identical for each patch in a trial, there is greater variance in 

dwell times – particularly for conditions in which patches consist of longer delays or 

slower reward rates (Experiment 1). However, when the mean is the same but the 

types of patches comprising the trial are varied, there are less variance, or no 

significant difference, in dwell times (Experiment 2, 3, and 4).  Importantly, these 

results are consistent with the predictions of the MVT, which denotes that the mean 

features of the environment are integral to foraging decisions.  
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Individual Patch Behaviour 

Although the MVT provides good directional predictions about dwell times relative to 

mean trial features, it does not provide any indication of how individuals should 

behave in individual patches. Interestingly, in Experiment 3 and Experiment 4, 

although there were no differences in the mean dwell times across trials with low and 

high variance or volatility, individuals dwelled longer in patches within a trial that 

were associated with short delays as opposed to longer delays.  

 

The ‘giving-up’ time (GUT) is a foraging theory derived a posteriori from empirical 

observations, which assesses the amount of time that passes between the point at 

which the animal finds the last reward in a patch until it decides to leave the patch. 

This term was coined by Croze, who explained that the “The Giving-Up Time… is 

taken to be a quality of the [animal’s] persistence – and expression of the amount of 

effort the predator is willing to allot in pursuing one more of a particular prey” (as 

cited in McNair, 1982, pp. 512). Specifically, the GUT denotes that an animal will use 

its experiences of patches within the environment to determine the quality of the 

patch, and how long to dwell in the patch based on its established temporal threshold. 

For example, if a giraffe has determined it can gain 8 acacia leaves (rewards) in 10 

minutes from a single branch, it will remain searching for leaves to eat from the same 

branch so long as it continues to gain 8 acacia leaves within that threshold of time. 

However, if 10 minutes passes and the giraffe has not gained the expected 8 acacia 

leaves, it will leave the current branch and move on to the next. Importantly, based on 

this, the GUT is predicted to be longer for patches of better quality. The quality of a 

patch is determined by evaluating the costs and benefits of a patch, relative to that of 
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other patches in the environment. That is, if the costs and benefits for one patch type 

(A) are comparatively better than those of other patch types (B and C), the GUT will 

be larger for A than it will be for B and C (McNair, 1982).  

 

Several studies have examined optimal foraging behaviour using the GUT to 

determine the point at which the animal will cease searching for prey in the current 

patch and move on to the next, and provided empirical evidence that supports the 

GUT as a measure of optimal foraging behaviour (Brunner, Kacelnik, & Gibbon, 

1992; Cook & Hubbard, 1977; Krebs et al., 1974; Smith & Sweatman, 1974; 

Townsend & Hildrew, 1980; J. A. van Gils & Tijsen, 2007; van Gils, Schenk, Bos, & 

Piersma, 2003; Wildhaber, Green, & Crowder, 1994; Ydenberg, 1984). Specifically, 

the use of a GUT has shown that animals are able to adapt their foraging behaviour in 

response to changes in the environment, and still perform optimally. This has been 

found to occur as a result of the animal assessing the quality of different patches as it 

forages within its environment. The GUT is thereby determined by the animal’s 

assessment of patch quality, with resource-rich patches entailing longer GUT, and 

shorter GUT in patches that are resource-poor (McNair, 1982). 

 

Notably, the mean trial dwell times were consistent with the predictions of the MVT, 

however the results from Experiment 3 and Experiment 4 showed patch behaviour to 

be longer after short delays, and shorter in long patch delays, relative to the mean 

delay. The MVT uses the mean environmental features as the basis for its predictions, 

and thereby does not claim to predict foraging behaviour in individual patches; nor 

does it account for the variance or volatility of an environment. Therefore, I purport 

that the GUT provides an account for the unpredicted patch behaviour in Experiment 
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3 and Experiment 4, as it considers the quality of individual patches and uses the 

forager’s knowledge of the environment to determine the GUT. Whereas the GUT 

denotes patch quality to be determined by evaluating the costs and benefits for each 

patch relative to other patches in the environment, the tasks for Experiment 3 and 

