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Abstract

This thesis presents a promising approach to Side-channel attacks on the cryptosys-
tems based on elliptic curve cryptography (ECC). This approach is based on machine-
learning analysis in characterisation of side-channel information. The original contribu-
tions of this thesis is to verify the performance of machine-learning techniques in terms
of neural networks (NN), support vector machines (SVM) and principal component
analysis (PCA). In this project, PCA is used as a powerful algorithm in the prepro-
cessing stage to decrease the computational complexity of the input dataset, while
SVM and NN are utilised as efficient multi-class classifiers to recognise and classify
different patterns of side-channel information.

In order to investigate the proposed method, an experiment based on the power con-
sumption and electromagnetic emission of an field-programmable gate array (FPGA)
implementation of ECC was conducted. Regarding our experimental results based on
an FPGA implementation of ECC, PCA can be used as a strong preprocessing stage
to reduce the signal-noise ratio, data-set dimension and algorithm complexity. In addi-
tion, after verifying the performance of different techniques and specifications such as
kernel functions, neural-network architect and parameters, we inferred that the most
efficient machine-learning techniques for side-channel information characterisation are
LVQ neural network (with a number of hidden layers between 90 and 100), and SVM
with Gaussian RBF kernel function with parameter p value of 5 and 50 for CS and
M-SVM2 SVM models respectively with about 80 to 85 % accuracy.
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1
Introduction

Nowadays, tiny electronic devices that have been inserted in a lot of different appli-
cations play an important role in our modern life. Some of these components embed
a complete computer with its memories, analogue blocks and arithmetic logic unit
(ALU), and are used to obtain a secure application: ATM, SIM card (cell phone), ID
card, social-security card, identification, signature, and many others. Until the mid
90s, these smart cards were regarded as black boxes and the cryptographic algorithms
implemented inside were considered to be the only security needed to ensure the con-
fidentiality of the associated application. Indeed, the cryptosystems often prove to be
secure enough, and in most of these systems the security relies only on the algorithm
(i.e., the way the secret key is mixed with the messages).

These cryptosystems, even after recent improvements in mathematical cryptogra-
phy algorithms, are still vulnerable to Side-Channel Attacks (SCA) which have been
found to be a powerful class of attack against all implementations of cryptographic
algorithms. Side-channel attacks exploit information that is unintentionally leaked
during the execution of a cryptographic algorithm on a cryptosystem. In this context,
useful information can often be obtained from side channels such as: processing time,
power consumption and electromagnetic emanation.

This thesis will propose a powerful and promising method of SCA based on machine-
learning techniques in the forms of Neural Networks (NN), Support-Vector Machines
(SVM) and Principal Component Analysis (PCA). In order to investigate the perfor-
mance of different techniques, an experimental investigation was conducted based on
an FPGA implementation of elliptic-curve cryptography (ECC).

1



2 Introduction

1.1 Existing Literature

The literature regarding SCA is sparse. An extensive literature search results in only
a few tens of hits, and many of them are not directly relevant to the interests of this
thesis. The literature which has been deemed to be directly relevant to our topic is
discussed below.

Over the past decade there has been a dramatic increase in various applications
and implementations of SCA. Since SCAs can generally be performed using relatively
cheap equipment, they pose a serious threat to the security of most cryptographic
hardware devices. Such devices range from personal computers to small embedded
devices such as smart cards and RFIDs (radio-frequency identification devices). In [12]
a novel authentication protocol is introduced for security enhancement and eliminating
weaknesses of previous implementations. In [13], Li and Lee improved a secure scheme
and claimed that it is secure against smart-card-loss attack. Later on, [14] a robust
scheme is presented to cope with the defects of the Li-Lee’s scheme, while keeping the
merits of different password authentication schemes using smart cards. Furthermore, an
improved dynamic ID-based authentication scheme was proposed to remedy previous
security flaws [15]. [16] presents three principles that are helpful to explain many of the
security failures repeated in the past and important for designing more robust schemes
in the future.

In addition to the application of SCA, a considerable literature has grown up around
the theme of different approaches of side-channel information analysis. It was first
shown by Kocher [17], where a timing analysis was used to recover the key from an
exponential key processing operation. Coron was the first to report a simple power
analysis (SPA) on ECC [18], then SPA on unified formulae introduced by Walter [19]
and improved by Stebila and Thriault [20]. This latter attack targets the indistin-
guishable point operation formulae countermeasure. The more powerful and general
form of attack termed differential power analysis (DPA) was introduced in [21]. Later,
these differential attack techniques are applied in a differential electromagnetic attack
(DEMA) by Quisquater etal. in [22] and [7]. Goubin proposed Refined Power Analysis
(RPA) based on the apparition of the particular point during elliptic-curve scalar mul-
tiplication (ECSM) [23], and an extension of his work was presented by Akishita and
Takagi [24]. Also some successful attacks have been mounted on different cryptosys-
tems such as ECC [7, 25] or RSA [26]. Moreover, several attempts have been made
to exploit side-channel information through a profiling-based attack called template
attack [27]. In this attack a training device which is fully controllable and accessible is
utilised within a training phase to gain additional knowledge for the attack against an
identical target device [28, 29]. In [30] machine learning was introduced as a power-
ful type of profiling-based side-channel attack from an information-theoretical point of
view. A number of studies ([30–33]) used support-vector machines (SVMs) as powerful
classifiers to classify different patterns of side-channel information. More recent studies
have confirmed that neural networks have emerged as a powerful tool to solve classi-
fication and pattern recognition problems, and they can be considered as a promising
alternative to various conventional classification methods; see [34, 35].
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Numerous studies have attempted to address countermeasures against the conven-
tional side-channel attacks; most of the proposed approaches are performed based on
implementations of a cryptography algorithm with constant or randomised execution
times or execution order (also known as shuffling) to make the occurrence of the leakage
unpredictable [18, 36–38]. Brier and Joye proposed a countermeasure based on indis-
tinguishable points operation formulae [39]. Elliptic-curve operations are reviewed so
that the operations for computing a doubling and an addition are the same, in another
approach formulae to perform a doubling and an addition are rewritten into sequences
of identical patterns [40, 41]. In terms of timing attacks on asymmetric cryptosystems,
most of them are based on particular implementations of Montgomery multiplication
in which a final reduction step is sometimes needed [17]. By adding extra words to
the manipulated integers, the final subtraction operation can be avoided [42, 43]. Sato,
Schepers and Takagi also introduced another timing attack based on the final reduction
of Montgomery multiplication [44].

While several countermeasures against conventional attacks have been proposed,
cryptosystems are still vulnerable to SCA because some inherent leakage during single
executions in a cryptography algorithm cannot be prevented in many cases; for example
location-based leakage [45], address-bit leakage [46], or operation-dependent leakage
[47]. Furthermore, most of the countermeasures have a negative effect, sometimes
significant, on the performance of cryptosystems [48] or the cost of implementation
[36].

1.2 Motivation for this Research

The security of the embedded systems plays an important roles in designing electronic
devices. It is well known fact that the U.S government has spent considerable resources
in the classified TEMPEST program in order to prevent the leakage of sensitive in-
formation through electromagnetic radiation since the 1950s. In that time, the world
of cryptographers and related industrial companies which design and fabricate cryp-
tographic tokens, such as smart cards, was shocked when some side-channel analysers
demonstrated that they were able to extract the keys of several widely used smart cards
by power consumption analysis. As a result, the exciting research area of Side-Channel
Attacks (SCA) was born. SCA makes one important point clear: a real-world security
system always consists of various layers. If cryptographers, software developers and
hardware designers fail to cooperate and do not mutually check each other’s work,
such a security system is very likely to display some inherent vulnerability. Hence
the interaction of different trained and skilled people plays a profound role during the
design process of a security system.

Even after proposing several countermeasures against conventional attacks, some
inherent leakages during single executions in a cryptography algorithm cannot be pre-
vented in many cases, for example, location-based leakage [45], address bit leakage
[46], or operation-dependent leakage [47]. In addition to the drawbacks of countermea-
sures, most of them have a negative effect, sometimes significant, on the performance
of cryptosystems [48] or the cost of implementation [36]. Recent literature has shown
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that the safety of cryptosystems has always been a challenge, since both attacks and
countermeasures interact strongly, as countermeasures get broken by improved attacks
and new countermeasures are developed to thwart ever more advanced attacks. In ad-
dition, recent work brought out approaches that produce comparable results, but are
still not optimal. This indicates a need to verify the various approaches of SCA and
highlight the cryptosystem vulnerability.

1.3 Research Objective

The main issues of SCA are accuracy of finding key-bit values, algorithm processing-
time, memory consumption and cost of implementation for real-time attacks. This
thesis seeks to remedy these problems by using machine-learning techniques. The aim
of this thesis is to propose a promising method of SCA by investigating the performance
of different multi-class classifiers and pattern-recognition algorithms in analysis of the
side-channel information of an ECC-cryptosystem.

1.4 Research Contribution

The main contribution of this thesis is to improve side channel attacks (SCA) and
investigate the potential physical vulnerabilities of cryptosystems. For this purpose,
a powerful method of information analysis based on machine-learning techniques are
utilised. In this thesis, machine-learning techniques are used in the forms of Neural
Networks (NN), Support Vector Machines (SVM) and Principal Component Analysis
(PCA). PCA is used to address a common problem of SCA; i.e. handling the huge
amount of data collected in physical measurements, while SVM and NN are applied as
a promising multi-class classifiers. To verify the performance of the proposed method,
an experiment was conducted on FPGA implementation of ECC, in which the spec-
ifications of the proposed method, such as different models of classification, network
architectures, kernel functions and parameters, which can significantly affect the per-
formance of classifiers, are verified and set for an efficient and reliable side channel
analysis system.

1.5 Research Outcome

Regarding our experimental results based on an FPGA implementation of elliptic curve
cryptography (ECC), PCA can be used as a strong preprocessing stage to reduce the
signal-noise ratio, dataset dimension and algorithm complexity. In addition, the most
efficient machine-learning techniques for side-channel information characterisation with
about 80 to 85% accuracy are LVQ neural networks (with a number of hidden layers
between 90 and 100), and SVM with Gaussian RBF kernel function with a parameter
p value of 5 and 50 for CS and M-SVM2 SVM models respectively.
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1.6 Thesis Outline

The thesis is organised as follows:

• Chapter 2: “Overview of Side-Channel Cryptanalysis” presents the necessary
background and preliminary studies of the most common approach of cryptosys-
tem implementation, physical side-channel measurements, side channel analysis
and new approaches to improve and expand the conventional algorithms.

• Chapter 3: “Elliptic-Curve Cryptosystem Implementation” devoted to the im-
plementation and considerations of an ECC cryptosystem based on an FPGA.

• Chapter 4: “Preprocessing Stage” presents Principal Component Analysis (PCA)
as a preprocessing stage that addresses the difficulty, in side-channel information
analysis, in how to handle the huge input dataset.

• Chapter 5: “Support-Vector Machine as a Side-Channel Classifier” dedicate to
support-vector-machine (SVM) as a powerful and robust algorithm for character-
isation of side-channel information. Moreover, different models of classification,
kernel functions and parameters, which can significantly affect the performance
of classifiers, are investigated.

• Chapter 6: “Neural Networks as Side-Channel-Information Classifiers” discusses
the characterisation of side-channel information based on the most powerful neu-
ral networks in multi-class classification. For this purpose, the strengths and
weaknesses of different neural-network architectures and their parameters are
evaluated.

• Chapter 7: “Thesis Conclusion and future work” is devoted to thesis conclusion
and recommendation for future works.

1.7 Tools

The software used in this thesis is:

• MATLAB R2015a

• Xilinx ISE Project Navigator 14.5

• Vivado 2015.2

• MSVMpack 1.5

The hardware used in this thesis is:

• FPGA board

• Oscilloscope
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• Current probe

• Electromagnetic probes

• Amplifier



2
Overview of Side-Channel Cryptanalysis

2.1 Introduction

In a world where people’s lives are increasingly entangled with the use of ubiquitous
embedded devices, the threat of malicious abuse of data continues to grow at a high
pace. Side-channel cryptanalysis is a branch of cryptography in which sensitive infor-
mation is gained from the physical implementation of a target cryptosystem. This is
in contrast with other forms of cryptanalysis where the algorithms and their underly-
ing computational problems are attacked. All electronic devices leak information in a
multitude of ways. Prominent examples of this are temperature, power consumption,
time taken for computations, acoustics and electromagnetic emanations. In general,
these types of information leakage may be tied in some way to the types of operations
that the cryptographic algorithm is performing. This makes them a very powerful tool
for gaining the desired information from the cryptosystem. All of the aforementioned
leakages are passive, meaning that we only capture power consumption information
as it normally comes off of the target device. Further, this type of attack requires no
active manipulation of the device by the adversary.

In this chapter the necessary background and preliminary studies of the most com-
mon approach of cryptosystem implementation, physical side-channel measurements,
side-channel analysis and new approaches to improve and expand the conventional algo-
rithms, are provided. It aims to provide an insight into the characteristics of commonly
used side-channel cryptanalysis algorithms, categorising and verifying the performance
of the different approaches.

7
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2.2 Application Fields

There are numerous applications of embedded cryptography; in this section, we de-
scribe present and future applications in order to show their growing involvement in
our lives. The more devices are exchanging electronic messages, the more important
becomes cryptography in our everyday life. Today, even though it is not always visible,
cryptography is omnipresent.

• Networks. The age of electronic communication is only at its beginning: high
speed networks are spreading, the price of DSL connections is falling, and wire-
less LANs are expected to develop fast in the near future. Intel developed the
Centrino technology, which comprises wireless LAN antennas; IBM Bluetooth
is also an important actor in the field of wireless communication. While the
wireless technology is very interesting in terms of end-user flexibility and costs,
its security is a critical problem because anyone can easily eavesdrop on radio
communications. Therefore, encryption, authentication and integrity must be
guaranteed [49, 50].

• Electronic Cash. Smart cards are nowadays common; however, the current
technology is not always able to resist attacks from personal computers, which
are more and more powerful. In 1998, the French hacker Serge Humpich man-
aged to create a fake and functional smart card. Nowadays, it is very easy to find
resources explaining how to create such cards with little money, a programmable
smart card, a card writer and a personal computer. Therefore, increasing the se-
curity of smart cards for electronic cash is a critical issue. Harsh legislation again
hackers and high secrecy are not sufficient to convince the end-user that elec-
tronic cash is secure compared to standard methods of payment. Since they have
been extensively studied and used for years, public-key cryptosystems provide
sufficient security if the key length is appropriately chosen [51, 52].

• SIM Cards. With the economic boom of cell phones, SIM cards had been a
buoyant market. They authenticate a cell phone user in order to make out a bill
of his communications. Therefore, authentication and non-repudiation are the
main security concepts involved here. Encryption is also an important issue from
the user’s point of view. SIM cards should be able to reliably perform these tasks,
but this is not the case: complaints about unexpected bills from cell-phone users
are common. Here again, public-key cryptography and digital signatures are the
next challenges for the SIM card industry [53].

• ID Cards. Governmental projects of electronic ID cards are in progress: in
Japan, electronic ID cards allowing contact-less radio transactions, with a 32-bit
CPU and a coprocessor handling encryption and digital signature, will be issued
in the near future. The threat of terrorism, falsification of passports or ID cards
is critical, and the new passports will be equipped with magnetic bands allowing
easy and instant identification; however electronic ID cards are much harder to
copy or falsify and provide greater security. Besides, administrative delay and
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costs could be consequently reduced, for example for health-care reimbursements
[50].

• White Cards. One could imagine only one single device able to perform multiple
tasks in many different fields such as electronic payment, identification or health
care reimbursement. The smart-card industry is investigating this subject, and
commercial products using this technology are expected in the future. The end-
user could choose what the functionalities of the card are. The security of such
a device will definitely be a central question [50, 52].

• Ubiquitous Computing. Ubiquitous computing, i.e. the use of small devices
and collaborating devices, is announced as the next technological, industrial and
economic boom. It is expected that, in the near future, the objects of our every-
day life will become intelligent: they will embed a microprocessor, memory chips
and a network interface in order to work collaboratively. Network technologies
like Bluetooth or 802.11 now enable personal or mobile networking, that is, the
basic technology for ubiquitous computing is available. But, especially for radio
communications, network communication is poorly defended against eavesdrop-
ping; that is the reason why cryptography must propose well-suited solutions for
authentication and data encryption [54].

2.3 Cryptography

Digital security needs a tool to be practically implemented; this tool is called cryp-
tography [55–57]. The field of cryptography provides a range of tools to ensure that
information is kept secret from all unauthorised people (confidentiality), to certify
data transfers from sender to receiver without being altered by unauthorised or un-
known sources (data authentication), to prove the identity of an entity or the source
of information (entity authentication), to obviate the denial of actions in the past
(non-repudiation), etc. In compliance with Kerckhos’ principle, we assume that the
complete security of a cryptographic system relies completely on the secrecy of the key.
When the key is the same for transforming forwards and backwards, the cryptosystem
is called symmetric, whereas asymmetric cryptosystems have two different keys, one
for the forward transformation, and one for the backward transformation.

2.3.1 Symmetric

The same key is used to encipher and decipher the plain text with symmetric cryptosys-
tems. Therefore, the sender and the receiver have to share a common key, which must
be exchanged through a secure channel. Although symmetric cryptosystems usually
have the advantage of being fast, key exchange is problematic: if an attacker is able
to eavesdrop the secure channel and retrieve the key, the communication is not secure
any more. Besides, they are not well-suited for large-scale communication networks
since they require one key for each pair of sender and receiver. For n users, n2 keys are
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necessary, therefore, the problems of key exchange and storage grow with the square
of the number of users.

2.3.2 Asymmetric

Asymmetric cryptosystems are also known as public-key cryptosystems: the encryption
stage and the decryption stage utilise two different keys. As a consequence, and unlike
symmetric cryptosytems, asymmetric cryptosystems are suitable for wide-scale secure
communications, since the encryption key can be easily distributed without compro-
mising the decryption key. The security of current technologies often relies on a strict
secrecy on the design of the hardware. First, this type of design is vulnerable to leak-
age from insiders. Second, since only a few experts works on the conception of such
cryptosystems, they are more sensitive to security flaws. Third, most of the hardware
dedicated to security utilises one key for one pair of communicating entities. This tech-
nique raises the complicated problem of key distribution, as well as key storage. On the
contrary, asymmetric cryptosystems, also known as public-key cryptosystems (PKC)
are based on open specifications, and the most famous public-key cryptosystems have
been studied extensively by many cryptographers. We can expect a commercial prod-
uct relying on this community of researchers to be free from security flaws. Besides,
since the idea of public-key cryptosystems is to have two different keys for encryption
and decryption, it is possible to distribute the encryption key without compromising
the decryption key: in other words, key distribution is easy. The only problem with
public-key cryptosystems is that they are inefficient. Since long computational delays
are unacceptable for commercial products, efficiency is an unconditional design crite-
rion, even for implementation on low-end processors. One of the major challenges for
implementing public-key cryptosystems on cheap embedded devices is to achieve high
efficiency without compromising security.

In this project, Elliptic-Curve Cryptography (ECC) is used as a popular public-key
cryptosytem. ECC provides a security level equivalent to conventional cryptography,
but with a shorter key length. Having a shorter key length means smaller bandwidth
and memory requirements, which is a determining factor in most of applications. An-
other advantage is that there are many curves available to be chosen. Consequently,
the curve can be changed periodically for extra security.

2.4 Security in Electronic Embedded Devices

Side-channel analysis forms a part of the group of implementation attacks. The latter
set themselves apart from traditional cryptanalysis by putting emphasis on the weak-
nesses of the implementation rather than on mathematical imperfections in the design
of the cipher. Figure 2.1 shows the general scheme of an attacker’s scenario. As can
be seen, the complete security of a cryptographic system only relies on the secrecy of
the key implemented inside the system. Regarding some inherent leakages of data in
embedded systems, attackers can take advantage of this vulnerability by analysing the
side-channel data leakage (in this figure shown as electromagnet emission (EM))and
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guessing the value of the secret key, compromising security.

