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Summary

In studying acoustic or electromagnetic wave diffraction, the choice of an appropriate

canonical structure to model the dominant features of a scattering scenario can be very

illuminating. A common approach used when dealing with domains with corners is to

round the corners, producing a smooth surface, eliminating the singularities introduced

by the corners. This thesis examines and quantifies the effect of corner rounding both

numerically and analytically. The diffraction from cylindrical scatterers which possess

corners, that is, points at which the normal changes discontinuously is examined. We

develop a numerical method for the scattering of a plane wave normally incident on such

cylindrical structures with soft, hard or impedance loaded boundary conditions. We

then examine the difference between various test structures with corners and with the

corners rounded to assess the impact on near- and far-field scattering, as a function of

the radius of curvature in the vicinity of the rounded corner point. We then examine

the nature of the differences in the far-field between the cornered and rounded scatterers

both in the frequency and the time domain. We obtain precise quantitative estimates

for the rate of convergence of the maximum difference between the far-field solutions

as the radius of curvature of the rounded scatterer approaches zero and verify them

analytically. Having examined the near- and far-field solutions we confirm that the

techniques employed also produce highly accurate solutions in close proximity to the

surface of the scatterer especially in the vicinity of the corner. Our study of the effect of

corner rounding is extended to arrays of scatterers using a classical but computationally

intensive method for these calculations. To enable the study of larger scatterer arrays, we

employ the recently available TMATROM an object-oriented T-matrix software package,

with our own forward solvers.
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Chapter 1

Introduction

Diffraction of acoustic or electromagnetic waves by canonical shapes and structures of

more general and arbitrary shape is of enduring interest. The choice of an appropriate

canonical structure to model the dominant features of a scattering scenario can be very

illuminating. Scattering by sharp edges and corners is informed by, for example, the

diffraction from the half-plane and the wedge (of infinite extent). The nature of the

singularities in the field and its derivatives is well described in [1]. There has been much

work to develop analytical and numerical methods to account for these singularities

which enable accurate modelling, however, these methods can be time consuming to

implement and at times very specialised. When numerical methods are employed, a

common approach used when dealing with domains with corners is to round the corners,

producing a smooth surface. This eliminates the singularities introduced by the corners

and allows for standard numerical quadratures to be used, though leaving the researcher

with no clear estimate of the error or difference induced by the rounding.

The earliest study of scattering from a sharp object could be said to begin with

Sommerfeld’s solution to the half-plane problem [2, 3]. It was the first recognition that

the dependencies of the scattered field differed to that of a smooth body. The next major

development was the study of the wedge [4–6] where the dependence of the scattered

field on the angle of the wedge was made explicit. These canonical problems admitted

analytical solutions that demonstrated explicitly the dependence of field quantities on

the corner angle. In more modern times, turning to finite dimensional bodies, there is a

vast literature on numerical approaches to scattering calculations that may be classified

1



2 CHAPTER 1. INTRODUCTION

in terms of the diameter 2a of the scatterer in wavelengths. At long wavelengths, the

scattered field may be regarded as a perturbation of a corresponding static problem and

expansion in a series of powers of ka (k - wave number), whilst at short wavelengths

(ka� 1), ray tracing techniques are often deployed.

In the intermediate or resonance regime, integral equation approaches provide the

usual basis for numerical methods. Over the last couple of decades, the advantages of

integral equation formulations - well-posed second kind equations, unknowns to be found

only on the scattering surface (rather than the surrounding space) and automatic incor-

poration of the radiation condition obviating the need for terminating the volumetric

grid characteristic of differential equation methods - have become well established for

the reasons explained in [7, Ch 3], and provide the basis for an approach. The robust-

ness and efficiency of such approaches are particularly important where a sequence of

direct scattering problems is iteratively solved such as in some current inverse scattering

algorithms: see for example [7, 8].