Experiment 4 were comprised of equal rewards (benefits) accrued at the same 

diminishing rate. Thus, the associated temporal costs was the key determinant of 

patch quality. It follows then that patches with short delays were perceived to be 

‘better’ patches, and patches with longer delays were ‘poor’ patches. Therefore, 

participants dwelled longer in ‘better’ patches and shorter in ‘poorer’ patches. With 

this logic, the GUT provides an account for the observed behaviour in individual 

patches for Experiment 3 and Experiment 4. Although the GUT adequately explains 

patch behaviour, particularly when the environment is variable or volatile, it does not 

make predictions of foraging decisions that are based on the mean environmental 

features; whereas the MVT does. The primary goal of the tasks used in Experiment 3 

and Experiment 4 was to determine if environmental variability or volatility effected 

mean dwell times relative to the predictions of the MVT. 

 

An alternative explanation might be provided by the use of heuristics, or ‘rules of 

thumb’, in which participants used compensatory processses to trade-off the amount 

of time spent traveling to a patch (delay) relative to the rate of reward gain 

(Hutchinson & Gigerenzer, 2005; Iwasa et al., 1981; Kurz-Milcke & Gigerenzer, 

2007). In the foraging tasks for Experiment 3 and Experiment 4, each ‘patch’ had 

both the delay (travel time) and the reward bar present. The use of simple heuristics 

thereby denotes that participants compensated for the differences in patch delays 

within a trial by ensuring that approximately the same amount of time was spent in 
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each patch; longer delays would yield shorter dwell times, to result in the same mean 

dwell time in a patch.  

 

Therefore, the use of simple heuristics or the application of the ‘giving-up’ time 

theory present adequate accounts for the foraging behaviour observed in individual 

patches for Experiment 3 and Experiment 4, as the MVT does not make predicitons of 

patch behaviour. However, these experiments were designed to examine the MVT 

predictions of foraging behaviour relative to the mean enivronmental features, and to 

determine if environmental variability or volatility effected the mean performance.  

 

The Effect of Trial Time on Behaviour 

The MVT predicts mean dwell times across a trial environment. However, as 

previously discussed, it does not predict performance within individual trials. Here, I 

showed that performance across patches differed significantly as a function of trial 

duration, such that dwell times in the first patch of each trial were significantly longer 

than dwell times in the last patch. This is consistent with a large body of evidence, 

which suggests animals will change their foraging behaviour based on the time 

horizon (Bateson & Kacelnik, n.d.; Bateson & Klopfer, n.d.; Caraco, 1980, 1981; 

Kolling, Wittmann, & Rushworth, 2014; Krebs & Kacelnik, 1984; McNamara & 

Houston, 1992). For example, during the day animals will pursue prey choices that 

will gradually help them meet their energy intake requirements for the day. However, 

as nightfall approaches, animals begin to pursue prey choices that are riskier but may 

yield more energy, particularly if the animal has not yet met its energy intake 

requirements necessary for them to survive the night. The four experiments presented 

in this study had an imposed delay, after which reward was gained at a diminishing 
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rate; this thereby denotes that reward was accrued rapidly to begin with. Thus, as the 

time horizon approached, participants made ‘riskier’ foraging decisions and switched 

to a replenished patch rather than remaining in a patch with depleting resources in an 

effort to maximise their reward within a small timeframe. This resulted in the 

observed effect of time horizons on participant dwell times in patches across trials, 

which is consistent with this larger body of work.  

 

One feature of this research, which differs from more naturalistic accounts of 

foraging, is that the features of the trial environment were declared to participants at 

the beginning of each block of trials. Thus, individuals had explicit knowledge of the 

possible delay times and reward rates for each trial of that block. Therefore, although 

the results of this research are largely in keeping with the predictions of the MVT, 

they apply in the particular circumstance in which individuals had complete 

knowledge of each trial environment, which is not always the case in real life.   