Figure 2.1: General scheme of attacker’s scenario. Electro-magnetic (EM) emission is
considered as side-channel data leakage

The overall scheme of the proposed side-channel data analysis based on PCA and
multi-class classification is depicted in Figure 2.2. As can be seen, N different sample
traces of side channel information, such as power consumption or electromagnet emis-
sion, with a big dimension of M1, make a huge input matrix with the dimension of
N ×M1. After applying PCA the dimension will reduce to N ×M2, while M1 << M2;
therefore, the input data set would be ready for classification stage. Afterwards, the
dataset need to be divided into two segments, training and testing segments, to be
prepared for multi-class classification. For this purpose, a cross-validation algorithm
is utilized to cross over the training and testing sets in successive rounds such that
all data has a chance of being trained and tested. Finally, classification stage can be
performed and the accuracy or error of the classifiers can be calculated.

2.4.1 Vulnerabilities of Electrical Embedded-System

As already mentioned, in 1998 Kocher et al. [21] suggested taking advantage of the
power consumed by a microchip in order to get information about what the device
actually processes. They used a somewhat specific power-consumption model based on
the Hamming weight, which is the number of positions at which the corresponding bits
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Figure 2.2: General scheme of machine learning-based SCA.

are different, of the data handled in the chip. This model was used in many publica-
tions [58–61]. A few years later, the model was extended in order to better integrate
the behaviour of CMOS circuits. Their power consumption generally relates to the
number of bit transitions in a target device. The resulting Hamming distance power-
consumption model was applied to ASIC and FPGA implementations of cryptographic
algorithms and demonstrated that any kind of implementation could potentially be
the target of a side-channel attack [62–64]. In parallel, [65, 66] suggested using the
electromagnetic emissions of microelectronic circuits as an alternative, and potentially
more powerful, source of side-channel leakage. The approach was shown to provide
significant advantages, both from the theoretical and practical points of view.

CMOS Power Consumption

The CMOS technology is certainly the most widely used in current digital design ap-
plications. Static CMOS gates have three distinct dissipation sources [67]. The first
is due to the leakage currents in transistors. Its contribution to the overall dissipation
is in general very small. However, with the important scale-down of silicon technology
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nowadays, this source tends to become the highest one and can potentially lead to a
new CMOS power model. The second is due to the so-called ”direct path current”:
there exists a short period during the switching of a gate while the NMOS (pull-down
transistor) and the PMOS (pull-up transistor) are conducting simultaneously. It is usu-
ally estimated that this source accounts for about 20% (Consider that this number can
change from one technology to another and it is different from one circuit to another
circuit) of the total power consumption. Finally, the most important dissipation, and
the most relevant from a side-channel point of view, is due to the charge and discharge
of the load capacitance CL represented by the dotted paths in Figure 2.3. This capaci-
tance is composed of the different parasitic capacitances (junctions, gates, ...) and the
wiring capacitance (interconnections). In CMOS devices, when measuring the power
consumption (either at the ground pin or at the power pin), the highest peak current
will therefore appear during the charge of this capacitance. During the discharge, the
only current we can measure is the direct-path current. We simulated and measured a
simple CMOS gate to support this assumption.

(a) (b)

Figure 2.3: Charge versus discharge of the CMOS inverter. (a) Charge of the CMOS
inverter’s output. (b) Discharge of the CMOS inverter’s output.

2.5 Side-Channel-Attack Categories

There are numerous approaches of side-channel attacks, and they can be classified in
many ways. The literature usually sorts them in terms of hardware and software level.

2.5.1 Hardware-Level Taxonomy

Considering various physical methods of attack, side-channel attacks are classified as
follows:
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• Invasive vs non-invasive:

Invasive attacks involve de-packaging to get direct access to the internal com-
ponents of cryptographic modules or devices. Since invasive attacks typically
require relatively expensive infrastructure, they are much harder to deploy. For
example:

– Micro-Probing. This technique uses a micro-probing workstation to remove
part of the passivation layer (protecting the silicon) of an integrated circuit.
Subsequently, an attacker can establish a direct contact with the system
(usually the data bus). An attacker can then eavesdrop the data during
the execution of cryptographic algorithms [68]. These attacks are obviously
invasive and passive attacks.

– Reverse Engineering. Several attack techniques target particular parts of
the smart card namely the buses, memories, CPU, coprocessor, and sensors.
Deploying such attacks (fault attacks, microprobing,...) requires access to
the layout of the chip, in order to locate and distinguish the internals of the
chip. One can make use of image processing and form recognition systems
to retrieve the hardware structure from simple microscope pictures (e.g.
optical microscope with a CCD camera). Recent techniques [69] illuminate
the unplugged chip thanks to a focused laser spot and probe the variation
of current between power and ground. Shining light on a transistor makes
it generate a micro-current depending on its state. This technique can thus
reveal the mapping of the integrated circuit as well as the data stored.

Semi-invasive attacks involve access to the device, but without damaging the
passivation layer or making electrical contact other than with the authorised
surface. For example, fault Attacks in which fault induction techniques intend
to manipulate the environmental conditions of the system (voltage, clock, tem-
perature, radiation, light, eddy current, etc.) to generate faults and observe the
related behaviour, for example simply illuminating a transistor with a laser beam,
which causes it to conduct (the photovoltaic effect) [70, 71]. Most of these at-
tacks target data being computed or manipulated by a cryptographic algorithm.
Nevertheless, some of them attempt to corrupt the data directly in the memory.
While there are many ways of producing a fault in a mobile device, these attacks
can be termed semi-invasive, as knowledge of the architecture is often required.

Non-invasive attacks only exploit externally available information without open-
ing the device. They tend to be cheap and scalable (compared to invasive at-
tacks). There are many forms of non-invasive attacks.

– Timing Attack: A timing attack exploits the observation that the com-
putations performed in some cryptographic algorithms often take different
amounts of time on different inputs. For example, a last reduction step is
required in most modular multiplication techniques. Depending on the re-
sult at the end of the multiplication, this last reduction may (or may not)
be necessary.
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– Power Attack: This type of attack records and analyses the power traces
leaked by a device.

– Electromagnetic Attack: This type of attack exploits the electromagnetic
emanations due to the current flowing through the device.

(a) Invasive Attack.

(b) Non-invasive Attack.

Figure 2.4: Invasive vs Non-invasive attack

• Active vs Passive: Active attacks try to tamper with the device’s proper func-
tioning and may modify the message; for example, fault-induction attacks will
try to induce errors in the computation. On the other hand, passive attacks will
simply observe the device’s behaviour during the processing, without disturbing
it. A passive attack monitors unencrypted traffic but does not modify the mes-
sage, and looks for clear-text passwords and sensitive information that can be
used in other types of attack.
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Comparison of Physical Side-Channel Attacks

Table 2.1 present a comparison of the advantages and disadvantages of different types
of physical side-channel attacks. The side-channel attacks we consider in this thesis are

Table 2.1: Comparison of Physical Side-Channel Attacks
Advantages Disadvantages

Invasive
- Very strong to

extract data

- Expensive
- knowledgeable attackers
- Time consuming
- With physical evidence

Non-Invasive
- No physical evidence
- Moderate cost
- Proper for real-time attacks

- Not very strong
to extract data

Semi-Invasive
Compared to invasive attacks
- Inexpensive
- Easy to set up and repeat

- Possibility of
physical evidences

Passive
- Only observe the target
- No evidence
- Inexpensive

- Not capable of
changing program flow

Active - Changing program flow
- Expensive
- With evidence

a class of physical attacks in which an adversary tries to exploit physical information
leakages such as timing information [17], power consumption [21] or electromagnetic
radiation [66]. Since they are non-invasive, passive, and can generally be performed
using relatively cheap equipment, they pose a serious threat to the security of most
cryptographic hardware devices.

2.5.2 Software-Level Taxonomy

Considering various methods of side-channel-information analysis, attacks can be clas-
sified as follows:

• Unsupervised Attacks
This type of attack aims to find the patterns in non-labelled side-channel infor-
mation.

– Simple Analysis of Side-Channel Information.
Simple Power Analysis (SPA) was introduced as a technique that directly
interprets power consumption measurements that are collected during the
cryptographic operation. SPA allows to make inner parts of computations of
the algorithm to be visible, just by observing the instantaneous measurement
outcomes. The alternative use of electromagnetic (EM) side channels was
proposed and experiments conducted on EM side channels. Accordingly,
the attack was named Simple Electromagnetic Analysis (SEMA).
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– Differential Analysis of Side-Channel Information.
Besides Simple Power Analysis (SPA), the fundamental work of [7] is ded-
icated to Differential Power Analysis (DPA), and for the EM channel, [66]
introduced the corresponding term Differential Electromagnetic Analysis
(DEMA). Similar to SPA, DPA/DEMA also focuses on side-channel mea-
surements at a particular instant of time. However, in DPA/DEMA multiple
side-channel measurements are partitioned into two sets depending on the
boolean state of a key-dependent intermediate variable, which is predicted
by an adversary using known plain-text/cipher-text and a key hypothesis.
The biggest advantage of differential analysis over simple analysis is the
fact that neither side-channel leakage models nor timing characteristics of
the target device must be known.

– Comparative Side-Channel Attacks.
Comparative SCA resides between a simple and a differential SCA. Two
portions of the same or different leakage traces are compared to discover
the reuse of values. The umbrella term was introduced in [72], but the
first reported attack belonging to this category is a doubling attack. The
doubling attack [73] on ECC is an attack with chosen inputs and has been
shown to be powerful to attack some classic SPA-protected algorithms such
as left-to-right (downward) double-and-add-always algorithms. The attacker
does not need to know whether a computation being performed is a point
doubling or an addition. To thwart this attack, blinding techniques can be
effective. Care has to be taken however that neither blinding the base point
or the scalar is applied solely. This has been proven to be insecure [73].
Combined use strengthens the security.

– Refined Power Analysis.
A refined power analysis (RPA) in side-channel attacks on elliptic-curve
cryptography, directs its attention to the existence of a point P0 on the
elliptic curve such that one of the coordinates is 0 and P0 6= 0. Randomised
projective coordinates, randomised EC isomorphisms and randomized field
isomorphisms preserve this specific property of the point P0. Feeding to a
device a point P that leads to a special point r(0, y) under the assumption of
some specific key bits will generate exploitable side-channel leakage [74, 75].

The attack can be thwarted by using either a cofactor variant of a protocol
for points of small order or by using isogenous curves for points of ”large
order”. The zero-value point attack (ZPA) generalises this attack [24]: zero
value points in intermediate results are also considered.

– Carry-based Attack.
The carry-based attack [76], reported by Fouque et al., does not attack
the scalar multiplication itself but its countermeasures. It relies on the
carry propagation occurring when long-integer additions are performed as
repeated sub-word additions.

– Machine-learning-Unsupervised Analysis
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Machine learning is defined as a study of how a machine improves its per-
formance based on previous experience or training. Most machine learning
problems deal with classification of the data, or finding the structure of the
data. As an unsupervised learning [77], the machine is given a set of unla-
belled data, and it tries to determine the hidden structure of the data, for
example the clustering of the data based on a similarity metric.

• Supervised Attacks
The purpose of supervised attacks is to construct models (classifiers) that are
able to make predictions based on labelled side-channel information that were
previously collected.

– Template Attacks
Template attacks were introduced in [27] to extract the maximal possible
information from observed side channels like the power consumption of a
cryptographic operation performed on a smart card. The underlying attack
model is quite powerful: before attacking a device with an unknown key
the attacker has full access to an identical device and is able to record side-
channel data for chosen keys and plain texts. After this profiling phase the
attacker should be able to extract the key of the attacked device from a
single measurement with given or chosen plain text. The basic idea of the
template attack is to model the power consumption as a high-dimensional
Gaussian distribution dependent on a few key bits. Its key-dependent mean
and covariance matrix are then estimated using the data recorded during
the profiling phase. Finally the maximum likelihood method determines the
correct key bits [28, 29].

– Machine-learning-Supervised Analysis
As a supervised attack, the machine-learning algorithm is given a set of
training data with the label or class available, and it tries to determine the
function that associates the data with the label. Its performance is then
tested on an independent set of data, by evaluating the prediction (label) it
outputs.

Verification of Side-Channel Analysis approaches

Table 2.2 verifies the strength and weakness of different approaches of side-channel
attack on an ECC crytosystem. For each approach, the effective countermeasure as
well as the vulnerable countermeasures are classified.

In this thesis, a non-invasive attack is performed by measuring the power consump-
tion and electromagnetic radiation of an FPGA-based ECC cryptosystem. Also, the
performance of machine-learning techniques as powerful multi-class classifiers in the
form of a neural network and a support-vector machine is verified.
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Table 2.2: Verification of Side-Channel Attacks on ECC and Countermeasures.(CB= carry-
based attack, ML= machine-learning analysis and TA= template attack)

Effective Countermeasures Broken Countermeasures

S
P

A
/
S

E
M

A

- Montgomery Powering Ladder [18]

- Double-and-add-always [18]

- Indistinguishable Point Addition [39]

(None yet)

D
P

A
/
D

E
M

A

- Random scalar split [78]

- Random Projective Coordinates [18]

- Randomised EC Isomorphisms [78]

- Randomised Field Isomorphisms [78]

- Scalar randomisation [18]

- Base point blinding [18]

C
o
m

p
a
r
a
ti

v
e

- Randomised EC/field Isomorphisms [78]

(might work, not being addressed yet)

- Double-and-add-always[18]

- Montgomery Powering Ladder [79]

- Scalar randomisation [18]

- Base point blinding [18]

R
e
fi

n
e
d

P
o
w

e
r

- Random scalar split [78]

- Scalar randomisation [18]

- Base point blinding [18]

- Montgomery Powering Ladder [79]

- Random Projective Coordinates [18]

- Randomised EC Isomorphisms [78]

- Randomised Field Isomorphisms [78]

C
B

(None yet)
- Random scalar split [78]

- Scalar randomisation [18]

M
L (Random-based countermeasures

might work, not being addressed yet)

- Double-and-add-always [18]

- Montgomery Powering Ladder [79]

(Nothing being addressed yet)

T
A

- Random Projective Coordinates [18]
- Scalar randomisation [18]

- Base point blinding [18]
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3
Elliptic-Curve Cryptosystem

Implementation

3.1 Introduction

In this chapter a strong public-key cryptosystem based on elliptic-curve cryptography
(ECC) is introduced. Then its FPGA-based implementation and considerations are
discussed.

Elliptic-Curve Cryptography (ECC) was discovered in 1985 by Victor Miller (IBM)
and Neil Koblitz (University of Washington) as an alternative mechanism for imple-
menting public-key cryptography. This technique provides an equivalent security level
to conventional cryptography, but with a shorter key length. According to some re-
searchers, ECC can yield a level of security with a 164-bit key while other systems
requires a 1,024-bit key to achieve. Having a shorter key length means smaller band-
width and memory requirements. In some applications, these might be critical factors.
Another advantage is that there are many curves available to be chosen. Consequently,
the curve can be changed periodically for extra security.

Early public-key systems are secure assuming that it is difficult to factor a large
integer composed of two or more large prime factors. For elliptic-curve-based protocols,
it is assumed that finding the discrete logarithm of a random elliptic-curve element with
respect to a publicly known base point is infeasible. The security of ECC depends on the
ability to compute a point multiplication and the inability to compute the multiplicand
given the original and product points. The size of the elliptic curve determines the
difficulty of the problem.

Publications pertaining to this chapter:

• M. S. Hossain, Y. Kong, E. Saeedi, and N. C. Vayalil, “High-Performance Elliptic
Curve Cryptography Processor over NIST Prime Field”, IET Computers and

21
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Digital Techniques.

• M. S. Hossain, Y. Kong and E. Saeedi, “High-Performance FPGA Implemen-
tation of Elliptic Curve Cryptography Processor over Binary Field GF (2163)”,
.

• M. S. Hossain, Y. Kong and E. Saeedi, “High-Speed, Area-Efficient, FPGA-Based
Elliptic Curve Cryptographic Processor over NIST Binary Fields”, 2015 IEEE
International Conference on Data Science and Data Intensive Systems (DSDIS),
UTS, Sydney, Australia, pp. 175-181, December 11-13, 2015.

3.2 ECC Geometries

Elliptic curves are geometric objects that can be described by an equation of the
form y2 = x3 − ax + b where a and b are constants. Figure 3.2 illustrates these
equations. The distinguishing property of elliptic curves is that they have an ”addition

(a) y2 = x3 − 6x+ 4 (b) y2 = x3 − 5x+ 7

Figure 3.1: Elliptic-curve geometry

law”. This means that, given two points on an elliptic curve, there is a natural and
geometric way to ”add” those two points to produce a third point. This process is
called ”addition” because it has many of the same properties as addition of integers,
such as P +Q = Q+P (commutativity) and (P +Q)+R = P +(Q+R) (associativity).
The idea is that, given two distinct pointsP and Q on the elliptic curve, connect P and
Q by a straight line, then the intersection of the curve and the straight line would be
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(a) y2 = x3 − 6x+ 4 (b) y2 = x3 − 5x+ 7

Figure 3.2: Elliptic-curve addition geometry, P +Q.

−(P + Q). Another important operation in elliptic curves is ”doubling”. In order to
find 2P , a straight line should be drawn which is tangent to the curve at P . Then the
intersection of the curve and the line would be −2P ; see Figure 3.2.

(a) y2 = x3 − 6x+ 4 (b) y2 = x3 − 5x+ 7

Figure 3.3: Elliptic-curve doubling geometry, 2P .



24 Elliptic-Curve Cryptosystem Implementation

3.3 ECC Preliminaries

ECC can be implemented in either prime fields Fp with p a ’large’ prime or binary
fields F2m with m a positive integer. But finite-field modular arithmetic (FFMA) over
Fp will be the emphasis of this work, and has the capability of supporting RSA as
well as ECC. Besides, the most widely used public key cryptography (PKC) is RSA,
which uses modular arithmetic over a prime field Fp. According to IEEE P1363 [80],
an elliptic curve E over GF(p) is the set of solutions for an equation such as

y2 = x3 + ax+ b (mod p) (3.1)

where x, y, a, b ∈ GF (p) with

4a3 + 27b2 6= 0 (mod p),

together with a special point called the point at infinity. The coefficients a, b ∈ Fp

specifying an elliptic curve E(Fp) are defined by (3.1). The number of points on an
elliptic curve E is represented by #E(Fp). It is defined over Fp as nh, where n is the
prime order of the curve and integer h is a co-factor such as h = #E(Fp)/n [81, 82].
All the parameters for the NIST elliptic curve over the prime field F256 are listed in
Table 3.1 [9, 10].

Table 3.1: NIST-recommended elliptic curves over F256 on Koblitz Curve [9, 10]

P-256: p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1, a = 0, b = 7

p=0x FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFE FFFFFC2F

n=0x FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6

AF48A03B BFD25E8C D0364141

x=0x 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB

2DCE28D9 59F2815B 16F81798

y=0x 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448

A6855419 9C47D08F FB10D4B8

An EC defined over a GF provides a group structure that is used to implement
cryptographic systems. The group operations are elliptic-curve point addition (ECPA)
and elliptic-curve point doubling (ECPD).
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3.4 ECC Implementation

There are various coordinate systems to represent elliptic-curve points but two well-
known coordinate systems are often used for ECC: affine coordinate systems and pro-
jective coordinate systems. A point on the EC E(GF(p)) for affine coordinates can be
represented by using two elements x, y ∈ Fp, i.e. P (x, y). In this coordinate system,
the elliptic curve group operations such as ECPD and ECPA require a modular inver-
sion, the most expensive operation. The modular inversion over a prime field for each
group operation can be reduced by using projective coordinate systems by adding a few
field operations. In projective coordinates, a point P on the EC needs three elements
X, Y, Z ∈ Fp, i.e. P (X, Y, Z). In this project, we use projective coordinate systems
of the EC points to avoiding modular inversion. However, EC group operations need
more modular multiplication in projective coordinates, which is also a very costly op-
eration for ECC. But a high-performance modular multiplication for ECC is proposed
that is well suited for faster ECC operation. In practice, to convert projective to affine
coordinates, one modular inversion is still needed for an elliptic-curve point multiplica-
tion (ECPM) [83]. There are plenty of projective coordinates in the available literature
such as Jacobian, Lopez-Dahab, and Chudnovsky coordinates; a detailed coordinate
system is discussed in [10]. Let P = (x, y) be a point in an affine coordinate system,
the projective coordinate system P = (X, Y, Z) are given by:

X = x; Y = y; Z = 1. (3.2)

The projective point P = (X, Y, Z), Z 6= 0 corresponding to the affine point (P =
(x, y)) is given by

x = X/Z2; y = Y/Z3. (3.3)

Using (3.1), (3.2), and (3.3), the projective form of the Weierstrass equation of the
elliptic curve becomes

Y 2 = X3 + aXZ4 + bZ6. (3.4)

Let P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) be two points on the elliptic curve, then the
ECPD and ECPA formulae in Jacobian coordinates are given below.

