
THE DEVELOPMENT OF NOVEL PHYSICAL LAYER SECURITY
ALGORITHMS TO MITIGATE COGNITIVE RADIO ATTACKS

Sasa Maric

Doctor of Philosophy (PhD)

Department of Electronic Engineering
Macquarie University

March 2018

Supervisor: Associate Professor Sam Reisenfeld





ACKNOWLEDGMENTS

It has been a long journey, with many ups and downs. It is my great pleasure

to acknowledge my deepest gratitude to Associate Professor Sam Reisenfeld for

his guidance and help throughout my research. He has always advised me with

wisdom and patience, even when I repeated my mistakes multiple times. Without

his guidance this thesis would never have been complete.

I would like to thank my family for their continual support throughout my

schooling and PhD journey. It has been a long journey and I could have never

got anywhere without them.

Lastly, I would like to thank my beautiful girl Lana for always keeping a smile

on my face. For always sticking by me, even when things did not go the way I

had imagined. Your support means the world to me. You have always pushed

me to be better and try harder.





STATEMENT OF CANDIDATE

I, Sasa Maric, declare that this report, submitted as part of the requirement for

the award of Doctor of Philosophy at Macquarie University, is entirely my own

work unless otherwise referenced or acknowledged. This document has not been

submitted for qualification or assessment in any academic institution.

Student’s Name:

Student’s Signature:

Date:





ABSTRACT

Since the implementation of the first public-access networks, attackers have

looked to take advantage of vulnerabilities in network security to gain an unfair

advantage. In recent times, wireless networks have increasingly been integrated

in our everyday lives. Science-fiction style automated homes and societies have

increasingly become a reality. Today’s wireless devices possess high cognitive

ability, they dynamically adjust according to their environment and user prefer-

ences to ensure maximum comfort for their users. As a result, a global network

of interconnected wireless devices has been growing exponentially for the past

few decades. Previous radio-frequency spectrum allocation has failed to predict

this growth, which has resulted in extreme congestion in some bands and low

utilisation of others. Cognitive Radio, a collection of intelligent methods, is seen

as the most promising solution. To increase efficiency they allow secondary users

(users that do not have a regulatory right to use a frequency channel) to utilise

allocated frequency bands when they are not being utilised by paying users (pri-

mary users). However, cognitive radio implementation has been delayed several

times because of its susceptibility to a number of security attacks, specifically in

the physical layer. As such, a taxonomy of new attacks has been identified, which

could not be mitigated by standard security algorithms that were developed for

conventional wireless networks. The primary aim of this thesis is to mitigate the

effects of physical layer attacks in Cognitive Radio Networks(CRN). In particular,

two attacks have been identified as the most serious threats to cognitive radio





security. These are a Primary User Emulation Attack (PUEA), which involves

an attacker emulating the properties of primary users in order to gain an unfair

advantage over other secondary users and a Spectrum Sensing Data Falsification

Attack(SSDFA), during which an attacker intentionally manipulates messages

containing spectrum sensing information in order to trick secondary users into

miss-diagnosing the status of a primary user. In this thesis, we present a num-

ber of algorithms to combat the vast array of attacks within the physical layer.

In particular we present a number of novel, highly effective, low computational

complexity algorithms that can be implemented to completely eradicate these

attacks and render them ineffective. Since many of the devices that make up a

cognitive radio network have battery and computational complexity constrains,

our objective was to develop mitigation algorithms that they are lightweight and

can be implemented effectively.
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Chapter 1

Introduction

1.1 Motivation

Advancements in wireless technology have led to revolutions in a number of disciplines.

Scientists are able to track and monitor animal behaviour, predict the weather and mon-

itor pollution among other things. Doctors are able to monitor the various vital signs

of patients remotely, allowing for fast response in cases of emergency. Wireless sensors

enable homes to form complicated networks dedicated to making us as comfortable as

possible at all times. As we become increasing reliant on wireless technology in our ev-

eryday lives, concerns for privacy and safety become prevalent. In the past, we have seen

the development of systems with little or no consideration for security aspects. These

systems often rely on updates and revisions to rectify and patch up security concerns.

This method of system design has serious implications in todays rapidly advancing world.

As a result, many systems now require reliability and data integrity. Therefore, powerful

algorithms need to be developed to effectively deal with these issues.

The radio-frequency spectrum is a finite resource. As such, as wireless technology con-

tinues to grow , congestion within the radio frequency spectrum becomes a serious issue.

Part of the reason is that the spectrum allocation methods that were used in the early

days of wireless network development were inadequate and did not take into consideration

future growth. A study by the Federal Communications Commission (FCC) determined

1



2 Chapter 1. Introduction

that the free-to-use ISM bands are extremely congested, while the vast majority of licensed

bands are severely under-utilised [4]. The Federal Communications Commission (FCC)

has found that the licensed radio-frequency bands are idle almost 80% of the time [5].

These findings prove that the real problem lies in under-utilisation rather than spectrum

scarcity. Therefore, to effectively solve this problem we must find more effective ways to

utilise the available licensed spectrum bands. Cognitive Radio, a collection of intelligent

methods designed to use the radio spectrum in an efficient and dynamic manner, has

been proposed as a promising solution for the spectrum utilisation problem we are faced

with as a result of the increase number of wireless devices around the world. However, its

full implementation in practical systems has continuously been delayed because of a wide

range of security concerns.

At the moment, spectrum allocation ensures that licenced users are assigned channels,

exclusively. We denote this type of user as a primary user (PU). Unlicensed users who look

to opportunistically use idle channels are denoted as secondary users (SUs) [4]. Within the

Cognitive Radio framework, a secondary user is able to utilise any radio-frequency band

as long as the primary user is idle. As soon as a primary user becomes active on a channel,

all secondary users using that channel must immediately cease all transmission and vacate

the band. It is essential that secondary users do not interfere with primary users. In fact,

primary users must remain oblivious to the activities of the secondary users, with a min-

imal acceptable performance degradation. To prevent interference with the primary user,

secondary users must continuously monitor primary user activity. Each secondary user

periodically performs spectrum sensing, during which it scans the channel (using one of a

number of spectrum sensing techniques) to determined whether the primary user is still

idle. If the primary user is transmitting on the channel, all secondary users must vacate

the band immediately. By allowing unlicensed use to utilise radio-frequency bands that

were previously exclusively reserved for primary users, we are able to reduce congestion
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and utilise unused spectrum effectively.

The dynamic nature of cognitive radio means that secondary users are able to mon-

itor, sense and adopt to changes in the environment. Their flexibility allows them to

harmoniously coexist with primary users. Successful implementation of cognitive radio

rests on its ability to continuously monitor the radio frequency band and act quickly if

primary users become active. This fundamental feature of cognitive radio is susceptible

for exploitation by security attacks. If an adversary was able to mimic the properties of a

primary user, they could trick secondary users into thinking that a primary user is active.

According to protocol, secondary users would immediately vacate the channel making it

available for the primary users. This would allow the attacker to use the entire radio-

frequency band, uncontested. This type of attack is called a Primary User Emulation

Attack (PUEA).

Attackers are able to reduce the overall throughput of a network very quickly by con-

tinuously performing a PUEA on a number of radio-frequency bands. Attacks on multiple

channels can be done as part of a team or as a single attacker who is able to optimally

distribute power over a number of channels. Similarly, the best methods for identifying

and mitigating against PUEAs are based on cooperation between secondary users. It is

very difficult for a single secondary user to reliably identify the presence of a primary user

because of various transmission degradation factors such as channel fading and shadow-

ing. With a number of secondary users working together we able to observe a number

of perspectives which help develop an overall picture. Identification of the primary user

can achieved a number of ways, but the most popular methods are based on localisation.

Techniques using the Receive Signal Strength (RSS), Angle of Arrival (AOA), Time of Ar-

rival (TOA) and Time Difference of Arrival(TDOA) are some of the most popular. Each

has positive and negative aspects associated with it, the choice of localisation technique

is largely dependent on the type of environment and the resources available.
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Cooperative spectrum sensing is key in the mitigation of PUEAs. However, it too is

susceptible to attacks by adversaries that look to gain an unfair advantage over legitimate

users. Spectrum sensing data falsification attacks (SSDFAs) involve an attacker, posing

as a legitimate secondary user, and falsifying spectrum sensing results in an attempt to

trick legitimate users into misdiagnosing the status of the primary user. The effect of

an SSDFA is twofold; either secondary users decide that the primary user is idle when

the primary user is actually active, which causes interference, or secondary users vacate

the channel thinking that the primary user is active, which allows the attacker to use

the radio-frequency band uncontested. The mitigation of SSDFAs is seen as extremely

important because of cognitive radio’s reliance on cooperative exchange of information.

The spectrum sensing phase is essential in ensuring that cognitive radio fulfills its mis-

sion. Therefore, it is often seen as a point of vulnerability. In order to achieve a high

level of reliability and accuracy, secondary users must exchange information with each

other. When information is falsified intentionally by an attacker or during transmission,

the legitimacy of spectrum sensing results degrade almost instantaneously. In addition,

the effects of SSDFA attacks are often propagated throughout the entire network causing

a long lasting impact.

The distributed nature of cognitive radio networks often means that users have strict

power constraints. Many of the devices that make up cognitive radio networks are limited

in size, which means that they often have limited computational capacity and battery

energy storage capacity. Therefore, developers must keep this in mind when developing

algorithms. Algorithms must have low computational complexity in order for them to

be practical for implementation. In this thesis we develop algorithms to mitigate PUEA

and SSDFA in Cognitive Radio networks. To mitigate against Primary-User Emulation

attacks we use a combination of belief propagation and localisation of a transmitter to

calculate a probability that corresponds to a belief about whether or not a transmitter is
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an attacker. Essentially, when a transmitter (unknown user) becomes active on a channel,

each secondary user performs local observations to determine the transmitter’s identity.

They then exchange their beliefs with other secondary users to determine a consensus

about whether the transmitter is a primary user or a spoofer. This is similar to a decision

made by a committee. We use a highly accurate, low computationally complex method

that uses Received Signal Strength (RSS) measurements to localise a transmitting node.

It is assumed that primary user locations are known. Using this information, we are

able to determine with a high degree of accuracy whether the transmitter is a legitimate

primary user based on the location of the transmitter. To mitigate against Spectrum

Sensing Data Falsification Attacks, we employ a dynamic reputation function. A reputa-

tion function is a representation of the reliability of a secondary users observations. If the

reputation of a secondary user is low, the user is seen as unreliable. If the users reputation

is high, the user is seen as highly reliable. We develop a method for secondary users within

the network to develop trust with each other. This helps secondary users determine the

validity of an incoming messages, as trusted secondary users with a higher reputation

have a higher probability of sending out valid spectrum sensing reports. In conjunction

with the development of SSDFA mitigation schemes, this thesis introduces two new types

of attacks: a reputation mining attack and a reset attack. These are prevalent attacks in

reputation based algorithms. These are rarely contemplated, and algorithms to mitigate

against them have been seldomly explored. A lightweight algorithm is introduced that

is able to diagnose and mitigate these attacks effectively. Used in conjunction with our

reputation scheme, the new algorithm is the most complete SSDFA mitigation method.

The development of algorithms to mitigate physical layer attacks must take into ac-

count possible system trade-offs. Naturally, the introduction of any new algorithm into an

existent system creates additional functional and computational complexity. A trade-off

between the level of security of the network and the additional complexity must be evalu-
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ated. A new algorithm must ensure that the throughput of the network is not significantly

affected by the introduction of algorithms which mitigate jamming and spoofing attacks.

If the throughput is degraded significantly, then the introduction of the algorithm is no

effective. In this thesis we address the question of whether it is possible to develop a uni-

fied algorithm to combat both PUEAs and SSDFAs that achieves a high level of security

while having a minimal effect of the performance of the network.

1.2 Background and Previous Work

In the past decade, we have seen an increase in the number of wireless devices around

the world. As a result, we have seen increased interested in a number of research fields

related to wireless technology. Currently, research into 5G technology is the gaining a

huge amount of attention [6]. Cognitive radio devices are considered by many to be one

of the key technologies for the development and successful implementation of future 5G

technology [7] [8]. Cognitive radio allows for higher utilisation of the radio spectrum,

making it a key technology within 5G networks [9]. Throughout this thesis, we focus on

the development of algorithms to mitigate against physical-layer attacks in Cognitive Ra-

dio Networks. In particular we focus on data and user authentication, emulation attacks,

denial of service attacks and man in the middle attacks. Cognitive Radio implementation

has been halted a number of times due to its poor resilience against a number of types

of security attacks. Primary user emulation attacks, where a secondary user imperson-

ates a primary user, and spectrum sensing data falsification attacks, where one or many

secondary users spread falsified spectrum sensing reports in order to deceive other users

in the network or gain an unfair advantage, are seen as the two most serious types of

attacks. Similarly, with the Internet of Things, user emulation attacks are seen as ex-

tremely dangerous. A simple example of how dangerous this form of attack can be is
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demonstrated within a smart home. If an attacker were to emulate the resident of the

house, they would be able to control a number of appliances within the house and cause

serious damage, not only to the appliances but also to the occupants. In this section we

present a brief overview of some of the previous work presented by researchers around

the world, in particular a number of algorithms that are directly related to what we have

done throughout our work.

1.2.1 Primary-User Emulation Attacks

Primary-user emulation attacks are considered to be the most serious physical layer at-

tack in Cognitive Radio networks. In a primary-user emulation attack, a secondary user

impersonates the primary user to make it look like the primary user is active when the

user is not (A primary user is said to be active if they transmitting on the channel). This

enables the malicious node to take control of the frequency band, as other secondary users

must vacate any radio frequency band. A number of methods have been proposed to com-

bat primary user emulation attacks. The most popular methods are based on localisation

of the transmitter. They use the location of the transmitter to identify whether the signal

has originated from the primary-user or from a secondary user impersonating a primary

user. Below we present a number of algorithms developed to stop primary-user emulation

attacks.

In [10] the author presents a technique based on belief propagation. This technique

uses cooperation between secondary users to localise a transmitter. Comparing this to

the known location of a primary user, each secondary user is able to determine with a

certain probability of the transmission originally at a primary user location. The au-

thor denotes this probability as a belief. Secondary users in the network calculate their

own local beliefs and exchange them with their neighbours. Then, each secondary user

calculates a final belief using their own beliefs and all the beliefs from their neighbours.
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This algorithm suggests a useful procedure for determining whether the received signal

originates from an attacker or not. This thesis presents substantial improvements to the

algorithm described in [?] in terms of computational complexity, scalability and accuracy.

A number of mitigation techniques have been proposed to combat primary user em-

ulation attacks. The most promising of these use localisation of the transmitter because

primary users may be able to accurately replicate the signalling of a legitimate primary

user. A number of methods exist for localisation of transmitters. These localisation

methods can be classified into two categories: distributed localisation and centralised

localisation. The first approach uses secondary user cooperation. This type of method

is classified as the distributed method and involves secondary users trying to solve the

localization problem individually using information from cooperating nodes. The second

approach is the central approach. In this approach nodes are scattered around the net-

work and collect snapshots of the transmitted signal. These measurements are sent to a

central node that processes the information and makes a decision on whether the suspect

is a legitimate user or an attacker. The advantage of the centralised approach is that the

central node may have considerably more computing power than that of a secondary user.

Locdef is a localisation method that uses both localisation of the transmitter and sig-

nal characteristics to determine if the transmitter is a malicious user or not [11]. The

Locdef scheme uses sensor nodes scattered around the network to take snapshots of the

incoming RSS at different locations in the network. These measurements are sent to a

central location for processing. By identifying peaks in the RSS, a central node is able

to determine the location of the transmitted signal. Locdef uses a three-stage verification

scheme to determine the validity of the incoming signal. The first stage of the Locdef

scheme looks at the RSS of the signal to determine if it is coming from a primary user

location or not. If the signal does not correspond to a primary user location, the trans-

mitter is considered a malicious user and is ignored. If it does correspond to a known
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location, the scheme moves on to the second verification point where the signal’s energy

is investigated. In the second stage the receiver looks at the energy of the received signal.

The reason for this is that secondary users are not able to transmit at high power levels

whereas primary users often are. If the receiver knows that it is close to a primary user

the receiver would expect a signal with high energy to be received. If the incoming signal

from the transmitter does not correspond to the expected received signal levels, the trans-

mitter is considered a malicious user. If a suspect passes the first two stages, the scheme

moves on to the last stage, where it compares the signal characteristics of the incoming

signal with the known characteristics of the idle primary user. If the characteristics of the

incoming signal do not match the known signal characteristics of the primary user, the

transmitter is deemed to be a malicious user.

In [12], a scheme based on a combination of two signal-characteristic comparison meth-

ods is presented. This technique combines two methods called the Time Difference of Ar-

rival (TDOA) and the Frequency Difference of Arrival (FDOA) to determine the location

of the incoming signal. TDOA uses the differences in the time delay of signals arriving

at secondary-user stations to determine the location of a transmitter. TDOA uses four

receiving stations that use three dimensional time difference of four stations to get the

positioning equations [12]. FDOA is used to estimate the location of target using the

Doppler effect. As the transmitter moves their frequency changes which allows for other

secondary users to track the direction of their movement [12]. Individually neither tech-

nique is capable of reliably locating the transmitter. However, when used together TDOA

provides basic positioning points that are used by FDOA to determine the exact location

of the transmitter. This technique is very accurate and works well with both stationary

and moving targets, but it requires complex equipment at the receiving station. Its high

level of complexity means that it is expensive and complicated to implement and run.

In [12] and [13], two primary user emulation attack mitigation schemes based on
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authentication and encryption are presented. In [13], the author outlines a centralised

scheme in which each primary user is given a unique ID number and a random variable

by a centralised base station. Every time a suspect becomes active, the base station goes

through a two-step authentication process to ensure that the suspect is a valid primary

user. Before a primary user can access the network, the user must send their ID number

to the BS for authentication. The primary-user ID is compared to a pool of identifica-

tion numbers that correspond to all the primary users in the area. If the ID number

corresponds to one of the ID numbers in the pool, the scheme moves on to step two of

the authentication process. If it does not, the user is treated as a malicious user and is

ignored. The second step of the process is called the information displacement step. In

this step, the random variable (which each PU must know) is multiplied by an encryption

matrix which returns a value M that is compared to a set of expected values (the expected

values correspond to previously calculated values using the random variables of the PUs).

If the value corresponds to the expected values, the transmitter is authenticated as a

primary user. If it does not, the transmitter is treated as a malicious user and is ignored.

In [?], the author presents a technique based on belief propagation. This technique

uses cooperation between secondary users to localise a transmitter. Comparing this to

the known location of a primary user, each secondary user is able to determine with a

certain probability whether the transmitter is a primary user. The author denotes this

probability as a belief. Secondary users in the network calculate their own local belief and

exchange them with their neighbours. Then each secondary user calculates a final belief

using their own beliefs and all the beliefs from their neighbours. [?] describes a useful

procedure for determining wether a transmitter is a primary user or an attacker. This

thesis introduces substantial improvements to the algorithm and performance in [?].

In [14], a scheme to combat primary-user emulation in CRNs is presented. The au-

thors use a Wals sequential probability ratio test (WSPRT) in an attempt to develop a
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mathematical model for the PDF of the incoming signal. The probability density func-

tion (PDF) is used to develop a lower bound which is used to determine whether the

incoming signal is a malicious user or a primary user. This method is fairly effective.

However, it does not take into account the observations of the other secondary users in

the network. The lack of cooperation with other secondary users means that the poor

accuracy of the results obtained by this method make it unstable because of noise and

other channel degradation factors such as fading and shadowing. Since every secondary

user is essentially a stand alone node, the effects of degradation and the hidden node

problem have a tremendous effect on results. A hidden node is one that is seen by the

central node but not to the other nodes on the network. A hidden node that is visible to

one node but not to the rest of the users on the network. When a hidden node is present,

convergence of the algorithm is difficult.

In [15], the authors present a mitigation algorithm based on hopping. The algorithm

is based on a zero sum game where the goal for the legitimate users is to evade the at-

tacker by predicting which channels they will attack. This method assumes that channel

statistics are known for the entire network. This means that it is somewhat limited when

such knowledge is not available. It is also fairly high in computational complexity, as

its accuracy improves as more information becomes available. This means that it is best

suited for centralised networks, where the computational burden rests with the central

node.

In [16], an algorithm to mitigate against primary-user-emulation attacks is presented.

The authors present an algorithm based on analysis of the received signal strength at a

secondary user. Using a number of RSSs(Receive Signal Strength) power measurements,

lower and upper thresholds are established and the RSS measurements are compared to

the threshold. A flexible log-normal sum approximation is used to characterise the incom-

ing RSS. This algorithm relies on a centralised topology, in which the central node handles
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the bulk of computation. In order for this algorithm to be effective in its mitigation of

primary user emulation attacks, it is essential that an accurate threshold is developed.

This however could take some time when limited information is available. Trust between

users is another aspect that is overlooked in this algorithm but the use of trust could help

improve its performance.

In [17] an authentication algorithm based on one way hash functions is presented. The

primary user initiates a hash chain that is used by secondary users to authenticate the pri-

mary user. One advantage of this method is there does not need to be any modifications

to the transmitter. However, if the malicious node discovers the chain sequence(refers to

the chain of hash functions), the malicious users would be able to successfully emulate

the PU for extended periods.

Primary user emulation attacks have received increased attention within the research

community over the past few years. Their impact on cognitive radio networks is apparent

and has been a key deterrent to its implementation. A number of the methods to diagnose

and combat primary user emulation attacks exist throughout the literature. Many are

very effective but have shortfalls in key areas such as computational complexity and prac-

ticality. Others have poor authentication protocols and lack methods to establish trust

between users. In this thesis, we present a practical physical layer protocol to combat

primary user emulation attacks which we believe is the most complete and comprehensive

solution to combat physical layer attacks.

1.2.2 Spectrum Sensing Data Falsification Attacks

SSDFAs can be devastating to the network if they are not considered. A large num-

ber of papers that propose schemes to combat SSDFAs do not take into account a trust

factor. Trustworthiness of incoming information is extremely important in any network.

