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ABSTRACT

Nowadays, Transmission Control Protocol/Internet Protocol (TCP/IP) is known to be the
most reliable network communication protocol capable of handling retransmission,
packet loss, congestion control and more. In TCP/IP communication, packet loss and
congestion are likely to have an impact on bandwidth. Performance is affected even at
low packet loss rates so with an enlarged rate of packet loss, a radical drop in bandwidth
efficiency occurs. To identify the source of this unpredictable network performance, a

thorough examination of TCP/IP traffic was conducted.

This thesis studied the behavior of the main protocols involved in the 4 layers of the
TCP/IP stack. This project, which was primarily concerned with layers 3 and 4 of the
ICP/IP stack protocol, carried out a comparison between the performance of two
different congestion control algorithms (Cubic and Reno). Several experimental tests
were conducted to determine when the connection experienced data loss and ACK loss,

with the results plotted on individual graphs showing packet behavior.

Initially two different TCP congestion control algorithms were used to observe their
influence on bandwidth rate. Subsequently the TCP variables - advanced window scaling
and window scaling - were changed to observe their role in obtaining acceptable

bandwidth rate with respect to packet drop and the retransmission rate.

The study revealed a significant reduction in performance during packet loss.
Surprisingly, the result showed that the congestion control algorithms, Cubic and Reno
led to the same outcome when the link was experiencing packet loss. However, ACK loss
did not significantly affect performance, and up to 40% loss in ACKs could be tolerated

with almost no reduction in performance.

While TCP still functions adequately when experiencing single segment loss, the
challenge is to handle multiple packetloss. Future research, therefore, might investigate

new algorithms for multiple packet loss in the network.
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1 Introduction

This thesis presents several tools and approaches for displaying collected internet
traffic packets, and studying some of the most commonly used communication protocols.
The diagnosis of Transmission Control Protocol/Internet Protocol (TCP/IP) performance
problems using these tools presents a more accurate result than those achieved by earlier
tools and allows a much more detailed understanding of packet trace analysis. The
software adopted in this study easily determines the characteristics of the network traffic
by documenting and analysing all internet transmissions. This tool can also indicate

optimal performance of the system.

The use of internet-dependent devices in the home has been increasing given that
broadband connections in homes are increasingly common. The internetis used in homes
with devices such as laptops, PCs, smartphones and smart televisions. Therefore, the
volume of network traffic increases due to the large number of devices connected to a
single home network. This research project analyses the network traffic recorded during
one hour, one day and one week in a home network. Wireshark software, which is an open

source platform for capturing network traffic, was the primary tool used in this project.

The simple structure of the network comprises any computer device such as a laptop
or desktop computer, a router or access point and the internet. An investigation of the
different types of internet traffic analyzer software available resulted in the selection of

two types of software - Wireshark and Microsoft Network Monitoring - for this project.

The project seeks to answer the following questions by recording, analyzing and

documenting the internet traffic on the home computer network:

1. Which applications contribute most to the total volume of internet traffic in a

TCP/IP network each hour, day and week?

2. What patterns of security threats to the integrity of the TCP/IP network are

detected in hourly, daily and weekly scans of internet traffic?

3. What are the major network Key Performance Indicators (KPIs) in the TCP/IP

network each hour, day and week?
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1.1 Project Goals

The project aims to investigate the performance of the home network traffic to
which the network analyzer has access. This was expected to result in an understanding

of the contents of the internet packets.

Secondly, the project aims to monitor and identify thread and network problems
and troubleshoot any issues arising. It was hoped that this would result in a sound
understanding of the use of packet sniffers such as Wireshark and Microsoft Network
Monitor for planning, monitoring, optimizing and detecting illegal activities on the

network.

The third main goal of this project is to understand the use of packet sniffers. The

study set out to investigate the characteristics of the software and their usefulness.

1.2 Project Planning

The project was planned by carefully considering its scope, time frame, and
associated costs. The project timeline comprised three important stages. First the
proposal was drafted, submitted and approved. This involved searching the literature for
recentrelevant studies and analyzing and summarizing their findings. The results of this
stage were summarized in a literature review which was submitted for assessment. The
second stage consisted of designing and implementing the study by capturing TCP/IP
internet traffic at hourly, daily and weekly intervals. The final stage involved analyzing
the data obtained and summarizing the results in a series of tables and graphs and

documenting the results.

1.3 Project Scope

Based on the project’s goal of recording and analyzing internet traffic on the home
network at hourly, daily, and weekly intervals and making recommendations about the
best performance of internet traffic, an appropriate capturing location needed to be
identified. This may vary from one network to another. In this project, a home network

was chosen. To achieve the project’s goals, the following stages were realized:
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1. Choose and connect network
2. Capture packets
3. View and capture traffic analysis

4, Filter specific traffic and document the findings

= Accept proposal Accapt proposal
Background Research Background Resgarch
First Draft indroduction = First Draft indroduction
Literature review 1 Litorature roview
= Network setup l ;i Hatwork 56t up

First stage Capture 1 hour an First stage Capture 1 hour and 2 interval
2 interval 1

Second Stage caplure week Second Slage capture waek interva
imterval

Start investigation

project Milestone

upload progress report R uphond progeess report
Paster o
- Second Milestone l Second Misstons
Final revision
upload Project

= Packets Analysis I Packets Analysis

Figure 1 Project scope and planning

1.4 Time

To ensure that the project was successfully completed on time, Figure 1 (above)
was drafted at the start of Week 2 of Semester Two (Tuesday August 7, 2017) and
submitted to the project supervisor for approval. The capturing phase ran for a period of
3 days for three different durations according to the schedule shown in Figure 1. The
data gathering period ran from August 7-26™ with analysis starting in Week 6 of the
semester on the 27th of August 2017.

1.5 Cost

The project was carried out at no financial cost. All software used was open source
and downloaded free. The existing network equipment was already owned by the

researcher. No further purchases were required.
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2 Literature Review

Today, network monitoring is more important than ever due to the rapid growth
of malware and internet threats. The recent increase in malicious content that can
compromise specific networks [1] poses a major threat to network performance and
efficiency. Experts [2] claim that maintaining network security represents a major

challenge for network administrators.

According to Xu et al,, (2013) [24], a traffic analysis platform is developed at first
in which the incoming or outgoing traffic is collected, analysed and captured over a home
network. Then the characteristics of the traffic are explained in detail on the basis of
datasets, IP address and the time at which the traffic occurs. In this report, the author
took two networks in the home known as Network A and Network B and compared them
in terms of the incoming and outgoing network traffic over a time span of one month.
Comparative results were produced using a traffic monitoring platform which collected

and analysed the traffic over the home network.

According to Cecil (n.d.) [22], traffic monitoring is a significant means of
troubleshooting the network to find security issues. The study reported here conducted
the traffic analysis based on using a router and without using a router. SNMP, RMON and
Cisco Net flow are the router based techniques; two recent methods of monitoring known
as WREN and SCNM were used to find the traffic involved in the network. These router-
based methods of analysis provide less flexibility whereas the non-router based
monitoring methods include passive and active monitoring of the network traffic over a

home network.

Liu, Liu and Ansari (2014) [23] argue that monitoring and analyzing network
traffic can optimize the network’s resources. Network traffic monitoring and analysis is
also used for improving the experience of the network user. As the existing solutions are
not ideal or scalable when analysis is required for large data traffic over a time span of
more than one month, monitoring and analysis of traffic in their study was achieved using
Hadoop |11]. Hadoop is an open source platform that can be used to obtain efficient

feasible results when large data traffic monitoring is required.
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The concerns of network administrators and traffic analysts are generally due
either to their lack of appropriate tools to detect and resolve issues or their lack of
relevant expertise in dealing with such threats [2]. Understanding the origin of the threat
is the first step in taking appropriate action to protect and strengthen the network’s

overall performance.

Today different types of packet sniffer software are the most preferred
troubleshooting tools employed when the network is under threat [4]. Sniffer software is
used for listening to and capturing internet traffic. Such software can be extremely useful

in detecting, tracing and analyzing network traffic.

The software that is now marketed under the name of Wireshark developed from
an earlier, less sophisticated version called Ethereal [5]. However, Wireshark has been
developed in various ways so that it is now a useful tool for analyzing wired and wireless
network traffic. Analysts who operate within the laws and corporate policies that
regulate the use of Wireshark can troubleshoot and secure their network efficiently and

effectively [8].

Transport Control Protocol/Internet Protocol (TCP/IP) is a reliable transport
protocol that is particularly suited for networks that consist of links with lower error
rates [1]. The roots of the packet switching protocol can be traced back to 1969 when the
Advanced Research Projects Agency (ARPA) funded a research project aimed at
developing an efficient protocol for sending and transmitting packets in a network. It was
first defined in 1980 by Request for Comment (RFC) 760 prepared by the Information

Sciences Institute of the University of California for the US Department of Defense’s ARPA.

TCP allowed specification of quality of service (QoS) using five parameters: viz
stream versus datagram, precedence, reliability, speed, and speed versus reliability. The
specific terminology for precedence was similar to the controls used in military command
and control (CoC) networks. The transport protocol allowed multiple messages to be

tagged using different precedence that impacted the order of delivery [3].

At this point, it is important to note that TCP is mitigated at the end nodes. It
strives to minimize unreliable data found in multiple layers. The two end nodes perform

different functions communicated in combination including numbering the packets
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before sending, monitoring the packets that arrive, reordering the packets if required,

retransmitting packets that are lost, and then delivering the data to the end receiver [3].

The network protocol performs different treatments to packets as they are
transmitted through the net. The protocol provides preferential treatment to network
packets demanded by high priority applications [5]. This treatment to the packets is

known as enhanced services.