R(X3, Y3, Z3) = 2P (X1, Y1, Z1) ∈ E(Fp),

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2

1 ,

Y3 = (3X2
1 + aZ4

1)(4X1Y
2

1 −X3)− 8Y 4
1 ,

Z3 = 2Y1Z1;

(3.5)
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R(X3, Y3, Z3) = P (X1, Y1, Z1) +Q(X2, Y2, Z2) ∈ E(Fp),

X3 = A2 −B3 − 2X1Z
2
2B

2,

Y3 = A(X1Z
2
2B

2 −X3)− Y1Z
3
2B

3,

Z3 = Z1Z2B,

where A = Y2Z
3
1 − Y1Z

3
2 and B = X2Z2

1 − X1Z2
2.

(3.6)

Hence when P = Q we have the ECPD operation in (3.5) and when P 6= Q we have the
ECPA operation in (3.6) [84]. Using these operations, the ECPM R = kP , which is the
most important operation in ECC, will be implemented in Jacobian coordinates [10,
81, 85].

In 2000, FIPS-2 was recommended with 10 finite fields: 5 prime fields (Fp) and

Table 3.2: Comparison of key length for equivalent security of symmetric-key and public-
key in prime field Cryptography [10, 11]

Symmetric key Example algorithm RSA/DH ECC in GF(p)

80 SKIPJACK 1024 192

112 Triple-DES 2048 224

128 AES Small 3072 256

192 AES Medium 8192 384

256 AES Large 15360 521

5 binary fields (F2m). The prime fields are F192,F224,F256,F384 and F521[10]. The
comparison between symmetric cipher key length and key lengths for PKC such as
RSA, Diffie-Hellman (DH), and ECC over a prime field GF(p) are given in Table 3.3.
It demonstrates that smaller field sizes may be used in ECC than in RSA and DH
systems for the same security level. For instance, 256-bit ECC gives equivalent security
to 3072-bit RSA with a significantly smaller key size. Besides, in practice a 256-bit
ECC system over a prime field is very useful for modern security applications. Though
RSA is a popular PKC, ECC is many times more efficient than RSA and DH for
either public-key operations (such as signature generation and decryption) or private-
key operations (such as signature verification and encryption). This makes ECC a
promising branch of PKC [10, 11, 83, 86].
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3.4.1 Elliptic-Curve Cryptography based on Prime field and
in Affine Coordinates

Elliptic-Curve Cryptography (ECC) is a powerful Public-Key Cryptography (PKC)
algorithm, and nowadays it is very popular due to the smaller field size. ECC can be
implemented in either prime fields GF(p) with p a ’large’ prime or binary fields GF(2m)
with m a positive integer. Both fields are considered to provide almost the same level
of security [87]. But EC over prime fields will be the emphasis of this work due to the
use of efficient finite-field modular arithmetic (FFMA). EC defined over a GF provides
a group structure that is used to implement the cryptographic systems. The group
operations are EC point addition (ECPADD) and EC point doubling (ECPDBL).
In this work, all elliptic-curve operations in an affine coordinate system have been
implemented. An elliptic curve E over GF(p) in affine coordinates is the set of solutions
for an equation such as

y2 = x3 + ax+ b (3.7)

where x, y, a, b ∈ GF (p) with
4a3 + 27b2 6= 0.

The coefficients a, b ∈ Fp specifying an elliptic curve E(Fp) are defined by (3.7). The
number of points on elliptic curve E is represented by #E(Fp). It is defined over Fp as
nh, where n is the prime order of the curve, and the integer h is a co-factor such as h
= #E(Fp)/n [10, 81, 85].
Let P = (x1, y1) and Q = (x2, y2) be two points on the EC; then point addition (PADD)
and point doubling (PDBL) formulae in affine coordinates are given below.

R(x3, y3) = P (x1, y1) +Q(x2, y2) ∈ E,
x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

where λ = (y2 − y1)/(x2 − x1) and P 6= Q;

(3.8)

R(x3, y3) = 2P (x1, y1) ∈ E,
x3 = λ2 − 2x1,

y3 = λ(x1 − x3)− y1,

where λ = (3x2
1 + a)/2y1 and P = Q;

(3.9)

where R = 0 when x1 = x2 and y2 6= y1, or x1 = x2 = 0. Hence, when P 6= Q we have
the PADD operation in (3.8) and when P = Q we have the PDBL operation in (3.9).
Using these operations, the ECSM R = kP will be implemented in affine coordinates
using an ECC-based algorithm [10, 81, 85].

In 2000, FIPS-2 was recommended with 10 finite fields: 5 prime fields, and 5 binary
fields. The prime fields are F192,F224,F256,F384 and F521[10]. The comparison between
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symmetric cipher key length and key lengths for PKC like RSA, Diffie-Hellman (DH),
and ECC over prime field GF(p) are given in Table 3.3. It demonstrates that smaller
field sizes can be used in ECC than in RSA and DH systems at a given security
level. For instance, 224-bit ECC gives equivalent security to 2048-bit RSA, and 256-
bit ECC gives equivalent security to 3072-bit RSA with significantly smaller keys and
smaller area. ECC is many times more efficient than RSA and DH for either public-
key operations (such as signature generation and decryption) or private-key operations
(such as signature verification and encryption). This makes ECC a promising branch
of public-key cryptography [10, 11, 83, 86].

The implementation hierarchy of ECC operations over the prime field is presented in
Figure 3.4. From this figure, we can see that ECC protocols and ECSM are the building
blocks of elliptic curve group operations and finite-field modular arithmetic. The top
level of the cryptosystem contains ECC protocols like EC-DH (EC-Diffie-Hellman)
key exchange, EC-DSA (EC-Digital Signature Algorithm). The second level contains
ECSM, which is the key operation of the ECC processor (ECP), and it comprises
a series of point additions (PADD) and doubling (PDBL). The third level comprises
ECPADD and ECPDBL, which are called elliptic curve group operations. These are the
series of finite-field modular arithmetic (FFMA) such as modular addition, subtraction,
multiplication, squaring, and inversion. The FFMA units are the bottom or fourth level
in the hierarchy and these are the most crucial for the overall performance of the ECC
processor.

Level 1

Level 2

Level 3

Level 4

ECC Protocols
(ECDH, ECDSA)

ECPDBL

Modular 
addition

ECSM
(R=kP)

ECPADD

Modular 
subtraction

Modular 
multiplication

Modular 
squaring

Modular 
inversion

Figure 3.4: Implementation hierarchy of the ECC operations over GF(p).

3.4.2 Elliptic-Curve Cryptography based on Binary field and
in Affine Coordinates

Elliptic-curve cryptography (ECC) is performed in either prime fields GF(p) or binary
fields GF (2m). But ECs over GF (2m) will be the emphasis of this work because it
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is very efficient for hardware implementation due to the use of modulo-2 arithmetic.
An elliptic-curve defined over a finite field provides a group structure that is used to
implement the cryptographic systems. The group operations are elliptic-curve point
addition (ECPA) and elliptic-curve point doubling (ECPD). There have been different
coordinate systems to represent elliptic-curve points. They vary in the number and
type of field operations required to implement PA/PD. In our work, we implement all
elliptic-curve operations in an affine coordinate system. A non-supersingular elliptic
curve E over GF (2m) in affine coordinates is the set of solutions to the equation

y2 + xy = x3 + ax2 + b (3.10)

where x, y, a, b ∈ GF (2m), b 6= 0. The coefficients a, b ∈ F2
m specifying an elliptic curve

E(F2
m) are defined by (3.7). The number of points on an elliptic curve E is represented

by #E(F2
m). It is defined over F2

m as nh, where n is the prime order of the curve and
h is an integer called the co-factor.
If P = (x1, y1) ∈ E and Q = (x2, y2) ∈ E (points on the EC), then summing PA and
doubling PD can be respectively derived as

R(x3, y3) = P (x1, y1) +Q(x2, y2) ∈ E,
x3 = λ2

1 + λ1 + x1 + x2 + a,

y3 = λ1(x1 + x3) + x3 + y1,

where λ1 = (y2 + y1)/(x2 + x1) and P 6= Q;

(3.11)

R(x3, y3) = 2P (x1, y1) ∈ E,
x3 = λ2 + λ+ a,

y3 = x2
1 + λx3 + x3,

where λ = x1 + y1/x1 and P = Q;

(3.12)

where R = 0 when x1 = x2 and y2 6= y1, or x1 = x2 = 0. Hence, when P 6= Q
we have the PA operation in (2) and when P = Q we have the PD operation in (3).
Using these operations, ECSM kP will be implemented using an ECC-based algo-
rithm [10, 81, 85, 88].

In 2000, FIPS-2 was recommended with 10 finite fields: 5 prime fields, and 5 binary
fields. The binary fields are F2

163,F2
233,F2

283,F2
409 and F2

571[9]. Both prime fields
GF(p) and GF(2m) are considered to provide almost the same level of security [87].
Table 3.3 compares symmetric cipher key length, and key lengths for public-key cryp-
tography like RSA, Diffie-Hellman (DH), and ECC in a binary field. It demonstrates
that smaller field sizes can be used in ECC than in RSA and DH systems at a given se-
curity level. For instance, 283-bit ECC gives equivalent security to 3072-bit RSA with
significantly smaller keys and area. This makes ECC a promising branch of public-key
cryptography [10, 11].



30 Elliptic-Curve Cryptosystem Implementation

Table 3.3: Comparison of key length for equivalent security of symmetric-key and public-
key in binary field Cryptography [10, 11]

Symmetric key Example algorithm RSA/DH ECC in GF(2m)

80 SKIPJACK 1024 163

112 Triple-DES 2048 233

128 AES Small 3072 283

192 AES Medium 8192 409

256 AES Large 15360 571

3.4.3 Proposed EC scalar multiplication (ECSM)

Though EC scalar multiplication (ECSM) over Fp is the main operation of an ECC
processor, it is computationally the most expensive. However, we have implemented a
high-performance ECSM on a FPGA. ECSM is the building block of group operations
and finite-field modular arithmetic (FFMA) units. The basic operation of EC scalar
multiplication is defined as kP , where k is a positive integer and P is a point on the
elliptic curve E defined over a prime field Fp. A point on the elliptic curve E(Fp)
for affine coordinates can be represented by using two elements x, y ∈ Fp, i.e. P (x
,y). Thus, the inputs of the ECSM are Px and Py, and k, the scalar multiplier. An
ECP architecture over GF(p) is presented in Figure 3.5. There are different methods to
implement EC scalar multiplication: the binary method, the Non-adjacent form (NAF)
method, and the Montgomery method. The easiest way to implement ECC is the binary
method (left to right) [10]. Finally, we present the EC scalar multiplication Algorithm
2 using the binary method. It is implemented using the ”Double-and-Add” algorithm
concept. Using this algorithm, on average m PDBL and m/2 PADD operations are
required for an ECSM, where m is the bit length of the multiplicand and m ' d log2 p
e.

Algorithm 2: Binary method (Left to right) for point multiplication

Input: k = (km−1,...,k1,k0)2, P (x, y) ∈ E(F2
m)

Output: R(x, y) = k.P (x, y), where R(x, y), P (x, y) ∈ E(F2
m)

R = 0 ;
for i = m - 1 to 0 do
R = 2R;
if k(i) = ’1’ then
R = R + P ;

end
end for
Return (R(x, y))
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Figure 3.5: Overall hardware architecture of ECSM for prime field (this figure for ECC
2 or ECC 3).

Figure 3.6 shows the Register Transfer Level (RTL) schematic of our FPGA-based
ECC.

The final design summary is illustrated in Figure 3.7 and 3.8.

Figure 3.9 illustrates our simulation results.

3.5 Experimental Setup for Elliptic-Curve Cryp-

tosystem Implementation

Depending on to the type of side-channel attack, different kinds of measurement tools
and analytical software can be used for a successful SCA. Figure 3.10 shows our main
measurement setup.

As can be seen, the basic requirements are:
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Figure 3.6: RTL Schematic of our FPGA-based ECC.

• FPGA Board: the ECC cryptosystem is implemented on an FPGA board with
a SPARTAN 3 FPGA. The Spartan-3 board provides a powerful, self-contained
development platform for designs targeting the Spartan-3 FPGA from Xilinx. Its
features are a 200K-gate Spartan-3, on-board I/O devices, and 1 MB fast asyn-
cronous SRAM. The board also contains a Platform Flash JTAG-programmable
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Figure 3.7: Final design summary, page 1.
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Figure 3.8: Final design summary, page 2.
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Figure 3.10: Measurement setup for side-channel attack.

ROM, so designs can easily be made non-volatile. It is fully compatible with all
versions of the Xilinx ISE tools, including the free WebPack.

• Oscilloscope: In order to record and see power-signal traces, a Tektronix TDS2012
oscilloscope taking 1 Gigasamples per second is used.

• Current probe: for measuring the power consumption of our FPGA board
a Tektronix CT1 is used. This Probe (Figure 3.11) is designed for permanent
or semi-permanent in-circuit installation. It consists of a current transformer
and an interconnecting cable. The current transformer has a small hole through
which a current-carrying conductor is passed during circuit assembly. Details and
considerations of using Tektronix CT1 are provided at (Appendix A).

• Electromagnetic probe: For measuring the electromagnetic emission of the
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Figure 3.11: Tektronix CT1 current probe[1]

FPGA board, different commercial and hand-crafted probes are used and tested
(Appendix A), and finally an ETS near-field probe set (model 7405) (Figure 3.12)
is selected. This set consists of three loop probes, one stub and one ball probe, an
extension handle and an optional battery-powered pre-amplifier. The handle of
each probe terminates in a BNC connector. These probes are designed to be used
with a signal-analysing device such as an oscilloscope or a spectrum analyser.

Figure 3.12: ETS near-field probe set (model 7405)[2]

• ETS broadband amplifier: An ETS broadband amplifier (model 7405-907b)
(Figure 3.13) is utilised to increase the sensitivity of the oscilloscope and enhance
the quality of the input signal traces.

• PC: This experiment was performed with a PC configuration of Intel Core i5,
2.8 GHz, and 16.00 GB RAM.
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Figure 3.13: ETS broadband amplifier (model 7405-907b)[3]

3.5.1 Physical Attack Consideration

The FPGA board uses three discrete regulators to generate the necessary voltages,
which can be used as the target of current measurement (Figure 3.14).

• VCCINT : dedicated internal core logic power supply pin. The number of VCCINT

pins depends on the package used. All must be connected to +1.2V (red squares
in Figure 3.14 ).

• VCCAUX : dedicated auxiliary power supply pin. The number of VCCAUX pins
depends on the package used. All must be connected to +2.5V (orange squares
in Figure 3.14 ).

• VCCO: dedicated I/O bank, output buffer power supply pin. Along with other
VCCO pins in the same bank, this pin supplies power to the output buffers within
the I/O bank and sets the input threshold voltage for some I/O standards (pink
squares in Figure 3.14 ).

Regarding our experiment, VCCINT is the best source for measuring the power con-
sumption of FPGA for side-channel analysis purpose. Appendix A explain how to
install current probe to measure this power.

3.6 Summary

In this chapter, elliptic-curve cryptography (ECC) is introduced as a promising al-
ternative for public-key cryptosystems. In addition, its physical vulnerabilities and
implementation considerations are discussed. ECC offers two major benefits over con-
ventional cryptographic algorithms; it has more security per bit and a suitable key size
for hardware and modern communications. Thus, this results in smaller public-key
certificates, lower power requirements and smaller hardware processors. In this project
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Figure 3.14: Spartan-3 FPGA, FT256-package footprint. VCCINT (shown with red
squares) are the target of current measurement.

an EC over GF(2m) will be the emphasis because it is very efficient for hardware
implementation.
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4
Pre-processing Stage

4.1 Introduction

In this chapter PCA is used to address a common problem of SCA. In practice, one
difficulty in analysing the side-channel information is how to handle the huge amount
of data collected in physical measurements. The huge size of data becomes a very
challenging task for attackers to discover or to extract valuable information. With
the help of data mining techniques this task became simplified. Data Mining is the
process of searching for valuable information in a large volume of data stored in many
databases, data warehouses or any other information repositories [89]. This technique
is a highly interdisciplinary area spanning a range of disciplines like Statistics, Machine
Learning, Databases, Pattern Recognition and others. Different terms are used for data
mining techniques in the literature, such as feature extraction, data/pattern analysis
and dimension reduction.

Side-channel information analysis also involves a the dataset with a huge amount
of data. The increase of data size in terms of number of instances and number of
features present a complex task to perform the analysis. This is due to rate of the
sampling in a recording device. A high sampling rate is usually mandatory in order to
retain the frequency content of the side channel. Hence, dimensionality reduction is an
important research area in the field of side-channel data analysis. The main objective
of dimensionality reduction is to transform high-dimensional data samples into a low-
dimensional space. Once the dimensionality gets reduced, it helps to improve the
robustness of the classifier and reduces the computational complexity.

Recently there are increasing interests in developing feature variable selection or
dimension reduction approaches for side channel analysis approaches. Most of the
methods are heuristic in nature. In the pattern recognition literature numerous sta-
tistical feature-selection criteria and search algorithms have been developed [90, 91].
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It has been shown that neural networks are able to perform certain non-linear prin-
cipal component analysis (PCA) [92–94]. In [95] and [96] PCA is used to reduce
high-dimensional spectral data and consequently reduce the computational complex-
ity. Karhunen and Joutsensalo [97] discussed many aspects of PCA performed by
neural networks. Battiti [98] proposes to use mutual information as a guide to evaluate
each feature’s information content and select features with a high information content.

Publications pertaining to this chapter:

• E. Saeedi, Y. Kong, and M. S. Hossain, “Side Channel Attacks and Learning
Vector Quantization”, Frontiers of Information Technology and Electronic Engi-
neering, Springer, 2016.(In press)

• E. Saeedi, M. S. Hossain, and Y. Kong, “Side Channel Analysis of an Elliptic
Curve Crypto-system Based on Multi-Class Classification”, The Sixth Interna-
tional Conference on Computing, Communications and Networking Technologies
(ICCCNT), Denton, Texas, USA, pp. 1-7, July 13-15, 2015.

• E. Saeedi and Y. Kong, “Side Channel Information Analysis Based on Machine
Learning”, In Signal Processing and Communication Systems (ICSPCS), 2014
8th International Conference on (pp. 1-7). IEEE.

4.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [99, 100] is a standard statistical tool which
is widely used to reduce the dimensionality of a dataset consisting of an enormous
number of interrelated variables. PCA reduces the dimensionality by transforming
the original dataset into a new set of variables, called principal components, where the
largest variance present in the original dataset is captured by the highest component in
order to extract the most important information. In other words, it looks for a linear
transformation that projects high-dimensional data into a low-dimensional subspace
while preserving the data variance (i.e., it minimises the mean squared reconstruction
error).

In order to minimise the loss of relevant information, PCA uses in two steps. First,
it looks for a rotation of the original axes such that the new coordinate system indicates
the successive directions in which the data have maximal variance. Second, it retains
only the most important directions in order to reduce the dimensionality. It assumes
therefore that the variability in the discarded directions corresponds to noise.

In order to illustrate the way PCA works, we give a small example for a two-
dimensional (x,y) dataset with the same number of samples. In Figure 4.1 a plot of
this dataset is given. The first principal component is required to have the largest
variance. The second component must be orthogonal to the first component while
capturing the largest variance within the dataset in that direction. These components
are plotted in Figure 4.2 This results in components which are sorted by variance,
where the first component captures the largest variance. If we transform the dataset
using these principal components, the plot given in Figure 4.2 will be obtained. This
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plot clearly shows that there is a larger variation in the direction of the first principal
component.

Figure 4.1: The plot of a dataset with first and second Principal Components.

Figure 4.2: The dataset in Principal Component domain.

The computational steps of the PCA algorithm are given below [101].

• First, the mean from each dimension n of the traces Ti is calculated in a vector
Mn.

Mn =

T∑
i=1

Ti, n

n
(4.1)

This mean Mn must be subtracted from each of the dimensions n for each trace
Ti.

Ti,n = Ti,n −Mn (4.2)
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• Construct the covariance matrix
∑

. This matrix will be an n∗n matrix where n is
equal to the number of samples (dimension) of the power traces. The covariance
for two dimensions X and Y is defined as follows:

Cov(X, Y ) =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

n− 1
(4.3)

Using this formula for the covariance, the covariance matrix is defined as follows:

n∗n∑
= (Ci, j, Ci, j = Cov(Dimi, Dimj)) (4.4)

where Dimx is the xth dimension.