Essentially, if we cannot trust the spectrum sensing information that is being relayed by
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other secondary users, that information has limited usefulness. Therefore, it is essential

that any scheme to combat SSDFAs is able to accurately and efficiently establish trust

between secondary users within the network. This section summarises previous research

conducted in the mitigation of spectrum sensing data falsification attacks in cognitive

radio networks.

In [18], a modified “q out of m” scheme is proposed, where only a fraction of the

secondary users in the network is polled for their spectrum sensing reports. Essentially, if

there are m users in the network and if a subset of those users (q) report a 1 (correspond-

ing to a primary user being active). Then, the final spectrum sensing report results will

show that the primary user is actively transmitting on the channel, regardless of that the

rest of the users report. In other words, the q can be seen as a threshold value. Once the

enough users agree to the same results, that result is assumed to be valid. In [18], the

author proposed a few simplifications of the previous “q out of m” schemes. However, the

method presented is a centralised scheme that relies on a central control center to receive

and process the reports. The high complexity of the algorithm means that it would be

difficult to implement in a distributed network. Since the group of secondary users is

selected randomly, there is a high chance that it could consist of a large percentage of

malicious users. This would significantly reduce the accuracy of this method.

In [19], a Maximum Likelihood Estimator (MLE) based method is proposed. A central

fusion centre is used to process data. This method uses an effective outlier algorithm.

When an outlier is identified, their observations are discarded. Legitimate secondary

users are rewarded with an increase in trust (reputation value). The proposed method

has only been proven to work well with a small percentage of secondary users present in

the network. The high complexity of the algorithm also makes it difficult to implement

in distributed networks. There is no punishment (decrease in trust) for malicious nodes,

which could cause a problem if malicious users act legitimate for a period of time to in-
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crease trust and cause maximum damage.

In [20], an enhanced weighted sequential probability ratio test (EWSPRT) method is

introduced. In EWSPRT, whenever a report is consistent with the global observations, it

is rewarded with an increase in reputation. When it is not, it is punished with a decrease

of reputation. Nodes with higher reputation are polled and have a higher weight in the

overall consensus, since we assume that they are highly likely to be sending out legitimate

reports. This method suffers from high complexity and is therefore not suitable for dis-

tributed networks. Its reputation algorithm is static and could be used by malicious users

to build trust and cause maximum damage to the network. The low reputation punish-

ment update values means that secondary users could cause serious damage throughout

the network for extended periods of time. It lacks a comprehensive outlier test to stop

malicious nodes from taking advantage of the reputation algorithm.

In [21], an RSS (Received Signal Strength) based method is presented. The proposed

method relies on localisation of the transmitter along with the spectrum-sensing results to

determine whether or not the transmitter is a malicious node. An increase in reputation

is given to secondary users who report legitimate information. This is a simple scheme

that can be implemented in distributed networks. It is robust and is able to mitigate

against SSDF attacks effectively. However, there is no punishment for secondary users

who report falsified information, and relies on RSS measurements that can be unreliable

in noisy environments. It also lacks an outlier identification method.

In [22], each secondary user calculates their own local observation. Incoming messages

are analysed and reputation values are updated according to the validity of the message.

Extreme outliers are discarded using z-scores. Z-scores are a method to identify statis-

tical outliers from an arbitrary set of data. This method is simple and is well suited for

distributed networks. However, the reputation scheme does not have a threshold, which

means that malicious users could act as legitimate users for an extended period of time
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to accumulate reputation. It doesn’t consider shadowing or noise on the channel, making

it unreliable in practical implementation.

In [23], the authors present an SSDFA reputation-based method. The algorithm works

in a three-step process. The first step is called the preliminary step; at this point the

secondary user’s reputation is compared to a threshold. If the reputation is above the

threshold, the user’s results are used in the final decision. If not their observations are

discarded. In the next step, a cluster is formed containing a subset of secondary users.

In the third and final step the central node uses the majority rule to determine what the

result of the spectrum sensing are going to be. The performance of the algorithm is com-

pared to [24]. In comparison to that algorithm described in [23] it presents a significant

improvement.

In [25], the authors present a method to alleviate the effects of SSDFAs in cognitive

radio networks. A similarity factor is used to establish the validity of incoming spec-

trum sensing information. Essentially, after each secondary user performs their spectrum

sensing, they forward this information to the fusion centre which compares those results

with their own and computes a similarity. If the two results are similar to a degree, the

spectrum sensing results are added to the overall result. If not, they are discarded. This

method is effective, however it has several disadvantages. Namely, if the results that are

being used as the baseline for comparison are wrong, the entire scheme is nullified.

In [26], a reputation based algorithm is proposed. The algorithm uses a maximum

likelihood estimator to determine the distribution of secondary user reports. This is used

to evaluate the trustworthiness of each incoming signal. If the signal falls within the calcu-

lated range, the reputation of the sender is increased. If not, the reputation is decreased.

The authors have shown that this method performs on par when about 16% of users are

malicious. However, when 30% of secondary users are malicious, there is a significant

advantage to be gained with this method as opposed to simple averaging. One of the
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main problems with this type of algorithm is the lack of a punishment for secondary users

that do the wrong thing.

The authors in [27] propose a method with two algorithms to combat spectrum sensing

data falsification attacks in Cognitive Radio Networks. The first algorithm is based on

the identification of the attacker. After the attacker has been identified their spectrum

sensing results are discarded. To further increase the efficiency of the method, the second

algorithm introduces a punishment function that is used to punish users that send fal-

sified results. The punishment ensures that malicious nodes are identified quickly, with

a reduced reputation function. The algorithm presents an effective method to mitigate

spectrum sensing data falsification attacks. It is however vulnerable to malicious nodes

that adopt more advanced attack methods such as the replay attack, which involves an

attacker resetting their reputation after their reputation is decreased and reputation min-

ing attacks, where attackers report legitimate results for a period to increase their own

reputation so they have a greater impact.

A method called Attack-Aware Cooperate Spectrum Sensing (ACSS) is introduced

in [28]. This method uses the strength of the incoming signal to determine whether a

transmitter is a malicious node or not. The ACSS method uses a k-out-of-N rule to de-

rive the optimum value of the parameter k to minimise the Bayes risk. k out of n refers to

a threshold regarding the observations. If there are n users in the network and if a subset

of those users (k) report a 1 (corresponding to a primary user being active). Then, the

final spectrum sensing report results will show that the primary user is actively transmit-

ting on the channel, regardless of that the rest of the users report. This is very similar to

the p out q method. This method is lightweight(low computational complexity) and in

the right circumstances is very effective. However, determining whether a transmitter is

a malicious node or not using only RSS information can lead to poor results, especially

if secondary users are not stationary in location. This is due to a number of degradation
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factors such as noise and shadowing.

A biologically inspired mechanism is introduced in [29]. This algorithm is inspired by

self-organising behaviour that occurs in nature with fish and birds. The proposed algo-

rithm is a distributed algorithm, where each secondary user performs localised spectrum

sensing. Each secondary user then passes this information around the network until a

general consensus is reached. When the final spectrum sensing results are calculated,

they are compared to a predefined threshold. This method is a self-learning graph based

method similar to belief propagation. A particular shortfall of this algorithm is that it

fails to establish a trust function that can be used to detect malicious users. Instead,

using this method, a malicious user can continuously transmit falsified information which

significantly degrades the cognitive radio network performance.

In order to diagnose and mitigate spectrum sensing data falsification attacks we must

consider as many possible scenarios as possible. We must assume that the malicious node

is not going to launch the same type of attack every time, but randomise their strat-

egy to ensure maximum effectiveness. Therefore, we must develop an algorithm that is

lightweight (with low computational complexity) and flexible. Throughout the literature,

we have seen a number of very effective algorithms. However, all have vulnerabilities that

can be exploited by a smart adversary. The majority of algorithms include a reputation

function to develop a trust between secondary users. However, most do not consider pun-

ishment as part of the reputation function. It is essential that punishment for falsified

results is established within any algorithm that hopes to be effective. Another aspect

that is often missing is a defence against data mining attacks. In this type of attack, the

malicious user sends out legitimate results to increase their reputation to a point where

they are trusted by all other secondary users. Then, they start falsifying results causing

increased damage to the network because of their high reputation. In this thesis, we not

only identify but also develop a method that is able to defeat attackers using reputation
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mining and reset attacks. Reset attacks are used when the reputation of the attacker

drops below a certain value. Instead of sending out legitimate results, the attacker then

pretends that they are new to the network and their reputation is automatically reset

to the default value. This greatly increases the effectiveness of the attacks because the

attacker has relatively high default reputation value.

1.3 Contributions

This thesis introduces a number of algorithms to mitigate physical layer attacks in

Cognitive Radio Networks. More specifically, the research contributions of this thesis are

summarised as follows.

• A fundamentally new simplified belief propagation based algorithm to identify and

mitigate against primary user emulation attacks. The convergence time of the algo-

rithm was decreased significantly relative to the time reported in previous literature,

with the introduction of a new local function. This is especially true when there is

a large number of secondary users in the network. In some cases the convergence

time was decreased from hours to seconds.

• Development of a novel single iteration belief propagation algorithm to combat pri-

mary user emulation attacks. Previous belief propagation algorithms were iterative

in nature and required as much as 10 iterations to reach a satisfactory result. The

new algorithm presents a fundamental improvement and is able to achieve the same

level of accuracy with a single iteration. This significantly reduces the complexity of

the algorithm, which enables easier implementation. This algorithm is most effective

in large networks, where many secondary users are exchanging information.

• An algorithm to combat spectrum sensing data falsification attacks in cognitive radio
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networks. Using the belief propagation framework in conjunction with a reputation

based compatibility function, we are able to mitigate the effects of SSDFAs. This

novel hybrid method increases detection rates, and outliers are identified using a

modified Z-scores based function [30]. This algorithm is well rounded, fast, accurate

and easy to implement.

• A revolutionary hybrid compressive sensing belief propagation algorithm that greatly

improves the accuracy. Compressive sensing increases the localisation accuracy of

the transmitter. This allows for better comparison with the primary user loca-

tion, greatly increasing accuracy. This algorithm can be implemented in both a

centralised and distributed architecture.

• A highly accurate novel Belief Propagation Based Statistical Reputation Function

(BPBSRF) algorithm to combat Spectrum Sensing Data Falsification Attacks in

Cognitive Radio Networks. We use a dynamic reputation function that can be

adjusted to reflect the degree of punishment and reward to be given out to secondary

users. This is the best and most complete algorithm to combat SSDFAs. It is a

complete mitigation algorithm that completely neutralised SSDFAs.

• The identification of a novel type of attack called a reputation mining attack. A

reputation mining attack involves an attacker pretending to be a legitimate user

to build up its reputation to the point where they are trusted by other secondary

users. Then it begins to transmit falsified results with maximum impact on the

network. We characterise this new type of attack and present a method to alleviate

it. To combat this a three strike policy was introduced(where users are only allowed

to send out falsified results three times before being excluded), with a mandatary

suspension to users who report falsified reports.

• The identification of a novel attack, called a reset attack. a probation function is
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introduced to deal with this type of attack. A reset attack involves an attacker

sending out falsified results until their reputation is low, at which point they reset

and are given a default reputation. This type of attack is characterised within this

thesis and a method to mitigate its effects is presented.

• A unified physical layer algorithm able to effectively mitigate both SSDFA and

PUEAs. This novel unification approach to the mitigation of physical layer at-

tacks simplifies implementation and decreases the overall complexity of processing

to mitigate these attacks by the secondary user.
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Cognitive Radio Networks

Officially, the International Telecommunications Union (ITU) defines a cognitive radio

as a “radio system employing technology that allows the system to obtain knowledge of its

operational and geographical environment, established policies and its internal state, to

dynamically and autonomously adjust its operational parameters and protocols according

to its obtained knowledge in order to achieve predefined objectives, and to learn from the

results obtained” [31]. Since then, cognitive radio has been redefined a number of times

throughout the literature. In this thesis, we define cognitive radio simply as a collection

of intelligent device methods designed to use the radio spectrum in an efficient manner.

Cognitive radios increase spectrum efficiency by allowing unlicensed users to utilise chan-

nels when they are not being used by primary/licenced users. In the CR terminology, a

licensed user is often denoted as a primary user (PU) and an unlicensed user is referred

to as a secondary user (SU). Secondary users scan sections of the spectrum looking for

bands that are not being used. When an idle band is identified by a SU, it can be used

by the SU as long the primary user remains idle. The secondary users must continually

monitor the status of the channel being used. If a primary user was to become active, SU

would have to vacate the channel immediately.

21
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This chapter provides an overview of some of the key concepts of CR technology.

It presents an introduction to the basic concepts and theories associated with the func-

tion and operation of cognitive radio networks. The primary objective of cognitive radio

is to provide a means to utilise the radio frequency spectrum more efficiently than fixed

assigned networks. This is achieved by allowing secondary users access to frequency bands

that were originally designated for primary users. This increases efficiency as previously

under-utilised spectrum is being used, while congestion in over-utilised bands is eased. An

essential aspect of cognitive radio is its dynamic nature. Each device must ensure that it

is continually monitoring the environment to ensure that a primary user has not become

active on the band. If a primary user does become active, all secondary users on that

channel must immediately vacate the channel. In addition, it is important that secondary

users are able to distinguish between a primary user becoming active and secondary users

trying to use the band or high variants of noise in the environment.

In order to perform to its maximum capacity, it is important that secondary users

within the cognitive radio network are able to communicate with each other [32]. Cogni-

tive radios are intended to operate in a highly dynamic distributed topology. Therefore,

for effective and accurate results, secondary users must cooperate with each other. Coop-

eration is defined as a paradigm that allows distributed terminals in a wireless network to

communicate through some distributed transmission or signal processing so as to realise

a new form of space diversity to combat the detrimental effects of fading channels upon

the determination of available channels [33]. Cooperation is an essential part of cognitive

radio. It is therefore important that users able to communicate in an effective and effi-

cient manner. In a typical network, each secondary user does some localised observations

of the environment. These observations are then propagated throughout the network to
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ensure that different perspectives are considered. Just like many problems in life, the

more information from different perspectives is available the more accurate the decision

becomes.

The rest of this chapter is organised into seven distinct sections. In the first sec-

tion, we explain how cognitive radios operate. The cognition cycle is used by secondary

users to learn and adapt from their environment. These key concepts are the basis of

cognitive radio networks. The next section details different spectrum sensing techniques.

Energy detection, matched filter detection and cyclo-stationary detection are introduced.

These form the basis for all other spectrum sensing methods. We also present some of the

more advanced hybrid techniques. The next section gives an introduction into machine

learning, which is an essential part of the cognition cycle. Techniques such as Q-Learning,

which is a form of reinforced learning, that uses a reward function to optimise future ac-

tions are used as tools to increase the efficiency of cognitive radio devices by predicting

changes in the environment. The next section presents a key enabling technology for

cognitive radio networks, software defined radios. These allow for highly flexible receiving

and transmitting configurations which enable cognitive radios to effectively operate. The

next section presents the two main network topologies used in cognitive radio networks,

the distributed and the centralised architectures. The last section presents the different

localisation methods used in networks to localise a transmitting node. We use these meth-

ods as a way of identifying whether the signal is coming from a primary user, or a non

authorised transmitter.
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2.1 Cognition Cycle

A primary objective of cognitive radios is to perceive the environment that they are

operating in and learn from events that occur to generate plans for future action [34]

[35]. This essentially means that cognitive radios must continually monitor their radio

environment and ensure that they adapt to changes in that environment, in an effective

and efficient manner. Fig. 2.1 is an illustration of a typical cognition cycle used by

cognitive radio devices. CR operations are split into four distinct phases. In order for

a cognitive radio to effectively achieve its mission, it must ensure that each phase is

completed accurately. The four phases are characterised as: the sensing phase, the analysis

phase, the decision phase and finally the adaptation phase. It is important to note that

even though each phase can be thought of as being independent, in order for cognitive

radio to achieve its mission, it is essential that the information gathered in the previous

phase is carried over into the next phase. This process is repeated in a never ending cycle

by each secondary user within the network.

The cognition cycle is applied to spectrum sensing phase where each secondary user

scans parts of the spectrum looking for possible idle bands that they can use. They sense

to see if there is a channel idle, they analyse the channel to determine its capacity, user

occupancy and channel quality. Then, they decide on whether they are going to use the

channel or if they have to go back to the sensing phase based on the information they have

gathered. Finally, in the last step the secondary user either chooses to use the channel

that they found or goes around and begins another cycle, starting with sensing [36].

The initial phase in the cognitive radio cycle is called the sensing phase. During the

sensing phase each secondary user within the network performs some preliminary sensing

to determine whether a channel is actively being used or not. During this phase, it is

important that secondary users are very flexible and as soon as they identify a primary

user within the band they move on to another band. It is also important to ensure that
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Figure 2.1: Functional Architecture of a Cognitive Radio

spectrum sensing results are accurate. If a primary user is within the band it is important

that the secondary user does identifies this and does not begin to send out data, interfering

with the primary user [36]. On the other hand, it is also important that when the primary

user is not active, the secondary user is able to identify this. Otherwise, critical resources

such as time and frequency are wasted. To perform spectrum sensing a cognitive radio can

employ a number of techniques. However, most are based on one of the following: energy

detection, matched filter detection and cyclostationary detection. The decision on which

to use depends largely on the environment in which the network is operating, the amount

of resources available, and the processing capabilities of the secondary users. Spectrum

sensing techniques are discussed in more detail in the next section of this chapter.

At the conclusion of the sensing phase, we begin the analysis phase, during which

the information that was gathered in the sensing phase is analysed. During the analy-

sis phase, raw information from the previous phase is used to determine whether or not

the primary user is active within the channel. More formally during the analysis phase

spectrum opportunities are evaluated. A spectral opportunity is conventionally defined

as “a band of frequencies that are not being used by the primary user of that band at a
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particular time in a particular geographic area” [37]. At the conclusion of the analysis

phase, there are three possible outputs that are directly inputted into the decision phase.

The first is a result of the primary user actively using the channel, in which case the

analysis phase would conclude that this channel should not be used. The next is when

a primary user is idle on the channel, in which case the analysis phase would conclude

that the channel could be used. Then, the last phase is when the primary user is using

the band but there is a possible opportunity for secondary users to use the band with

minimal interference caused to the primary user. Information from the analysis phase is

then pushed through to the decision phase. During the analysis phase, the cognitive radio

also collects information about each channel. Channel parameters such as the signal to

noise ratio and number of users within the channel are critical to making an informed

choice in the decision phase.

At the conclusion of the detailed analysis phase during which spectrum opportunities

are evaluated and one of three possible outputs was decided upon. We enter the decision

phase of the cognition cycle. During the decision phase we are presented with one of

three results coming in from the previous two phases and we must make the best possible

decision using this information. The best channel to use is usually the one that has no

primary user active on the channel. However, other consideration to take into account

include: the number of secondary users that are already using the channel, the signal to

noise ratio and even how likely the primary user is to become active in the future (usually

done using some machine learning techniques that predict primary user activity using his-

torical data). In addition to the hard decision that has to be made in the decision phase,

the decision phase is also used to specify transmitting parameters such as the transmission

power, the transmission start time, modulation rate and the number of antennas to be

used [36] [37] [38]. These are often specified to achieve the best possible results.

The last step of the cognition cycle is the adaptation phase. The previous three steps
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are used to gather information which is used in this phase to perform the best action

possible. More formally, the adaption phase is a direct extension of the decision phase

and is where all the parameters from the previous stage are implemented. This imple-

mentation is done utilising software defined radios (SDRs). It is essential to understand

that efficient information gathering and decision making are key to the efficient operation

and implementation of cognitive radio. After the action has been taken, the cycle begins

again. If a suitable channel is identified and the secondary user decides to utilise it, the

user go back to start of the cycle and perform sensing again. Only this time the sensing

is on a the channel correctly being utilised. If no suitable channels are identified, the

process restarts just as before with the secondary user scanning a number of frequency

channels looking for a suitable candidate.

2.2 Spectrum Sensing

The most important aspect of cognitive radio operation is efficient and accurate spec-

trum sensing, defined as the task of obtaining awareness about the spectrum usage and

the existence of primary users on a specific frequency band [39]. Spectrum sensing allows a

secondary user to identify frequency bands that are not being utilised by PUs. The sensed

spectrum bands can be classified into three categories: black spaces, white spaces and grey

spaces [40]. White spaces correspond to spectrum bands that are completely vacant. Grey

spaces are partially used spectrum bands that can be considered by secondary users; they

are bands that are occupied by low-power PUs or distant PUs. The black spaces are

spectrum bands that are occupied by primary users and should not be considered for

utilisation by SUs. There are a number of different spectrum-sensing techniques available

for cognitive radio. The goal of spectrum sensing is to decide between two hypotheses [40].
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x(t) =

 n(t), H0

hs(t) + n(t), H1,

where, the H0 hypothesis specifies that no primary user is using on the channel, and

the H1 hypothesis indicates that a primary user is currently occupying the channel. s(t)

denotes the received signal from the primary user, n(t) is the channel noise which is

additive white gaussian noise(AWGN) and h is the shadowing constant. The first and

simplest technique for spectrum sensing is called energy detection. This basic technique

measures the received energy of the incoming signal. In energy detection the signal is

measured over a period of time and the average energy is acquired. This average energy

is then compared to a pre-set threshold which determines if the transmitted signal is a

primary user or just noise. A key feature of energy detection is that it does not require

any knowledge about the characteristics of a primary user signal. This enables energy

detection to determine very quickly if the channel is being used very quickly. Figure 2.3

provides a summary of the different sensing methods with their corresponding sensing

accuracies and complexity.

2.2.1 Energy Detection

Energy detection is the primary means of spectrum sensing when the secondary user

has no prior knowledge about the signal characteristics of the primary user. Energy

detection is very simple to implement and does not require complicated hardware for

implementation. Energy detection has a number of drawbacks. It is not able to distinguish

between channel noise and the signal from a transmitter. This means that noise has great

effect on its performance. It has been shown, that energy detection performs badly in low

signal to noise environments [41] [42] [43]. Another problem with energy detection is the

threshold selection. It is very difficult to set a threshold that will optimize performance
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Figure 2.2: Spectrum sensing techniques.

because a low threshold allows for a higher degree of error, where high noise might be

miss-identified as a primary user. Whereas, a high threshold means that distant primary

users might not be identified.