 

The features of the trial environment in this study were declared to participants to 

eliminate learning during the trial and to determine whether the predictions of the 

MVT were sustained. As a result, future studies can examine how behaviour changes 

as more information is learnt. This can be done, for example, by examining whether 

there is an effect of the preceding trial on behaviour in the current trial when 

environmental features are uncertain.  

 

Limitations 

In most cases, comparing participants’ mean dwell times in a trial to the optimum 

predicted by the MVT revealed no significant differences (e.g., Experiments 2-4). 
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Although this indicates that participants’ performance in these experiments is thereby 

consistent with the predictions of the MVT, this data should be interpreted with 

caution given that it rests on a null difference between performance and the predicted 

optimum. It is unlikely that the reason for the null difference in Experiments 2-4 was 

due to insensitivity of the paradigm to detect any differences from the optimum, as 

Experiment 1 showed deviations from the optimum at extremes of the feature space 

(long delay, slow reward rate; short delay, fast reward rate). Future studies may 

provide further insight into behaviour relative to the optimum by incorporating a 

larger range of delay and reward rates into a single experiment, with the aim of 

computationally modelling participants’ behaviour and comparing it to the dwell 

times predicted by the MVT.  

 

Furthermore, in this study, participants completed the Barratt Impulsivity Scale (BIS-

11) questionnaire (Patton, Stanford, & others, 1995). The findings from previous 

studies of impulsivity, as it pertained to rewards and delays, suggested that traits of 

impulsivity would result in discounting of delayed rewards, and thereby yield shorter 

dwell times in the task (Grecucci et al., 2014; Housden, O’Sullivan, Joyce, Lees, & 

Roiser, 2010; Mobini et al., 2007; Sinha et al., 2013). The scores obtained from this 

questionnaire were used to determine if there was a correlation between traits of 

impulsivity and dwell times; however the results yielded no significant correlations. 

This result is attributed to the small sample sizes for each experiment, in which there 

were approximately 20 participants for each. However, given that the data shows 

participant behaviour to be relatively consistent with the predictions of the MVT, 

testing more participants in the future would increase the sample size so that a 

significant correlation could be found, if there is one.  
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Future Research 

Although the tasks used in this study have been set up as foraging tasks, there is a 

temporal element in that the delays and the exponentially declining reward rate 

impose a temporal cost on each patch. Future studies could aim to model the 

behaviour with a temporal discounting model to determine if foraging behaviour in 

this task could simply be explained as a behaviour resulting from delay discounting.  

 

Temporal discounting models have also been used as a measure of decision-making in 

clinical studies, which have shown increased discounting of delayed rewards in 

patients with cognitive, neurological, and motivational disorders; substance abuse and 

addiction; and brain trauma (Ahn et al., 2011; Bickel et al., 2007; Grecucci et al., 

2014; Housden et al., 2010; McHugh & Wood, 2008; Mobini et al., 2007; Pulcu et al., 

2014; Scheres, Lee, & Sumiya, 2008). Thus, foraging tasks similar to those used in 

this study could potentially be used as a measure of decision-making in a clinical 

population; based on the extent to which dwell times adhere to – or deviate from – the 

predictions of the MVT. These results could then potentially be contrasted to a control 

group, which has been established by the results obtained from healthy participants in 

this study.  

 

In future studies, the neural correlates of foraging might also be explored. At present, 

few studies have done so and consequently, very little is known regarding the 

underlying mechanisms of when and how people make a decision to explore or 

exploit.  
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Over the course of the last decade, functional magnetic resonance imaging (fMRI) 

studies have determined that there is a large network of neural areas responsible for 

reward valuation in decision tasks. This network is comprised of the anterior cingulate 

cortex (ACC), ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC), 

insula, amygdala, and the ventral striatum (VS). Specifically, these areas have been 

found to consistently show increased blood-oxygen-level dependent (BOLD) signal in 

response to decisions regarding the gain or loss of rewards in a task. Importantly, this 

was determined through numerous studies in which decision tasks involving the gain 

or loss of reward were used to examine the corresponding increase of blood-oxygen-