Although there is an extensive literature on scattering and diffraction from sharp

cornered objects as well as those with smooth boundaries, there does not seem to be a

systematic treatment of the transition from one to the other, in particular as the radius

of curvature of the rounded corner points tends to zero. Two notable contributions are

that of [9] who studied diffraction by slender bodies in the high-frequency regime and

more recently [10] who develop a method to smooth corners of polygonal structures.

In order to clarify and quantify the effect of corner rounding this thesis examines

the two-dimensional case of diffraction from cylindrical scatterers which possess corners,

that is, points at which the normal changes discontinuously. Our approach provides a

relatively simple yet efficient and accurate method for computing near- and far-fields

scattered by sharp cornered objects of diameter up to several wavelengths in extent.

Accuracy was of paramount importance in this study in assessing the effects of rounding

a corner. The rounding used in this and earlier papers [11–14] replaces cornered scatterers

(both curvilinear and polygonal) by a smooth object that is extremely close to the original

except in the vicinity of the corners. The rounded curve is nearly a hyperbola with

sides of the corner being its asymptotes, or similar. Recently [10] have developed a

different method for rounding the corner of polygons and have considered the Dirichlet
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and Neumann problem.

A more sophisticated approach to the scattering from soft cylindrical structures with

sharp corners is given by [15]. It employs the so-called recursively compressed inverse

preconditioning method, and in the survey of the two dimensional scattering literature, it

alone addresses the problem of accurate near-field evaluation in scatterers with corners.

Other approaches build in greater levels of complexity in modelling the surface distribu-

tion with attendant benefits. For example, the approach to scattering by convex polygons

given by [16,17], where the choice of approximating basis functions involving plane waves

propagating along the edges, produces a scheme where the degrees of freedom required

to produce a prescribed level of accuracy grows only logarithmically with frequency of

the incident wave. In [18] a collocation method is developed for convex polygons and

high-frequency waves by adapting the approach used in [19] where a Galerkin method

was used for similar problems. The MPSpack suite [20] is another (finite element) ap-

proach employing a more sophisticated basis of non-polynomial finite elements which is

shown to be well adapted to scattering from polygonal structures. The methods listed

and others will be further detailed in the examination of literature section.

Our calculations rigorously examined the acoustic resonance regime ka ≤ 16π corre-

sponding to diameters less than 16 wavelengths. In this work we use a numerical method

that is suitable for examining the scattering of acoustic or appropriately polarised elec-

tromagnetic plane waves by cylindrical structures possessing some points of small or zero

radius of curvature (that is, having a sharp corner). Earlier work in [11–14, 21–25] is

significantly extended. We examine three different boundary conditions: soft, hard and

an impedance loaded boundary condition, enforced at all points on the cross-sectional

boundary of the cylinder. We implement the Nyström method expounded by [7, 26] for

the soft boundary condition for a scatterer with a single corner to obtain numerical solu-

tions of this integral equation. We then develop other (similar) Nyström methods for the

hard and impedance boundary conditions and adapt these methods for scatterers with

two and four corners to obtain numerical solutions of the respective integral equations.

These numerical methods are first used to compare the convergence of solutions for

different discretisations of the surfaces of the scatterers, and then to assess the impact

on near- and far-field scattering, as a function of the radius of curvature in the vicin-
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ity of the rounded corner point. The nature of the differences in the far-field between

the cornered and rounded scatterers is examined as well as the effect on the differences

as the frequency of the plane wave increases. We also examine the effect of rounding

corners in the time domain. We quantify numerically the rate of convergence of the max-

imum difference between the far-field solutions as the radius of curvature of the rounded

scatterer approaches zero and confirm this analytically. Having examined the near- and

far-field solutions we confirm that the techniques employed also produce highly accurate

solutions in close proximity to the surface of the scatterer especially in the vicinity of

the corner. Our study of the effect of corner rounding is extended to arrays of scatterers

using a classical but computationally intensive method for these calculations. To enable

the study of larger scatterer arrays, we employ the recently available TMATROM [27],

an object-oriented T-matrix software package, with our own forward solvers. We docu-

ment the process required to employ this package and examine both the advantages and

restrictions the use of this package provides. We then use our implementation of TMA-

TROM to verify our earlier numerical results and to examine large (up to 256) scatterer

arrays.