2.2.2 Matched-Filter Detection

Matched-filter detection is a more sophisticated form of detection then energy detec-

tion; the incoming signal from the primary user is put through a filter matched to the PU

signal waveform, which is correlated to a signal sample [33]. The result of the correlation

is compared to a predefined threshold and a decision is made on whether the signal came

from a primary user or not [44]. Matched-filter detection performs much better than

energy detection. It is able detect a primary user more accurately than energy detection

and is much less susceptible to noise than energy detection. Matched-filter detection has
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also been shown to be very quick and efficient [33]. Its main disadvantage is that, in order

to work, it must have prior knowledge of the PUs signal wavefrom. If it does not have

this, its performance is very poor. Therefore, even with its improved performance over

energy detection it is often overlooked for spectrum sensing because of its dependence on

prior knowledge [45].

2.2.3 Cyclostationary Detection

The idea of the cyclostationary feature detection is to utilise the built-in periodicity of

a modulated signal [46] [40]. Cyclostationary feature detection works by auto-correlating

the incoming signal, which separates the signal from the noise. The fact that noise on the

channel is not periodic in any way allows cyclostationary detection to efficiently separate

the noise from the signal. This means that, unlike energy detection, cyclostationary has

better detection performance than energy detection because it takes advantage of par-

ticular features of the PU waveform. Cyclostationary is also able to distinguish between

a secondary user signal and primary user signals. The reason for this is that different

wireless systems usually employ different signal structures and parameters [33]. Cyclosta-

tionary detection requires that the incoming signal has cyclostationary properties. These

signal properties may be represetnted as a function of frequency and cyclic frequency [40].

A major disadvantage of cyclostationary detection is that it needs complicated equipment

for its implementation and needs multiple fast fourier transform(FFT) calculations, which

make it slow and computationally expensive to implement [46] [40]. Cyclostationary de-

tection has been shown to have much better detection performance than energy detection.

This is because of pattern recognition of signal features, it provides much better perfor-

mance results in noisy environments. However, compared to energy detection, it has much

higher computational complexity and is more expensive to implement.
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2.2.4 Waveform-based sensing and radio-identification based sens-

ing

In addition to the classic spectrum-sensing techniques for cognitive radios, we present

two additional techniques: waveform-based sensing and radio identification sensing. Wave-

form based sensing takes advantage of patterns in the preamble and pilots of a transmitted

signal to identify a primary user. A preamble is a sequence of bits transmitted before

each signal burst. If a secondary user on the network has knowledge of what patterns are

used by a primary user, the SU can analyse the preamble and decide whether the signal

is coming from a primary user or not [47]. Radio identification based sensing uses prior

knowledge about the transmission techniques used by the primary user. This allows a

cognitive radio to identify key features about the primary user which help it detect the

presence of a PU on the spectrum band [47].

2.2.5 Combined Detection

Benko [48] presents the idea of using a combination of these techniques to achieve

better results than each individual technique could achieve by itself. In [48] Benko pro-

poses an algorithm based on a combination of energy detection and feature detection.

The method proposes to use energy detection to find candidates and feature detection to

identify the type of signal on the band. In the first part of the technique, large parts of

the spectrum are sensed using energy detection, and, at this stage, the sensing sensitivity

is not important. After the energy detection scheme identifies possible bands for use,

feature detection is used with higher accuracy to determine if a primary user signal is

present or not [48] [46]. The use of a combination of sensing techniques helps improve the

detection performance and decrease the time required to make a sensing decision. Energy

detection is used to scan a large number of frequency bands very quickly. Then the most
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promising bands are selected and are further scanned using feature detection to increase

the detection performance of the result.

2.2.6 Challenges

The primary requirement of spectrum sensing is that the detection is fast and accurate.

A successful spectrum sensing algorithm must achieve an optimum balance between speed

and accuracy. It is important that sensing is done as fast as possible so that the secondary

user can take maximum advantage of spectral opportunities without causing excessive

primary user interference. However, if sensing is done fast but at a low accuracy, the

overall performance of the network will decrease. Multipath fading and dispersion can

cause serious degradation to signals in wireless networks. These are major challenges that

secondary user networks need to overcome in order to be able to accurately and reliably

sense the presence of a primary user on the network. The location of the cognitive user

network can have a large effect on the amount of noise and interference that a signal is

subjected to. This means that spectrum sensing techniques must be flexible and must be

able to deal with noisy environments. Another major challenge of spectrum sensing is the

implementation of the right detection method for the right application. In areas where

there are large amounts of noise, energy detection is not very effective as a solution. If

secondary users have prior knowledge of the primary user signal, matched-filter detection

is an effective solution. Spectrum sensing is still an open research field and optimum

methods for particular, sets of requirements and constraints are still being investigated.
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2.3 Machine Learning (ML) and Artificial Intelligence

(AI) in Cognitive Radios

AI technology has been rapidly developing over the past few decades. AI agents are

now able to analyse complicated situations, make calculations and decide on the best

course of action to best suit their stakeholder. Cognitive radio can be identified as an

AI based technology [1]. Cognitive Radios are able to analyse their environment to learn

which parameters need to be modified to achieve their objective. For example, if a low

amount of noise is present on the channel, then the transmit power output of the SU could

be reduced without losing efficiency, while at the same time saving energy and decreasing

interference.

Figure 2.3: Cognitive Radio operation [1].

We see that after the sensing phase, where cognitive radios typically perform spectrum

sensing, the CR must decide on transmission parameters. This functionality, in conjunc-

tion with the application of game theory, enables secondary users to predict which channels

will be vacant at which time. For example during off peak hours, when businesses and
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people are sleeping, certain spectrum bands would consistently be idle. Using techniques

such as Q-Learning we are able to predict with a fairly high accuracy which bands will be

idle and when these bands will be idle. Q-learning is known as a reinforcement learning

technique. Q-learning is a simple learning algorithm, it is a state based algorithm. In

every state an action is executed, and each action corresponds to a reward. The goal of

Q-learning is to maximise its long term reward. To do this, Q-learning checks each action

at each state to ensure that all possible actions are considered [49] . The best action is

taken and the current Q value is updated using the following:

Q(st, at)← Q(st, at) + α[ rt+1 + γmax
a
Q(st+1, a)−Q(st, at)] (2.1)

where, Q(st, at) represents the old Q value and α represents the learning rate. The

higher the value of α, the more the Q-value will change at each new state. An α value of

0 represents no change and a value of 1 would drastically change the Q-value with every

state. γ is the discount rate. rt+1 represents the feedback value, which can be understood

as an estimate about the effectiveness of the previous action [49]. If the feedback is

negative, that means the action was not optimal. The greater, value of the feedback

value the better the action is. max
a
Q(st+1, a) represents the maximum future Q-value.

The Q-value is updated once every state with the best possible state. After convergence,

Q-learning is able to determine the optimum strategy, with respect to band selection and

parameter selection for the SU.

2.4 Software-Defined Radio (SDR)

Software defined radios (SDRs) are an essential part of CR implementation. Cogni-

tive radio devices are designed to be highly adaptable radios that are able to change their

functionality and parameters to suit changes in the environment. It is therefore essen-
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tial that cognitive radios have an extremely adaptive and flexible software and hardware

platform. In [50] Software defined radios are defined as ”a collection of hardware and soft-

ware technologies where some or all of the radio’s operating functions (also referred to as

physical layer processing) are implemented through modifiable software or firmware oper-

ating on programmable processing technologies. These devices include field programmable

gate arrays (FPGA), digital signal processors (DSP), general purpose processors (GPP),

programmable Systems on Chip (SoC) and other application specific programmable pro-

cessors”.

There are a large number of models that describe both cognitive radio and software

defined radios. Figure 2.4 illustrates a model that relates cognitive radios to software

defined radios. This model enforces the important relationship that must exist between

cognitive radios and SDRs. A cognitive radio aims to satisfy the radio link requirements

of users [35]. It does this by continually monitoring the environment using a number of

sensors, and its goal is to be agile and be aware of changes in the environment as quickly

as possible. After measurements are taken, they are analysed and evaluated by the cog-

nitive radio device. If sufficient change has occurred in the environment, the cognitive

radio engine will implement changes to ensure that the required level of performance is

maintained. It is able to implement the changes by modifying the SDR configuration.

This ensures that the upper layer functionality requirements are met.

There are a number of advantages of implementing cognitive radio devices using soft-

ware defined radios. Low cost manufacturing, implementation and maintenance of a prod-

uct are key considerations during the development of any product. The use of software

defined radios will enable development companies to implement low cost, high quality,
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Figure 2.4: Relationship between SDR and CR.

cognitive radio devices. SDRs not only offer low cost manufacturing, but also enable it

to be upgraded at a lower cost. Software defined radios allow for remote troubleshooting

and reprogramming, which decreases the cost of maintenance and fault correction within

a CR device.

A key feature of SDRs is their ability to offer great power efficiency for cognitive

radio nodes. Power efficiency is an essential feature in cognitive radio design since most

cognitive radios are going to be implemented in mobile devices such as mobile phones.

These mobile devices have certain design restrictions as consequences of their size. To

ensure that this restriction is kept, manufacturers must use appropriate components. This

has a great impact on the battery life of the device and means that devices have to be

built to be as power efficient as possible.
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Figure 2.5: Ideal SDR architecture.

A simple architectural model of a SDR is shown in Fig. 2.5 [35]. This model is

made up of three different parts: the configurable digital antenna, the software tuneable

analogue radio and an Impedance Synthesiser. All three components of a software defined

radio are fully reconfigurable, which allows the device that is using the SDR to be flexible.

The reconfigurable digital radio performs digital radio functionality, the software tuneable

analogue radio performs functions that are associated with analogue radio functionality,

and the impedance synthesiser is used to optimise the performance of software tuneable

antenna systems [35].

2.5 Network Architecture

Cooperative communication allows users in a wireless network to share resources and

create collaboration through distributed transmission and processing [33]. Cooperation is

an essential part of cognitive radio development. It is important that secondary users in
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the network are able to share information about network conditions, spectrum availabil-

ity and the presence of malicious users. Cooperation promises significant capacity and

multiplexing gains in CR users. It also realises a new form of space diversity to combat

the detrimental effects of severe fading [33] upon observed radio environment conditions.

However, cooperative communications use radio spectrum resources which is an overhead

for the cognitive radio networks.

2.5.1 Distributed vs Centralised Architecture

Within wireless networks there are two distinct network architectures, known as dis-

tributed architecture and centralised architecture. The choice of which approach to use

depends heavily on the operational environment of the wireless network, and neither ar-

chitecture is applicable to all instances. The centralised approach uses a central node to

regulate, collect and process all network traffic. The central node is sometimes called the

master node, the server or the base station. Within this thesis we will refer to the central

node as a base station or a central entity. In the centralised approach, each node within

the network gathers information about its environment. Nodes within the network do

minimal computation and processing of gathered information. Instead, gathered informa-

tion is passed on to the central entity, which is responsible for information processing. The

central entity uses this information to make decisions about spectrum status, bandwidth

allocation, synchronisation and many other aspects. The central entity must ensure that

the information coming from nodes is legitimate. User authentication is a key aspect to

successfully implementing a centralised architecture in a wireless network. In Cognitive

Radio Networks, a centralised architecture is common for resource management. When

an idle spectrum band is discovered, secondary users commonly use a centralised base
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station that assigns spectrum in a fair manner. Base stations are also commonly used to

aggregate spectrum sensing results in large networks when single secondary users do not

have the computational power to perform aggregation (which involves the combination of

separate results into a single result representing the overall status of the network) of re-

sults independently [33]. In essence, in a distributed architecture all nodes are responsible

for their own operations. Resource management and message exchange are done using

group protocols that ensure that each user receives equal resources. .

Figure 2.6: An example wireless network with a centralised architecture.

Cognitive Radio Networks use both a distributed and a centralised architecture. For

the most part we assume that many of the devices that make up a network within the

cognitive radio framework have fairly low computational power. A central entity must be

employed to collect and process information, delegate resources and authenticate users.

A great example of this is within a smart home. A user would utilise their smart phone

as the central node, and the smart phone would receive and send information to each

appliance, adjusting their operation to suit the preferences of the user. Fig. 2.6 shows
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an example of a centralised wireless network where each user reports to a central base

station. It would be responsible for resource allocation, authentication and if necessary

synchronisation of the household appliances. At the same time, the appliances within the

house would be communicating with each other to cooperatively achieve their goal. This

type of network is often denoted as distributed. In a distributed network each user is

responsible for their own data collection, processing and decision making.

Fig. 2.7 shows an example of a distributed wireless network, where each user is

self-dependent and there is no central entity to congregate information. Therefore, dis-

tributed networks rely on users sharing information amongst each other. An example of

this within the home network would be the light and the smart TV communicating to

ensure that the best conditions for viewing are achieved.

One of the key advantages of Cognitive Radio networks has been their capacity to

thrive in a distributed environment. Each secondary user in the network is able to collect

information, learn from it and adjust their operation to suit their environment. In order

for cognitive radios to be as effective as possible, each secondary user must communicate

their spectrum sensing information to all their neighbours. In that way, each secondary

user gets a number of spatial perspectives on whether the spectrum band is idle or not.

User cooperation in Cognitive Networks as well as in all other wireless networks is the key

to ensuring maximum accuracy of results. In the case of Cognitive Radio environmental

degradation factors such as noise and interference fading and shadowing could affect spec-

trum sensing, resulting in a secondary user detecting to a wrong result about the activity

of a primary user on a radio frequency band [51].
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Figure 2.7: An example wireless network with a distributed architecture.

When deciding on which architecture to use within a wireless network, we must con-

sider the advantages and disadvantages of each approach. The primary advantage of the

centralised approach is that it takes the computational burden off users within the net-

work. This enables users to conserve energy and resources and focus on operational goals

and gathering information. As users do not have to do any complex computations, they

are able to be smaller and cheaper. For example in large sensor networks, each sensor

would have a small battery and high lifetime. This would allow network administrators

to deploy complicated networks with higher cost efficiency. However, the centralised ap-

proach has a few disadvantages. Since all the processing is done at a central entity, if

the central node were to fail the entire network would fail. This presents a great target

for malicious nodes. Instead of trying to disable an entire network an attack could focus

solely on the central node. For example, man in the middle attacks (where a malicious

user intercepts data between two legitimate users) and emulation attacks (where a ma-

licious node impersonates a legitimate user) would be very effective within a centralised

framework. A malicious node could intercept communication between the central node
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and its users, which with time would allow it to emulate the central node and take control

of the network.

Attacks such as the man-in-the-middle attack and emulation attack do not have as

much effect on distributed networks [52]. Since no central entity exists, the malicious

user would only effect a very small part of the network. To effect the entire network,

the amount of power and the time needed multiply quickly and are usually not feasible.

This is a key advantage of distributed networks. Attacks on one or a small group of users

within the network do not have a great effect on the rest of the network. As the number

of users within the network increases, attacks on the network become less effective. This

inherent feature of the distributed approach helps with its attack resilience, but it means

that each user must perform all their own data gathering and processing. This means that

nodes must now have sufficient storage and processing power, which leads to a number

of disadvantages for network administrators. Firstly, the cost of such devices increases

exponentially as the number of users within the network increases. Nodes will also be

much larger in comparison to nodes within the centralised approach. However, the size

difference with today’s technological advancements would not be significant enough to

have any serious effects. Centralised approaches are usually better suited for larger cities

that have the funding and the architecture available to implement them. In a rural setting

it becomes difficult, as nodes are scattered through a much larger area. Therefore, in re-

mote areas distributed approaches are usually better suited. The algorithms presented in

this thesis use both centralised and distributed approaches depending on the application

and the complexity of the algorithm.
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2.6 Transmitter Localisation

The localisation of a transmitter is a key aspect of wireless network technology [53].

Accurate localisation of users within a network is used many applications in both tradi-

tional wired and wireless networks. Not only is localisation needed in wireless networks

to understand sensor data in a spacial context, it is used in many other applications such

as navigation [54], social media platforms, location based billing and many others [55]. A

number of localisation techniques has been proposed in the literature, most at their core

are based on either Receive Signal Strength (RSS), Time Difference of Arrival (TDOA)

or Angle of Arrival (AOA). These three form a basis for almost all localisation techniques

in use in todays systems.

2.6.1 Received Signal Strength (RSS)

Receive Signal Strength (RSS) is seen as the simplest localisation method. In wireless

communication, a signal that is sent between a transmitter and a receiver slowly gets

weaker as it travels through air. The further away the signal travels the weaker it becomes.

It is said that received signal power is proportional to d−α [56], where d is the distance

between a transmitter and the receiver and α is a propagation constant that represents

how fast the signal attenuates as it travels through the environment, where α < 0 and

usually 2 < α < 5. A Large amount of research has gone into the development of accurate

models to predict the impact that degradation effects have on RSS localisation. Over many

decades, very accurate models have been developed. However, degradation effects such

as noise and multipath fading are notoriously difficult to predict. This is primarily due

to the fact that they vary significantly in different environments. For example, multipath

fading on a channel can vary significantly with minimal changes in geometry, such as a

car passing through the region between the transmitter and the receiver.
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When a user receives a signal from a transmitter, the user can localise the transmit

location using the receive signal strength. The received signal strength can be modeled

as follows:

Pr = Ptd
−α
t ht + η, (2.2)

where, Pr represents the Received Signal Strength (RSS) which corresponds to the

received power from a transmitter, Pt is the transmit power of the transmitter, dt repre-

sents the distance between the transmitter and the receiver, ht is a shadowing variable, α

is the path-loss constant and η represents noise power. When a secondary user receives a

signal, the SU is able to estimate the distance to the transmitter. However, they do not

know the direction of the signal. Fig. 2.9 the information that a user would have about

the transmitter after it has received its signal. A user is able to calculate a circle with

a radius corresponding to the distance between itself and the transmitter. This however

does not give a single location for the transmitter, so a single user cannot accurately

localise a transmitter alone.

A single user working alone is able to calculate the distance to the transmitter but

cannot localise the exact location of the transmitter. To calculate the exact location of

a transmitter three or more users must collaborate using a method called trilateration.

Trilateration of a transmitter is shown in Fig. 2.10. We see that using three users we are

able to calculate three circles which intersect at a single point. This point is where the

transmitter is located.

RSS based methods are popular in low end systems. However, they have a number

of disadvantages, that often make it unusable in certain environments. RSS measure-

ments are significantly impacted by degradation factors such as noise, multipath fading

and shadowing which often means that the radius of their circles can vary greatly when

degradation factors are prevalent. This results in either no single intersection point for the
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Figure 2.8: Localisation using RSS.

circles or the circles intersecting in the wrong spot. The major advantages of RSS are its

low complexity, RSS does not need complicated equipment and RSS can be implemented

in almost all systems. RSS often works well for smaller networks where the distances are

not great, as the distances between users increases it become more unreliable.

2.6.2 Time Difference of Arrival (TDOA) and Time of Arrival

(TOA)

Time Difference of Arrival calculates the location of a transmitter using the time of

arrival of a signal two or more receivers. TDOA should not be confused with Time of
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Figure 2.9: RSS localisation using trilateration.

Arrival(TOA). In TOA both the transmit time and the receive time must be known by the

receiver in order for accurate localisation. Whereas, TDOA does not need the transmit

time TDOA can calculate the location of the transmitter using the difference in arrival

times between two receivers. Much like RSS, it is difficult for a receiver to accurately

calculate the location of a transmitting node alone. As we see in Fig. 2.10 a number of

users is needed for accurate localisation.

Both TDOA and TOA work well in large networks where users are located far away

from each other. Unlike, RSS that suffers from degradation factors such as noise and

multipath fading, TDOA and TOA are some what immune to multipath fading, which

enables them to be more efficient in many applications. The implementation is more

complex than RSS. It requires specialised equipment. The use of time and time difference

also means that time synchronisation must be very accurate in both the transmitters and

receivers. This requires extremely precise equipment that is often expensive and has a
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Figure 2.10: Localisation using TDOA [2].

high computational complexity.

2.6.3 Angle of Arrival AOA

Angle or Arrival is another technique that is used to localise a transmitter. AOA uses

the direction of the incoming signal to localise the location of the transmitter. AOA uses

a number of antenna elements often placed at certain positions in an array to compute the

angle of the incoming signal. The structure of the elements can be modified to suit the

application and they are often set up in a single line or in equal spaced positions around

the circle. A typical AOA setup is shown in Fig. 2.11.
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Figure 2.11: Typical antenna structure for AOA. [3].

AOA has a number of advantages over the other conventional techniques. It does

not work with time like TDOA and TOA. Therefore, time synchronisation is not an

issue. Unlike RSS it does not suffer from multipath fading effects, so it can be used over

large distances with small fading degradation. AOA usually needs a number of antenna

elements to produce accurate results. This is often difficult to implement in portable

devices such as mobile phones because of the physical dimensions of the antenna array.

In addition, the added hardware in the antenna array results in added cost for the user.
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Security Threats for a New

Generation of Networks

Security is an essential component of any system. Increased reliance on computer

based technologies has led to the simplification of many tasks. Tasks such as money

transfers and withdrawals can now be made using a mobile phone with no need to carry

cash or physically go to the bank. This has allowed many industries to become increas-

ingly efficient and expand significantly. It has also created a dependance on such systems.

As a result, much of our personal information is now stored on servers of companies that

handle our finances or provide online services. Companies such as Uber are completely

cashless, which means that they not only posses personal details they also have access

to the financial information of many of their clients. Since Uber is a respected company,

we assume that our personal information is not going to be used in a malicious manner.

However, much like any other online business they are prone to attacks that could poten-

tially cost its customers millions of dollars. A good example of such an attack can be seen

in the attack perpetrated on eBay in 2013. The attack on eBay resulted on 145 million

users being effected [57]. The official statement from eBay was as follows ”hackers got

49
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Figure 3.1: A summary of attack types in wireless networks.

into the company network using the credentials of three corporate employees” [57]. Un-

fortunately, eBay was not the only large cooperation to be attacked in such a way. Other

notable attacks in the last couple of year include attacks on the Playstation network,

Uber, JP Morgan and many more. In this section an introduction into of a number of

security concerns for traditional networks, Cognitive Radio Networks and IoT networks.