level dependent (BOLD) signal in the brain (Clithero & Rangel, 2014; Glascher, 

Hampton, & O’Doherty, 2009; Izuma, Saito, & Sadato, 2008; Kable & Glimcher, 

2007; Knutson, 2005; Levy & Glimcher, 2012; C. Padoa-Schioppa, 2009; Camillo 

Padoa-Schioppa & Assad, 2006; Pessiglione & Delgado, 2015; Rushworth, Kolling, 

Sallet, & Mars, 2012; Sescousse, Redoute, & Dreher, 2010). Further support for these 

findings was provided by meta-analytical studies which found that these areas 

consistently showed increased BOLD signal responses to the decision tasks (Bartra, 

McGuire, & Kable, 2013; Guillaume Sescousse, Caldú, Segura, & Dreher, 2013). 

However, relatively little is known about how these areas respond to foraging 

decisions; in particular, how these areas are modulated by the approach to a time 

horizon.  

 

A seminal study conducted by Kolling, Behrens, Mars, and Rushworth (2012) set in 

motion investigations into the neural correlates of foraging. Kolling et al. (2012) 

reported that the anterior cingulate cortex plays a key role in encoding the average 

value of the foraging environment and the cost of foraging. Importantly, this finding 
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was consistent with a previous primate study which had found the dorsal anterior 

cingulate cortex (dACC) to encode the value of the foraging environment (Hayden, 

Pearson, & Platt, 2011). However, Shenhav, Straccia, Cohen, and Botvinick (2014) 

challenged the findings of Kolling et al., (2012) by replicating their study and 

asserting that the results instead provided evidence for the engagement of the dACC 

being reflective of decision difficulty as opposed to the value of foraging. As a result, 

a debate has ensued and consumed much of the existing literature pertaining to 

foraging decisions in humans.  

 

Therefore, an interesting question for future studies is how the areas responsible for 

reward valuation – the ACC, vmPFC, VS, OFC, insula, and amygdala – are able to 

keep track of the features for individual patches, and trial environment features, in 

order to mediate decisions in a foraging task. Further, these investigations could 

establish a benchmark on which both cognitive and physical effort involved in a 

foraging-task could be determined. The time course of events in effort-based 

decision-making during a foraging task could be determined due to the temporal 

resolution of the MEG, which would be complemented by the spatial resolution of the 

fMRI. Further, as it is not yet possible to measure disorders of motivation or reward-

sensitivity objectively in patients (eg. Parkinson’s Disease), the proposed future 

studies could establish an objective measure on which to determine the extent of a 

motivational deficit in patients. 

 

Conclusion 

The present data provides directional evidence in favour of the general framework of 

the MVT, and performance that is largely consistent with the predicted optimal. The 
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findings from this study thereby indicate that the MVT is applicable to other studies 

of human decisions, and paves the way for further research into the components of 

choice behaviour. Specifically, this study examined the temporal component of 

foraging costs relative to the predictions of the MVT, and determined that sequential 

human decision-making predominantly adheres to its predictions.  

 

In the animal kingdom, costs are not merely temporal, but also energetic. In humans, 

this has not been well explored. In particular, the role of effort in foraging has not 

been examined. Within the last five years, effort has gained a lot of attention in 

human research due to the potential relationship effort has with apathy. 

Naturalistically, foraging involves both temporal and effort costs. Effort in humans 

has recently been the focus of much interest and has generated a great deal of insight 

regarding the computational and neural mechanisms effort-based decisions. However, 

many of these studies examine isolated decisions, as opposed to the more ecologically 

valid sequential decisions one would encounter in a natural foraging context. 

Incorporating an effort-based component to these foraging tasks would increase the 

ecological validity, as sequential decisions and an energetic component would be 

involved, and additionally provide a way in which the connection between time and 

effort costs could be determined.  

 

In humans, effort can be perceived in both cognitive and physical domains. Physical 

effort has been extensively researched due to the quantifiably overt manner in which 

physical effort is exerted. Contrarily, cognitive effort is implicitly exerted and has 

resulted in theories pertaining to the functions of cognitive effort being put forth. 