1.1 Examination of Selected Literature

The purpose of this work is to examine the effect of rounding corners on scatterers and

as such we required a highly accurate method of evaluating the scattered field from both

smooth scatterers and cornered ones. Our work is focussed on the acoustic resonance

regime. In this region, differential and integral equation approaches are commonly used

to solve the scattering problem. We have chosen to use an integral equation approach,

specifically integral equations of the second kind and a boundary element method (BEM)

for solving them. The main advantages over other methods such as the finite element

method is the reduction of the problem dimension by reducing the scattering problem

from a two-dimensional problem to a single-dimensional one governed by the boundary of

the scatterer which automatically satisfies the radiation conditions. As such, there is no

need for the imposition of an artificial domain boundary. We wish to present literature

specific to these methods with some inclusions of other techniques being used for the

solution of acoustic scattering problems for structures with corners. Although we have
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attempted to provide a comprehensive survey, we apologise to any authors not mentioned

in this section.

Much work was done in the 1980’s and 1990’s on boundary integral equation methods

for the Laplace and Symm’s equation problems for cornered scatterers which influenced

the methods used for the time harmonic Helmholtz problem. Some of the papers of inter-

est are [28–33]. The numerical methods used in these works are collocation, Galerkin’s

method and Nyström discretisation. Both analytical and numerical techniques such as

employing a graded mesh are considered. A comprehensive review of the various tech-

niques being employed at this time for the Laplace problem is provided in [34], the

Galerkin method for boundary integral equations in [35] and the Galerkin, collocation

and qualocation methods in [36].

In the acoustic regime, in 1982 Varadan et al. [37] use the T-matrix method to cal-

culate the surface quantities and far-fields of rigid cylindrical objects with sharp corners.

At this stage for the resonance regime problems, evaluation of these fields was only pos-

sible for a restricted number of cross-sectional shapes for which the differential operator

is separable. Bowman et al. [1] present the separation of variable approach to these

solvable problems. In 1993 Yan [38] developed a pre-conditioned Richardson iterative

method suitable for circles and circular ellipses with Dirichlet boundary condition for

wave numbers up to ka = 100. The method is as rapid as a trigonometric collocation

method and does not suffer the loss of accuracy of the methods of [39–42]. In 1997

Yang takes a different approach and reformulates the integral equations governing the

Helmholtz equations to be singularity free for the Dirichlet and Neumann problems and

uses a Gauss-Legendre quadrature method. The work is designed to cater for higher fre-

quency waves ka up to 20π but is for 3D scattering from smooth-surfaced scatterers, not

cornered ones. Yang later extends this work to the 2D acoustic problem [43] but only

for smooth-surfaced scatterers. At this time comprehensive code was provided in [44]

which creates and refines triangulations on the surface of smooth and cornered objects

which then solves the integral equations using different collocation methods depending

on whether the surface is smooth or not. Kolm and Rohklin develop a method for de-

signing high-order quadrature rules to enable evaluation of singular and hypersingular

integral in [45]. In 2007 Engleder and Steinbach [46] reformulate the Helmholtz equa-
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tions using modified regularised boundary integral equations for scatterer with Dirichlet

or Neumann boundary condition which also cater for Lipschitz boundaries. Their method

is suitable for a Galerkin discretisation. For high-frequency 3D problems for arbitrary

shapes Nieminen et al. [47] use a modified Kirchhoff approach.