The technological advancements in switches, fiber, routers, and other components
have resulted in the provision of increased IP traffic speed [5]. Having said that, there is
a possibility of potential for traffic congestion that can result in a delay in the

transmission of packets.

Various researchers have proposed different practical schemes for controlling
congestion [5]. A range of schemes have been presented to control [P traffic congestion
in the overloaded network core. IP traffic congestion also happens because of variation
in the speed of data from a fast LAN (local area network) through a slower WAN (wide
area network) [6], and when different input streams reach a router that does not have

the capacity to handle the inputs.

The Error Correction Mechanism (ECM) of the TCP/IP is one control mechanism
that comes into play during network congestion [9]. When an out-of-order packet is
received due to a network delay, the TCP may generate an acknowledgment due to the
fast-retransmit algorithm [5]. This acknowledgment lets the other end of the network
know that an out-of-order packet has been received. This is an example of how the ECM
of the TCP/IP functions. The advantage of ECN is thatit prevents an unnecessary drop in
packets [7]. Another benefitof ECN is thatit prevents delay in the transmission of packets,

particularly from low-bandwidth TCP connections [11].

A number of proposals have been put forward to reduce packet loss rate due to
network congestion, such as active queue management and its variations [9]. Whenever
a connection is started, the network protocol attempts to increase the transmission rate
by increasing the congestion window. However, to avoid excessive packet losses due to
this fast-start stage, the sending node typically implements a congestion avoidance

algorithm [7].
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A congestion avoidance algorithm consists of monitoring the threshold value
known as ssthresh (slow start threshold) that is approximate to the window size that can
be supported by the network. In case the window size exceeds the threshold, TCP
executes the congestion avoidance algorithm. During this period, if the network capacity
cannot handle the transmission rate, it will result in a loss of packets. This loss of packets
is perceived by TCP through the receipt of different duplicate acknowledgments that are

issued by the receiving node [8].

In recent years, a number of efforts have been focused on designing and
implementing more robust packet switching algorithms [10]. Multipath TCP (MTCP) is
one such advance that has been proposed as an improvement to TCP [11]. According to
the authors, MTCP can seamlessly and efficiently use the available bandwidth providing
improved throughput. It also allows better fairness on several different topologies [11].
The benefit of using this algorithm is that it allows the user to regroup data centre
networks as per the relationship between routing, transport protocols, and topology. The
network protocol aims for improved topologies that are not possible for a single path
TCP. As a concept of proof, the researchers introduced a dual homed version of the
FatFree topology that is optimized on MPTCP. This results in better performance over

several different workloads as compared to the existing TCP protocol.

Moreover, a number of researchers have developed a solution for networks that
use programmable switches or a centralized coordinator to place flows on paths based

on Fat Tree topology, as mentioned earlier [12].

Some researchers have introduced an improvement to the TCP network algorithm
that sources network congestion and then utilizes source routing [13]. However, the
problem with this approach is that the congestion changes quickly and the initial choice
may not be the best route. A more practical solution involves spreading the connection
over different paths that make the scheduling issue more traceable [14]. Routing packets
over multiple paths is another solution [14]. However, there is a limitation to this solution
in thatitis not known how to apply back-pressure over multiple hops paths using various

hardware thatis the norm these days.

After the TCP connection has been made, it is not possible to modify any of the
elements. MCTCP handles this problem by extending TCP to allow the end user to easily

transfer data that belongs to one connection over multiple paths. In order to achieve this,
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MTCP combines different TCP connections known as sub-flows in the RFC 6824. This is
done in a single TCP connection. The first sub-flow initiates within a three-way

handshake [15].

At present, different independent interoperation implementations of MTCP exist.
The most widely used include Linux and i0S platform [16]. The transport protocol is also

supported by Solaris and FreeBSD platforms.

Finally, the input from Wi-Fi Assist allows the hand-over traffic to be transferred
in the cellular interface. The deployment of advanced TCP such as MPTCP has contributed
to a significant decrease in network errors. In some cases, for instance, in Apple Siri, the

network error rate has decreased by as much as 80 percent [17].

The protocol design in the TCP/IP model does not depend on single hierarchical
layering or encapsulation [19]. In fact, RFC 3439 consists of a section that considers

layering as damaging to TCP/IP performance [20].

The networking model makes use of layers to help humans understand and
categorize many different network functions. The network protocol has been popular
with both users and website designers because of its inherent openness. Another reason
for the popularity of the networking platform is that it can be renewed perpetually
without any problem [21]. Atthe same time however, the openness of the system can also
make it vulnerable to network attack. Hackers can make use of the loopholes to carry out
network attacks. Preventing this kind of attack requires strict security algorithms to be

implemented in order to minimize some of the vulnerabilities of the system.

While there is no overall regulating body for TCP/IP, control and improvements
are made through a process of cooperation [10]. However, some organizations that have
been established to provide standards for the network protocols, similar to ISO. One
example is the Internet Society (ISO) that is managed and organized by the Internet

Architecture Board (IAB).

This discussion makes it clear that the TCP/IP platform is still evolving. The
evolution is being carried out to make the network protocol more rapid, robust and
secure. Furthermore, several RFCs have been proposed that will greatly improve the

reliability and speed of the network protocol in the near future.
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3  Experimental Procedures

1.1 Introduction

Network operators continually monitor key performance indicators (KPIs) within
their networks to identify performance problems and ensure customer satisfaction.
These displays include quality of service, lost traffic, and other elements. To keep up to
date with growing traffic, engineers are continually required to optimize network
performance. Even the best network design cannot deliver performance if the physical
infrastructure performs below expectations. This can lead to both operational and

business challenges as customers notice poor network performance.

The first requirement is a thorough understanding of the network’s specific

requirements and the components available to help meet those requirements.

HUANE HUAWEI Home Gateway HGEG50

Home Internet Home Network Sharing
| bl
N
E‘ pascal_Ethemet Sars-PC_Ehernet

Figure 3.1  Network components
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1.2 Network components

The basic building blocks of the experimental network are shown in figure 3.1.

They include:

Access point (HUAWEI Home Gateway)

Access point comprises two directional antennas. In technical terms, an antenna
is just a translator tool between guided and unguided media. Electromagnetic energy is
transformed between free space and waveguide with the antenna help. Radiation and
reception of this energy is the main function on the antenna. An antenna’s performance
measured using several techniques, with varying degrees of relevance to any application.

These are the most important parameters:

=  Frequency of operation of between 2.4 GHZ and 5 GHz refers to the operating
frequency band—all antenna specifications are guaranteed within the frequency of
operations. These frequency bands and channel arrangements are defined by ITU-R

recommendations or ECC (error control check).

e Polarization which is the orientation of electric field driving the signal either vertical

or horizontal.

Modulation and demodulation is one of the main role of the access point, the
throughput can be increased either by adding more data channels used or by
increasing the modulation scheme employed. Modulation schemes can range from
low-order QPSK (quadrature phase shift keying) to higher-order 256 QAM
(quadrature amplitude modulation) which is method of merging two amplitude-

modulated (AM) signals into a single channel, thus doubling the effective bandwidth.

The Access point Ethernet RJ45 ports allows the connectivity of computers and phone

to the network importantly. [t's as a gateway to the internet.

One Hewlett Packard (device C). With the following characteristic

AMD Athlon Dual Core CPU 2.8 GHz (gigahertz) of frequency, 8 GB (Gigabits) of
Memories (RAM), 32 bite operating System Windows 8, 500 GB hard disk of storage. TP-
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LINK wireless network interface card and double high definition ASI screens. Genius

keyboard and a mouse.

One ASUS Laptop computer (device B) with the following specifications:

Intel core i7 CPU 2.4 GHz, 2.4 of frequency, 16 GB (Gigabits) of Memories (RAM), 64bite
operating System Windows 10, 1TB hard disk of storage. Intel Centrino wireless -N

2230 network interface card and high definition ASUS 18-inch screen.

Two tablets (1 Apple iPad 5 (device A), and 1 Samsung Galaxy Tab A with 0S and

Android operating system

Transmission media

The transmission media are the physical media connecting the computer and access
point consisting of a substance (gas, solid or liquid) that can propagate energy waves.

There are three main media types.

=  Wireless media including radio frequencies, satellite, infrared and microwave,

= Copper cable such as shielded twisted-pair, unshielded twisted pair and coaxial

= Fiber optic cable (also known as optical fiber cable) consisting of glass thread used
for data transmission. It consists of a bundle of glass threads, each with the capability

of transmitting data modulated onto light waves.

Applications

Web browsers (Microsoft Internet Explorer, Mozilla Firefox, and Google Chrome) -
software applications using HTTP protocol for repossessing, presenting and navigating

information resources on the World Wide Web

=  Wireshark (open Source Software) - a network protocol analyzer used to decompose
the network structure at microscopic level enabling detailed examination of what is

happening in the network.
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= Microsoft Network Monitor is another network protocol analyzer used in this project.

\ the Internet

Device A

Figure 3.2  Basic network configuration

1.3 Network installation and configuration

No matter how well the network been planned or how much care has been taken in
the selection of equipment, poor installation practices will expose the network reliability
and deliver performance far below planned expectations. The location, the distance from
the access point, the direction of the antenna, the presence of nearby equipment, and
other prevailing local conditions mean each installation presents challenges requiring
careful attention. While manufacturers provide detailed instructions on how to best
assemble and install equipment, it's the expertise, skill and care of the network engineer

to ultimately determine if the network fulfills its performance and reliability goals.