• Then calculate the eigenvectors and eigenvalues of the covariance matrix∑
= U ∗ A ∗ U−1 (4.5)

where the eigenvalue matrix A is diagonal and U is the eigenvector matrix of
∑

.
These eigenvectors and eigenvalues provide information about the patterns in the
data.
The eigenvector corresponding to the largest eigenvalue is called the first principal
component; this component corresponds to the direction with the most variance.
Since n eigenvectors can be derived, there are n principal components. They
have to be ordered from high to low based on their eigenvalues. Afterwards, the
first principal component represents the largest amount of variance between the
traces.

• Choose p components which one wishes to keep, and form a matrix with these
vectors in the columns. This matrix is called the feature vector.

With this feature vector of length p, two things can be done. The original data can
be transformed to retain only p dimensions, or the noise of the original dataset can be
reduced using only some components while keeping all n dimensions.

4.2.1 PCA in Side-Channel Attacks

Side-channel information analysis also involves a dataset with a huge amount of data.
Direct computations with the covariance matrices are inefficient as typically around
five thousand measurements at about three thousand instants are taken for a practical
attack. The number of samples depends on the sampling rate of the recording device.
A high sampling rate is usually mandatory in order to retain the frequency content of
the side channel. This leads to excessive computational loads and a prohibitively large
memory usage. Furthermore, it is expected that only a limited number of time samples
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are related to important information. Therefore, applying a signal preprocessing stage
is necessary to identify a few important points in the signal (called points of interest or
valuable features) and to simply discard the measurements at all other instants. This
can be justified by the fact that usually the power consumption pattern depends only on
few instants during which data is processed or when some internal state still depending
on the data, for example the charge of a latch or a bus being overwritten. Principal
component analysis as the most popular and efficient approach of preprocessing can be
used in two ways, a PCA transformation (which can also be used to reduce the number
of dimensions) and noise reduction of a dataset.

Figure 4.3 illustrate the overall scheme of the application of PCA in SCA. As can be
seen, N different sample traces of side channel information, such as power consumption
or electromagnet emission, with a big dimension of M1, make a huge input matrix with
the dimension of N ×M1. After applying PCA as a space transformation tool, the
dimension of dataset will reduce to N ×M2, while M1 << M2; therefore, the input
dataset would be ready for classification stage that explained at Chapter 5 and 6.

Figure 4.3: The application of PCA in SCA

PCA transformation

Power or electromagnetic traces usually have large dimensions (a high number of sam-
ples) which makes calculations computationally intensive. It would be a great improve-
ment if the number of dimensions ccould be reduced without removing much relevant
data. This might improve the computation time of analysis. PCA can be used to re-
duce the dimensionality of the dataset by removing the samples which do not relate to
the leakage of the secret key. The feature vector U and the original data X can be used
to derive this reduction. If we transpose the feature vector, we get the eigenvectors
in the columns. By multiplying this vector with the transposed mean-adjusted data,
we get the transformed dataset X̂ . This is the original data in terms of the chosen
principal components.

Y = UT ∗XT = (X ∗ U)T
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X̂ = Y T = ((X ∗ U)T )T = X ∗ U

Noise reduction

The main objective of PCA is to reduce the number of features and to remove irrelevant,
redundant and noisy data [102]. By reducing the features, one can reduce the system
complexity, over-fitting and increase the computational speed. If we do not want
to remove dimensions, but instead would like to reduce the noise in the traces in
order to keep only the most relevant information, we can use the chosen Principal
Components to retain only the most important information. If we choose to retain all
principal components, this method returns the original data since no information is
discarded. Normally, one would remove the components which contribute to the noise.
The first step is the same as in a transformation: the feature vector U is transposed
and multiplied with the transposed mean-adjusted data X. Then, in order to get the
original data X back, this matrix is multiplied by the feature vector. In order to get
the rows and columns correct, we transpose this final matrix Z. Because we want the
original data back, we have to add the mean, which was subtracted in the first step,
to each dimension.

Y T = X ∗ U

Z = U ∗ (X ∗ U)T = U ∗ UT ∗XT = XT

X̂ = ZT = (XT )T = X

4.3 Experiments based on PCA

The basic measurement setup used to performed this experiment are an FPGA board
with a SPARTAN 3 FPGA, a Tektronix TDS2012 oscilloscope with 1 Gigasample
per second to record the power/electromagnet signal traces, a Tektronix CT1 current
probe for measuring power consumption of FPGA, an ETS near-field probe set (model
7405) for measuring electromagnetic emission and an ETS broadband amplifier (model
7405-907b) to enhance the quality of the input signal traces (see Figure 3.10). This
experiment was performed through a MATLAB R2015a toolbox and a PC configuration
of Intel Core i7, 2.8 GHz and 16.00 GB RAM.

In order to utilise machine learning techniques for analysing side-channel informa-
tion of a cryptosystem, several steps should be accomplished; for example physical
probing is needed to measure the data leakage of the cryptosystem, a preprocessing
stage in which the recorded signals should be prepared for the classification stage. Hav-
ing applied PCA as a preprocessing stage, different techniques of machine learning are
used to characterise the side-channel information. In this project, machine learning is
used in terms of Support Vector Machine (SVM) and Neural Network classifiers. The
theoretical and experimental background of these classifiers is discussed in Chapters 5
and 6. In this section, the experimental results in terms of PCA application will be
discussed.

Our input dataset contains 16 classes, each of which relates to a particular key
value and includes 320 different samples; therefore we have a huge dataset where the
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dimensionality is equal to the product of the number of sample traces (N = 16 *
320 = 5120) and the number of sampling times (2500). Because of the high-frequency
sampling in our measurements and oscilloscope, the recorded signal traces are noisy and
high-dimensional which cause computational complexity and inaccuracy. Therefore,
PCA is utilised to prepare the input dataset for the classification algorithm by reducing
the noise and number of dimensions of the signals without missing their main features.

4.3.1 Experimental Results and Discussion

Figure 4.4.a shows a sample trace before applying PCA in the time domain, an Figure
4.4.b shows the signal after transforming into the space of the PCs. As can been
seen, the most important components are the first hundred, and then by roughly 300
components the values decrease considerably to a range of ±5 and finally reach zero
by 987 components (note that only the first 300 components, which are the most
important ones, are shown in Figure 4.4.b). This reduction is due to the fact that
PCA transformation is defined in such a way that the first principal component has
the largest possible variance (that is, accounts for as much of the variability in the
data as possible), and each succeeding component in turn has the highest variance
possible under the constraint that it is orthogonal to the preceding components. The
resulting vectors are an uncorrelated orthogonal basis set. The principal components
are orthogonal because they are the eigenvectors of the covariance matrix, which is
symmetric.

(a) Power consumption trace in time domain. (b) Power consumption trace in PCA domain.

Figure 4.4: Comparison of input dataset in time and PCA domains.

In an experiment based on a Support Vector Machine (SVM), the accuracy of classi-
fiers with different kernel functions (MLP, POLY and RBF) and also RBF sigma orders
are investigated. As expected, using the recorded data in the time domain as the in-
put dataset for the classification stage resulted in inaccuracy (accuracy range between
[35% 57%]), while after applying PCA the accuracy significantly improved. Figure 4.5
illustrates the accuracy of an RBF kernel function with different sigma orders in regard
to the number of components. As can be seen, the accuracy swiftly improves to a max-
imum of approximately 98% for PCs ≤ 300, because the most important and valuable
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information is within the first 300 components. Afterwards, adding more components
up to about 1500 does not affect the accuracy. The decreased accuracy when using the
last 1000 components is because of these components belong to the least important
data and noise. In terms of computational complexity, the processing time of SVM

Figure 4.5: The observed electromagnetic emission signal trace

classifiers with different kernel functions (Poly, Mlp and RBF) is calculated. Figure
4.6 shows the experimental computational complexity as a function of the component
number. From this figure, as the number of components increases, the computational
complexity proportionally increases.

Figure 4.6: Computational complexity of SVM classifiers with different kernels

In another experiment, SVM multi-class classification was implemented through
four different approaches (WW [103], CS [104], LLW [105], M-SVM2 [106]), more details
are provided in Chapter 5. Figure 4.7 presents the performance of these algorithms as
a function of component number. As shown, the error ratios of the CS and M-SVM2

algorithms are about 25% by considering roughly 250 components while those of LLW
and WW get stable at about 3% by using roughly the same number of components.
Hence by utilising PCA the complexity can be reduced by decreasing the dimension of
the input data from 2500 to 250 components, without affecting accuracy.
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Figure 4.7: The performance of SVM multi-class classifiers as a function of the number
of principal components.

Neural-network analysis of side-channel information strongly depends on PCA di-
mension reduction. We used different architectures of neural networks to verify the
performance of side-channel characterisation based on neural networks (see Chapter
6). This experiment was performed through a MATLAB toolbox and a PC configura-
tion of Intel Core i5, 2.8 GHz and 4.00 GB RAM. Without using PCA the computa-
tional complexity of the program was very high; some network architectures get stuck
because of insufficient memory space, and other architectures were significantly slow.
Therefore, for an efficient and applicable attack in real time, PCA needs to be applied
to decrease the time and memory consumption. Having applied PCA , some successful
attacks performed with the same pc configuration. The memory consumption of these
attacks ranged between [1 3] GB and processing time between [10 8000] seconds.

4.3.2 Summary

In this chapter PCA is used to address a common problem of SCA. For the measurement
stage of side-channel attacks, a high sampling rate is usually mandatory in order to
retain the frequency content of the side channel. This, results in a huge input dataset,
high computational complexity and inaccuracy, presenting a very challenging task for
attackers to discover or extract valuable information. To overcome these problems,
PCA is utilised as a powerful tools for dimensional reduction and feature extraction of
the input dataset. Regarding our experimental results, not only can PCA significantly
reduce the time and memory consumption of the program, but it can reduce the noise
without affecting accuracy.
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5
Support-Vector Machine as a Side-Channel

Classifier

5.1 Introduction

In this chapter a powerful and efficient method of SCA based on machine learning
techniques in the form of support-vector-machine (SVM) classification is verified. In
literature, SVM has been used a few times as a powerful tool of classification for
different types of side channel analysis, such as AES algorithm based on ATMEGA-
256 micro controller in [33] and [95]. To the best of our knowledge, there has not been
any attack on FPGA implementation of ECC to date. In this project, after applying
PCA as a preprocessing stage, a SVM with an appropriate kernel and parameters
is proposed to characterise the power consumption of the FPGA, measured while it
executes an elliptic curve point multiplication, which is the main operation for an
elliptic curve cryptosystem (ECC). In addition, a multi-class SVM classifier is utilised
as a powerful and robust algorithm for characterisation of side-channel information.
Finally, different models of classification, kernel functions and parameters, which can
significantly affect the performance of classifiers, are investigated.

Publications pertaining to this chapter:

• E. Saeedi and Y. Kong, “Side Channel Information Analysis Based on Machine
Learning”, In Signal Processing and Communication Systems (ICSPCS), 2014
8th International Conference on (pp. 1-7). IEEE.

• E. Saeedi, and Y. Kong, “Support Vector Machines in Side Channel Analy-
sis”, the International Symposium on Information Theory and Its Applications.
ISITA2014.
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• E. Saeedi, M. S. Hossain, and Y. Kong, ‘Multi-class SVMs Analysis of Side-
Channel Information of Elliptic Curve Cryptosystem‘”, 2015 International Sym-
posium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), pp. 1-6, Chicago, IL, USA, July 26-29, 2015.

5.2 Support-Vector Machine (SVM)

Support-Vector Machines are among the most robust and successful pattern classifi-
cation algorithms [4, 107]. There are different types of patterns, namely linear and
non-linear. Linear patterns are patterns that are easily distinguishable or can be easily
separated in low dimensions, whereas non-linear patterns are patterns that are not
easily distinguishable or cannot be easily separated, and hence these patterns need to
be further manipulated so that they can be easily separated.

Basically, the main idea behind SVM is the construction of an optimal hyperplane,
which can be used for classification, for linearly separable patterns. The optimal hy-
perplane is a hyperplane selected from the set of hyperplanes for classifying patterns
that maximises the margin of the hyperplane, i.e. the distance from the hyperplane
to the nearest point of each patterns. The main objective of SVM is to maximise the
margin so that it can correctly classify the given patterns, i.e. the larger the margin
size the more correctly it classifies the pattern.

In the literature, SVMs are known to generalise well even in high-dimensional spaces
with small training samples [108], and have been shown to be superior to the traditional
empirical risk minimisation principle employed by most neural networks [109] SVMs
have been successfully applied to a number of applications ranging from face detection,
verification, and recognition [108–110] to object detection and recognition [111–113].

5.2.1 Linear Support Vector Machines for Linearly Separable
Case

The basic idea of SVMs is to construct a hyperplane as the decision plane, which
separates the positive (+1) and negative (-1) classes with the largest margin, and is
related to minimising the VC dimension of the SVM. In a binary classification problem
where feature extraction is initially performed, let us label the training data xi ∈ Rd

with a label yi ∈{-1, +1}, for all training data i = 1, ..., l, where l is the number
of data value, and d is the dimension of the problem. When the two classes are
linearly separable in Rd , we wish to find a separating hyperplane which gives the
smallest generalisation error among the infinite number of possible hyperplanes. Such
an optimal hyperplane is the one with the maximum margin of separation between
the two classes, where the margin is the sum of the distances from the hyperplane
to the closest data points of each of the two classes. These closest data points are
called Support Vectors (SVs). The solid line on Figure 5.1 represents the optimal
separating hyperplane . Let’s suppose they are completely separated by a d-dimensional
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Figure 5.1: Linear separating hyperplanes for the separable case. The support vectors
are circled (taken from [4]).

hyperplane described by
W . X + b = 0 (5.1)

The separation problem is to determine the hyperplane such that W . Xi + b ≥ +1 for
positive examples and W . Xi+b ≤ −1 for negative examples. Since the SVM finds the
hyperplane which has the largest margin, it can be found by minimising 1/2 ‖ W ‖2

min
W,b

Φ(W ) =
‖W‖2

2
(5.2)

The optimal separating hyperplane can thus be found by minimising equation 5.2 under
the constraint 5.3 to correctly separate the training data.

yi (xi . W + b)− 1 ≥ 0, ∀i (5.3)

This is a Quadratic Programming (QP) problem for which standard techniques (La-
grange Multipliers, Wolfe dual) can be used [114–116].

5.2.2 Linear Support-Vector Machines for Non-Separable Case

In practical applications for real-time data, the two classes are not completely separable,
but a hyperplane that maximises the margin while minimising a quantity proportional
to the misclassification errors can still be determined. This can be done by introducing
positive slack variables ξi in constraint 5.3, which then becomes

yi (xi . W + b) ≥ 1− ξi,∀i (5.4)
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If an error occurs, the corresponding ξi must exceed unity, so Σiξi is an upper bound for
the number of misclassification errors. Hence the objective function 5.2 to be minimised
can be changed into

min { ‖W‖
2

2
+ C

l∑
i=1

ξi} (5.5)

where C is a parameter chosen by the user that controls the trade-off between the mar-
gin and the misclassification errors. A larger C means that a higher penalty is assigned
to misclassification errors. Minimising equation 5.5 under constraint 5.4 gives the Gen-
eralized Separating Hyperplane. This remains a QP problem. The non-separable case
is illustrated in Figure 5.2.

Figure 5.2: Linear separating hyperplane for the non-separable case (taken from [4])

.

5.2.3 Non-linear Support-Vector Machines

An extension to non-linear decision surfaces is necessary since real-life classification
problems are hard to solve using a linear classifier [117]. When the decision function
is not a linear function of the data, the data will be mapped from the input space
into a high dimensional feature space by a non-linear transformation. In this high
dimensional feature space, the generalised optimal separating hyperplane shown in
Figure 5.8 is constructed [116]. Cover’s theorem states that, if the transformation is
non-linear and the dimensionality of the feature space is high enough, then the input
space may be transformed into a new feature space where the patterns are linearly
separable with high probability. This non-linear transformation is performed in an
implicit way through so-called kernel functions.
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(a) Input space

(b) Feature space

Figure 5.3: Feature space is related to input space via a non-linear map, causing the
decision surface to be nonlinear in the input space (taken from [5])

Non-linear Support Vector Machines and Kernels

Kernel methods are a set of approaches to map data from the original space onto the
kernel space (Hilbert space) without ever knowing the mapping function explicitly.
The concept of kernel methods is best known in SVM due to its successful application
to enable SVMs to deal with problems of non-linear separation in the original feature
space. SVM could find a linearly separable hyperplane in the kernel space by the
aid of kernel methods. Many kernels are used in SVM, such as the linear kernel, the
polynomial kernel, and the Gaussian RBF kernel. Among these kernels, the Gaussian
RBF kernel is most commonly used because of its attractive features [118, 119], such
as structure preservation. This kernel is adopted in many papers. The parameter p
in this kernel is crucial and is essential to robust performance of the SVM [119], while
an arbitrary predefined p cannot guarantee a satisfactory performance. An exhaustive
search for an appropriate p is intractable since the domain of definition for p ranges
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from zero to infinite. The SVM becomes over-fitting when p is set as zero, since all
training instances are support vectors in this case. As a result, the SVM has a perfect
prediction for a training set but may have a poor performance on a test set. When
p is set as infinite, under-fitting occurs in an SVM because all training instances are
considered the same as one instance. In some papers [120, 121], p is specified by a
default value, such as one, instead of doing p selection.

In order to accomplish a non-linear decision function, an initial mapping Φ of the
data into a (usually significantly higher-dimensional) Euclidean space H is performed
as Φ : Rn → H, and the linear classification problem is formulated in the new space
with dimension d. The training algorithm then depends on the data only through a
dot product in H of the form Φ(xi).Φ(xj). Since the computation of the dot products
is prohibitive if the number of training vectors Φ(xi) is very large, and since Φ is
not known a priori, Mercer’s theorem [4] for positive definite functions allows us to
replace Φ(xi).Φ(xj) by a positive definite symmetric kernel function K(xi, xj), that
is, K(xi, xj) = Φ(xi).Φ(xj). In the training phase, we need only the kernel function
K(xi, xj), and Φ(xi) does not need to be known since it is implicitly defined by the
choice of kernel K(xi, xj) = Φ(xi).Φ(xj). The data can become linearly separable in
feature space although the original input is not linearly separable in the input space.
Hence kernel substitution provides a route for obtaining non-linear algorithms from
algorithms previously restricted to handling linearly separable datasets [122]. The use
of implicit kernels allows reducing the dimension of the problem and overcoming the
so-called ”dimension curse” [123]. Variant learning machines are constructed according
to the different kernel functions K(x, xi) and thus construct different hyperplanes in
feature space.

5.2.4 SVMs Applied to Multi-Class Classification

The basic SVMs are for the two-class problem. However it should be extended to multi
class to classify into more than two classes [124, 125]. There are two basic strategies
for solving q-class problems with SVMs.

Multi-class SVMs: One to Others

Take the training samples with the same label to be one class and the others to be the
other class, then it becomes a two-class problem. For the q-class problem (q ≥ 2), q
SVM classifiers are formed and denoted by SVMi, i = 1, 2, ..., q. As for the testing
sample x, di(x) = Wi . X + bi can be obtained by using SVMi. The testing sample x
belongs to the jth class where

dj(x) = max
i=1∼q

di(x) (5.6)

Multi-class SVMs: Pairwise SVMs

In the pairwise approach, q2 machines are trained for q-class problems [114] . The
pairwise classifiers are arranged in trees, where each tree node represents an SVM,
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Figure 5.4. A bottom-up tree, which is similar to the elimination tree used in tennis
tournaments, was originally proposed in [114] for recognition of 3D objects. A top-
down tree structure has been recently published in [6]. There is no theoretical analysis
of the two strategies with respect to classification performance [126]. Regarding the
training effort, the one-to-others approach is preferable since only q SVMs have to be
trained compared to q2 SVMs in the pairwise approach. However, at runtime both
strategies require the evaluation of q − 1 SVMs [126]. Recent experiments on people
recognition show similar classification performances for the two strategies [113].

Multi-class SVMs: Implementation

Different approaches have been proposed for the canonical extension of binary SVMs
to multiple classes; some of the most popular ones are

• Weston and Watkins (WW) SVM [103].