We adopted a Nyström method for scatterers with corners and a Dirichlet boundary

condition developed by Rainer Kress. In 1990 Kress published [48] a convergence and

error analysis for the numerical solution inside a plane domain with corners of the har-

monic Dirichlet problem using a Nyström method using a double-layer boundary integral

equation. In this work a graded mesh is used which results in high-order resolution of the

weak singularities of the kernels of the integral operators as well as the stronger singu-

larities of the derivatives of the unknowns in the vicinity of the corners. Similar graded

meshes were also considered by [49, 50] and the superior rate of convergence exhibited

when using a graded mesh rather than a uniform mesh for a finite crack in the half-plane

is demonstrated numerically in [50]. Kress’ approach is based on a global approxima-

tion which is easier to implement rather than the repeated rule used in [49, 50]. Yan

and Sloane [51] demonstrate that for the harmonic Dirichlet problem using the single-

layer potential and the Galerkin method with a graded mesh for polygonal domains (and

open arcs) produces highly convergent solutions. In 1993 Kress and Sloane [52] present

a solution to the Helmholtz Dirichlet problem using only the single-layer potential for

smooth domains and suggest this method can be extended to cornered domains by the

use of graded mesh. The collocation and Galerkin methods for numerical solutions in do-

mains with corners were also considered by others [31,53–55]. Kress chooses the Nyström

method over others as it is computationally less costly.

In 1991 Kress published his seminal paper [26] where he examines the exterior bound-

ary value problem in time-harmonic acoustic scattering for scatterers with a Dirichlet

boundary condition. The theory on boundary integral equations for this problem in [56]

is recapped, and the parameterisation of the integral equations governing this problem is

presented. The solution uses the combined single- and double-layer potentials proposed

by Burton and Miller [57] to ensure the uniqueness of the solution. The singularities

present in the kernels of the integral equations are treated using the methods proposed

by Martensen [58] and Kussmaul [59] which split the kernel into an analytic and non-
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analytic part and employ trapezoidal polynomial interpolation quadrature, respectively

to evaluate these kernels. Burton and Miller’s [57] treatment of the hypersingular kernel

(the derivative of the double-layer potential) is also employed. Kress then compares the

Nyström, collocation and Galerkin methods and demonstrates that for smooth surfaced

scatterers these methods demonstrate an exponential order of convergence. He concludes

by detailing a method for cornered scatterers in which he modifies the integral equation

used for smooth scatterers to accommodate the double-layer potential jump-relations in

the corner and employs a graded mesh to deal with the singularities in the derivatives in

the corner. This work is further detailed in [7] and is the method adopted for the smooth

scatterers and single-cornered scatterers with Dirichlet boundary condition studied in

this work. We developed our own graded mesh for two and four-cornered scatterers and

extended Kress’ methods to solve the Neumann and impedance boundary value problems.

These methods produce a rapidly convergent solution.

Kress in 1995 [60] published the solution to the Neumann problem for smooth do-

mains using a combined single- and double-layer potential, and describes a method to

numerically solve the hypersingular operator that results from using this approach. Later

in [61], Kress uses a the double-layer potential to solve the acoustic Helmholtz problem

for smooth surfaced scatterers and uses a collocation method for the numerics. Our

approach differs to that of Kress in that we only use the single-layer potential which

eliminates the hypersingular operator. The integral equation has a unique solution at

all except countably many wave numbers k. One of the advantages of using only the

single-layer potential is that the solution to the integral equation gives the value of the

derivative of the surface quantity directly, which represents the surface current in the

electromagnetic case and the normal derivative of the acoustic wave potential in the

acoustic case. We were able to reproduce the published numerical results [61] using our

method. This is further described in Section 3.1.

In 2012 Anand et al. [62] present a high-order Nyström method for two-dimensional

acoustic scattering problems with Neumann boundary conditions for scatterers with cor-

ners. Their approach is based on Direct Regularised Combined Field Integral Equation

(DCFIE-R) formulations. This particular method does not require the evaluation of

hypersingular operators typically occurring in DCFIE-R formulations. Their numerical
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implementation follows Kress’ to formulate the problem combined with the graded-mesh

quadrature proposed by Kress [48], resulting in an efficient, high-order Nyström method

which produces solutions to these scattering problems. Condition number estimates for

the combined equation formulations and the upper and lower bounds on the single- and

double-layer potential operators is provided in [63,64].

