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Abstract

Randomised clinical trials (RCTs) compare treatment interventions using the health out-

comes of individuals assigned to their treatment at random. RCTs are the gold standard for

comparing treatment efficacy, but many factors in their design, conduct and analysis can

lead to bias, inefficiency or misinterpretation. This thesis by publication presents statistical

investigations of three such areas.

The first area relates to potential bias from early stopping of RCTs. Some researchers have

claimed that early stopping of RCTs based on interim analyses leads to overestimation of the

treatment effect and that this is particularly problematic for meta-analyses that synthesise the

results of multiple studies. This thesis presents extensive theoretical and simulation studies

of this potential source of bias. It is concluded that early stopping is not a substantive source

of bias for meta-analyses of RCTs.

The second area relates to the potential for misinterpretation of RCT subgroup analyses,

particularly subgroups defined by geographical region in global studies. Subgroup analysis

principles require a significant test of interaction to conclude heterogeneity of subgroup

treatment effects. However, overly optimistic expectations of treatment effect homogeneity

often lead to over-interpretation of apparent differences between subgroups. This thesis

proposes a suite of graphical analyses that supplement a test of interaction with a visual

assessment of the extent to which chance can explain the observed differences between

subgroups. An open-source software package for the R computing environment is presented.

The third area relates to efficient design of RCTs having several treatments compared to

a common control. Standard balanced designs have equal numbers of individuals on each

treatment, but are inefficient in this context. This thesis considers efficient unbalanced de-

signs that minimise variance or maximise power. New results in optimal design theory, and

some guidelines for the efficient planning of RCTs having several treatments, are presented.
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Chapter 1

Introduction

This thesis is concerned with statistical methodology for the design, monitoring and anal-

ysis of randomised clinical trials (RCTs). Although RCTs are ubiquitous in the medical

literature and are the gold standard for comparing treatment efficacy, many complexities

can arise in practice that may lead to bias, inefficiency or misinterpretation. Resource lim-

itations and a need to ensure that no more patients than necessary are exposed to experi-

mental and unproven therapies, are two important considerations necessitating clinical trials

to be designed optimally. In addition, an ethical imperative exists that new treatments with

proven efficacy are made available to patients in a timely manner. This induces a need for

trials requiring long-term follow-up, in particular those trials that can have significant clini-

cal impact such as mortality studies, to be monitored at interim time-points and potentially

stopped early. This adds complexity to the design and analysis of a clinical trial and requires

specialised methods of statistical inference. Given these challenges, maximising the use of

available data and evidence, either through evaluations of the efficacy of new therapies using

subgroup analyses or through the synthesis of evidence from multiple trials addressing the

same question is frequently encountered in medical literature.

The research presented addresses such issues with reference to three specific topics relevant

to clinical trials research: investigating the implications of including in meta-analyses the

results from trials subjected to interim monitoring and early stopping; understanding the

play of chance when interpreting differences in subgroup-specific treatment effects with

a particular focus on subgroups defined by geographical regions in multi-country trials;
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2 INTRODUCTION

and optimising efficiency through unbalanced designs of single-control multiple-comparator

clinical trials. In the remainder of this chapter, an overview of the thesis is provided along

with a summary of the motivation and main lines of research on the above topics.

1.1 Overview
This thesis is presented as a "thesis by publication" and consists of six chapters. A brief

outline of each of the three topics discussed above is presented in this introductory chapter

along with some review of existing methodology. This chapter also describes the research

motivation behind each of these chapters and the contribution it makes to the existing body

of knowledge. The four chapters that constitute the main research were each written as

journal articles and are reproduced in this thesis in a common format.

Chapter 2 and its associated Appendix 2.A present the investigations on bias in meta-

analyses involving trials subjected to interim monitoring and has been published in the

journal Statistics and Medicine as Schou and Marschner (2013). The content of Chapter 3

investigates potential misinterpretation of subgroup analyses, particularly those from multi-

country studies, and has been published in the journal Pharmaceutical Statistics as Schou

and Marschner (2015). Chapter 4 contains details of a software package that implements

the methodology presented in Chapter 3, and is presented as a manuscript ready for submis-

sion for peer review. The documentation associated with this open-source package for the R

computing environment is presented in the Appendix to the chapter. Chapter 5, which has

been submitted for peer review, presents the methodological findings relating to unbalanced

designs of single-control multiple-comparator clinical trials in which multiple hypothesis

tests are conducted involving a common control. Finally, Chapter 6 is a concluding chapter

that consolidates the content of this thesis and presents areas for future research.

The remaining sections of this chapter review the background and motivation for the primary

areas of study in this thesis.
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1.2 Meta-analyses and interim monitoring
Design and analysis of group sequential clinical trials are generally well understood and

implemented in clinical research (Whitehead, 1997; Jennison and Turnbull, 2000). This

methodology allows the accrued data of an ongoing trial to be analysed sequentially while

controlling the type I error rate at the desired overall significance level which otherwise

would be inflated as a result of the multiplicity of testing. Typically, a study is designed with

a stopping boundary in mind, such as the O’Brien-Fleming or Haybittle-Peto boundaries,

and the analysis conducted based on the critical values defined by these boundaries. Having

the opportunity to analyse the data during the course of a study has the benefit of making

effective new therapies available faster, or stopping a trial that is unlikely to result in a

worthwhile benefit or compromises patient safety.

It has long been acknowledged that trials stopping early for benefit may have a naive esti-

mate of treatment effect that is inflated. A remedy for this was first suggested by Whitehead

(1986), using a bias-adjusted maximum likelihood estimate, and this approach was further

developed from a computational and inferential perspective by Todd et al. (1996). Subse-

quently, many other methods of bias adjustment were also suggested as discussed further

in Chapter 6. The potential for such bias has naturally led researchers to question whether

trials that stop early for benefit will introduce bias into meta-analyses. It is clear from the

literature that some researchers strongly advocate that results from trials that truncate early,

and consequently results of meta-analyses that include truncated studies, lead to overesti-

mates of treatment effect (Montori et al., 2005; Bassler et al., 2008; Bassler et al., 2010).

Some authors have argued that systematic reviews should explore truncation as an explana-

tion for heterogeneity in meta-analyses (Bassler et al., 2007), which is bound to lead sys-

tematic reviewers to consider excluding truncated studies. Indeed, some researchers have

advocated that sensitivity analyses be conducted excluding truncated studies (Bassler et al.,

2013). Other researchers however, oppose this thinking on an intuitive level backed up by

statistical reasoning (Goodman, 2008; Berry, Carlin, and Connor, 2010), and through the

implementation of simulation studies (Green, Fleming, and Emerson, 1987; Todd, 1997).
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The conflicting standpoints of researchers on this question provided the impetus for the re-

search presented in Chapter 2. The focus of this chapter was to investigate the consequences

of including only non-truncated studies in evidence synthesis. The chapter begins with a

theoretical quantification of the estimation and information biases in the special case of

a trial subjected to a single interim analysis, supplemented by simulation studies of trials

subjected to more than one interim analysis. This leads to the conclusion that excluding

truncated studies from meta-analyses leads to underestimation of the treatment effect and

overestimation of the information associated with the treatment effect. This chapter con-

cludes that early stopping is not a substantive source of bias for meta-analyses and that both

truncated and non-truncated trials should be included in evidence synthesis.

Subsequent work on the theoretical quantification of biases in trials subjected to interim

monitoring is presented in the concluding chapter. This provides some direction for future

research in the area of bias resulting from early stopping.

1.3 Subgroup analyses
Subgroup analysis principles have long been an important area of statistical methodology

for RCTs, particularly with a focus on the potential for multiple testing problems associated

with the conduct of many subgroup analyses. The related issue of interpreting observed

differences in treatment effects across subgroups, has recently been widely debated in the

literature with a particular focus on subgroup analyses involving country-specific analyses

in multi-country studies.

With increasing globalisation of drug development programs which enable faster entry of

new therapies to market and allows patients across the globe to have access to new treat-

ments, multi-country randomised clinical trials are increasingly common. However, it is

seldom that a test of interaction is adequately powered to assess treatment effect hetero-

geneity across countries or geographic regions. As a result, interpreting apparent treatment

effect differences can be difficult, and may lead to undue speculation about the causes of



INTRODUCTION 5

such differences. In particular, recent debate has centred on potential treatment effect het-

erogeneity across country or region of randomisation, and the interpretation of results when

some countries seemingly favour the control treatment (Wallentin et al., 2009; Wedel et

al., 2001). In some instances, this has led to further analysis of the trial data by regulatory

authorities (FDA, 2010) and exploration of the study conduct to identify any underlying fac-

tors that may have contributed to these differences (Serebruany, 2010). On the other hand,

some authors have emphasised the contribution that chance variation can play (Buyse and

Marschner, 2011). In this environment, a joint workshop titled "Ensuring Quality and Bal-

ancing Risks for Multiregional Clinical Trials: Clinical, Regulatory, and Ethical Factors"

was organised by the Drug Information Association (DIA), the Food and Drug Adminis-

tration (FDA), and the pharmaceutical industry in Washington DC. The workshop had the

intention of discussing, understanding and coming to a common consensus on some issues

pertaining to multi-country randomised clinical trials. A central area of discussion was the

issue of anticipating and understanding the magnitude of treatment effect differences that

can arise merely as an artefact of chance (Ibia and Binkowitz, 2011).

Chapter 3 is therefore motivated by further research into the problem of quantifying the na-

ture and magnitude of chance variation in subgroup-specific treatment effects. It provides

a set of graphical analysis tools by which a researcher can compare the expected variation

with the observed variation. Although the motivation for this investigation arose from sub-

group analyses of multi-country studies, where the subgroups were defined by the country

or region of randomisation, the proposed methodology is equally applicable to all subgroup

analyses. Indeed, as the financial burden and regulatory requirements of conducting clinical

trials are substantial, researchers often include pre-specified subgroup analyses to glean as

much information as possible about the effect of a new therapy in different types of patients.

The methodology proposed in Chapter 3 is considered to be supplemental to a test of in-

teraction, and describes graphical non-inferential methods by which to compare observed

treatment differences with those that could have occurred due to chance, that is, under an

assumption of treatment effect homogeneity across subgroups.
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Implementation of the methodology proposed in Chapter 3 is computationally intensive.

Chapter 4 discusses in further detail the implementation of these methods through the R

software package subgroup which has been included in the Comprehensive R Archive Net-

work (CRAN). It describes how this package can be utilised by researchers at the design

phase of a clinical trial to understand the range of treatment effects that might be anticipated

as a result of chance, and thereafter during the analysis phase to compare the observed dif-

ferences with the expected differences under an assumption of homogeneity of treatment ef-

fects across subgroups. The package allows further flexibility by allowing simulation based

calculations to be implemented when the number of subgroups is large. The default graphics

provide a useful non-inferential tool for understanding chance variation in treatment effects

across subgroups.

1.4 Optimal design
Randomised clinical trials in which a single control is compared with multiple comparators

are often encountered in the medical literature. This includes situations where the control

treatment is a placebo, as in trials in which a placebo is to be compared with multiple exper-

imental treatments, or an active treatment, as in trials where a combination therapy is to be

compared with each of its constituent mono-therapies. Unification of these multiple compar-

isons under a single protocol offers efficiency in trial conduct. That is, consolidation of trial

related activities such as ethics approvals, investigator site initiations, database development

and other activities may offer efficiencies leading to faster or cheaper study conduct. It is

evident from the literature that a balanced design, that is, one in which an equal number of

patients is randomised to each group is the preferred design in most single-control multiple-

comparator clinical trials. However, a more efficient trial design can be achieved with an

optimal design of these trials through the unbalanced allocation of patients. In classical

experimental design, this optimisation may be achieved through the minimisation of some

variance measure (Atkinson and Donev, 1992; Hedayat, Jacroux, and Majumdar, 1988). In

the clinical trials context, it has been suggested that the optimisation involve maximising
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the power of the study (Marschner, 2007). Weighted versions of variance optimal measures

have also been proposed (Morgan and Wang, 2010), including in the context of clinical trials

(Zhu and Wong, 2000; Wong and Zhu, 2008). Nevertheless, the design efficiency that can

be gained through unbalanced allocation of patients in single-control multiple-comparator

trials is often overlooked. Chapter 5 will explore such unbalanced designs. The first part of

Chapter 5 will explore three variance optimal designs based on the D-, A- and E-optimality

criteria, with or without weighting. These will be unified under a single form for a general

model that allows heteroscedasticity and continuous or binary outcomes. This unification

will allow the sensitivity of the design to the chosen variance optimality criterion to be

evaluated through a comparison of the way in which each method allocates the available

resources to the control and comparator arms. As these variance optimality methods focus

on estimation precision, the second part of Chapter 5 considers optimisation of power as the

more suitable approach for clinical trials where testing is usually the focus. However, as

unbalanced designs which optimise power are complex, an investigation into whether any

of these variance optimal designs can be used as satisfactory approximations to the power

optimal designs will be conducted. The ultimate goal of this research is to provide some

guidelines on how resources may be allocated in an unbalanced fashion in single-control

multiple-comparator trials. This will equip researchers with some simple rules of thumb for

determining an unbalanced design when multiple hypothesis tests are to be conducted using

a common control.





Chapter 2

Meta-analysis of clinical trials with early

stopping

Published as:

Schou, I. M. and I. C. Marschner (2013). Meta-analysis of clinical trials with early stopping:

an investigation of potential bias. Statistics in Medicine 32: 4859–4874.

Abstract

Clinical trials that stop early for benefit have a treatment difference that overestimates the

true effect. The consequences of this fact have been extensively debated in the literature.

Some researchers argue that early stopping, or truncation, is an important source of bias in

treatment effect estimates, particularly when truncated studies are incorporated into meta-

analyses. Such claims are bound to lead some systematic reviewers to consider excluding

truncated studies from evidence synthesis. We therefore investigated the implications of

this strategy, by examining the properties of sequentially monitored studies conditional on

reaching the final analysis. As well as estimation bias, we studied information bias measured

by the difference between standard measures of statistical information, such as sample size,

and the actual information based on the conditional sampling distribution. We found that

excluding truncated studies leads to underestimation of treatment effects and overestimation

of information. Importantly, the information bias increases with the estimation bias, mean-

ing that greater estimation bias is accompanied by greater overweighting in a meta-analysis.

Simulations of meta-analyses confirmed that the bias from excluding truncated studies can

be substantial. In contrast, when meta-analyses included truncated studies, treatment effect

9
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estimates were essentially unbiased. Previous analyses comparing treatment effects in trun-

cated and non-truncated studies are shown not to be indicative of bias in truncated studies.

We conclude that early stopping of clinical trials is not a substantive source of bias in meta-

analyses and recommend that all studies, both truncated and non-truncated, be included in

evidence synthesis.

Keywords: Bias; clinical trial; interim analysis; meta-analysis; truncation

2.1 Introduction
Group sequential designs are widely used for interim monitoring of randomised clinical tri-

als (RCTs) and often allow such studies to be stopped early, or truncated, due to an apparent

treatment benefit. Since interim analyses that test for a treatment benefit will elevate the

probability of a type I error, various methods have been developed to control the effects of

multiple testing. These have included commonly used sequential stopping rules such as the

O’Brien-Fleming and Haybittle-Peto boundaries, as well as the Lan-DeMets error spend-

ing generalisations and other approaches (Jennison and Turnbull, 2000; Whitehead, 1997).

Such methods are generally well understood and appropriately implemented in practice.

Even when an appropriate statistical stopping rule has been used to stop a study early, there

can still be bias in the treatment effect estimate and its associated standard error, confi-

dence interval and p-value. This is because random fluctuations favouring the experimental

treatment may lead to truncation of an RCT, which in turn leads to overestimation of the

treatment effect. The potential for such bias has been known for decades (Hughes and

Pocock, 1988; Whitehead, 1986; Pocock and Hughes, 1989) and various methods of anal-

ysis following termination of a sequential trial have been proposed (Jennison and Turnbull,

2000; Whitehead, 1997). Nonetheless, such methods are generally less well understood

than methods for controlling type I error and are rarely used in practice when reporting the

results of RCTs.

In recent years there has been a renewed focus on early stopping of RCTs. Some researchers
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have made strong claims that this is a source of bias in the literature and that the results of

truncated RCTs should be viewed with scepticism (Montori et al., 2005; Bassler et al.,

2008; Bassler et al., 2010). The potential effect of this bias on systematic reviews has been

of particular concern (Bassler et al., 2007). Such arguments have been countered by other

researchers, who have claimed that truncation of RCTs does not lead to substantive bias

(Goodman, 2008; Berry, Carlin, and Connor, 2010; Freidlin and Korn, 2009). This debate

is potentially confusing for systematic reviewers who have to synthesise evidence that often

contains truncated RCTs. Although the standard approach has been to incorporate truncated

RCTs without any special consideration, claims that early stopping is an important source

of bias will inevitably lead some systematic reviewers to consider excluding truncated stud-

ies from meta-analyses. We have therefore undertaken an investigation of whether such a

strategy is advisable, and how it compares to the standard approach of including truncated

studies in meta-analyses.

The effects of early stopping on meta-analyses were studied by Hughes et al. (1992), how-

ever, the primary focus of that paper is different to ours. Hughes et al. (1992) focused on

the effects of interim monitoring on heterogeneity tests with normal endpoints. They also

looked at estimation bias in the context of meta-analysing all studies where all studies have

sequential monitoring. Here we look at a range of additional issues. Firstly, we study a

mix of fixed and sequential studies and investigate how the relativity of this mix affects

the results. We also study a range of alternative meta-analysis strategies, motivated by the

prior claims of bias in truncated studies. Thus, we focus on the performance of strategies

that involve excluding truncated studies or excluding all sequentially monitored studies. We

also compare truncated and non-truncated studies to investigate their expected differences,

since such comparisons have been used to infer bias in systematic reviews of truncated stud-

ies (Bassler et al., 2010). Finally, we consider extension of the results to binary endpoint

contexts.

Our primary approach to investigating the exclusion of truncated RCTs is to consider the

statistical properties of sequentially monitored studies conditional on reaching the planned
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final analysis. Our investigations indicate that a strategy of excluding truncated RCTs from

meta-analyses can lead to substantial bias. This bias arises in both the estimated treatment

effect, which we call estimation bias, as well as in the information weights used to aggre-

gate study-specific estimates in meta-analyses, which we call information bias. In contrast,

inclusion of truncated RCTs in aggregated treatment effect estimates is found to be virtually

unbiased. We therefore conclude that early stopping of clinical trials due to treatment benefit

is not an important source of bias in systematic reviews and that inclusion of all studies, both

truncated and non-truncated, should remain the standard approach to evidence synthesis.

2.2 Assumptions and notation

2.2.1 Meta-analysis

Consider the comparison of two treatment groups in a single RCT having a fixed total sam-

ple size of n individuals, with a proportion γ j allocated to treatment group j. Let Xi j be the

outcome variable for individual i in group j. It is assumed that {Xi j} are independent random

variables with means E
(
Xi j
)
= µ j, where µ2 = µ1+δ , and variances var

(
Xi j
)
= σ2

j . The pa-

rameter δ measures the treatment effect, with δ = 0 corresponding to no difference between

the treatments. The estimator of δ is D = X2 −X1, the difference in sample means between

the two treatment groups, which is assumed to be normally distributed with E(D) = δ and

variance specified by nvar(D) = ν2 = σ2
1/γ1 +σ2

2/γ2. Thus,

D ∼ N
(
δ , I−1) where I = n/ν2. (2.1)

The above model, which would be typical for studies with continuous endpoints, is sufficient

for addressing the main issues discussed in this paper. Some discussion of modifications

that allow for other types of endpoints, particularly binary endpoints with relative risk or

risk difference effect measures, will be provided later in the paper. For now it suffices to say

that such modifications do not alter our main conclusions.
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Now consider a meta-analysis of M such RCTs indexed by m = 1, . . . ,M, with study m

having treatment difference estimator Dm and sample size nm. Then for study weights {wm}

with ∑m wm = 1, the aggregated estimator is

∆̂ =
M

∑
m=1

wmDm. (2.2)

The weights wm reflect the amount of statistical information provided by study m, or equiv-

alently the precision of the study-specific estimators Dm. For a fixed effects meta-analysis

the analogue of model (2.1) for study m is

Dm ∼ N
(
δ , I−1

m
)

where Im = nm/ν2
m (2.3)

and ∆̂ in (2.2) would be calculated using the information weights

wm =
Im

∑M
h=1 Ih

. (2.4)

Fixed effects meta-analysis will be our primary concern in this paper, however, it is impor-

tant to consider the robustness of our conclusions for random effects meta-analyses. This

is particularly true given that early stopping of RCTs can impact on tests of heterogeneity

which are sometimes used to choose between fixed and random effects approaches (Good-

man, 2008; Hughes, Freedman, and Pocock, 1992). For a random effects meta-analysis,

model (2.3) is used with the generalisation

Im =

(
ν2

m
nm

+ τ2
)−1

(2.5)

where τ2 ≥ 0 is the variance of the study-specific treatment effects. With this generalisation

the form of the aggregated estimate and the information weights remain as in the fixed

effects case specified in (2.2) and (2.4).

Note that since the information weights (2.4) depend on variance parameters νm, in practice
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Im would be replaced by an estimate Îm using a variance estimate ν̂m. In the context of ran-

dom effects meta-analysis, estimation of τ2 is also required. In our theoretical investigations

we will assume known variance so that the information weights are known and estimation

is not necessary, but in our simulation studies of meta-analyses we will allow for estimation

of the information weights.

2.2.2 Interim analysis

The previous section assumed that study m has a fixed sample size nm. Now suppose that

study m has a fixed planned sample size n∗m, but that the actual observed sample size nm

could be smaller due to the conduct of one or more interim analyses. The sample size

at interim analysis k for study m is denoted n(k)m ≤ n∗m and the difference in sample means

between the two treatment groups is denoted D(k)
m . At each interim analysis a superiority test

is conducted of the null hypothesis H0 : δ = 0 versus the one-sided alternative H0 : δ > 0, and

if H0 is rejected then the study stops with a conclusion that treatment 2 is more efficacious

than treatment 1. Otherwise, the study proceeds to the next interim analysis where the same

testing procedure is repeated with a larger sample size, and if the planned final sample size

n∗m is reached then the study stops with a final treatment difference D∗
m. Under this scheme

nm is a random variable with maximum value n∗m, and its distribution depends on the way in

which the interim analyses are carried out.

We assume that the interim analyses are carried out such that H0 is rejected at analysis k if

D(k)
m > b(k)m I(k)m

−0.5
where I(k)m = n(k)m /ν2

m. (2.6)

The constants b(k)m are the stopping boundaries on the standardised test statistic scale, and

are chosen so as to achieve the desired study-wise type I error probability αm. In this paper

we will determine b(k)m using the standard Lan-DeMets error spending approximation to the

O’Brien-Fleming, Haybittle-Peto or Pocock stopping boundaries (Jennison and Turnbull,

2000). This requires the standard assumption that the timing of each interim analysis is not
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data dependent, or equivalently, that the sample size n(k)m is independent of the values of the

treatment differences {D(l)
m ; l ≤ k}. As mentioned in Section 2.2.1, ν2

m has to be estimated

in practice. This estimation will be undertaken in our simulation studies of meta-analyses,

whereas our theoretical investigations will use the simplifying assumption of known vari-

ance.

On termination of the study, the final treatment difference Dm will be either D∗
m or one of

the interim differences D(k)
m , and the final sample size nm will be either n∗m or one of the

interim sample sizes n(k)m . Meta-analysis then involves aggregating the final study-specific

treatment differences Dm using ∆̂ in (2.2), with Im based on nm through either the fixed or

random effects specifications in (2.3) and (2.5). In principle this aggregation could be un-

dertaken using treatment differences that are adjusted for the sequential analyses (Jennison

and Turnbull, 2000; Whitehead, 1997), although that will not be the focus here. Some brief

comments on the use of adjusted differences will be made in Section 2.6.

While it will be of interest to study the behaviour of meta-analyses involving both truncated

and non-truncated studies, our main aim is to study the effects of excluding truncated stud-

ies from meta-analyses. This exclusion amounts to conditioning on non-truncation, that is,

conditioning on non-rejection of H0 at each of the interim analyses. Subject to this condi-

tioning, we will study the statistical properties of Dm and ∆̂ to quantify the extent to which

exclusion of truncated studies biases estimation of treatment effects.

2.3 Conditioning on non-truncation
The distribution of Dm conditional on non-truncation can provide insight into the effect of

excluding truncated studies from meta-analyses. This conditional distribution can be stud-

ied using the joint distribution of the treatment differences at the interim and final analyses.

In this section we consider this for the fixed effects meta-analysis model with known vari-

ance parameter νm. In later sections we will also study the meta-analysis estimator ∆̂ using

simulation for both the fixed and random effects models with estimated variance.
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Consider a study m with up to Km interim analyses conducted according to the rejection

rule (2.6) and a final (Km + 1)th analysis with treatment difference D∗
m, sample size n∗m

and information I∗m = n∗m/ν2
m. Let Dm =

(
D(1)

m , . . . ,D(Km)
m ,D∗

m
)

be the vector of treatment

differences at the interim and final analyses, and let dm be a vector of length Km + 1 with

all elements equal to δ . Then, using the canonical joint distribution of the test statistics in

a sequentially monitored study (Jennison and Turnbull, 2000), the distribution of Dm is a

(Km +1)-dimensional multivariate normal distribution

Dm ∼ N
(
dm,Vm

)
where Vm =



I(1)m
−1

I(2)m
−1

. . . I(Km)
m

−1
I∗m

−1

I(2)m
−1

I(2)m
−1

. . . I(Km)
m

−1
I∗m

−1

...
... . . . ...

...

I(Km)
m

−1
I(Km)
m

−1
. . . I(Km)

m
−1

I∗m
−1

I∗m
−1 I∗m

−1 . . . I∗m
−1 I∗m

−1


. (2.7)

Conditional on non-truncation, that is conditional on the event

Nm =

{
D(1)

m ≤ b(1)m I(1)m
−0.5

, . . . ,D(Km)
m ≤ b(Km)

m I(Km)
m

−0.5
}
, (2.8)

Dm has a truncated multivariate normal distribution (Cohen, 1991) and Dm = D∗
m. The

distribution of Dm conditional on non-truncation is therefore the distribution of D∗
m| Nm,

which is the Km + 1 margin of the distribution of Dm| Nm. In the following subsections

we make use of the moments of this distribution to gain insight into the properties of the

final treatment difference conditional on non-truncation of an RCT. This can be undertaken

theoretically for the case of a single interim analysis with Km = 1, while for Km > 1 it can

be undertaken by simulation using (2.7) and (2.8) together with a truncated multivariate

normal simulator (Wilhelm and Manjunath, 2012).

2.3.1 Estimation bias

Initially we suppose that study m has a single interim analysis, that is Km = 1. Let tm =

I(1)m /I∗m be the fraction of the total planned information accrued at the interim analysis and let
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δm = δ
√

I∗m denote the standardised treatment effect size. Then for non-zero δ , the relative

bias of the observed treatment effect D∗
m, conditional on non-truncation, can be expressed

in terms of tm and δm. In particular, using details provided in the web-based supplemen-

tary materials and the notation Λ(x) = ϕ(x)/Φ(x), where ϕ and Φ are the standard normal

density and distribution functions, the relative bias is

B
(
δm, tm

)
=

δ −E
(
D∗

m| Nm
)

δ
= Λ

(
b(1)m −δm

√
tm

)√
tm

δm
. (2.9)

Since the relative bias B is non-negative for all tm and δm, the first point to observe from

(2.9) is that conditioning on non-truncation leads to underestimation of the treatment ef-

fect. This underestimation bias can be computed as a function of the power of the study

and the information fraction at the time of the interim analysis, using the fact that δm =

Φ−1(1−αm)+Φ−1(1−βm), where 1−βm is the power to detect the true treatment effect

δ . Thus, the form of the relative bias (2.9) is very general in that it does not depend on the

absolute magnitude of the treatment effect δ . Panel A of Figure 2.1 provides computations

of the underestimation bias for a range of assumptions using the O’Brien-Fleming stopping

boundary. It can be seen that the magnitude of the bias can be practically important, and

is generally in the range of 10%− 20% for adequately powered studies where the interim

analysis is conducted near the halfway point of the study. The underestimation bias from

conditioning on non-truncation is larger when the interim analysis is conducted later in the

study and exceeds 20% for adequately powered studies with an interim analysis in the final

third of the study.