We see how these attacks can be used in subtle ways to gain access to some of the most

secure networks on the planet. Fig. 3.1 provides an overview of the main types of attacks

both on traditional networks and on CR networks.

3.1 Traditional Security Threats

Since the implementation of the internet, there have been individuals and groups that

have attacked certain parts of the networks for a variety of reasons. Over the last few

decades hackers have devised a number of attacks that exploit weaknesses in network

architecture. These attacks are often performed remotely, with the victim rarely aware

of the attack until it is too late. With the anonymity of the internet, it has become



3.1 Traditional Security Threats 51

very difficult to identify these hackers and seek retribution. It was decided that a more

proactive approach was needed, and as a result we have seen a number of highly effective

security frameworks being developed. With technological advances, we have a cat and

mouse game being played out by the attackers and the security developers. We have seen

attackers develop new and more effective techniques that have often resulted in security

experts developing improved algorithms as countermeasures to the security attacks.

This section will detail a number of prominent attacks on traditional wired and wireless

networks. We will present the advantages of group attacks, the effects of various attack

types on networks. We will also present some popular methods to combat these attacks.

3.1.1 Group Attacks

Traditionally we have seen attackers classed as highly intelligent individuals who usu-

ally work alone. In reality, attackers often work in large groups located around the world.

There are countless advantages of working in a group as opposed to working as an in-

dividual. A group have a great appeal to many individuals. It enables them to achieve

much more and have access to resources that they would never have as an individual. In

cognitive radio, group attacks consist of a number of individuals attacking various chan-

nels at the same to make it difficult for secondary users to gain access to spectrum. Even

a small number of attackers working in conjunction with each other can have a serious

impact on the secondary user throughput of the network. Therefore, it is important to

consider not only the effects of single attackers but also the effects of a group of attack-

ers working together when designing a mitigation algorithm. As attackers often attack in

groups, it is logical that to prevent such attacks, users within the network work together in

groups. Therefore, many of the mitigation schemes are formed with cooperation between

secondary users as a basis for accurate detection and mitigation of network attacks.
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3.1.2 Identity Theft

Identity attacks involve the impersonation of an individual to gain access to restrict-

ed/classified information or infiltrate private networks. Identity theft attacks represent

one of the oldest types of attacks, not only in wireless networks, but in society. We have

seen examples of identify theft throughout history, as a result we have seen the intro-

duction of various identification methods, such as the drivers licence. Even with these

measures we have seen the introduction of fake licences, so in many instances we use our

own intuition, experience and common sense to identify identity theft. However, these

methods of identification are usually not available in wireless networks. Therefore, a

number of method to alleviate identity theft have been developed over the years. These

include the introduction of the private/public key encryption [58], hash functions [59],

reputation based functions, the use of certificates and many more. These methods look

to establish trust between a sender and a receiver and they often do that using some sort

of encryption method. Encryption methods usually work using a special key that both

the parties are given at the commencement of their communication session. In general

trust is the most effective way to mitigate identity theft attacks.

3.1.3 Man in the Middle Attacks

Man in the middle or eavesdropping attacks involve an individual intercepting infor-

mation between two legitimate users. Intercepted information can be used for a number

of purposes. For example, replay attacks are a type of man in the middle attack. During a

replay attack, the attacker uses previously intercepted information to authenticate them-

selves. For example, if two users want to communicate with each other such that user 1

wants to communicate with user 2, user 2 would request a password from user 1 to make

sure that it is legitimate. If the attacker were listening and intercepted the information,
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the attacker could keep a copy of it. As a result, at a later date the attacker would be able

to falsely authenticate themselves as user 1. This type of attack is extremely dangerous

and it is very difficult to mitigate. It is used extensively not only in wireless networks but

also the internet with the use of Malware. Attackers can gather information on a host

PC using a pre-installed program that can be hidden in web sites and applications. Much

like identity theft, man-in-the-middle attacks are often mitigated using trust establish-

ment techniques. Examples of such techniques include hash functions [59] and reputation

based functions [23]. These aim to continually authenticate users making it difficult for

attackers to penetrate the network.

3.1.4 Denial of Service Attacks

A Denial-of-service (DOS) attack [60] aims to disrupt the network by limiting access

to resources for legitimate users. This is usually accomplished by flooding the network

server. Flooding the network involves sending out large amounts of information to create

a bottle-neck, which causes the server to become congested and not able to handle traffic

and requests from legitimate users on the network. This attack is very common as it does

not require any specialised equipment or a great deal of expertise to accomplish. In fact, a

large amount of software has been developed to perpetrate DOS attacks with the push of

a button and they are often freely available on the internet. DOS have been implemented

successfully a number of times, most notably in 2016 when the largest attack in history

was conducted on a company called GITHUB [61]. It was estimated that 1.35GB were

flooded through their networks each second, rendering their servers unusable an extended

period of time. One method of mitigating DOS attacks is to implement access control lists

on routers. These allow routers to only accept packets from recognise IP addresses. All

other packets from other IP addresses are discarded as soon as they arrive. If implemented

correctly, this is an effective method to mitigate this type of attack. However, it has some
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limitations. For example, the access control lists grow very quickly as the number of

legitimate users becomes large.

3.2 Cognitive Radio Based Attacks

In addition to the traditional attacks, Cognitive Radios are prone to a number of new more

sinister attacks. The cognition ability that is proposed as a central feature of cognitive

radio is one of its main advantages. This ability helps it mitigate a number of traditional

attacks. However, additional features and capabilities introduced for legitimate users are

also available to adversaries. Such abilities are often used to conduct specialised attacks.

Security vulnerabilities are often seen as a primary deterrent to full implementation of

cognitive radio technology in today’s communication systems. It is therefore essential to

develop highly effective mitigation methods to ensure a high level of security for users in

cognitive radio networks. This section introduces the most serious types of attacks on

cognitive radio networks.

3.2.1 Primary User Emulation attacks (PUEA)

Primary user emulation attacks are seen as the most serious type of attack on the physical

layer. In order for secondary users to access network resources, they must scan the radio

frequency bands looking for idle channels that they can utilise. When a secondary user

finds idle channels, the SU is free to share it with other secondary users as long as the

primary user does not become active. If the primary user does become active, all secondary

users on the channel must vacate it immediately to ensure that there is no interference

between them and the primary user. This inherent feature of cognitive radio is one of its

key features. It enables secondary users to utilise the available spectrum which is under

utilised by primary users. With a great emphasis on spectrum sensing and continually
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monitoring of the channel, an attacker might identify spectrum sensing as a possible area

to exploit. If, for example, an attacker were to mimic a primary user and trick legitimate

secondary users into thinking that the primary user has become active, the attacker would

have an entire channel vacant for their own personal use. The emulation of a primary

user in this way is called a primary user emulation attack(PUEA) [?].

Research into primary user emulation attacks has been growing steadily over the last

few years and we have seen a number of effective mitigation techniques proposed to

identify and mitigate against primary user emulation attacks. In this thesis, we propose

a localisation based method to identify the location of a transmitter(either an attacker

or a primary user) and compare this location to the location of the primary user. If two

locations correspond we say that the transmitter is in fact the primary user. If not, the

transmitter must be an attacker. Methods have been proposed using RSS, TDOA, TOA

and AOA, with each having various advantages and disadvantages [62]. The significant

advantage of these methods is that the primary user does not need to be modified at all

for the methods to be effective. Other methods utilise the signal characteristics of primary

users [63]. These often identify the transmitter by comparing the incoming signal with

a sample of a primary users signal. If they match, the transmitter is deemed a primary

user. These methods are very effective. However they need fairly complicated equipment

to analyse incoming signals, which is not always practical for implementation in cognitive

radio devices.

3.2.2 Spectrum Sensing Data Falsification Attacks (SSDFAs)

Spectrum Sensing Data Falsification Attacks involve a malicious node spreading falsified

spectrum sensing results throughout the network to try and influence secondary users into

a wrong conclusion about channel availability. This type of attack is especially potent in

cognitive radio networks because of their distributed nature, which means that secondary



56 Chapter 3. Security Threats for a New Generation of Networks

users often rely on each other’s observations to get accurate results. Therefore, this attack

is extremely effective and often has a domino style effect that is propagated throughout the

network. It is therefore essential that effective methods are developed to mitigate SSDFAs.

Unlike PUEA, SSDF attackers can have more than one motive to attack. Therefore, we

classify the following three types of spectrum sensing data falsification attackers:

• Selfish Attackers - attackers attempt to convince legitimate secondary user that the

channel is occupied by a primary user to attempt for them to gain access to the

channel uncontested.

• Malicious Attackers - attackers cause interference between secondary users and pri-

mary users. They try to convince secondary users to transmit on a channel that is

being used by the primary user, which creates interference to the primary user.

• Accidental Attackers - these often include secondary users that are effected by some

degradation factors that result in inaccurate spectrum sensing results. Other possi-

ble reasons include a malfunctioning node that sends out falsified spectrum sensing

results without realising it. This form of attack is somewhat rarer than the previous

two but must also be mitigated effectively.

A number of methods have been proposed to mitigate against SSDFAs [64]. Most

attempt to establish a trust between secondary users within the network. The trust is

usually a dynamic function that rewards secondary users who send out legitimate results

and punish secondary users who send out falsified results. In this thesis, we propose a

reputation based scheme that works exactly in this way. However, we develop an algorithm

that takes into account a number of additional scenarios and attack types for which no

mitigation techniques have been suggest in the previous literature.
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3.2.3 Common Control Channel Attacks

Establishment of spectrum sharing and common procedures to establish communication

between two secondary users is conducted on a dedicated channel called a common con-

trol channel. This is usually done so the rest of the spectrum is left vacant for data

transmission. In the context of cognitive radio networks the common control channel is

used for transmitter-receiver handshake, neighbour discovery, forwarding topology and

route change updates [65]. The importance of a safe and secure common control channel

is essential in establishing a reliable environment for secondary user opertaion. How-

ever, because of its importance, the common control channel is often seen as a target for

attacks. Attacking the common control channel is a convenient way for attackers to effi-

ciently disrupt communications within a cognitive radio network. If the control channel

is disabled, secondary users have no way of communicating with each other. This causes

massive problems, particularly in spectrum sensing phases, where secondary users rely on

each other to obtain accurate results. Attackers are able to inflict massive damage on

the network with relatively little effort. Instead of attacking an entire network, a smart

attacker would focus its resources on disabling the control channel, which would effect the

entire network.

In fact, common control channel attacks can be done so efficiently that it is often

enough for a single attacker to conduct a full attack without the need of additional sup-

port. This makes them extremely dangerous and has prompted a number of mitigation

methods to be established by the research community. Traditionally, networks have ded-

icated a single common control channel that is known by the entire network and never

changed. It was quickly recognised that this method of establishing the common control

channel was not secure. The static nature of such an allocation means that it is constantly

under threat from attackers. If an attacker were successful in their attack, there exists

no other method for secondary users to communicate. The attacker can simply continue
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the attack indefinitely. Static allocation of the control channel was quickly replaced by

sequential and pseudo-random methods. A central base station is a common facilitator of

such schemes. In a sequential scheme, users are given a number of frequencies that can be

used as the common control channel. Initially, the first frequency is used. Then if there

is an attack on that frequency, users simply move to the next frequency and continue

communication. This method of mitigation is fairly effective unless the attacker is able

to obtain the sequence, in which case it becomes ineffective. Random schemes usually

involve the central base station choosing a random frequency channel and changing it

randomly with time or when it senses that it has been compromised. This method is

more effective than the sequential method but it has a larger amount of overhead. The

nodes are synchronised using randomised sequences. Synchronisation can be achieved

by using GPS (Global Positioning System) clock, by a central base station or through

direct communication between two secondary users. GPS synchronisation is achieved by

a secondary user with the help of orbiting satellites. Their position and the time it takes

the signal to reach the receiver gives both the location and the time delay which allows

users to synchronise their clocks [66]. Centralised synchronisation is achieved by synchro-

nising users to a master clock that is kept at a centralised location. Each secondary users

synchronises to the master clock and therefore each other. Distributed synchronisation

between two users is done by using one receiver as a references and synchronising the

other to match. This method is less effective because the synchronisation only applies to

a pair of secondary users [67].

The distributed nature of cognitive radio networks means that there is often no cen-

tral base station to establish and change the common control channel. Allocation of a

common control channel then often falls on groups of secondary users. In general, when a

channel is identified as useable, a group secondary users can share that channel, but they

must be able to communicate with each other to establish communication parameters. A
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number of methods exist to effectively establish a safe and reliable common control chan-

nel. Much like traditional systems, frequency hopping rendezvous based methods (where

secondary users hop through channels until they meet) are the most popular and most

effective methods. Often pre-set sequences are exchanged, which enables secondary users

to quickly switch between channels should they become compromised. Common control

channel attacks are an efficient way for attackers to disrupt the network. Unlike conven-

tional attacks, in which entire bands must be jammed, in CCC attacks a much smaller

partition of the band is attacked. This intelligent type of attacking network resources

means that a single attacker is now able to jam multiple band simultaneously, without

the need of any specialised equipment and with minimum power output.

3.3 New Class of Attacks

Attackers are constantly attempting to find different methods to attack networks. In

SSDFAs, attackers sent out falsified information to legitimate secondary users in order

to trick them into concluding false spectrum sensing results. The cooperative nature of

cognitive radio means that these results are often propagated throughout the network and

have long lasting effects on network performance. This type of attack is highly effective

and needs a fraction of the resources required for other attacks. This means that it can

be conducted frequently and in a number of channels, making it essential that effective

mitigation methods are developed. SSDFAs are often mitigated using reputation based

schemes where users are assigned a reputation that is increased/decreased according to

the legitimacy of spectrum sensing results. These methods are often very effective, which

has prompted attackers to find ways to exploit such mitigation schemes. Two types of

attacks that look to exploit reputation based schemes are the Reputation Mining Attack

and the Reset Attack, which are described in the next two sections.
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3.3.1 Reputation Mining Attack

Reputation mining attacks are based on increasing one’s reputation by reporting le-

gitimate spectrum sensing information for a period. Then, when one has increased their

reputation and is trusted by everyone on the network, the attack can begin. With most

reputation based schemes, users with a high reputation have a greater say in the overall

consensus of the network as they are seen to be trusted users. This means that when an

attacker has a high reputation they are able to cause maximum damage to the network.

This form of attack is often not considered in the tradition mitigation methods. We

develop a method in this thesis that mitigates this type of attack. We develop a method

that uses a combination of an outlier detection method with a “thee-strike” rule (where

a user is kicked out if they do the wrong thing three times). When a spectrum sensing

report comes, a determine is performed to check whether the spectrum sensing report

represents and outlier or if it is within the range of other spectrum sensing results. If it is

not, it is discarded and the sender is cautioned. If this happens repeatedly, the secondary

user is dropped from the network. This form of attack could have serious implications if

it is not mitigated effectively.

3.3.2 Reset Attack

Reset attacks also take advantage of reputation based mitigation schemes in cognitive

radio networks. In a reset attack, the attacker continually sends out falsified information

until their reputation is low, at which time they reset their device (turns it off and after

a period turns it back on, appearing to be a new user), which resets their reputation to

the default value. This allows them to continue to send out falsified results. To mitigate

against this type of attack a probation function is introduced in which every new secondary

user that comes on the network must wait for a probation period before they are able to
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contribute to the consensus of the network. During the probations period the new user

must still send out spectrum sensing reports which means that their reputation value is

going to be effected by falsified results. This ensures that after they are identified before

they can have an effect on secondary users results.



Chapter 4

Mitigation of Primary User

Emulation Attacks

In this chapter we present a belief propagation based method to identify and mitigate

against primary user attacks [68]. The contributions of this chapter can be summarised

as follows:

• Significant reduction of in computational complexity of the algorithm compared

to existing algorithms. Convergence time is reduced significantly in both small

and large networks. This improvement is especially evident in large networks with

thousands of users. In which case, the convergence time is decreased from a few

hours to a few seconds.

• An increase in performance accuracy through the introduction of a compatibility

function that increases cooperation between secondary users compared to already

existing algorithms. Increased cooperation means that secondary users have more

information available to them, which enables them to make more accurate decisions.

• With these improvements the belief propagation algorithm is low in computational

62
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complexity and able to effectively and quickly determine whether the transmitter

is a primary user or a primary user emulator. It’s incredibly fast convergence time

and lightweight nature make it perfect for implementation in highly distributed

networks.

The first part of the chapter outlines the framework used throughout this thesis. The

basic belief propagation framework is introduced. We then present a newly developed

belief propagation algorithm that is both computationally faster and more efficient than

the existing belief propagation based methods. The new algorithm has a number of

key improvements. The first, is a simplified local function that significantly reduces

the computational complexity of the algorithm while increasing the efficiency. This key

improvement allows us to reduce the time of convergence of the original algorithm [?] from

a couple of hours (in cases where there are several thousand users) to a couple of seconds.

At the same time, the efficiency and accuracy of the algorithm are slightly increased. The

introduction of the new local function significantly decreases computational complexity

and improves primary user detection performance. In addition to the introduction of the

new local function, a new and improved compatibility function is introduced. The new

compatibility function has a dual impact. Much like the local function it decreases the

computational complexity of the algorithm. In addition, the new compatibility function

increases the level of cooperation between secondary users in the determination of whether

the channel is occupied by a primary user or a primary user emulator. With an increased

cooperation between users, the primary user detection accuracy of the algorithm increases.

This is due to the increase in the amount of information each secondary user has about

the status of the spectrum. With more information, a secondary user is able to make a

more informed decision about whether channels are occupied by primary users or vacant.
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4.1 Belief Propagation

Belief propagation is known as a message passing algorithm. For communication

networks it is primarily used in distributed networks where secondary users are able to

communicate with each other. It allows for a high level or cooperation between secondary

users which results in high accuracy spectral sensing. We use belief propagation to incor-

porate a number of secondary user observations into a single probability at a user that

corresponds to whether or not a primary user is active on a radio frequency band.

4.1.1 Original Belief Propagation Method

Belief propagation provides high accuracy detection of primary user emulation attacks.

In belief propagation, each secondary user performs local observations and calculates the

probability that the channel output is an incoming signal belonging to a primary user. To

accurately detect the presence of a malicious user, neighboring nodes must communicate

with each other and exchange local observations. If a user does not have access to other

users; local observations the local user will not have accurate results (due to noise and

shadowing effects). Local observations are exchanged in the form of messages. Each

secondary user computes a belief about whether the suspect is a primary user or an

attacker according to its own local observations and the sum of all incoming messages

from all its neighbours. A final belief is calculated using the sum of all beliefs from all

SU. This final belief is compared to a preset threshold. If the belief final is above the

threshold, the suspect is deemed to be a primary user. If it is below the threshold, the

suspect is considered to be a malicious user. The belief propagation framework is based

on pairwise Markov Random fields(MRF) [69].

Relative power observations of secondary users represent a pattern of receive powers

which characterise by the location of the transmit station. The exchange of information
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between secondary users enables recognition of patterns for the purposes of determining

whether or not the transmission originates at a known primary user location. In MRF,

we define Yi as the local observations at secondary user i, and Xi as the state of the

suspect observed at user i. If Xi=1, the suspect is a primary user and if Xi=0, the

suspect is a malicious user. The local function at user i is defined as φi(Xi, Yi). The

local function represents the observations made by a secondary user i about whether the

suspect is a primary user or not. The compatibility function ψij(Xi, Yj) is used to model

the relationship between secondary users. The larger the compatibility function between

two users is, the more relevant the local observations of the two users become to each

other. For example, if SU1 is 1m away from SU2 and SU1 is 30m away from SU2, then

local observations that come from SU2 to SU1 will be more relevant to the final belief

of SU1 then local observations that come from SU3. This is because close-by terminals

have similar shadowing while distant terminals have essentially independent shadowing.

The conditional probability distribution of the set of random variables ({Xi} has a joint

probability function given by:

P ({Xi}|{Yi}) =
M∏
i=1

φi(Xi, Yi)
M∏
j=1
j 6=i

ψij(Xi, Yj), (4.1)

where, M is the number of secondary users in the network. We aim to compute the

conditional probability at secondary user i, which we denote as the belief. The belief at

a secondary user i is given in equation Eq. (4.2). It is the product of the local function

at user i and all messages coming into user i from all the neighbours of i:

bi(Xi) = kφi(Xi, Yi)
M∏
j=1
j 6=i

mij(Xi), (4.2)

where, Xi is the state indicating whether the channel is in use by a primary user or an

emulator, Yi is the local observation at secondary user i, bi(Xi) is the belief of state Xi at
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secondary user i, φi(Xi, Yi) is the local function at secondary user i, mi,j is the message

sent from secondary user j to secondary user i indicating the belief of secondary user j

of the state of Xi, and, k is a normalisation constant to insure that the beliefs sum to 1.

Therefore,

1 = bi(0) + bi(1) = kφi(0, Yi)
M∏
j=1
j 6=i

mij(0) + kφi(1, Yi)
M∏
j=1
j 6=i

mij(1) (4.3)

As a result, we are able to derive k as follows:

k =
1

kφi(0, Yi)
∏M

j=1
j 6=i

mij(0) + kφi(1, Yi)
∏M

j=1
j 6=i

mij(1)
(4.4)

In order to compute the belief at each user, a message exchange equation is introduced,

that can used to iteratively update the belief at each secondary user. For the lth iteration

(defined as one cycle of message exchange which ends when all secondary users exchange

messages, a secondary user j sends a message ml
i,j to secondary user i which is specified

by,

ml
ij(Xi) = Ci

M∑
j=1
j 6=i

ψij(Xi, Yj)φj(Xi, Yj)
M∏
k=1
k 6=j

ml−1
j,k (Xi) (4.5)

where, ψij(Xi, Yj) is the compatibility function which indicates the relative conditional of

observation Yi upon observation Yj at secondary user j, φj(Xi, Yj) is the local function

at secondary user j, and C is a normalisation constant such that ml
ij(1) + ml

ij(0) = 1.