• Crammer and Singer (CS) SVM [104].

• Lee, Line and Wahba (LLW) SVM [105].

• Guermeur and Monfrini, M-SVM2 [106].

The WW and LLW methods are theoretically sound, and experiments indicate that
they lead to well-generalised hypotheses, but efficient training algorithms are not avail-
able. In the CS approach the most popular modification of the WW formulation,
mainly to speed-up the training process, is proposed. The M-SVM2 can be seen as a
direct extension of the 2-norm SVM to the multi-class case, which is established by
deriving the corresponding generalised radius-margin bound.

5.3 Experiments based on SVMs

The basic measurement setup used to perform this experiment inclydes an FPGA
board with a SPARTAN 3 FPGA, a Tektronix TDS2012 oscilloscope with 1 Gigasample
per second to record the power/electromagnet signal traces, a Tektronix CT1 current
probe for measuring power consumption of FPGA, an ETS near-field probe set (model
7405) for measuring electromagnetic emission and an ETS broadband amplifier (model
7405-907b) to enhance the quality of the input signal traces (see Figure 3.10). This
experiment was performed through a MATLAB R2015a toolbox and a PC configuration
of Intel Core i7, 2.8 GHz and 16.00 GB RAM. For more details, refer to 3.5.

One of the main problems in this experiment is handling a huge input dataset. The
increase of data size in terms of number of instances and number of features make it
a complex task to perform the analysis. This is due to the rate of the sampling in
recording device. A high sampling rate is usually mandatory in order to retain the
frequency content of the side channel. Hence, principal component analysis (PCA) is
applied as a preprocessing stage to reduced the noise and dimensions of the signals
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(a) Example of top-down tree structure

(b) Example of bottom-up tree structure

Figure 5.4: Tree structure for multi-class SVMs. (a) The decision Directed Acyclic Graph
(DAG) for finding the best class out of four classes. The equivalent list state for each node
is shown next to that node, (b) The binary tree structure for 8 classes (taken from [6]).

without missing the in main features. The theoretical and experimental results in
regard to PCA are discussed in Chapter 4. In this section, the input dataset is the
power consumption signal traces after applying PCA (in the PCA domain). To the best
of our knowledge, there has not been any attack on the same cryptosystem specification
(FPGA implementation of ECC) to date; therefore, in this project, different models of
SVM classification, kernel functions and parameters, which can significantly affect the
performance of classifiers, are investigated.
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5.3.1 Experimental Results based on SVM Binary Classifica-
tion

In this experiment power/electromagnetic signal traces were measured while it exe-
cuted an elliptic curve point multiplication, which is the main operation for an elliptic
curve cryptography (ECC). Our dataset contains 1,000 traces each of which has 2,500
sampling data. According to SVM classifiers, the two most popular kernel functions
(RBF and POLY) are applied, and their overall classification accuracy along with com-
putational complexity as a function of the number of principal components is provided.
To calculate the accuracy with a given number of principal components, we used a ten-
fold cross-validation for each number of components, because it is a popular type to
compute the accuracy of statistical problems. In this algorithm the dataset is divided
into ten subsets, and the classifier algorithm is repeated ten times. Each time, one of
the ten subsets is used as the test set and the other nine subsets are put together to
form a training set. Then the average accuracy across all ten trials is computed.

Figure 5.5 illustrates the accuracy of an SVM classifier with RBF and POLY kernel
functions as a function of the number of PCs. As can be seen from this graph, as
PCs are added, accuracy is increased for both kernel functions. Considering the graph,
no more than 600 PCs are required to achieve a maximum accuracy of approximately
95%, therefore the dimension of the traces can be reduced from 2500 to 600 without
affecting the accuracy. In side-channel data classification, the RBF kernel function
seems to be more accurate than the POLY kernel function, especially for less than 600
PCs, however the accuracy of the RBF function does not change when the number of
principal components increases from 100 to 250.

Figure 5.5: The accuracy of RBF and POLY kernel functions in an SVM classifier as a
function of the number of PCs.

To calculate the computational complexity, the processing duration of the algorithm
is calculated and used as a scale of complexity. Figure 5.6 shows the comparison



60 Support-Vector Machine as a Side-Channel Classifier

between the RBF and POLY kernel functions based on the computational complexity
as a function of the number of principal components. As the graph illustrates, the
complexity increases two to three-fold when the number of PCs increases from 100 to
2500. In addition, although the complexity of the RBF kernel function seems to be
always greater than that of the POLY kernel function, from 500 to 600 components,
which is the ideal number of component in term of the accuracy (see Figure 5.5), both
functions have almost the same complexity.

Figure 5.6: The computational complexity of RBF and POLY kernel functions in SVM
classifier as a function of the number of PCs.

5.3.2 Experimental Results based on different Kernels of SVM
Multi-class Classification

In this experiment, the multi-class classification procedure is performed through MSVM-
pack 1.5 [127] which is an open-source package dedicated to multi-class support-vector
machines and can handle classification problems with more than two classes. Also
different kernel functions in this package are verified, such as the linear Homogeneous
polynomial, Non-homogeneous polynomial kernel and the Gaussian RBF kernel. The
performance of these kernels and their parameters, which can significantly affect the
result, are investigated. The accuracy of algorithm is calculated based on the differ-
ence between the instances in a classified class dataset (Output) and the instances in
an actual class dataset (Target).

In order to show the efficiency of the applied classification approach based on the
MSVM2 model, we tested and compared different kernel functions (Linear, Gaussian
RBF, Homogeneous polynomial, Non-homogeneous polynomial). Based on our ex-
periment, we infer that of all kernels only the Gaussian RBF is appropriate for our
application, since the accuracy of the other kernel functions is less than 1%. Therefore,
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we focused on the Gaussian RBF kernel function and verified the influence of p, which
is the parameter in the Gaussian RBF kernel, namely the width of features (spread
parameter).

Figure 5.7 illustrates the error of the multi-class classification of a 4-bit sub-key
based on the Gaussian RBF kernel function with p in the range of 5 to 150. As can
be seen, the error ratio decreases considerably as the parameter value increases. For
example, the error of parameter 5 stabilised around 70% after 300 components while
the corresponding errors for parameters 25, 40, 55 and 75 are roughly 35, 10, 4 and
1% respectively. Afterwards, the error ratio remains around 0.5% as the parameters
increase to 150. Consequently, the most efficient classification would be by 100 com-
ponents and an RBF parameter p > 150. The final accuracy of the classification of

(a)

(b)

Figure 5.7: The error ratio of different multi-class classifiers as a function of the number
of principal components. (a) Error ratio for the Gaussian RBF with parameters 5, 25 and
40. (b) Error ratio for the Gaussian RBF with parameters 40, 55, 115 and 150

4-bit sub-key and 163-bit key values are provided in Table 5.1. This table compares the
performance of different kernels based on the minimum number of components needed
to achieve the best accuracy of classification. As shown, the classification accuracy of
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Linear, Homogeneous polynomial and Non-homogeneous polynomial kernels are even
less than 1% by applying 2500 components, while a Gaussian RBF with parameter
p > 115 and applying about 100 components can reach 81% accuracy. Therefore, for
side-channel analysis applications, a Gaussian RBF kernel with p > 115 is an efficient
choice.

Table 5.1: Efficiency comparison of different kernel functions (Linear, Gaussian RBF,
Homogeneous polynomial, Non-homogeneous polynomial) based on the minimum number of
components and the best accuracy

Kernel Parameter 4b Best 163b Best Min

Accuracy Accuracy Components

Linear - 1 % - 2500

Homo - 1 % - 2500

Non-Ho - 1 % - 2500

p=5 30% - 200

p=25 63% - 300

Gaussian p=40 90 % 1.5% 350

RBF p=55 96 % 19% 700

p=115 99% 66% 250

p=150 99.5% 81% 100

5.3.3 Experimental Results based on different Models of SVM
Multi-class Classification

In order to show the efficiency of the multi-class classification approaches, we tested
and compared different kernel functions (Linear, Gaussian RBF, Homogeneous polyno-
mial, Non-homogeneous polynomial). Based on our experiment, we infer that of all the
kernels only the Gaussian RBF is appropriate for our application, since the accuracy
of the other kernel functions seems to be very low, under 3%. Therefore, we focused on
the Gaussian RBF kernel function and verified the influence of p, which is an effectual
parameter in the Gaussian RBF kernel, namely the width of features (spread param-
eter). Having determined a proper kernel function and parameters, the efficiency of
different models of multi-classifiers (Weston and Watkins (WW) SVM [103], Crammer
and Singer (CS) SVM [104], Lee, Line and Wahba (LLW) SVM [105], Guermeur and
Monfrini, M-SVM2 [106]) can be verified.

Table 5.2 presents the influence of the spread parameter p on the efficiency of multi-
classifiers based on the Gaussian RBF kernel function. As can be seen, the error ratio
decreases considerably for p > 150, however, to avoid over-fitting a limited range for
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p should be determined. For this purpose, and considering Table 5.2, proper p-values
for WW, CS, LLW and M-SVM2 can be about 50, 5, 150 and 50 respectively.

Table 5.2: Error ratio of different models of multi-class classification based on Gaussian
RBF.

Models Spread Parameters of Gaussian RBF kernel

s.p=([0,1] [1,3] [5,10] [20,30] [50,70] [150,200])
WW 0.735 0.728 0.718 0.455 0.015 0.002
CS 0.716 0.314 0.003 0.001 0.001 0.001

LLW 0.718 0.739 0.736 0.376 0.02 0.003
M-SVM2 0.718 0.726 0.432 0.028 0.003 0.002

By applying proper Gaussian parameters, we performed different models of multi-
classifier on the outcome of PCA. Figure 5.8.a illustrates the error ratio of the multi-
class classification based on CS and M-SVM2 algorithms as a function of the number
of principal components, and Figure 5.8.b compares the corresponding error ratio of
LLW and WW algorithms. As shown, the error ratios of CS and M-SVM2 algo-
rithms are about 25% using roughly 250 components while those of LLW and WW
get stable at about 3% by using roughly the same number of component. Hence the
CS and M-SVM2 algorithms seem to be more efficient than LLW and WW in this
application. In addition to our outcomes, by utilising PCA, the input data dimension
can be reduced from 2500 to 250 without affecting accuracy.

Table 5.3 compares the performance of different models of Gaussian-based multi-
class classification, based on the minimum number of components and the best accuracy
of classification. As shown, WW and LLW can classify the side-channel information to
77% accuracy, and for this accuracy they need to apply at least 400 components, while
CS and M-SVM2 can reach 97% accuracy by applying about 350 and 500 components
respectively. Therefore, for side-channel analysis applications, CS can be considered
as the most efficient classifier model and M-SVM2 as the second most.

Table 5.3: The efficiency comparison of different models of Gaussian RBF classifiers.

Multi-class Best Min

Classifiers Accuracy Components

CS 96% 350

MSVM2 97 % 500

LLW 77 % 400

WW 77 % 400
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(a)

(b)

Figure 5.8: The error ratio of different multi-class classifiers as a function of the number
of principal components. (a) Classification based on CS and M-SVM2 algorithms. (b)
Classification based on LLW and WW algorithms.

5.4 Conclusion

SVM-based characterisation of side-channel information is a powerful and feasible way
to attack secure cryptosystems. In this chapter, an efficient approach based on SVM
classification is presented. For this purpose, first PCA is applied as a preprocessing
stage to improve the input dataset. Afterwards, the performance of different models of
SVM is verified. Considering our experimental results, based on an FPGA implemen-
tation of ECC, by utilising PCA the input data dimension can be reduced from 2500
to 250 components without affecting accuracy. Moreover, after verifying the efficiency
of different kernels, SVM models and parameters, it can be concluded that for SCA
applications the best accuracy of multi-class classification would be based on the Gaus-
sian RBF kernel function with parameter p value of 5 and 50 for CS and M-SVM2

SVM models respectively.



6
Neural Networks as

Side-Channel-Information Classifiers

6.1 Introduction

In this chapter, in order to characterise side-channel information, multi-class classifi-
cation based on different architectures of neural networks is investigated.

Neural networks have emerged as an important tool for multi-class classification.
The recent vast research activities in neural classification have established that neural
networks are a promising alternative to various conventional classification methods,
see [34]. Neural networks are typically organised in layers; see Figure 6.1. Layers are
made up of a number of interconnected ’nodes’ which contain an ’activation function’.
Patterns are presented to the network via the ’input layer’, which communicates to one
or more ’hidden layers’ where the actual processing is done via a system of weighted
’connections’. The hidden layers then link to an ’output layer’ where the answer is
output. Most ANNs contain some form of ’learning rule’ which modifies the weights of
the connections according to the input patterns that it is presented with. The learning
process involves updating network architecture and connection weights so that the
network can efficiently perform a specific classification/clustering task.

Publications pertaining to this chapter:

• Ehsan Saeedi, Yinan Kong and Md Selim Hossain The Evaluation of Neural
Networks in Characterisation of Side-channel information. (IEEE Embedded
Systems Letters), (To be submitted).

• E. Saeedi, Y. Kong, and M. S. Hossain, “Feed-Forward Back-Propagation Neu-
ral Networks in Side-Channel Information Characterisation”, IEICE TRANSAC-
TIONS on Communications. (Under major revision)

65
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Figure 6.1: A simple two-layer hidden-layer neural-network architecture for pattern clas-
sification purposes.

• E. Saeedi, M. S. Hossain, and Y. Kong, “Side Channel Information Charac-
terisation based on Cascade Feed-Forward Back-Propagation Neural Network”,
Journal of Electronic Testing, May 2016, Springer. (In press)

• E. Saeedi, Y. Kong, and M. S. Hossain, “Side Channel Attacks and Learning
Vector Quantisation”, Frontiers of Information Technology and Electronic Engi-
neering, Springer, 2016.(In press)

6.2 Why Use Neural Networks?

The main characteristics of neural networks are that they have the ability to learn
complex nonlinear input-output relationships, use sequential training procedures, and
adapt themselves to the data. The advantage of neural networks lies in the follow-
ing theoretical aspects. First, neural networks are data driven self-adaptive methods
in that they can adjust themselves to the data without any explicit specification of
functional or distributional form for the underlying model. Second, they are universal
functional approximators in that neural networks can approximate any function with
arbitrary accuracy [35], [90],[128]. Since any classification procedure seeks a functional
relationship between the group membership and the attributes of the object, accurate
identification of this underlying function is doubtlessly important. Third, neural net-
works are nonlinear models, which makes them flexible in modeling real world complex
relationships. Finally, neural networks are able to estimate the posterior probabilities,
which provides the basis for establishing classification rule and performing statistical
analysis [129]. A list of neural network classifiers, which can be used as a promising
approach of side-channel information analysis is provided below.

1. Feed-Forward Back-Propagation (FFBP)
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2. Probabilistic Neural Network (PNN)

3. Cascade-Forward Neural Network (CFNN)

4. learning Vector Quantisation neural networks (LVQ)

In this chapter, each network will be introduced briefly and their efficiency for side-
channel analysis of ECC cryptosystem will be verified.

6.3 Application of Neural Networks in SCA

A neural network learns the signature (power consumption and electromagnetic anal-
ysis) of an instruction, and then recognises it later automatically. For each instruction
hundreds of structures need to be stored for a cryptosystem-processor. In more de-
tails, the general goal of attack is to obtain the secret key value which is stored in the
cryptographic module from the measured power trace. Considering the value Ksec as a
secret key stored in the attacked cryptographic module and Kest as the estimate value
of the secret key, which was determined with a neural network, if the method works
correctly the values Kest and Ksec will be equal at the end of the classification process.
The first proposal of the method excepted sequential classification. In other words,
classification is realised byte by byte similarly as in most DPA attacks. The secret key
could be expressed as follows: Ksec = {k1, k2, ..., k16} for 0 ≤ ki ≤ 255 where i = 0 to
16 represents each step of the method. This method determines the first byte value
k1 of the secret key in the first step and the second byte value k2 in the second step
and so on. Modelling the power leakage is considered as the basis for launching side-
channel attacks, and the effectiveness of these attacks strongly depends on the accuracy
of underlying side-channel leakage characterisation. In order to attack cryptographic
devices, a power leakage characterisation based on neural network is proposed to take
the full intrinsic advantage of a neural network in profiling a non-linear mapping re-
lationship as one basic machine-learning tool, transforms the task of leakage profiling
into a neural network study process.

6.4 Analysis Based on Neural Network

The basic measurement setup used to performed this experiment includes an FPGA
board with a SPARTAN 3 FPGA, a Tektronix TDS2012 oscilloscope with 1 Gigasample
per second to record the power/electromagnet signal traces, a Tektronix CT1 current
probe for measuring power consumption of FPGA, an ETS near-field probe set (model
7405) for measuring electromagnetic emission and an ETS broadband amplifier (model
7405-907b) to enhance the quality of the input signal traces (see Figure 3.10). This
experiment was performed through a MATLAB R2015a toolbox and a PC configuration
of Intel Core i7, 2.8 GHz and 16.00 GB RAM. For more details, refer to 3.5.
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Basic Definitions

Some basic expressions used in our experiments are:

• Training set: the training set is used to fit the models.

• Validation set: the validation set is used to estimate prediction error for model
selection.

• Test set: the test set is used for assessment of the generalisation error of the
final chosen model.

• Epoch: An epoch is a measure of the number of times all of the training vectors
are used once to update the weights.

Training Functions

The process of training a neural network involves tuning the values of the weights and
biases of the network to optimise network performance; therefore, selecting a training
function plays a significant role in the efficiency of training and consequently the output
of neural network. There are many standard numerical optimisation algorithms that
can be used to optimize the performance function, but there are a few key ones that
have shown excellent performance for neural network training, some of which are:

• Levenberg-Marquardt: It is considered as the fastest back-propagation algo-
rithm in the MATLAB toolbox, and is recommended as a first-choice supervised
algorithm, although it does require more memory than other algorithms. For
more details, refer to [130].

• Bayesian Regularization: It is a good option to produce a network that gen-
eralize well. It works by minimizing a combination of squared errors and weights,
and then determining the correct combination. For more details, refer to [131].

• BFGS Quasi-Newton: It is an alternative to the conjugate gradient methods
for fast optimization, although it is a complex method. For more details, refer to
[132].

• Resilient Backpropagation: It is often faster than training with regular back
propagation and doesn’t require any free parameter values to be specified, as
opposed to back propagation which needs values for the learning rate. However,
it’s a more complex algorithm to implement than back propagation. For more
details, refer to [133].

• Scaled Conjugate Gradient: It was designed to avoid the time-consuming line
search. For more details, refer to [134].

• Conjugate Gradient with Powell/Beale Restarts: It is a network training
function that updates weight and bias values according to the conjugate gradient
back-propagation with Powell-Beale restarts. It has shown a good performance
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on some problems, although the performance on any given problem is difficult to
predict. For more details, refer to [135].

• Fletcher-Powell Conjugate Gradient: It updates weight and bias values
according to conjugate gradient back-propagation with Fletcher-Reeves updates.
For more details, refer to [136].

• Polak-Ribiere Conjugate Gradient: It updates weight and bias values ac-
cording to conjugate gradient backpropagation with Polak-Ribiere updates. For
more details, refer to [136].

• One Step Secant: this method is an attempt to bridge the gap between the
conjugate gradient algorithms and the quasi-Newton (BFGS) algorithms. This
algorithm requires less storage and computation per epoch than the BFGS algo-
rithm and slightly more storage and computation per epoch than the conjugate
gradient algorithms. For more details, refer to [137].

• Variable Learning Rate Gradient Descent: It can be used for training any
network as long as its weight, net input, and transfer functions have derivative
functions. For more details, refer to [138].

• Gradient Descent with Momentum: This method allows a network to re-
spond not only to the local gradient, but also to recent trends in the error sur-
face. Momentum allows the network to ignore small features in the error surface.
Without momentum a network can get stuck in a shallow local minimum. With
momentum a network can slide through such a minimum. See page 129 of. For
more details, refer to [136].

• Gradient Descent: In this method the weights and biases are updated in the
direction of the negative gradient of the performance function. For more details,
refer to [136].

It is very difficult to know which training algorithm will be the fastest or the most
efficient for a given dataset. It depends on many factors, including the complexity of
the dataset, the number of data points in the training set, the number of weights and
biases in the network, the error goal; hence, verifying and comparing the influence of
various training functions is necessary.