The above theoretical calculations are for sequential monitoring with a single interim anal-

ysis. As noted above, generalisation of the results to multiple interim analyses can be un-

dertaken using a truncated multivariate normal simulator (Wilhelm and Manjunath, 2012).

Such simulations have been carried out for up to five equally spaced interim analyses under

various assumptions about the power of the study, and are summarised in Table 2.1. For a

single interim analysis, there was close agreement between the theoretical and simulated bi-
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Figure 2.1: Estimation bias (percent underestimation), information bias (inflation factor)
and effective estimation bias (percent underestimation), conditional on non-truncation, plot-
ted against the information fraction at which a single interim analysis is conducted with
O’Brien-Fleming boundary (Panels A, B and D), and information bias plotted against esti-
mation bias (Panel C). Results are displayed for various values of the power to detect the
true treatment effect δ .
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ases. Three boundaries were considered: Haybittle-Peto, O’Brien-Fleming and Pocock. Of

these, the Haybittle-Peto boundary was the least biased, while the O’Brien-Fleming bound-

ary introduced less bias than the Pocock boundary when Km ≤ 2 and was similar to the

Pocock boundary when Km > 2. These simulations show that the underestimation due to

conditioning on non-truncation increases with more frequent interim monitoring. For ex-

ample, with the O’Brien-Fleming boundary, the bias is on the order of 30% when there are

three interim analyses.

Table 2.1: Estimation bias expressed as percent underestimation, and information bias ex-
pressed as an inflation factor, conditional on non-truncation of group sequential studies with
Km equally spaced interim analyses. Results are based on theoretical and simulated bias,
with 90% power to detect the true treatment effect δ and one-sided significance level 2.5%.

Boundary Km Theoretical bias Simulated bias
Estimation Information Estimation Information

O’Brien-Fleming 1 11.11 1.35 11.03 1.34
2 – − 23.53 1.82
3 − − 30.22 2.21
4 − − 34.61 2.52
5 − − 37.26 2.80

Haybittle-Peto 1 8.05 1.27 8.06 1.26
2 − − 14.75 1.55
3 − − 19.29 1.81
4 − − 22.51 2.03
5 − − 25.15 2.20

Pocock 1 19.70 1.52 19.67 1.52
2 − − 28.18 1.96
3 − − 32.44 2.29
4 − − 35.12 2.54
5 − − 36.74 2.73

2.3.2 Information bias

The bias resulting from conditioning on non-truncation is not limited to estimation bias.

As discussed in Section 2.2.1, meta-analyses typically weight the study-specific treatment

effects by a measure of the statistical information in each study. In this section we see that

these information weights are also subject to bias when conditioning on non-truncation. This

bias can be quantified by comparing the unconditional inverse variance measure of statistical
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information I∗m, with the actual Fisher information based on the truncated normal distribution

that accommodates the conditional nature of the sampling. The difference between these

unconditional and conditional versions of information is the information bias.

For a theoretical discussion we return to the case of a single interim analysis with known

variance. The treatment effects at the interim and final analyses,
(
D(1)

m ,D∗
m
)
, are distributed

bivariate normal according to (2.7) with Km = 1. Let fm(d1,d2;δ ) be the density function

corresponding to this bivariate distribution, and let F(1)
m (d1;δ ) be the marginal distribution

function for D(1)
m . It follows using (2.8) that the conditional bivariate density function of(

D(1)
m ,D∗

m
)
, given non-truncation, is

fm
(
d1,d2;δ

∣∣Nm
)
=

fm
(
d1,d2;δ

)
F(1)

m
(
c(1)m ;δ

) d1 ∈ (−∞,c(1)m ] d2 ∈ (∞,∞)

where c(1)m = b(1)m I(1)m
−0.5

. Based on this density function the Fisher information I
(
δ
∣∣Nm

)
can be determined in the standard way, as the negative expected second derivative of

log fm
(
D(1)

m ,D∗
m;δ

∣∣Nm
)
.

The form of I
(
δ
∣∣ Nm

)
, which depends on Λ in a complicated manner, is provided in the

web-based supporting materials and satisfies

I∗m = I
(
δ
∣∣Nm

)
F
(
δm, tm

)
where F (δm, tm)≥ 1. (2.10)

Equation (2.10) means that there is an inflation factor F that quantifies the bias in I∗m as

a measure of statistical information from study m, when conditioning on non-truncation.

In particular, conditional on non-truncation, it follows that the standard approach to study-

specific weighting will lead to overestimation of the statistical information. As with the rel-

ative estimation bias specified in (2.9), the extent of this information bias is again a function

of the power of the study to detect the true treatment effect δ and the information fraction at

the time of the interim analysis.
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Panel B of Figure 2.1 presents the information bias and its relationship with the power of

the study and the information fraction at the time of the interim analysis. It is seen that the

information bias increases with increasing power and increasing information fraction. While

it is clear that the information bias can be substantial, the magnitude of the information

bias is of less interest when viewed in isolation than when viewed in conjunction with the

estimation bias, which we defer until the next subsection.

The simulation studies of estimation bias described in Section 2.3.1 can also be used to study

the information bias through simulation. Using properties of the truncated bivariate normal

distribution, as explained further in the web-based supporting materials, the unconditional

and conditional variance of D∗
m can be related according to

var
(
D∗

m
)
= var

(
D∗

m
∣∣Nm

)
F
(
δm, tm

)
. (2.11)

Thus, the ratio of the unconditional and conditional simulated variance of D∗
m can be used to

study the information inflation factor F through simulation. This is presented in Table 2.1,

where it is again seen that the simulation studies are in close agreement with the theoretical

studies for Km = 1. Also shown in Table 2.1 is the simulated variance ratio when there are

multiple interim analyses, showing an increase in information bias with increasing number

of interim analyses, as was also the case for the estimation bias results presented in Section

2.3.1.

2.3.3 Relationship between estimation and information bias

In the previous two subsections we have seen that conditioning on non-truncation leads to

underestimation of the treatment effect and overestimation of the statistical information. In

this section we see that these two biases are in fact related, in the sense that a monitoring

pattern that leads to greater estimation bias conditional on non-truncation, will also lead

to greater information bias. Thus, under a strategy of excluding truncated studies from a

meta-analysis, a double whammy occurs in which greater estimation bias is associated with
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greater overweighting in the aggregated treatment effect estimate.

The association between the two biases can be investigated by considering a study with

given power to detect the true treatment difference at the final analysis, that is, a study with

given standardised treatment difference δm. With a single interim analysis it can be shown

theoretically, as detailed in the web-based supporting materials, that the estimation and in-

formation biases are both increasing functions of the information fraction at the interim

analysis, that is

B
(
δm,u

)
≥ B

(
δm,v

)
and F

(
δm,u

)
≥ F

(
δm,v

)
for u ≥ v. (2.12)

This relationship was borne out in our theoretical calculations of Sections 3.1 and 3.2 for a

single interim analysis, and was also evident in our simulations of studies with more than

one interim analysis. It follows that monitoring patterns which induce greater estimation

bias conditional on non-truncation will also lead to greater information bias. This theoretical

finding is illustrated in Panel C of Figure 2.1 for the Km = 1 case, where the information

bias is seen to increase as the estimation bias increases. Furthermore, the simulation results

presented in Table 2.1 show the same pattern when Km > 1.

An implication of this relationship is that greater estimation bias is accompanied by greater

overweighting in a meta-analysis restricted to non-truncated studies. This suggests that

the combined effect of estimation and information bias will be greater than the estimation

bias alone. To assess this, the product of the conditional treatment effect expectation and

information E(D∗
m| Nm)I (δ | Nm), can be compared with its unconditional counterpart

δ I∗m. The relative magnitude of these two quantities measures the combined effective bias

of the information weighted treatment effect. This is presented in Panel D of Figure 2.1,

where it is seen that the effective bias increases with increasing power. Furthermore, by

comparison with Panel A of Figure 2.1, it can be seen that the effective bias exceeds the

unweighted estimation bias. This reflects the double whammy of combined estimation bias

and information bias in meta-analyses that exclude truncated studies.
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2.4 Meta-analysis strategies
The distribution of Dm conditional on non-truncation, as discussed in Section 2.3, illustrates

the bias that is introduced by excluding truncated studies from estimation of treatment ef-

fects. The usefulness of these results for understanding the extent of bias in meta-analyses

is limited to situations in which all studies in a meta-analysis are subject to interim mon-

itoring and the fixed effects meta-analysis model is used. In practice, meta-analyses typi-

cally involve a mix of sequential and fixed design studies, and may involve the used of a

random effects model. In this section we present a simulation study of meta-analyses con-

ducted under various assumptions about the mix of sequential and fixed designs, using both

the fixed and random effects models. The primary goal is to make comparisons between

three possible strategies for undertaking the meta-analyses: (i) the non-truncated strategy in

which only studies that proceed to the final analysis are included in the meta-analysis; (ii)

the non-sequential strategy in which only studies that were not subject to interim analysis

are included in the meta-analysis; and (iii) the all-study strategy in which all studies, both

truncated and non-truncated, are included in the meta-analysis.

The assumptions of the meta-analysis simulations can be described as follows. For each

meta-analysis simulation, data from a normally distributed endpoint with effect size δ/σ

were simulated for a total of M studies with either 80% or 90% power. The values consid-

ered for δ/σ were 0.1, 0.25 and 0.5, and for M were 4, 12 and 24. Of the M studies in

each simulation, 0%, 25%, 50%, 75% or 100% were subject to interim monitoring while

the remainder were fixed design studies. The sequential studies had equally spaced interim

analyses with Km = 1, 2, 3, 4 or 5, conducted using the O’Brien-Fleming, Haybittle-Peto or

Pocock stopping boundaries. Both the fixed and random effects meta-analysis estimates de-

scribed in Section 2.2.1 were calculated for the three meta-analyses strategies, using sample-

based variance estimation for the information weights in (2.2).
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2.4.1 Non-truncated strategy

Based on the simulation results, Table 2.2 and Panel A of Figure 2.2 present the relative esti-

mation bias in meta-analyses conducted under the non-truncated strategy, in which any study

terminated at an interim analysis is excluded. The results displayed are for meta-analyses

with M = 12 studies monitored using an O’Brien-Fleming stopping boundary and powered

to detect a treatment effect of δ/σ = 0.25 with 90% power. These simulation results again

show that the meta-analysis estimate is an underestimate of the treatment effect and that the

underestimation increases as the number of interim analyses increases. As expected, when

the proportion of studies subject to sequential analysis is low the bias from excluding trun-

cated studies is low. When at least half the studies are subject to sequential monitoring the

underestimation bias is on the order of 5−15%, regardless of whether the fixed or random

effects approach was used. When all studies are subject to interim monitoring then the bias

can be substantially greater than that range. Consistent results were found for other sim-

ulation combinations, as displayed in the web-based supporting materials. Overall, these

simulation results show that a strategy of excluding truncated studies from meta-analyses

introduces bias into the estimation of treatment effects.

2.4.2 Non-sequential strategy

As the non-truncated strategy leads to estimation bias, an alternative approach would be

to exclude all sequentially monitored trials thereby avoiding the issue of estimation bias,

since meta-analysis estimates from such an approach are theoretically unbiased. Simula-

tion results that demonstrate this are presented in Table 2.2 and the web-based supporting

materials. The drawback of this strategy is that it discards information contained in the se-

quentially monitored studies. Thus, if a strategy is available that is not subject to estimation

bias and uses the information contained in the sequentially monitored studies, then the non-

sequential strategy would be expected to have reduced efficiency relative to such a strategy.

This efficiency reduction is discussed in more detail in the next subsection.
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Table 2.2: Simulated estimation bias (percent underestimation) for non-truncated, non-
sequential and all-study strategies in meta-analyses of M = 12 studies, each with 90% power
for an effect size of δ/σ = 0.25 at a one-sided significance level of 2.5%. All studies used
the O’Brien-Fleming stopping boundary with Km equally space interim analyses. Values
in parentheses for the non-sequential strategy are the efficiencies (percent) relative to the
all-study strategy.
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Figure 2.2: Simulation results for meta-analyses of M = 12 studies with various percent-
ages of studies subject to sequential monitoring using the O’Brien-Fleming boundary with
various numbers of interim analyses (Km). In each panel, estimation bias (percent under-
estimation) is plotted against the percent of studies with sequential monitoring, using the
non-sequential strategy with mean differences (Panel A) and risk differences (Panel C), or
the all-study strategy with mean differences (Panel B) and risk differences (Panel D). Re-
sults are displayed for studies with 90% power to detect an effect size of δ/σ = 0.25 for
mean differences, and p1 = 0.1 versus p2 = 0.25 for risk differences.
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2.4.3 All-study strategy

The final strategy is to include all studies in the meta-analysis. The simulation results for this

approach are also presented in Table 2.2, the web-based supporting materials and graphically

in Panel B of Figure 2.2. The results suggest that the treatment effect estimates have no

notable bias when all studies are included in the meta-analysis, irrespective of the number of

interim analyses and the proportion of studies that are subject to interim monitoring. There

is some suggestion that the random effects estimates may have slightly larger bias than the

fixed effects estimates, however, in both cases any bias is extremely small. The efficiency

gain made by the all-study strategy over the non-sequential strategy is also presented in Table

2.2 and supports the argument in favour of including all studies. For example, the efficiency

of the non-sequential strategy was on the order of 80% when 25% of the studies were subject

to interim monitoring, and was on the order of 30% when the proportion subject to interim

monitoring increased to 75%. Thus, given that the all-study strategy is relatively unbiased,

the recommended approach to evidence synthesis in meta-analysis would be to include all

studies, as this approach results in greater efficiency than the non-sequential strategy and

does not possess the bias of the non-truncated strategy.

2.4.4 Alternative effect measures

Results similar to those discussed above also apply to effect measures related to binary

outcomes. Assuming the outcome variable Xi j introduced in Section 2.2.1 is binary (0/1)

with E(Xi j) = p j where p2 = p1 + δ and var(Xi j) = p j(1− p j), then large sample nor-

mality can be used to make use of the theoretical results from Section 2.3. In particu-

lar, the risk difference D = X2 −X1 is normally distributed with expectation δ = p2 − p1

and nvar(D) = ν2 = p1(1− p1)/γ1 + p2(1− p2)/γ2. Likewise, the log relative risk D =

log
(
X2/X1

)
is normally distributed with expectation δ = log

(
p2/p1

)
and nvar(D) = ν2 =

(1− p1)/p1γ1+(1− p2)/p2γ2. With these modified forms of ν2, equation (2.9) can be used

in the same way as in Section 2.3 for normally distributed endpoints to produce theoretical

results comparable to Figure 2.1. We make use of this approach in the next section. For
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now, we limit our presentation to the corresponding results from simulation studies, which

are presented for risk differences in Figure 2.2, Panels C and D. These simulations were

conducted in the same way as for normally distributed endpoints and were based on M = 12

trials with O’Brien-Fleming boundaries and 90% power to detect a risk difference of 0.15

(p1 = 0.1 and p2 = 0.25). Similar results arose from other combinations. It can be seen that

the conclusions drawn in the previous sections also hold when a risk difference is used to

measure the treatment effect. In particular, the underestimation bias arising from the non-

truncated strategy can be substantial and increases as the proportion of studies subjected to

interim monitoring increases or the number of interim analyses per study increases. On the

other hand, no systematic bias is present in the aggregated estimate based on the all-study

strategy.

2.5 Comparison of truncated and non-truncated studies
Previous research on potential biases resulting from early stopping of RCTs has compared

meta-analyses of truncated studies with meta-analyses of non-truncated studies addressing

the same research question (see Bassler et al. (2010) and references therein). This approach

has identified larger estimated treatment effects in meta-analyses that include truncated stud-

ies. This empirical observation has been interpreted as demonstrating that inclusion of trun-

cated studies in meta-analyses leads to overestimation of treatment effects, a conclusion that

is at odds with the results presented earlier in this paper. In this section we demonstrate

that it is flawed to compare truncated and non-truncated studies in order to assess whether

truncated studies are biased. We show that differences between truncated and non-truncated

studies are expected purely due to conditioning mechanisms, and are not reflective of any

inherent bias in meta-analyses that include truncated studies. Thus, the findings reported

earlier in this paper are not at odds with the empirical observations published in previous

research, but our results do cast doubt on the conclusions drawn from these empirical obser-

vations.



META-ANALYSIS OF CLINICAL TRIALS WITH EARLY STOPPING 29

2.5.1 Theoretical comparisons

We begin with a theoretical study of the expected difference between treatment effects from

truncated studies and those from non-truncated studies. Assuming Km = 1, the expected

treatment effect conditional on truncation is E
(
D(1)

m | N m
)
, where N m is the complement

of the event Nm, that is, N m is the event that the study stops at the interim analysis. Using

details provided in the web-based supporting materials, and the notation Ψ(x) = ϕ(x)/(1−

Φ(x)), the analogue of (2.9) for the truncated situation is

B
(
δm, tm

)
=

δ −E
(
D(1)

m | N m
)

δ
=−Ψ

(
b(1)m −δm

√
tm

)
1

δm
√

tm
. (2.13)

Equation (2.13) demonstrates that the observed treatment effect conditional on truncation

is an overestimate of δ , since the relative bias B is negative for all tm and δm. As with

the underestimation bias in the non-truncated case, the overestimation bias in (2.13) is a

function of the power of the study and the information fraction at the time of the interim

analysis. This relationship is presented in Panel A of Figure 2.3 using the O’Brien-Fleming

stopping boundary and shows that for studies where the interim analysis is conducted at 50%

information fraction, the observed treatment effect conditional on truncation is expected to

be more than 50% greater than the true treatment effect δ .

Of more interest is the difference between the expected treatment effect conditional on trun-

cation and the expected treatment effect conditional on non-truncation, since this difference

has previously been used to infer bias in truncated studies. Using (2.9) and (2.13) this differ-

ence is B
(
δm, tm

)
= B

(
δm, tm

)
−B
(
δm, tm

)
, which is a combination of the biases presented

in Panel A of Figures 2.1 and 2.3. Plots of B
(
δm, tm

)
are presented in Panel B of Figure

2.3. The main points to note are that differences in the treatment effect estimates between

truncated and non-truncated studies are to be expected due to the conditioning mechanisms

and that these differences can be quite substantial. Such expected differences are simply

analogous to the expected differences that exist between the more extreme and the less ex-

treme observations in a sample, and do not reflect any inherent bias resulting from stopping
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Figure 2.3: Estimation bias (percent overestimation) conditional on truncation (Panel A),
and differences in treatment effects from truncated and non-truncated studies, using either
percent difference between mean differences (Panel B) or the ratio of relative risks (Panel
C). Results are displayed for various values of the power to detect the true treatment effect δ .
Also displayed are simulations of the relationship between the number of outcome events
and the ratio of relative risks from truncated and non-truncated studies, under a range of
assumptions described in Section 2.5.2 (Panel D).
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studies early.

While the above comments relate to treatment effects measured using mean differences, they

are also relevant to situations in which other measures of treatment effect are used. A ratio

of relative risks, comparing the relative risk conditional on truncation with the relative risk

conditional on non-truncation, has been used previously as a measure of the difference in

treatment effects (Bassler et al., 2010). As discussed in Section 2.4.4, the estimation biases

(2.9) and (2.13) can be used with a modified ν2 to study the expected log relative risk under

truncation and non-truncation, respectively. Thus,

exp
{

δB
(
δm, tm

)}
=

exp
{

E
(
D(1)

m | N m
)}

exp
{

E
(
D∗

m| Nm
)} (2.14)

can be used to quantify the ratio of the relative risks from truncated and non-truncated stud-

ies, where D(1)
m and D∗

m are now log relative risks rather than mean differences. Note that

unlike the estimation biases (2.9) and (2.13), the ratio of relative risks (2.14) is not indepen-

dent of the true treatment effect δ .

Panel C of Figure 2.3 presents computations of (2.14) using the O’Brien-Fleming stopping

boundary and assuming a true relative risk of 0.8. A similar conclusion to that of Panel B

of Figure 2.3 can be drawn, noting that smaller values of the relative risk ratio correspond

to larger differences between truncated and non-truncated studies. In particular, it can be

seen that relative risks from truncated studies can be expected to be at least 10% less than

those of non-truncated studies, and often much more than 10%. Similar differences are also

evident for other values of the true relative risk. As with the results on treatment effects

measured using mean differences, these results for relative risks are simply a consequence

of comparing more extreme observations (truncated studies) with less extreme observations

(non-truncated studies) and do not reflect any inherent bias in studies stopped early.
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2.5.2 Empirical comparisons

The theoretical calculations for a single interim analysis given in the previous subsection

show that observed treatment effects conditional on truncation are expected to be larger than

those conditional on non-truncation. In this subsection we examine these differences for

more general situations and make comparisons with empirical analyses from the literature.

A comprehensive empirical comparison of relative risk estimates from truncated studies

with those from non-truncated studies which addressed the same clinical questions was con-

ducted as part of the STOPIT-2 study (Bassler et al., 2010). In all, 515 RCTs were identified

addressing 63 clinical questions. Of these, 91 were truncated RCTs with a majority of the

clinical questions (43/63) being addressed by a single truncated RCT, and a maximum of

four truncated studies per question. The matching non-truncated RCTs addressing the 63

questions ranged from one to 38 studies per question. The evidence from these studies was

synthesised using random effects inverse variance meta-analysis and pooled estimates of

relative risks were calculated. The ratios of these relative risks were then examined and re-

lated to other study characteristics such as the total number of events observed in the study.

The authors observed that truncated RCTs were associated with greater treatment effects

than non-truncated RCTs, and used this observation to conclude that truncated RCTs are

biased. As a consequence, they cautioned that if systematic reviewers did not take into con-

sideration early stopping for benefit, then meta-analyses were likely to report overestimates

of treatment effect. Furthermore, they stated that while it was not possible to know whether

the observed treatment effect is biased in any particular study, their findings suggested that

estimates from truncated studies were often not close to the truth.

The above empirical observations are equally well explained by the effects of the condi-

tioning mechanisms involved in these comparisons. This was illustrated theoretically in

the previous subsection and here we present results of a more general simulation study ad-

dressing this issue. A sample of binary random variables as described in Section 2.4.4 were

generated, with M = 12, Km ranging from 1 through 5, power of 90%, p1 = 0.1 and p2
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taking on a range of values from 0.110 to 0.275 corresponding to relative risks ranging from

0.36 to 0.91. In each simulation, a proportion of these M = 12 studies (25%, 50%, 75%

or 100%) was subject to interim analyses using O’Brien-Fleming stopping boundaries and

the remainder were simulated as fixed design studies. Both fixed effects and random ef-

fects inverse variance meta-analyses were conducted and the estimates of relative risks were

obtained for the truncated and non-truncated studies. The ratios of the fixed effects rela-

tive risks are presented in Panel D of Figure 2.3. Further information on these simulations,

including comparison of the fixed effects and random effects results, is presented in Table

2.3.

Based on these results, the following observations can be made. Firstly, even in the absence

of any bias, it is clear that one should expect to see the ratio of relative risks from truncated

and non-truncated studies depart substantially from 1, and typically lie in the range 0.5−1.

This is highly consistent with the empirical comparisons presented by Bassler et al. (2010).

Secondly, our results show that one should also expect to see a relationship between this

difference and the total number of events, with greater differences arising for smaller num-

bers of events. In particular, Panel D of Figure 2.3 is highly consistent with the analogous

empirical plot presented as Figure 3 in Bassler et al. (2010), and is indicative not of bias but

rather the conditioning involved in separating and comparing the results of truncated and

non-truncated studies.

Overall, these results indicate that it should not be surprising that observed treatment effects

from truncated studies tend to be greater than those from non-truncated studies. When taken

together with the results of Section 2.4 on meta-analyses involving truncated studies, our

results suggest that truncated studies do not introduce bias into meta-analyses and that it is

flawed to investigate bias by comparing the results of truncated and non-truncated studies.
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Table 2.3: Simulated ratios of relative risks (truncated strategy divided by non-truncated
strategy) from meta-analyses of M = 12 studies, each with 90% power for a range of relative
risks with a one-sided significance level of 2.5%. All studies had p1 = 0.10 and used the
O’Brien-Fleming stopping boundary with Km = 2 equally spaced interim analyses.

p2 Relative risk Sequential Non-truncated Relative risk ratio
(%) (%) Fixed effects Random effects

0.110 0.91 25 85 0.969 0.969
0.120 0.83 25 85 0.948 0.947
0.125 0.80 25 85 0.935 0.934
0.150 0.67 25 86 0.875 0.873
0.175 0.57 25 86 0.823 0.822
0.200 0.50 25 86 0.791 0.792
0.225 0.44 25 87 0.767 0.767
0.250 0.40 25 87 0.702 0.704
0.275 0.36 25 88 0.641 0.638
0.110 0.91 50 70 0.969 0.969
0.120 0.83 50 71 0.941 0.940
0.125 0.80 50 70 0.924 0.922
0.150 0.67 50 71 0.877 0.873
0.175 0.57 50 72 0.821 0.820
0.200 0.50 50 72 0.783 0.783
0.225 0.44 50 72 0.762 0.764
0.250 0.40 50 74 0.699 0.700
0.275 0.36 50 75 0.663 0.663
0.110 0.91 75 56 0.965 0.965
0.120 0.83 75 55 0.931 0.931
0.125 0.80 75 56 0.914 0.914
0.150 0.67 75 56 0.855 0.854
0.175 0.57 75 58 0.799 0.798
0.200 0.50 75 58 0.763 0.763
0.225 0.44 75 59 0.720 0.722
0.250 0.40 75 62 0.678 0.680
0.275 0.36 75 62 0.649 0.650
0.110 0.91 100 43 0.953 0.953
0.120 0.83 100 42 0.913 0.913
0.125 0.80 100 43 0.895 0.895
0.150 0.67 100 43 0.820 0.820
0.175 0.57 100 42 0.761 0.761
0.200 0.50 100 42 0.716 0.715
0.225 0.44 100 46 0.669 0.669
0.250 0.40 100 47 0.619 0.619
0.275 0.36 100 51 0.596 0.596
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2.6 Discussion
There is ongoing debate concerning possible bias in studies stopped early for benefit and

particularly the potential effect on meta-analyses. This is bound to cause some systematic

reviewers to consider excluding truncated studies from evidence synthesis. In this paper

we have seen that such a strategy is biased, in that it leads to underestimation of treatment

effects. Furthermore we have seen that the standard approach of aggregating the results of

all studies is essentially unbiased.

We investigated the effect of excluding truncated studies by examining the properties of se-

quentially monitored studies conditional on non-truncation, and by studying the expected

differences between truncated and non-truncated studies. Potential biases were quantified

using both theoretical investigations and simulations, and comparisons were made with pre-

viously published empirical observations. We found that excluding truncated studies leads to

underestimation of treatment effects and overestimation of statistical information. For meta-

analyses using inverse-variance weighting, these biases lead to a double whammy in which

greater estimation bias is accompanied by greater overweighting. In meta-analysis simula-

tions we found that the bias resulting from excluding truncated studies can be substantial,

whereas inclusion of all studies leads to effectively unbiased estimation. The magnitude of

any bias tended to be greater when studies were subjected to more frequent interim analysis

and when the proportion of studies with sequential monitoring was greater.

We also examined previous empirical observations that have been used to cast doubt over the

validity of early stopping, including larger treatment effects in truncated studies and greater

differences between truncated and non-truncated studies in smaller trials (Montori et al.,

2005; Bassler et al., 2010). These observations have received prominence in the published

literature and were even noted in the most recent version of the CONSORT guidelines (Chen

et al., 2010). Importantly, we found that such empirical observations are consistent with the

expected difference that results from comparing a more extreme study to a less extreme

study, rather than reflecting any inherent bias in early stopping.
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We have focused here on examining the effect of excluding truncated studies from meta-

analyses. An alternative response to the argument that truncated studies introduce bias is to

abandon early stopping altogether. While this approach certainly leads to unbiased estima-

tion, it is currently not practical given the range of ethical and practical imperatives involved

in clinical trials research. Furthermore, based on our results, such an approach is inefficient

and unnecessary.

Although studies that stop early for benefit tend to overestimate the true treatment effect,

it should not be too surprising that their inclusion in meta-analyses does not lead to biased

estimation. While it is true that conditional on truncation, the observed treatment difference

overestimates the true effect, we have seen here that conditional on non-truncation, the ob-

served treatment difference underestimates the true effect. Thus, in aggregate, the effects of

truncation and non-truncation tend to balance each other to allow unbiased estimation.