Boubendir and Turc [65] also use a regularised CFIE approach with a Nyström

method to solve the acoustic Neumann problem for smooth scatterers, and in [66] use a

regularised CFIE with graded mesh and high-order Nyström discretisation to solve the

Helmholtz impedance loaded problem for scatterers with corners.

In 2009 Bruno et al. [67] present a new algorithm for the Neumann Laplace problem

for cornered scatterers, both concave and convex, which differs from the approach used

by Kress [48] and others [49, 50]. The method isolates the leading singularity of the

integral equation for special treatment and uses graded mesh for the regular remainder.

Even though this method is used for the Laplace problem, the authors state that it can

be applied to the Helmholtz and Maxwell problems.

Adkuman and Kress [68] solve the electromagnetic impedance problem for inhomo-

geneous boundary conditions, for both the direct and inverse problems. The aim is not

to reconstruct the shape of the scatterer but to recover the impedance variable on the

surface of the scatterer. Of particular interest is the method for the direct problem, which

is based on an integral representation of the scattered field using Green’s formula. Em-

ploying the jump relations of the single- and double-layer potentials a boundary integral

equation is produced that is well posed and can be numerically solved using a Nyström

method. This particular method eliminates the hypersingularity encountered when us-

ing the standard single- and double-layer potential approach used by Kress in [26, 60].

The effectiveness of these methods is demonstrated using an ellipse and a lemniscate as

examples.

Other more recent work which has been considered is that of Chandler-Wilde and

Langdon and their co-contributors. Their extensive work specialises in high-frequency

acoustic problems. Earlier work was for the half-plane [69–74]. This was followed by

works for sound-soft convex polygons using a Galerkin boundary element method [75,76],

and using a collocation method [18]. Later the method was extended to curvilinear
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polygons in [77]. The more recent approach to high-frequency problems uses hybrid

numerical-asymptotic methods for both smooth and cornered domains with Dirichlet,

Neumann and impedance loaded boundary condition [78], convex polygons with impe-

dance loaded boundary condition [16] and non-convex scatterers with Dirichlet boundary

condition [79]. The same class of method is used for convex polygons in [17].

Other work considered was that of Rohklin et al. [42,80–82] which employs fast mul-

tipole methods for solving the 2D and 3D Helmholtz problems. In 2013 Helsing and

Karlsson [15] solve the Helmholtz (electromagnetic) problem for scatterers with corners,

using the combined layer integral equations with a Nyström scheme and use the RCIP (re-

cursively compressed inverse preconditioning) method to handle the corner singularities.

They demonstrate the scheme’s effectiveness for high-frequency (large body) problems

for both the Dirichlet and Neumann boundary conditions. As noted earlier, this work

addresses the problem of accurate near-field evaluation in scatterers with corners.

More recently, Bremer, Rohklin et al. [83–85] developed an algorithm which constructs

universal quadratures for the rapid and highly accurate solution to certain 2D Laplace

and Helmholtz problems for domains with corners. One of the principal tools they use

is charge bases, which are small finite orthonormal bases which span the restrictions of

solution of the boundary integral equation to a small curve segment which is a subset

of the main contour. A detailed algorithm is included on how to construct the charge

bases as well as the algorithm of how to construct the quadrature formulae which employ

them. In 2012, based on this work, Bremer [86] develops a modified Nyström scheme

for the Neumann Laplace problem for domains with corners which is mathematically

equivalent to a Galerkin discretisation. He describes a fast direct solver for the solution to

scattering from planar curves with corners and demonstrates numerically the efficiency of

this technique for convex and concave single-cornered scatterers as well as multi-cornered

scatterers. The work concludes with the application of the technique to the combined

layer potential solution of the Helmholtz problem with Dirichlet boundary condition for

a multi-cornered scatterer (a starburst domain). This work is applicable to the Dirichlet

and Neumann problems as well as acoustic scattering at the interface of two fluids. He

specifically addresses the acoustic Neumann and Dirichlet problems in [87].