For the purposes of the project, figure 3.2 is considered to be the network diagram for
the entire experiment. As shown in figure 3.2, the network analyzer (called Wireshark)
is installed on Device B which, in turn, is connected to the access point Ethernet port.
Devices A and C are also wirelessly connected to the same router to gain access to the
internet. The goal of Device B is to use the software to capture the internet traffic and

save it on the hard drive for further investigation.
28




The basic steps taken in the experiment to capture internet packets using Wireshark

are detailed below:

1. Create a folder in the hard drive to store the captured file and run the network
protocol analyzer application.

2. Select the capture > interfaces menu option to list all available interfaces.

3. Choose the active network card interface (NIC) from the list shown in the pop up
window.

4. Click the option to set capture parameters. In the option window, tick on the use of
Promiscuous mode for all interfaces. If the promiscuous mode is not selected, frames
with MACs other than the one the interface has are ignored.

5. Click on capture filter to allow only the target protocol (e.g. TCP only, or UDP port
(80) to be captured.

6. Name the capture file (one_Hour_capture_dayTime) and link it to the created folder.

7. For multi file capturing, tick on use multiple files and set capture as desired. Indicate
the number of files to be captured, desired size, time duration for each capture, the
ring buffer and the time to terminate the capture.

8. On the Display option, choose yes or no to update the list of packets in real time

9. Decide on the name resolution during the capturing process (resolve MAC address,
use external network name resolve).

10. Start the capture. (Files should automatically be saved on the hard drive and the
application should stop capturing after the elapsed time.)

11. Open the browser and start surfing the internet.

1.4 Capturing mode selection

By choosing the promiscuous mode, a network card was enabled so that its driver
could capture traffic that is addressed to another device in the network. Configuring the
802.11 network adapter to operate in this mode will ensure that it captures only SSID
(service set identifier). SSID is the primary name associated with an 802.11 (WLAN)
including home networks. To capture all the traffic, the adapter can receive, this adapter

should be configured in monitor mode.
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1.4.1 Capture on a specific application
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To listen to a specific traffic conversation, a filter is performed on the portnumber

of the application. In general, when we know the application port number, the capture

can be set to look in the application traffic over UDP or TCP protocol. To create a packet

capture on the specific application, port filtering is deployed. For example, on FTP (file

transfer protocol), queries and responses run over port 21. The FTP zone transfer runs

over the TCP on port 21. The result of setting a filter of FTP traffic over the TCP on port

21 is illustrated in figure 3.3. figure 3.3 shows a typical sample FTP packet produced by

the Wireshark platform.

In the packet in Figure 3.3, Frame number 106 has the following characteristics:

= Capture Date: 26 August

= (Capture Time: 18: 59 minutes

= Source Address: 192.168.1.5

= Destination server: [P address 192.168.1.3
= Establishing ftp connection

= Frame number 105 has the following characteristics:

= (Capture Date: 26 August
= Capture Time: 18: 59 minutes
= Source Address: 192.168.1.3

= Destination server: IP address D 192.168.1.5
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The same network shows an FTP (file transfer protocol) request for login information
to access Microsoft files server services. Frames number 106 and 108 clearly show in the
information column the user name (pascal) and Frame 108 clearly displays the password
(***) to access the server. This demonstrates a security issue with applications using the

FTP protocol.

The study of FTP in this session demonstrated that it is a TCP-based transfer
application protocol. Figure 3.3 shows two separate communications used by FTP. The
first connection is for commands and the second use for data transfer. Port number 21 is
the most reliable for the FTP command channel, but other port number can still be
configured to run FTP protocol. Through figure 3.3 the observation is made on the port
20 used for data channel, where Both FTP transfer Process type Such as active and
passive mode are illustrated in the observed packet trace. Active mode uses PORT
command for data transfer from FTP server to client, whereas Passive mode uses the
PASV command to transfer data from FTP client to the FTP server. Wireshark Follow TCP

streams option enable data transfer collection.

1.5 TCP/IP traffic capture management

This step involved launching the web browser (Google Chrome) and spending the
nexttwo hours visiting several websites including google.com, mqg.edu.au and Yahoo.com.
At the end of this two-hour period, the software automatically stopped capturing and
storing each file on the computer’s hard drive. In this scenario, the capture was done on

Device B, with the wireless adapter set in promiscuous mode.

A similar scenario was completed for online screening of a YouTube video and TV
program, also on Device B. Similarly, scenario was used when transferring files between
the two computers in the network, listening to online radio (ABC radio and SBS radio)
and sending email using client applications to the mail server application. Using the

Wireshark filter option achieved good storage management of the files captured.
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1.6  Analysis

overview

1.6.1 TPC Packet overview description

Before the results of the software analysis are described, the components of each

sniffer packet will be presented. Each default packet includes the following:

= 48 bits Ethernet Address example (60:36:dd:17:1a:0b)

= the Ethernet

type 0X0806(ARP)

= No broadcast and No Multicast

= No ARP, IP, IP Address 192.198.1.5 (for the analyzer Laptop), TCP or UDP port
example port 80 for (HTTP), HTTP TCP port

Figure 3.4 below summarizes the data provided on each packet filter including file

length, time elapsed, the file format information, number of packets, average number of

bytes and megabits per second. This summary is valuable when comparing appropriate

network performance with problematic network performance.
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Figure 3.4  Summary window used to compare two set of data (UDP)
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Figure 3.4 also compares two separate trace files. The left-hand window shows
the slower download process when comparing the average packet per second and the
average megabit rate. The right-hand window shows the faster download process with
the higher data rate based on the average number of packets per second. This summary
can be enhanced by filtering the number of values on TCP time _delta. Better visibility of

the two instances can be obtained from the filtering result.

This delta time helps to measure the time between packets and specific reference
points in the trace; it also helps identify gaps between consecutive packets. This
difference in speed observed in figure 3.4 is due to the difference in distance from the

access point. The further the device is from the router, the slower the connection.

1.6.2 File interpretations

This section presents an interpretation of the data saved in the captured files
based on the following statistical criteria: protocol hierarchies, end point and

conversation, address and port, packet lengths, multicast stream and flow diagram.
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Figure 3.5  Protocol hierarchy information on the data transfer and web browser
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Figure 3.5 displays from left to right (1) the protocol or application that was most
used in the communication process, the percentage of number of packets (expressed in
megabits and bits) and the bites and packet counts. According to the protocol, the figure
4.3 shows, 23899 packets (97.31% of the overall traffic) are TCP-based and only 51

packets used for DNS (Domain Name Service) requests and responses.

Figure 3.5 also shows that 85 packets were allocated to FTP (File Transfer
Protocol), representing 0.35% of the traffic bytes which matched the number of packets
after applying the FTP filter on the trace file. It therefore appears that most of the TCP
traffic is file transfer traffic, with 953 packets being used for media type. The Host [P
(Internet Protocol) address display filter is used to characterize all the applications and
protocols used during the communication. The right-hand side of figure 3.5 represents

the protocol hierarchy of the web browser traffic.

1.6.3 Active conversation identification in the trace file

In the context of computer networks, a conversation occurs when two devices
exchange data. The term “end” is used to describe a single side of the conversation.
Listening to the conversation between two hosts makes it possible to determine the most
active conversation channel by examining the different packet rates and the duration of

the conversations.
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Figure 3.6  TCP conversation showing pair of hosts communicating with each other

Figure 3.6 shows that 26 Ethernet conversations took place, 114 [PV2
conversations, 22 [PV6 and 907 UDP conversations. Based on the number of bytes
transferred between the two TCP hosts, the high rate (46 Megabytes) illustrated in the
column Bytes A to B, represents the most active conversation in this file trace
communication. This indicates that 114IPv2 remains the most utilized protocol in the
communication network. 907 UDP explains what type of traffic was mostused during the

conversation.

Figure 3.7 (below) shows the time it took a packet to be transferred, plus the time
it took the sender of the packet to receive the ACK of the last packet sent. The time delay
that appears in figure 3.7 consists of the propagation time between the signal being
transmitted and received. Being able to observe the round-trip time helps identify the
cause of any inefficiencies in the network performance. The round-trip graph tracks the

time between data being transmitted and the associated TCP ACK (acknowledgement).
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Figure 3.7  TCP round trip time Host A to Host B

Transmission Control Protocol Traffic Analysis
1.6.4 The Purpose of TCP in internet communication

This section explores the process of investigating the collected packets to define
the key performance indicators (KPI) in the transport layer, more specifically the (TCP).
This is the most common means of determining whether a TCP connection is functioning
efficiently or not. This section will demonstrate the problematic side of a TCP segment
trace analysis and the difficulties arising. It also illustrates the conversion of data into a
graphic representation that makes the study of packets much more manageable and
readable. RFC-793 defines the TCP. It provides an unreliable datagram service and two
directional reliable byte streams to the internet communication. TCP is a suitable
protocol to investigate because its use is common in all aspects of networking

communication.
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1.6.5 TCP Packet trace

Multiple techniques allow the exploration of TCP performance testing, including
manual analysis of appropriate collected TCP packets from network monitoring devices,
This method uses timestamps and some important part of the packet for examination.
The conversation within the packet can be reconstructed by examining the packet. By
rebuilding the story of the trace from the raw data, itis often easy to understand the cause

of a connection performing efficiently or otherwise.

Itis challenging to understand how packets relate to each other in time sequence
and acknowledgment numbers when using the manual method of performing trace
analysis. Extracting these relationships manually is time-consuming. Previous experience
indicates that it is possible to spend several hours trying to understand only one section
of a TCP packet trace when dealing with performance issues. It is very time consuming
for an analyst to reassemble and rebuild the purpose of each packet. This process can be
illustrated by recognizing the segment with RST (Reset) acknowledgment setto one with
a previous packet. This means of examining packet traces leads to a tedious task of
recreating these relationships between TCP segments. However, expert knowledge can

be used to capture and create an automated analysis tool to solve this problem.