In a preliminary presentation of part of this research, we previously recommended that there

should be wider reporting of adjusted estimates for sequentially monitored studies (Schou

and Marschner, 2011). However, since the standard all-study strategy performed well in

the results presented here, such an approach may not be necessary in practice. While a

complete study of the issue is beyond the scope of this paper, we did consider adjustment

of estimates in the simulation studies reported in Section 2.4, using methods such as the

bias adjusted mean estimate, Rao-Blackwell adjusted estimate, and the median unbiased

estimate, which are available in S+SeqTrial (S+SeqTrial User’s Manual 2002). We found

that such adjustments did not offer any improvement in bias or efficiency, which is perhaps

not unexpected given that the simple all-study approach performed well. Nonetheless, there

may be scope for future research to examine this issue in more depth.

Hughes et al. (1992) argued that early stopping of RCTs can introduce artificial heterogene-

ity between studies leading to greater use of random effects meta-analyses. It is thus impor-

tant to examine the potential for bias in both the random effects and fixed effects settings.

Our investigations did this, and overall our results were very similar in the two contexts.
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Our investigations of the effect of early stopping are predicated on the use of statistically

valid methods to undertake such early stopping. Clearly, if interim analyses are conducted in

a statistically invalid fashion then our conclusions may not continue to hold. Valid stopping

boundaries for undertaking interim analysis of clinical trials have been available for some

decades now and are generally well understood and implemented in practice.

In summary, we conclude that early stopping of clinical trials for apparent benefit is not

a substantive source of bias in meta-analyses, whereas exclusion of truncated studies from

meta-analyses would introduce bias. Evidence synthesis should be based on results from all

studies, both truncated and non-truncated.
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2.A Appendix: web-based supporting materials for

"Meta-analysis of clinical trials with early stopping:

an investigation of potential bias"

Summary

In this supporting manuscript we provide proofs of various theoretical results that were

referred to in the main paper. These proofs are presented in Sections 2.A.1 through 2.A.3.

In Section 2.A.4, we provide additional simulation results for the estimation bias associated

with various meta-analysis strategies, to supplement the results presented in Table 2.2 of the

main paper.

2.A.1 Proofs of (2.9), (2.11) and (2.13)

Muthén (1990) generalised results of Rosenbaum (1961) by deriving the expectation and

variance of each component of the bivariate standard normal random variable (Z1,Z2) sub-

ject to general upper and lower truncation, b1 ≤ Z1 ≤ a1 and b2 ≤ Z2 ≤ a2. By defining

Z1 =
(
D(1)

m − δ
)
/

√
I(1)m and Z2 =

(
D∗

m − δ
)
/
√

I∗m, it follows from (2.7) with Km = 1 that

(Z1,Z2) is standard bivariate normal with covariance ρ =

√
I(1)m /I∗m. Thus,

E
(
D∗

m| Nm
)
= δ −Λ

(
b(1)m −δ

√
I(1)m

)√
I(1)m

I∗m
(2.A.1)

follows from the results of Muthén (1990) using the form of the expectation of Z2 when

the random variable (Z1,Z2) is subject only to truncation from above in Z1. In particular,

making the substitutions a1 = b(1)m − δ
√

I(1)m , a2 = ∞, b1 = b2 = −∞, ρ =

√
I(1)m /I∗m and

i = 2 in equation (5) of Muthén (1990), the expectation of Z2 is obtained, from which the
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expectation of D∗
m in (2.A.1) follows. Equation (2.9) follows immediately from (2.A.1).

Making the same substitutions in equation (10) of Muthén (1990) leads to equation (2.11).

Equation (2.13) can be obtained by first noting that

E
(
D(1)

m | N m
)
= δ +Ψ

(
b(1)m −δ

√
I(1)m

)
1√
I(1)m

using the expectation of the univariate standard normal distribution truncated from below at

the value b(1)m −δ
√

I(1)m ; see Cohen (1991).

2.A.2 Proof of (2.10)

The information conditional on non-truncation can be expressed as

I
(
δ
∣∣Nm

)
= −E

{
d2

dδ 2 log fm
(
D(1)

m ,D∗
m;δ

∣∣Nm
)}

= −E
{

d2

dδ 2

[
log fm

(
D(1)

m ,D∗
m;δ

)
− logF(1)

m
(
c(1)m ;δ

)]}
= −E

{
d

dδ

[
I∗m(D

∗
m −δ )+Λ

(
b(1)m −δ

√
I(1)m

)√
I(1)m

]}
= I∗m + I(1)m Λ′

(
b(1)m −δ

√
I(1)m

)
.

Using the fact that the derivative of the standard normal density function is ϕ ′(x) =−xϕ(x),

it follows that the derivative of Λ(x) is

Λ′(x) =−Λ(x){x+Λ(x)}. (2.A.2)

Substituting equation (2.A.2) into I
(
δ
∣∣Nm

)
above yields

I
(
δ
∣∣Nm

)
=

I∗m − I(1)m Λ
(

b(1)m −δ
√

I(1)m

){(
b(1)m −δ

√
I(1)m

)
+Λ

(
b(1)m −δ

√
I(1)m

)}
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which yields the first part of equation (2.10), where

F
(
δm, tm

)−1
=

1− tmΛ
(

b(1)m −δm
√

tm

)[(
b(1)m −δm

√
tm

)
+Λ

(
b(1)m −δm

√
tm

)]
. (2.A.3)

Using (2.A.2), equation (2.A.3) can be written as

F (δm, tm) =
{

1+ tmΛ′(b(1)m −δm
√

tm
)}−1

. (2.A.4)

Since 0 ≤ tm ≤ 1, the second part of equation (2.10) follows if it can be shown that

−1 < Λ′(x)< 0 for all x ∈ ℜ. (2.A.5)

Since Λ(x)> 0 for all x ∈ ℜ, Λ′(x)< 0 follows from (2.A.2) if it can be shown

x+Λ(x)> 0 for all x ∈ ℜ. (2.A.6)

Equation (2.A.6) obviously holds for x ≥ 0. To prove (2.A.6) for x < 0, bounds on the tail

probability Q(u) = 1−Φ(u) can be used. In particular, for u > 0, Q(u)< ϕ(u)/u (Durrett,

2010). Using Q(u) = Φ(−u) and ϕ(u) = ϕ(−u), it follows that Φ(−u) < ϕ(−u)/u, or

equivalently that Λ(−u)−u > 0, for u > 0. Making the change of variable x =−u therefore

leads to (2.A.6) for x < 0. This completes the proof of (2.A.6) and hence the right hand

inequality in (2.A.5), Λ′(x)< 0 for all x ∈ ℜ.

To prove the left-hand inequality in (2.A.5), −1 < Λ′(x) for all x ∈ ℜ, we make use of the

convexity of Λ and the tail probability bound Q(u)> ϕ(u)u/(1+u2) for u> 0 (Pechtl, 1998;

Durrett, 2010). These two properties imply, respectively, Λ′(x)> limu→−∞ Λ′(u) for x ∈ ℜ

and Q(−x)>−ϕ(−x)x/(1+ x2) for x < 0. Thus, using Q(−x) = Φ(x), ϕ(−x) = ϕ(x) and

the fact that −x is positive, it follows that Λ(x)<−x−1 − x for x < 0. Substituting this into

(2.A.2) yields Λ′(x)>−(−x−1−x)(−x−1−x+x)=−1−x−2. Therefore, limu→−∞ Λ′(u)>
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limu→−∞(−1−u−2) =−1 and consequently Λ′(x)>−1 for all x ∈ ℜ. This completes the

proof of (2.A.2) and hence the second part of (2.10).

2.A.3 Proof of (2.12)

The stopping boundary b(1)m = b(1)m (tm) is a non-increasing function of tm for all stopping

rules considered in this paper and indeed any other sensible rule. It follows that b(1)m −

δm
√

tm is a decreasing function of tm for given δm. Therefore, since (2.A.3) implies Λ is

a decreasing function, equation (2.9) implies B(δm, tm) is an increasing function of tm for

given δm. Similarly, (2.A.2) and the convexity of Λ (Pechtl, 1998), imply that F (δm, tm) is

an increasing function of tm for given δm. This completes the proof of (2.12).

2.A.4 Additional estimation bias simulations

Table 2.2 of the main paper provided simulation results for the estimation bias associated

with various meta-analysis strategies. Additional versions of Table 2.2 are provided below

using various alternative parameter combinations as detailed in the table captions.
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Table 2.A.1: Simulated estimation bias (percent underestimation) for non-truncated, non-
sequential and all-study strategies in meta-analyses of M = 4 studies, each with 90% power
for an effect size of δ/σ = 0.25 at a one-sided significance level of 2.5%. All studies used
the O’Brien-Fleming stopping boundary with Km equally space interim analyses. Values
in parentheses for the non-sequential strategy are the efficiencies (percent) relative to the
all-study strategy. S and N are the percent of studies with sequential monitoring and non-
truncation, respectively.

Km S N Estimation bias
Non-truncated Non-sequential All-study

strategy strategy strategy
Fixed Random Fixed Random Fixed Random

1 0 100 1.51 1.47 1.51 (100) 1.47 (100) 1.51 1.47
2 0 100 -0.51 -0.52 -0.51 (100) -0.52 (100) -0.51 -0.52
3 0 100 0.66 0.66 0.66 (100) 0.66 (100) 0.66 0.66
4 0 100 0.05 0.05 0.05 (100) 0.05 (100) 0.05 0.05
5 0 100 -0.44 -0.43 -0.44 (100) -0.43 (100) -0.44 -0.43
1 25 94 -2.16 -2.12 -1.07 (73) -1.02 (73) -0.64 -0.44
2 25 84 -1.50 -1.50 0.23 (74) 0.24 (74) 0.81 0.99
3 25 80 -1.59 -1.59 -0.07 (71) -0.07 (70) 0.08 0.25
4 25 80 -3.28 -3.26 -2.14 (69) -2.11 (68) -1.79 -1.68
5 25 78 -0.90 -0.91 0.06 (71) 0.05 (70) 0.62 0.80
1 50 84 -3.92 -3.95 -0.03 (60) -0.01 (61) 0.78 1.35
2 50 70 -5.02 -5.01 0.67 (55) 0.67 (57) 0.98 1.88
3 50 67 -4.66 -4.66 1.28 (60) 1.26 (61) 1.47 2.25
4 50 63 -4.80 -4.80 1.31 (60) 1.29 (61) 1.44 2.43
5 50 62 -3.21 -3.21 2.75 (61) 2.77 (64) 1.85 2.82
1 75 76 -8.31 -8.16 0.85 (26) − 0.71 2.19
2 75 57 -10.61 -13.42 0.07 (27) − 1.91 3.70
3 75 48 -11.78 -18.88 -1.25 (30) − 0.23 1.84
4 75 45 -10.92 -17.61 2.04 (34) − 1.45 3.05
5 75 39 -9.01 -19.28 -0.03 (32) − 2.31 3.85
1 100 70 -11.35 -11.46 − − 0.52 1.91
2 100 41 -22.98 -22.83 − − 1.36 3.13
3 100 32 -27.92 -27.96 − − 2.15 4.09
4 100 25 -32.91 -35.95 − − 1.58 3.36
5 100 21 -36.60 -36.34 − − 3.93 6.55
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Table 2.A.2: Simulated estimation bias (percent underestimation) for non-truncated, non-
sequential and all-study strategies in meta-analyses of M = 24 studies, each with 90% power
for an effect size of δ/σ = 0.25 at a one-sided significance level of 2.5%. All studies used
the O’Brien-Fleming stopping boundary with Km equally space interim analyses. Values
in parentheses for the non-sequential strategy are the efficiencies (percent) relative to the
all-study strategy. S and N are the percent of studies with sequential monitoring and non-
truncation, respectively.

Km S N Estimation bias
Non-truncated Non-sequential All-study

strategy strategy strategy
Fixed Random Fixed Random Fixed Random

1 0 100 -0.19 -0.18 -0.19 (100) -0.18 (100) -0.19 -0.18
2 0 100 -0.40 -0.39 -0.40 (100) -0.39 (100) -0.40 -0.39
3 0 100 0.41 0.41 0.41 (100) 0.41 (100) 0.41 0.41
4 0 100 0.09 0.10 0.09 (100) 0.10 (100) 0.09 0.10
5 0 100 0.02 0.01 0.02 (100) 0.01 (100) 0.02 0.01
1 25 92 -1.70 -1.69 0.21 (81) 0.21 (82) 0.38 0.49
2 25 85 -2.55 -2.55 -0.03 (79) -0.03 (79) 0.14 0.28
3 25 83 -2.34 -2.34 0.49 (83) 0.49 (84) 0.30 0.43
4 25 81 -2.01 -2.00 0.79 (76) 0.79 (77) 0.46 0.61
5 25 80 -2.51 -2.52 -0.15 (81) -0.16 (81) -0.05 0.10
1 50 84 -4.54 -4.54 -0.02 (55) -0.02 (55) 0.15 0.44
2 50 70 -6.23 -6.22 0.29 (49) 0.31 (49) 0.79 1.17
3 50 65 -7.29 -7.30 -0.27 (57) -0.28 (58) -0.15 0.22
4 50 62 -6.50 -6.50 -0.03 (60) -0.03 (60) 0.18 0.54
5 50 61 -6.50 -6.50 0.08 (56) 0.08 (57) -0.36 -0.01
1 75 77 -7.59 -7.59 0.76 (27) 0.75 (28) -0.13 0.41
2 75 55 -12.97 -12.96 -1.02 (35) -1.01 (36) 0.57 1.25
3 75 48 -14.10 -14.11 -0.21 (30) -0.21 (31) -0.03 0.60
4 75 44 -14.22 -14.22 0.18 (26) 0.19 (26) 0.17 0.96
5 75 41 -13.44 -13.45 0.21 (30) 0.19 (31) 0.31 1.03
1 100 69 -10.93 -10.93 − − 0.58 1.38
2 100 42 -22.73 -22.73 − − 0.64 1.63
3 100 30 -30.34 -30.37 − − 0.57 1.64
4 100 25 -34.98 -34.99 − − 0.17 1.37
5 100 21 -37.62 -37.50 − − 0.51 1.60
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Table 2.A.3: Simulated estimation bias (percent underestimation) for non-truncated, non-
sequential and all-study strategies in meta-analyses of M = 12 studies, each with 90% power
for an effect size of δ/σ = 0.10 at a one-sided significance level of 2.5%. All studies used
the O’Brien-Fleming stopping boundary with Km equally space interim analyses. Values
in parentheses for the non-sequential strategy are the efficiencies (percent) relative to the
all-study strategy. S and N are the percent of studies with sequential monitoring and non-
truncation, respectively.

Km S N Estimation bias
Non-truncated Non-sequential All-study

strategy strategy strategy
Fixed Random Fixed Random Fixed Random

1 0 100 -0.13 -0.12 -0.13 (100) -0.12 (100) -0.13 -0.12
2 0 100 -0.93 -0.94 -0.93 (100) -0.94 (100) -0.93 -0.94
3 0 100 0.84 0.84 0.84 (100) 0.84 (100) 0.84 0.84
4 0 100 0.60 0.60 0.60 (100) 0.60 (100) 0.60 0.60
5 0 100 0.45 0.44 0.45 (100) 0.44 (100) 0.45 0.44
1 25 92 -0.77 -0.77 1.11 (80) 1.11 (81) 1.37 1.55
2 25 85 -2.87 -2.87 -0.22 (80) -0.22 (80) -0.05 0.13
3 25 83 -1.75 -1.75 1.16 (84) 1.16 (84) 0.66 0.85
4 25 81 -2.93 -2.93 -0.43 (83) -0.43 (84) -0.34 -0.07
5 25 81 -2.63 -2.63 -0.01 (80) -0.01 (79) -0.22 0.07
1 50 84 -4.39 -4.40 -0.24 (47) -0.24 (48) 0.29 0.62
2 50 71 -6.51 -6.51 0.20 (49) 0.20 (50) 0.20 0.65
3 50 66 -6.09 -6.10 0.60 (62) 0.59 (65) 0.62 1.20
4 50 63 -6.74 -6.74 -0.46 (56) -0.45 (56) -0.23 0.22
5 50 61 -6.37 -6.38 0.06 (60) 0.06 (61) 0.08 0.66
1 75 76 -7.34 -7.34 1.06 (28) 1.06 (29) 0.42 1.12
2 75 56 -13.35 -13.35 -1.28 (26) -1.27 (27) 0.13 1.07
3 75 48 -12.85 -12.85 1.28 (33) 1.02 (33) 0.68 1.60
4 75 45 -13.89 -13.90 0.35 (29) 0.35 (30) 0.00 0.97
5 75 42 -14.03 -14.03 -0.08 (31) -0.07 (32) 0.13 1.13
1 100 71 -10.91 -10.91 − − 0.14 1.26
2 100 42 -23.45 -23.50 − − 0.25 1.43
3 100 31 -30.01 -29.62 − − 0.02 1.27
4 100 25 -35.27 -35.31 − − 0.01 1.50
5 100 22 -38.96 -38.99 − − 0.00 1.58
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Table 2.A.4: Simulated estimation bias (percent underestimation) for non-truncated, non-
sequential and all-study strategies in meta-analyses of M = 12 studies, each with 80% power
for an effect size of δ/σ = 0.25 at a one-sided significance level of 2.5%. All studies used
the O’Brien-Fleming stopping boundary with Km equally space interim analyses. Values
in parentheses for the non-sequential strategy are the efficiencies (percent) relative to the
all-study strategy. S and N are the percent of studies with sequential monitoring and non-
truncation, respectively.

Km S N Estimation bias
Non-truncated Non-sequential All-study

strategy strategy strategy
Fixed Random Fixed Random Fixed Random

1 0 100 -0.06 -0.07 -0.60 (100) -0.07 (100) -0.60 -0.07
2 0 100 -0.43 -0.42 -0.43 (100) -0.42 (100) -0.43 -0.42
3 0 100 -0.15 -0.16 -0.15 (100) -0.16 (100) -0.15 -0.16
4 0 100 0.76 0.76 0.76 (100) 0.76 (100) 0.76 0.76
5 0 100 0.43 0.42 0.43 (100) 0.42 (100) 0.43 0.42
1 25 94 -1.46 -1.47 0.43 (77) 0.42 (77) 0.62 0.79
2 25 89 -2.90 -2.91 0.29 (76) 0.29 (77) 0.13 0.38
3 25 86 -3.51 -3.49 -0.24 (77) -0.23 (77) -0.14 0.14
4 25 84 -1.81 -1.81 1.29 (82) 1.28 (83) 1.62 1.89
5 25 83 -2.30 -2.30 0.88 (80) 0.87 (80) 1.14 1.41
1 50 90 -3.21 -3.20 0.46 (61) 0.46 (62) 0.80 1.21
2 50 77 -6.94 -6.92 0.26 (53) 0.28 (55) 0.50 1.04
3 50 72 -8.54 -8.54 -1.02 (52) -1.01 (54) -0.17 0.44
4 50 68 -7.76 -7.77 -0.47 (55) -0.47 (56) 0.81 1.31
5 50 67 -8.59 -8.57 -0.90 (54) -0.87 (56) 0.17 0.86
1 75 84 -7.03 -7.03 1.79 (26) 1.81 (27) -0.09 0.67
2 75 66 -11.99 -12.00 0.83 (32) 0.81 (32) 0.98 1.87
3 75 58 -15.30 -15.29 0.63 (29) 0.64 (31) 0.27 1.37
4 75 54 -15.64 -15.63 -0.17 (32) -0.17 (34) 0.43 1.50
5 75 52 -14.99 -15.01 2.77 (35) 2.74 (37) 0.73 1.79
1 100 79 -9.57 -9.56 - - -0.14 1.02
2 100 56 -20.73 -20.72 - - 0.52 1.90
3 100 44 -25.86 -25.84 - - 1.29 2.57
4 100 38 -30.25 -30.56 - - 1.56 3.16
5 100 35 -34.10 -34.51 - - 0.48 2.22
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Abstract

Multi-country randomised clinical trials (MRCTs) are common in the medical literature and

their interpretation has been the subject of extensive recent discussion. In many MRCTs,

an evaluation of treatment effect homogeneity across countries or regions is conducted.

Subgroup analysis principles require a significant test of interaction in order to claim het-

erogeneity of treatment effect across subgroups, such as countries in a MRCT. As clini-

cal trials are typically underpowered for tests of interaction, overly optimistic expectations

of treatment effect homogeneity can lead researchers, regulators and other stakeholders to

over-interpret apparent differences between subgroups even when heterogeneity tests are in-

significant. In this paper we consider some exploratory analysis tools to address this issue.

We present three measures derived using the theory of order statistics which can be used

to understand the magnitude and the nature of the variation in treatment effects that can

arise merely as an artefact of chance. These measures are not intended to replace a formal

test of interaction, but instead provide non-inferential visual aids allowing comparison of

the observed and expected differences between regions or other subgroups, and are a useful

51
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supplement to a formal test of interaction. We discuss how our methodology differs from

recently published methods addressing the same issue. A case study of our approach is

presented using data from the Study of Platelet Inhibition and Patient Outcomes (PLATO),

which was a large cardiovascular MRCT that has been the subject of controversy in the

literature. An R package is available that implements the proposed methods.

Keywords: clinical trial; heterogeneity; interaction; multi-country study; subgroup analysis

3.1 Introduction
Multi-country randomised clinical trials (MRCTs) evaluating new drug therapies are pop-

ular as they efficiently pool resources to provide faster recruitment and more generalisable

results across patient populations, ethnicities and disease management paradigms. MRCTs

also have the advantage of providing country-specific data that can be used for local regula-

tory dossiers that may otherwise require bridging studies, and local reimbursement applica-

tions for countries that have government funded pharmaceutical schemes. As a supplement

to the overall analysis, MRCTs often present country-specific results that effectively corre-

spond to a subgroup analysis. These subgroups may be defined by the individual countries

participating in the study, or by pooling several countries in a geographical region, to avoid

issues of low power or analytical complications that can arise from low enrolment in in-

dividual countries. In this paper we will focus on the interpretation of these country- or

region-specific subgroup analyses, and will use the terms country and region interchange-

ably.

Clinical trials often assess the consistency of the treatment effect across pre-specified sub-

groups and generally accepted principles of subgroup analysis have been developed (Roth-

well, 2005; Wang et al., 2007). In MRCTs, there is typically an assessment of treatment

effect homogeneity across subgroups defined by regions. According to subgroup analysis

principles, a test of interaction is the standard assessment of treatment effect heterogene-

ity across subgroups. However, as most studies are only designed with adequate power to
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detect an overall clinically meaningful difference between treatments in the primary end-

point, the test of interaction to assess heterogeneity of treatment effect across regions in a

MRCT can often be underpowered (ICH, 1998; Wittes, 2013). Indeed, the power decreases

further as the number of regions in the subgroup analysis increases. Therefore, when there

is a non-significant p-value from a test of interaction in the presence of seemingly hetero-

geneous treatment effects across regions, speculation of a type II error can arise making

interpretation of the regional results difficult. It is very important that such speculation takes

due account of the fact that random variation can result in some regions showing a lack of

benefit even when there is no underlying heterogeneity and the treatment effect is beneficial.

To this end, it is prudent to investigate whether potential differences exist between regions

that can plausibly lead to differential treatment benefit and to appropriately design a study

with this in mind (Hung, Wang, and O’Neill, 2010). A design paper or the study analysis

plan can also be used to pre-emptively document and help inform researchers of the extent

of chance variation to anticipate in a planned MRCT (Marschner, 2010).

Consideration of potential differences between region-specific treatment effects is important

at both the design stage and the analysis stage of a MRCT. At the design stage it is useful to

understand the nature and extent of chance differences that can be expected to arise between

regions, under the assumption of treatment effect homogeneity. At the analysis stage it

is useful to compare the observed regional treatment differences with the expected regional

treatment differences and assess the magnitude of any differences. As such, the intent of this

approach is not to determine how the methodology performs under heterogeneity. Instead,

it assesses the potential extent of chance variation under an assumption of homogeneity. A

previous paper focused on considerations at the design stage (Marschner, 2010), and in the

present paper we adapt and extend this approach for application at the analysis stage. Our

methods are based on the theory of order statistics for heteroscedastic normally distributed

variables, which is applied to the collection of region-specific treatment differences. This

allows various comparisons of expected subgroup-specific effects to be made with the ac-

tual observed effects under an assumption of treatment effect homogeneity. Specifically,
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we investigate the expected and observed effects via a comparison of order statistics, the

probability of subgroups favouring the control, and the distribution of the range of treatment

effects. The resulting collection of graphical presentations provides a useful supplementary

tool to the test of interaction and can equip researchers with a visual summary of the con-

cordance between the observed treatment differences across regions and those expected due

to chance. Although we will focus on regional differences in MRCTs, the methodology that

we propose is equally applicable to other subgroup analyses.

Over recent years there has been a high level of research activity on statistical considera-

tions relating to treatment effect heterogeneity in MRCTs and multi-centre studies, reflect-

ing the practical importance of this issue (Wittes, 2013; Hung, Wang, and O’Neill, 2010;

Marschner, 2010; Chen et al., 2010; Quan et al., 2010; Chen et al., 2011; Gallo et al., 2011;

Ibia and Binkowitz, 2011; Chen et al., 2013). In the next section we will begin by review-

ing past methods of relevance to those discussed here, including a very recently published

approach which, like ours, is based on the theory of order statistics (Chen et al., 2013).

We then introduce our methodological extensions, as well as providing a discussion of the

fundamental differences between our approach and previous approaches, particularly our

use of absolute treatment effects rather than standardised treatment effects in assessing the

concordance between observed and expected treatment effect heterogeneity. Although this

introduces methodological complexities compared to past approaches (Chen et al., 2013),

we argue that this leads to more interpretable exploratory analysis tools. Finally we con-

sider a detailed case study of the methods based on the PLATO study, which was a large

MRCT of ticagrelor and clopidogrel for the prevention of cardiovascular events in patients

with acute coronary syndromes (Wallentin et al., 2009). Application of our methods to the

PLATO study, which has been the subject of much discussion in the literature, suggests that

the apparently large variation in country-specific treatment effects is consistent with the play

of chance.
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3.2 Overview of previous research
We begin with an overview of previous work which our research extends, together with an

introduction of the assumptions and notation that will be used throughout the paper.

3.2.1 Assumptions

Consider the comparison of two treatment groups, a control treatment group and an ex-

perimental treatment group, in a MRCT conducted over R regions. The sample size for

treatment group i in region r is nir, for i = 1,2 and r = 1, . . . ,R. It is assumed that there is a

parameter δ which measures the treatment effect, with δ = 0 corresponding to no difference

between the treatments. In principle the parameter δ could depend on r, meaning that there

is genuine treatment effect heterogeneity across the regions. However, here we will make

the assumption that δ does not depend on r, because our methods are aimed at assessing the

extent of chance variation that could arise in the observed region-specific treatment effects

under the assumption that there is underlying homogeneity.

The treatment effect δ could take a variety of forms depending on the type of primary

endpoint that is being used in the MRCT. For example, with continuous endpoints δ may

be a mean difference, with binary endpoints δ may be a risk difference, log relative risk or

log odds ratio, while for time-to-event endpoints δ may be a log hazard ratio. Regardless of

the type of treatment effect that δ measures, it will be assumed that for each region there is

a region-specific estimator Dr of δ , which has a normal distribution

Dr ∼ N
(
δ ,s2

r
)

r = 1, . . . ,R. (3.1)

This distributional assumption will be reasonable for most types of treatment effect mea-

sures on an appropriate scale, at least under a large sample assumption with approximate

normality. Furthermore, it is assumed that the region-specific estimators are independent

random variables. Other than these general assumptions it is not necessary for us to make

any specific assumptions about the type of endpoint or the treatment effect measure δ . In the



56 TREATMENT EFFECT HETEROGENEITY IN SUBGROUP ANALYSIS

case study described in Section 3.4 we will make use of the above model with a time-to-event

endpoint where δ is a log hazard ratio parameter and Dr are country-specific log-hazard ra-

tio estimators. However, it is also applicable for other treatment effect measures, and has

been used for relative risks and risk differences in other contexts (Marschner, 2010; Schou

and Marschner, 2013).