In 2012 Deckers et al. [88] use a wave based method based on Trefftz approach to solve
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2D acoustic problems for domains with singularities such as those occurring in corners or

at points where the boundary conditions change. They use special purpose enrichment

functions to enhance the accuracy of more traditional wave based methods when encoun-

tering domains with singularities. In 2015 Sun et al. [89] present a boundary regularised

integral equation formulation (BRIEF) solution to the 3D Laplace problem where singu-

larities are removed analytically from the fundamental solution to produce a non-singular

formulation of the problem. This removes the need for specialised quadrature resulting

in coding effort savings. This method was extended to the acoustic Helmholtz equation

in [90].

Of particular interest is a 2014 study performed by Hao et al. [91] comparing the

Kapur-Rohklin [92], Kolm-Rohklin [45] and Alpert [93] quadrature rules which are fast

multipole method compatible to that of Kress [26] for smooth surfaced scatterers. For the

2D acoustic Helmholtz problem it was demonstrated that the Kress’ method solutions

were of two to three digits better accuracy. The experiments were for scatterers of 0.5

to 50 wavelengths diameter.

There are software packages that offer different methods of solution to the wave scat-

tering problem. In the early 90’s Hamilton et al. [94,95] developed the FastScat program:

an object-oriented software package for computing electromagnetic scattering and radi-

ation. Using an object-oriented approach simplified the implementation of numerical

techniques such as the fast multipole method. FastScat was used by Canino et al. [95]

to implement a high-order Nyström scheme for the 2D and 3D time-harmonic scattering

problem. For smooth-surfaced scatterers local corrections were used for discretisation

in the vicinity of the kernel singularity. This employed the single-potential formulations

for both the Dirichlet and Neumann problems rather than the combined field integral

equations. An open source example of software employing boundary element methods

is [96], and for multiple scattering problems by discs [97].

In this work, we made use of two software packages: MPSpack [98, 99] and TMA-

TROM [27, 100]. MPSpack was developed by Barnett and Betcke and uses the method

of fundamental solutions, choosing Trefftz-type basis functions in such a way as to elim-

inate the problem of ill-conditioned systems of equations that sometimes result [101].

The software allows modelling of 2D Laplace and Helmholtz boundary value problems
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and eigenvalue problems for smooth and polygonal scatterers with Dirichlet, Neumann

or impedance loaded boundary conditions [20]. TMATROM is a Matlab object-oriented

T-matrix software package developed by Ganesh and Hawkins [102]. The package im-

plements a numerically stable algorithm [103, 104], to compute the T-matrix of a two-

dimensional scatterer. A discussion of relevant literature for the T-matrix method used

for solving our scattering problems is detailed in Chapter 8.

Two specific works addressing corner rounding are those of Engineer et al. [9] and

Epstein and O’Neil [10]. Engineer et al. examine diffraction of high-frequency sound

waves from 2D curved slender bodies with Neumann boundary condition as the radius

of curvature changes. For this high frequency study they used ray theory and identified

additional creeping wave propagation features associated with high-frequency problems.

As is well recognised, rounding the corners of scatterers eliminates the need to deal

with the singularities in the corners, and, in 2016 Epstein and O’Neil [10] develop a

method to smooth corners of polygonal structures using a rounding algorithm such that

the difference in the structures is localised in a small neighbourhood of the corner. To

discretise the smoothing, they first use polynomial panels with Gauss-Legendre interpo-

lation nodes, followed by a weighted Nyström method. For the Dirichlet case, the use of

a combined single- and double-layer approach and for the Neumann case the single-layer

potential. They demonstrate numerically that in both cases, as the size of the region that

is rounded near the corners reduces to sub-wavelength, the convergence of the bi-static

cross sections is approximately first order. They report for wavelengths approximately