Wireshark is used to scan TCP Packets, detecting and organizing common
phenomena in the packet, mark them provides good description of the trace. This
approach of sniffing internet packets, allows experts and non-analysts to detect and
segregate performance issues in the connection. The use of Wireshark improves the
ability to present information to users, without trying to implant knowledge about the
analysis into the tools. By improving the form in which the packet trace is presented to
the analyst and by providing some tools for its deployment, the problem of information

overload dramatically decreases.

1.6.6 Detailed description of TCP

When using the internet protocol (IP), the delivery service is unreliable since the
IP has no mechanism for controlling packet delivery. However, there is an expectation
that packets will be reliably delivered in the internet protocol network. During

transmission, the datagrams (IP) may be impaired by being corrupted, lost, disordered
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or duplicated. But with the use of a series of controllers such as sequence numbers,
acknowledgments, checksums and windows, the TCP provides a reliable service with

end-to-end flow control.

The TCP session offers a bidirectional connection, where the acknowledgment
followed by the windows update in one direction is generally followed by the data moving
in the opposite direction. The TCP protocol at each end of the link communicates by using

an IP module to exchange TCP segment information to each other.

The data bytes (8 bits) in the stream are numbered in sequence so that each octet
is represented by a 32-bit sequence number. A TCP header is provided with a 32-bit
sequence number field, which contains the sequence number of the Reset data byte
carried by the segment. In the absence of data to be sent, then the sender to the sequence
number of the Reset byte not yet sent sets the sequence number in the TCP header. This
type of packet with no data is used when control information needs to be transported to

the other end of the connection and there is no data attached to it.

TCP is the standard that defines how to establish and maintain a network
conversation. This protocol offers a connection-oriented transport between hosts. TCP
supports the process of sending large numbers of data packets in sequence without
waiting for acknowledgement from the receiver. During the three way-handshake, the
size of the window is defined by the network activities. TCP is used by most file transfer
protocols to ensure the reliability of data delivery. The TCP protocol offers transport for
the following applications: HTTP, HTTPS, FTP, POP/SMTP, [32] and more.
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1.6.6.1 TCP packet analysis
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Figure 3.8° TCP three -way handshake between hosts (192.168.1.6 and
202.191.51.191)

As mentioned above, the connection between the two hosts is established through
the three-way handshake process, illustrated with SYN, SYN/ACK and ACK as shown in
figure 3.8. In the handshake process, the SYN (synchronization) packet synchronizes the
sequence number to establish the connection between the two hosts and to ensure that
both end devices know each other’s initial sequence numbers (ISN). Figure 3.8 illustrates
the TCP three-way handshake used to establish the connection between host B (IP source
IP address 192. 168.1.6 and the web server (destination IP address 202.191.51.191). The
host with IP address 192.168.1.6 establishes the TCP connection to the Web server with
IP address 202.191.51.191. Packet number 13632 contains the designation (SYN); the
next packet number 13633 contains (SYN and ACK) and packet number 13634 lists
(ACK). These three sequenced line numbers represent the three-way handshake pattern
used to establish a connection. This connection is established, and the webserver sends
back the requested website to view. In the same file trace, it was noticed that when the
SYN does not obtain a response from the target destination, it automatically retransmits

the SYN in another attempt to establish a connection.
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Figure 3.9  TCP RESET used to close a TCP connection session

Terminating the connection can be achieved in several ways with the use of (TCP
FIN) packets. When the FIN packet is deployed, a host sends a FIN packet and enters a
FIN-WAIT state until its receipt is acknowledged. Within the TCP connection, the RESET
can be used to explicitly end the connection. Figure 3.9 illustrates packet number 691.
Source host with IP address 192.168.1.5 shows the HTTP based protocol connection
created by the destination host with IP address (S3-1-W.amazonaaws.com) web server.
In packet 847, the web server senta packet containing the letters (FIN) indicating the end
of the data packet. The host client sent the acknowledgement bit and the FIN bitin packet
846. Subsequently, the server in packet 847 sent a TCP Reset (RST) to terminate the

connection.
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Figure 3.10 TCP Protocol 3 way-handshake

1.6.7 TCP packet sequence tracking

During the handshake process, the transmitter and the receiver connection own
their own initial sequence number. Each end host increases its sequence number
according to the amount of data contained in its packet. Sequencing and acknowledgment

process analysis is based on the following formula:

+ sequence Number in Byte of data recieved

Acknowlegment number out
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Figure 3.11 TCP sequence and acknowledgement number data exchange

The ACK number field has the value of the following sequence in the queue from
the other end. This ACK number only increases when the data is received. The numbering
sequence used in Wireshark can vary; to facilitate reading, the initial sequence number is
set to 0. During the three-way handshake, the sequence increases by the value of 1. After
the process is established, the SEQ (sequence number) only increases by the value of the
currentdata sent. Figure 3.11 shows how the acknowledgment number and the sequence
number increase with the data exchanged. The figure illustrates the connection between
two end applications. The Client on port 6167 and server on port 443 which is used by
QUIC (quick UDP internet connection). The first handshake is marked inside the yellow
rectangle with sequence number = 0, sent by the client computer and ACK =1, the server
replied and accepted the first contact by sending Seq =1 for the expected incoming
segment and ACK=1 on the (SYN ACK). Finally, the client sent back another ACK to
establish the connection with Seq=1 and ACK =1. When both ends agree on the sequence
number to be used and the size of the scaling window, they start exchanging real data.
This explains the fact that the acknowledgment of multiple data packets can be validated
with a single ACK.
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1.6.8 TCP concepts

This section presents a brief overview of various TCP congestion avoidance
algorithms, flow control and different TCP variables evaluated later in this project work.
The flow control and congestion avoidance mechanism on TCP prevent a sender within
the connection from sending amounts of data that could overload the receiver. TCP
likewise provides sliding window mechanism to maintain load balance between the
sender and the receiver. The following section analyses the congestion control and flow
control method (algorithm) observed in the TCP/IP network packet obtained from

Wireshark's file capture.

1.6.8.1 TCP congestion avoidance algorithms

“The TCP congestion avoidance algorithm is the primary basis for congestion
control in the internet “[33]. The congestion avoidance algorithm detects congestion by
observing retransmission timer expiration and the reception of duplicate ACKs. To
remedy this situation, the sender decreases its transmission window, namely, the

number of unacknowledged packets in transit, to one half of the current window size.

There are various types of TCP congestion avoidance algorithms. For example:
Tahoe, Reno, New Reno, Vegas, BIC, CUBIC, H-TCP etc. In this project, three algorithms
were chosen for KPI analysis: CUBIC, Reno and H-TCP.

In TCP, for each received ACK, the congestion window is normally increased by
one segment per round trip time (RTT); this mechanism is called Slow Start. On the other
hand, when packet loss occurs, TCP applies a mechanism called Multiplicative Decrease
Congestion Avoidance (MDCA) which decreases the congestion window to half the round-

trip time [27].

Timeout occurs when the sender does not receive the ACK within a given time.
This initiates the retransmission of the lost segment. Fortunately, Reno has a fast
retransmission feature which reduces the time a sender waits before retransmitting. But
the MDCA mechanism does not work properly in Reno, so the fast-retransmitted packets
also start dropping at the receiver end. Because the retransmission rate is not aligned
with the receiver’s receiving capability, this results in a large number of packet drops.
Therefore, Reno only performs well with very small volumes of packet loss [27].
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TCP variables

Several TCP variables are rumored to impact on TCP performance. Since TCP
variables control different structures, it is believed that they should have some influence
on network performance. To verify that, a combined TCP algorithm was investigated; this

is reported on in the next section.

1.6.8.1.1 Studies of TCP_window_scaling Algorithm

TCP_window_scaling is the procedure that enables a TCP decision to adjust
window size so it can accommodate what are called “Large Fat Pipes (LFP)”. TCP could
be subject to bandwidth failure. packets could be completely lost during transmission
through large channels, as these channels are not fully occupied when expecting ACK'’s
from segments previously transmitted. The use of the scaling factor is provided through
the TCP window scaling feature; for oversized windows, this protocol guarantees all

available bandwidth utilization.

The default setting of tcp_window_scaling is the flag true or the value one and set
to zero when turning off [25]. This feature was studied to evaluate and expend system
performance and packet loss while capturing large amounts of data through the internet

network.

1.6.8.2 Testing TCP performance

A TCP connection was established between the two end hosts. The Network
Interface Card (NIC) was configured for 100Mbit/s on Host A and 1000Mbit/s on Host
C. Later, it was modified to be the same for all hosts. Figure 3.12 (below) presents a

physical image of the network.
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1.6.8.3 Measuring the impact of TCP drops

For the experimental study, TCP variables were filtered for different value.
Wireshark was used to perform measurements on each variable. Observations indicated
that performance decreased with the increase in the number of packets lost. Performance
reached 98Mbits/s when no loss was observed, but reduced to 5 Mbits/s after

experiencing 20% of packet loss.

1.6.8.4 Experiment when data link experienced data loss

In this investigation, the filter was set at the values shown in figure 3.13 below. As

a result, the network experienced significant packet drop and data loss.
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Figure 3.13 Volume of data reduction
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Figure 3.13 reveals that performance reduced markedly with the increase in data
loss during the transmission. At 0% of packet loss, the bandwidth was almost entirely
used during transmission. Unexpectedly, when the loss increased by 1%, the
performance reduced to 85 Mbits/s and continued to deteriorate to almost 0 Mbits/s
once losses reached 30%. This could have been due to the fact that during the capture,

there was some interference in the transmission.

1.6.8.5 Experiment when data link experienced reduction in ACK

The same values as in the previous test were used to detect performance when the
system experienced a reduction in acknowledgments. Surprisingly, no change was

observed.
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Figure 3.14 Volume of ACK reduction

The drastic reduction observed in the UDP/IP transmission when the system was
experiencing increased packet loss, warranted further investigation. To authenticate this
drop in performance, measurements were taken and changes were made to these
experiments. The MTU was set to 1400 for Hosts A and C and the router used the usual

FTP protocol. No change was observed.