The form of s2
r in (3.1) can be derived in terms of the proportion of the study enrolment

allocated to region r and the design parameters used in the overall sample size calculation,

including the power, significance level and the homogeneous treatment difference δ . This

form of sr is useful for the assessment of expected treatment effect heterogeneity at the

design stage, as illustrated by Marschner (2010). At the analysis stage s2
r will not be known

in general, so a standard error estimate must also be available as discussed further in Section

3.3.5.

3.2.2 Expected range

Marschner (2010) proposed the expected range of region-specific treatment effects as a use-

ful benchmark for the expected treatment effect variation. The expected range can be derived

based on the distribution function of the smallest and largest order statistics, D(1) and D(R),

which are respectively

F(1)(x) = 1−
R

∏
i=1

{1−Fi(x)}= 1−
R

∏
i=1

{
1−Φ

(
x−δ

si

)}

and

F(R)(x) =
R

∏
i=1

Fi(x) =
R

∏
i=1

Φ
(

x−δ
si

)
.

Here, Fi is the distribution function of the normal distribution in equation (3.1) with r = i,

while Φ is standard normal distribution function.

Using these distribution functions, the expectations of D(1) and D(R) can be calculated, as

can the expectation of the range of treatment effects, V = D(R)−D(1) (Marschner, 2010).
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The expectation E(V ) provides a measure of the range of the treatment differences that can

be expected due to chance, under an assumption of treatment effect homogeneity across the

regions. The intent of this measure was to facilitate a comparison of the range of observed

and expected treatment differences, thus providing a non-inferential complement to the pri-

mary assessment based on a test of interaction of treatment effect differences across regions.

Subsequently the expected range has also been used in a more inferential capacity by Chen

et al. (2013), although this was not the original intention.

3.2.3 Probability of at least one region favouring the control

An alternative measure that is also based on the extreme order statistics and provides infor-

mation about the expected variation in region-specific treatment effects is the probability of

at least one region favouring the control (Marschner, 2010; Li, Chuang-Stein, and Hoseyni,

2007). The motivation for considering this quantity is that an inconsistent region-specific

treatment effect in a study that shows an overall benefit in favour of the experimental treat-

ment will often prompt further investigation and interpretation. Quantifying the probability

of this event, and the extent to which it is likely or unlikely, therefore provides a bench-

mark against which the occurrence of an inconsistent region-specific treatment effect can be

interpreted.

Assuming δ is scaled such that a negative value for the treatment difference indicates benefit

in favour of the experimental treatment, then the probability of at least one region favouring

the control is given by

Pr
(
D(R) > 0

)
= 1−

R

∏
i=1

Fi(0) = 1−
R

∏
i=1

Φ
(
−δ
si

)
.

As with the expected range, the intent of this measure is to provide a non-inferential tool to

calibrate expectations about whether all treatment effects should lie in a consistent direction.

If the probability is substantial, then it should not be too surprising if an inconsistent treat-

ment effect is observed in a particular region, and over-interpretation of such an observation
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should be avoided. Such information can be taken into consideration alongside the test of

interaction.

3.2.4 Normal scores

While the extreme order statistics D(1) and D(R) provide information about treatment ef-

fect heterogeneity, it is natural to consider more informative methods based on all order

statistics. A recently proposed alternative approach of Chen et al. (2013) does this. This

approach assesses treatment effect heterogeneity using normal probability plots comparing

the ordered standardised treatment differences with their associated normal scores. Specif-

ically, the approach uses the standardised quantity referred to as the weighted least squares

residual defined as er = (Dr − δ̂ )/sr. Here

δ̂ =
R

∑
r=1

wrDr

is an unbiased estimator of δ with the weights wr = s−2
r /

(
∑R

i=1 s−2
i
)

reflecting the amount

of statistical information provided by region r, or equivalently the precision of the region-

specific estimator Dr. Under the assumption of treatment effect homogeneity, the weighted

least squares residuals are distributed as

er =
(Dr − δ̂ )

sr
∼ N

(
0,1−wr

)
. (3.2)

It then follows from (3.2) that the standardised weighted least squares residual

ẽr = er/
√

1−wr has a standard normal distribution. The method proposes compar-

ing the ordered standardised weighted least squares residuals ẽ(r), r = 1, . . . ,R, with the

standard normal scores which can be readily obtained using standard tables or software

(Arnold, Balakrishnan, and Nagaraja, 2008; R Development Core Team, 2014). The main

tool for undertaking this comparison is a normal probability plot. In the special case of a

homoscedastic normal outcome where δ is the mean difference and the treatment group

sizes are equal within each region, the weights wr reduce to the proportion of the overall
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sample size that comes from region r (Chen et al., 2013). However, the above approach

applies more generally, and can be used for other treatment difference measures that

conform with the basic assumption (3.1).

In the present paper, our most significant contribution is to adapt this normal scores method

to make use of the absolute order statistics D(r) in place of the standardised order statistics

ẽ(r). In the next section we consider the substantial methodological complexities this in-

troduces, but also explain why we believe this leads to a more interpretable assessment of

treatment effect heterogeneity.

3.3 Methodological extensions
In this section we consider various extensions and adaptations of the methods reviewed in

the previous section. We will focus on three measures that can be used in comparing the

observed variation in treatment effects with what would be expected by chance under the

assumption of treatment effect homogeneity across regions.

3.3.1 Overview of extensions

The first of the three measures we consider is the expected value of the rth order statis-

tic of the region-specific treatment effects, E
(
D(r)

)
, for each r = 1, . . . ,R. Comparison of

these expected order statistics with the sample order statistics D(r), for example using a nor-

mal probability plot, provides an alternative version of the comparison described in Section

3.2.4, between ẽ(r) and the normal scores. Although it may seem like a natural alternative

to use of the absolute treatment effects rather than the standardised treatment effects, this

introduces a number of complexities because the D(r) quantities are the order statistics from

a heteroscedastic sample. These complexities are addressed in the next section. Despite the

additional complexity we argue in Section 3.3.4 that this comparison provides a preferable

assessment of treatment effect heterogeneity than the use of standardised treatment effects

as used by Chen et al. (2013).
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The second measure involves using the full distribution of the number of regions that favour

the control, rather than the more restrictive quantity discussed in Section 3.2.3, the proba-

bility of at least one region favouring the control. This distribution will be helpful in inter-

preting studies where more than one region favours the control, which is not uncommon in

MRCTs involving a large number of regions.

Finally, the third measure we consider is the full probability distribution of the treatment ef-

fect range, D(R)−D(1), which is helpful in interpreting the treatment effect range observed

in a MRCT. Use of the full distribution generalises the expected range approach described

in Section 3.2.2, which is based just on the expected value of the effect range distribution.

In principle this approach could also be generalised to other range-based distributions, such

as the distribution of the inter-quartile range of region-specific treatment effects. Here, how-

ever, we restrict our focus to the range of treatment effects which, as described in Section

3.2.2, has been the focus of prior research.

3.3.2 Order statistic distribution

All of our methods depend fundamentally on the distribution of the order statistics of the

region-specific treatment effects. This involves considering the order statistics from a sam-

ple of R heteroscedastic normal variates. We now consider this distribution and then describe

how it can be used to derive the three measures of expected treatment effect heterogeneity.

The distribution function of D(r) is

F(r)(x) = Pr
(
D(r) ≤ x

)
= Pr(At least r of R treatment differences do not exceed x)

=
R

∑
i=r

∑
S∈Si(R)

{
∏
k∈S

Fk(x)
R

∏
k=1
k/∈S

[
1−Fk(x)

]}
(3.3)

where Si(R) is the family of all subsets of size i from {1, . . . ,R} (Balakrishnan, 2007).
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On expansion and simplification of (3.3) we get

F(r)(x) =
R

∑
i=r

cir ∑
S∈Si(R)

∏
k∈S

Fk(x) (3.4)

where

cir = (−1)i−r
(

i−1
r−1

)
.

In the special case where the Drs are independent identically distributed random variables

with sr = s, equation (3.4) reduces to

F(r)(x) =
R

∑
i=r

cir

(
R
i

)
F(x)i,

and is equivalent to the familiar representation (Arnold, Balakrishnan, and Nagaraja, 2008)

F(r)(x) =
R

∑
i=r

(
R
i

)
F(x)i[1−F(x)

]R−i
.

However, our formulation allows for a fully heteroscedastic specification which is required

to allow for different regions having different sample sizes.

Applying the product rule for differentiation on the distribution function, the probability

density of the rth order statistic is

f(r)(x) =
R

∑
i=r

R

∑
j=1

cir f j(x) ∑
S∈Si(R)

1{ j ∈ Si(R)}∏
k∈S
k ̸= j

Fk(x) (3.5)

where 1{·} is the indicator function. Although this theoretical specification appears un-

wieldy, it is straightforward to compute.

As with F(r)(x), a simplified version of (3.5) is achieved in the special case where the Drs

are independent identically distributed random variables with sr = s, and is given by

f(r)(x) =
R

∑
i=r

icir

(
R
i

)
f (x)F(x)i−1.
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A simplified illustrative example of the order statistic distribution is provided for a MRCT

with R = 3 regions and treatment differences D1,D2, and D3. In this case, consider the

distribution of D(2). Here, the family of sets S2(3) and S3(3) would be given by S2(3) =

{{1,2} ,{1,3} ,{2,3}} and S3(3) = {{1,2,3}}. The distribution and density functions of

D(2) follow readily from (3.4) and (3.5) and the fact that c22 = 1 and c32 =−2, namely

F(2)(x) = F1(x)F2(x) [1−F3(x)]+F1(x)F3(x) [1−F2(x)]

+ F2(x)F3(x) [1−F1(x)]+F1(x)F2(x)F3(x)

= c22 ×{F1(x)F2(x)+F1(x)F3(x)+F2(x)F3(x)}

+ c32 ×{F1(x)F2(x)F3(x)}

and

f(2)(x) = c22 ×{ f1(x)F2(x)+ f1(x)F3(x)+ f2(x)F1(x)

+ f2(x)F3(x)+ f3(x)F1(x)+ f3(x)F2(x)}

+ c32 ×{ f1(x)F2(x)F3(x)+ f2(x)F1(x)F3(x)+ f3(x)F1(x)F2(x)} .

The forms of F(2)(x) and f(2)(x) in this simplified 3-region example illustrate the link be-

tween equations (3.3) and (3.4) and the role of the cir constants in specifying the order

statistic distribution.

As foreshadowed in Section 3.3.1, the general order statistic distribution for heteroscedastic

treatment effects can now be used to derive several useful measures of chance treatment

effect variation that extend and improve upon the measures discussed in Section 3.2.
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3.3.3 Measures of chance variation

The first measure described in Section 3.3.1, the expectation of the rth order statistic of the

region-specific treatment differences, can now be obtained using (3.5)

E
(
D(r)

)
=
∫ ∞

−∞
x f(r)(x)dx. (3.6)

Although this form is not explicit, it can be straightforwardly computed using standard rou-

tines for numerical integration. As explained later in the paper, all computations presented

here were performed in R (R Development Core Team, 2014).

Once computed, these expected order statistics can be compared graphically with the

observed ordered treatment differences to assess whether the observed spread of region-

specific treatment differences is unusual relative to what would be expected by chance under

the assumption of treatment effect homogeneity. One such plot would be a simple box plot

of the observed and expected order statistics which provides a graphical generalisation of

the approach of comparing the observed and expected ranges (Marschner, 2010). Another

approach would be a plot of the observed versus expected treatment differences, which

is a type of normal probability plot that conveys information about any departures of the

observed region-specific treatment effects from what would be expected by chance.

Treatment differences that align consistently across regions in terms of direction of effect

are straightforward to interpret and explain. Sometimes, however, chance variation will

lead some regions to have a treatment effect estimate that goes in the opposite direction to

the overall effect. This can potentially lead to speculation and over-interpretation. There-

fore, being able to compare the observed number of regions favouring the control with the

probability distribution of the number of regions favouring the control provides a useful

benchmark by which to assess the role of chance variation. This leads to the second of the

three approaches introduced in Section 3.3.1, which generalises the previously suggested

approach discussed in Section 3.2.3.
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Like the other quantities discussed in this section, the probability distribution of W , the num-

ber of regions favouring the control, is connected to the order statistic distribution discussed

in Section 3.3.2 through the relationship

Pr(W ≥ w) = Pr
(
D(R−w+1) > 0

)
= 1−F(R−w+1)(0) w = 1, . . . ,R. (3.7)

Assuming a positive treatment difference signifies an effect in favour of the control treat-

ment, and letting pi be the probability that region i favours the control, we have the following

pi = Pr
(
Di > 0

)
= 1−Fi(0) = 1−Φ(−δ/si) .

It then follows from equations (3.3) and (3.7) that the probability function of the number of

regions favouring the control is

PW (w) = Pr(W = w) = Pr(W ≥ w)−Pr(W ≥ w+1)

= F(R−w)(0)−F(R−w+1)(0)

= ∑
S∈Sw(R)

∏
k∈S

pk

R

∏
l=1
l /∈S

(1− pl) w = 0, . . . ,R (3.8)

where, for notational purposes, we define F(0)(0) = 1 and F(R+1)(0) = 0. For example, in the

3-region illustration discussed previously, the probability that two regions favour the control

is

PW (2) = Pr(W = 2) = p1 p2(1− p3)+ p1 p3(1− p2)+ p2 p3(1− p1).

Once this distribution has been computed, the observed number of regions favouring the

control can be compared with PW (w) in order to assess whether the observed number is un-

usual compared with what would be expected by chance under the assumption of homoge-

neous treatment effects. A natural summary measure of the extent to which the observation

W = wo is consistent with chance variation, is the probability of obtaining an observation at

least as extreme as W = wo, namely, PE = Pr
(
W ≥wo

)
. Although we are not recommending

PE as a p-value for formal hypothesis testing, it does nonetheless provide a non-inferential
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quantification of the extent to which the observed number of inconsistent regions is unusual

relative to what would be expected by chance.

Finally, the third approach introduced in Section 3.3.1 is based on the probability distribution

of the range of region-specific treatment effects, V = D(R)−D(1). This distribution is well

known in the homoscedastic case based on the joint distribution of D(1) and D(R) (Arnold,

Balakrishnan, and Nagaraja, 2008). In the heteroscedastic generalisation that we are using

in this paper, the density function of the range can be expressed as follows for x ≥ 0.

fV (x) =
∫ ∞

−∞

R

∑
i=1

R

∑
j=1
j ̸=i

fi(y) f j(y+ x)
R

∏
k=1

k ̸=i, j

[Fk(y+ x)−Fk(y)]dy. (3.9)

As in equation (3.6), equation (3.9) requires numerical integration which we have under-

taken in R using the integrate routine (R Development Core Team, 2014). Once com-

puted, the observed range can be compared with the probability distribution fV (x) to assess

whether the observed range of treatment effects is unusual relative to what would be ex-

pected by chance under an assumption of treatment effect homogeneity. As with W above,

a natural summary measure of the extent to which the observation V = vo is consistent with

chance variation, is provided by the probability of obtaining an observation at least as ex-

treme as V = vo, which in this case is PE =
∫ ∞

vo
fV (x)dx.

An R package called subgroup, that implements all three approaches, is available for down-

load from the Comprehensive R Archive Network (CRAN) (Schou, 2014).

3.3.4 Comparison of the methods

While our methods and those of Chen et al. (2013) both make use of assessments that are

based on the theory of order statistics, there are important differences between the two ap-

proaches. Most significantly, our approach uses the observed region-specific treatment dif-

ferences whereas the approach proposed by Chen et al. (2013) uses the standardised treat-

ment differences in the form of the weighted least squares residuals. In view of these differ-

ences, a discussion of the distinction between the two approaches is necessitated.
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Statistically, the key distinction between using the absolute order statistics D(r) and the

standardised order statistics ẽ(r), is that the former depends only on the treatment effects

themselves, while the latter depends on a combination of the departure of the treatment

effects from the overall effect and the associated standard error. Therefore, an ordering of

the standardised weighted least squares residuals is essentially an ordering of the departure

of the treatment effects from the overall effect, relative to the region-specific standard error,

with the size of the standard error playing a critical role in the ordering. This may mean that

the D(r) and ẽ(r) values are ordered in different ways. Indeed, this may mean that the two

versions of order statistics convey different messages about whether the observed region-

specific treatment effects are consistent with what would be expected by chance, and we

provide an example of this in the case study discussed in Section 3.4.

The fact that the absolute and standardised treatment effects can convey different messages

makes it important to consider how subgroup analyses are interpreted and used in practice

by stakeholders. While the standardised treatment effects are what drives the formal test

of heterogeneity, they are not the primary focus of subsequent informal assessments of the

region-specific differences in treatment effects. Such informal assessments, which would

typically follow an insignificant test of heterogeneity, tend to focus on the absolute mag-

nitudes of the treatment difference in each region. The spread in these absolute treatment

effects is what then has the potential to lead to over-interpretation of apparent treatment

effect variation. It therefore makes sense to focus on the expected variation in absolute

treatment effects as a benchmark for the observed variation in absolute treatment effects. It

is this use of actual rather than standardised treatment effects in the assessment and inter-

pretation of heterogeneity that has led us to base our measures of expected variation on the

actual treatment effects.

3.3.5 Implementation issues

In practice, there are several implementation issues that we discuss prior to considering a

case study. Firstly, it requires noting that the various quantities discussed in the previous
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section are dependent on the unknown values of δ and sr. This means that at the analysis

stage of a study, sample estimates δ̂ and ŝi are required so that computations of the expected

variation in treatment effects can be undertaken. If the individual patient data are available,

the overall treatment effect estimated using these data would be the most appropriate esti-

mate of δ , as an assumption of treatment effect homogeneity underpins the assessment of

chance variation. However, if only region-specific treatment effect estimates are available,

the aggregated estimate of δ , as discussed in Section 3.2.4, would be used.

With regards to the standard error si, there are two possible approaches to estimation. The

first, as used in this paper, would be to use the standard errors of the region-specific treat-

ment effects as estimated separately within each region. This provides a more empirical

estimate of standard error than the second approach which is to use the overall estimate of

standard error, weighted by the proportion of subjects from each region. The latter approach

enforces an assumption of region-level homoscedasticity and results in smaller regions be-

ing weighted less and larger regions being weighted more. This is a more natural approach

to take at the design stage when no data is available.

A further implementation issue relates to the computational complexity of the methods. In

Section 3.3.3 we presented theoretical expressions associated with the various measures of

heterogeneity, that can be computed exactly with the aid of a routine to undertake numerical

integration. In practice, it is also possible to approximate all of the required quantities using

simulation. Although this is potentially computationally expensive, the computations them-

selves are trivial and obvious with the availability of a large number of simulated samples

D1, . . . ,DR from the normal distributions N
(
δ̂ , ŝ2

r
)
, for r = 1, . . . ,R. Since the theoretical

computations required to compute the quantities described in Section 3.3.3 are based on

combinatorial sets, there will generally be a point at which simulation becomes more ef-

ficient than direct computation. Based on our experience with the case study described in

Section 3.4, the simulation approach tends to be preferable for R > 20.
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3.4 Case study

3.4.1 PLATO study

As a case study, we consider the Study of Platelet Inhibition and Patient Outcomes (PLATO),

which was a 43-country, double-blind, randomised trial comparing the experimental treat-

ment ticagrelor with the control treatment clopidogrel, for the prevention of cardiovascular

events in 18,624 subjects with acute coronary syndrome (Wallentin et al., 2009). The pri-

mary endpoint of this study was the time to first occurrence of a cardiovascular event (death

from vascular causes, myocardial infarction, or stroke). The study was designed to have

90% power to detect a relative risk reduction of 13.5%.

On completion, the overall study showed a significant reduction in cardiovascular events

in favour of ticagrelor (hazard ratio 0.84, p < 0.001). Treatment effect heterogeneity was

assessed in 33 separate subgroup analyses, one of which was an assessment of the het-

erogeneity of treatment effects across regions (Asia/Australia, Central/South America, Eu-

rope/Middle East/Africa and North America). The p-value for this test of interaction was

0.045 with the treatment effect in North America having an observed value that favoured the

control, although insignificantly so. The investigators concluded that this finding may have

been a chance result due to multiple testing, and that although no apparent explanations had

been found, questioned whether the differences between patient populations and treatment

practice patterns may have contributed to this result.

Although a p-value of 0.045 in the context of 33 subgroup analyses is not particularly sur-

prising, the PLATO study was subsequently subjected to extensive post hoc analysis of

country-specific heterogeneity in treatment effects. These analyses focused particularly on

the observation that the USA treatment effect was in the direction favouring the control.

The Food and Drug Administration (FDA) conducted its own review of the data follow-

ing the sponsor’s proposal of a potentially negative association between the dose of aspirin

and the benefit of treatment with ticagrelor, finding that the dose of aspirin was higher in

the USA subgroup compared with the non-USA subgroup (FDA, 2010). A further review
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of this possible explanation was subsequently published together with a claim that differ-

ences in primary site monitoring by an independent contract research organisation (in the

USA) and the study sponsor (in most other countries) may offer an alternative explanation

requiring further investigation (Serebruany, 2010). These proposals of a potential biological

explanation (aspirin dose) and an operational explanation (site monitoring) were followed

by a statistical assessment concluding that the country-specific treatment effect variation

was consistent with the play of chance (Buyse and Marschner, 2011) and a further analysis

concluding that the findings in the USA were likely not due to chance (Chen et al., 2013).

Here we use our methods to provide further exploration of the play of chance as a potential

explanation for country-specific treatment effect differences in the PLATO study.

3.4.2 Data and analyses

In our analyses, we used published country-specific hazard ratios and 95% confidence inter-

vals for all countries except the smallest (Hong Kong), which had only 16 patients. This led

to R = 42 countries with sample sizes varying from 51 to 2666. We refer the reader to Fig-

ure 1 of Serebruany (2010) for a full listing of the countries, sample sizes and hazard ratios

used in our analyses. The overall treatment effect δ was taken to be the log hazard ratio,

for which assumption (3.1) is reasonable. The overall estimate δ̂ was calculated using an

inverse variance weighting method based on country-specific log hazard ratios and standard

errors calculated from the published confidence intervals.

As well as analyses of the treatment effects for all 42 countries, we also considered analyses

restricted just to the countries with the largest sample sizes. These additional analyses served

two purposes. Firstly, they enabled an assessment of the extent to which any conclusions

are robust to the larger variation expected in small countries, which was raised as a concern

by Chen et al. (2013). Secondly, these analyses served to illustrate the behaviour of the

methodology on data sets having various R values. In our analyses we consider the results

restricted to the largest 10, 15 and 20 countries, in addition to the full collection of 42

countries.
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3.4.3 Order statistics

Figures 3.1 and 3.2 present the expected order statistics of the country-specific treatment

differences displayed as box plots and normal probability plots. These plots are displayed

for the entire collection of 42 countries, as well as analyses restricted to the largest 10, 15

or 20 countries. Also shown, in Figure 3.2 Panels B and D, are normal probability plots

corresponding to the standardised weighted least squares residuals of Chen et al. (2013),

as discussed in Section 3.2.4. Since formal tests of heterogeneity of treatment effects are

statistically insignificant (p > 0.1 in all cases), we intend that these graphical displays are

used as a non-inferential supplement to a formal test of heterogeneity, in which the observed

variation in treatment effects is compared with the expected variation in treatment effects.

With this in mind, these figures do not identify any remarkable differences between what was

observed and what would be expected due to chance variation. Figure 3.1 clearly displays

the expected increase in treatment effect variation as more countries are included in the

analysis, but does not suggest that the observed variation is inconsistent with what was

expected under the hypothesis of homogeneity. Indeed, for the analyses involving larger

numbers of countries (Panels C and D) it appears that the PLATO study actually exhibits

less variation in country-specific treatment effects than would have been expected due to

chance. This is also evident in Figure 3.2 Panel C, where the shallow gradient for all but the

most extreme order statistics is indicative of smaller variation than expected.

Of particular interest is the comparison of Panels A and B of Figure 3.2, which is a compari-

son of the normal probability plots for absolute treatment effects and standardised treatment

effects, for the analysis restricted to the largest 15 countries. Panel A, based on absolute

treatment effects, displays no departure from the expected variation of treatment effects,

with the possible exception of the smallest order statistics that suggest lower variation than

expected. On the other hand, the standardised treatment effects displayed in Panel B show

one outlying country, the USA, which seems to have a standardised treatment effect that de-

parts from the other countries. This illustrates the potential for different qualitative messages

to emerge from these two methods.
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Figure 3.1: Observed and expected country-specific treatment differences from the PLATO
study. The expected treatment differences for the largest 10 (Panel A), 15 (Panel B), 20
(Panel C) and 42 (Panel D) countries are plotted. The dotted line denotes the overall ob-
served treatment difference.

3.4.4 Range of treatment effects

The expected range of treatment effects depicted in the extremities of the boxplots in Figure

3.1 can be generalised to the full distribution of the range of treatment effects, as discussed
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Figure 3.2: Observed and expected treatment differences from the largest 15 (Panel A and B)
and 42 (Panel C and D) countries in the PLATO study. Panels A and C use absolute treatment
effects whereas Panel B and D use the standardised weighted least squares residuals.

in Section 3.3.3. Plots of this distribution, together with the observed range of treatment

effects, are provided in Figure 3.3. It can be seen that the observed range of country-specific

treatment effects in the PLATO study is highly consistent with the distribution of the range
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of treatment effects under the assumption of treatment effect homogeneity. This conclu-

sion is true regardless of whether analyses are restricted to the largest countries or include

all countries. A useful summary measure of the extent of consistency is PE , which was de-

scribed in Section 3.3.3. In the present context, PE is the probability of observing a treatment

effect range at least as extreme as the one observed, under the assumption of treatment effect

homogeneity. With PE = 0.55, the overall analysis in Panel D of Figure 3.3 shows that a

treatment effect range as large as the one observed in the PLATO study is highly likely, and

could therefore plausibly have arisen through chance variation. The same conclusion would

also be reached using the PE values restricted to the largest countries, as displayed in Panels

A–C of Figure 3.3.

As a supplement to Figure 3.3, in Figure 3.4 we have displayed the observed and expected

range of country-specific treatment effects for analyses restricted to the largest R countries,

where R ranges from 10 through 42. It is clear from Figure 3.4 that regardless of whether the

expected range of treatment effects is restricted to just the very large countries, or whether

it includes the smaller countries with larger expected variation, the observed range of treat-

ment effects is always consistent with the expected range.

3.4.5 Countries favouring the control

One feature that often causes concern in MRCTs with an overall experimental treatment

benefit, is the occurrence of inconsistent country-specific treatment effects; that is, one or

more country-specific treatment effects in the direction favouring the control treatment. This

was certainly a concern in PLATO, particularly because one of these countries was the USA.

In a study with as many countries as PLATO and a moderate overall treatment benefit, it is

virtually certain that at least one country will have a treatment effect favouring the con-

trol, even if the treatment effect is homogeneous across countries. However, PLATO had

12 countries out 42 with treatment effects favouring the control, and when restricted to the

largest countries, had 7 inconsistent effects out the largest 20 countries, 4 inconsistent ef-

fects out of the largest 15 countries, and 3 inconsistent effects out the largest 10 countries.
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Figure 3.3: Probability density of the treatment effect range for the largest 10 (Panel A), 15
(Panel B), 20 (Panel C) and 42 (Panel D) countries in the PLATO study. The dotted line
denotes the observed range.

These numbers of inconsistent countries may seem large, but when benchmarked against

the probability distribution of the number of treatment effects favouring the control, as de-

scribed in Section 3.3.3, it can be seen that they are not unusually large. Figure 3.5 displays
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Figure 3.4: The range of observed and expected country-specific treatment effects in the
PLATO study, restricting the analysis to the largest R countries, where R ranges from 10 to
42.

these distributions, together with the observed numbers of inconsistent countries, and the

summary measure PE which is the probability of an observation at least as extreme as the

one observed. With PE = 0.72 for the overall analysis in Panel D of Figure 3.5, it can be
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Figure 3.5: Probability distribution for the number of countries favouring the control for the
largest 10 (Panel A), 15 (Panel B), 20 (Panel C) and 42 (Panel D) countries in the PLATO
study. The dotted line denotes the observed value.

seen that an observation of 12 or more inconsistent countries is highly likely even under the

assumption of treatment effect homogeneity. This conclusion is not altered by restricting

the analysis to the largest countries, as in Panels A–C of Figure 3.5, all of which also show
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that the observed number of inconsistent countries is not unusual relative to what would

be expected by chance. Thus, these analyses suggest that any speculation about the causes

of inconsistent country-specific treatment effects in PLATO, should acknowledge chance

variation as a highly plausible explanation.