Therefore,

Ci =
1∑M

j=1 ψij(0, Yj)φj(0, Yj)
∏M

k=1
k 6=j

ml−1
j,k (0) +

∑M
j=1 ψij(1, Yj)φj(1, Yj)

∏M
k=1
k 6=j

ml−1
j,k (0)

(4.6)

The iterative computation is continued until there is a convergence to the limit,



4.1 Belief Propagation 67

mi,j(0) = lim
l→∞

ml
i,j(0), forj = 1, 2, ...,M for j 6= i

mi,j(1) = lim
l→∞

ml
i,j(1), forj = 1, 2, ...,M for j 6= i

The steady state messages mi,j(1) are then used to compute,

bi(1) = kφi(1, Yi)
M∏
j=1
j 6=i

mij(1), (4.7)

The message exchange in establishing the belief is equivalent to how members of a

committee formulate their beliefs based, in part, on the beliefs of the other committee

members.

Finally, when all secondary users finish computing their beliefs they are added up

and averaged to derive a final belief. The final belief is then compared to a predefined

threshold. If the final belief is higher than the threshold, the suspect is believed to be a

primary user. If the final belief is lower than the threshold the suspect is believed to be

a malicious user:

Decide : H0 : Xi = 1, i = 1, 2, ...,M
1

M
if

M∑
i=1

b1 ≥ τb

Decide : H1 : Xi = 0, i = 1, 2, ...,M
1

M
if

M∑
i=1

b1 < τb,

where, M is the total number of secondary users in the network,
M∑
i=1

bi denotes the sum

of all the beliefs of all the secondary users on the network and bτ denotes the pre set

threshold. It is possible that some users would relay inaccurate information to other

users in the network. However, inaccurate information by a small number of nodes would

not influence the final belief value significantly.
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Local Function

The local function represents the local observations at a single secondary user. Each

secondary user calculates its own local function which corresponds to a probability of a

suspect being a primary user. To calculate the local function we must compute two proba-

bility density functions (PDFs). The first PDF is computed using the RSS measurements

that are computed from the primary user location and is denoted by PDFpu. The second

is a PDF that is computed using RSS measurements acquired from the attacker received

signal and is denoted by PDFattacker. The local function corresponds to the similarity

between the two PDFs. If the PDFs are the same the local function returns a probability

equal to 1, which indicates that the suspect is transmitting from a primary user location.

The more dissimilar the distributions are, the lower the local function and the higher the

probability that the suspect is an attacker. We define, location 1 as the location of SU1

and location 2 as the location of a close by SU2. The theoretical ratio received signal

power from the primary user at secondary user locations 1 and 2 which is based on the

distances between the primary user k and secondary users 1 and 2 respectively, can be

obtained using the following equation:

Pr1(PUk)

Pr2(PUk)

=

(
d1(PUk)

d2(PUk
)

)−α(h1(PUk)

h2(PUk)

)
, (4.8)

where, Pr1(PUk) and Pr2(PUk) are the RSS power values from a primary user(PUk) to SU1

and SU2, d1(PUk) and d2(PUk) are the distances between PUk and SU1 and SU2, respectively.

h1(PUk) and h2(PUk) represent the shadow fading between PUk and secondary users SU1

and SU2. It is assumed that the shadow fading, hi(PUk) is a circular Gaussian variable

CN (0,1). If we define q as:

q =
h1(PUk)

h2(PUk)

(4.9)

We can then define B as:

Bi,j =

(
di(PUk)

dj(PUk
)

)−α
(4.10)
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Bi,j will be expressed as B for notational convenience. Therefore, the primary user’s PDF

can be written as follows:

PDFPUk
=

1

| B |
2 q
B

(( q
B

)2 + 1)2
(4.11)

The PDF for the attacker, which is based upon received power measurements at two

secondary user, is defined in a very similar way to the PDF of a primary user. SUs

collect RSS measurements which they then exchanged with their neighbours. We define

Pr1(attacker) and Pr2(attacker) as the received signal strength from the attacker to SU1 and

SU2 respectively, and the distances between SU1 an SU2 and the attacker as d1(attacker)

and d2(attacker) respectively. We can then define the value of Ai,j as follows:

Ai,j =

(
d1(attacker)
d2(attacker)

)−α
=
Pr1(attacker)/Pr2(attacker)

π
(4.12)

Therefore, the attackers PDF can be written as follows:

PDFPUattcker
=

1

| A |
2 q
A

(( q
A

)2 + 1)2
(4.13)

To compare the two PDFs we use the Kullback Leibler distance. The Kullback Leibler

distance is defined as:

KL(PDFPUk
,PDFattacker) =

∫ ∞
0

PDFPUk
log

PDFPUk

PDFattacker
dq (4.14)

The KL distance calculates the difference between the two PDFs, one based on the receiver

powers and the other being the theoretical and based on distances between the receiver

and transmitter. If the difference between the PDFs is large the KL formula will return

a large number and if the distance is small the KL formula will return a small number.

To obtain the local function from the KL distance we use the following formula:

φi = exp(−minKL(PDFPUk
,PDFattacker)) (4.15)

The local function returns a variable that is proportional to the probability that a suspect

is a primary user. The higher the value of φi, the more likely the suspect is a primary

user. The lower the value of φi, the less likely it is that the suspect is a primary user.
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Compatibility Function

The compatibility function is essential for cooperation between secondary users. In the

belief propagation framework, the compatibility function is a scalar. The higher the

compatibility function between two SUs the more relevant the information from one SU

is to the the second SU. A compatibility function, reflecting this relationship is defined

by the following expression:

ψi,j(Xi, Xj) = exp(−CdβSUi,SUj
) (4.16)

Where C and β are constants, dSUi,SUj
represents the distance between secondary users i

and j. The compatibility function is heavily dependent on the distance between the two

secondary users because the similarity of shadowing depends upon distance. Secondary

users which are close in distance will have similar shadowing. If the distance between

the secondary users is large then the compatibility function tends to zero. If the distance

between secondary users is small the compatibility function tents to 1.

The compatibility function is used to insure that users that are far away do not have

a large contribution to each others beliefs. The reason for this is that secondary users at

different locations suffer from different shadow fading and the further away users are the

less likely that their belief will correspond with each other. It also insures that users that

are closer to each other have a greater impact on each other’s belief.

Complete Algorithm

The belief propagation algorithm used in this paper is summarised in Algorithm 1. Each

secondary user performs measurements and calculates their PDFPUk
and their PDFattacker

using Eq. (4.9) and Eq. (4.11). Using these measurements each secondary user iteratively

computes their local and compatibility functions using Eq. (4.13) and Eq. (4.14). Each

secondary user then computes and exchanges messages with all its neighbouring nodes.
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The last step of the algorithm is where each secondary user calculates their belief using

their own local observations and the product of all the messages from all their neighbours.

After a number of iterations the mean of all the beliefs is calculated and compared

to a predefined threshold. If the final belief is lower than the threshold, the suspect

is detected as an attacker. If the final belief is greater than the threshold, the suspect

detected a primary user. In both cases the final decision is relayed to all secondary users

who will either ignore the transmitter (if he is an attacker) or conclude that a primary

user is active and look for another band to transmit on. The algorithm converges when

there is no significant change in the final belief from the previous iteration to the current

iteration. A reasonable termination rule for the algorithm is:

| bl−1i − bli |< 0.001, (4.17)

where, bli is the final belief at iteration l, for all 1 ≥ 1 ≤ m. Since at every iteration

the final belief is going to change (the higher the iteration the smaller the change), we

set a threshold for change at 0.1%. If the change from the previous iteration to this one

is less than the algorithm is said to have converged to its final value. In [10] the authors

claim that the algorithm is able to converge to a satisfactory result within 8 iterations.

The results of the belief propagation based strategy depend on the ability of secondary

users to communicate with each other. With more cooperation between secondary users

exists greater accuracy is achieved.
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Algorithm 1 Complete defence strategy against the PUEA

using belief propagation

1: Each secondary user performs measurements using Eq.

(4.8) and Eq. (4.10)

2: While | bl−1i − bli | < 0.001, for all 1 ≥ 1 ≤ m

3: for Each iteration do

4: Compute the local function using Eq. (4.15) and the

compatibility function using Eq. (4.16)

5: Compute messages using Eq. (4.5)

6: Exchange messages with neighbours

7: Compute beliefs using Eq, (4.2)

8: end for

9: Break

10: The PUE attacker is detected according to the mean of all

final beliefs based on comparison against threshold.

11: Each SU will be notified about the characteristics

of the attacker’s signal and ignore them in the future.

4.2 Iterative Belief Propagation

This section provides an outline of the changes that were made to the algorithm presented

in [10]. These modifications are a significant research outcome and provide a significant

improvement to the algorithm. We used MATLAB simulations to demonstrate the sig-

nificant improvement of the algorithm. The two most significant improvements made to

the old algorithm are (1) the new simplified local function which greatly decreases the

computation complexity of the algorithm, from a few hours in some cases to a couple of

seconds, and (2) a new compatibility function which allows for a higher degree of cooper-
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ation between secondary users resulting in an increase in the accuracy of the algorithm.

The more cooperation exisits between secondary users the more information is available.

This results in secondary users making highly accurate decisions.

Local Function

The local function that was used in the original technique [?] suffered from being overly

complicated and introducing a high level of complexity into the algorithm making it slow

to converge. Our key contribution was the development of a simpler more efficient local

function. The new local function is just as accurate as the previous function. However,

instead of doing a large number of integrals for each secondary user in the network the

new function calculates a simple arithmetic equation that allows the system to grow

linearly instead of exponentially. The new local function that exhibits these desirable

characteristics is:

φi,j =
| Ai,j −Bi,j |
Ai,j +Bi,j

(4.18)

We define Ai,j as a theoretical measurement (Eq. (4.10)). It is essential the baseline

measurement (the actual RSS value corresponding to the PU localtion), which we com-

pare with the incoming measurement, denoted as Bi,j (Eq. (4.8)). The local function

is a measure of the similarity between the RSS measurements from a PU and the RSS

measurements from a suspect. The closer the correlation between the two RSS values

the more likely it is that the suspect is a primary user. The method used to obtain the

local function in the old algorithm was over complicated and significantly increased the

computational time and complexity. This was primarily due to the fact that the Kull-

back Leiber(KL) distance was used to calculate the difference between the two probability

density functions. The problem with the KL distance is that it uses an integral to de-

termine the difference between two variables. This introduces an unwanted amount of
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complexity into the algorithm and makes it slow to converge. In Eq. (4.16) we present

a new local function that calculates the difference between the RSS measurements using

a simple difference equation that is orders of magnitude faster than the KL distance. By

replacing the integral and using a simple arithmetic operation, we were able to obtain a

high level of accuracy while keeping the computation complexity very low. As the number

of secondary users on the network increases, we see a significant difference between the

two methods. This is primary due to the fact that the local function has to be evaluated

for each pair of secondary users in the network. As as we add more SUs to the network,

the number of calculations of the local function increase exponentially. In the sections

that follow, we present results that verify that our new local function achieves results that

are more accurate and more efficient than those obtained by the previous local function.

Compatibility Function

The compatibility function that was presented in the original paper [?] discouraged co-

operation between secondary users in the CR network and as a result decreased the

accuracy of the final belief. This was primarily due to the fact that the compatibility

function returned values that were very close to zero unless secondary users located in

close proximity. For example, if the distance between the secondary users is 2 meters the

compatibility function returns a value that causes messages that are exchanged between

the two users to be meaningless. After a large number of tests and simulations a modified

version of the compatibility function was derived as:

ψi,j(Xi, Y j) = exp

(−dSUi,SUj

100

)
(4.19)

This compatibility function insures that secondary users that are close to each other

are able to cooperate and share their result effectively to increase the accuracy of the

results. The goal of the modified function is to insure that the messages between secondary
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users on the network are more relevant. We show in the next section that the modified

compatibility function is able to improve the performance of the algorithm by allowing a

greater degree of cooperation.

4.3 Simulation Results and Analysis

In this section we present the results of the original [?] BP algorithm against the improved

BP algorithm. We compare the results of the two algorithms to determine which is more

effective in combating primary user emulation attacks against cognitive radio networks.

The first part of this section focuses on the results that were obtained in [10]. The second

part presents the results that were obtained by us using the modified local and compati-

bility functions. In the last part of this section we compare the two algorithms according

to their efficiency and accuracy. All simluation was done using an Intel(R) Core(TM)

i7-3930k CPU, using MATLAB as a simulation tool.

We chose to use similar simulation parameters as those presented by the authors

in [10]. We set the path loss constant α as 2.5, the transmit power of the secondary user

is 0.1W (since the malicious user is also using a cognitive radio this is also the transmit

power of the malicious user, we assume this corresponds to a transmission range of about

20 meters). There are 30 secondary users, one primary user and one malicious user de-

ployed in a 100m by 100m grid. Fig. 4.1 provides an illustration of the CR network model

that was used throughout paper.

4.3.1 Original BP Results and Analysis

This section outlines the results that were obtained in [10]. The authors went through a

number of scenarios where they moved the locations of the primary and malicious users
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Figure 4.1: CR network model.

around the grid. They noted that as the distance between the primary user and malicious

user increased the final belief decreases meaning that it is easy to distinguish between a

primary user and a malicious user if they are far apart. However, as the distance between

the primary user and the malicious user decreases, the final belief increases which means

that it becomes more difficult to distinguish between a primary user and a malicious user.

We demonstrate the effectiveness of the old algorithm in Fig. 4.2.

The results presented in [10] clearly show that as the malicious user moves closer to

the primary user it becomes more and more difficult to distinguish between the two. We
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Figure 4.2: Final belief Vs Distance (original technique).

see from the results presented in [10] that the original algorithm [?] is able to distinguish

between a legitimate primary user and a malicious user with fairly high accuracy. However

the algorithm that is proposed in the original paper [?] has several deficiencies. The key

among these is its high computational complexity. During our simulations we observed

an exponential growth in the computational complexity as the number of secondary users

in the network is increased. Fig. 4.3 shows the effects that increasing the number of

secondary users has on the computational complexity of the algorithm.

From these results we concluded that although the original algorithm [?] is fairly effec-
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Figure 4.3: Computational time of the old technique.

tive in identifying a malicious user from a primary user, its high computational complexity

means that it is not a feasible option for implementation using low power consumption

cognitive radio terminal devices. We identified that the primary reason for the high com-

putational complexity of the original BP algorithm is the local function. The Kullback

Leibler distance that is used to evaluate the difference between the primary user proba-

bility density function and the attackers’ probability density function was recognized as

the main problem. The reason for this is that the KL function evaluates the dissimilarity

between two function using an integral expression. If there are n secondary users in the

network, the KL distance has to be evaluated once for each pair of secondary users, which

means that it is calculated n ∗ (n− 1) times. This is a serious deficiency which makes this
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algorithm computationally infeasible for practical networks where the number of users is

large.

4.3.2 New BP Results and Analysis

To combat the deficiencies of the original algorithm [?] we present a new and improved

algorithm that makes two important improvements that increase the accuracy and decease

the computational complexity of the original algorithm [?]. To decrease the computational

complexity of the original algorithm we propose a new simplified local function which

provides the same level of accuracy with a reduced level of complexity. In addition, we

modify the old compatibility function to help increase the level of cooperation between

secondary users in the network.

Computational complexity / Run time

The most significant improvement obtained by the new technique is the reduced compu-

tational complexity and run time of the algorithm. The new algorithm is able to reduce

the run time of the original algorithm [?] by a introducing a simplified local function.

The new local function insures that the computational complexity grows linearly instead

of exponentially, which insures that the algorithm is flexible, scalable and still just as

effective. Table 1 shows a comparison between the run times of the old BP algorithm

and the new BP algorithm. Table 1 presents results that were obtained using an Intel(R)

Core(TM) i7-3930k CPU and all simulations were performed and timed using MATLAB.
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Number of users Comp time Old Comp Time New

5 22 seconds 0.0491 seconds

10 101 seconds 0.0496 seconds

15 262 seconds 0.0564 seconds

20 648 seconds 0.0682 seconds

25 1337 seconds 0.071 seconds

30 2605 seconds 0.10 seconds

Table 1: Comparison of run times between the old and new algorithms.

From Table 1 it is clear that the new algorithm has much less computational

complexity than the original algorithm [?] by a large factor. We note that the run times

of the new algorithm increase only linearly as the number of secondary users in the network

is increased. This presents a significant step forward for the algorithm and allows it to

be used in large networks. Fig. 4.4 provides a visual comparison of the results that were

presented in Table 1.

Additionally, we tested the computational complexity of the new algorithm when

much larger numbers of secondary users are added to the network. The results of the

simulations are presented in Table 2. Table 2 shows that the run time of the original

technique [?] with 5 secondary users takes nearly as long as the run time of the new

technique with 1000 secondary users. Table 2 presents results that were obtained using

an Intel(R) Core(TM) i7-3930k CPU and all simulations were performed and timed using

MATLAB.
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Figure 4.4: Computational time comparison between the old and the new techniques.

Number of users Computation time

100 1.4 seconds

300 4.2 seconds

500 11 seconds

1000 30 seconds

Table 2: Run times of new algorithm with high number of SUs.

Performance and Accuracy

In addition to the reduced computational complexity of the new algorithm we show that

it also exhibits superior performance to the algorithm presented in [10].. This is primary
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due to the introduction of a modified compatibility function that allows for a larger degree

of cooperation between secondary users. The greater the degree of cooperation between

secondary users in the network the lower the chance of false or missed detection of a

malicious user. Fig. 5 shows a comparison between the performance of the new algorithm

and the performance of the original algorithm [?].

Figure 4.5: Comparison of performance between the old and the new techniques.

The perfect BP algorithm would result in a final belief value of 1 when the malicious

user and the primary user are at the same location and would result in 0 in all other cases.

The simplest way to evaluate how well an algorithm performs is to analyse the slope of

its curve. The more negative a curve is the more effective the algorithm is (visually the

steeper the curve is the better the algorithm). Since, in the perfect case the slope of
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the curve would be infinitely negative. Simple comparisons between the two algorithms

shows that the slope of the new algorithm is more negative than the slope of the original

algorithm [?](new algorithm has a steeper slope). This simple and effective comparison

shows that the new algorithm is not just less complicated but also detects PUEA with a

higher degree of accuracy. We used a Gaussian distribution for h2 and h1 to attain the

results presented in Fig. 4.5.

ROC curves

The received operating characteristics (ROC) curve is used for diagnostic test evaluation.

It plots the probability of detection conditioned upon a primary user being on the channel

(sensitivity) as a function of detecting a primary user conditioned upon an emulator being

on the channel (specificity) [56][57]. We use the ROC curve to evaluate the performance

of the new algorithm under varied conditions. Fig. 4.6 compares the performance of

the new technique with different numbers of secondary users on the network. The larger

the area under the curve the better the technique is performing. We see that as we add

more secondary users on the network we improve the performance of the algorithm. The

improvement in performance comes from greater degree of accuracy due to the increased

number of secondary users cooperating with each other. The more secondary users on the

network the less likely the chance false detection. We note that we acquire good results

even when there are a low number of secondary users present on the network.

Fig. 4.7 compares the performance of the algorithm when the distance between

the primary user and the malicious user is increased. We expect that as the malicious

user moves closer to the primary user we would see a decrease in performance because

secondary users will have a greater degree of trouble distinguishing between the PU and

the malicious user. As the distance between the two increases secondary users are able to

distinguish between them which results in an increase in accuracy of the algorithm. We
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Figure 4.6: ROC curve showing what happens when the number of secondary users in

increased.

demonstrate this in Fig. 4.7 where we see that as the distance increases the performance

increases. From Fig. 4.7 we see that we are able to get very high accuracy results even

when the distance between the malicious user and the PU is very low. For instance we

are able to achieve good results even when the distance is as small as 2 meters.
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Figure 4.7: ROC curve showing the effects of altering the distance between the PU

and the attacker.

A key consideration of an algorithm is its performance when subjected to different

levels of noise. In Fig. 4.8 we demonstrate the effects that different variance levels of

shadowing have on the performance of the algorithm. We see that as we increase shadow-

ing variance we decrease the performance of the algorithm. We assume that shadowing

get worse as the distance between secondary users increases. In other words, we assume

that shadowing is a function of distance. When we have no shadowing in the algorithm we

see that the algorithm performs perfectly (red line), the more shadowing is introduced,

the worse the algorithm performs. With increased σ = 5, the performance decreases

significantly.
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Figure 4.8: ROC curve showing the effects of shadowing on the performance of the

new technique.

Using ROC curves we show that our algorithm is effective in a number of different

scenarios. This provides evidence of the flexibility and effectiveness of the algorithm. It

shows that the new algorithm is able to handle non-ideal and unpredictable situations

with a high degree of accuracy. These results provide proof that this algorithm would be

well suited for practical implementation.



Chapter 5

Single Iteration Belief Propagation

This section presents an improved belief propagation based algorithm. Previous work

with belief propagation has resulted in algorithms that take a number of iterations of

message processing to converge to a final consensus. Within this chapter we present a

single iteration belief propagation algorithm that reduces the computational complexity

by converging to a final belief within a single iteration. The main contributions in this

chapter can be summarised as follows:

• A significant reduction in the computational complexity and run time of the algo-

rithm. Achieved through the reduction in the number of iterations that the algo-

rithm needs to converge. In previous work we needed 4-7 iterations to converge to

a final belief. In our new algorithm that is decreased to a single iteration.

• Improvements in the way messages are treated at secondary users allows for more

consistent and accurate results. Messages are aggregated as averages which leads to

a better representation of the belief of neighboring secondary users.

• Significant improvements in accuracy through the introduction of a shadowing cor-

relation function for secondary users who are in close proximity to each other. In-

87
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stead of assuming that shadowing is random for each secondary user, it is correlated

with respect to distance. As a result, beliefs become less erratic and independent

of random variables. Which means, that final belief is determined with a higher

reliability.

• Its decrease in computational complexity mean that it is perfectly suited for users

that are limited in power and computational complexity.

Belief propagation is a powerful algorithm that we use to compare the location of

an unknown transmitter to the location of a known primary user. This can be achieved

by only considering the local observations at a secondary user. However, to accomplish

a higher level of accuracy and reliability we use a belief propagation framework that is

based on pairwise Markov Random Fields (MRF) [69]. This means that we consider

pairs of secondary users. The main contribution of this chapter is a redefined messaging

protocol and a new method for computing the belief at each secondary user. With the

above modifications, we are able to use a single iteration and achieve results which are

just as accurate as the previous method that used 7 iterations. We achieve this with

a significantly lower computational complexity and a great reduction in control channel

data transmission requirements.