1.6.8.6 Tests with Cubic when experiencing data drop
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The algorithm Cubic was selected because of its ability to prevent congestion
in the systems running on the two hosts and in the router. For the experiment, the

following values were set:
Initialized Value: 0
Captured Data Size =25 MB

MTU = 1400 for all hosts

While capturing traffic for 30 minutes, Wireshark was used for packet inspection
throughout the network. As a result, Wireshark took more time than expected to complete
the packet captures for each test. It was assumed that the large volume of data was

generating an overflow in the data path resulting in the dramatic reduction in bandwidth.
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Figure 3.15 Volume of data reduction in Cubic

The network’s performance when the connection was experiencing data loss is shown in

figure 3.15. Once again, performance decreased drastically with increasing data loss.

1.6.8.7 Tests with Cubic when experiencing ACK drop

A similar experiment to that adopted with the Cubic programme was conducted

with the decrease in ACK messages. The result obtained is presented in the next figures.
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Figure 3.16  ACK performance reduction in Cubic

Figure 3.16 shows that performance remained unchanged at 82.9 Mbits/s even
when the system experienced ACK loss. The trials with ACK loss as seen in the graphs
above suggest that changing the values of TCP variables has little impact on performance

when experiencing ACK loss.

1.6.8.8 Experiments with different congestion avoidance algorithms for ACK loss

1.6.8.8.1 Cubicand Reno

The two congestion avoidance algorithms produced the same experimental
results when the volume of Acknowledgements reduced. All TCP variables were

filtered out for this experiment.
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Figure 3.17 ACK loss with Cubic and Reno

Figure 3.17 shows the system performance while the connection was experiencing

ACK loss. The data reveal that there was no change in performance regardless of whether

the loss was 1% or 10% for all congestion avoidance algorithms. This experiment shows

that even a relatively high amount of acknowledgement loss has no impact on

performance. In order to further test this claim, additional experiments with ACK loss

were conducted.

Figure 3.17 reveals that a small amount of ACK loss had no impact on network
performance. Accordingly, the volume of ACK loss was increased ten times from the
previous test, introducing 10%, 20%, 30%...100% of ACK loss to the network instead
of 1%, 2%, 3%...10%. Surprisingly, there was no change in bandwidth. The data

obtained from this experiment are presented in figure 3.19 below.
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Figure 3.18 ACK loss with Reno with TCP variables turned off
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The data in figure 3.18 reveal that, after increasing the amount of ACK loss,
performance remained unchanged until 50% of ACK had been lost. At 60% of ACK
loss, performance dropped to almost 0 (i.e. 0.0000004).

Similar tests were conducted with the four TCP variables by turning them on
separately in each test. To compare the performance of the four TCP variables (when

turned on) with the results shown in figure 3.19, tests (3.7.5.6, 3.7.5.7,3.7.5.8, 3.7.5.9)

were done.

1.6.8.8.2 Tests with different TCP variables: tcp_window_scaling

The first test was conducted with tcp_window_scaling = 1 for ACK loss
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Figure 3.19a Performance of tcp_window_scaling with variables turned off
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Figure 3.19b Performance of tcp_window_scaling with variables turned on
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After increasing the loss, performance remained unchanged till 30% of ACK
were lost, although performance decreased slightly when 40% of acknowledgments
were lost. As figure 3.19a demonstrates, increasing the ACK loss to 60% caused

performance to drop to almost 0 (i.e. 0.00014).

The second figure (3.19b) shows the variation in the window size controls at
the receiver end. For the first transmission, the size was set to one. This first TCP
segment incorporates ACK from the receiver with all the transmission information
(such as window size) required by the receive end. After 5 to 50 seconds the size stays
constant at 748 Bytes and can transmit up to two segments followed by one ACK at a
time. At 53 seconds, we observed a sudden change to 1550 Bytes for a maximum of 4
segments transmitted at a time. This variation could be due to packet loss and the
retransmission of lost packets. The connections closed at 225 seconds with the last
ACK segment received at the receiver end. Figure 3.20b shows that the receiver
window opens and closes, and the transmission happens segment by segment with

the variable controlling the window size expressed in Bytes.

1.6.8.8.3 Tests with different TCP variables: tcp_adv_win_scale

In this test, tcp_adv_win_scale was turned on. The meaning of this value was
discussed in section 3.7.5. during the experiments in data loss. The same experiments

were conducted for ACK loss to observe its impact on performance.
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Figure 3.19c: Performance of tcp_adv_win_scale with variables turned on
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Figure 3.19¢ shows a reduction in performance at 40% ACK loss. Otherwise,
there is no significant difference from earlier experiments. As before, when reaching

60% loss, performance reduced to 0 (0.001535).

1.6.8.8.4 Tests with different TCP variables: tcp_ecn

In this test, tcp_ecn (Explicit Congestion Notification) was turned on, so that

explicit notifications were delivered while congestion occurred.
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Performance was unchanged up to 50% of ACK loss i.e. 9.37 Mbits/s. When
60% of ACK loss was reached, performance dropped to 7.08 Mbits/s. However,
compared with figure 3.21, tcp_ecn could improve the performance at 60% quite

significantly. However, it was not able to handle 70% of ACK loss.

To conclude the experiments with ACK loss as seen in the above graphs (Figure
3.20a and Figure 3.20b), changing the values of TCP variables has little impact on
performance when experiencing ACK loss. Some additional experiments were
conducted with TCP variables both for data loss and ACK loss with Cubic to verify the

results of Reno. However, no major differences in results were found.

1.6.9 Time -Sequence graph analysis
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Figure 3.21 Time-sequence plots - examples of typical TCP connections

Figure 3.21 shows packets gathered from the email application (Thunderbird) on
the active Ethernet link. The packet displayed here explains the performance of TCP

connections established between client and server applications. Figure 3.21 illustrates
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the behavior of a TCP link transferring email data using the SMTP (Single mail transport
protocol) port 25. This protocol is used by the email client application to retrieve
messages from the mail server. SMTP primarily exchanges very short messages to define
who is involved in the conversation. When the email server has completed all
verifications, the data is transferred to the server using the application port 25 server
side and on port (49159) client side. Once the transfer is successfully completed and data
stored on the server, the server replies with an acknowledgement to the client computer
that the file has been successfully downloaded. The session is closed when the client

computer replies to the FIN ACK.

Figure 3.21 also represents the time-sequence plot of the host sender
conversation to the SMTP server. The large quantity of packets sent after 0.3(s) represent
the actual contents of the message. The smaller packets at the beginning of the
transmission are only packets exchanged to establish the connection between the two
ends. Very small packets are those used for acknowledgment. This figure indicates that
the size of the file transferred was bigger than Maximum Transfer Unit(MTU) size in byte
of the Ethernet network, I TCP communication system the recommend size most be less
than 1500 byte. Therefore, the protocol required that the packet be fragmented before it
could be transported. Figure 3.22 also shows how close the window size plotis to the data
plot. The closer the distance between the two graphs, the smaller the remaining TCP
buffering space to allow more byte transfer. When the two graphs are close together, the
window-full phenomenon is reached so that no byte transfer can be allowed. Therefore,
when the two graphs are far apart, a Sufficient TCP buffer remains, as illustrated in figure

3.22.
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1.6.10 Throughput graph analysis
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Figure 3.22 Throughput plot of video trace

The throughput graph in figure 3.22 presents the TCP sequence number count
over time. Since these sequences are actual application data, this result of this application
throughputis expressed in bits /sec. Figure 3.23 also indicating that for this conversation,
this throughput is not stable but varies around 1.7x107 bits/second or 17Mbytes/sec to
2.5Mb/sec from the server port 433 to the client on port 61374, and goes around 9000
to 10000bit/sec in the opposite direction from client to server. The low throughput can
explain that the network is transmitting ACK packets only. The variation noticed on the
left-hand side could be caused by unstable file downloads or the way the video

application is supposed to work.
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1.6.11 Round trip analysis
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1 - L bytes (5)

Window size valve: 20200
[Calculated window size: 29209]
Checksum: GxbdB4 [correct]
[Checksum Status: Good]
[Calculated Checksum: Sxbasa]
Urgent pointer: @

K analysis]

[This is an ACK to the sepment in frame: 6]

[The RTT to ACK the segment was: 8, 245906080 seconds]

[RTT: ©.246067008 seconds]

v [Timestamps]
[Time since first frame in this TOP stress: 9245906000 seconds)
[Tise since previcus frame in this T(P stresm: 0.265%06800 sexonds]

LLIE 6 c7 fa 77 31 40 65 ca 54 db £d 08 B0 45 99
34 00 @0 40 00 32 06 11 95 88 77 15 B¢ b a

Figure 3.23

(SYN ACK) segment sequence number and acknowledgment

The following analysis concerns the TCP segmentillustrated in figure 3.23 which

contains the HTTP POST as the first segment of the TCP connection. The figure also

represents the sequence numbers of the first six segments in the TCP. Table 3.0 below

shows the time each ACK segment was sent and each ACK segment received by the client

computer with the IP address 192.168.1.3. Data on the time delay between each TCP

segment being sent and received, allows us to calculate the round trip time (RTT) value

for each segment and evaluate the estimated RTT value after the receipt of each ACK

Figure 3.24 represents graphically the RTT in the TCP connection.