3.4.6 Conclusions

Despite all of the post hoc analysis and interpretation that the PLATO study has been sub-

jected to, we conclude from our results that there is nothing particularly remarkable about

the spread of treatment effects across countries. In a global study as large as the PLATO

study, with over 40 countries, it is to be expected that wide variation in treatment effects

will be observed. Consistent with earlier more limited analyses (Buyse and Marschner,

2011), our methods provide a suite of presentations suggesting that chance variation is a

very plausible explanation for the spread of country-specific treatment effects observed in

the PLATO study.

Finally, we note that our analyses were repeated to investigate how the various measures

changed when a proportionally weighted overall standard error was used to estimate the

sr standard errors, as discussed in Section 3.3.5, instead of the individual country-specific

standard errors used in the above analyses. It was found that there was very little difference

between this approach and the approach presented in this section for the PLATO study.

3.5 Discussion
Assessment of heterogeneity of treatment effects between subgroups is a key element of

clinical trial analysis. Recently, subgroup analysis of regional differences in MRCTs has

become a prominent issue in the literature. In this paper we provide some new tools that aid

interpretation of subgroup-specific treatment effects, and have illustrated these using a case

study from a MRCT.

When a test of interaction is underpowered, and treatment effects are seemingly different
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between subgroups, speculation may arise that there is heterogeneity of treatment effects

that was not detected by the test of interaction. The approach we propose here is a non-

inferential supplement to a formal test of interaction. A non-inferential approach has been

suggested given that the same limitation of low power for a test of interaction will likely

affect any new inferential technique one might develop to assess treatment effect hetero-

geneity. The suite of graphical tools introduced in this paper provide a multi-faceted visual

assessment of the extent to which the observed treatment differences align with those that

would be expected under an assumption of treatment effect homogeneity. That is, the intent

is not to assess how these methods will perform under heterogeneity, but rather to quantify

the potential extent of variation resulting from the play of chance under an assumption of

homogeneity. Given the attention heterogeneity of treatment effects across regions has re-

ceived in some MRCTs (Wallentin et al., 2009; Serebruany, 2010; Wedel et al., 2001), our

approach provides additional tools for evaluating the extent of chance variation expected in

a MRCT, and can be used to benchmark expectations and pre-empt any over-interpretation.

The graphical nature of our methods make it amenable for interpretation by all stakeholders

including non-statisticians.

The proposed methods supplement a formal test of heterogeneity by quantifying the extent

of chance variation that is consistent with homogeneity. They are not intended as new

methods to actually detect heterogeneity, and they do not provide a way to overcome a

low powered test of heterogeneity. In addition to statistical analysis, assessment of the

plausibility of heterogeneous treatment effects requires critical examination of the study

design, data collection methods, treatment administration methods, biological mechanisms

and other factors.

Treatment differences in typical clinical trial subgroups such as age and sex may present a

plausible biological mechanism that explains the difference. However, treatment differences

between regions are often more complex to understand because region is a composite of

many variables that can potentially influence the outcomes of an intervention (Wittes, 2013).

Thorough evaluation of potential treatment differences between regions at the design stage
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of a study is critical, and can assist with the interpretation of any apparent heterogeneity that

emerges at the analysis stage.

Our methods differ from a recently published method by Chen et al. (2013) in that we use

the observed treatment differences whereas Chen et al. (2013) use the standardised treatment

differences as defined by the weighted least squares residuals. Although this difference

may seem trivial, the results and their interpretation can be quite different as the ordering

proposed by Chen et al. (2013) depends on the relative magnitude of the departure of the

region-specific treatment effect from the overall effect, compared with its standard error. We

advocate the use of the observed treatment differences as these are required in practice for

such activities as cost-effectiveness analyses and risk stratification in addition to the direct

relevance they have for the physician and the patient.

In conclusion, our methods provide a non-inferential yet visually informative summary of

the subgroup-specific variation in treatment effects that can arise as an artefact of chance.

The appeal of these methods is their broad applicability, not just to global clinical trials as

discussed here but also to other types of subgroup analysis, as well as the accessibility of

the visual displays to all stakeholders including non-statisticians.
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Abstract

Heterogeneity of treatment effect across subgroups is often assessed in randomised clinical

trials. A test of interaction is the accepted statistical method for evaluating heterogeneity.

However, this test is often underpowered which can make interpretation of apparent differ-

ences between subgroups difficult. Various measures of expected treatment effect hetero-

geneity have been proposed under an assumption of homogeneity across subgroups which

provide a useful supplement to a formal test of interaction. This paper presents how these

measures are implemented in the R computing environment using the subgroup package.

Keywords: clinical trial; heterogeneity; interaction; multi-country study; subgroup analysis

4.1 Motivation
Assessment of heterogeneity of treatment effects across subgroups is often conducted in

randomised clinical trials (RCTs). The accepted statistically valid approach for this eval-

uation requires a test of interaction. However, RCTs are seldom adequately powered for

these tests of interaction. Thus, the potential for a type II error can lead to speculation when

83
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treatment effects are seemingly different between subgroups. In light of this limitation,

evaluating the extent and nature of variation that can arise under an assumption of treat-

ment effect homogeneity across subgroups provides a greater understanding of the play of

chance. While a formal test of interaction will remain the best measure of treatment effect

homogeneity for inferential purposes, various non-inferential measures which provide sup-

plementary information on the extent of chance variation have been proposed (Marschner,

2010; Schou and Marschner, 2015). The subgroup package for the R computing environ-

ment implements these measures which include the expectations of the order statistics of the

subgroup-specific treatment effects, the density function of the range of the treatment dif-

ferences between subgroups, and the number of subgroups favouring the control treatment

(Schou, 2014).

4.2 R package
Understanding the extent to which treatment differences can arise as a result of chance is

useful at the design stage of a clinical trial (Marschner, 2010). It helps researchers get an ap-

preciation for the treatment effect variations that can arise as a result of chance. Furthermore,

prospective documentation of this potential chance variation can also mitigate speculation

of treatment effect heterogeneity that might arise at the analysis stage of a clinical trial. At

the analysis stage, observed measures of treatment effect variation can be compared with the

expected measures in a non-inferential manner to gain a better understanding of the extent

of variation, as a supplement to formal heterogeneity testing (Schou and Marschner, 2015).

The subgroup package flexibly implements these methods and allows the user to indicate

if the assessment of treatment effect variation is to be conducted at the design phase or the

analysis phase of a clinical trial.

The graphical and numerical outputs produced by the subgroup package have been de-

scribed in detail in Schou and Marschner (2015). These include the expectations of the

order statistics of the subgroup-specific treatment effects, the density function of the range

of the treatment differences between subgroups, and the number of subgroups favouring the
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control treatment. In addition, the overall treatment difference, either as input by the user,

or as calculated as the inverse variance weighted average, will also be output. The default

graphical output is a 2×2 plot which presents these numerical measures. The outputs will

differ slightly depending on whether it is a prospective design stage assessment of potential

chance variation, or an analysis stage assessment of expected versus observed variation. If it

is the latter, the observed measures will also be included in the plots. Furthermore, the prob-

ability of observing a measure at least as extreme as the observed will also be included as a

non-inferential quantification in the graphs of the density function of the range of the treat-

ment differences between subgroups, and the number of subgroups favouring the control

treatment.

The computation of these measures is based on order statistics theory requiring combinato-

rial evaluations. Consequently, the computation time in the heteroscedastic case increases

exponentially as the number of subgroups R, increases, as discussed later in the paper. In-

deed, the computation time taken when R > 20 is significant, thereby compromising the

practicality of running this package on a standard desktop or laptop computer. Therefore,

the subgroup package defaults to a simulation based approach when R > 20 in the het-

eroscedastic case, unless the user explicitly specifies that a theory based approach is to be

implemented. In the special case when the treatment effects are homoscedastic, the com-

binatorial evaluations are greatly simplified, thereby making the theory based calculations

straightforward. In this case the subgroup package defaults to a theory based approach

irrespective of the size of R.

The symmetry of the order statistics around the median is exploited to increase efficiency

in the computation of the theory based expectations of the order statistics. As such, only

the (R/2)+0.5 order statistics are calculated when R is odd, and (R/2) order statistics are

calculated when R is even. The remainder are computed using the symmetry attribute.
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4.3 Distributional assumptions
The subgroup package has one main function, subgroup. The critical inputs to the function

subgroup are the subgroup-specific treatment effects and the subgroup-specific standard er-

rors. The methodology used in the computations assumes that the treatment difference in

subgroup r is normally distributed with mean µ and standard deviation σr. Therefore, this is

directly applicable to continuous endpoints that are normally distributed. Under large sam-

ple normality assumptions this distributional property can be readily extended to binary and

time-to-event responses either directly, or to the log transformed treatment effect measure

as described in Table 4.1.

Table 4.1: Binary and time-to-event outcome specification for the subgroup package.
Endpoint
Difference in proportions

Treatment difference p1r − p2r

Standard error
(

p1r(1−p1r)
n1r

− p2r(1−p2r)
n2r

)1/2

Log relative risk
Treatment difference log(p1r)− log(p2r)

Standard error
(

1
n1r p1r

− 1
n1r

+ 1
n2r p2r

− 1
n2r

)1/2

Log odds ratio
Treatment difference log(p1r)+ log(1− p2r)− log(p2r)− log(1− p1r)

Standard error
(

1
n1r p1r

+ 1
n1r(1−p1r)

+ 1
n2r p2r

+ 1
n2r(1−p2r)

)1/2

Log hazard ratio
Treatment difference βr

Standard error
(

4
e1r+e2r

)1/2

The notations used in Table 4.1 are as follows:

• nir: The number of subjects randomised to treatment group i and subgroup r, where

r = 1, ..,R.

• pir: The proportion of events in treatment group i and subgroup r.

• βr: Log hazard ratio in subgroup r.
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• eir: Number of events in treatment group i and subgroup r. When the randomisation

ratio is 1 : 1, the variance of the log hazard ratio can be estimated by 4 times the

reciprocal of the total number of events (Quan et al., 2010).

At the design stage of the study, the treatment difference is assumed to be the same across

all the subgroups. As such, the treatment difference that will be input into the subgroup

package will be the same for all subgroups. Likewise, the standard errors input into the sub-

group package will be the same across subgroups if the standard deviation of the individual

patient endpoint is assumed to be homoscedastic and the subgroups are anticipated to be the

same size. However, if the sample sizes in each subgroup is anticipated to be different, or the

underlying distribution of the individual patient measures is anticipated to be heteroscedas-

tic, the input standard errors will vary across subgroups. It is recommended that the overall

treatment difference is supplied by the user if the assessment is being conducted at the de-

sign stage; this would typically be the value used in the sample size calculation for the trial.

At the analysis stage of the the study, the input data will be the observed subgroup treatment

differences and its associated subgroup sample standard error. These may be available from

a subgroup analysis to the user, or can be computed by the user as described in Table 4.1. If

an estimate of the overall treatment difference is available, it is recommended that this value

be provided by the user. If not, the subgroup package will calculate this as a reciprocal

variance weighted estimate from the subgroup treatment differences.

4.4 Input arguments and return values
The subgroup package is defined as a single function, subgroup, which encapsulates sev-

eral subroutines. This section describes the input arguments and the return values of the

function subgroup.

The input arguments to the subgroup function and its default values are as follows:

• data: Numeric matrix of dimension R×2 where R is the number of subgroups. The
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first column of this matrix will contain the treatment differences and the second col-

umn will contain the standard errors of the treatment differences.

• overall.diff: Numeric argument indicating the overall treatment difference if

available. The default is NULL, in which case the weighted average of the subgroup

treatment differences, weighted by the reciprocal of the variance of the subgroup-

specific treatment differences will be generated. It is recommended that the user

provides the overall treatment difference anticipated in the trial if the assessment is

being conducted at the design stage of the study.

• force.theoretical: Logical argument with default set to TRUE if R ≤ 20 or if the

standard errors of the subgroup treatment effects are homogeneous. Otherwise, it

defaults to FALSE. If set to TRUE, theoretical computations are used regardless of the

number of subgroups, R, and a warning message is given to advise the user that the

processing time may be significant if the standard errors across the subgroups are

heterogeneous and R > 20. An error message is given if both force.theoretical

and force.simulation are set to TRUE, and the routine will stop execution.

• force.simulation: Logical argument with default set to FALSE if R ≤ 20 or if

the standard errors of the subgroup treatment effects are homogeneous. Otherwise,

it defaults to TRUE. If set to TRUE, simulation based computations are conducted

regardless of the number of subgroups, R. An error message is given if both

force.theoretical and force.simulation are set to TRUE, and the routine will

stop execution.

• design: Logical argument with default set to FALSE. Allows the user to indicate that

the outputs are to be created for a study at its design stage. The resulting plots will

not present any observed measures.

• plots: Logical argument with default set to TRUE.

The following numerical components are returned by the subgroup package:
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• expectations: A matrix of dimension R×4. The first two columns present the treat-

ment differences and the standard errors contained in the dataset data as submitted

by the user. The third column contains the expected ordered treatment differences,

and the fourth column the order number.

• favourcontrol: A matrix of dimension (R+1)×2, where R is the number of sub-

groups. The first column contains the number of subgroups favouring control. The

second contains the probability of that event. Here, a treatment effect that is > 0 is

considered to favour the control.

• rangedensity: A matrix with 2 columns. The first column contains the sample space

for the range which takes on values > 0. The second column contains the probability

density.

• overalldiff: A numeric variable which returns the input argument overall.diff

if provided by the user or contains the weighted mean treatment difference as calcu-

lated within the subgroup routine.

The user can manipulate these results to produce plots, or can opt to use the default plots

produced by the subgroup package, using the plots argument.

4.5 Example
MERIT-HF (Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Fail-

ure) was a randomised placebo-controlled multi-country clinical trial which investigated

whether all-cause mortality in patients with decreased ejection fraction and symptoms of

heart failure could be lowered with the use of metoprolol controlled release/extended re-

lease (CR/XL) once daily, in addition to standard therapy (MERIT-HF Study Group, 1999;

Wedel et al., 2001). At the analysis stage, the study had enrolled 3991 patients from 14

countries. Although the overall hazard ratio for all-cause mortality favoured metoprolol

(hazard ratio=0.66), a post-hoc analysis of the primary endpoint by the country of randomi-



90 SOFTWARE FOR EXPLORING TREATMENT EFFECT HETEROGENEITY

sation resulted in a hazard ratio of 1.05 in the US, with a non-significant p-value for the test

of interaction (0.22). Wedel et al. (2001) investigated whether this seemingly unfavourable

treatment effect in the US could be explained by any differences in baseline characteristics

and concluded that this difference was likely an artefact of chance.

Table 4.2: Number of patients randomised and number of all-cause mortality events in the
MERIT-HF study.

Country Metoprolol Placebo
Randomised Events Randomised Events

Belgium 68 3 66 13
Czech Republic 123 9 124 17
Denmark 141 11 150 11
Finland 20 0 14 2
Germany 252 19 247 31
Hungary 211 16 212 29
Iceland 19 2 22 2
Norway 97 6 105 11
Poland 102 8 102 8
Sweden 39 2 46 9
Switzerland 21 0 21 1
The Netherlands 278 14 270 25
United Kingdom 87 4 83 9
United States 532 51 539 49
All countries 1990 145 2001 217

The number of patients randomised to each treatment arm in each country and the number

of all-cause mortality events are reproduced in Table 4.2 (Wedel et al., 2001). To avoid

analytical complications resulting from zero events in the metoprolol arm in Finland and

Switzerland, the authors combined these countries with neighbouring countries (Finland

with Denmark and Switzerland with The Netherlands) into randomisation regions. Taking a

similar approach of combining these countries, the data presented in Table 4.2 can be used

to descriptively evaluate whether the observed treatment effects differ from what might have

been expected by chance under an assumption of treatment effect homogeneity. The overall

relative risk in this study was 0.672, that is, a log relative risk of -0.398.

The code provided in Figure 4.1 demonstrates how the subgroup package can be used to

analyse the MERIT-HF data presented in Table 4.2. The resulting output is presented in
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# MERIT-HF study with 12 randomisation regions resulting from

# combining Finland with Denmark, and Switzerland with The Netherlands.

# Load the library

library(subgroup)

# Number randomised to the metoprolol arm.

n1 <- c(68, 123, 161, 252, 211, 19, 97, 102, 39, 299, 87, 532)

# Number randomised to the placebo arm.

n2 <- c(66, 124, 164, 247, 212, 22, 105, 102, 46, 291, 83, 539)

# Events in the metoprolol arm.

e1 <- c(3, 9, 11, 19, 16, 2, 6, 8, 2, 14, 4, 51)

# Events in the placebo arm.

e2 <- c(13, 17, 13, 31, 29, 2, 11, 8, 9, 26, 9, 49)

# Log relative risk in each subgroup.

difference<- log((e1/n1)/(e2/n2))

# Refer Table 4.1 for the formula for the standard error of the

# log relative risk.

se <- sqrt((1/e1) - (1/n1) + (1/e2) - (1/n2))

# Create the dataset for use.

data<- cbind(difference, se)

# Run the subgroup package to produce theory based outputs.

# Plot presented in Figure 4.2.

result1<- subgroup(data=data, overall.diff=-0.398)

# Run the subgroup package to produce simulation based outputs.

# Plot presented in Figure 4.3.

result2<- subgroup(data=data, overall.diff=-0.398, force.simulation=TRUE)

Figure 4.1: R code to produce outputs in Figures 4.2 and 4.3 using the subgroup package.

Figures 4.2 and 4.3. Here, Figure 4.2 presents the output from a theory based calculation,

and Figure 4.3 the output from a simulation based assessment. With regards to potential het-

erogeneity of treatment effects across the randomisation regions, the graphical presentations

in Figures 4.2 and 4.3 suggest that although the US had a log relative risk that was in favour

of placebo, the overall variation in the subgroup treatment effects is not inconsistent with

what would have been expected under an assumption of homogeneity. With regards to a

comparison of the theory based approach with the simulation based approach, it can be seen

that the simulation based approach is closely comparable to the theory based approach. This

provides some assurance that the subgroup package gives reliable estimates of the measures

of interest for R > 20, when it defaults to using a simulation based approach.
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Figure 4.2: Theory based comparison of observed and expected treatment differences in a
subgroup analysis of 12 randomisation regions in the MERIT-HF study.

The subgroup package can also be used at the design stage of a clinical trial. The MERIT-

HF study had planned to randomise 1600 patients per treatment arm in a ratio of 1 : 1 across

14 countries (MERIT-HF Study Group, 1999). For the purposes of demonstrating the use

of the subgroup package in the design context, suppose the planned number of events in

the placebo group is 200, that is, an event rate of 12.5%, with a 30% risk reduction in

those randomised to metoprolol, that is, a log relative risk of -0.357. In this example, the

country of randomisation will define each subgroup. Therefore, the number randomised in

each country will dictate the magnitude of the standard error associated with the log relative

risk. This design stage evaluation is explored through the execution of the code presented

in Figure 4.4 and resulted in the plot presented in Figure 4.5. Figure 4.5 suggests that we

would expect to have around three countries with treatment effect estimates favouring the
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Figure 4.3: Simulation based comparison of observed and expected treatment differences in
a subgroup analysis of 12 randomisation regions in the MERIT-HF study.

# Load the library

library(subgroup)

# Log relative risk in the 14 countries.

difference <- rep(log(0.7), 14)

# Patients per treatment arm in the 14 countries.

ni <- c(54, 99, 117, 14, 200, 170, 16, 81, 82, 34, 17, 220, 68, 429)

# Refer Table 4.1 for the formula for the standard error of the

# log relative risk.

se <- sqrt((1/(0.125*ni)) - (1/ni) + (1/(0.7*0.125*ni)) - (1/ni))

# Create the dataset for use.

data <- cbind(difference, se)

# Run the subgroup package.

result <- subgroup(data=data, design=TRUE, overall.diff=-0.357)

Figure 4.4: R code to produce output in Figure 4.5 using the subgroup package.
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Figure 4.5: Expected variation in treatment effect in a subgroup analysis of 14 countries in
the MERIT-HF study.

control, and that there is a high probability of this happening. In practice, this information

might be used to manage expectations at the planning stage.

4.6 Computation time
Due to the combinatorial nature of the computations, the execution time of the subgroup

package increases exponentially as the number of subgroups increases. Although the execu-

tion time depends greatly on the computer on which the subgroup package is implemented,

as an illustrative example, the execution time of the subgroup package for subgroups rang-

ing from R = 2, ..,15 run on a 3.40 GHz core i7 processor is presented in Figure 4.6. This

suggests that the user should consider the simulation approach which is a substantially faster
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alternative to the theoretical approach in instances where the number of subgroups in an

analysis is large.
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Figure 4.6: Execution time by number of subgroups.

4.7 Summary
This paper describes the context for the application of the subgroup package, the supple-

mentary role it can play to a test of interaction in gaining an understanding of the nature

and magnitude of chance treatment differences between subgroups, and provides examples

of the execution of this package. The package can be used with different types of data; the

example provided demonstrates its use in a binary context. Theoretical measures are desir-

able, but given the computational burden this poses with a large number of subgroups, the
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simulation based approach provides a reliable substitute as demonstrated in the example. In

conclusion, the subgroup package provides a suite of non-inferential tools that allows re-

searchers to explore and understand the extent of subgroup treatment differences that could

result from chance, and to compare these expected differences with those observed in a

clinical trial.
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4.A Appendix: documentation for the R package

This appendix presents the documentation for the package subgroup available from the

Comprehensive R Archive Network as:

Schou, I.M. subgroup: Methods for exploring treatment effect heterogeneity in subgroup

analysis of clinical trials. R package version 1.1 2014. Available at: http://CRAN.R-

project.org/package=subgroup.

This package has been developed as a single routine which implements the methods de-

scribed in Chapters 3 and 4. The routine allows users to specify whether the evaluation is

being conducted at the design stage or the analysis stage, and produces plots of the type pre-

sented in Figures 4.2, 4.3 and 4.5. The numerical output resulting from this routine can also

be saved by the users to produce graphical presentations of their own choice. Furthermore,

as the computation time can be quite substantial when the number of subgroups are large,

the users also have the option to choose a simulation based output.
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Package ‘subgroup’

Type Package

Title Methods for exploring treatment effect heterogeneity in subgroup analysis of clinical
trials

Version 1.1

Date 2014-07-31

Author I. Manjula Schou

Maintainer I. Manjula Schou <im.schou@yahoo.com.au>

Description Produces various measures of expected treatment effect heterogeneity under
an assumption of homogeneity across subgroups. Graphical presentations are created
to compare these expected differences with the observed differences.

License GPL-2 | GPL-3

Depends graphics, grDevices, utils, stats, R (≥ 3.1)

subgroup Compute measures for assessing treatment effect heterogeneity
across subgroups in clinical trials and produce graphical pre-
sentations

Description
This function produces various measures of expected treatment effect heterogeneity and
allows graphical comparisons with the observed counterparts. The resulting measures
can also be saved for creation of user-specified graphics.

Usage
subgroup(data, overall.diff = NA, force.theoretical = FALSE,

force.simulation = FALSE, design = FALSE, plots = TRUE)
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Arguments
data A matrix of 2 columns containing the subgroup treatment effects

and their associated standard errors. The treatment effects must be
measured on a scale where 0 means no effect. For example, a mean
difference, a log relative risk, log odds ratio, or log hazard ratio.
Column 2 must contain the standard errors associated with the sub-
group treatment effects in Column 1. Furthermore, a treatment ef-
fect that is > 0 is considered to favour the control.

overall.diff The overall treatment effect, provided optionally by the user. If not
specified this is calculated within the subgroup routine as a recip-
rocal variance weighted mean.

force.theoretical

The default value for this argument is FALSE. If TRUE, theoretical
computations are conducted regardless of the number of subgroups,
R. If the standard errors of the subgroup treatment effects is het-
erogeneous and R > 20, a warning is given to advise the user that
the processing time may be significant. An error message is given if
both force.theoretical and force.simulation are set to TRUE,
and the routine will stop execution.

force.simulation

The default value for this argument is FALSE. If TRUE, simulation
based computations are conducted regardless of the number of sub-
groups, R. An error message is given if both force.theoretical

and force.simulation are set to TRUE, and the routine will stop
execution.

design The default value for this argument is FALSE. If TRUE, the plots will
not include any observed measures.

plots The default value for this argument is TRUE. If FALSE, no plots will
be displayed.

Details
Subgroup analysis principles require a significant test of interaction in order to claim
heterogeneity of treatment effect. As clinical trials are typically underpowered for tests
of interaction, overly optimistic expectations of treatment effect homogeneity can make
interpretation difficult when treatment effects seemingly differ between subgroups. In
addition to extending the ideas proposed by Marschner (2010), the package subgroup
also implements some new measures, and provides a suite of graphical tools that allow
visual comparison of the magnitude and nature of the observed and expected subgroup
differences that can arise as an artefact of chance. These tools are intended to supplement
a formal test of interaction in subgroup analyses, and are described in the manuscript
Schou and Marschner (2014).

Three outputs are computed by the package. These include the following: the expec-
tations of the ordered treatment effects, the probability density of the range, and the
probability distribution of the number of subgroups favouring the control treatment. The
user has the option to have the in-built plot suppressed. The content of the default plot
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produced will depend on the user choice of an analysis stage evaluation or a design stage
evaluation; if it is the former, the observed counterparts of the measures produced will
be included in the plots.

Value
The following list of components is returned by the routine subgroup:

expectations A matrix of dimension R x 4, where R is the number of subgroups.
The first two columns present the treatment differences and the stan-
dard errors contained in the dataset data as submitted by the user.
The third column contains the expected ordered treatment differ-
ences, and the fourth column the order number.

favourcontrol A matrix of dimension (R+1) x 2, where R is the number of sub-
groups. The first column contains the number of subgroups favour-
ing control. The second contains the probability of that event. Here,
a treatment effect that is > 0 is considered to favour the control.

rangedensity A matrix with 2 columns. The first column contains the sample
space for the range which takes on values > 0. The second column
contains the probability density.

overalldiff A numeric variable which returns the input argument overall.diff
if specified by the user or the reciprocal variance weighted mean
treatment difference as calculated within the routine subgroup.

Author(s)
I. Manjula Schou

References
Marschner IC. Regional differences in multinational clinical trials: anticipating change
variation. Clinical Trials 2010; 7:147-156.

Schou IM and Marschner IC. Methods for exploring treatment effect heterogeneity in
subgroup analysis: an application to global clinical trials. Pharmaceutical Statistics
2015; 14: 44-55.

Examples

# Create dataset containing treatment differences ----------------------

# and standard errors. -------------------------------------------------

difference<-c(-0.163, -0.083, -0.030, 0.095)

se<-c(0.48, 0.27, 0.19, 0.39)

mydata<-cbind(difference, se)

# Example code to produce the expected measures together with the ------

# plot created by the subgroup routine for comparison against the ------

# observed differences. NOTE: The execution time increases as the ------



SOFTWARE FOR EXPLORING TREATMENT EFFECT HETEROGENEITY 103

# number of subgroups increases. ---------------------------------------

test1<-subgroup(data=mydata)

# Expected measures produced by the subgroup routine that the user -----

# can manipulate to produce own graphics. ------------------------------

test1$overalldiff # Overall difference between treatment groups.

test1$expectations # Expectations of the ordered

# treatment differences.

test1$rangedensity[1:15,] # Sample of the probability density of

# the range.

test1$favourcontrol # Prob dist of subgroups favouring the

# control treatment.

# Example code for evaluation of chance heterogeneity at the design -----

# stage. ----------------------------------------------------------------

test2<-subgroup(data=mydata, design=TRUE)

# Example code for simulation based evaluation of chance heterogeneity. -

test3<-subgroup(data=mydata, force.simulation=TRUE)





Chapter 5

Design of clinical trials with multiple

hypothesis tests

Submitted article:

Schou, I. M. and I. C. Marschner (2016). Design of clinical trials involving multiple hy-

pothesis tests with a common control. Submitted to Biometrical Journal.