Notably, the research conducted by Kahneman (2011) in which cognitive effort is 
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governed by two systems—System 1 being automatic and intuitive, whereas System 2 

is deliberate and analytical—has drawn attention to the notion of cognitive effort. 

However, the question remains as to whether cognitive and physical effort costs have 

the same behavioural and neural effects on foraging decisions.  

 

In light of the fact that neural correlates of foraging have only recently been explored, 

there remains a great deal to still be understood about the underlying mechanisms of 

when and how people make a decision to explore or exploit. In addition, the neural 

correlates of foraging pertaining to effort costs are yet to be investigated. This would 

complement the existing literature on effort-based decision-making and extent it to 

examine sequential decisions, as opposed to the currently literature, which examines 

isolated decisions.  

 

Importantly, it is not yet possible to measure disorders of motivation or reward-

sensitivity objectively in patients. Disorders comprised of motivational deficits, such 

as apathy, are diagnosed with questionnaires with a Likert-type scale. The subjective 

reporting presents a prominent issue with these questionnaires. For example, if asked 

to rate a feeling (for our purposes: happiness) on a scale of 1-7, one person’s 

perception of what each number on the scale represents varies drastically to that of 

another person’s perception. An objective metric of a motivational disorder, such as 

apathy, is yet to be developed. By evaluating the performance of patients with PD in a 

temporal and effort-based foraging task, the results could be compared and contrasted 

to the results from a control group in addition to the predictions made by the MVT. 

Further, the scores on the apathy questionnaires could be correlated with the 

performance on the objective measures of the foraging task. On this basis, future 
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studies have the potential to provide a way in which motivational disorders can be 

objectively measured.  

 

Discovering the neurobiological mechanisms underlying foraging behavior in regards 

to temporal or effort costs could help us understand the neural basis for disorders of 

decision-making in patient populations. For example, patients with Parkinson’s 

disease (PD) have disorders of effort- and reward- based decision-making, though the 

precise mechanisms involved are yet to be clarified. It has been proposed by some 

(Chong et al., 2015; Martinez-Horta et al., 2014) that apathy – which is a common 

motivational disorder in PD – may represent a disorder of effort-based decision-

making. Therefore, to more precisely quantify this, the aforementioned paradigms 

pertaining to foraging and effort in decision-making could be used collaboratively to 

provide a metric for these impairments.  

The data from the current study provides empirical evidence in favour of the general 

framework of the MVT, as human decisions in the four foraging tasks used were 

consistent with the optimal behaviour predicted by the MVT. Therefore, this study 

paves the way for further research into the components of decision-making that may 

be pathologically altered in patients with motivational disorders, such as Parkinson’s 

disease.  
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Appendix A: Experiment 1 - Correlations 
 Experiment Duration 
Spearman's 
rho 

Experiment Duration Correlation Coefficient 1.000 
Sig. (2-tailed) . 
N 21 

First Order: Attention Correlation Coefficient -.302 
Sig. (2-tailed) .184 
N 21 

First Order: Cognitive 
Instability 

Correlation Coefficient -.069 
Sig. (2-tailed) .765 
N 21 

First Order: Motor Correlation Coefficient -.020 
Sig. (2-tailed) .932 
N 21 

First Order: 
Perseverance 

Correlation Coefficient .050 
Sig. (2-tailed) .831 
N 21 

First Order: Self-Control Correlation Coefficient .103 
Sig. (2-tailed) .656 
N 21 

First Order: Cognitive 
Complexity 

Correlation Coefficient -.085 
Sig. (2-tailed) .713 
N 21 

Second Order: 
Attention 

Correlation Coefficient -.279 
Sig. (2-tailed) .220 
N 21 

Second Order: Motor Correlation Coefficient -.007 
Sig. (2-tailed) .978 
N 21 

Second Order: Non-
Planning 

Correlation Coefficient .034 
Sig. (2-tailed) .884 
N 21 

Total BIS-11 Score Correlation Coefficient .001 
Sig. (2-tailed) .998 
N 21 
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Appendix B: Experiment 2 - Correlations 
 Experiment Duration 
Spearman's 
rho 