Relative power observations at secondary users are used to determine the location of a

transmitter. Due to the use of the ratio of received powers at two secondary users, belief

propagation works independently of transit power observations, as long as the power

is high enough relative to in band noise [68]. In Markov Random Fields, we define Yi

as the local observations at secondary user i and Xi as the state of the transmitter at

secondary user i. Much like in the previous section, when Xi = 0 the transmitter is

deemed a malicious user and when Xi = 1 the transmitter is deemed a primary user. A

local function at secondary user i is expressed as φi(Xi, Yi), it denotes independent local
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observations at a SU. To represent the correlation of results between two secondary user

we use a compatibility function, denoted by ψij(Xi, Yj). From [39] the joint probability

distribution of an unknown variable Xi is defined previously in Eq. (5.1). From the joint

probability equation, we can compute the marginal probability at a secondary user i, which

we denote as a belief. The belief is the product of secondary user i’s local observations

in the form of a local function, and all received messages and was defined previously in

Eq. (5.2). We believe that converging to a final belief using Eq. (5.2) was an ineffective

method to calculate the overall belief. Therefore, we derived a new belief equation which

is presented in Eq. (5). In the previous algorithm, the product of all messages was initially

computed. This led to the derivation of a normalisation constant and was an ineffective

way to represent the significance of the incoming messages. We derive the final belief

using the local function and all incoming messages at each secondary user. The previous

function did not allow for appropriate weighting of the received messages. The proposed

belief equation is as follows:

bi(Xi) =
1

2
φi(Xi, Yi) +

1

M − 1

M∑
j=1
j 6=i

mi,j(Xi) (5.1)

where mi,j represents all the messages that have been sent to secondary user i from

secondary user j, M is the number of neighboring secondary users. The new belief equa-

tion does not use a normalisation constant. Instead of using the product of all incoming

messages into secondary user i, we calculate the mean of all incoming messages. Using the

mean instead of the product makes the algorithm more robust when there are secondary

users that are relaying false or inaccurate information. The reason is that with the mean of

all messages, a single outlier is going to have a smaller effect on the belief, especially when

there is a large number of secondary users exchanging information. Therefore, the new

belief equation is more reliable, robust and accurate than the previous one. The exchange
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of messages between secondary users is a critical part of the belief propagation algorithm.

In the algorithm presented in [68], we used an iterative approach. In our approach we

needed between 3 and 7 iterations for convergence. The message exchange equation is

presented in the previous section in Eq. (5.4). A message denoted as ml
ij(Xi) can be

understood to be a message from secondary user j to secondary user i, in the lth iteration.

The messaging protocol proposed in Eq. (5.4) was dependent on a number of iterations to

achieve an accurate result: at each iteration the local and compatibility functions had to

be recalculated. This added an unnecessary level of complexity to the system. Through

the introduction of the new messaging protocol we were able to significantly reduce the

computational complexity of the algorithm. We base the new messaging equation on a

similar principle to the belief function. We use the mean of the compatibility function and

the local function. Through the introduction of the new messaging equation we are better

able to represent the local observations at each secondary user, as well as highlight the

compatibility between secondary users. This is due to the compatibility function having

the same weighting as the local function. The new equation is as follows:

mij(Xi) =
1

2
ψij(Xi, Yj) + φi(Xi, Yi) (5.2)

A major deficiency of the algorithms presented in [10] and [68] is scalability. These

algorithms work well in small networks. However, as the number of secondary users

increases, the accuracy of the results begins to degrade, in some cases when there is a

large number of secondary users the results become unpredictable. The scalability of these

algorithms makes them impractical. The new messaging protocol is simpler and allows

the algorithm to converge in a single iteration. The new messaging equation ensures that

the results of our method are consistent and accurate, even when the number of secondary

users is large. This is illustrated further in the simulation and results section.

After each secondary user has exchanged messages with all its neighbors, they must
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then compute a belief about whether or not the transmitter is a primary user or a malicious

user. Each user computes their own belief. Subsequently, a final belief is determined as

the average of all the beliefs of each secondary user. The final belief is compared to a

pre-set threshold. H0 represents the hypothesis that the transmitter is a primary user.

H1 represents the hypothesis that the transmitter is a malicious user.

To effectively combat primary user emulation attacks we utilize an RSS based localiza-

tion method. To compare the incoming measured RSS of a transmitter and the theoretical

RSS measurements corresponding to a primary user, we employ a belief propagation algo-

rithm. The culmination of local measurements at a SU is represented as a local function.

In order to increase the detection accuracy, each secondary user exchanges messages with

its neighbors. Each neighbor in range of a reference node is assigned a scalar value, which

indicates how relevant that neighbors local observations are to the reference node. We

denote this scalar value as the compatibility function. The compatibility function is a

measure of how relevant two secondary user observation are to each other. This primary

correlation factor for high compatibility is distance . The closer two secondary users are

to each other, the more relevant they will become to each other’s final belief. This is

because two secondary users located in close proximity have similar channel fading.

Local Function

The local function corresponds to the probability of a transmitter being a primary user.

Each secondary user calculates the local function through comparison of the RSS from

a transmitter with the theoretical measurements corresponding to the fixed location of a

primary user. The closer to the similarity is between the two measurements, the closer

the local function is to 1. The closer the local function is to 1, the more likely that the

transmitter is a primary user. The power measurements corresponding to the primary

user form a basis for the comparison. The ratio of signal strength measurements from a
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primary user can be defined as follows. Much like in the previous algorithm we use the

incoming RSS measurements to localise a transmitter and using that information we are

able to classify the transmitter as a primary user or an emulator. The first step in this

process is to define a baseline value which can be used a comparison. We define Bi,j to

corresponds to theoretical ratio in RSS from a primary user at SUi and SUj, and define

it in a similar fashion to Eq. (4.2) for the kth primary user:

Bi,j =

(
di(PUk)

dj(PUk
)

)−α
(5.3)

We assume that each secondary users knows the location of all neighboring secondary

users. Therefore, the values of di(PUk) and dj(PUk) are known to all secondary users on the

network. With this information each secondary user is able to calculate the value of Bi,j,

which we can think of as a theoretical value corresponding to where the transmitter should

be (primary user location). To identify a transmitter each secondary user samples the

RSS values of the incoming signal. If we define Pr1(attacker) and Pr2(attacker) as the received

signal strengths from the attacker to SU1 and SU2 respectively, and the distances between

SU1 an SU2 and the attacker as d1(attacker) and d2(attacker) respectively. Ai,j corresponds

to difference in RSS measurements from a suspect at SUi and SUj, it is defined as follows

for the kth primary user:

Ai,j =

(
dj(attacker)
di(attacker)

)−α(hi(PUk)

hj(PUk)

)
(5.4)

Where hi(PUk) and hj(PUk) represent two log-normal, random shadow variables. hi(PUk)

and hj(PUk) are correlated with respect to the distance between secondary users. The

closer a pair of secondary users is to each other the better the correlation between their

shadowing variables. If two secondary users are at the same location they would have

the same shadow fading. We use the Gudmundson model [70] to describe the correlation

between shadowing constants from a transmitter to two secondary user locations [71].The

Gudmudson model is as follows:
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Ri,j = exp

(−dSUi,SUj

D

)
(5.5)

where, Ri,j is the correlation function between two secondary users from a transmitter,

dXi,Xj
is the distance between secondary user i and secondary user j in meters, D is

the decorrelation distance which is empirically determined as 8.3058 meters in [71]. Bi,j

is acquired using the theoretical RSS from a known primary user location and Ai,j is

acquired from the RSS measurements of an unknown transmitter. In order to compare

the two values this thesis introduces a local function. The local function derived in [68]

is as follows:

φi,j = exp

[
−
(
| Ai,j −Bi,j |
Ai,j +Bi,j

)]
(5.6)

The local function derived in [68] provides us with a simple and effective way to compare

the incoming RSS measurements with the fixed primary user location. The closer the

correlation between the two measurements, the more likely that the transmitter is a pri-

mary user. This local function provides a much better comparison than the one presented

in [10]. It proves a more accurate and less computationally complex solution.

5.1 Results and Analysis

This section is focused on the simulation and analysis of the new BP algorithm. This

section is broken up in two sub-sections. The first presents the computational complexity

analysis. In the first sub-section we show that, in comparison to the algorithm presented

in [10], the new BP algorithm is able to operate with a much lower complexity while also

performing at high accuracy. The second sub-section compares the accuracy of the new BP

algorithm with the accuracy of the algorithm presented in [10]. It is important to ensure

that we are able to keep a high detection accuracy from our method even as we decrease the

computational complexity of the underlying BP algorithm. The improvements presented
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Figure 5.1: A typical secondary user network

throughout this thesis are a result of a newly developed message exchange protocol and

a new belief function. Together, they allow the new algorithm to operate with a single

iteration. This ensures that the convergence time of the new algorithm is far below

that of the algorithm presented in [10], which increases the scalability of the algorithm.

These improvements contribute to ensuring that our method is more suited for practical

implementation. The results presented here were obtained using 30 randomly generated,

uniformly distributed secondary users scattered around a network with an area of 100 m

x 100 m. The distance between the primary user and the attacker were modified from 0

to 40 m. A typical network configuration can be seen in Fig. 5.1.
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5.1.1 Computational Complexity

The reduction of the number of iterations is the primary contributing factor in the dra-

matic decrease in the computational complexity of the entire method. The algorithm

presented in [68] and [10] relies on an iterative approach. The BP algorithms need be-

tween 3 and 7 iterations to converge to a final value. When the number of secondary

users in the network is small the computational time of these methods is fairly small.

However, as the number of secondary users grows, the methods presented in [10] and [68]

become impractical. In [10], the BP algorithm is extremely slow and takes up to an hour

to converge even when there are only a few dozen secondary users. This was partially

solved in [68] with the introduction of a new local function. However, in this thesis we

provide an even better solution that significantly minimises the computational complexity

of the previous method.

In Fig. 5.2, we demonstrate the results that were obtained through simulations. Fig.

5.2 demonstrates the difference in the computational time between the new algorithm

and the one presented in [10]. The results demonstrated were obtained by simulating

100 random secondary user configurations. From the diagram, it is evident that for a

smaller amount of secondary users on the network the algorithms have a similar run

time. However, as we increase the number of secondary users, the complexity of having

multiple iterations increases the computational time of the algorithm presented in [10].

At approximately 300 secondary users, the old algorithm begins take noticeably longer

than the new algorithm. The computational complexity and run time of the algorithm

are two very important factors in determining its efficiency and effectiveness. In order

to mitigate primary user emulation attacks, the method used must be responsive and

accurate. It must be accurate enough to identify whether a transmitter is a primary user

or an attacker and must be able to do this as efficiently as possible. For an algorithm to

be applicable, it must have the right balance between accuracy and speed. The method
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Figure 5.2: Shows the difference in computational time between the two methods.

presented in this thesis operates with a good balance between the two.

5.1.2 Performance and Accuracy

The algorithm proposed in this thesis has been shown to be more efficient than the algo-

rithms presented in [68] and [10]. However, to mitigate against a primary user emulations

attack it must be able to distinguish between primary users and attacks with a high

accuracy.

Fig. 5.3 presents a comparison of the accuracy between our algorithm and the one

presented in [10]. We used a log normal distribution to model the shadow fading on the

channel. The results demonstrated were obtained by simulating 100 random secondary



5.1 Results and Analysis 97

0 5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Distance between PU location and Attacker (m)

M
ea

n 
of

 fi
na

l b
el

ie
fs

Primary User detection accuracy

 

 
Old Method
 New Method

Figure 5.3: Shows difference in performance accuracy between the two methods

user configurations. The pass loss constant (α) is set to 2.5. If we were to plot the perfect

algorithm, it would have a value of 1 for the final belief when the transmitter is a primary

user and a value of 0 in all other cases. A simple way to evaluate the performance of the

algorithms is to examine the slope of each curve. The more negative the curve is, the

more effective the algorithm is (visually the steeper the curve the better the algorithm).

Since, in the perfect case the slope would be negative infinity. From visual inspection we

see that there is very little difference between the accuracy of the two algorithms in terms

of performance. However, the new algorithm performs better in terms of accuracy. We

assume that the attack is able to perform any of the functions that secondary users are

able to perform and that it is stationary. From the simulation results we see that the new
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algorithm is clearly superior to the one proposed in [10]. It is more accurate, with a much

lower computational complexity.



Chapter 6

Compressive Sensing Belief

Propagation Hybrid

In our previous work, we assumed that the location of the primary user is known for

all secondary users. This is true in some networks, while in others the primary user

might be mobile and consistently changing location. Since our previous methods rely on

the primary user being stationary, a hybrid method is introduced to allow us to gather

a more accurate location for the primary user. To do this, we used belief propagation

in conjunction with Compressive Sensing. The main contributions of this work are as

follows:

• An increase in the reliability and accuracy of results using compressive sensing.

Compressive Sensing allow us to continuously monitor the location of the primary

user. If they move we are able to adjust accordingly.

• The ability to track primary user movement, increasing the effectiveness of the

algorithm. In practical situations, we must assume that primary users might be

mobile. In addition, there might be more than one primary user that is utilising

the frequency band. It is therefore key that secondary users have an accurate

99
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representation of all primary users and where they are located at all times. Previous

literature is static and ignores primary user movement.

• Compressive sensing allows secondary users to obtain a more accurate local obser-

vation. Since precise localisation of the primary user is now known, secondary users

have a well defined baseline RSS which enables them to rely less on the observations

of its neighbours.

• Hybrid algorithm that is well suited for both distributed and centralised schemes.

Belief propagation is lightweight and can be used by secondary users with limited

resources.

Compressive sensing is used to localise the primary user. Using compressive sensing we

are able to periodically calculate the location of the primary user. Within our framework

this would correspond to the theoretical value defined previously in Eq. (6.3). However,

due to the high computational complexity of Compressive Sensing, we propose a hybrid

centralised/distributed architecture for this algorithm.

We propose to use compressive sensing periodically at the fusion center to confirm

the theoretical results are correct. This would allow us to establish an accurate baseline

for the primary user location. If the location of the primary user has changed since the

previous period, the fusion center would send out a broadcast message to all secondary

users within range to inform them that the location of the primary user has changed.

Performing compressive sensing at the fusion center takes the burden off secondary users

who we assume have limited power and computational complexity. It allows secondary

users to use the belief propagation algorithm with the highest possible accuracy.

Due to the constantly changing radio environment, influenced by multi-path, interfer-

ence and shadowing, a finger-printing based approach to localise a PU has been adopted.

The grid layout has been constructed using N unique grid points, with grid resolution w in
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both x-axis and y-axis. The N grid points are located at {Vn, 1 ≤ n ≤ N}, where Vn is a

two dimensional position vector. The M SUs are positioned at {Um, 1 ≤ m ≤M}, where

Um is also a two dimensional position vector. Earlier in Section II, we mentioned that

a PU is randomly placed among one of the N possible grid points. The model assumes

that the FC has prior knowledge of the two dimensional location information Vn and Um.

The Euclidean distance between the N grid points M SUs are fed into the pathloss model

described in (1) to populate a radio environment database matrix. In matrix form the

database can be expressed as:

Ψ =



ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N

...
...

. . .
...

ψM,1 ψM,2 · · · ψM,N


(6.1)

where,

ψmn = 10−PathlossdB(dmn)/10, (6.2)

and,

dmn =‖ Um − Vn ‖2 . (6.3)

dmn is the Euclidean distance between the mth SU and the nth grid point, and Ψmn is

the pathloss power ratio between mth SU and nth grid point. The raw observations from

M SUs are stored in a column matrix Y , where ym is the raw power received at the mth

SU. Equation (2) and column vector Y can be combined to formulate a problem of an

under-determined set of equations:

Y = ΨX + η. (6.4)

where, XN×1 is an N × 1 column vector, that represents the N possible grid points on

which the PU can be positioned. In a realistic scenario, the raw power measurements are
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corrupted with a noise power vector ηM×1 where the mth entry is a statistically indepen-

dent variable with variance σ2
n, and is chi-square distributed with 1 degree of freedom. In

some cases, due to small distance between the grid points, the database matrix Ψ may suf-

fer from having a high coherence among columns, which degrades the uniqueness of each

column and restricts Ψ from efficiently utilizing the vector spaces. A data-processing

technique based on matrix transformation has been adopted from [72] to increase the

incoherence between the columns of Ψ. Let T be a processing operator,

T = SΨ+ (6.5)

where, S = orth(ΨT )T which corresponds to the orthonormal basis of (ΨT )T . The built

in function of MATLAB, orth(Ψ), returns an orthonormal basis of the range of Ψ, and

ΨT returns the transpose. Ψ+is the Moore-Penrose pseudoinverse [73] of Ψ. Applying the

operator T on both sides of (6) yields,

SΨ+(Y ) = SΨ+ΨX + SΨ+η

Ŷ = AX+W. (6.6)

The processed measurement matrix, Ŷ = SΨ+(Y ), the processed measurement matrix is

A = SΨ+Ψ and the processed measurement noise, W = SΨ+η. The problem formulated

in (7) can be considered as a second order cone program and can be solved using several

Compressive Sensing (CS) algorithms to retrieve the solution vector X [72]. To obtain an

optimum solution vector, CS algorithms require the solution vector to be sparse. Sparsity

in general terms indicates the number of non-zero elements in a vector. Since the model

assumes having just 1 PU among N possible grid points, it can be claimed that the

requirement for obtaining an accurate solution using CS has been satisfied. From the

solution vector X, the non-zero amplitude will represent the power measurement of the

PU, while the index indicates the grid point on which a transmitting PU is located.
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Hence using the grid based technique, the power and location information can be jointly

estimated.

6.1 Simulation Results

In this section, we present the simulation results of the proposed method. We test a

number of scenarios to validate the accuracy and scalability of our method. In order to

diagnose and combat a malicious node, we must ensure that we are able to accurately

identify a primary user. As discussed in the previous section, our method relies on a hybrid

compressive sensing, belief propagation algorithm. Belief propagation works by analysing

the incoming RSS values and coming up with a belief about whether a transmitter is

a primary user or not. In a perfect scenario belief propagation would decide H0 if the

transmitter is a primary user and H1 in all other cases. However, in practice this is never

the case; a transmitting node will have a belief of higher than zero and as a transmitter gets

closer to the primary user the belief will increase. The key to a highly accurate method

is to maximise the probability that the belief is smaller than the pre-set threshold for all

cases other than when a legitimate primary user is transmitting.

Fig. 6.1 details the effectiveness of the CS based localisation method to accurately

locate the PU in the network. A 13 × 13 grid was selected with a grid spacing of 80 m.

A PU is randomly (normal distribution) positioned among the 169 unique grid points,

whereas 25 SUs are deployed randomly. A total of 1000 Monte Carlo simulation runs are

carried out and the average of the results are depicted in Fig. 6.1. Details of the CS based

localization algorithm is available in [72]. The plot in Fig. 6.1 reflects that a higher SNR

enhances the average detection (number of times the SUs detect a primary user from a

set of observations) of the PU in the network while significantly reducing the mean square

error (MSE) in power estimation (which measures the average of the mean square errors).
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In Fig. 6.2, we demonstrate the effect that increasing the distance between a transmit-

ter and primary user has on the overall belief of a network. We note that our algorithm

is able to mitigate multiple attacks with multiple primary users. Each secondary user

performed local observations and distributed their beliefs around the network. Fig. 6.2

shows the mean of all beliefs of all secondary users. We see that when the transmitter is

located at the same location as the primary user (i.e. the transmitter is a primary user)

we get a belief that is very close to 1. As the transmitter is moved away from the primary

user location the belief begins to decline. The simplest way to analyse the performance

of our method is to observe the slope of the curve: the steeper the slope the better the

method. Fig. 6.2 shows the effects of varying the SNR. We note that even at low dB we

have good results.

The received operating characteristic (ROC) curve is used for diagnostic test evaluation

[74]. It plots the true positive rate (Sensitivity) against the false positive detection rate

for different threshold values [75]. We define the sensitivity and specificity as:

Sensitivity = Pr {H1 | H1} = Pr {detection | H1} (6.7)

Specificity = Pr {H1 | H0} = Pr {false alarm | H0} (6.8)

The sensitivity (true positive rate) and specificity (the false positive) are used to

develop a ROC curve which is a tool for test evaluation at different threshold values. We

use the ROC curve to evaluate the performance of the new algorithm under a number of

conditions. The simplest way to evaluate the performance of the algorithm using the ROC

curve is to observe the area under the curve. The larger the area under the curve the more
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Figure 6.1: Performance analysis of the CS based localization algorithm.

efficient the algorithm. In Fig. 6.3 we analyse the performance of the BP algorithm as

the distance between the primary user and the attacker is varied. We expect that, as the

distance between the attacker and the primary user is decreased, the false positive rate

will increase. The primary reason for this is that as the distance decreases it is harder for

secondary users to distinguish between a primary user and an attacker. As the distance

between the attacker and the primary user increases, it should be easier to distinguish

between the two. From Fig. 6.3, we see that at about 6 metres our algorithm has a high

detection accuracy making it effective at distinguishing between a PU and an attacker,

the SNR used to plot this figure is 10dB and 100 secondary users.

Fig. 6.4 compares the performance of our technique as the number of secondary
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Figure 6.2: Belief Propagation analysis.

users is increased. Intuitively, as the number of secondary users in the network increases,

the performance of the algorithm will improve. This is due to the fact that, as more

secondary users are added, more information is available, enabling higher accuracy results.