Abstract

Randomised clinical trials comparing several treatments to a common control are often re-

ported in the medical literature. For example, multiple experimental treatments may be

compared with placebo, or in combination therapy trials, a combination therapy may be

compared with each of its constituent mono-therapies. Such trials are typically designed us-

ing a balanced approach in which equal numbers of individuals are randomised to each arm,

however, this can result in an inefficient use of resources. We provide a unified framework

and new theoretical results for optimal design of such single-control multiple-comparator

studies. We consider variance optimal designs based on D-, A- and E-optimality criteria,

using a general model that allows for heteroscedasticity and a range of effect measures that

include both continuous and binary outcomes. We demonstrate the sensitivity of these de-

signs to the type of optimality criterion by showing that the optimal allocation ratios are

systematically ordered according to the optimality criterion. Given this sensitivity to the

optimality criterion, we argue that power optimality is a more suitable approach when de-

signing clinical trials where testing is the objective. Weighted variance optimal designs are

also discussed which, like power optimal designs, allow the treatment difference to play a

105
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major role in determining allocation ratios. We illustrate our methods using two real clinical

trial examples taken from the medical literature. General guidelines on the use of optimal

designs in single-control multiple-comparator trials are also provided.

Keywords: complete power; Dunnett adjustment; minimal power; multiple testing; optimal

design; weighted optimality

5.1 Introduction
Clinical trials involving comparisons of several treatments with a common control arise

quite frequently in the medical literature. For example, in some trials there are multiple

experimental treatments that are each compared with placebo. Combination therapy studies

often have a similar design, in which each of the constituent mono-therapies is compared

with the combination therapy. Although it is well-known that unbalanced allocation is more

efficient in experiments that compare several treatments with a common control (Fleiss,

1986), balanced designs are usually the preferred approach in clinical trials.

In the classical experimental design literature, unbalanced allocation based on the optimisa-

tion of a variance measure is well established (Atkinson and Donev, 1992; Hedayat, Jacroux,

and Majumdar, 1988). Such considerations lead to standard design criteria such as D-, A-

and E-optimality. Weighted versions of these variance-based criteria have also been consid-

ered in the literature, allowing for the possibility that different comparisons have different

importance (Morgan and Wang, 2010). Over the years various authors have discussed the

application of variance optimality criteria in the specific context of clinical trials (Zhu and

Wong, 2000; Wong and Zhu, 2008) for the purpose of producing designs that are more ef-

ficient than the standard balanced design. Other types of optimality criteria have also been

discussed for clinical trials, particularly power optimality (Marschner, 2007). In this paper

we will provide a general and unified discussion of these concepts in the context of clini-

cal trials comparing several treatments with a common control. Our main goal will be to

compare the various approaches to optimal design with a view to producing some general
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guidelines on their use in clinical trials.

The first part of our paper will present new results which unify the optimal designs under

different types of variance optimality, both unweighted and weighted, and will demonstrate

the sensitivity of the optimal designs to the chosen optimality criterion. These results will

be presented in the context of a general model allowing for heteroscedasticity and a range of

effect measures that include both continuous and binary outcomes. In view of the sensitivity

of the design to the chosen optimality criterion, we argue that optimisation of power is

usually more appropriate for clinical trials, where the focus is typically hypothesis testing

rather than estimation. The second part of our paper therefore focuses on exploring the

relationships between variance optimal designs and power optimal designs. Since power

optimal designs are generally more complex than variance optimal designs, we provide

some numerical results supporting the approximation of power optimal design allocation

ratios using appropriately chosen variance optimal design allocation ratios. Examples based

on the design of published clinical trials are used to demonstrate the application of our results

in practice. Finally, some general guidelines on the use of optimal designs in single-control

multiple-comparator trials will be provided.

5.2 Assumptions

5.2.1 General model

We consider a clinical trial in which k ≥ 2 groups are each compared with a single control

group, and we suppose that these are the only comparisons undertaken. Our assumptions

will cover a wide range of standard difference measures and will allow for heteroscedas-

ticity and unequal effect sizes. We will use the term control for the common comparator

group, although our assumptions also cover the situation in which the common comparator

is actually an experimental group, such as a design comparing a combination treatment with

each of its constituent treatments.

Let ∆̂i = Ti −T0 be the difference measure for comparing group i = 1, . . . ,k with the control
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group i = 0. It is assumed that Ti, i = 0, . . . ,k, are independent with N(θi,vi/ni) distributions

where ni is the number of observations in group i and the total number of observations is N =

n0 + · · ·+ nk. The variance term vi may depend on the group mean θi and a group-specific

scale parameter σi through vi = v(θi,σi) for some function v. Letting γi = ni/N be the

proportion of the total sample size that is allocated to group i, we have that ∆̂ = (∆̂1, . . . , ∆̂k)

is multivariate normal with mean vector δ = (δ1, . . . ,δk) where δi = θi −θ0. The variance-

covariance matrix of ∆̂ is Σ/N, where Σ is the k× k matrix with all off-diagonals equal to

v0/γ0 and ith diagonal element equal to v0/γ0 + vi/γi. That is,

Σ = diag
(

v1

γ1
, . . . ,

vk

γk

)
+

v0

γ0
1k1k

T (5.1)

where 1k is the k × 1 matrix with all elements equal to 1. The group-specific standard

deviation ratios defined as

ri =

√
vi

v0
i = 1, . . . ,k

quantify the heteroscedasticity relative to the control group and will be important in subse-

quent sections.

The above assumptions allow for a very general range of clinical trial designs. The most

basic setting is that of a continuous outcome with heteroscedastic normal distribution where

the difference is measured using a difference in the group-specific means θi, and a variance

function that is independent of the mean, v(θi,σi) = σ2
i . However, the assumptions also

allow for other types of outcomes where large sample normality of the summary measure

holds for each group. This includes a wide range of commonly used difference measures, in-

cluding the standard measures for independent binary outcomes. Clustered binary outcomes

can also be accommodated, with an extra-binomial variance factor of σ2
i = σ2 within each

cluster, as can survival outcomes with constant hazard rate. Some of the experimental de-

signs accommodated under the general model are illustrated in Table 5.1, and designs based

on continuous and binary outcomes will be used for numerical illustration throughout the

paper. The v(θi,σi) = 1 applied to the survival outcome in Table 5.1 requires a special com-
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Table 5.1: Examples of outcomes and difference measures covered by the assumptions.
Outcome type θi Difference measure v(θi,σi)

continuous mean response mean difference σ2
i

binary risk risk difference θi
(
1−θi

)
binary log risk relative risk (log scale) e−θi −1
binary log odds odds ratio (log scale) e−θi

(
1+ eθi

)2

clustered binary risk risk difference σ2θi
(
1−θi

)
survival log hazard hazard ratio (log scale) 1

ment. Assuming exponential survival with different hazards across the treatment groups,

the log of the estimated hazard ratio is approximately normally distributed with an expec-

tation of the log hazard ratio and a variance of (1/n0)+ (1/ni) (George and Desu, 1974).

Consequently, substituting ni = Nγi results in v(θi,σi) = 1.

For a given difference measure and an assumption about the parameter values, the group-

specific sample sizes can then be determined in such a way that the design is optimal in

some sense. There are many approaches to defining optimality, and in the next section we

review the three main approaches based on minimisation of variance. We will present new

results that unify the form of the optimal designs under these criteria, which then allows us

to compare the different approaches and illustrate the sensitivity of the optimal design to the

chosen optimality criterion. We will argue that these criteria are generally inappropriate for

clinical trials involving hypothesis tests concerning group differences. This will motivate

the investigation of other optimality criteria that are more appropriate for studies aimed at

testing for group differences, and we will lead to some general recommendations on their

use.

5.2.2 Special cases

Before discussing optimal designs arising from the general model, we note that the general

model has a number of special cases that will be useful in the theoretical and numerical

investigations undertaken in subsequent sections. Firstly, we define four sub-models of the

general model, having increasingly general assumptions concerning the standard deviation
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ratios ri for i = 1, . . . ,k. These sub-models are:

(i) homoscedasticity: equal variances in all groups, that is ri = 1

(ii) constant heteroscedasticity: equal variances in all non-control groups, that is ri = r

(iii) consistent heteroscedasticity: non-control variances are either all greater or all less

than the control variance, that is max(r1, . . . ,rk)≤ 1 or min(r1, . . . ,rk)≥ 1

(iv) general heteroscedasticity: no restrictions on the relative magnitudes of the standard

deviation ratios.

In practice the homoscedastic model is likely to be the most commonly used model for con-

tinuous outcomes, while the model with constant heteroscedasticity is likely to be the most

commonly used model for other types of outcomes. In particular, observe that the model

with constant heteroscedasticity would be appropriate for binary outcomes with common

effect size and variance functions described in Table 5.1.

In addition to the four sub-models described above, there are two special cases that will be

useful in our numerical investigations, both of which have k = 2 comparisons between 3

groups. The first model is a special case of the model with consistent heteroscedasticity, in

which r1 = 1 and r2 = r. We will refer to this model as the 3-group consistent heteroscedas-

ticity model. The second model is a special case of the general model, in which r1 = r and

r2 = 1/r. We will refer to this model as the 3-group general model. Both of these special

cases are dependent on a single quantity r that determines the extent of heteroscedasticity,

which makes the models convenient for displaying the dependence of the optimal designs

on the nature of the heteroscedasticity.

5.3 Variance optimality
In the experimental design literature the most common approaches to optimal design are

based on variance optimality criteria, which involve minimizing some measure of the sam-
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pling variation exhibited by ∆̂. That is, for a given overall sample size N, variance optimality

corresponds to choosing the allocation proportions γi in such a way that Σ is minimized in

some sense. This leads to an optimal design that is independent of the overall sample size

N, and allocates the N observations in optimal proportions across the groups.

There are many senses in which Σ can be minimized. In this paper we focus on three of

the most popular approaches: (i) D-optimality, which corresponds to minimisation of the

det
(
Σ
)
; (ii) A-optimality, which corresponds to minimisation of the trace

(
Σ
)
; and (iii) E-

optimality, which corresponds to minimisation of the maximum eigenvalue of Σ. In the

present context, it turns out that the three variance optimality criteria can be unified by a

common form for the optimal design, as presented below. We defer a justification of this

form until Section 5, where it arises as a special case of more general results on weighted op-

timality criteria. In the meantime we make use of this unified form to facilitate comparisons

between the different approaches to variance optimality.

5.3.1 Unified form

A unified form for the optimal designs arising from the three variance optimality criteria

can be expressed as a function of the number of comparisons k, and the group-specific

standard deviation ratios ri. The following proposition specifies the optimal group allocation

proportions, and is in fact a special case of a more general result presented in Section 5.5

for weighted optimality criteria.

Proposition 5.3.1 For the D-, A- and E-optimality criteria, the optimal design for the model

with general heteroscedasticity is

γ0 =
1

1+R
and γi = γ0uiR(xi,yi,zi) i = 1, . . . ,k

where R(x,y,z) = [x+ y(z− x)]−1 and (ui,xi,yi,zi) depends on the chosen optimality crite-
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rion according to Table 5.2, with R being the weighted average

R =
k

∑
i=1

uiR(xi,yi,zi).

Table 5.2: Quantities used in the unified form of the optimal designs for D-, A- and E-
optimality.

Criterion xi yi zi ui ûi

D γ0
1
r2

i

1
k

1
k

1
k

A 0 1
ri

1 1√
k

wi√
∑k

j=1 w2
j

E 0 1
ri

1 (1+ri)

∑k
j=1(1+r j)

w2
i (1+ri)

∑k
j=1 w2

j(1+r j)

The proof of Proposition 5.3.1 is provided in the Web Appendix as a special case of the

optimal designs from the weighted optimality criteria discussed in Section 5.5. The form

of the D- and A-optimal designs in Proposition 5.3.1 reduce to the forms that are equivalent

to those given previously; see for example Wong and Zhu (2008). On the other hand the

explicit E-optimal design, and the weighted version of Proposition 5.3.1 given in Section

5.5, are both new. Note that since xi = γ0 for the D-optimality criterion, the D-optimal design

for the general model requires a numerical solution except in some very simple special

cases. On the other hand, the A- and E-optimal designs are always explicit. Also note that

not all quantities specified in Table 5.2 are required for Proposition 5.3.1, in particular, the

quantities ûi will not be used until Section 5.5 when our discussion is extended to weighted

versions of the optimality criteria.

The unified form specified in Proposition 5.3.1 shows that the optimal design for each of

the optimality criteria is governed by the weighted average R of the quantities R(xi,yi,zi).

This connection between the three criteria allows some theoretical comparisons to be made

between the corresponding optimal designs. These comparisons are useful for highlighting
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systematic differences between the optimality criteria, and demonstrating the sensitivity of

the optimal design to the chosen optimality criterion. In Sections 5.3.2 and 5.3.3 we review

these theoretical comparisons for various models discussed in Section 5.2, along with some

numerical comparisons. In Section 5.3.4 we discuss the implications of these comparisons.

5.3.2 Homoscedasticity and constant heteroscedasticity

An obvious consequence of Proposition 5.3.1 is that the three optimality criteria differ in

the way they allocate sample size to the control group. Less obvious is the fact that for

large sub-classes of the general model, these differences lead to systematic orderings of

the three criteria with respect to their propensity to allocate sample size to the control and

non-control groups. We begin by considering this for the model with homoscedasticity or

constant heteroscedasticity.

Let γ(D)
0 , γ(A)0 and γ(E)0 be the optimal control proportions under D-, A- and E-optimality,

respectively. Then the following proposition summarises a general ordering of the three

optimal proportions.

Proposition 5.3.2 For the model with constant heteroscedasticity, that is with ri = r for

i = 1, . . . ,k, including the homoscedastic model with r = 1, the optimal control group pro-

portions satisfy

γ(D)
0 < γ(A)0 < γ(E)0 .

The inequality γ(A)0 < γ(E)0 follows immediately from Proposition 5.3.1 which yields

γ(A)0 =
1

1+ r
√

k
and γ(E)0 =

1
1+ r

when ri = r

while the proof of γ(D)
0 < γ(A)0 is more involved and is provided in the Web Appendix.

Proposition 5.3.2 shows that, for an important class of models including those most likely to

be used in practice, the E-optimality criterion places greatest emphasis on allocating sample
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size to the common control, whereas the D-optimality criterion places least emphasis on the

common control and the A-optimality criterion is intermediate to the other two. Numeri-

cal comparisons of the three approaches reveal that the theoretical tendencies reflected in

Proposition 5.3.2 can involve very large differences between the optimal designs in prac-

tice. This is most easily illustrated for the homoscedastic model with ri = 1. In this case

the E-optimal design always allocates half the available sample size to the control group.

In contrast, the D-optimal design is always the balanced design, while the A-optimal de-

sign is the well-known “root-k” design (Fleiss, 1986; Dunnett, 1955). This leads to the

homoscedastic special case of Proposition 5.3.2

γ(D)
0 =

1
1+ k

< γ(A)0 =
1

1+
√

k
< γ(E)0 =

1
2

when ri = 1.

Thus, for example, with k = 4 comparisons the optimal allocations to the control group will

range from 20% to 50%, depending on the optimality criterion.

Such large differences are not limited to the homoscedastic model. Even larger differences

are possible with constant heteroscedasticity. Figure 5.1 displays the potentially wide vari-

ation in optimal designs from the model with constant heteroscedasticity, using a range of

values for k and the common standard deviation ratio ri = r. It can be seen that when the

common control has greater variance than the other groups, that is when r < 1, the differ-

ences between the three optimality criteria are exacerbated relative to the homoscedastic

model. Thus, for example, in Panel B of Figure 5.1 it can be seen that with k = 4 compar-

isons and r = 0.25, the optimal allocations to the control group range from approximately

25% to 80%, depending on the optimality criterion.

5.3.3 Consistent and general heteroscedasticity

For the model with general heteroscedasticity, the ordering in Proposition 5.3.2 no longer

holds in general. A counterexample is provided by the 3-group general model described in

Section 5.2.2, in which k = 2 and r1 = 1/r2 = r. Panel B of Figure 5.2 displays the optimal
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Figure 5.1: Optimal control group proportions (γ0) as a function of the standard deviation ra-
tio (r) in the constant heteroscedasticity model with E-optimality (dashed line), A-optimality
(solid line) and D-optimality (dotted line). The two panels correspond to k = 2 (Panel A) or
k = 4 (Panel B).

proportion allocated to the common control group for a range of values of r. It can be

seen that no general ordering exists between the optimal control proportions from the three

criteria. Nonetheless, this counterexample does show that even when there is no systematic

ordering between the optimality criteria, fundamental differences can exist. In particular,

for the limiting cases in which r → ∞ or r → 0, the D-optimal design allocates 50% of

the sample size to the common control group, whereas the other two criteria allocate 0%.

Furthermore, the relationship between the optimal proportion and the standard deviation

ratio r for the D-optimal design is the reverse of the corresponding relationship for the other
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two criteria. This exposes quite fundamental sensitivity of the optimal design to the chosen

optimality criterion.
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Figure 5.2: Optimal control group proportions (γ0) as a function of the standard deviation
ratio (r) for the 3-group special cases of consistent heteroscedasticity where r1 = 1 and
r2 = r (Panel A), and general heteroscedasticity where r1 = r and r2 = 1/r (Panel B), with
E-optimality (dashed line), A-optimality (solid line) and D-optimality (dotted line).

Although Proposition 5.3.2 does not hold in general, there are some systematic differences

between the optimality criteria that continue to hold under non-constant heteroscedasticity.

In particular, consider the model with consistent heteroscedasticity in which the common

control exhibits more variability than the other groups. In this case, all three criteria will

favour the control over the non-control groups, but the D-optimality criterion has a tendency

to favour the control to a lesser extent. This is reflected in the following result.
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Proposition 5.3.3 For the model with consistent heteroscedasticity where the common con-

trol exhibits most variability, that is max(r1, . . . ,rk) ≤ 1, the optimal control group propor-

tions satisfy

γ(D)
0 < γ(A)0 < γ(E)0 .

The ordering in Proposition 5.3.3 does not hold for consistent heteroscedasticity in which

the common control exhibits less variability than the other groups. Counterexamples for

these situations are provided by the 3-group consistent heteroscedasticity model described

in Section 5.2.2 in which k = 2, r1 = 1 and r2 = r. Panel A of Figure 5.2 displays the optimal

proportion allocated to the common control group for a range of values of r. It can be seen

that the ordering presented in Proposition 5.3.3 is reflected in Panel A when r ≤ 1. However,

when r ≥ 1 there is no general ordering between any of the three criteria.

Additionally, there is a systematic ordering of the optimal non-control proportions in the A-

and E-optimal designs. Under the fully general heteroscedasticity model, the E-optimality

criterion has a tendency to shift observations into the more variable groups to a greater extent

than the A-optimality criterion. To examine this, define the following allocation ratios of the

non-control groups

gi j =
γi

γ j
i, j = 1, . . . ,k

and let g(A)i j and g(E)i j be gi j under the A- and E-optimality criteria, respectively. Then the

following result shows that the E-optimality criterion tends to favour the more variable

groups to a greater extent than the A-optimality criterion.

Proposition 5.3.4 For the model with general heteroscedasticity, if ri ≥ r j then

1 ≤ g(A)i j ≤ g(E)i j i, j = 1, . . . ,k.

It is obvious that gi j should be no less than 1 under both optimality criteria, since a more

variable group should receive more sample size than a less variable group. However, Propo-
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sition 5.3.4 additionally says that the relative increase in sample size allocated to the more

variable group is greater under the E-optimality criterion than under the A-optimality crite-

rion. The proofs of Propositions 5.3.3 and 5.3.4, which stem from the unified form of the

optimal designs in Proposition 5.3.1, are provided in the Web Appendix.

5.3.4 Implications

The theoretical and numerical results of Sections 5.3.2 and 5.3.3 illustrate the potential for

systematic and large differences in the optimal designs associated with the three optimality

criteria. A schematic summary of the relationships between the optimal proportions al-

located to the common control under the various model assumptions is presented in Figure

5.3. While the orderings of the optimality criteria are not uniform across all models, broadly

speaking Figure 5.3 shows that the E- and A-optimality criteria tend to allocate more sam-

ple size to the control group than the D-optimality criteria, while the numerical results of

Sections 5.3.2 and 5.3.3 show that the differences can be substantial.

Common comparator design

Homoscedasticity
ri = 1

Heteroscedasticity
ri 6= 1

Constant
ri = r

Consistent
max(r1, . . . , rk) ≤ 1,
min(r1, . . . , rk) ≥ 1

General

γ
(D)
0 < γ

(A)
0 < γ

(E)
0

max(r1, . . . , rk) ≤ 1 min(r1, . . . , rk) ≥ 1

No general ordering

Figure 5.3: Schematic summary of the relationships between the optimal proportions allo-
cated to the common control.

The sensitivity of the optimal design to the chosen optimality criteria means that it is impor-

tant to link the objectives of an experiment with the interpretation of the optimality criterion
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being used. While the three optimality criteria are defined using measures of the magnitude

of the matrix Σ, they each have statistical interpretations that could potentially facilitate such

linkage. In the case of D- and A-optimality these interpretations are well-known to corre-

spond, respectively, to minimisation of the volume of the confidence ellipsoid for δ and

minimisation of the average of the k effect variances, Var(∆̂i) (Atkinson and Donev, 1992).

The statistical interpretation of E-optimality is more complex, but can be summarized as the

minimisation of the largest variance over all contrasts of θ0 with a normalized average of

the other θi (Morgan and Wang, 2010).

While it may be possible to link one of these interpretations to the objectives of the exper-

iment in some contexts, in practice this is often not the case. Such linkage is particularly

problematic for experiments involving the testing of hypotheses concerning treatment ef-

fects, such as clinical trials. These experiments are typically designed to achieve adequate

power for testing hypotheses of no treatment difference, rather than to achieve adequate

sampling variation for estimation purposes. In practice it may not be clear how the various

criteria for minimizing sampling variance relate to the power of the experiment.

A further problem with variance optimality is that it only provides rules for optimally al-

locating a fixed overall sample size N among the k+ 1 groups. In practice there remains

the task of choosing N. One approach would be to choose N so that δ is estimated with

an acceptable level of precision, as determined by the optimality criterion. For example, if

A-optimality is being used, then N could be determined so as to achieve an acceptable value

for trace(Σ). However, such an approach is uncommon in many applications, particularly

clinical trials. In many contexts N is more likely to be determined with a view to achieving

acceptable power for testing hypotheses about the group differences. This raises the pos-

sibility of using power to determine the optimal allocation proportions, which leads to an

alternative approach to optimal design.
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5.4 Power optimality
Variance optimality tackles the experimental design from an estimation perspective. In par-

ticular, it assumes that the primary objective is to estimate δ as precisely as possible regard-

less of its magnitude. This means that optimal designs based on variance optimality criteria

do not depend on δ . In many contexts, particularly clinical trials, the primary objective is

to assess whether the non-control groups differ from the control using hypothesis testing, in

which case power is more important than sampling variability. This leads to the notion of

power optimality, in which the optimal design is determined by maximizing the power for

testing hypotheses concerning δ . Although the two notions of optimality are related, a key

distinction is that a larger δi does not need to be estimated as precisely as a smaller δi when

power is the primary focus. Optimality criteria based on power therefore lead to optimal de-

signs that depend on δ by implicitly down-weighting comparisons having larger δi. As with

variance optimality criteria, there is more than one way in which power can be optimized,

leading to multiple versions of power optimality resulting from the way the hypotheses are

expressed.

Consider the testing situation in which H0i : θi −θ0 = 0 represents the null hypothesis that

defines the comparison of the ith treatment group with the common control. In the current

context, we consider two versions of power, which in the terminology of Westfall et al.

(1999), are referred to as complete power and minimal power. Complete power can be

interpreted as the probability of rejecting all H0i while minimal power is the probability of

rejecting at least one H0i. Of note is the need to control the type I error for multiple testing

in the minimal power design, whereas controlling for multiple tests is not necessary in the

complete power design. We now consider each of these versions of power from the point of

view of optimal design.
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5.4.1 Complete and minimal power

Let Zi represent the test statistic associated with each null hypothesis H0i and is given by

Zi =
√

N∆̂i

(
v0

γ0
+

vi

γi

)− 1
2

for i = 1, . . . ,k. Under the null hypothesis the collection of these k test statistics is multi-

variate normal with a zero mean, unit variance, and a correlation between Zi and Z j given

by
v0

γ0

{(
v0

γ0
+

vi

γi

)(
v0

γ0
+

v j

γ j

)}− 1
2

.

As mentioned earlier, complete power is the probability that all of these Zi are sufficiently

extreme. In the context of one-sided hypothesis testing this can be defined as exceeding

the critical value Φ−1(1−α) where α represents the significance level, whereas for two-

sided testing it can be defined as exceeding Φ−1(1−α/2) in absolute value. Denoting the

multivariate cumulative distribution function associated with Z1, . . . ,Zk by Φk,γ , complete

power in the one-sided case can be written as

PC(N) = Φk,γ
(
zi −Φ−1(1−α), . . . ,zk −Φ−1(1−α)

)
(5.2)

where γ = (γ0, . . . ,γk) and zi =
√

Nδi

(
v0
γ0
+ vi

γi

)− 1
2 (Marschner, 2007). An analogous expres-

sion can also be provided for the two-sided case.

Minimal power requires that at least one of the Zi is sufficiently large, or conversely that

none of the Zi exceed the critical value. In the one-sided case this can be written as

PM(N) = 1−Φk,γ
(
Φ−1 (1−A(α ,k,γ))− z1, . . . ,Φ−1 (1−A(α,k,γ))− zk

)
(5.3)

where A(α ,k,γ) denotes a pair-wise comparison significance level that results in a family-

wise significance level of α (Marschner, 2007). For example, if a Bonferroni adjustment

is used, A(α ,k,γ) = α/k, which does not depend on γ . On the other hand if a Dunnett
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adjustment is used, A(α ,k,γ) does depend on γ (Dunnett, 1955; Marschner, 2007). The

Dunnett adjustment can be carried out using the R package called MCPMod available for

download from the Comprehensive R Archive Network (CRAN) (Bornkamp, Pinheiro, and

Bretz, 2014).

Two important observations can be made from these results. Firstly, unlike the variance

optimality criteria, the complete and minimal power based optimality criteria are dependent

on N via the zi terms in (5.2) and (5.3). Secondly, unlike the variance optimality criteria,

the complete and minimal power based optimality criteria are dependent on δ . The effect of

this dependence on N and δ will be considered in turn in the remainder of this section and

in the next section, respectively.

5.4.2 Constant heteroscedasticity and equal effects

In this section we consider the relationship between power optimal designs and variance

optimal designs. The relationships are presented as conjectured approximations for large N

based on numerical investigations discussed below.

Let γ(C)
0 (N) be the control group proportion that maximises the complete power PC(N) in

equation (5.2), for given N. Likewise, let γ(C)
i (N), i = 1, . . . ,k be the corresponding exper-

imental group proportions. In the context of constant heteroscedasticity and equal effect

sizes, numerical investigations suggest the following conjecture concerning the relationship

between the complete power design and A-optimality.

Conjecture 5.4.1 For the model with constant heteroscedasticity, and a constant treatment

difference between the control and the comparator treatments, the control and comparator

group proportions for the complete power design satisfy

γ(C)
0 (N)≈ 1

1+ r
√

k
= γ(A)0 and γ(C)

i (N)≈ r√
k(1+ r

√
k)

= γ(A)i for large N.

Using the notations γ(M)
0 (N) and γ(M)

i (N) to represent respectively, the control group and
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experimental group proportions, i = 1, . . . ,k, that maximise the minimal power PM(N) in

equation (5.3), numerical investigations also lead to an analogous conjecture for minimal

power and E-optimality.

Conjecture 5.4.2 For the model with constant heteroscedasticity, and a constant treatment

difference between the control and the comparator treatments, the control group proportion

for the minimal power design satisfies

γ(M)
0 (N)≈ 1

1+ r
= γ(E)0 and γ(M)

i (N)≈ r
k(1+ r)

= γ(E)i for large N.

5.4.3 Numerical comparisons

Graphical summaries supporting these conjectures are provided in Figure 5.4 for a k = 3 case

(4 groups) and the corresponding numerical summaries are also provided in table format in

the Web Appendix. The results suggest that all methods allocate the largest proportion to

the control group and distribute the remaining experimental units equally between the com-

parator arms. As proposed in Conjectures 5.4.1 and 5.4.2, the numerical results demonstrate

that the complete power design allocation ratios can be approximated by the A-optimal al-

location ratios, and that the minimal power design allocation ratios can be approximated by

the E-optimal allocation ratios.