2π and 50π, at distances ranging from 20λ up to 8333λ. Their work concludes with

an extension to piecewise smooth boundaries which is used to smooth the corners of 3D

polyhedra. The approach used by Epstein and O’Neil differs from ours but the numerical

results are consistent with our own. The reported relative errors are of a similar order to

our earlier 2015 results [12–14], and they too demonstrate numerically that the difference

in the scattered potentials converges as the radius of curvature decreases and that the

rate of convergence is dependent on the radius of curvature. For the two examples used

in their paper - a structure with interior right-angles and one with interior angles of π/3

- the rates of convergence correspond to ours. In our work we have made the precise

dependence of the rate of convergence on the interior angle of the corner as well as the
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radius of curvature, incident wave number and boundary conditions. We have quantified

this both numerically and analytically.

An example of current work employing and examining the effect of rounding corners

is that of Tzarouchis and his work on plasmonic resonances when the corners of polyhedra

are rounded [105, 106]. We also note that the method we use for rounding the corners

of our four-cornered polygonal (square) scatterer is similar to that used by Onaka [107],

where an equation to round the corners of N -sided polygons with different radii of cur-

vature is presented. Onaka uses it to model precipitates of alloys which naturally have

polyhedral shapes with rounded corners. Our method of rounding the lemniscate and

two-cornered scatterers studied are our own.

We adopted and then extended the method used in [26] as it produced highly ac-

curate solutions and was not overly complex to implement. The aim of this work is

to rigorously examine the effect of corner rounding on the acoustic near- and far-fields

and, as such, more complex solutions were not warranted. When we extended our study

to arrays of scatterers, we used the TMATROM package with our own forward-solvers

to reduce computational load, again allowing us to generate highly accurate solutions.

We acknowledge that there has been much work, some of which is mentioned above,

addressing the method of handling the corner singularities and computational efficiency

which allows for more efficient solutions, as well as methods suitable for high-frequency

problems. For readers seeking such methods we refer them to the works mentioned above.

1.2 Thesis Outline

In this thesis we rigorously examine the effect on the resulting scattered field when the

corners of scatterers are rounded. In Chapter 2, we describe the various single scatterer

problems studied. We examine the geometry of the scatterers, establish the differential

equations governing the wave motion of the scattered and incident fields, and describe the

boundary conditions encountered in this project. We reformulate the various scattering

problems in the form of integral equations and introduce the numerical method that is

used in the project: the Nyström method for discretising and solving an integral equation.

We detail adaptations of the Nyström method in treating the singular kernels for smooth

scatterers as well as the additional techniques required for the singularities in the corners
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of the cornered structures. Our work is based on [7,26] for single-cornered scatterers with

Dirichlet boundary condition. We introduce our extension of this technique to scatterers

of two and four corners and scatterers with Neumann and impedance loaded boundary

conditions.

In Chapter 3, we present the numerical results for the different single-scatterer prob-

lems studied and discuss the methods used to determine the accuracy and convergence

of our solutions. We establish that graded mesh is essential for discretising smooth sur-

faced scatterers with small radii of curvature. We examine the deviation of solution and

the nature of the differences when corners are rounded when compared to the cornered

solution. This is done for both the frequency and the time domain. Most significantly we

demonstrate numerically the dependence of the maximum differences in the far-field of a

cornered scatterer and its rounded counterpart on the radius of curvature in the rounded

corner and the wave number and direction of travel of the illuminating incident plane

wave. We establish a set of approximations or bounds for these differences for each of

the three boundary conditions studied.

In Chapter 4 we prove analytically the approximations for the maximum differences

in the far-fields that were numerically established in Chapter 3. This is achieved by

introducing suitable surface parameterisations for the rounded and unrounded scatterers

and then analysing the underlying integral equations. This leads to an approximate

integral equation for the difference in the surface density, in terms of the difference in the

illuminating incident field at corresponding points on each scatterer and of the surface

quantity on the sharp cornered object. We take the lemniscate scatterer with right-angled

corner and Dirichlet boundary condition studied in Chapter 3 as a test case.