Number of Neurons

Regarding the network topological structure, the number of neurons in input, hidden
layer and output should be determined. The input layer must have the same number
of neurons as the number of samples or the numbers of chosen interesting points in
the case that only interesting points are used because of memory limitation and the
time-consuming training process. The output layer classifies the input vector to key
value and therefore it must contain enough neurons for all combinations of key values.

Deciding on the number of neurons in the hidden layers is a very important part
of overall neural network architecture. Though these layers do not directly interact
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with the external environment, they have a tremendous influence on the final output.
Both the number of hidden layers and the number of neurons in each of these hidden
layers must be carefully considered. Using too few neurons can lead to under-fitting
while too many neurons can contribute to computational complexity or over-fitting, in
which all training points are well fitted but the fitting curve oscillates wildly between
these points. There is no specific method or formula but experiment to determine this
number, however the following possible rules are recommended to be considered; see
[34], [136].

• The number of hidden neurons should be between the size of the input layer and
the size of the output layer.

• The number of hidden neurons should be 2/3 the size of the input layer, plus the
size of the output layer.

• The number of hidden neurons should be less than twice the size of the input
layer.

These three rules provide a starting point, ultimately the selection of an architecture
for network should be based on experiment and trial and error.

Result Improvement

In order to achieve accurate results, the following approaches can be applied:

• Resetting the initial network weights and biases to new values.

• Increasing the number of hidden neurons.

• Increasing the number of training vectors.

• Increasing the number of input values, if more relevant information is available.

• Applying a different training algorithm.

Applying these approaches is recommended for getting satisfactory results.

6.5 Feed-Forward Back-Propagation (FFBP)

In a feed-forward neural network, the first term ”feed forward” describes how this neural
network processes and recalls patterns. In a feed-forward neural network, neurons are
only connected forward. Each layer of the neural network contains connections to the
next layer. In each feed-forward step, an input pattern is applied to the input layer and
its effect propagates, layer by layer, through the network until an output is produced.
The network’s actual output value is then compared to the expected output, and an
error signal is computed for each of the output nodes.
The term ”back-propagation” describes how this type of neural network is trained.
Back-propagation is a form of supervised training that means the network must be
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Figure 6.2: A feed-forward back-propagation neural network.

provided with both sample inputs and anticipated outputs. The anticipated outputs
are compared against the actual outputs for given input. Using the anticipated outputs,
the back-propagation training algorithm then takes a calculated error and adjusts the
weights of the various layers backwards from the output layer to the input layer. In
other words, the output error signals are transmitted backwards from the output layer
to each node in the hidden layer that immediately contributed to the output layer. This
process is then repeated, layer by layer, until each node in the network has received an
error signal that describes its relative contribution to the overall error; see Figure 6.2.
The FFBP algorithm can be summarised in the following steps (for more details see
[139],[140]).

• Step 1: Determining of neural network topological structure. In this
step, the details of topological structure of neural network should be determined.
For example, the number of hidden layer and the number of nodes in input layer,
hidden layer and output layer.

• Step 2: Initialisation. Weights and variables need an initial value which is
usually a random a small real value within [-1,1].

• Step 3: Forward propagation. Applying the input to the network and calculating
the output. When a specified training pattern is fed to the input layer, the weighted
sum of the input to the jth node in the hidden layer is given by

Netj =
∑

Wi,jXj + Θj (6.1)

Equation 6.1 is used to calculate the aggregate input to the neuron. The Θj term is
the weighted value from a bias node that always has an output value of 1. The bias
node is considered a ”pseudo input” to each neuron in the hidden layer and the output
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layer, and is used to overcome the problems associated with situations where the values
of an input pattern are zero. If any input pattern has zero values, the neural network
could not be trained without a bias node.
In order to decide whether a neuron should fire, the ”Net” term is passed onto an appro-
priate activation function. The resulting value from the activation function determines
the neuron’s output, and becomes the input value for the neurons in the next layer
connected to it. Sigmoid equation (see equation 6.2 ) is known as a typical activation
function.

Oj = Xk =
1

1 + e−Netj
(6.2)

• Step 4: Error calculation. If the actual activation value of the output node, k, is
Ok, and the expected target output for node k is tk, the difference between the actual
output and the expected output is given by:

∆k = tk −Ok (6.3)

Then the error signal for node k in the output layer can be calculated as

δk = ∆kOk(1−Ok) (6.4)

where the Ok(1−Ok) term is the derivative of the Sigmoid function.

• Step 5: Updating weights and biases. In order to update the weight, wj,k, between
the output node, k, and the node, j the following formula are applied.

∆Wj , k = lrδkXk (6.5)

Wj , k = Wj , k + ∆Wj , k (6.6)

where ∆Wj , k is the change in the weight between nodes j and k, lr is the learning rate
which is a relatively small constant within [0 1] that indicates the relative change in
weights.

• Step 6: Termination. Finally, Back-propagation is derived by assuming that it is
desirable to minimise the error on the output nodes over all the patterns presented to
the neural network or the number of iterations exceeds its maximum. The following
equation is used to calculate the error function, E, for all patterns.

E =
1

2

∑
(
∑

(tk −Ok)2) (6.7)

Ideally, the error function should have a value of zero when the neural network has
been correctly trained. This, however, is numerically unrealistic.

6.5.1 Experimental Results Based on FFBP Analysis

The basic measurement setup used to performed this experiment are an FPGA board
with a SPARTAN 3 FPGA, a Tektronix TDS2012 oscilloscope with 1 Gigasample
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per second to record the power/electromagnet signal traces, a Tektronix CT1 current
probe for measuring power consumption of FPGA, an ETS near-field probe set (model
7405) for measuring electromagnetic emission and an ETS broadband amplifier (model
7405-907b) to enhance the quality of the input signal traces (see Figure 3.10). This
experiment was performed through a MATLAB R2015a toolbox and a PC configuration
of Intel Core i7, 2.8 GHz and 16.00 GB RAM. For more details, refer to 3.5. Due to the
fact that back-propagation performance depends on various factors. Assigning a proper
training function and number of hidden layers plays a significant role in the efficiency of
the neural network and must be carefully determined for a given dataset. Therefore, an
experimental investigation was conducted to explore the efficiency of various training
functions with different numbers of hidden layers. a FFBP network has been trained
with twelve different training algorithms, and for each algorithm various numbers of
hidden layers ranging from 1 to 110 have been tested. This range is selected to avoid
over-fitting, inaccuracy and computational complexity.

Table 6.1 illustrates a performance comparison of various training algorithms in
FFBP network analysis. This performance is with a proper range of hidden-layers
number and based on mean-squared-error (MSE) which shows the accuracy of the ap-
plied approach, time consumption of algorithm which shows the timing complexity
and memory consumption showing the required memory for this algorithm. From this
table, Bayesian Regularisation with [26 31] hidden layers can be considered as the
most accurate training function with the minimum MSE of (0.017) and MSE range
of [0.01 0.04], while other MSE ranged between [0.04, 0.18]. On the other hand, the
maximum MSE belongs to Gradient Descent and Gradient Descent with Momentum
with 0.162 and 0.171 respectively.
In terms of computational complexity, as shown in this table, Bayesian Regularisa-
tion is significantly the slowest algorithm with the processing time of 6584 seconds
which is significantly greater than other algorithm. Afterward, BFGS quasi-Newton
and Levenberg-Marquardt with 335 seconds and 16.23 seconds respectively. All other
algorithms are quite fast and their computational time consumption are not more than
3 seconds.
Memory consumption usually increases exponentially as the number of hidden layer
increase. Judging from the memory consumption information in this table, Bayesian
Regularisation and BFGS quasi-Newton consume the least amount of memory by 0.019
and 0.015 GB respectively, while all other training functions needs almost the same
size of memory around 1.5 GB.
Overall, regarding the accuracy, time and memory consumption, Levenberg-Marquardt
can be considered as the most efficient FFBP training function. Because, although
Bayesian Regularisation has the best accuracy, it is significantly the slowest algorithm.
In addition, however the minimum MSE of C.G.Powell-Beale and C.G.Polka-Ribiere
are smaller than that of Levenberg-Marquardt, the accuracy of Levenberg-Marquardt is
more stable and reliable since its range of MSE variation and average are smaller (the
MSE variation for Levenberg-Marquardt is 0.08 − 0.05 = 0.03 and the range of MSE
variation for C.G.Powell-Beale is 0.11− 0.04 = 0.07).

Figure 6.3 illustrates a particular comparison of Bayesian Regularisation and Levenberg-
Marquardt performance with the number of hidden layer from 1 to 40 by which the
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processing time of Bayesian Regularisation increased dramatically to 6000 seconds. In
this Figure, memory-consumption, time-consumption and mean squared error (MSE)
of FFBP analysis with respect to the number of hidden layers is compared. The perfor-
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Figure 6.3: The performance comparison of Bayesian Regularisation and Levenberg-
Marquardt algorithm based on memory consumption, Time consumption and Mean Squared
Error (MSE).

mance of Levenberg-Marquardt as the most efficient training algorithm with the number
of hidden layers in range of 1 to 110 is presented in Figure 6.4. As can be seen, the MSE
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shows a fluctuation with a decrease from 0.1 to 0.04 as the number of hidden layers
increases to 30, and after that rises to 0.09 and then remains stable around 0.06. From
this Figure, as the number of hidden layers increases from 1 to 200, the computational
timing exponentially increases from 1 seconds to beyond 500 seconds. Moreover, the
consumption of memory surprisingly declined by 0.04 GB and dropped to a minimum
of 1.67 GB with 90 hidden layers. Generally, it can be inferred that the more hidden
layer are used, the more time is required for processing the network and the less error
can be expected. Regarding the graph, FFBP architectures with a number of hidden
layers between 20 and 30 can be considered as the most efficient networks in terms of
accuracy and time, however their required memory is not the minimum.
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Figure 6.4: The performance of Levenberg-Marquardt (as the most efficient training al-
gorithm) based on the memory consumption, Time-consumption and Mean Squared Error
(MSE).
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Figure 6.5: Confusion matrix. The diagonal cells (green): the number of correctly clas-
sified cases, The off-diagonal cells (red): the number of misclassified cases, The blue cell: the
overall percentage.

In order to verify the efficiency of our FFBP based on the Levenberg-Marquardt
training function, a confusion matrix is provided which is a table that is used to describe
the performance of the classifier model on our dataset that shows four different key-
bit values of ECC as four classes. Each row of the matrix represents the instances
in a classified class (Output), while each column represents the instances in an actual
class (Target). Figure 6.5 shows the confusion matrices for the training, testing, and
validation sets. The diagonal cells show the number of cases that the key value were
correctly classified, and the off-diagonal cells show the misclassified cases. The blue cell
in the bottom right shows the total percentage of correctly classified cases (in green)
and the total percentage of misclassified cases (in red). As can be seen, the results
shows a good classification because of the higher numbers of correct responses in the
diagonal squares (125, 131 and 148) compared to the low numbers of incorrect responses
in the off-diagonal squares (ranging [1 16]). The lower right blue square illustrates the
overall accuracies of 88% correctly classified and 12% misclassified. In Figure 6.6 the
performance of our FFBP-based classification in terms of the mean-square error of
training, validation and test sets is indicated. This figure gives us information about
the performance and status of our FFBP training, validating and testing process and
how the network can be improved. For example, if the training performance is poor,
then the number of neurons should be increased. If the performance on the training
set is good, but the test-set performance is significantly worse, which could indicate
over-fitting, then reducing the number of neurons or hidden layers can improve the
results. Considering this figure, the test-set error and validation set error have similar
characteristics and the best performance occurred at the first epoch. In addition, the



78 Neural Networks as Side-Channel-Information Classifiers

final mean-square error is small and no significant over-fitting has occurred by the
first iteration (where the best validation performance occurs); therefore the result is
reasonable.
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Figure 6.6: The performance of our FFBP-based classification in terms of the mean-
square error of training, validation and test sets. Best validation performance is 0.18663 at
epoch 1.

Figure 6.7 shows the error histogram to obtain additional verification of our method
performance. Due to variability in measurement or some unavoidable experimental and
noise, some recorded data are distant from others and their fit is significantly worse
than the majority of data and are considered as outliers. It is reasonable to check the
outliers to determine if the data is bad, or if those data points are different from the
rest of the dataset. If the outliers are valid data points, but are unlike the rest of the
data, then the network is extrapolating for these points; therefore, more data should
be collected that looks like the outliers points, and the network should be retrained.
Figure 6.7 gives an indication of outliers. It can be seen that while most errors fall
between -0.6 and 0.8, there are two training points with an error of -1 and -1.2 and two
testing points with errors of 1.0 and 0.96. These outliers correspond to analysis based
on only a few number of instances. Expectedly, as the number of instances increases,
the errors decrease.

In order to check the quality of classifiers, Receiver Operating Characteristic (ROC)
curves are provided, see Figure 6.8. For each class of a classifier, ROC applies threshold



6.6 Probabilistic Neural Network (PNN) 79

In
st

an
ce

s

0

100

200

300

400

500

600

-1
.2

62

-1
.1

31 -1

-0
.8

69
7

-0
.7

39

-0
.6

08
2

-0
.4

77
4

-0
.3

46
7

-0
.2

15
9

-0
.0

85
16

0.
04

56

0.
17

64

0.
30

71

0.
43

79

0.
56

86

0.
69

94

0.
83

02

0.
96

09

1.
09

2

1.
22

2

Errors = Targets - Outputs

Training
Validation
Test
Zero Error

Figure 6.7: Error histogram as an indication of outliers.

values across the interval [0,1] to outputs. For each threshold, two values are calculated,
the True Positive Ratio (the number of outputs greater or equal to the threshold,
divided by the number of one targets), and the False Positive Ratio (the number of
outputs less than the threshold, divided by the number of zero targets). In Figure
6.8, the colored lines in each axis represent the ROC curves which is a plot of the
true positive rate versus the false positive rate as the threshold is varied. A perfect
test would show points in the upper-left corner. As illustrated in Figure 6.8, the best
classification was for key-bit 4, then classification for key-bit 1, 3 and 2 respectively.

6.5.2 Summary

This Section has investigated pattern recognition and classification of side-channel in-
formation based on feed-forward back-propagation (FFBP). Regarding the result of
this section, we can infer that FFBP architectures with between 20 and 30 hidden lay-
ers can be considered as the most efficient architectures in terms of accuracy and time
complexity, however the required memory is not the minimum. Moreover, Levenberg-
Marquardt can be considered as the most efficient FFBP training function. Because,
although Bayesian Regularisation has the best accuracy, it is significantly the slow-
est algorithm. In addition, our results indicate an overall accuracy of 88% correctly
classified and 12% misclassified, and no significant over-fitting.

6.6 Probabilistic Neural Network (PNN)

A probabilistic neural network (PNN) is a feed-forward neural network, which provides
a general solution to pattern classification problems by following an approach developed
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Figure 6.8: Receiver Operating Characteristic (ROC) curves; the best classification was
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in statistics, called Bayesian classifiers; see [141]. PNN can compute non-linear decision
boundaries by replacing the sigmoid activation function often used in neural networks
with an exponential function. One outstanding issue associated with the PNN is the
determination of the network structure. This includes determining the network size,
the pattern layer neurons and an appropriate smoothing parameter. Some algorithms
for pattern layer neurons selection have been proposed ([142, 143]).

Advantages: PNN is adopted because of several advantages; its training speed is
many times greater than for a FFBP network. PNN can approach a Bayes optimal
result under certain easily met conditions. Additionally, it is robust to noise samples,
which is a important factor for side-channel information analysis. The most important
advantage of PNN is that training is easy and instantaneous. The weights of neurones
are not trained but assigned. The existing weights of neurones will never be alternated
but only new vectors are inserted into weight matrices when training, so it can be used
in real time. Since the training and running procedure can be implemented by matrix
manipulation, PNN is very fast.

Disadvantages: due to each pattern layer Gaussian component density being
derived from one training vector, the PNN is limited to applications involving relatively
small datasets. Large datasets would lead to large network architectures, which would
have an adverse impact on computational complexity. In addition, this could saturate
the feature space with overlapping Gaussian functions that would increase the rate of
misclassification.



6.6 Probabilistic Neural Network (PNN) 81

6.6.1 PNN Algorithm

The PNN operations are organised into a multi-layered feed-forward network with the
four layers explained below (see Figure 6.9):

Figure 6.9: PNN architecture

1. Input layer: Each neuron in the input layer represents a predictor variable. Gen-
erally, N−1 neurons are used when there are N patterns. Then the input neurons
feed values to each neuron in the hidden layer.

2. Pattern layer: This layer contains one neuron for each case in the training dataset.
It stores the values of the predictor variables for the case along with the target
value. A hidden neuron computes the distance of the test case from the neuron’s
centre point and then applies the RBF kernel function using the sigma values.
On receiving a pattern from the input layer, the neuron xij of the pattern layer
computes its output

Φij =
1

(2π)d/2σd
exp

[
−(x− xij)T (x− xij)

2σ2

]
(6.8)

where d denotes the dimension of the pattern vector x,σ is the smoothing param-
eter and xij is the neuron vector.

3. Summation layer: For PNN networks there is one pattern neuron for each cat-
egory of the target variable. The actual target category of each training case
is stored with each hidden neuron; the weighted value coming out of a hidden
neuron is fed only to the pattern neuron that corresponds to the hidden neurons
category. The pattern neurons add the values for the class they represent. In
more details, the summation layer neurons compute the maximum likelihood of
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pattern x being classified into class Ci by summarizing and averaging the output
of all neurons that belong to the same class

pi(x) =
1

(2π)d/2σd

1

Ni

Ni∑
j=1

exp

[
−(x− xij)T (x− xij)

2σ2

]
(6.9)

where Ni denotes the total number of samples in class Ci.

4. Output layer: The output layer compares the weighted votes for each target
category accumulated in the pattern layer and uses the largest vote to predict
the target category. If the apriori probabilities for each class are the same,
and the losses associated with making an incorrect decision for each class are
the same, the decision layer unit classifies the pattern x in accordance with the
Bayess decision rule based on the output of all the summation layer neurons

Ĉ(x) = arg max {pi(x)} , i = 1, 2, ...,m (6.10)

where Ĉ(x) denotes the estimated class of the pattern x and m is the total number
of classes in the training samples.

6.6.2 Experimental results based on PNN

The basic measurement setup used to performed this experiment are an FPGA board
with a SPARTAN 3 FPGA, a Tektronix TDS2012 oscilloscope with 1 Gigasample per
second to record the power/electromagnet signal traces, a Tektronix CT1 current probe
for measuring power consumption of FPGA, an ETS near-field probe set (model 7405)
for measuring electromagnetic emission and an ETS broadband amplifier (model 7405-
907b) to enhance the quality of the input signal traces. This experiment was performed
through a MATLAB R2015a toolbox and a PC configuration of Intel Core i7, 2.8 GHz
and 16.00 GB RAM. For more details, refer to 3.5.

There have been several studies in the literature reporting how the activation func-
tion in PNN depends on the chosen Bayesian classification parameters. Due to the
impact of spread parameter selection on classification learning performance and gener-
alisation, the magnitude of the spread value should be selected with care. Therefore,
in this section, the selection of the optimal spread parameter is verified. In Figure 6.10
there is a clear trend of memory consumption, time consumption and mean squared
error (MSE) of PNN analysis in respect with the values of the spread parameters rang-
ing from 0.001 to 90. As can be seen, with spread parameters between 17 and 26 the
MSE shows fluctuation and minimises at 0.37 which considered as the best accuracy.
From this figure, it can be inferred that PNN is a fast approach, since the computa-
tional timing is mostly stable at about 0.2 seconds for different values of the spread
parameter. In terms of memory consumption, as the value of the spread parameter
increased from 0.001 to 20, the consumption of memory declined from 1.66 GB to 1.55
GB and afterwards remained stable. Judging from this figure, PNN architectures with
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Figure 6.10: Memory consumption, Time consumption and Mean-Squared Error (MSE)
of PNN analysis as functions of the spread-parameter value.

spread parameter values between 22.5 and 23.2 can be considered as the most efficient
networks in terms of accuracy, time and memory consumption.

6.6.3 Summary

In this section pattern recognition and classification of side-channel information based
on a probabilistic neural network (PNN) is investigated. PNN is adopted because of
several advantages. Some of the most important advantages of PNN are

• its training speed is many times greater than for a FFBP network.
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• robustness to noise samples.

• easy and instantaneous training.

• efficient for real time analysis.