5.5 Weighted optimality
A major difference between the variance optimal designs and the power optimal designs is

that the magnitude of the treatment differences between the control and comparator arms

which play a critical role in the determination of the allocation ratios under a power optimal

design do not contribute to the determination of the allocation ratios under a variance optimal

design. An approach to addressing this difference would be to consider a weighted version

of the variance optimal designs, where a weighting is included in the variance-covariance,

leading to the minimisation of ΣW =W T ΣW for some k×1 weight matrix W =(w1, . . . ,wk)
T
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Figure 5.4: Optimal allocation proportions for the 4-group case under homoscedasticity
(Panels A and B) and constant heteroscedasticity with ri =

√
2 (Panels C and D). Allocation

ratios to the control and comparator arms under the complete (solid line) and minimal power
designs (dashed line), as functions of N, and A- (dotted line) and E-optimal (dot-dash line)
designs are presented.
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(Atkinson and Donev, 1992). Here,

ΣW = diag
(

w2
1v1

γ1
, . . . ,

w2
kvk

γk

)
+

v0

γ0
WW T, (5.4)

which reduces to Σ as defined in (5.1) when wi = 1, for i = 1, . . . ,k.

In the remainder of this section we discuss the weighted variant of the unified form discussed

in Section 5.3.1 and propose conjectures relating to relationships between power optimal

allocation ratios and the weighted variance optimal allocations.

5.5.1 Unified form

Morgan and Wang (2010) have previously explored the use of weighted variants of the D-,

A-, and E-optimality criteria to assign differential interest in different comparisons including

the general case which considers all pair-wise comparisons. Here we focus on the special

case in which pair-wise comparisons with a common control are of interest. In this special

case we are able to provide a unified form for the weighted variance optimal designs. We

will henceforth refer to these weighted variants as the DW -, AW - and EW -optimal designs.

Using ΣW , optimal allocation proportions for the DW -, AW - and EW -optimal methods can be

derived.

The generalisation of Proposition 5.3.1 for the weighted case can be stated as follows.

Proposition 5.5.1 For the DW -, AW - and EW -optimality criteria, the optimal design for the

model with general heteroscedasticity is

γ0W =
1

1+RW
and γiW = γ0W ûiR(xi,yi,zi) i = 1, . . . ,k

where R(x,y,z) = [x+ y(z− x)]−1 and (ûi,xi,yi,zi) depends on the chosen optimality crite-

rion according to Table 5.2, with RW being the weighted average

RW =
k

∑
i=1

ûiR(xi,yi,zi).
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The proof of Proposition 5.5.1 is provided in the Web Appendix.

Two observations can be made based on a comparison of Propositions 5.3.1 and 5.5.1.

Firstly, ui and ûi specified in Table 5.2 are identical for the D-optimal design. That is, the

DW -optimal design is independent of W and is identical to the unweighted D-optimal de-

sign. This is consistent with the findings of Morgan and Wang (2010), and would generally

imply that D-optimality is inappropriate for clinical trials when the design effect sizes are

different across contrasts. A second observation is that under homoscedasticity and constant

heteroscedasticity, the allocation ratio for the control group under the EW -optimal design is

independent of W . That is, it is the same as the allocation ratio under the unweighted E-

optimal design. However, the allocation ratios to the comparator arms will not be the same,

so EW -optimality can be used to weight according to effect size. We now consider the rela-

tionship between weighted variance optimal designs and power optimal designs.

5.5.2 Constant heteroscedasticity and unequal effects

We have already seen that there seems to be a correspondence between power optimality and

variance optimality for equal effect sizes. When effect sizes are unequal this correspondence

is again maintained for the complete power design and AW -optimality. As we will see, such

correspondence for complete power is dependent on a particular choice of weights, namely,

weighting inversely proportional to the squared effect size. With regards to minimal power,

the relationship with EW -optimality does persist in the control arm, but no longer holds in

the comparator arms. The lack of correspondence in the non-control arms is a result of the

difference in the underlying objective of the minimal power design and variance optimality.

In the case of minimal power design, more resources are allocated to the comparator group

which has the largest treatment difference compared with the control group as this max-

imises the power, or equivalently the probability of rejecting at least one of the H0i. This

is in contrast to the EW -optimal design which tries to allocate more resources to the group

with the smallest treatment difference compared with the control group, as it is this group

that gets the smallest weight, and thereby will have a larger variance unless compensated
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with more patients. Thus, in the case of constant heteroscedasticity and unequal effects,

numerical investigations discussed below lead to the following two conjectures.

Conjecture 5.5.2 For the model with constant heteroscedasticity, the control and compara-

tor group proportions for the complete power design satisfies

γ(C)
0 (N)≈ γ(AW )

0 and γ(C)
i (N)≈ γ(AW )

i for large N

when W = (1/δ 2
1 , . . . ,1/δ 2

k ).

Conjecture 5.5.3 For the model with constant heteroscedasticity, the control group propor-

tion for the minimal power design satisfies

γ(M)
0 (N)≈ 1

1+ r
= γ(EW )

0 for large N

for any general collection of weights W.

5.5.3 Numerical comparisons

Table 5.3 presents allocation ratios for the unweighted and weighted variance optimal de-

signs with weights W = (1/δ 2
1 ,1/δ 2

k ) together with power optimal allocation ratios in the

scenario where k = 2 (3 groups). In the lower half of Table 5.3 we have chosen an extreme

scenario of δ2/δ1 = 4, but Figure 5.5 and the examples presented in Section 5.6 are more

moderate. These numerical results demonstrate that the approximations alluded to in the

conjectures presented earlier hold under an assumption of homoscedasticity or constant het-

eroscedasticity. In particular the allocation ratios to the optimal complete power design are

similar to the A-optimal allocation ratios when the treatment differences are the same across

the treatment arms and to the AW -optimal allocation ratios when the treatment differences

are different across the treatment arms. Similarly, the E-optimal allocation ratios can be

used to approximate the allocation ratios for a minimal power design when the treatment

differences are the same across the treatment arms, but applies only to the control group
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Table 5.3: Optimal allocation proportions for a study with k = 2 comparator arms with
ri = 2 under constant heteroscedasticity. Results for power optimal designs are presented
for large N. The minimal power design presents allocation proportions without a correction
for multiplicity of testing. The upper half of the table presents results when the treatment
difference is the same between control and comparators (δ2/δ1 = 1) and the lower half
presents the results when the difference between the control and the second comparator is
4 times larger than the treatment difference between the control and the first comparator
(δ2/δ1 = 4).

Optimality Homoscedasticity Constant
criterion heteroscedasticity

γ0 γ1 γ2 γ0 γ1 γ2
D 0.333 0.333 0.333 0.229 0.386 0.386
A 0.414 0.293 0.293 0.261 0.369 0.369
E 0.500 0.250 0.250 0.333 0.333 0.333
PC 0.414 0.293 0.293 0.261 0.370 0.370
PM 0.482 0.259 0.259 0.317 0.342 0.342
DW 0.333 0.333 0.333 0.229 0.386 0.386
AW 0.485 0.484 0.030 0.320 0.640 0.040
EW 0.500 0.498 0.002 0.333 0.664 0.003
PC 0.490 0.490 0.020 0.320 0.645 0.035
PM 0.495 0.010 0.495 0.330 0.010 0.660

allocation ratios when the treatment differences are different across the treatment arms. As

alluded to in Section 5.5.2, it can also be seen that the allocation across the comparator arms

under EW -optimality and minimal power design vary when the treatment differences are

different across the treatment arms. Graphical presentations that illustrate the conjectures

are presented in Figure 5.5 in the k = 3 case (4 group). The results in Table 5.3 also illus-

trate the independence of the allocation ratios under the D-optimal design to the weighting.

This therefore limits the applicability of D-optimality in hypothesis testing situations such

as clinical trials where the design treatment effect sizes are different, since power optimality

will weight unequally when effect sizes are unequal.
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Figure 5.5: Optimal allocation proportions for the 4-group case under homoscedasticity
and constant heteroscedasticity (ri =

√
2) and unequal effect sizes δ = (0.2,0.2,0.3). All

allocation ratios to power optimal designs are presented as functions of N. Panels A and
B present the control group allocation ratios under complete power (solid line), minimal
power (dashed line), AW - (dotted line) and EW -optimal (dot-dash line) designs with Panel
A presenting these under homoscedasticity and Panel B under constant heteroscedasticity
(ri =

√
2). Panels C and D present the comparator arm allocation ratios with complete power

and AW -optimal design under homoscedasticity and constant heteroscedasticity (ri =
√

2),
respectively. In both these panels, the complete power design allocation proportion to the
comparison with the smaller treatment difference (δ1 = δ2 = 0.2, solid line) and the larger
treatment difference (δ3 = 0.3, dashed line) are presented together with the corresponding
AW -optimal design comparator group allocation ratios (the comparison δ1 = δ2 = 0.2 rep-
resented by the dotted line and the comparison δ3 = 0.3 represented by the dot-dash line).



130 DESIGN OF CLINICAL TRIALS WITH MULTIPLE HYPOTHESIS TESTS

5.6 Clinical trial examples

5.6.1 Example 1: NeoALTTO trial

The NeoALTTO trial was a multi-centre, open-label, phase 3 study that randomised pa-

tients with invasive breast cancer to trastuzumab (control arm), lapatinib, or lapatinib plus

trastuzumab in a ratio of 1:1:1 (Baselga et al., 2012). The trial planned to enrol 450 pa-

tients to detect an increase of at least 17% in the pathological complete response (pCR)

rate in the experimental groups compared with 25% in the trastuzumab group. This sam-

ple size was based on 80% power at a two-sided significance level of 2.5% for each of the

two primary hypothesis, lapatinib plus trastuzumab versus trastuzumab, and lapatinib versus

trastuzumab. This approach implies that the trial would have met its objective if at least one

of these comparisons resulted in a statistically significant improvement in pCR. Therefore,

this could have been framed as a family of hypotheses to be tested under a minimal power

optimal design.

Table 5.4 presents the optimal allocation proportions to the control arm along with the power

that may have been achieved if the hypotheses had been formulated under a complete power

design or a minimal power design. Using the variance function as defined in Table 5.1 for

a risk difference (17%), the variances can be calculated as v0 = 0.25× (1−0.25) = 0.1875

and v1 = v2 = 0.42× (1−0.42) = 0.2436. This yields a constant heteroscedasticity design

in which the standard deviation ratios are r1 = r2 = 1.14, with design treatment differences

of 17% for each of the 2 hypotheses. The results in Table 5.4 suggest that the sample size of

450 patients under a balanced design is over-powered for a minimal power design, given the

minimal power of 96.6% greatly exceeds the targeted 80%. The achieved complete power of

80.8% for the balanced design is consistent with the targeted 80%, however the use of com-

plete power is not consistent with the way the primary comparisons were planned. Under a

minimal power design, the NeoALTTO trial could have been designed with a sample size of

226 with 43.3% of the patients allocated to the control arm. If a Dunnett correction had been

undertaken in the spirit of the Bonferroni adjustment for multiplicity that was done in the
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NeoALTTO trial, a sample size of 284 patients, which is still smaller than the planned sam-

ple size in the NeoALTTO trial, would have sufficed. Finally, the results also demonstrate

that using the allocation ratios of the A- and E-optimal designs achieves approximately the

same power as the complete and minimal power designs, respectively, consistent with the

relationships discussed in Section 5.4.2.

Table 5.4: Optimal allocation proportions using the design parameters of the NeoALTTO
trial. The power optimal methods are based on a two-sided significance level of 5%. No
correction for multiplicity has been applied to the minimal power design.

N γ0 γ1 γ2 Complete power (%) Minimal power (%)
Balanced 450 0.333 0.333 0.333 80.8 96.6
D 450 0.314 0.343 0.343 80.5 96.3
A 450 0.383 0.309 0.309 81.0 97.0
E 450 0.467 0.266 0.266 79.2 97.1
PC 450 0.368 0.316 0.316 81.1 96.9
PM 450 0.437 0.282 0.282 80.2 97.2
PC 440 0.367 0.317 0.317 80.0 96.6
PM 226 0.433 0.284 0.284 42.7 80.0

Hypothetically, a complete power design could have been used for the NeoALTTO trial if

the combination therapy arm had been designated the common comparator and the primary

objective had been to establish superiority of the combination over both mono-therapies.

For this hypothetical scenario, Table 5.5 shows that a sample size of 417 patients (42.8%

randomised to the combination therapy arm) would achieve a complete power of 80%. As an

illustrative exercise, it is also possible to calculate p-values for this hypothetical trial using

the observed rates of pCR from the NeoALTTO trial; 51.3% in the combination therapy

arm, 24.7% in the lapatinib arm, and 29.5% in the trastuzumab arm. This results in a p-

value of 0.0002 for the comparison between the combination therapy and trastuzumab and

a p-value < 0.0001 for the comparison with lapatinib. Thus, the alternative design would

have demonstrated superiority over both mono-therapies, but with a smaller sample size.
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Table 5.5: Optimal allocation proportions using the combination therapy arm as the con-
trol (pCR rate=42%), the mono-therapy arms as the comparators (pCR rate=25%) and a
two-sided significance level of 5%. No correction for multiplicity has been applied to the
minimal power design.

N γ0 γ1 γ2 Complete power (%) Minimal power (%)
D 417 0.352 0.324 0.324 78.9 94.9
A 417 0.446 0.277 0.277 79.9 96.2
E 417 0.533 0.234 0.234 77.9 96.4
PC 417 0.428 0.286 0.286 80.0 96.1
PM 222 0.500 0.250 0.250 44.9 80.0

5.6.2 Example 2: Paliperidone palmitate in acutely exacerbated

schizophrenia

The second example considers the design of a trial of 3 different doses of paliperidone

palmitate (25, 100, and 150 mg) compared with placebo in adults with acutely exacer-

bated schizophrenia (Pandina et al., 2010). The primary endpoint was a mean change in

the positive and negative syndrome scale (PANSS) from baseline to study end point. It was

determined that 148 patients per arm (not adjusting for drop-out) provided 90% power to

detect a difference of at least 9 points, assuming a standard deviation of 21 points, and a 2-

sided overall significance level of 5%. The trial planned to use a Dunnett-Bonferroni-based

parallel gatekeeping procedure to simultaneously adjust for multiplicity in the primary end-

point and a key secondary endpoint. We will use this example to evaluate how efficiency

may have been increased with an unbalanced design, and in particular, how efficiency may

have been increased if a dose-response relationship had been assumed, and demonstrate how

Conjecture 5.5.2 holds in the latter case.

Table 5.6 presents the allocation ratios when the sample size used is large enough to ensure

at least 90% power under complete power and minimal power designs and when various

assumptions about the treatment differences relating to the dose-strength are made. Table

5.6 also presents the allocation ratios under the AW - and EW - designs for comparison with the

complete and minimal power design allocations, respectively. The following observations
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Table 5.6: Optimal allocation proportions using the design parameters of the paliperidone
palmitate trial which assumed the same effect size across each comparison, and alternative
designs which assume an increasing effect size with dose. The power optimal methods
are based on a two-sided significance level of 5%. No correction for multiplicity has been
applied to the minimal power design. Sample sizes that would have achieved at least 90%
complete power or minimal power are presented.

Design N γ0 γ1 γ2 γ3 Complete power (%)
δ = (9,9,9) Balanced 592 0.25 0.25 0.25 0.25 89.9

AW 564 0.37 0.21 0.21 0.21 90.0
PC 564 0.35 0.22 0.22 0.22 90.0

δ = (6,7.5,9) AW 900 0.38 0.30 0.19 0.13 90.0
PC 900 0.37 0.31 0.19 0.13 90.0

δ = (7.5,9,10.5) AW 608 0.37 0.28 0.20 0.14 90.2
PC 608 0.35 0.29 0.21 0.15 90.2

δ = (9,10.5,12) AW 440 0.37 0.27 0.20 0.15 90.3
PC 440 0.37 0.27 0.21 0.15 90.3

Design N γ0 γ1 γ2 γ3 Minimal power (%)
δ = (9,9,9) Balanced 592 0.25 0.25 0.25 0.25 99.6

EW 224 0.50 0.17 0.17 0.17 90.1
PM 224 0.44 0.19 0.19 0.19 90.4

δ = (6,7.5,9) EW 228 0.50 0.31 0.13 0.06 73.2
PM 228 0.49 0.01 0.01 0.49 90.3

δ = (7.5,9,10.5) EW 168 0.50 0.29 0.14 0.07 77.3
PM 168 0.49 0.01 0.01 0.49 90.5

δ = (9,10.5,12) EW 128 0.50 0.27 0.14 0.09 79.7
PM 128 0.49 0.01 0.01 0.49 90.4

can be made from these results. The trial could have been designed under a complete power

design with 564 patients or with 224 patients under a minimal power design (312 if Dunnett

correction were applied) instead of 592 patients as was done in the trial. The allocation

ratios under the complete power design and the AW - design are similar across a range of

treatment difference assumptions demonstrating how Conjecture 5.5.2 holds numerically.

Furthermore, it is evident from Table 5.6 that consistently more patients are allocated to

the treatment arm with the smallest expected treatment difference and the fewest patients to

the arm with the largest expected treatment difference under the complete power and AW -

optimal designs. It can also be observed that while there is similarity between the allocation

ratios to the control arm under minimal power and EW - optimal designs, the allocation ratios

to the non-control arms are different when the design treatment differences are assumed to
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be different across the treatment groups. Indeed, the allocation ratios to the comparator arms

suggest that a minimal power design is not sensible when the design treatment effect sizes

are anticipated to be different across the contrasts, because it impractically concentrates the

sample size in the one contrast that is most likely to achieve statistical significance.

5.7 Discussion
Unbalanced allocation of patients in single-control multiple-comparator clinical trials can

result in a more efficient study design. In this paper we have provided a unification of

optimal designs based on the D-, A- and E-optimality criteria, which facilitated comparisons

between the three criteria. This has allowed us to identify systematic and potentially large

differences between optimal designs based on the different criteria. These results have been

presented in the context of a general model allowing for heteroscedasticity and a range of

different treatment effect measures that include both continuous and binary outcomes.

Given the sensitivity of the optimal design to the chosen optimality criterion, we have argued

that it is essential to match the optimality criterion to the objectives of the study. In most

clinical trials, hypothesis testing is the primary objective and so variance optimality is less

relevant than power optimality. We therefore studied optimisation of two versions of power,

minimal and complete power, corresponding respectively to the situations where any or all

of the k hypotheses must be rejected.

Although we found this approach is feasible in principle, we also found that the power

optimal designs can be computationally intensive to determine. We therefore considered

weighted versions of the variance optimality criteria which, like power optimal designs, al-

low the treatment difference to play a role in determining allocation ratios. We found that,

at least for large sample sizes, the power optimal designs can be approximated by an appro-

priately chosen variance optimal design. In particular, the optimal complete power design

is approximated by the A-optimal design under constant heteroscedasticity, with weighting

by the inverse squared effect sizes. Furthermore, the optimal minimal power design is ap-
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proximated by the E-optimal design assuming constant heteroscedasticity and equal effect

sizes.

Based on our findings, we recommend the following rules of thumb in designing clinical

trials involving multiple hypothesis tests with a common control. Firstly, if all of the k null

hypotheses must be rejected for the study to be positive, then A-optimality should be used

to determine the allocation proportions for each arm. This would involve using either the

unweighted or weighted versions provided in Propositions 5.3.1 and 5.5.1, depending on

whether or not the effect sizes are assumed to be equal for all comparisons. If they are

unequal, then weighting by the inverse squared effect sizes should be used in Proposition

5.5.1 to retain a correspondence with optimising complete power.

Secondly, if the study would be positive if any of the k null hypotheses were rejected, then

E-optimality should be used to determine the allocation proportions for each arm. This

is straightforward for the case of equal effect sizes using Proposition 5.3.1, in which case

there will be a correspondence with optimising minimal power. In the case of unequal effect

sizes, optimising minimal power is not recommended since it leads to impractical designs

that essentially omit treatment groups with smaller effect sizes. In this case there is no the-

oretical basis for any particular weights in the EW -optimality criterion, although weighting

by the inverse squared effect sizes produced sensible results in the two applications that we

considered. For both of the scenarios discussed above, once the allocation proportions have

been determined then the sample size N should be determined using the appropriate version

of power in either (5.2) or (5.3).

Finally, we recommend that the D-optimality criterion should not be used in designing

single-control multiple comparator trials that have hypothesis testing as the main objective.

This is because D-optimality does not correspond to optimising either version of power, and

it does not allow the allocation proportions to reflect differences in the treatment effects

through weighting.
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5.A Appendix: web-based supporting materials for

"Design of clinical trials involving multiple hypothesis

tests with a common control"

5.A.1 Proof for Proposition 5.3.1

This follows as a special case of the proof for Proposition 5.5.1 below.

5.A.2 Proof for Proposition 5.3.2

Assume constant heteroscedasticity, that is ri = r for i = 1, . . . ,k. Then the optimal propor-

tions allocated to the control group under the D- and A-optimality criteria would be given

by:

γ(A)0 =
[
1+ r

√
k
]−1

, and

γ(D)
0 =

[
1+

kr2

k (r2 −1)γ(D)
0 +1

]−1

(5.A.1)

It can be seen that equation (5.A.1) is equivalent to a quadratic equation in γ(D)
0 with two

real roots
−(k+1)±

√
4kr2 +(k−1)2

2k (r2 −1)
.

However, it can be shown the the root −(k+1)−
√

4kr2+(k−1)2

2k(r2−1)
returns a value for γ(D)

0 that is

either < 0 or > 1, neither of which is the solution since γ(D)
0 is a proportion, or is undefined

when r = 1. Thus, the solution for γ(D)
0 is −(k+1)+

√
4kr2+(k−1)2

2k(r2−1)
. Substituting this solution

back into the right hand side of (5.A.1) gives

γ(D)
0 =

[
1+ r

√
kFrk

]−1
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where

Frk =
2r
√

k

1− k+
√

4kr2 +(k−1)2
. (5.A.2)

The desired result therefore follows if we can show that Frk > 1 since that would imply

γ(D)
0 <

[
1+ r

√
k
]−1

= γ(A)0 .

The required inequality, Frk > 1, follows from the binomial product rule which implies

√
4kr2 +(k−1)2 < 2r

√
k+(k−1),

and hence the denominator of (5.A.2) is less than the numerator 2r
√

k which completes the

proof.

5.A.3 Proof for Proposition 5.3.3

Let R(A) and R(E) be the R from Proposition 3.1 under the A- and E-optimality criteria,

respectively.

We will first focus on the inequality γ(A)0 < γ(E)0 by establishing that R(A)
> R(E) for

max(r1, . . . ,rk) ≤ 1. The desired result will follow if it can be shown that R(A)−R(E)
> 0

where

R(A)−R(E)
=

∑k
i=1 ri√

k
− ∑k

i=1 ri(1+ ri)

∑k
i=1(1+ ri)

=

(
∑k

i=1 ri
)2

+
√

k(
√

k−1)∑k
i=1 ri −

√
k ∑k

i=1 r2
i√

k
(
k+∑k

i=1 ri
) . (5.A.3)

Since the denominator of (5.A.3) is positive, we need to show that the numerator is positive.
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(
k

∑
i=1

ri

)2

+
√

k(
√

k−1)
k

∑
i=1

ri −
√

k
k

∑
i=1

r2
i

> (1−
√

k)
k

∑
i=1

r2
i +

√
k(
√

k−1)
k

∑
i=1

ri

=
k

∑
i=1

(
ri
√

k(
√

k−1)
)
− (

√
k−1)

k

∑
i=1

r2
i

>
k

∑
i=1

r2
i

(
k−

√
k−

√
k+1

)
as r ∈ (0,1]

=
k

∑
i=1

r2
i (
√

k−1)2

> 0

That is, R(A)
> R(E) for max(r1, . . . ,rk)≤ 1 and consequently, γ(A)0 < γ(E)0 .

We now turn our attention to establishing the inequality γ(D)
0 < γ(A)0 . First define the function

f such that γ(D)
0 is the solution of the equation

γ(D)
0 = f

(
γ(D)

0 ) =

[
1+

kr2

k (r2 −1)γ(D)
0 +1

]−1

.

Then f is a decreasing function of γ(D)
0 when ri < 1. Therefore γ(D)

0 < 1
k since f

(1
k

)
=

1
1+k < 1

k . Furthermore, both γ(D)
0 and γ(A)0 are decreasing functions of ri. Thus for ri ≤ 1,

1
k ≥ γ(D)

0 ≥ 1
1+k and γ(A)0 ≥ 1

1+
√

k
. It follows that γ(D)

0 < γ(A)0 when k > 2 as 1
k < 1

1+
√

k
when

k > 2. Showing that this also holds for k = 2 requires further proof as 1
3 ≤ γ(D)

0 < 1
2 and

γ(A)0 ≥ 1
1+

√
2

so the interval
[ 1

1+
√

2
, 1

2

)
can contain both γ(D)

0 and γ(A)0 . Let Rm = min{r1,r2}.

Since γ(D)
0 is a decreasing function of ri, representing γ(D)

0 as a function of r1 and r2 leads to

γ(D)
0 = γ(D)

0 (r1,r2)≤ γ(D)
0 (Rm,Rm) = γ(D)

0m . (5.A.4)

Next we will show that γ(D)
0m ≤ γ(A)0 which then implies γ(D)

0 ≤ γ(A)0 using (5.A.4). Firstly,
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note that by inverting γ(D)
0m = γ(D)

0 (Rm,Rm) we have

Rm =

√
(2γ(D)

0m −1)(γ(D)
0m −1)

γ(D)
0m

√
2

. (5.A.5)

Next let Rd = |r2 − r1| so that

γ(A)0 =
1

1+ Rm√
2
+ Rm+Rd√

2

. (5.A.6)

Substituting Rm from equation (5.A.5) into equation (5.A.6) gives

γ(D)
0m

γ(A)0

= γ(D)
0m

(
1+

Rd√
2

)
+

√
(2γ(D)

0m −1)(γ(D)
0m −1). (5.A.7)

Using the fact that γ(D)
0m is in the interval [1

3 ,
1
2) and Rd is in the interval [0,1−Rm] when

ri ≤ 1 it follows that the right hand side of (5.A.7) is less than 1. That is, γ(D)
0m ≤ γ(A)0 which

completes the proof since γ(D)
0 ≤ γ(D)

0m .

5.A.4 Proof for Proposition 5.3.4

Using the unified form of the optimal designs which was presented in Proposition 5.3.1, we

have that

γ(A)i = γ(A)0 ri/
√

k and

γ(A)j = γ(A)0 r j/
√

k leading to

g(A)i j = ri/r j.
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For ri/r j ≥ 1, we have that g(A)i j ≥ 1.

Similarly,

γ(E)i = γ(E)0
ri(1+ ri)

∑k
l=1(1+ rl)

and

γ(E)j = γ(E)0
r j(1+ r j)

∑k
l=1(1+ rl)

leading to

g(E)i j = ri(1+ ri)/r j(1+ r j).

For ri/r j ≥ 1, it follows directly that g(E)i j ≥ g(A)i j , thereby confirming the inequality 1 ≤

g(A)i j ≤ g(E)i j .

5.A.5 Proof for Proposition 5.5.1

This section presents the proofs for the unified form for the weighted DW -, AW - and EW -

optimal designs. For simplicity of notation, we will use γi, for i = 0,1, . . . ,k, in place of γiW

throughout this section.

D-optimality

The determinant of ΣW in equation (5.4) of the main paper is determined using the matrix

determinant lemma presented by Harville (1997). This yields

det(ΣW ) =

[
1+

v0

γ0

k

∑
j=1

γ j

v j

]
k

∏
j=1

w2
jv j

γ j
.