Segment ACK sending ACK receiving Round Trip
number time time Time (seconds)
9 0.489347 0.735670 0.2463
10 0.489366 0.736065 0.2466
11 0.489374 0.737308 0.2479
12 0489381 0.739816 0.2489
16 0735770 0.981867 0.2460
17 0.735781 0.983827 0.2480

Table 3.0 Delay between sending and receiving each ACK segment
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The difference between the received time and the sending time as shown in Table

3.0 indicates the RTT value for each segment. The estimated RTT value was calculated

using the following formula, where alphais 0.125 is a constant:

EstimatedRTT = (1 - Alpa) * EstimatedRTT (previous)+ Alpha* SampleRTT

As Table 3.0 demonstrates, the calculation of the estimated RTT after ACK segment 9

remains unchanged at 0.2463 seconds.

Segment Estimated RTT
Sample RTT Estimated RTT

number (previous)
9 0.2463 0.2463 0.2463
10 0.2466 0.2463 0.2463375
11 0.2479 0.2463375 0.246532813
12 0.2489 0.24653281 0.246828711
16 0.246 0.24682871 0.246725122
17 0.248 0.24672512 0.246884482

Table 3.1: Estimated RTT after receiving ACK

The sample RTT is the RTT for every transmitted segment. Table 3.0 shows how

the value of the sample fluctuates from one segment to another possibly due to network

congestion or load variation on the end user. Itis therefore normal to take the average

value of this sample RTT which is the estimated value calculated and illustrated in Table

3.1. Along with the TCP stream graph, the RTT provides a good understanding of the

network’s performance.
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1.6.12 TCP Retransmission

When the TCP connection is established or in the process of being established, the

packet or group TCP segmentsent from the sender side expects an ACK from the receiver

to confirm reception of the packet. If the ACK is not received after a certain period, the

sender decides to retransmit the packet. This section sets out to identify the reason for

the retransmission.

Throughput (Byte/s) = Window Size / RTT

The formula above shows that as the time delay increases, the throughput
decreases. As the window size increases, more transmission is enabled, thereby
increasing throughput. Some networks, such as old cellular networks and long-
distance communication lines, experience very high delay rates during operation. The
previous sections (3.7.5) explained several methods for improving the application's
throughput. These techniques include using the TCP window sliding size, reno, cubic,
Vegas for congestion control and congestion avoidance and some applications that use

multiple connections per application.

Wireshark 10 Graphs: 60mnY beli_00001_20171003192119 Wireshark 10 Graphs: 60mnYoutube1_00001_20171003192119
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Figure 3.24 Packet error and retransmission plot

The more the network slows down, the higher the rate of retransmission. Figure

3.24 shows on the left the YouTube video streaming packet transmission plot expressed
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in packets per minute. The graph on the right-hand side graph shows the error rate and
the retransmission plot (green). Of the 330527 packets, almost 2982 (1%) were
retransmitted. Figure 3.25 shows that during an interval of 30 minutes, an average of
8000 packets per minute were exchanged between the video server (destination port
433), and the client (destination port 61231). On average, 400 erroneous (= with errors)
packets per minute were re-transmitted, followed by an average of 150 packets per
minute. Figure 3.25 presents a screenshot of the retransmitted communication between

the server (destination port 433(HTTPS)) and the causes of the retransmission.
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Figure 3.25 Retransmission screenshot and expert information summary

The left-hand side of Figure 3.25 displays many retransmission packets from the
receiver with the IP address 192.128.1.3, and the sender with IP address 77.254.42.253
and vice versa. It also provides an indication of the type of error and its location. The
right-hand side of figure 3.25 presents a summary of the possible reasons that could have
caused the retransmission. Possible explanations for the retransmission include
checksum error, corrupted packet (malformed), protocol error such as Encryption or
Authentication problem (TLSCiphertext length exceeds the recommended set value), and
sequence problems such as an out of order segment, suspected frame or packet time- out

when the time to live expires before the packet arrives at its destination.
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1.6.13 TCP Observations

The outcome of these tests revealed some interesting findings related to the TCP.
First, the TCP provides areliable, connection-oriented transportservice. Data involved in
the TCP connection is sequenced and confirms that data arrived safely at its destination
by sending an acknowledgement. Second, in TCP-based communication, automatic
retransmission is provided for corrupted, duplicated, or lost TCP segments. Flow control
techniques and congestion avoidance mechanisms are provided to reduce network or

TCP host saturation.

The third observation that can be made is that communications in TCP
connections begin with a three-way process [SYN, (SYN-ACK) and ACK] called a
Handshake. The value of the sequence number field in the TCP header increases by the
value of bytes enclosed in each individual segment during the data exchange. TCP uses a
system where each end of the connection tracks its own sequence number as well as other

end host numbers.

Retransmissions are activated by Duplicate Acknowledgments called Fast Recovery
Mechanisms or a Retransmit Timeout (RTO) when lost segments occur. The figure
indicates that three identical ACKs prompt an auto-retransmission of the packet. In TCP,
a method known as Selective Acknowledgments automatically controls the transmission
of packet loss. Window scaling is another technique used in TCP to manage the advertised
receive buffer space above the 65,535byte limit. When a receiver announces the window
size of zero to the sender, the buffer lacks the space to receive any packet from another
host. Therefore, the transmission is interrupted or completely stopped. In Wireshark, an
Expert feature also enables the detection of packet loss, windows variable condition, out-

of-order packets and retransmission.

1.7 User Datagram Protocol (UDP) Traffic Analysis

1.7.1 Purpose of the User Datagram Protocol

UDP is a very simple transportlayer protocol that provides connectionless service,

multiplexing and protection functionality of the carried data. Since the UDP protocol does
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not guarantee end-to-end reliable service, this section explores the protocol’s behaviour

to observe its structure.

The UDP is composed of a simple header including four fields - source and
destination ports, packet length and the checksum field. The receiver uses the checksum
to decide whether the packet should be dropped or accepted. When the packet is
dropped, the UDP has no mechanism to recover or retransmit the lost packet. As
discussed earlier, the UDP provides a connectionless transport service usually to the

following upper layer protocol: DNS, TFTP, RTP, DHCP, and video streaming application.

1.7.2 UDP- base DNS analysis

—
No. Time Source Destination Protocol  Length Info fa
- 22 1.883524 192.168.1.6 192.168.1.1 Des 84 Standard query @x98cf PTR 4.1.168.192.in-addr.arpa
73 1.083843 192.168.1.6 192.168.1.1 oS Tandard query Ox63dc ~255.255,230.1n addr. arpa
- 24 1.086784 192.168.1.1 192.168.1.6 DNS 157 Standard query response @x98cf PTR 4.1.168.192,in-addr.arpa P
25 1.117575 192.168.1.1 192.168.1.6 DNs 145 Standard query response 8x63dc Mo such name PTR 258.255.255.2
3] 2.984598  192,168.1.6 192,168.1.1 s 84 Stapdacd guery 8x625f PIR 6.1,168,192, in-addr.arpa
3z 2.084888 192.168.1.6 192.168.1.1 DS 86 Standard query 9x7527 PTR 78.199.58.216.in-addr.arpa
33 2.885148 192.168.1.6 192.168.1.1 DS 132 Standard query @x1f32 PTR f.d.9.a.9.1.d.5.b.d.2.7.5.7.1.8.0.8
34 2.085394 192.168.1.6 192.168.1.1 DNS 132 Standard query Ox5e8f PTR d.6.f.9.e.3.5.2.2.2.7..4.7.0.4.0.0
35 2.087980 192.168.1.1 192.168.1.6 DS 157 Standard query response Bx625f PTR 6.1.168.192.in-addr.arpa P
6 7.ARG9AA  197.16R.1.1 192 16R.1.4 nus 155 Standard auerv resnonse #7527 PTR 7R.199.5R.716. in-addr.arna et
< >
> Frame 22: 84 bytes on wire (672 bits), 34 bytes captured (672 bits) on interface @ Lz

Ethernet II, Src: 192-168-1-6.tpgi.com.au (66:36:dd:17:1a:0b), Dst: 192-168-1-1.tpgi.com.au (d@:65:ca:54:db:fd)
» Internet Protocol Version 4, Src: 192-168-1-6.tpgi.com.au (192.168.1.6), Dst: 192-168-1-1.tpgi.com.su (192.168.1.1)
~ User Datagram Protocol, See Port: 57956 (57956), Dst Port: domain (53)

Source Port: 57956 (57956)

Destination Port: domain (53

Length: 5@

Checksum: 8x744a [unverified] - 8 bytes upp headers showing

[Checksum Status: Unwverified] . 2 %
[Strase. indens 4] source and destination ports field
~ Domain Mame Syctem (quary)
Response In: 24
Transaction ID: @x98cf

» Flegs: @x@100 Standard query
Musstiong: 1

Figure 3.26 UDP- based Domain Name System (DNS)

Figure 3.26 illustrates normal UDP- based communication such as DNS standard
PTR record and respond. The query is sent from Packet number 22 with source port
57956 to the destination port Domain (53). Packet 24 with source address 192.168.1.1
(router) and the destination address 192.168.1.6 (client) illustrate the response to the
query. As with TCP, the UDP source field is used to open a listening port for the packet
response, and determines the protocol or application sending the packet. On the other
hand, the destination field in the UDP header defines the destination process receiving
the packet.
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1.7.3 UDP Statistical Analysis
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Figure 3.27 UDP statistical analysis

Figure 3.27 illustrates the volume of UDP present in this communication. From
zero to 600 seconds an average of 10000 user datagram packets were transmitted. Only
2000 TCP segments were exchanged during the communication. The right-hand side of
the figure defines more precisely the exact number of UPD datagram (1796) packets, the
number of PTR queries and responses and more detail about this network
communication. A total of 901(50.17%) PTR queries were made followed by 45.83%

responses,

1.7.4 UDP structure

e ™ e poe— [ —— . T S gy ol g
S [ % Staccand query €t A assets.adcbectn.con < WP SRR fedbuRIBTA fidlil 08 99 Standaed quory BIR08 A sscets adsbedtn.con
5:Tidb. D6 197 Stindand guary reigonie DS A ity aicbedtn con OOVE far-iie  — T 3.6 el felh: 0L k. 6 L7 Standend query response BaZB A assels.adbedta.con OWE

¢ o 8

¥ Uses Qukagram Protocol, Src Reet: domaia (5, Dst Pet: 5136 (55116)
Source Fort: donsin (13)
Destination Rort: 55116 (S511K)
Length: 143
Checsom: ¥ [uoverifind]
[Chechsm Statas: Uwerified]

UDP Structure

Query and respons

Tramsat B -
Flags: et Sandved oy Same transaction

]
 asaets accbectn, omc type A, class I  uer
Rame: rscets alobedin, con avuets. adobedin. con: tyge A, class TV
[heme Length: 151  Boswirs
[Lebel Count: 1] P assets adokedtn.con: e DNV, class [N, crase sn-assets.adcbectn con. adgeiey.tet

Figure 3.28 UDP structure DNS-base
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Figure 3.28 illustrates the detailed structures of the use of user datagram protocol
header. The UDP header is formed of four fields as shown in the figure from top to bottom:
source and destination port, address field and destination and field length (which is the
length of the packet without data link padding). This field is notreally needed in the whole
communication process. The UDP length is based on the IP header payload length field. It
can also be calculated by subtracting 20 bytes (IP header) to obtain the UDP length value.