Regarding the experimental results, it can be inferred that the best expected ac-
curacy of PNN is with the spread parameters between 17 and 26, where the mean
squared error (MSE) minimises at 0.37. Overall, considering the computational tim-
ing and memory consumption, the most efficient PNN architectures is with spread
parameter values between 22.5 and 23.2.

6.7 Cascade and Forward Back-Propagation Neu-

ral Network (CFBP)

A Cascade Forward Back Propagation network (CFBP) is similar to a Feed-Forward
Back-Propagation network. The main indication of CFBP architecture is to build up
the cascade architecture by adding new neurons together with their connections to all
the inputs as well as to the previous hidden neurons. This configuration is not changed
at the following layers [144]. The other special feature of CFBP is to learn only the
newly created neuron by fitting its weights so that to minimise the residual error of the
network. The new neurons are added to the network while its performance increases.
So, the common cascade-correlation technique assumes that all m variables x1, ..., xm
characterising the training data are relevant to the classification problem

6.7.1 The Dynamic Network Architecture of CFBP

Figure 6.11 shows the architecture of a CFBP neural network with one input layer
of three neurons, one hidden layer of two neurons and an output layer. At the begin-
ning, a cascade network with m inputs and one output neuron starts to learn without
hidden neurons. The output neuron is connected to every input by weights w1, ..., wm

adjustable during learning. The output y of neurons in the network is given by the
standard sigmoid function f as follows

y = f(x;w) = 1/(1 + exp(−w0 −
m∑
i

wixi)) (6.11)

where x = (x1, ..., xm) is a m × 1 input vector, w = (w1, ..., wm) is a m × 1 weight
vector and w0 is the bias term which is hereinafter omitted.

Then the new neurons are added to the network one-by-one. Each new neuron is
connected to all m inputs as well as to all the previous hidden neurons. As shown in
Figure 6.11 by p1 and p2 each time only the output neuron is trained.

For training, the learning algorithm grows a network of near optimal complexity
which can generalise well; for more details see [145]. For updating network weights,
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Figure 6.11: Architecture of Cascade Forward Neural Network.

two training algorithms including Levenberg-Marquardt and Bayesian Regulation algo-
rithms can be used.

Advantages: The advantages of the cascade neural networks are well known. First,
no structure of the networks is predefined, that is, the network is automatically built up
from the training data. Second, By controlling the connectivity of neurons, a smaller
number of neurons can be applied which can lead to faster learning. For example, a
three-layer network has connections from first layer to second layer, second layer to
third layer, and first layer to third layer. The additional connections might improve
the speed at which the network learns the desired relationship; for more details see
[146].

Disadvantages: a disadvantage is that the cascade networks can be over-fitted in
the presence of noisy features.

6.7.2 Experimental Results Based on CFBP

The basic measurement setup used to performed this experiment are an FPGA board
with a SPARTAN 3 FPGA, a Tektronix TDS2012 oscilloscope with 1 Gigasample
per second to record the power/electromagnet signal traces, a Tektronix CT1 current
probe for measuring power consumption of FPGA, an ETS near-field probe set (model
7405) for measuring electromagnetic emission and an ETS broadband amplifier (model
7405-907b) to enhance the quality of the input signal traces (see Figure 3.10). This
experiment was performed through a MATLAB R2015a toolbox and a PC configuration
of Intel Core i7, 2.8 GHz and 16.00 GB RAM. For more details, refer to 3.5.

For our experiment, based on a CFBP network, twelve different training algorithms
are verified. For each algorithm, various numbers of hidden layers ranging from 1 to
110 have been tested. This range is selected to avoid over-fitting, inaccuracy and com-
putational complexity.
Table 6.2 illustrates a performance comparison of various training algorithms in CFBP
network analysis. This performance is with a proper range of hidden-layers number and
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based on mean-squared-error (MSE) which shows the accuracy of the applied approach,
time consumption of algorithm which shows the timing complexity and memory con-
sumption showing the required memory for this algorithm. From this table, Bayesian
Regularisation with [26 32] hidden layers can be considered as the most accurate train-
ing function with the minimum MSE of (0.014) and MSE range of [0.01 0.04], while
other MSE ranged between [0.05, 0.27]. On the other hand, the maximum MSE be-
longs to Gradient Descent and Gradient Descent with Momentum with 0.177 and 0.271
respectively.

From this table, Bayesian Regularisation with 27 hidden layers can be considered
as the most accurate training function with 0.0140 error, while other errors ranged be-
tween [0.05, 0.27]. On the other hand, the maximum error belongs to Gradient Descent
and Gradient Descent with Momentum with 0.177 and 0.271 respectively.
In terms of computational complexity, as shown in this table, Bayesian Regularisation
is significantly the slowest algorithm, with a processing time of 8600 seconds. Af-
terward, BFGS quasi-Newton and Levenberg-Marquardt, with 154 and 46.23 seconds
respectively. All other algorithms are quite fast and their computational time con-
sumption are not considerable (less than 6 seconds).
Memory consumption usually increases potentially as the number of hidden layers in-
creases. Judging from the memory consumption information in this table, Bayesian
Regularisation and BFGS quasi-Newton consume the least amount of memory with
0.02 GB, while all other training functions use almost the same size of memory, around
1.5 GB.
Overall, regarding the accuracy, time and memory consumption, Levenberg-Marquardt
can be considered as the most efficient FFBP training function. Because, although
Bayesian Regularisation has the best accuracy, it is significantly the slowest algorithm.
In addition, however the minimum MSE of Resilient Back-propagation and C.G.Polka-
Ribiere are smaller than that of Levenberg-Marquardt, the accuracy of Levenberg-
Marquardt is more stable and reliable since its range of MSE variation and average
are smaller (the MSE variation for Levenberg-Marquardt is 0.08− 0.06 = 0.02 and the
range of MSE variation for Resilient Back-propagation is 0.16− 0.05 = 0.11).

Figure 6.12 presents the performance of Levenberg-Marquardt as the most efficient
training algorithm with the number of hidden layers in the range of 1 to 110. As can
be seen, the MSE shows a fluctuation, with a decrease from 0.08 to 0.05 as the number
of hidden layers increases to 35, and after that remains stable around 0.05. From
this figure, as the number of hidden layers increases from 1 to 110, the computational
timing exponentially increases from 1 second to beyond 400 seconds. Moreover, the
consumption of memory remains stable at around 1.2 GB, except for the architecture
with 40 hidden layers that needs the maximum memory, of 1.5 GB. Generally, from
Figure 6.12, it can be inferred that the more hidden layers are used in the CFBP
network, the more time is required for processing the network and the less error can be
expected. Regarding the graph, FFBP architectures with a number of hidden layers
between 20 and 30 can be considered as the most efficient networks in terms of accuracy
and time, however their required memory is not the minimum. In order to verify the
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Figure 6.12: The performance of Levenberg-Marquardt (as the most efficient training
algorithm for CFBP network) based on memory consumption, Time consumption and Mean
Squared Error (MSE).

efficiency of a CfBP network based on the Levenberg-Marquardt training function, a
confusion matrix is provided in which the number of times that a particular key value
was correctly classified or misclassified are presented. Figure 6.13 shows the confusion
matrices for training, testing, and validation sets. The diagonal cells show the number
of times that the key values were correctly classified, and the off-diagonal cells show
the misclassified cases. The blue cell at the bottom right shows the total percentage
of correctly classified cases (in green) and the total percentage of misclassified cases
(in red). As can be seen, the results shows a good classification because of the higher
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numbers of correct responses in the diagonal squares (103, 110 and 139) compared to
the low numbers of incorrect responses in the off-diagonal squares (ranging [3 32]). The
lower-right blue square illustrates the overall accuracies of 75.7% correctly classified and
24.3% misclassified. In Figure 6.14 the performance of our CF-based classification in
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Figure 6.13: CFBP network Confusion matrix. The diagonal cells (green): the number
of correctly classified cases, The off-diagonal cells (red): the number of misclassified cases,
The blue cell: the total percentages.

terms of the mean-square error of training, validation and test sets is indicated. This
figure gives us information about the performance and status of our CFBP network
training, validating and testing process and how the network can be improved. For
example, if the training performance is poor, then the number of neurons should be
increased. If the performance on the training set is good, but the test-set performance
is significantly worse, which could indicate over-fitting, then reducing the number of
neurons or hidden layers can improve the results. Considering this figure, the test-set
error and validation-set errors have similar characteristics, and the best performance
occurred at the first epoch. In addition, the final mean-square error is small and no
significant over-fitting has occurred by the first iteration (where the best validation
performance occurs); therefore the result is reasonable.

Figure 6.15 shows the error histogram to obtain additional verification of our
method’s performance. Due to variability in measurement or some unavoidable ex-
perimental and noise, some recorded data are distant from others and their fit is sig-
nificantly worse than the majority of data, and they are considered as outliers. It is
reasonable to check the outliers to determine if the data is bad, or if those data points
are different from the rest of the dataset. If the outliers are valid data points, but are
unlike the rest of the data, then the network is extrapolating for these points; therefore,
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Figure 6.14: The performance of our CFBP-based classification in terms of the mean-
square error of training, validation and test sets. Best validation performance is 0.16579 at
epoch 1.

more data should be collected that looks like the outlier points, and the network should
be retrained. Figure 6.15 gives an indication of outliers. It can be seen that most errors
fall between -0.5 and 0.5 and the outliers correspond to analysis based on only a few
instances. Expectedly, as the number of instances increase, the errors decrease. In oder
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Figure 6.15: CFBP network Error histogram as an indication of outliers.

to check the quality of classifiers, Receiver Operating Characteristic (ROC) curves are
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provided, see Figure 6.16. For each class of a classifier (class of key-bit 1, key-bit 2,
key-bit 3 and key-bit 4), ROC applies threshold values across the interval [0,1] to the
outputs. For each threshold, two values are calculated, the True Positive Ratio (the
number of outputs greater than or equal to the threshold, divided by the number of one
targets), and the False Positive Ratio (the number of outputs less than the threshold,
divided by the number of zero targets). In Figure 6.16, the coloured lines represent the
ROC curves, which are plots of the true positive rate versus the false positive rate as
the threshold is varied. A perfect test would show points in the upper-left corner. As
illustrated in Figure 6.16, because of the ratio of True-Positive-Rate to False-Positive-
Rate the best classification was for key-bit 4, then classification for key-bits 1, 3 and
2.
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Figure 6.16: Receiver Operating Characteristic (ROC) curves based on CFBP classifica-
tion; the best classification was for key-bit 4, then key bits 1, 3 and 2.

6.7.3 Summary

This section has investigated pattern recognition and classification of side-channel infor-
mation based on cascade and feed-forward back propagation neural network (CFBP).
This, is adopted because of several special features, some of which are

• The network is automatically built up from the training data.

• Having faster learning process.

• Controlling the number and connectivity of neurons.
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Judging from the result of this section, it can be inferred that Levenberg-Marquardt
is the most efficient CFBP training function for stability, accuracy, time and memory
consumption. Moreover, the provided confusion-matrix and error-histogram indicate
an overall accuracy of 75.7% correctly classified and 24.3% misclassified and no signif-
icant over-fitting. Hence, side channel data characterisation based on CFBP can be
considered as an promising approach for side-channel attacks.

6.8 Learning-Vector-Quantisation Neural Network

(LVQ)

Vector Quantisation (VQ) has been extensively explored from theoretical and applied
points of view. [147] and [148] are classical reviews. A vector quantiser maps k-
dimensional vectors in the vector space Rk into a finite set of vectors Y = {yi : i =
1, 2, ..., N}. Each vector yi is called a code vector (CV) or a codeword and the set
of all the codewords is called a codebook. Associated with each codeword yi is a
nearest-neighbour region called the Voronoi region, and it is defined by:

Vi = {x ∈ Rk : ||x− yi|| ≤ ||x− yj||, for all j 6= i} (6.12)

The set of Voronoi regions partitions the entire space Rk such that:

N⋃
i=1

Vi = Rk

N⋂
i=1

Vi = φ

The main idea is to cover the input space of samples with code-book vectors, each
representing a region labelled with a class. A code-book vector can be seen as a
prototype of a class member, localised in the center of a class region in the input space.
A class can be represented by an arbitrarily number of code-book vectors, but one
code-book vector represents one class only; see Figure 6.17.

Moving into a supervised context, Learning Vector Quantisation (LVQ) [149] found
a very important role in statistical pattern classification [150]. LVQ is a learning
algorithm that combines competitive learning with supervision. In terms of neural
networks a LVQ is a feed-forward net with a two-layer neural network, including a
competitive layer and a linear layer. The competitive layer is the core layer that
performs classification through learning. Each neuron in the competitive layer of the
LVQ network learns to recognise a prototype vector, which allows it to classify a region
of the input space. In using LVQ networks, the distances between the input vectors
and the prototype vectors will be directly calculated to achieve classification. If two
input vectors are close to each other, they belong to the same class. LVQ algorithms
do not approximate density functions of class samples as do Vector Quantisation or
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Figure 6.17: Classification of input space into class regions by codebook vectors in a
two-dimensional feature space.

Probabilistic Neural Networks (PNN) do, but directly define class boundaries based
on prototypes, Figure 6.17 shows the classification of input space into class regions by
codebook vectors represented as neurons positioned in a two-dimensional feature space.
The LVQ architecture in a neural network is shown in Figure 6.18. In LVQ there are no

Figure 6.18: LVQ architecture: one hidden layer with Kohonen neurons, adjustable
weights between input and hidden layer and a winner-takes-all mechanism.

general restrictions on the complexity of the problem domain like, for example, with
simple neural network structures such as the classical Perceptron [151]. Compared
with more complex neural network structures, such as multilayer Perceptrons, the
simple LVQ topology is superior in transparency and speed with appropriate training
algorithms.
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A major disadvantage of the LVQ classifier is that it does not perform an interior
scaling transformation. Therefore, the success of a classification scheme may be di-
rectly associated with an appropriate data preprocessing transformation to normalise
data and discard non-relevant input features. Unfortunately, such preprocessing meth-
ods are quite inflexible: once defined, they can hardly be altered without discarding
the information already gathered within the successive classifiers. Concerning the pre-
processing stage, a common approach is to impose transformations on the original
variables, generating more appropriate representations, e.g. principal component anal-
ysis (PCA).

6.8.1 LVQ Algorithm

The basic LVQ algorithm LVQ1 rewards correct classifications by moving the code
vector (CV) towards a presented input vector, whereas incorrect classifications are
punished by moving the CV in the opposite direction. The magnitudes of these weight
adjustments are controlled by a learning rate which can be lowered over time in order
to get finer movements in a later learning phase. Improved versions of LVQ1 are
KOHONENs OLVQ1 with different learning rates for each CV in order to get faster
convergence and LVQ2, LVQ2.1 and LVQ3.

A brief description of the most advanced training algorithm, LVQ3, will be given
below. Detailed descriptions of the currently available training algorithms can be found
in [152, 153].

First step: in an LVQ3 training iteration t is the determination of the two closest
codebook vectors to the present training sample x(t), which will be referred to as mi(t)
and mj(t).

Second step: a symmetric ’window’ of non-zero width around the mid-plane of
mi and mj must be specified. A vector x is defined to lie in the ’window’ if

min
(

di
dj
,
dj
di

)
> s

where s represents a constant factor, commonly chosen between 0.4 and 0.8, and di,
dj, are the distances of x to mi and mj respectively.

Third step: the LVQ3 training process then updates mi and mj according to the
following equations

mi(t+ 1) = mi(t)− α(t) [x(t)−mi(t)]

mj(t+ 1) = mj(t) + α(t) [x(t)−mj(t)]
(6.13)

if x falls into the ’window’ and x and mj belong to the same class, while x and mi

belong to different classes;

mk(t+ 1) = mk(t) + εα(t) [x(t)−mk(t)] , k ∈ {i, j} (6.14)

if x falls into the ’window’ and x, mj and mi belong to the same class. Here α(t) is
a scalar gain, decreasing monotonically in time. A common initial value α(0) is 0.03.
Epsilon (ε)is a constant, applicable values are between 0.1 and 0.5 [153].
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6.8.2 Experimental Results Based on LVQ

The basic measurement setup used to performed this experiment are an FPGA board
with a SPARTAN 3 FPGA, a Tektronix TDS2012 oscilloscope with 1 Gigasample
per second to record the power/electromagnet signal traces, a Tektronix CT1 current
probe for measuring power consumption of FPGA, an ETS near-field probe set (model
7405) for measuring electromagnetic emission and an ETS broadband amplifier (model
7405-907b) to enhance the quality of the input signal traces (see Figure 3.10). This
experiment was performed through a MATLAB R2015a toolbox and a PC configuration
of Intel Core i7, 2.8 GHz and 16.00 GB RAM. For more details, refer to 3.5.

Concerning our LVQ-based analysis, the number of hidden layers plays an impor-
tant part in overall neural network architecture and has a significant influence on the
final output. There is no specific method or formula to determine this number, and
hence this number must be carefully chosen via experiment. Using too few neurons
can lead to under-fitting while too many neurons can contribute to computational com-
plexity or over-fitting.
For this purpose, a comparison of classification accuracy, timing complexity and mem-
ory consumption between LVQ-based architectures with different numbers of hidden
layers ranging from 10 to 110 is performed and the experimental results are provided
in Table 6.3. As can be seen from this table, by increasing the number of hidden layers
from 10 to 80, the error dropped from 0.135 to 0.060 and minimised at 0.057 with the
number of hidden layers of about 90 to 100, after that the error increased by 0.013
with 110 hidden layers.
Concerning the timing complexity, the most time-consuming LVQ architectures are
with the number of hidden layers between 90 and 100, with a range of [14000, 16000]
seconds. Other processing times increase gradually from 2303 to 12500 seconds as the
number of hidden layers increases from 10 to 80.
Judging from the memory consumption information in this table, the memory con-
sumption of all hidden layers are almost the same (in the range of [0.124, 0.129]). In
Figure 6.19 the training performance of our LVQ-based classification is indicated. From
this figure, the best training performance is 0.066556 at epoch 279. The efficiency of
the LVQ-based analysis is verified through a confusion matrix in which the numbers of
times that a particular key value was correctly classified or misclassified are presented;
see Figure 6.20. The diagonal cells show the number of times that the key values were
correctly classified, and the off-diagonal cells show the misclassified cases. The blue cell
in the bottom right shows the total percentage of correctly classified cases (in green)
and the total percentage of misclassified cases (in red). As can be seen, the results
show a good classification because of the higher numbers of correct responses in the
diagonal squares (143, 128, 110 and 136) compared to the low numbers of incorrect
responses in the off-diagonal squares (ranging [0 23]). The lower-right blue square
illustrates the overall accuracies of 86.7% correctly classified and 14.3% misclassified.
Figure 6.21 illustrates Receiver Operating Characteristic (ROC) curves to check the
quality of classifiers. For each class of a classifier (class of key-bit 1, key-bit 2, key-bit
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Table 6.3: LVQ network performance comparison based on the number of hidden layers,
timing complexity and memory consumption

No. Hidden layers MSE Time (Sec) Mem(GB)

10 0.135 2303 0.124
20 0.112 3253 0.124
30 0.090 4932 0.124
40 0.080 5841 0.125
50 0.070 6909 0.125
60 0.065 9639 0.129
70 0.060 11247 0.128
80 0.062 12512 0.127
90 0.057 13915 0.129
100 0.057 16023 0.128
110 0.070 5985 0.126

3 and key-bit 4), ROC applies threshold values across the interval [0,1] to outputs.
For each threshold, two values are calculated, the True Positive Ratio (the number of
outputs greater than or equal to the threshold, divided by the number of one targets),
and the False Positive Ratio (the number of outputs less than the threshold, divided
by the number of zero targets). In Figure 6.21, the coloured lines represent the ROC
curves which are plots of the true positive rate versus the false positive rate as the
threshold is varied. A perfect test would show points in the upper-left corner. From
this figure, the best classification was for key-bit 1, then for key-bits 4, 2 and 3.

6.8.3 Summary

This section is dedicated to pattern recognition and classification of side-channel infor-
mation based on learning vector (LVQ) quantisation neural network. This approach is
adopted because of some features;

• There are no general restrictions on the complexity of the problem domain.

• A simple and fast topology with an appropriate training algorithm.