Let f (γ) = log [det(ΣW )]. Applying the Lagrange multiplier approach with the constraint

g(γ) = ∑k
j=0 γ j = 1, we maximise the function L(γ ,λ ) = f (γ)+λ (g(γ)−1)) which in the

current context is given by

L(γ ,λ ) =
k

∑
j=1

log(w2
jv j)−

k

∑
j=1

log(γ j)+ log

[
1+

v0

γ0

k

∑
j=1

γ j

v j

]
+λ

{
k

∑
j=0

γ j −1

}
. (5.A.8)

Differentiating (5.A.8) with respect to γ0 and γi and maximising these functions results in
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two solutions for λ as follows:

∂L(γ ,λ )
∂γi

=
−1
γi

+
v0

γ0vi

[
1+ v0

γ0
∑k

j=1
γ j
v j

] +λ = 0

λ =
1
γi
− v0

γ0vi

[
1+ v0

γ0
∑k

j=1
γ j
v j

]
=

1
γi
− 1

r2
i

[
γ0 +∑k

j=1
γ j

r2
j

] , and (5.A.9)

∂L(γ ,λ )
∂γ0

=
−v0 ∑k

j=1
γ j
v j

γ2
0

[
1+ v0

γ0
∑k

j=1
γ j
v j

] +λ = 0

λ =
v0 ∑k

j=1
γ j
v j

γ2
0

[
1+ v0

γ0
∑k

j=1
γ j
v j

]
=

∑k
j=1

γ j

r2
j

γ0

[
γ0 +∑k

j=1
γ j

r2
j

] . (5.A.10)

Summing (5.A.9) over j = 1, . . . ,k gives.

k

∑
j=1

λγ j = k−
∑k

j=1
γ j

r2
j[

γ0 +∑k
j=1

γ j

r2
j γ0

]
λ (1− γ0) = k− γ0λ by substituting (5.A.10)

λ = k.

In order to arrive at an explicit solution for γi, the term ∑k
j=1 γ j/r2

j needs to be determined.

This is achieved by substituting λ = k in (5.A.10) resulting in

k

∑
j=1

γ j

r2
j
=

kγ2
0

(1− kγ0)
.

A solution for γi can now be determined by re-substitution of this result back into (5.A.9)

which leads to

γi = γ0
1
k

[
γ0 +

1
r2

i

(
1
k
− γ0

)]−1

.
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Summing over the solution for γi from i = 1, . . . ,k results in the following solution for γ0

γ0 =
1{

1+∑k
i=1

1
k

[
γ0 +

1
r2

i

(1
k − γ0

)]−1
} .

This also demonstrates that the weights play no part in the determination of the allocation

ratios under the D-optimal design.

A-optimality

The trace of the variance-covariance matrix ΣW is given by

k

∑
j=1

w2
jv0

γ0
+

k

∑
j=1

w2
jv j

γ j
.

As with the approach taken to determine γi for the D-optimal design, let f (γ) = trace(ΣW ).

Again, applying the Lagrange multiplier approach, we have that

L(γ ,λ ) =
k

∑
j=1

w2
jv0

γ0
+

k

∑
j=1

w2
jv j

γ j
+λ

{
k

∑
j=0

γ j −1

}
.

Differentiating this trace function with respect to γ0 and γ j and maximising these results in

two solutions for λ as follows:

∂L(γ ,λ )
∂γ0

= −
k

∑
j=1

w2
jv0

γ2
0

+λ = 0

λ =
k

∑
j=1

w2
jv0

γ2
0

, and

∂L(γ ,λ )
∂γi

= −w2
i vi

γ2
i

+λ = 0

λ =
w2

i vi

γ2
i

.
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Setting these two solutions for λ equal to each other results in a solution for γi as follows

γi = γ0
riwi√

∑k
j=1 w2

j

.

Using the constraint ∑k
i=0 γi = 1 results in the explicit solution

γ0 =
1[

1+∑k
i=1

riwi√
∑k

j=1 w2
j

] .

A special case of the weighted difference measure is one where all wi = 1. In this special

case we get the ui represented by 1/k as presented in Table 5.1 of the main paper.

E-optimality

E-optimality stipulates the minimisation of the maximum eigenvalue of ΣW which requires

that there exists an eigenvalue τ that satisfies the condition det(ΣW − τI) = 0. Here I is

the identity matrix. Again, using the matrix determinant lemma by Harville (1997) the

determinant is given by

det(ΣW − τI) =

[
1+

v0

γ0

k

∑
j=1

w2
jγ j

w2
jv j − τγ j

]
k

∏
j=1

[
w2

jv j

γ j
− τ

]
. (5.A.11)

For ease of calculations, let si denote the information fraction ni/vi with the constraint

∑k
j=0 γk = 1 represented as ∑k

j=0 s jv j = N. It follows that the maximum eigen value of

ΣW is the solution over τ of the equation

k

∑
j=1

w2
js j

τs j/N −w2
j
= s0 (5.A.12)

since the second term in (5.A.11) is the determinant of a diagonal matrix with non-zero

elements (Rao, 1965). Letting f (γ) =∑k
j=1

w2
j s j

τs j/N−w2
j
−s0, and using the Lagrange multiplier
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approach we have

L(s,λ ,τ) =
k

∑
j=1

w2
js j

τs j/N −w2
j
− s0 +λ

{
k

∑
j=0

s jv j −N

}
.

Differentiation of L(s,λ ,τ) with respect to s0 results in the simple solution, λ = 1/v0. Sub-

stituting this value for λ into ∂L(s,λ ,τ)
∂γi

results in the solution si =
w2

i N
τ

(
1+ 1

ri

)
. A solution

for si in terms of s0 can be established if a solution for the nuisance parameter τ in terms of

s0 can be determined. This is achieved by substituting the result for si into (5.A.12) to find

a solution of τ in terms of s0 as follows

τ =
N
s0

k

∑
j=1

w2
j
(
1+ r j

)
.

Substituting this result for τ leads to a solution for si in terms of s0 as follows

si =
s0w2

i (1+ ri)

ri ∑k
j=1 w2

j
(
1+ r j

) , or alternatively

γi = γ0ri
w2

i (1+ ri)

∑k
j=1 w2

j
(
1+ r j

) .
The solution of γ0 is now trivial and can be obtained from the constraint that ∑k

j=1 γ j = 1−γ0

as

γ0 =
1[

1+∑k
i=1 ri

w2
i (1+ri)

∑k
j=1 w2

j(1+r j)

] .
A special case of the weighted difference measure is one where all wi = 1. In this special

case we get the ui represented by (1+ri)

∑k
j=1(1+r j)

as presented in Table 5.1 of the main paper.

5.A.6 Additional numerical results

The numerical results relating to Figure 5.4 of the main paper is presented in this section.
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Table 5.A.1: Optimal allocation proportions for a study with k = 3 comparator arms. Results
for power optimal designs are presented for large N. The minimal power design presents al-
location proportions without a correction for multiplicity of testing. Here δ = (0.5,0.5,0.5)
and ri =

√
2 under constant heteroscedasticity.

Optimality Homoscedasticity Constant
criterion heteroscedasticity

γ0 γ1 γ2 γ3 γ0 γ1 γ2 γ3
D 0.250 0.250 0.250 0.250 0.215 0.262 0.262 0.262
A 0.366 0.211 0.211 0.211 0.290 0.237 0.237 0.237
E 0.500 0.167 0.167 0.167 0.414 0.195 0.195 0.195
PC 0.367 0.211 0.211 0.211 0.285 0.238 0.238 0.238
PM 0.476 0.175 0.175 0.175 0.391 0.203 0.203 0.203

5.A.7 Additional references

Harville, D. A. (1997). Matrix Algebra From a Statistician’s Perspective. New York, USA:

Springer-Verlag.

Rao, C. R. (1965). Linear Statistical Inference and its Application. New York, USA: John

Wiley & Sons.



Chapter 6

Conclusions

6.1 Summary of research
This thesis has presented statistical investigations of bias, inefficiency and misinterpretation

associated with randomised clinical trials (RCTs). Specifically, three areas related to the

design and analysis of RCTs have been studied:

1. bias in treatment effect estimates resulting from excluding early truncated trials from

meta-analyses;

2. quantifying the expected chance variation in treatment differences between subgroups

to avoid misinterpreting observed variation across subgroups, with a particular focus

on country-specific analyses in multi-country RCTs; and

3. efficient design of single-control multiple-comparator trials through optimal unbal-

anced allocation.

This chapter presents a summary of the major findings and proposes some areas for future

work that could be a natural follow on to the research presented in this thesis.

6.1.1 Meta-analysis and interim monitoring

The inclusion in meta-analysis of trials truncated early due to benefit has led to much debate

with regards to the potential for overestimation of treatment effect estimates. This thesis

has investigated the effect of excluding such studies from meta-analyses, which is an ap-

proach that has been advocated by some researchers (Bassler et al., 2013). The estimation

149
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and information biases resulting from this approach were quantified theoretically in the sim-

plest case where a study subjected to a single interim analysis continues to the final analysis

without truncation, and through simulations in the cases with more than one interim anal-

ysis. Importantly, it was demonstrated that meta-analyses of non-truncated studies leads

to underestimation of the treatment effect and overestimation of the statistical information.

This has a problematic consequence in meta-analyses when estimates are weighted by the

inverse-variance method, namely, that greater weighting is given to the most biased esti-

mates. Indeed, it was observed in the simulation studies presented that the magnitude of the

bias increased both when the studies were subjected to more frequent interim monitoring

and when the proportion of the studies subjected to interim monitoring that were included

in the meta-analyses increased. Although it might seem practicable to exclude from meta-

analyses all studies subjected to interim monitoring, whether or not they terminated early,

the resulting loss of efficiency in estimation can be considerable. This thesis concludes that

the strategy that is most appropriate is to include all studies in evidence synthesis, both

truncated and non-truncated. This is supported by the simulation studies presented which

demonstrate that while excluding truncated studies led to substantial biases, the inclusion

of all studies, both those that truncated early and those that did not, resulted in effectively

unbiased estimates.

Since the publication of Schou and Marschner (2013), further discussion of estimation

bias in truncated trials has appeared in the literature. Of particular note is the paper by

Senn (2014) which cites the work presented in this thesis (Schou and Marschner, 2013) and

explores issues that are directly related to the research presented in this thesis. While the the-

oretical component of Schou and Marschner (2013) focussed on quantifying the estimation

and information biases in a trial subjected to a single interim analysis, Senn (2014) focuses

on illustrating that the overall expectation of such a trial would indeed be unbiased as it is the

sum of the expectation of the trial stopping early and that of the trial running its full course.

Senn (2014) uses this point to demonstrate that unbiased estimates of treatment effect are

achieved in information-weighted fixed-effect meta-analyses when trials subjected to a sin-
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gle interim analysis, both truncated and non-truncated, are included. Senn (2014) further

argues that this also applies in the case of multiple looks. The conclusions of Senn (2014)

are therefore consistent with those of Schou and Marschner (2013), and provide further

support for the conclusions reached in this thesis.

6.1.2 Subgroup analyses

Inadequate powering of tests of interaction is often a limitation encountered in subgroup

analyses of clinical trials, and this can lead to interpretation difficulties when there is appar-

ent heterogeneity between treatment effects across subgroups. While the focus of this thesis

has been on country-specific subgroups that are often defined in multi-country RCTs, the

methodology is readily applicable to other types of subgroup analyses. This thesis presents

a suite of graphical tools which can provide a multi-faceted visual assessment of the extent

to which the observed treatment effect differences align with those that would be expected

under an assumption of treatment effect homogeneity. As it is likely that the limitation of

low power for a test of interaction will also affect any new technique for assessing het-

erogeneity, this approach is entirely non-inferential. However, it does equip researchers,

including non-statisticians, with a useful set of graphical presentations that are easy to un-

derstand and interpret. Furthermore, the utilisation of these tools at the design stage of a

study can help benchmark expectations and pre-empt any over-interpretation at the analysis

stage. As discussed in Chapter 4, these methods are accessible via the package subgroup,

which has been included in the Comprehensive R Archive Network (CRAN) (Schou, 2014).

6.1.3 Optimal design

Single-control multiple-comparator trials offer both ethical and resource efficiencies by

making effective therapies available sooner. However, the medical literature suggests that

in the majority of cases, the design of such trials fails to harness efficiency gains that can be

attained through unbalanced allocation of patients to the treatment groups.

Chapter 5 explored such unbalanced designs that could be achieved through variance opti-
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mal designs and power optimal designs. In particular, three variance optimal designs based

on the D-, A- and E-optimality criteria, with and without weighting were considered. These

designs were unified under a single form such that the allocation ratios to each arm could be

determined as a function of the number of comparator arms and the ratio of the standard de-

viation between each comparator arm and the common control. This unification allowed the

sensitivity of the design to the chosen variance optimality criterion to be evaluated through a

comparison of the way in which each method allocates the available resources to the control

and comparator arms.

The results demonstrated that systematic orderings exist in the way the optimal designs

allocate patients to the control and comparator arms for large sub-classes of models de-

pending on the ratio of the standard deviation between the comparator and control arms of

the trial. This dependency of the design allocation ratio on the chosen optimality criterion

led to the proposal that power optimisation is more appropriate in the clinical trials setting

where hypothesis testing is usually the focus. In this context, minimal and complete power

optimal designs were discussed, and numerical examples were provided to support the use

of approximate power optimal designs based on an appropriately chosen variance optimal

design. These approximations are convenient as allocation ratios for exact power optimal

designs are usually more complex to determine. These results led to some general guide-

lines on the design of single-control multiple-comparator trials. Specifically, it was noted

that in a trial where all hypotheses had to be rejected for the overall study to be positive, that

is, a complete power design, the A-optimal allocation ratios could be used as an approxima-

tion, with weighting by the inverse squared effect sizes. If rejection of any one of the null

hypothesis would result in a positive study, that is, a minimal power design, the E-optimal

allocation ratios could be used as an approximation. However, if the design treatment dif-

ferences are unequal across the hypotheses, optimising minimal power is not sensible as it

concentrates its effort on the hypothesis with the largest design treatment difference, and

leads to the impractical scenario where treatment groups with the smaller effect sizes are

essentially omitted. Finally, it was noted that the D-optimal design does not correspond to
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either version of power optimality, and it ignores the design treatment differences even un-

der weighting. For this reason, it was concluded that the D-optimality criterion is not suited

for designing single-control multiple comparator trials that have hypothesis testing as the

main objective.

6.2 Future research directions
This section discusses some potential areas for future work that could follow on from the

research presented in this thesis.

6.2.1 Estimation biases due to interim monitoring

Since the publication of the research presented in Chapter 2, some further advances have

been made that could form the basis of future research leading on from this thesis.

Chapter 2 discussed how estimates of treatment effect resulting from studies subjected to

interim monitoring may be biased. In particular, it discussed how estimates from studies

that stopped early overestimate the treatment effect, while studies that continue to the final

analysis underestimate the treatment effect. The magnitude of these biases were theoreti-

cally formulated in the special case of a study with two analyses, one interim and one final,

and validated through simulation studies. This section discusses some further advances

that have been made since the publication of Schou and Marschner (2013). Specifically,

it presents theoretical formulae for the estimation bias in trials subjected to more than one

interim analysis. These theoretical formulae may be useful for the purpose of bias-adjusted

estimation.

Several researchers have explored the issue of estimation bias in trials subjected to interim

monitoring, and have proposed various bias-adjusted estimators. The first of these was

Whitehead (1986), who suggested an iterative approach in which the bias of the maximum

likelihood estimator (MLE) is subtracted from the observed value of the MLE. This ap-

proach was subsequently developed further from a computational and inferential perspec-
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tive by Todd et al. (1996). Other approaches are based on existing methods for confi-

dence interval estimation after a sequential study, such as the median unbiased estimate

or mid-point estimate (Kim, 1989). Further approaches make use of the general concept of

Rao-Blackwellization applied to the unbiased estimator obtained at the first interim analysis

(Emerson and Fleming, 1990; Liu and Hall, 1999; Emerson and Kittelson, 1997). Impor-

tantly, all of these approaches are unconditional approaches in that they seek to adjust for the

bias without conditioning on the stopping stage of the study. Fan et al. (2004) argued that

a conditional approach to estimation may offer some advantages. This approach involves

conditioning on the stopping stage and adjusting for the conditional bias given the stopping

stage. It is this type of conditional adjustment that is considered further in this section.

Chapter 2 studied the estimation bias in a trial with a single interim analysis, using the con-

ditional bias given the stopping stage. The quantification of the conditional bias in the more

general case of a trial that is subjected to more than one interim analysis requires some

further definitions. To this end, in the notation of Chapter 2, let K + 1 denote the number

of analyses, with K denoting the number of interim analyses. The information available

at analysis k which was represented by I(k) in Chapter 2 is denoted by Ik in this chapter;

that is, Ik ≡ I(k). Here we only consider a single study, and the subscript m used previ-

ously to denote the study number in a meta-analysis is therefore not applied. Recall that,

as defined in Chapter 2, D = (D(1), . . . ,D(K),D∗) is the vector of treatment differences at

the interim and final analyses, which has a (K +1)-dimensional multivariate normal distri-

bution as defined in (2.7). For notational purposes we will let D(K+1) ≡ D∗ in this section

so D = (D(1), . . . ,D(K),D(K+1)). Consider now the multivariate distribution of the (k− 1)-

dimensional vector, D(i)
k = (D(1), . . . ,D(i−1),D(i+1) . . . ,D(k)), conditional on D(i). It can be

shown that D(i)
k

∣∣∣∣D(i) is multivariate normal

D(i)
k

∣∣∣∣D(i) ∼ N
(

δδδ k +[D(i)−δ ]S(i)k ,Σ(i)
k

)
where



CONCLUSIONS 155

Σ(i)
k =



I1−Ii
I2
1

I1−Ii
I1I2

. . . I1−Ii
I1Ii−1

I1−Ii
I1Ii+1

. . . I1−Ii
I1Ik

I2−Ii
I1I2

I2−Ii
I2
2

. . . I2−Ii
I2Ii−1

I2−Ii
I2Ii+1

. . . I1−Ii
I2Ik

...
... . . . ...

... . . . ...

Ik−Ii
I1Ik

Ik−Ii
I2Ik

. . . Ik−Ii
Ii−1Ik

Ik−Ii
Ii+1Ik

. . . Ik−Ii
I2
k


.

Here δδδ k is a vector of length k−1 with all elements equal to δ and

S(i)k =

(
Ii

I1
, . . . ,

Ii

Ii−1
,

Ii

Ii+1
, . . . ,

Ii

Ik

)
.

The formulation of the required conditional expectation involves the evaluation of various

density and cumulative distribution functions at the stopping boundaries. To this end, let

the stopping boundary at the ith analysis be ci, so that the study stops for benefit if D(i) >

ci. Furthermore, let ϕ (i) denote the univariate normal density function of D(i), and let Θk

denote the multivariate normal cumulative distribution function of Dk = (D(1), . . . ,D(k)).

The multivariate distribution of Dk follows trivially from the multivariate distribution of D

which was presented in (2.7). Finally, let Θ(i)
k denote the multivariate normal cumulative

distribution function of D(i)
k as defined above. Using these definitions, the expectation of

D(k) conditional on truncation at the kth interim analysis can be given explicitly for k =

1, . . . ,K by

E
[

D(k)
∣∣∣∣truncation

]
= δ

−
∑k−1

i=1
√

Iiϕ (i)(ci)Θ
(i)
k−1 (c1, . . . ,ci−1,ci+1, . . . ,ck−1)

Ik [Θk−1(c1, . . . ,ck−1)−Θk(c1, . . . ,ck)]

+
∑k

i=1
√

Iiϕ (i)(ci)Θ
(i)
k (c1, . . . ,ci−1,ci+1, . . . ,ck)

Ik [Θk−1(c1, . . . ,ck−1)−Θk(c1, . . . ,ck)]
. (6.1)
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Likewise, the expectation of the treatment effect conditional on non-truncation is

E
[

D(K+1)
∣∣∣∣non-truncation

]
= δ

− ∑K
i=1

√
Iiϕ (i)(ci)Θ

(i)
K (c1, . . . ,ci−1,ci+1, . . . ,cK)

IK+1ΘK(c1, . . . ,cK)
. (6.2)

It can be shown that in the special case of a trial with a single interim analysis, that is, K = 1,

the relative biases derived from equations (6.1) and (6.2) correspond to equations (2.9) and

(2.13) presented in Chapter 2.

In Table 6.1 a comparison of the theoretical and simulated biases is provided to check the

validity of (6.1) and (6.2). These results show a close correspondence between the theoret-

ical and simulated biases, which illustrates the validity of the theoretical expressions (6.1)

and (6.2). Furthermore, they demonstrate that the underestimation bias in non-truncated

studies increases steadily and can be in excess of 30% when K > 3, and that the smaller the

information fraction at the time of analysis, the larger the overestimation bias in truncated

studies. It is also apparent from this investigation that while the underestimation implied in

Chapter 2 remains true in the general case for non-truncated RCTs, the estimation bias in

truncated RCTs in more nuanced. Indeed, the overestimation in truncated RCTs wanes the

later the look at which the study stops, and can even turn into an underestimation bias. This

is in line with the observations made by Fan et al. (2004). For example, in Table 6.1 this is

demonstrated in the case when K +1 = 5 and k = 4, as well as when K +1 = 6 and k = 5.

Indeed, it can be shown that the underestimation bias is present already when K + 1 = 3

if the interim analyses had taken place when the information fraction is large. For exam-

ple, for a study monitored using the O’Brien Fleming boundaries at information fractions of

0.70,0.85, and 1, the underestimation at truncation when the information fraction is 0.85 is

12.1%. Therefore, the estimation bias in truncated studies can lead to either overestimation

or underestimation depending on when the study stopped.

The theoretical expressions (6.1) and (6.2) are likely to be useful in bias-adjusted methods
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Table 6.1: Treatment effect estimate and estimation bias expressed as percent overestimation
or underestimation, conditional on truncation or non-truncation, of group sequential studies
with K equally spaced interim analyses monitored using the O’Brien Fleming boundaries
when the true treatment effect is δ = 0.25 in trials with 90% power and one-sided signifi-
cance level 2.5%.

Analyses Interim look Theoretical Simulations
K +1 k Mean % Bias Samples Mean % Bias

2 1 0.373 49.2 3088 0.373 49.1
2 0.222 -11.1 6912 0.223 -10.6

3 1 0.516 106.5 541 0.518 107.1
2 0.305 21.9 5213 0.302 21.0
3 0.191 -23.5 4246 0.191 -23.5

4 1 0.668 167.2 81 0.671 168.5
2 0.374 49.7 2935 0.372 48.9
3 0.265 5.9 4031 0.264 5.5
4 0.174 -30.3 2953 0.175 -29.9

5 1 0.818 227.2 8 0.789 215.5
2 0.446 78.4 1218 0.444 77.6
3 0.315 26.0 3475 0.314 25.7
4 0.241 -3.6 2829 0.242 -3.2
5 0.163 -34.6 2470 0.163 -34.6

6 1 0.979 291.4 1 0.975 289.9
2 0.521 108.6 702 0.521 108.5
3 0.366 46.5 3563 0.367 46.7
4 0.281 12.3 4307 0.281 12.3
5 0.227 -9.3 3154 0.226 -9.5
6 0.156 -37.4 3273 0.158 -36.8

for estimating treatment effects. In particular, Fan et al. (2004) made a compelling argu-

ment for modifying the unconditional approach of Whitehead (1986) and Todd et al. (1996)

by using a conditional approach to bias adjustment. In particular their approach involves

solving either of the following equations in δ

E
[

D(k)
∣∣∣∣truncation

]
= δ̂ or E

[
D(K+1)

∣∣∣∣non-truncation
]
= δ̂ ,

depending on whether the study was truncated or not. Here δ̂ is the crude MLE and the equa-

tions are solved for δ̃ , the conditional bias-adjusted estimate. However, Fan et al. (2004)

solved these equations using numerical or simulation approximations to the theoretical bias.
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Use of the exact theoretical expressions in (6.1) and (6.2) may offer various advantages

including ease and efficiency of implementation. Preliminary numerical investigations in-

dicate that this approach may hold some promise, but further research will be required to

investigate this in more detail.

6.2.2 Quantifying heterogeneity of treatment effects

The methods presented in Chapter 3 offer a visual comparison of the observed variability

in treatment effects with what would be expected under an assumption of treatment effect

homogeneity across subgroups. However, in the event that the observed differences are more

variable than the expected differences, a non-inferential measure of the extent to which these

differences deviate from the assumption of homogeneity of treatment effect may be useful.

A possible way to quantify this could be through the introduction of a random effects model.

Recall that in Chapter 3 the treatment differences were defined as Dr ∼N
(
δ ,s2

r
)
, r = 1, . . . ,R

in (3.1). Under a random effects model, these treatment differences can be defined as

Dr ∼ N
(
∆,s2

r
)

with

∆ ∼ N
(
δ ,σ2

δ
)

implying

Dr ∼ N
(
δ ,s2

r +σ2
δ
)

r = 1, . . . ,R. (6.3)

Under this parametrisation, σ2
δ would capture the extent of variation beyond what would

be expected under homogeneity, and an estimate of σ2
δ could be used as a non-inferential

measure to quantify the extent of this variation.

To illustrate how this might be used in practice, consider again the PLATO study which

was discussed in Chapter 3. Chapter 3 concluded that overall, the variation in the country-

specific treatment differences were consistent with what would be expected under an as-

sumption of homogeneity of treatment effect. While this overall statement remains valid, it

can be observed that the range of the observed treatment differences is slightly larger than

the expected range of the treatment differences in the largest 10 countries of the PLATO
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study as presented in Panel A of Figure 3.1. Here, the largest hazard ratio observed was

1.27 and the smallest was 0.59, a range of 0.767 on the log scale. The expected range, also

on the log scale, was 0.691. That is, the observed range is slightly larger than the expected

range under an assumption of homogeneity of treatment effect across the countries. Using

the definition of the distribution of Dr presented in (6.3) it would be possible to estimate

the value of σδ that would explain the increase in the observed range compared with the

expected range. In this instance, letting the log of the hazard ratios in each country repre-

sent Dr, r = 1, . . . ,10, the estimate of σδ is 0.109. That is, if Dr ∼ N
(
log(δ ),s2

r +0.1092),
the expected range and the observed range would be identical. This estimate of σδ could

provide a non-inferential measure of the extent of departure from the assumption of ho-

mogeneity of country-specific treatment differences. Further exploration of the usefulness

of such a measure, and its extension to incorporate information on all subgroup treatment

effects rather than just the range, may be a worthwhile line of future research.

6.2.3 Further theory on single-control multiple-comparator trials

Numerical investigations were used in Chapter 5 to support the conjectures presented, which

proposed that allocation ratios to the complete and minimal power optimal designs could

be approximated by the A- and E-variance optimal design allocation ratios, respectively.

Further theoretical investigations would be required to determine whether these conjectured

approximations correspond to mathematical limits as the total sample size increases. If

such relationships could be established, this would provide further theoretical basis for the

guidelines provided in Chapter 5. Such theoretical investigations may therefore be a useful

line of future research, although attempts thus far have been unsuccessful.

Chapter 5 also presented several propositions providing some general orderings of the allo-

cation ratios for D-, A- and E-optimal designs. This discussion was limited to unweighted

variance optimal designs. Therefore a natural follow-up would be to consider whether these

propositions would hold in a more general context of weighted variance optimal designs,

and if so, under what conditions on the weights these would hold. For example, under
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constant heteroscedasticity, it is obvious that Proposition 5.3.2 would hold when the design

treatment differences are equal across the hypotheses. However, these orderings may not

hold when the design treatment differences are unequal. Thus, further investigations into

potential orderings under weighted variance optimal designs may lead to useful insights.

Finally, it is noted there is scope to extend the work presented in Chapter 5 to accommodate

studies subjected to sequential monitoring. Various authors have studied multi-stage studies

in which some arms are dropped at interim analyses; see Stallard and Todd (2003), Kelly

et al. (2005) and Stallard and Friede (2008). This type of RCT has recently been extended

to allow for a power (or equivalently sample size) optimal design criterion by Wason and

Jaki (2012). However, the computations involved are rather complex, requiring a stochastic

search algorithm, and it may be that the variance optimality approximations discussed in

Chapter 5 have applicability in that context as well.

6.3 Final remarks
Randomised clinical trials are a cornerstone of evidence-based medicine and public health.

The RCT design is pivotal for both exploratory and confirmatory clinical research studies, as

well as evidence synthesis through meta-analysis. Nonetheless, despite the widespread use

and reporting of RCTs, there remain many methodological issues relevant to their design,

analysis and interpretation. This thesis has carried out statistical investigations of three such

areas.

The research presented here is based on theoretical and methodological investigations into

the potential for bias, inefficiency and misinterpretation of RCTs. Some analysis and com-

putational tools have also been presented, along with guidelines and recommendations for

the valid design, analysis and interpretation of RCTs. Finally, some potential extensions and

generalisations of the research have also been discussed. Together with the results presented

here, these provide a framework for possible future investigations that go beyond the content

of this thesis.
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