The checksum field provides an algorithm to perform sequence verification on the
content of the UDP. In UDP-based communication, checksum is not always required. The
example in figure 3.32 shows that the checksum field is unverified. The value 0X0000

informs the receiver of the non-validation of the checksum.

1.7.5 UDP Protocol Observations

Since the checksum field in the UDP header is optional, it cannot be used in some
communications. The UDP is not able to recover lost packets because itis connectionless.
Therefore, applications that use UDP at the transport layer must provide their own
retransmission process. The port address field in the UDP header provides information

about the application using the transport.
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1.8 Network layer Protocol

1.8.1 Address resolution Protocol

87 6.041326

18:d6:c7:

> Frame 55: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface @

v Ethernet II, Src: 192-168-1-1.tpgi.com.au (d@:65:ca:54:db:fd), Dst: 192-168-1-6.tpgi.com.au (60:36:dd:17:1a:0b)
> Destination: 192-168-1-6.tpgi.com.au (6@:36:dd:17:1a:8b)

» Source: 192-168-1-1.tpgi.com.au (d@:65:ca:54:db:fd)

Type: ARP (@x0806)

Protocol size
Opcode: reply

Figure 3.29 ARP structure

Ethernet (1)

IPva (0x0800)

6

4
(2

w lAddress Resolution Protocol (reply)
Hardware type:
Protocol type:
Hardware size:

)
Sender MAC address: 192-168-1-1.tpgi.com.au (d@:65:ca:54:db:fd) ””’/1

Sender IP address: 192.168.1.1 (192.168.1.1)
Target MAC address: 192-168-1-6.tpgi.com.au (6@:36:dd:17:1a:0b)
Target IP address: 192.168.1.5 (192.168.1.5)

42 Who has

192.

168.1.5? Tell 192.168.1.3

ARP Header STRUCTURE

No. Time Destination Protocol Length Info
il 9.000000 :fa:77:31 i FfFFFFFF: FF ARP 42 Who has 192.168.1.8? Tell 192.
2 0.204590 fa:77:31 #6660 46: 60666 ARP Regidest packet 43 uno has 192.168.1.17 Tell 102.
4 8.921501 :fa:77:31 T FF:FF:FF: £ FF ARP 42 Who has 192.168.1.8? Tell 192.
28 1.96@591 :fa:77:31 T Ff:FF: £ FF: FF ARP 42 Who has 192.168.1.8?7 Tell 192.
50 2.969424 :d6:c7:fa:77:31 ff:ff:ff:FF:FF:FF ARP. A2 Who has 192.168.1.8? Tell 192,
54 2.159015 EB:ES‘.dd:lT:la.ﬂ) FEffffff: 55 ARP 42 Who has 1‘32.1%.1.1? Jell 192,
55 l 3.160211 de@:65:ca:54:db:fd 60:36:dd:17:1a:0b ARP 42 192.168.1.1 is at d@:65:ca:54:db:f
57 : T I0:dGic/itacsr 31 TTiTT TT T A7 fT i TIWho Fas 102.168.1.87 Tell 102.168.1.7 |
59 4.915105 18:d6:c7:fa:77:31 ff:££:£f: b AIRP 42 Who has 192.168.1.8?7 Tell 192.168.1.3
fa:77:31 Hiz :

»

In general, the Address Resolution Protocol (ARP) provides the LAN hosts’ address

resolution. These local hosts can be considered as the final end-point of the

communication or as a local switching device such as a router. Before creating an ARP

request, the local ARP cache must be inspected. Then using the same format, both the

ARP request and the response are sent through the network. Figure 3.29 shows a typical

ARP request, where the broadcast address (ff:ff:ff:ff:ff:ff) address are broadcastincluding

the question (Who has this address?) within the local network. In Packet number 55, the
ARP reply is sent directly to the requested host address (60:36:dd:17:1a:0b). Figure 3.29

also presents the ARP header component. This indicates that the ARP does not contain

an IP header in its structure; therefore, the ARP packets are not routable. In network

troubleshooting, the ARP helps detect IP address duplication in the local network.
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1.8.2 Internet Protocol

Frame 9: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface @ A
v Ethernet TI, Srec: Intellor _17:12:0b (66:35:4d:17:1a:0b), Dst: Technico 76:f1:ac (18:13:31:76:F1:ac)
Destination: Technico_76:fl:ac (10:13:31:76:f1:ac)
Source: IntelCor_17:1a:8b (60:36:dd:17:1a:0b)
Type: IPvd (0x2509)
v Internet Protocol Version 4, Src: 10.1.1.69 (10.1.1.69), Dst: ec2-52-25-155-119.us-west-2.compute.amazonaws.com (52.25.155.119)
8182 ... = Version: 4
.... B181 = Header Length: 20 bytes (5)
Differentiated Services Field: @w08 (DSCP: (5@, ECM: Not-ECT)

Identification: Ox11f9 (4681)
Flags: @x82 (Don't Fragment)
Frageent offset: @

Time to live: 128

Protocol: TCP (B)

Header checksun: @xBedl [correct]
Lioadac chock tabuce Coodl

[Caleulated Checksum: @xfedi]

Source: 18.1.1.69 (16.1.1.69)

Destination: ec2=52=25-155-119.us-west-2.conpute.amazonaws.com (52.25.155.11%)

[Seurce GeoIP: Unknown] 4

Figure 3.30 Time to live variation

Internet Protocol version 4 provides connectionless routing service at the
network layer and IP protocol switch packet moving across the network. It also uses
techniques to fragment packets to the required MTU size before switching them through
the network. IP also guarantees the application of the Quality of service (QoS) information
in the packet. Examination of the [P header structure in figure 3.30 indicates the
reduction of the Time to Live (TTL) field value of each packet forwarded by the router.
This explains the number of hops the packet travels before reaching its destination. The
figure also shows how IP packets behave while travelling through an internet network.
The IP ID value field remains the same for each packet from the same fragment. Some
packets do not allow any IP fragmentation at any point in the network as shown in figure
3.30 (packet number). If the network layer receives a small packet, it can be transmitted.
But large packets cannot be sent through because the MTU requirement is not met;
consequently, the packet is simply dropped. In this case, the Internet Control Message
Protocol (ICMP) provides an error message service for any problem at the network layer.

The response is then sent back to indicate the reason for the packet drop.
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4 Results

As demonstrated in the previous section, Wireshark incorporates numerous functions
that allow analysts to investigate network problems. Network problems are typically
caused by device failures, poor network configuration and internal and external attacks
are all possible causes of network problems. Wireshark is effective at investigating all

such problems.

The primary action in mitigating network problems consists of a good understanding
of packet traces in those areas that experience performance issues. Network
administrators must be aware of the importance of Wireshark and new algorithms
because of their effectiveness at finding causes and solving problems that are time-

consuming to discover.

This thesis has described several methods of analysing packet traces using Wireshark
and presented examples of common local network attacks. [t has also reported mitigation
measures and methods of reducing the impact that these create on network performance.
Filters and extra functions such as Follow TCP Stream and Export Info are also provided
by Wireshark through which more rigorous analysis of traffic can be performed. The use

of graphs provides an efficient way of interpreting packet traces and detecting attacks.

With the help of Wireshark’s Time-Sequence Graph (figure 3.21), TCP Round Trip
Time Graph (figure 3.7), and the Throughput Graph from TCP data flow (fig. 3.22), it was
possible isolate the reasons for the network performance problems, and derive the key
performance indicators of the network. The Advanced 10 Graphs solved the mathematic
part of the problem by providing computing network values of such variables as SUM
(variable), COUNT (variable), MIN (variable), and MAX (variable) on the packets. Display
filters also played a major role in analysing the traffic in the Advanced 10 Graphs. The
Round-Trip Time Graph, as illustrated in figure 3.7, defined the time between data being
transmitted and the other end of the communication. TCP ACK Throughput Graphs, as
illustrated in figure 3.22, are one way of plotting the entire bytes seen in the trace ata

precise time. If the throughput value diminishes, the time it takes to transfer data
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increases. The TCP Time-Sequence Graphs plot each TCP packet based on the variation
of sequence numbers aver time. In addition, this graph type depicts the ACKs seen and

the window size.
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5 Discussion

Overview

The network traffic was captured with the use of Wireshark - a network monitoring tool. It
first captured the packets from the home network. These packets were then analysed with the
help of the display filters and statistics included in Wireshark (Shimonski, 2013). The analysis of
TCP,UDP, IP and HTTP provided details of the network traffic. These details included information
about packet loss, packet transmission, round trip time, time to live and retransmission. The
HTTP analysis provided the protocol hierarchy for the captured packets by calculating the packet
counter and load distribution for the captured packets. The TCP and HTTP analysis were used to
identify the best performance of the network compared to the other analyses. The TCP analysis
provided overall network traffic information using the 10 graph and other features of Wireshark

to resolve packet loss, packet retransmission, congestion control and congestion avoidance.