Experiment Duration Correlation Coefficient 1.000 
Sig. (2-tailed) . 
N 21 

First Order: Attention Correlation Coefficient -.285 
Sig. (2-tailed) .211 
N 21 

First Order: Cognitive 
Instability 

Correlation Coefficient -.316 
Sig. (2-tailed) .162 
N 21 

First Order: Motor Correlation Coefficient .208 
Sig. (2-tailed) .365 
N 21 

First Order: 
Perseverance 

Correlation Coefficient .031 
Sig. (2-tailed) .895 
N 21 

First Order: Self-
Control 

Correlation Coefficient -.258 
Sig. (2-tailed) .259 
N 21 

First Order: Cognitive 
Complexity 

Correlation Coefficient .150 
Sig. (2-tailed) .516 
N 21 

Second Order: 
Attention 

Correlation Coefficient -.400 
Sig. (2-tailed) .072 
N 21 

Second Order: Motor Correlation Coefficient .201 
Sig. (2-tailed) .382 
N 21 

Second Order: Non-
Planning 

Correlation Coefficient -.043 
Sig. (2-tailed) .853 
N 21 

Total BIS-11 Score Correlation Coefficient -.088 
Sig. (2-tailed) .705 
N 21 
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Appendix C: Experiment 3 - Correlations 
 Experiment Duration 
Spearman's 
rho 

Experiment Duration Correlation Coefficient 1.000 
Sig. (2-tailed) . 
N 22 

First Order: Attention Correlation Coefficient -.223 
Sig. (2-tailed) .320 
N 22 

First Order: Cognitive 
Instability 

Correlation Coefficient .196 
Sig. (2-tailed) .381 
N 22 

First Order: Motor Correlation Coefficient .039 
Sig. (2-tailed) .862 
N 22 

First Order: 
Perseverance 

Correlation Coefficient .005 
Sig. (2-tailed) .982 
N 22 

First Order: Self-
Control 

Correlation Coefficient -.080 
Sig. (2-tailed) .724 
N 22 

First Order: Cognitive 
Complexity 

Correlation Coefficient -.191 
Sig. (2-tailed) .395 
N 22 

Second Order: 
Attention 

Correlation Coefficient -.115 
Sig. (2-tailed) .609 
N 22 

Second Order: Motor Correlation Coefficient .052 
Sig. (2-tailed) .818 
N 22 

Second Order: Non-
Planning 

Correlation Coefficient -.182 
Sig. (2-tailed) .417 
N 22 

Total BIS-11 Score Correlation Coefficient -.128 
Sig. (2-tailed) .569 
N 22 
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Appendix D: Experiment 4 - Correlations 
 Experiment Duration 
Spearman's 
rho 

Experiment Duration Correlation Coefficient 1.000 
Sig. (2-tailed) . 
N 18 

First Order: Attention Correlation Coefficient -.442 
Sig. (2-tailed) .066 
N 18 

First Order: Cognitive 
Instability 

Correlation Coefficient -.038 
Sig. (2-tailed) .881 
N 18 

First Order: Motor Correlation Coefficient -.072 
Sig. (2-tailed) .778 
N 18 

First Order: 
Perseverance 

Correlation Coefficient .014 
Sig. (2-tailed) .956 
N 18 

First Order: Self-
Control 

Correlation Coefficient .006 
Sig. (2-tailed) .980 
N 18 

First Order: Cognitive 
Complexity 

Correlation Coefficient -.314 
Sig. (2-tailed) .204 
N 18 

Second Order: 
Attention 

Correlation Coefficient -.327 
Sig. (2-tailed) .186 
N 18 

Second Order: Motor Correlation Coefficient -.086 
Sig. (2-tailed) .734 
N 18 

Second Order: Non-
Planning 

Correlation Coefficient -.246 
Sig. (2-tailed) .325 
N 18 

Total BIS-11 Score Correlation Coefficient -.307 
Sig. (2-tailed) .216 
N 18 
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