In order to increase the effectiveness of the algorithm, we use statistical averaging, where

secondary user observations are relayed throughout the network and congregated to a

final belief. The increase in cooperation between secondary users leads to highly accurate

beliefs. As a result, the likelihood of false detection is decreased. Degradation factors

such as noise and fading have a lesser impact as the number of secondary users increases,

the SNR used to plot this figure is 10dB.
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Chapter 7

Mitigation of Spectrum Sensing

Data Falsification Attacks

Spectrum Sensing Data Falsification Attacks can be extremely effective in deceiving

secondary users into falsified spectrum sensing results. To do a single, or a group of ma-

licious users sends falsified spectrum sensing results. This results in legitimate secondary

users believing that a frequency band is idle when it is not or that the frequency band is

busy when it is idle. Spectrum sensing data falsification attacks are particulary potent

because legitimate secondary users often pass on falsified spectrum sensing information

without knowing so. This means that malicious users can cause wide spread damage with

very little effort. With well positioned malicious users working in conjunction with each

other, an entire network can be effected with minimum effort and time. Through this

chapter, we present a reputation scheme that is able to identify and neutralise untrust-

worthy users by ensuring that their reputation is kept low. Then using belief propagation,

we are able to identify with a high level of accuracy whether or not a radio frequency

band is occupied. The main contributions for the chapter are as follows:

• A powerful algorithm that uses reputation to identify SSDFAs within the network.

109
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• A dynamic punishment/reward function that can be altered depending on network

conditions. Previous literature presented static schemes which can be exploited by

smart malicious users. In our scheme we are able to punish users more for falsified

results and reward them less, therefore deterring falsification. This is opposite to

schemes that add 1 for every legitimate report and that often do not punish users

who are sending out falsified information.

• Use of statistical outlier methods to determine with great accuracy the legitimacy

of spectrum sensing results. The use of Z-scores which allow us to quickly and

efficiently identify spectrum sensing results outside the expected.

7.1 Reputation/Belief Propagation System Model

In order to defend against spectrum sensing data falsification attacks, we must establish a

method to determine which users are trustworthy. To achieve this we develop a reputation

based scheme. Each secondary user within the network is assigned a default reputation. If

they send out legitimate reports about the status of a radio frequency band, their reputa-

tion will increase. If they do not, their reputation will naturally decrease. Secondary users

with low reputation are not able to contribute to the consensus of the network. Secondary

users with a high reputation are able to contribute. To effectively defeat spectrum sensing

data falsification attacks we use reputation in conjunction with belief propagation.

7.1.1 Local Function

Our method uses an underlying framework based on belief propagation (BP) as presented

in [68], [10]. In order to analyse spectrum sensing results, we employ a belief propagation

algorithm. Belief propagation is a distributed, probability based, cooperative protocol.

Initially, spectrum sensing analysis is undertaken by each secondary user to calculate a



7.1 Reputation/Belief Propagation System Model 111

probability of whether a primary user is active on the channel. We denote this as a local

belief. Local beliefs are then encapsulated into messages and distributed throughout the

network [69]. Each message has a weight associated with it, which is a function of the

reputation of the sending secondary user. After a secondary user receives all messages

from all its neighbors, a final belief is calculated. The final belief at a secondary user is

calculated using that users local beliefs and the average of all incoming messages. The

proposed belief propagation method is a variant of the original BP algorithm presented

in [69]. Conventional belief propagation algorithms converge after a certain number of

iterations, during which each secondary users broadcasts its local belief to its neighbors.

The spectrum sensing phase is a highly vulnerable time for cognitive radios. It pro-

vides a great opportunity for malicious users to attack the network. During the spectrum

sensing phase, malicious users relay falsified information about channel occupancy to legit-

imate secondary users in order to decrease network efficiency or gain an unfair advantage.

The relay of falsified spectrum sensing information to legitimate secondary users is known

as a spectrum sensing data falsification attack (SSDFA). To combat SSDF attacks, this

thesis introduces a reputation based scheme that rewards secondary users transmitting

legitimate spectrum sensing reports and punishes secondary users transmitting falsified

reports. Secondary users with a high reputation have a high contribution to the belief of

other secondary users, as their messages have a higher weight assigned to them. Messages

from secondary users with a low reputation are weighted less and have a small contri-

bution to the belief of other secondary users. The reputation score can be thought of

as a measure of how correlated a pair of observations at a pair of secondary users are

to each other. The higher the reputation, the higher the correlation between the a pair

observations (at a pair of secondary users), the more they contribute to each other’s final

beliefs.

We define αj as the decision variable of the spectrum sensing device and φj as the
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quantized output of the spectrum sensing devices. The local observations for the jth sec-

ondary user, αj is obtained using the algorithm presented in [68]. The difference between

the receive signal strength (RSS) measurements is used to determine the occupancy of

a channel. Each secondary user calculates the local function through comparison of the

RSS from a transmitter with the theoretical measurements corresponding to the fixed

location of a primary user. The higher the correlation between the RSS measurements

the more likely the channel is used by a primary user. The local function corresponds

to a value between 1 and 0. The closer the correlation is between the RSS values, the

higher the local function value becomes. We characterise spectrum sensing reports from

a secondary user j into five categories: when a primary user is active, when it is highly

likely a primary user is active, when it is unknown whether a primary user is active or

idle, when it is highly likely that a primary user is idle and when the primary user is

idle. To represent these categories as well as the quantization values associated with each

decision, we present the local function as:

φj =



0, if a PU is idle ( αj < 0.15)

0.25, if PU is likely idle (0.15 < αj < 0.35)

0.5, Undecided (0.35 ¡ αj < 0.65)

0.75, if PU is likely active (0.65 < αj < 0.85)

1, if a PU is active (0.85 < αj )

The local function is derived from channel output observations at SUj, where SUj is

defined as a secondary user j. It corresponds to a belief about whether there is a primary

user active on a channel or not. It is a major contributor to both the messages and the

calculation of the final belief. It is therefore essential that the local function accurately

represents activity of a primary user.
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7.1.2 Compatibility Function

In order to characterise the correlation between secondary user observations, this the-

sis introduces a compatibility function. In our method, we use two scalars: the first is

dependent on the distance between secondary users, the second is dependent on the repu-

tation of each secondary user. Here a distance based compatibility function is introduced.

The distance compatibility function models the correlation of the shadowing between the

transmitter and two secondary users which are dXi,Xj
meters apart. A pair of observations

is considered highly correlated if that pair of secondary users is in close proximity to each

other. Secondary users that are in close proximity usually suffer from similar channel

degradation factors, such as shadowing and fading. Therefore, they are more likely to

have similar observations. The further apart a pair of secondary users is, the lower the

correlation of their observations. The further apart secondary users are, the less likely

their observations will correlate well with each other due to the different levels of shad-

owing and fading. Observations from secondary users in close proximity are seen as more

reliable and have a higher contribution to each other’s beliefs. [68] and [10] introduce a

simple exponential function to represent the correlation between shadowing and fading,

between two secondary users with respect to distance. We use the Gudmundson model to

describe the correlation with respect to distance between two secondary users [71]. The

Gudmudson model [70] is as follows:

ψij = exp

(−dSUi,SUj

D

)
(7.1)

where ψij is a distance dependent correlation function between SUi and SUj, dXi,Xj
is

the distance between SUi and SUj in meters, D is the decorrelation distance which is

empirically determined to be 8.3058 meters in [71]. This compatibility function returns

a value between 0 and 1, where 1 corresponds to perfect correlation of spectrum sensing

observations between secondary users, and 0 corresponds to no correlation between a pair
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of secondary users. The primary motive behind the compatibility function is to ensure

that secondary users get the most reliable information possible. Secondary users in close

proximity are likely to have similar shadowing and fading. Therefore, observations of a

pair of secondary users in close geographical proximity will likely be similar.

7.1.3 Reputation Function

A critical element of our method is the establishment of an efficient and effective reputation

function. Like the distance compatibility function, the reputation function is a scalar.

The higher the reputation of a secondary user, the more relevant the observations of that

user become. To calculate the reputation of a secondary user, we compare the spectrum

sensing reports of a reference node to the overall consensus of the network. To compare

the results we use a modified Z-score formula [30], Z-scores are used to identify outliers

within a set of values. The higher the Z-score the further away a result is from the mean

of the set of values. The Z-score can be defined as follows:

Zi,j = 0.6745
(Si −M)

MAD
(7.2)

where Zi,j corresponds to the Z-score of a message from SUi at SUj, Si corresponds to a

message coming into SUj from SUi, M corresponds to the median of all messages coming

into SUi and MAD is the median absolute value of all messages arriving to SUj, it is

defined as follows:

MAD =

∑
(|m− m̄|)
M

(7.3)

where, M is the number of secondary users, m corresponds to the messages between

users and m̄ is the average of the messages. The Z-score is used to detect outlier results

within a set of messages. If the Z-score [76] of the incoming message is above a set

threshold, the message is identified as an outlier. The Z-score of an incoming message
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indicates how far away that message is from the median of all messages. If the Z-score

(Zi,j) of the incoming message from SUj to SUi is above a threshold, the outlier message

is discarded and the reputation of the sender is decreased. In our context an outlier

corresponds to a message that significantly differs from the average consensus of messages

from other users [30], [77]. We use Z-scores to identify outliers within the network and

reduce the impact they have on final observations. Outliers can have significant effects

on the final belief, especially when there is a small number of secondary users present in

the network. Outliers can occur in three ways:

• When a secondary user is malfunctioning and sending out erroneous observations.

• When poor channel conditions cause errors in message data during transmission

over the control channel.

• When a malicious user is intentionally propagating falsified spectrum sensing results.

Unreliable spectrum sensing results are identified as outliers through z-score analysis.

After Zi,j has been calculated for a message, it is compared to a threshold. To insure that

outliers are diagnosed effectively, we set the threshold corresponding to a z-score (Zi,j)

value of 1.0. If Zi,j is above that threshold, the message is discarded. In addition, the

secondary user that sent the message (SUj) is punished with a decrease in reputation.

In our method, falsified spectrum sensing results incur a large penalty, while accurate

results incur a small reward. γi,j can be understood as a variable corresponding to the

reputation of SUi at SUj. Each secondary user is assigned a default reputation of 5 when

they become part of the network. The maximum reputation that a secondary user can

achieve is limited to 10 and the minimum reputation is limited to 0. The secondary user’s

reputation is updated as follows:
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γl+1
i,j =


3
4
γli,j + 5

2
: for legitimate reports

γli,j
2

: for falsified reports

where γli,j is the reputation of SUj at SUi for the lth secondary user observation. The rate

of change of γl+1
i,j is lower for legitimate messages and the rate of change of γl+1

i,j is higher

for SSDF attackers. The constants are empirically set to insure that legitimate reports

are only rewarded with a smaller increment, whereas, users that report falsified spectrum

sensing reports are punished harshly. We implement this to ensure that malicious nodes

do not impersonate legitimate users for a set amount of time, and when their reputation

is high, send out falsified results and cause maximum damage. Using this method, nodes

looking to disrupt the network by sending out falsified results are quickly identified because

their reputation is decreased quickly. The update scale can easily be modified by changing

the update coefficient.

7.1.4 Messaging Protocol

An essential aspect of belief propagation is cooperation between secondary users. In

belief propagation, secondary users communicate their beliefs in the form of messages.

Messages, in relation to whether the channel is occupied or not, are compiled and sent to

all neighbors within range. The following is the message function defined in [68]; it can

be understood as a message from SUj to SUi, mij is given by:

mij =
ψij + φi

2
(7.4)

In the messaging protocol presented in [68], the message corresponds to the average of

the sum of the local function, φi, and the compatibility function ψij. This thesis introduces

a reputation function , γi,j, that is used as a weighting scalar for all incoming messages.



7.1 Reputation/Belief Propagation System Model 117

The higher the reputation function the more the message contributes to the total. To do

this, we modify the messaging equation present in [68] to the following:

mij =
(ψij + φi) ∗ γi,j

2
(7.5)

where γi,j is the reputation of SUi at SUj. In order to calculate the belief at each secondary

user, we must find the mean value at SUj of all the incoming messages. The mean value

must take into account the weight of each message. To calculate the average of all incoming

messages to secondary user j we use the following formula:

µj =

∑M
k=1
j 6=k

mij∑M
k=1
j 6=k

γi,j
(7.6)

where µj is a representation of the true weighted average of all messages coming into

SUj, as it takes into account the weight of the reputation of each secondary user. M is

the number of secondary users in the network. Secondary users with a high reputation

contribute more than secondary users with a low reputation. For the algorithm to become

effective it needs to run for a number of sets of secondary user observations. After each

set of secondary user observations have been received a better indication about whether a

transmitter is a malicious user or not is determined. We demonstrate, through simulations,

that our algorithm takes about 10 sets of secondary user observations to converge to steady

state.

7.1.5 Final Belief

Once the exchange of messages has concluded, each secondary user calculates the sum of

their local beliefs and the average of all received messages. The final belief is calculated

at the end of each set of secondary user observations by each secondary user. The final

belief at SUj corresponds to the average of the local observations at SUj and the average
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of all the messages received by SUj. The final belief is calculated as follows:

bj =
φj + µj

2
(7.7)

where bj corresponds to the belief at SUj. Each SU calculates their own belief using Eq.

(5.6). The final belief corresponds to the probability of a primary user being active on a

channel. Once all secondary users have calculated their individual belief, a final belief can

be calculated and compared to a threshold. The final belief corresponds to the belief of

the entire network. If the final belief is above the threshold there is a primary user active

on the channel, if it is below it the primary user is idle. H0 represents the hypothesis

that the transmitter is a primary user. H1 represents the hypothesis that the transmitter

is a malicious user. These are defined in previous chapters. Algorithm 1 specifies the

technique which provides effective mitigation against SSDF attacks.
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Algorithm 1 Complete algorithm to mitigate

against SSDF attacks

1: Calculate local function decision variable φj

using algorithm presented in [68]

2: Quantise φj to obtain αj

3: for Each set of secondary user observations l do

4: for j = 1 to number of secondary users do

5: for i = 1 to number of secondary users do

6: Compute Compatibility function between

SUj and SUi, ψij using Eq. (7.1)

7: Compute messages using Eq. (7.3)

8: Exchange messages with neighbours

9: Use Eq. (7.2) to determine whether a

incoming message is an outlier (Z-score)

10: if Zi,j > 1 then

if 1 < γli,j

Punish user γl+1
i,j =

γli,j
2

:

11: else

if 10 > γli,j

Reward user γl+1
i,j = 3

4
γli,j + 5

2

12: Compute the message average at SUj

using Eq. (5)

13: Compute belief at SUj using Eq. (6)

14: end if

15: end for

16: end for

17: end for

18: if 1
M

∑M
j=1 bj > bt

Decide primary user

19: if 1
M

∑M
j=1 bj < bt

Decide malicious user
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7.2 Results and Simulations

In this section we provide simulation results indicating that our method effectively miti-

gates against spectrum sensing data falsification attacks. We consider two scenarios, the

first when a malicious user simply reports the opposite of what they sense. In this case, if

a primary user is active, the malicious user reports that they are idle. If the primary user

is idle, the malicious user reports that they are active. This strategy ensures maximum

impact on the network, but it means that malicious users are easier to identify. In the

second case, a malicious user sends out a random normally distributed sensing result. The

sheer randomness of the data means that the malicious user is hard to identify. However,

the impact on the network is decreased. Our algorithm is a simple and effective way to

diagnose and mitigate the effects of spectrum sensing data falsification attacks. In most

cases, it takes about 10 sets of secondary user observations for the algorithm to effectively

diagnose and mitigate a threat, even with a high percentage of malicious users in the

network.

As the number of number of secondary user observations increases, a secondary user is

able to establish a comprehensive reputation database. As the reputation values converge,

the beliefs at the secondary user become more reliable and accurate. The underlying

belief propagation algorithm used throughout this paper is very effective at minimising

the effects of spectrum sensing data falsification attacks, even without the reputation

component. Belief propagation results are aggregated, and a small number of malicious

users will not have a great effect on the final belief. However, with the introduction of a

larger percentage of secondary users, our results begin to degrade.

To simulate our scenarios, a simple system model (shown in Fig. 7.1) is chosen. In our

model, we have a 100 by 100 meter grid. Secondary users are randomly scattered (using

a normal distribution) throughout the grid. There are 50 secondary users in the network

and there is a single primary user, located in the center. Malicious nodes are hidden within
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the 50 secondary users scattered across the network. They act and function as though

they are legitimate secondary users. We plot the number of secondary user observations

against the mean of beliefs which is 1
M

M∑
j=1

bj, In the following simulation results, the

channel is assumed to be occupied by a primary user, the SNR used throughout this

chapter is 10dB.
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Figure 7.1: Network model.

In order to simulate the effects that malicious nodes have on the network, we randomly

select 15 secondary users to become malicious nodes (corresponding to 30% of total users).

We assume that a message from one node to another is delivered reliably and accurately.

In the first scenario, 15 secondary users are selected at random to act as malicious users.

These users will constantly send out falsified information to their neighbours. If a primary

user is idle (corresponding to a 0), the malicious user reports that a primary user is active

(corresponding to a 1), If a primary user is active, the malicious user reports that the

primary user is idle. We denote this type of attacker as a naive attacker (with reference
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Figure 7.2: Results obtained with naive malicious nodes.

to the initial value of the reference plot). The naive attack causes maximum damage, but

is relatively easy to mitigate. We investigate the effects of naive attackers on the network

in Fig. 7.2. Initially the belief has decreased quite significantly. As we move through the

a set of secondary user observations, the belief converges to the reference (the reference

belief corresponds to the ideal case when no malicious nodes are present). It takes about 10

sets of secondary user observations for the malicious nodes to be identified and mitigated

using our method. Fig. 7.2 demonstrates the effectiveness and efficiency our method in

mitigating spectrum sensing data falsification attacks. In the second scenario, 15 users

are selected once more. These users now send out random spectrum sensing information.

In order to investigate the effectiveness of our method further we consider a more
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Figure 7.3: Results obtained with smarter malicious nodes.

sophisticated type of attack. When a malicious user sends out randomised results that are

not all in close agreement with their own spectrum sensing results. This form of attack is

much harder to identify, as some of the random results might correspond closely to actual

spectrum sensing results. However, the randomness of the results means that they have a

much smaller effect than that of the naive attack. Fig. 7.3 presents simulation results of

our method. As is evident, within the first couple of sets of secondary user observations

there is steep increase in the mean of beliefs. Followed by a more stable period near

the ideal value (reference). The results near the ideal value do vary slightly due of the

randomness of the observations of the malicious users. However, results are very close to

ideal after only 5 sets of secondary user observations. Once again Fig. 7.3 demonstrates
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the effectiveness of our algorithm. We see that secondary users that send out falsified

results are excluded from contributing to the overall consensus fairly quickly.



Chapter 8

SSDFA, Reputation Mining and

Reset attacks

In this section we present a Belief Propagation Based Statistical Reputation Function

(BPBSRF) algorithm to combat Spectrum Sensing Data Falsification Attacks in Cognitive

Radio networks. The contributions of this chapter are as follows:

• A complete algorithm that is able to mitigate not only SSDFA attacks, but also

reputation mining and reset attacks. These have previously never been mitigated

by a single algorithm. Which makes this solution the most complete solution.

• Identification of two novel attack types. The reputation mining attack and the reset

attack which affect reputation based schemes. These are novel attack types often

overlooked. However, if executed correctly they can have detrimental effects on

network performance.

• Introduction of a random back-off period for users that report spectrum sensing

information outside the statistical average. In addition a three strike rule to ensure

that repeat offenders are identified and ejected from the network.

125
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• A probation period that is activated when a new secondary users joins the network.

This serves as a deterrent for secondary users who want to continuously report

falsified information until their reputation decreases, then simply restart and reset

their reputation to the default value.

To combat SSDFAs a dynamic function is introduced, which allows a user to change

the penalty/reward for secondary users. We also introduce two new types of attacks

that have previously not been identified. This thesis introduces a reset attack, which is

where a malicious user continually sends out falsified information until their reputation

is low and then resets their system by leaving the network and re-entering the network.

This resets their reputation to the default and they are able to continue to attack. To

combat this a probation period for new users is introduced. In essence the probation

period corresponds to a set period of time that each secondary user must wait until

their spectrum sensing results become relevant to the rest of the network. An important

feature of the probation period is that new users must still send in their spectrum sensing

results and their reputation values are still increased/decreased according to the validity

of their results. This ensures that before a new user has the opportunity to contribute

to the overall consensus they are evaluated as either trusted or malicious. Reputation

mining attacks are another type of attack that has serious effects on the performance

of the network. In a reputation mining attack, a malicious node will report legitimate

spectrum sensing information until they accumulate a sufficient reputation and are deemed

trustworthy. At this point they launch an attack and as a result of their high reputation,

they are able to do significant damage. To mitigate against reputation mining attacks,

a back-off period for secondary users is introduced, it sends out falsified reports. When

falsified information is sent, the user is blacklisted and is subject to random back-off

period, after which they can again contribute to the overall result. If after the back-off

period the falsified reports continue, the secondary user is cautioned and then banded
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permanently. The reason for this approach is that sometimes legitimate secondary users

might malfunction, which could lead to them mistakenly being identified as malicious

nodes. We present our algorithm in full below in the subsequent sections.

8.0.1 Energy Detection

During the spectrum sensing phase each secondary user must perform their own local

spectrum sensing. For our method energy detection is the preferred spectrum sensing

technique, chosen because of its simple implementation and design. A signal coming into

a secondary user consists of two elements, the signal generated by a PU and the noise

that accompanies that signal as it is propagated throughout the network. We define SUi

as secondary user i, where i corresponds to the index of SUs in the network. Then, the

jth sample at SUi is defined as follows:

Xi(j) =


ni(j) H0

his(j) + ni(j) H1

(8.1)

where, we have n SUs such that si(j) is the received signal at SUi, ni(j) is the noise and hi

is the shadow fading variable defined as h = eab where a = ln10
10

, b is defined as a random

Gaussian variable with a 0 mean and variance σ2 [78]. If we take n samples at each SU

in the network. The energy at a SUi is defined as:

Ei =
n∑
j=1

|xi(j)|2 (8.2)

We denote Ei as the measured energy at SUi. We assume that SU know the location

of the PU. Therefore, each SU is able to calculate a theoretical energy value (Ti), which

can be used as a comparison. We use the local function to calculate the similarity between

the measured and theoretical values.
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8.1 Belief Propagation Based Statistical Reputation

Function (BPBSRF)

In this section we propose the BPBSRF algorithm. We base our algorithm on a belief

propagation (BP) framework with a reputation based component. We add two new fea-

tures to the algorithm to mitigate against two new types of attack, the reputation mining

attack and the reset attack.