TCP protocol data flow and congestion avoidance

During data drop, the analysis of the two different congestion avoidance
algorithms -Cubic and Reno - demonstrated considerable similarity in performance

drop. A significant drop was observed for both congestion avoidance algorithms.
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Figure 5.1  Performance of two different congestion avoidance algorithms while

experiencing data loss

As figure 5.1 shows, for 1% packet drop, the bandwidth rates were 9.18 and
9.19 for Reno and Cubic respectively. For 5% data drop these bandwidths decreased
to 5.86 and 7.07. When data loss was increased to 10%, the bandwidth rates declined

to 1.93 and 2.34 respectively.

Outcome from the experiments when link experienced ACK loss

During the experiments, when the link was experiencing ACK drop, performance
was not affected by a small number of acknowledgement drops. In the case of data drops,
even for 1% packet drop, a decrease in performance was noticeable. While the ACK drop
occurred, performance was unchanged for the link and remained constant at 9.37

Mbits/s, even when the link experienced 10% of ACK loss.

To observe the performance when the link was experiencing a high volume of
ACK drops, the quantity of ACK drops was increased 10 times. Instead of 1%, 2%,
3%... 10% ACK drop rate, the performance for 10%, 20%, 30%...100% ACK drop was
observed. In these experiments, a temporary performance drop was noticed after a
40% increase in the rate of acknowledgement drops. Congestion occurred in the
network when the ACK drop rate reached 70%. The same experiments were repeated
several times to ensure these results. Each time, a reduction in performance was
observed after the ACK drop rate reached 40%; communication stalled completely at

60% acknowledgement drop.

The design of the congestion avoidance methods probably explains the
remarkable performance drop during heavy packet loss. Since the transmission rate
reduced to 50% for each lost packet, the transmission rate is increased linearly. But after
the next packet loss, the transmission rate again decreases to 50% of the last value.
Consequently, there will be an imbalance between the increase (linear) and decrease
(halved) in transmission rate which will resultin rapidly reducing performance. This may

be one of the reasons behind the reduced performance in the TCP.
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When the fast-retransmit mechanism signals congestion, the sender, instead
of returning to Slow Start uses the Multiplicative Decrease Congestion Avoidance
(MDCA) software, which is part of the fast recovery mechanism. During this drop, if
the congestion window is less than 10 packets or the congestion window is within
two packets of the receiver’s advertised window, the Fast Recovery mechanism will
be initiated. When three packets are dropped in a single window of data and the
number of packets between the first and second dropped packets is less than
2+3W/4 (W is the congestion window just before the Fast Retransmit), the sender
will wait for a retransmit timeout. When four packets are dropped in a single
window, the sender will have to wait for a retransmit timeout. With the increased
number of dropped packets in the same window, the likelihood of having to wait
until retransmission occurs increases, thereby disrupting data transmission and
halting transmission completely at a certain point. When the fast retransmission
mechanism is disrupted, the fast recovery mechanism will not be able to perform

properly [34].

When filtering the number of packets lost, the bandwidth dropped randomly. So,
there is a high possibility that more than one packet has been dropped in the same
window. This indicates an inefficient use of the fast retransmission and fast recovery

mechanism which may explain the significant reduction.

The figure 5.2 illustrate the volume in packet per second of a home network traffic.
the graph in figure 5.2 provides a pattern that is similar to the majority of the plot
obtained in this project. The plot in figure 5.3 illustrates the predictable two-hour

prediction that repeatevery half an hour.

During the daily traffic study, the plot indicates that the traffic double in volume in two
directions of the connection, from 5 am to 11AM during working day. Daily and weekly
pattern are very similar. The peak is observing round midday. With 20% increase in
packets, 30% in data flow. figure 5.3 indicated that, the download direction continually

carries very high rate than the upload direction.

Figure 5.6 illustrates two statistics flow traffic related. The plotindicated that during peak

time the peak state ca go up to 245,000 bytes per second.
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The figure 5.5 shows the different element that form the traffic over 1 day in a home
network the graph reveal line representing the traffic contain in term of IP base protocol
and the breakdown of both UDP and TCP application. The observation show that TCP is
the dominant protocol in the communication. Over the period of one day with an average
of 94% of packet and 70% flow on the connection, UDP arrives in second position with

roughly 8% of packets. Other protocol such as ICMP and ARP
Occupied the third position with an average of 1.5% packets.

Figure 5.7 reveal the composition of the common application measured | the home
network for a period of one week. For each application, server and client are combine as
one application. the graph shows that web base application comes first on the link with
almost 65% of packets. Followed by the files transfer application with the average of 4%
packets, SMTP comes third with with roughly 2 % of packet, finally telnet with less than
1% of the packet.
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6 Conclusion

Time-sequence appears to be an important tool for trace analysis. Exploring the

time at which different processes occur in the network enables the analyst to investigate

what happens in the lifetime of the connection. This opens up new questions about the

performance of protocols used today such as TCP, [P, UDP and others forming the TCP/IP

stack.

To understand the reason behind TCP’s drastically reduced performance
during increasing packet loss, different congestion avoidance algorithms together
with different types of TCP variables were analyzed. A decrease in transmission rate
with a single packetloss was observed. This increase in packet loss led to a significant

reduction in the performance of the network.

In a small network, the behaviour of TCP Reno was analysed by introducing
packet loss. TCP Reno performed well when no packet loss was introduced, but by
introducing 1% packet loss, the performance reduced from 9.37 Mbps to 9.18 Mbps
which represents a 2% decrease in performance. When reaching 10% packet loss,

performance of TCP Reno reduced to 1.93 Mbps.

A similar type of experiment was done while introducing external ACK loss. A
small amount of ACK loss did not affect performance at all; it remained constant at
9.37 Mbps. But a large amount of ACK loss, for example 40% ACK loss, caused
performance to drop from 9.13 Mbps to 8.18 Mbps and with a 60% reduction in ACK,
performance decreased to 0.00014 Mbps (Megabyte per second). When the two
congestion avoidance algorithms were compared, it was clear that Cubic performed
better than Reno. In Cubic, the performance was constant at 93.7 Mbps until 60% of
ACK drop. With Reno, performance decreased to 17.9 Mbps while the link was
experiencing a 30% ACK drop and for 60% ACK loss, performance declined to 0%, as
with Cubic.

ACK loss is not as serious as loss of data packets since they are cumulative,
meaning that a missing ACK will be recovered when the next ACK is delivered.
However, when excessive ACK loss occurs, the sender has to retransmit the packets.

In this situation, itis likely that a high ACK loss rate will rapidly increase the number
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of retransmitted packets which will once again be lost and retransmitted. This will
create a huge load on the network which is likely to resultin a significant performance

drop.

In conclusion, the experimental results demonstrate that a small amount of ACK
loss does not affect network performance, while a large amount of ACK loss was unable
to be handled by the TCP. This report demonstrates the existence of bugs that are
concealed by the robustness of the TCP/IP. This problem can be solved in two phases.
Firstthe Reset (RST) must be found, and then the problem identified and fixed. Research
is currently being carried out which aims to increase the reliability of TCP. Therefore, it
is likely that performance problems involving TCP in existing networks will be

ameliorated by the next generation of advanced algorithms.

Future research

Wireshark, as a network protocol analyser, performs better than other network
monitoring tools. In the future, Wireshark will continue to be used for intrusion
detection. It provides efficient detection of malicious packets in the network. The future
development of Wireshark is likely to focus on enhancing its characteristics as a robust
intrusion detection system. Because it has the most powerful features, it is the most
popular network protocol. Accordingly, it is used for analysis, trouble shooting and
communications protocol development, principally by capturing, viewing and analyzing
the captured packets. As a network monitoring tool, it provides high quality performance

and reduces intermittent connectivity.

Two major recommendations can be made for continuing to develop efficient
network monitoring tools. First, by using more powerful processors and hardware
configurations, the data processing speed could be increased, which may reduce the
amount of packet loss. This should also have a positive impact on performance.
However, the potential impact of other TCP variables may also influence the
bandwidth rate. Second, research should focus on observing the behaviour of other

Congestion Avoidance Algorithms during multiple packetloss to increase efficiency in
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the network. While the TCP may survive a single packet loss, the challenge remains to

develop a protocol that can cope with multiple packet losses.

Appendix 1 More figures
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Appendix 2 Abbreviations and Definitions

Abbreviation Definition
TCP Transmission control protocol
IP Internet protocol
IPV4 Internet protocol version 4
IPV6 Internet protocol version 6
UDP User datagram protocol
IGMP Internet Group Management Protocol
ACK Acknowledgement
SYN Synchronization
SEQ Sequence
HTTP Hypertext transport protocol
FTP File transfer protocol
ARPA Advance Research project agency
RFC Request for comment
QoS Quality of service
CoC Control and comment
LAN Local Area network
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WAN Wide area network

MCTCP Multi-connection TCP

ISO International Organization for
Standardization

IAB Internet architecture board

KPI Key performance indicator

ITU-R International telecommunication union

QPSK Quadrature phase shift keying

QAM Quadrature amplitude modulation

AM Amplitude Modulation

NIC Network interface card

RAM Random access memory

POP Post office protocol

SMTP Single mail transport protocol

ECM Error correction mechanism

MTU Maximum Transfer Unit

ISN Initial Sequence Number
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Appendix 3 Details of Consultation Meetings
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