Judging from the results of this section, LVQ architectures with between 90 and 100
hidden layers can be considered as the most accurate architectures, although they
are known as the slowest ones. In addition, judging from the confusion matrices and
error histogram, our results indicate an overall accuracy of 86% correctly classified,
14% misclassified and no significant over-fitting; therefore, LVQ can be considered as
a promising approach of side-channel data characterisation.
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Figure 6.19: The training performance of our LVQ-based classification. Best Training
Performance is 0.066556 at epoch 279.
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Figure 6.20: LVQ network Confusion matrix. The diagonal cells (green): the number of
correctly classified cases, The off-diagonal cells (red): the number of misclassified cases, The
blue cell: the total percentages.
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Figure 6.21: Receiver Operating Characteristic (ROC) curves based on LVQ analysis.
The best classification was for key-bit 4, then for key bits 1, 3 and 2.

6.9 A Comparison of the Performance of Various

Neural-Network Architectures in Side Channel

Information Analysis

Neural networks have emerged as an important tool for the characterisation of side
channel information analysis. The recent literature considers neural networks as a
promising alternative to various conventional side-channel attacks.

Although significant progress has been made in different applications of classification-
related areas of neural networks, a number of issues in applying neural networks in
side-channel analysis still remain and have not been solved completely. In this section,
some empirical-comparison issues of different architectures of neural networks in SCA
are reviewed and discussed. This section aims to provide a summary and comparison
of the most powerful neural networks for multi-class classification of side channel infor-
mation. The strengths and weaknesses of each network as well as their performance in
terms of accuracy, memory and time consumption are also discussed. Although many
types of neural networks can be used for multi-class classification purposes, our fo-
cus is on feed-forward back-propagation (FFBP), Probabilistic neural network (PNN),
Cascade-forward back propagation (CFBP) and Learning vector quantisation (LVQ)
which are the most widely studied and used neural-network classifiers. Below is a short
summary of these networks.

• FFBP: The feed-forward neural network was the first and simplest type of neural
network in which the information moves in only one direction, forward, from the
input nodes, through the hidden nodes (if any) and to the output nodes. There
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are no cycles or loops in the network. In order to training the network, back-
propagation calculates the gradient of an error function with respect to all the
weights in the network. The gradient is fed to the optimisation method which in
turn uses it to update the weights, in an attempt to minimise the error.

• PNN: A probabilistic neural network (PNN) is a feed-forward neural network,
which provides a general solution to pattern classification problems by following
an approach developed in statistics, called Bayesian classifiers; see [141].

• CFBP: The main feature of CFBP architecture is to build up the cascade archi-
tecture by adding new neurons together with their connections to all the inputs
as well as to the previous hidden neurons. This configuration is not changed at
the following layers [144]. The other special feature of CFBP is to use only the
newly created neuron by fitting its weights so that to minimise the residual error
of the network. The new neurons are added to the network while its performance
increases.

• LVQ: learning-vector-quantisation neural networks consist of two layers. The
first layer maps input vectors into clusters that are found by the network during
training. The second layer merges groups of first-layer clusters into the classes
defined by the target data.

Table 6.4 provides a comparison of the advantages and disadvantages of different
multi-class classifiers in side-channel information analysis. This table is based on the
theoretical information and experimental results discussed in this chapter. Judging
from this table, FFBP is known as a simple type of network which can be easily
implemented while providing an acceptable accuracy. However the results are sensitive
to network parameters such as the number of hidden layers and training functions,
and any small change in these parameters can drastically affect the results or cause
under/over fitting.

PNN is the fastest algorithm in terms of training speed. Moreover, it is robust to
the noisy samples; therefore, it can be a good choice for real-time analysis, although
PNN is limited to applications involving relatively small datasets. Large datasets
cause computational complexity. In addition, this could saturate the feature space
with overlapping Gaussian functions that would increase the rate of misclassification.

In CFBP, no structure of a network is predefined, that is, the network is automat-
ically built up from the training data, so a smaller number of neurons can be applied,
which can lead not only to faster learning but also to low memory consumption while
still being accurate. On the other hand, a disadvantage of CFBP is that the cascaded
networks can be over-fitted in the presence of noisy features.

In LVQ there are no general restrictions on the complexity of the problem do-
main. Compared with other neural-network structures, LVQ topology is superior in
transparency and speed with appropriate training algorithms. However a major dis-
advantage of the LVQ classifier is that it does not perform an interior scaling trans-
formation. Therefore, the success of a classification scheme may be directly associated
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Table 6.4: Comparison of advantages and disadvantages of neural-network classifiers
Advantages Disadvantages

FFBP
- Good accuracy
- Easy to implement

- Sensitive to network parameters
- Low training speed
- Vulnerable to under-fitting
- Vulnerable to over-fitting

PNN
- The highest training speed
- Robust to the noise samples
- Efficient for real-time tasks

- High memory consumption
- High computational complexity
- Not accurate

CFBP
- The most accurate
- Low memory consumption
- Fast learning

- Not efficient with noise
- Vulnerable to over-fitting

LVQ
- Fast training
- No general complexity limit
- Good accuracy

- Needs appropriate preprocessing
stage

- The slowest network

with an appropriate data preprocessing transformation to normalise data and discard
non-relevant input features. In addition it is known as the slowest network.

Table 6.5 indicates a general comparison of the experimental results of side-channel
information characterisation based on different neural-network classifiers (FFBP, PNN,
CFBP and LVQ). For each network different architectures and parameters (such as
training functions, number of hidden layers) have been tested and verified. Having
determined the most proper network architectures and parameters, their general per-
formance is compared in terms of MSE error, timing complexity and memory consump-
tion. As shown in this table, FFBP and CFBP are the most accurate classifiers of side
channel information with an MSE-range of [0.01 0.18] and [0.01 0.27] respectively,
while PNN with 0.37 has the worst accuracy. In more detail, the best accuracy is known
for CFBP with 27 hidden layers and a Bayesian Regularisation training function, and
FFBP with 29 hidden layers and the same training function.

In addition to accuracy, the computational complexity of the algorithms plays an
important role in their efficiency and should be taken into consideration. Regarding
the timing complexity, as shown in this table, PNN is considered to be the fastest
algorithm and needs only tw seconds of processing time, whereas CFBP and LVQ
need about 8600 and 13000 seconds to achieve the best accuracy, significantly greater
than other algorithms. According to this table, sometimes a little improvement of the
accuracy, drastically affects the network complexity. For example, the processing time
for an FFBP network can be about 16 seconds (with 25 hidden layers and Levenberg-
Marquardt training function) to have 0.06 MSE while in order to get 0.017 MSE, a
network architecture is needed with 29 hidden layers and Bayesian Regularisation as
the training function. The processing time of this architecture will be approximately
6584 seconds.

Judging from the memory consumption information in this table, FFBP (with 29
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Table 6.6: Accuracy comparison of key-bit classification
Correctly Classified

%
Misclassified

%
Outliers

k.b1 k.b2 k.b3 k.b4 avg k.b1 k.b2 k.b3 k.b4 avg

FFBP 89.7 82.2 88.0 91.9 88.0 10.3 17.8 12.0 8.1 12.0 NO

PNN 73.2 70.0 69.8 75.0 72.0 26.8 30 30.2 25 28.0 NO

CFBP 75.7 62.0 76.9 89.1 75.7 24.3 38.0 23.1 10.9 24.3 NO

LVQ 89.4 78.0 87.3 90.1 86.0 10.6 22.0 12.7 9.9 14.0 NO

hidden layers and Bayesian Regularisation training function) and CFBP (with 27 hid-
den layers and Bayesian Regularisation training function) consume the least amount
of memory at approximately 0.02 GB, while all other algorithms need almost the same
size of memory ranging from 0.1 to 1.5 GB.

In order to compare the classification accuracy of our experimental results, Table 6.6
is provided to indicate the percentages of correctly classified and misclassified samples
along with the best validation and outlier status. The classification results are also
presented for each class separately (class of key-bit 1, key-bit 2, key-bit 3 and key-
bit 4) to show the efficiency of classification for each class. As can be seen from this
table, FFBP and LVQ have a good performance, correctly classifying 88% and 86%
respectively, whiles the corresponding percentages for CFBP and PNN are 75.7% and
72%. The outliers may occur in the results due to variability in measurement; hence
the outliers of our result are checked to determine if the data is bad, or if those data
points are different from the rest of the dataset. If the outliers are valid data points,
but are unlike the rest of the data, then the network extrapolates for these points;
therefore, more data should be collected that looks like the outlier points, and the
network should be retrained. In our experiment outliers only correspond to analysis
based on a few instances and after training with enough samples the results would be
reliable.

6.9.1 Summary

In this chapter, characterisation of side-channel information based on the most pow-
erful neural networks in multi-class classification is investigated. For this purpose, we
applied feed-forward back-propagation (FFBP), Probabilistic neural network (PNN),
Cascade-forward back propagation (CFBP) and Learning-vector quantisation (LVQ)
which are the most widely studied and used neural network classifiers. Regarding our
experimental results, the performance of these classifiers is compared through some
comparison tables which provide useful information for cryptosystem designers. The
strengths and weaknesses of each classifier as well as their efficiency in terms of accu-
racy and computational complexity are presented. From our results, it can be inferred
that FFBP with 25 hidden layers and the training function of Levenberg-Marquardt
is the most efficient neural network architecture for characterisation of side-channel
information. Although FFBP or CFBP with the Bayesian Regularisation training
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function are more accurate than FFBP with Levenberg-Marquardt, their processing
time is significantly long; they, therefore, cannot be considered as an efficient approach
of side-channel analysis especially in real-time attacks.
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7
Thesis Conclusion and Recommendations

for Future Work

7.1 Thesis Conclution

Cryptosystems have been widely used in different applications which play an important
role in our modern life. In this thesis, elliptic-curve cryptography (ECC) is introduced
as a promising public-key cryptosystems. In addition, its physical vulnerabilities and
implementation considerations are discussed. ECC offers two major benefits over con-
ventional cryptographic algorithms; it has more security per bit and a suitable key size
for hardware and modern communications.

Cryptosystems, even after recent improvements in mathematical cryptography al-
gorithms, are still vulnerable to Side-Channel Attack (SCA) which has been found to
be a powerful class of attack against all implementations of cryptographic algorithms.
In this circumstance, both attacks and countermeasures interact strongly, as counter-
measures get broken by improved attacks and new countermeasures are developed to
thwart ever more advanced attacks. Although several countermeasures against con-
ventional attacks have been proposed, some inherent leakages during single executions
in a cryptography algorithm cannot be prevented in many cases. Another challeng-
ing issue is that side-channel information analysis involves a huge input dataset with
high signal-noise ratio, because a high sampling rate is usually mandatory in order to
retain the frequency content of the side channel. This leads to inaccuracy, excessive
computational loads and a prohibitively large memory usage.

This thesis proposes a powerful and promising method of SCA based on machine-
learning techniques in the forms of Neural Networks (NN), Support Vector Machines
(SVM) and Principal Component Analysis (PCA). Regarding our experimental results
based on an FPGA implementation of elliptic curve cryptography (ECC), PCA can be
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used as a strong preprocessing stage to reduce the signal-noise ratio, data-set dimension
and algorithm complexity. In addition, the most efficient machine-learning techniques
for side-channel information characterisation are LVQ neural network (with a number
of hidden layers between 90 and 100), and SVM with Gaussian RBF kernel function
with parameter p value of 5 and 50 for CS and M-SVM2 SVM models respectively
with about 80 to 85 % accuracy.

7.2 Future Work Directions

This research has laid significant groundwork for further investigation in the application
of machine learning techniques in side channel data characterisation. Deep learning
refers to artificial neural networks that are composed of many layers. one of the promis-
ing approach for future work can be deep learning which is a growing trend in machine
learning due to some favourable results in applications where the target function is very
complex and the datasets are large. This algorithm is based on a set of algorithms that
attempt to model high-level abstractions in data by using a deep graph with multiple
processing layers, composed of multiple linear and non-linear transformations.

A further contribution can be in preprocessing stage and investigating the perfor-
mance of other approaches such as Linear discriminant analysis (LDA) and Fisher dis-
criminant analysis (FDA) in comparison with PCA. LDA is a generalisation of Fisher’s
linear discriminant, a method used in statistics, pattern recognition and machine learn-
ing to find a linear combination of features that characterizes or separates two or more
classes of objects or event.

In addition, in terms of measurement set-up, micro probing technique is recom-
mended as a more precisely method for measuring the side channel information rather
than conventional measurement using probe.



A
Measurement Probes

Different types of current and electromagnetic probes used in this project are:

A.1 Current Probe

Tektronix CT1: for measuring the power consumption of our FPGA board. The
CT1 Current Probe (Figure A.1) is designed for permanent or semi-permanent in-
circuit installation. It consists of a current transformer and an interconnecting cable.
The current transformer has a small hole through which a current-carrying conductor
is passed during circuit assembly. The FPGA board uses three discrete regulators
to generate the necessary voltages. A 1.2V regulator supplies power to the FPGA’s
VCCINT voltage inputs, which power the FPGA’s core logic. In order to measure
the power consumption of the FPGA, a CT1 probe is installed between the 1.2 V
regulator and the FPGA IC. Figure A.2 illustrates how CT1 is used to measure the
power consumption of the FPGA IC alone.

Figure A.1: Tektronix CT1 current probe
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Figure A.2: CT1 connection to measure the FPGA power consumption

A.2 Electromagnetic probes

Various commercial and hand-crafted probes are used and tested in this project.

A.2.1 Hand-crafted probes

Hand-crafted probes have been used widely in side-channel measurement [7], Figure
A.3.

Figure A.3: The use of hand-crafted electromagnetic probe in literature. Taken from [7]
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Magnetic probe works based on the fact that magnetic field passing through the
probe loop generates a voltage according to Faradays law, which states that the induced
voltage is proportional to the rate of change of magnetic flux through a circuit loop. At
very low frequencies a voltage would be induced directly in the internal loop conductor,
but the copper sheath is quite a good shield to magnetic fields at frequencies exceeding
the low KHz range. So at high frequency, a voltage is then induced preferentially in
the outer sheath loop, and this appears across the sheath gap [154]. The metal sheath
thickness is several skin depths, so this prevents direct interaction between currents on
the external surface and internal surfaces of the shield.

The magnetic field probes are made in the form of a loop with an inherent elec-
trostatic shield, generally from 50 Ohm semi-rigid coaxial cable. The loop is formed
by making a circle or square from semi-rigid coax with a gap placed symmetrically in
the middle of the loop. The position of the gap is very important to the performance
of the shield. If the gap is not in the middle of the loop, shielding effectiveness is
compromised. Square loops are useful for making measurements of circuit voltage and
current while either square or round loops are suitable for measuring magnetic fields
in free space. They vary slightly in configuration and in characteristics, but essen-
tially they are electrically small shielded loop antennas derived from the antennas used
for radio communication and direction finding. Figure A.4 shows our hand-crafted
electromagnetic probes.

Figure A.4: The hand-crafted electromagnetic probes verified in this project
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A.2.2 Commercial probes

ETS near-field probe: An ETS near-field probe set (model 7405) (Figure A.5)
is used for measuring the electromagnetic emission of our FPGA board. This set
consists of three loop probes, one stub and one ball probe, an extension handle and
an optional battery-powered pre-amplifier. The handle of each probe terminates in a
BNC connector. These probes are designed to be used with a signal-analysing device
such as an oscilloscope or a spectrum analyser.

Figure A.5: ETS near-field probe set (model 7405)[2]

• Ball probe (Figure A.6): is a sensitive one. The larger sensing element does not
offer the highly-refined definition of the source location which the stub probe
allows, but it is capable of tracing much weaker signals. The impedance of the
stub probe is essentially the same as that of a non-terminated length of 50 ohm
coaxial cable.

Figure A.6: ETS near-field ball probe [2]

• Surface probe (Figure A.7): The surfaces of bus structures, large components or
supply structures emit E-fields that can cause EMI. The bottom of the surface
probe detects these fields on an area measuring approx.
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Figure A.7: Surface probe (model RSE02) [8]

• Narrow probe (Figure A.8): The narrow electrode of the this probe can select a
single conductor track from a bundle of conductor tracks 0.2 mm in width. The
light colour of the probe tip stands out in sharp contrast to the dark green of the
printed circuit board.

Figure A.8: Narrow probe (model RSE10) [8]

• STUB probe (Figure A.9): This probe can be used to selectively detect the
current spectrum in conductor tracks and component leads such as on capacitors
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Figure A.9: STUB probe (model RSH50-1) [8]

or ICs. The probe tip has a magnetically active groove of approx. 0.5 mm in
width.



B
Software Considerations

The analytical stage of this project was conducted through a MATLAB toolbox, and
the multi-class classification procedure is performed through MSVMpack 1.5 [127],
which is an open-source package dedicated to multi-class support-vector machines and
can handle classification problems with more than two classes, calculating the time
complexity. Following is a list of the functions used:

• Timing Complexity: ”etime” and ”clock” command.
e = etime(t2,t1) returns the number of seconds between two date vectors or
matrices of date vectors, t1 and t2.
c = clock returns a six-element date vector containing the current date and time
in decimal form.

c = clock;
Algorithm

e = etime(clock,c);

• Memory Consumption: ”Memory”
The ”Memory” function displays information showing how much memory is avail-
able and how much the MATLAB software is currently using.
� Memory
Maximum possible array: 14253 MB (1.495e+10 bytes)

Memory available for all arrays: 14253 MB (1.495e+10 bytes)

Memory used by MATLAB: 747 MB (7.833e+08 bytes) Physical Memory (RAM):

12279 MB (1.288e+10 bytes)

• Cross-Validation: ”crossvalind”
[Train, Test] = crossvalind(”Holdout”, N, P) returns logical index vectors for
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cross-validation of N observations by randomly selecting P ∗N (approximately)
observations to use for the evaluation set. P must be a scalar between 0 and
1. P defaults to 0.5 when omitted, corresponding to holding 50% out. Using
holdout cross-validation within a loop is similar to K-fold cross-validation one
time outside the loop, except that non-disjointed subsets are assigned to each
evaluation.

• Principal component analysis: ”pca”
[coeff,score,latent] = pca(X) returns the principal component coefficients, also
known as loadings, for the n-by-p data matrix X. The rows of X correspond to
observations and the columns correspond to variables. The coefficient matrix is
p-by-p. Each column of ”coeff” contains coefficients for one principal component,
and the columns are in descending order of component variance. This function
also returns the principal component scores in ”score” and the principal com-
ponent variances in ”latent”. You can use any of the input arguments in the
previous syntaxes.

• Support-vector machine: ”svmclassify”
Group = svmclassify(SVMStruct,Sample) classifies each row of the data in Sample,
a matrix of data, using the information in a support-vector machine classifier
structure ”SVMStruct”, created using the svm train function. Like the training
data used to create ”SVMStruct”, Sample is a matrix where each row corresponds
to an observation or replicate, and each column corresponds to a feature or vari-
able. Therefore, Sample must have the same number of columns as the training
data. This is because the number of columns defines the number of features.
Group indicates the group to which each row of Sample has been assigned.

• Neural-network functions:
Feed-forward back-propagation networks: feedforwardnet(hiddenSizes,trainFcn)
Cascade back-propagation network: cascadeforwardnet(hiddenSizes,trainFcn)
Probabilistic neural network: newpnn(P,T,spread)
Learning-vector quantisation neural network: lvqnet(hiddenSize,lvqLR,lvqLF)



List of Acronyms/Abbreviations

ALU Arithmetic Logic Unit

CFBP Cascade and Forward Back-Propagation Neural Network

CS Crammer and Singer

CV Code Vector

DAG Directed Acyclic Graph

DEMA Differential Electromagnetic Analysis

DH Diffie-Hellman

DPA Differential Power Analysis

DSA Digital Signature Algorithm)

ECC Elliptic Curve Cryptography

ECP ECC Processor

ECPA Elliptic-Curve Point Addition

ECPD Elliptic-Curve Point Doubling

ECPM Elliptic-Curve Point Multiplication

ECSM Elliptic-Curve Scalar Multiplication

EM Electromagnetic

FFBP Feed-Forward Back-Propagation

FFMA Finite-Field Modular Arithmetic

LLW Lee, Line and Wahba

LVQ Learning-Vector-Quantisation Neural Network

PCA Principal Component Analysis

PNN Probabilistic Neural Network
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116 List of Acronyms/Abbreviations

MSE Mean Squared Error

NAF Non-Adjacent Form

NN Neural Networks

RPA Refined Power Analysis

ROC Receiver Operating Characteristic

RTL Register Transfer Level

SCA Side-Channel Attacks

SEMA Simple Electromagnetic Analysis

SPA Simple Power Analysis

SVM Support Vector Machines

WW Weston and Watkins

ZPA Zero-Value Point Attack
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