8.1.1 Local Function

The local function corresponds to the local observations at a SU, regarding the presence

or absence of a PU on the channel. The local function serves as a baseline observation

for each SU on the network. The local function can be understood as a probability about

whether or not a PU is actively transmitting. We define the local function at SUi as

follows:

ηi = exp

(
− |Ei − Ti|

Ei + Ti

)
, (8.3)

where, Ei is the measured energy from the transmitter and Ti is the theoretical energy

measurement, both at SUi. The local function corresponds to 1 when a SU is certain

that a PU is actively using the channel and 0 if the secondary user is certain the channel

is idle. The local function is a representation of a PUs activity, it can be thought of as

single perspective of a much larger picture. In order to have an accurate representation

of the whole picture, we must obtain observations from as many sources as possible. The

larger the number of observations the higher the accuracy of our algorithm. Each SU is

therefore obligated to share their local observations with every other user on the network.
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8.1.2 Computability Function

The reputation function is essentially a measure of compatibility between two SUs. It

can be seen as a trust metric used by SUs within the network to gauge how reliable

incoming spectrum sensing results are coming from another SU. The higher the reputation

function the more likely that spectrum sensing results are valid. Prior to defining the

reputation function we must establish a method for identifying results that are outside

the expected range. To identify falsified results we use the Modified Thompson-Tau

Outlier Detection Method (MTTODM) [79], which takes a set of values and an incoming

value and determines whether or not the new value is a statistical outlier.

We denote a reference SU as SUi. The spectrum sensing results from all neighbouring

SUs are denoted as mi,j. mi,j is defined as a message containing spectrum sensing results

from SUj to SUi, if there are n SUs we have mi,1,mi,2,...,mi,n messages received by SUi.

The MTTODM is a multi step process, and the algorithm is outlined as follows:

• Calculate mean (x̄) and standard deviation (s), of all incoming messages.

• A deviation value is calculated at each point. The value with the biggest deviation

is the most likely suspect δn = |xn − x̄|.

• The Thompson-Tau outlier τ is calculated using:

τ =
tc(n− 1)

√
n
√
n− 2 + t2c

(8.4)

where, tc is a critical value that depends on the number of SUs. If an outlier is found it

is omitted from the set. Using the MTTODM we are able to identify statistical outliers

within the network. With this information we are able to formulate a reputation function

that rewards SUs that report legitimate information and punishes SUs that report falsified

information. The reputation value of SUj at SUi is defined as follows:
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ωl+1
i,j =


ωli,j +

(
10−ωl

i,j

al

)
: for legitimate reports

ωl
i,j

af
: for falsified reports,

where, ωl+1
i,j represents the updated reputation of SUj at SUi, ω

l
i,j is the previous reputa-

tion value of SUj at SUi, af and al are dynamic variables that can be changed to incur a

larger or smaller penalty/reward for SUs reporting falsified reports/legitimate results. If

for example, a1 is set to 2 than the secondary users increase their reputation by 50% for

every legitimate report. If the value is changed to 4, than the reputation would increase

by 25%. In this way a1 and a2 control how much reward/punishment is inflicted onto

secondary users. It is important to note that 0 < ωl+1
i,j < 1. In this paper we use af =

2 and al = 4, primarily because we want our reputation to decrease quicker when SUs

are reporting falsified information and increase slower when SUs are reporting legitimate

reputation. This feature foils another type of attack that looks to take advantage of

the reputation based function. Smart secondary users can report legitimate results for

a period and then when their reputation is high they can begin to report falsified infor-

mation with maximum effect. By ensuring that reputation is increased slowly we hinder

this type of attack. In order to incorporate the reputation function within the belief

propagation framework we denote the reputation value as a compatibility function. The

compatibility function represents the level of correlation between two secondary users.

The compatibility function is heavily influenced by the distance between two secondary

users. If two secondary users are located in close proximity their beliefs will correspond

closely with each other, because their perspective of the transmitter is similar. We define

the compatibility function as follows:

ψi, j = log10

(
1 +

9ωi,j
10

)
(8.5)

The compatibility function can be seen as a measure of how much trust has been
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established between SUi and SUj (how compatible two users are).

8.2 Belief Propagation

After a secondary user obtains their spectrum sensing results they are obligated to pass

on their observations throughout the network. To do this each secondary user formulates

a simple message as follows:

mi,j = φi(Xi) (8.6)

We define mi,j as a message from SUj to SUi. After SUi has received the message, the

reputation of the sender is appended to the message as a weighing factor. We use the

reputation as a weighting factor, which represents the level of trust that exists between

the sender and the receiver. The message at the receiver is as follows:

mi,j =
φi + ψi,j

2
(8.7)

Using Eq. (8.7) we ensure that the incoming messages are scaled appropriately according

to the reputation value of the sender. If the reputation is low, the messages originating

from the SU are not going to contribute in meaningful way to overall belief at the receiving

SU. After all messages have been received at SUi, a final message is computed using the

following:

Mfi =
1

n

n∑
j=1
j 6=i

mi,j, (8.8)

where, n denoted the number of secondary users in the network and Mfi can be thought

of as the summation of all local observations scaled by the reputation of each secondary

user. It represents the combined final belief of all neighbouring nodes of SUi.
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8.2.1 Final Belief

When all messages have been exchanged, a final message value is calculated. Using this

in conjunction with the local observation at the receiving SU we are able to calculate the

final belief about whether the primary user is active on the channel or not. We calculate

the final belief using the following:

bi(Xi) =
φi(Xi) +Mfi

2
(8.9)

This final belief corresponds to a belief about the presence of a primary user within a

frequency band. To calculate the final belief we use the average of the local belief and

all received messages. If the final belief is 1 we are absolutely sure that a primary user is

active and if the final belief is 0 we are absolutely sure that the primary user is inactive.

8.2.2 Special Features

We implement a number of key features within our method to mitigate against malicious

nodes that could use more sophisticated ways to attack the network. In this section

we present two new attack types and provide ways of mitigating their effects on the

network. These attacks are overlooked in many SSDFA mitigation methods, but they

pose a real threat and can be used to continue attacks even after the implementation of

mitigation schemes. The mitigation of these attacks significantly strengthens our method

making it a the most complete algorithm available. Without effective method of dealing

with reputation mining and reset attacks, MUs can easily continue to depredate network

performance.

8.2.3 Probation Function

An attack called a reset attack is used by a malicious node when their reputation value

has decreased significantly, making their observations obsolete. Conventionally, the way
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that reputation functions work is that as a user enters the network they receive a default

reputation function. Their reputation is then modified according to the legitimacy of

spectrum sensing results. In reset attacks a MU could send out falsified messages until

their reputation was very low and then just exit and re-enter the network. This would

reset their reputation and they could continue to send out falsified results. To combat reset

attacks, a probation period ius introduced, during which a new user does not contribute to

the overall belief. However, their reputation value is changed according to their belief. At

the conclusion of the probation period, if a user has obtained a high enough reputation it

would be allowed to contribute to the belief. If their reputation is low their results would

be disregarded. The probation period is determined using a random number generator, it

corresponds to the number of spectrum sensing periods that a new user must wait before

their observations are deemed valid.

8.2.4 Back-off Period

The back-off function is another important feature of our method. A highly susceptible

aspect of any reputation based function is reputation mining. Where a malicious user

sends out legitimate reports to build up a reputation after which they proceed to send

out falsified results with maximum impact on the network. To combat reputation mining

attacks a random back-off period is introduced. We use a random backoff period to

ensure that malicious users are not able to predict the backoff period and use it to their

advantage. When a transmitter sends out spectrum sensing information that is identified

as an outlier using the MTTODM, that secondary user must accept a mandatory random

back off period, during which they cannot contribute the over consensus of the network.

The random backoff period was used so that attackers are not able to predict the backoff

period and use it to their advantage. During this period, they are not eligible to receive

any spectrum sensing results from other secondary users. Once the back-off period has
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concluded the transmitter will be subject to a probation period as discussed in the previous

section to ensure that a reputation mining attack is not effective.

8.3 Analysis of Results

In this section we present simulation results that demonstrate the effectiveness of our

algorithm to mitigate against SSDFA in CR networks. The primary goal of our method

is to identify and nullify malicious users that endeavour to decrease overall efficiency or

cause interference between the PU and the SUs. We use reputation to identify which

users are legitimate and which are malicious. To effectively analyse the performance of

our algorithm we create a 1000 meters by 1000 meters grid, 300 Secondary users are

scattered randomly with a uniform distribution. A total of 1000 Monte Carlo runs were

carried out to obtain the results.

The system model has one primary user situated in the center, with 300 secondary

users randomly scattered around it. For our simulation we chose to have 210 legitimate

secondary users. 10 are new user and 200 are established users. In addition we chose

90 malicious users, which corresponds to 30% of the total number. Spectrum sensing

attacks are most prevalent in situations where there is a large groups of secondary users

working together. The higher the percentage of secondary users the better the chance that

they can convince legitimate secondary users of falsified spectrum sensing information.

To demonstrate this we present Fig. 8.1. In Fig. 8.1 we see the effects of spectrum

sensing data falsification attacks when 35% of the total users are malicious. Before the

implementation of our method we note that the performance of the network is severely

diminished, this is due to the distribution of falsified spectrum sensing reports by the

attackers. For this scenario the primary user is active. So the belief should correspond

to 1. However as we see in the first iteration (before implementation of BPBSRF) we
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Figure 8.1: Mitigating SSDFA using reputation.

see that the belief drops by approximately 50 percent. As our method is introduced and

begins to identify malicious nodes we see that the belief steadily increases until it is very

close to 1.

After 4 iterations, we see that we have successfully identified more than 90% of the

malicious nodes. After 6 iterations, the algorithm stabilises and the belief converges to

1. As a result, we are now able to correctly deduce whether a primary user is active

on the channel. A key aspect of spectrum sensing data falsification attacks that is often

overlooked in reputation based schemes is an attack we classify as a reset attack. A

reset attack involves a malicious user who after a number of iterations knows that their

reputation is very low, meaning that their attacks have a minimal effect of the network,

and so decides to reset and obtain the default reputation. Fig. 8.2 demonstrates the

effects of this attack on network performance as well the effect of another attack we
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Figure 8.2: The effects of data mining and reset attacks.

classify as a reputation mining attack. In a reputation mining attack malicious nodes

build up reputation over a period of time. Then when their reputation is large they begin

spreading falsified reports throughout the network. This type of attacks is also shown in

Fig. 8.2 and is extremely effective because secondary users on the network trust malicious

reports.

Fig. 8.2 shows the effects of reset attacks on the network. It is evident from the

simulation results that reset attacks have a significant effect on the performance of the

network. Using our method we are able to completely eliminate the effects of this type of

attack using a probation period as discussed in previous sections. Fig. 8.2 also demon-

strates the effects of reputation mining attacks. As we can see the effects of this attack are

greater because malicious nodes have developed a trust with malicious nodes. To mitigate

against this type of attack a random back-off period is introduced which we discuss in
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previous sections.

The effectiveness of reset attacks and reputation mining attacks has largely been over-

looked in the literature. However, we have shown that both have a profound effect on

the overall performance of the system. Our method is able to diagnose and completely

eliminate both attacks with two simple algorithms. Their simplicity and effectiveness are

key design features that enable our method to mitigate against spectrum sensing data

falsification attacks efficiently.
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Discussion and Conclusion

Technological advancements have revolutionised our lives in almost every way imag-

inable. Over a relatively short period of time we have seen great advancements in health,

education, travel, entertainment, economics as well as many other aspects of our lives.

As a result of the rapid advancements in technology, many aspects of resource manage-

ment and stainability were not considered in the early stages of its development. The

allocation of frequency within the radio frequency spectrum is key in enabling the future

growth and advancement of wireless technology. As a result of the unanticipated growth of

wireless technology, certain frequencies within the radio frequency spectrum have become

overpopulated. Whereas, other frequencies have been shown to be severely underutilised.

This has led to a large push to find alternative methods to better utilise parts of the

radio frequency spectrum. Many solutions have been proposed over the years, among

them, the most promising is Cognitive Radio. Cognitive radio enables unlicenced users

to share previously unusable licenced bands, alleviating congestion in unlicenced bands

and increasing utilisations in licenced bands. However, its implementation has never been

realised because of it susceptibility to a number of security threats.

Throughout this thesis we have developed a number of algorithms to mitigate against

138
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physical layer attacks in cognitive radio. In particular, we concentrate our efforts on

identifying and mitigating primary user emulation attacks and spectrum sensing data

falsification attacks. These are seen as critical areas of vulnerability within the cognitive

radio security framework. Primary user emulation attacks consist of a attacker mimicking

the properties of a primary user to try and trick secondary users. If the attacker is suc-

cessful secondary users would think that a primary user has become active and they would

vacate the channel immediately leaving it available for the attacker to use uncontested.

As a result, the overall efficiency of the network is decreased. This form of attack is espe-

cially potent when the attacker is working within a team. With power management and

a optimised jamming policy, a small number of attackers can have significant effects of

the performance of the network. To mitigate primary user emulation attacks, this thesis

presents a novel belief propagation based approach. The proposed method uses Receive

Signal Strength measurements to localise the transmitting node. This location is then

compared to a known location of the primary user and if they match, the transmitter

is thought of as a legitimate user. A belief is calculated corresponding to how likely a

transmitter is a primary user based on their location. Each secondary user calculates

their own local belief corresponding to their own observations about the identity of the

transmitting node. After sensing and calculations are complete, each secondary user sends

out their beliefs to all neighboring nodes. At which point, each secondary user calculates

a final belief based on their own observations in conjunction with the observations of all

their neighbors. Belief propagation methods are very effective. The proposed method’s

key contribution is the significant reduction in computational complexity, in situations

where there are a large number of secondary users. It is able to reduce the convergence

time from a few hours to less than a second. Traditionally, belief propagation protocols

are iterative in nature. In belief propagation secondary users exchange information in the

form of messages. With each iteration of exchange of messages, the algorithm converges
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closer to the final belief. This thesis presents an algorithm based on belief propagation

that is able to converge in a single iteration. Significantly reducing the efficiency of the

algorithm, while preserving its effectiveness.

Spectrum sensing data falsification attacks involve an attacker spreading falsified spec-

trum sensing results to secondary users in order to change their perception on the status

of the frequency spectrum band. From a power management perspective, this type of

attack is more efficient. Its effects are also long lasting because each neighboring node

not only modifies their belief but propagates that belief to all of their neighbors. It is

therefore essential that mitigation methods are able to identify and ignore measurements

from attacking nodes. This thesis not only presents novel mitigation methods it also iden-

tifies two novel attack types. These present a significant addition to the physical layer

security framework of cognitive radio networks. Transmitting nodes that are not report-

ing legitimate spectrum sensing information are cast as outliers and have their reputation

reduced. As a result, their future spectrum sensing results have a reduced influence on

the final belief of legitimate secondary users. Reputation mining attacks consist of attack-

ers mining their reputation until they have a large influence among their neighbours, at

which point the begin to send falsified spectrum sensing reports which have a significant

impact on the overall belief. In a reset attack, an attacker continuously sends out falsified

information until their reputation is very low. At which point, they reset their node and

are given the default value. Much like SSDFAs these can have significant effects if they

are left unchecked. The following is a summary of the contributions of this thesis:

• A fundamentally new simplified belief propagation based algorithm to identify and

mitigate against primary user emulation attacks. The convergence time of the algo-

rithm was decreased significantly relative to the time reported in previous literature,

with the introduction of a new local function. This is especially true when there is

a large number of secondary users in the network. In some cases the convergence
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time was decreased from hours to seconds.

• Development of a novel single iteration belief propagation algorithm to combat pri-

mary user emulation attacks. Previous belief propagation algorithms were iterative

in nature and required as much as 10 iterations to reach a satisfactory result. The

new algorithm presents a fundamental improvement and is able to achieve a same

level of accuracy with a single iteration. This significantly reduces the complexity

of the algorithm, which enables for easier implementation. This algorithm is most

effective in large networks where many secondary users are exchanging information.

• An algorithm to combat spectrum sensing data falsification attacks in cognitive radio

networks. Using the belief propagation framework in conjunction with a reputation

based compatibility function, we are able to mitigate the effects of SSDFAs. This

novel hybrid method increases detection rates, and outliers are identified using a

modified Z-scores based function [30]. This algorithm is well rounded, fast, accurate

and easy to implement.

• A revolutionary hybrid compressive sensing belief propagation algorithm that greatly

improves the accuracy. Compressive sensing increases the localisation accuracy of

the transmitter. This allows for better comparison with the primary user loca-

tion, greatly increasing accuracy. This algorithm can be implemented in both a

centralised and distributed architecture.

• A highly accurate novel Belief Propagation Based Statistical Reputation Function

(BPBSRF) algorithm to combat Spectrum Sensing Data Falsification Attacks in

Cognitive Radio networks. We use a dynamic reputation function that can be

adjusted to reflect the degree of punishment and reward to be given out to secondary

users. This is the best and most complete algorithm to combat SSDFAs. It is a

complete mitigation algorithm that completely neutralised SSDFAs.
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• The identification of a novel type of attack called a reputation mining attack. A

reputation mining attack involves an attacker pretending to be a legitimate user

to build up its reputation to the point where they are trusted by other secondary

users. Then it begins to transmit falsified results with maximum impact on the

network. We characterise this new type of attack and present a method to alleviate

it. To combat this a three strike policy is introduced, with a mandatary suspension

to users who report falsified reports.

• The identification of a novel attack, called a reset attack. This thesis introduces

a probation function to deal with this type of attack. A reset attack involves an

attacker sending out falsified results until their reputation is low, at which point

they reset and are given a default reputation. This type of attack is characterised

within this thesis and a method to mitigate its effects is presented.

• A unified physical layer algorithm able to effectively mitigate both SSDFA and

PUEAs. This novel unification approach to the mitigation of physical layer at-

tacks simplifies implementation and decreases the overall complexity of processing

to mitigate these attacks by the secondary user.

The algorithms presented in this chapter were designed to be low computational com-

plexity and practical for implementation in highly distributed networks, which consist of

users with limited computational ability and power. The algorithms that are proposed

are highly flexible and effective. They can also be implemented in a number of systems

outside the cognitive radio framework.
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9.1 Future Work

There are several natural extensions of this thesis. User localisation and authentication

are security issues concerned in almost all wireless technology. We hope to extend the

application of our algorithms into V2X (vehicle to everything) technology. Authentication

and confidentiality are key concepts in V2X, autonomous vehicles continuously rely on the

information relayed to them by other vehicles and road side units to make decisions about

its operation. It is therefore key that vehicles know which information is coming from a

legitimate source and which is coming from malicious nodes. Reputation based methods

such as the ones presented in this thesis enable vehicles to make informed decisions about

which information to use and which to discard.

We hope to extend our work into wireless sensor node(WSN) which form the backbone

of future IoT networks, which we believe will be integrated into the 5G framework. The

Internet of Things (IoT) refers to the inter-connectivity of the already existent Internet

and the newly formed physical networks [80]. The Internet of Things envisions a future

where physical and digital devices are linked together to form one network. Smart homes,

hospitals and shopping centres will all be connected to ensure optimum conditions for

their users. Wireless sensor networks are fundamentally at the center of this vision, IoT is

the method of connecting WSN networks together into one big network. The IoT vision of

connecting smart devices/sensors all over the world to create one large network introduces

a number of security concerns for its users.

The IoT infrastructure is extremely vulnerable to attacks. Its sheer size means that it

is almost impossible to monitor all devices on the network. Devices are usually left unat-

tended which makes them easy targets for both cyber and physical attacks [81]. The IoT

is also based on wireless technology, which makes it easy for eavesdroppers to intercept

communications. Man in the middle attacks and data theft are seen as major security

threats as far as wireless communications are concerned. Mitigation of these security
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attacks becomes all the more challenging when we consider that many of the devices con-

nected to the IoT are simple and have low capacity, making it difficult for them to perform

complicated computations. In essence, any algorithm designed to prevent attacks must

be extremely lightweight in order to be practical in such networks.

The implementation of the IoT within the existing Internet architecture requires con-

sideration of a number of security aspects, chief among them being data confidentiality

and privacy. A basic requirement for the implementation of the IoT would include the

definition of suitable mechanisms to access data on devices. Access to devices such as

medical records and machines must only be done by authorised personnel. The sensitive

nature of data within some industries means that tt is therefore essential that security

algorithm are effective in keeping out unwanted users. Our algorithms form a basis for a

security framework in cognitive radio networks. However, much of the work can be ap-

plied to IoT security as well. In particular, our reputation based algorithms can be used

to identify and authenticate legitimate users. Hash authentication protocols can also be

used to provide added security. The algorithms that were presented in this thesis were

designed for reliability, effectiveness and most importantly low complexity.
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Hekkala, Marcos Katz, Aarne Mämmelä, Markku Kiviranta, Aino Kautio, “Cognitive

radio: An intelligent wireless communication system,” 2008.



150 BIBLIOGRAPHY

[41] I.F. Akyildiz, B.F. Lo, and R. Balakrishnan, “Cooperative spectrum sensing in cog-

nitive radio networks: A survey,” Physical Communication, vol. 4 no. 1 pp. 40-62,”

2011.

[42] A. Garhwal, and P. P. Bhattacharya, “A Survey on Dynamic Spectrum Access Tech-

niques for Cognitive Radio,” International Journal of Next-Generation Networks, vol.

3, no. 4, pp. 15-32,,” September 2012.

[43] S. Ziafat, W. Ejaz, and H. Jamal, “Spectrum sensing techniques for cognitive ra-

dio networks: Performance analysis,” 2011 IEEE MTT-S International Microwave

Workshop Series on Intelligent Radio for Future Personal Terminals,” 2011.

[44] S.Shobana, R.Saravanan and R.Muthaiah, “Matched Filter Based Spectrum Sensing

on Cognitive Radio for OFDM WLANs,” 2013.

[45] Pradeep Kumar Verma, Sachin Taluja and Rajeshwar Lal Dua, “Performance analysis

of Energy detection, Matched filter detection and Cyclostationary feature detection

Spectrum Sensing Techniques,” 2013.
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