In Chapter 5 the behaviour of three quantities at close proximity to the corner of

a scatterer are examined: the total field utot external to the scatterer, the derivative

with respect to the normal ∂u
tot

∂n measured on the surface of the scatterer and the surface

quantity ϕ. We verify that the numerical schemes described in Chapter 2 produce a valid

solution at points very near the scatterer surface, especially in the vicinity of a corner.

We conclude this chapter with a numerical examination of the behaviour of the surface

quantity ϕ near the vicinity of the corner for scatterers with Dirichlet and Neumann

boundary condition and establish numerically that it can be approximated based on the
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wave number k and the distance from the corner along the surface of the scatterer. We

then establish the analytical basis for the Neumann result.

Previous chapters measured the impact on near- and far-field scattering, as a function

of the radius of curvature in the frequency domain. In Chapter 6 we examine the effect

of corner rounding on the far-field in the time domain. For this analysis discrete Fourier

transforms are used to shift the previously collected frequency domain data to the time

domain.

In Chapter 7 we undertake an analysis of the effect of rounding the corners of scat-

terers on the near- and far-fields, when the scattering problems studied in Chapter 3

are extended to arrays of two and four scatterers. We demonstrate that the number of

quadrature points required on each scatterer for a desired degree of accuracy is nearly

the same, whether we are solving a single or multiple scatterer problem. We examine

the relative differences of the far-field solutions produced by arrays of two and four scat-

terers and compare them to the single scatterer results. We conclude by examining the

bounds of the far-field differences and determine the relationship to those established in

Section 3.7 for single scatterers. The classical coupling method used for the work in this

chapter, combined with the Nyström scheme using graded mesh produces highly accurate

solutions but is computationally demanding as the number of scatterers increases. For

investigations into larger scatterer arrays alternative methods were considered.

One such method is to use a software package. In Chapter 8 we examine the TMA-

TROM package [27, 100] - a Matlab object-oriented T-matrix software package, the ad-

vantages that its use provides as well as some limitations. We outline our implementation

which includes incorporating our own forward solvers for cornered scatterers and con-

clude with a detailed verification of the results of earlier work. As part of the verification

process we also employ the MPSpack software [98,99].

In Chapter 9 we use the TMATROM package with our own forward solvers to examine

larger scatterer arrangements of up to 256 scatterers.



Chapter 2

Problem Formulation

In this chapter we describe the various direct scattering problems studied. We examine

the geometries of the scatterers, establish the differential equations governing the wave

motion of the scattered and incident fields, and describe the three boundary conditions,

Dirichlet, Neumann and impedance loaded, that characterise the scatterers encountered

in this work.

With few exceptions, analytical expressions for the scattered field from non-circular

scatterers cannot be obtained. A selection of various canonical scattering problems and

their analytical solutions is collected in [1]. We reformulate the various scattering prob-

lems in the form of integral equations that are the basis for the development of numerical

methods for the scattering from a rather general class of closed (non-circular) scatterers.

The integral equation form uses a Green’s function which has a singularity that is of

logarithmic order.

We transform the integral equation formulations into one-dimensional line integral

format. This enables the application of numerical methods to solve the relevant integral

equation and subsequently compute the scattered field. Next, we introduce the numerical

method, based on [7,26], that is used in this thesis: the Nyström method for discretising

and solving an integral equation. It should also be noted that the standard Gaussian

elimination method is also frequently employed in our calculations as a means of solving

a system of linear equations, resulting from discretisation.

The kernels of the integral equation form of our solution have an integrable loga-

rithmic singularity. We detail an adaptation of the Nyström method in treating these

15
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singular kernels. This works well for objects with smooth boundaries, but as is well un-

derstood, these methods are not adequate for producing convergent solutions for domains

with corners. The adaptation [26] of the approach for a scatterer with a single corner

and Dirichlet boundary condition introduces a graded mesh and subtracts a vanishing

term to compensate for the strong singularity in the corner. The solutions employing

this method exhibit super-algebraic convergence. We extend this technique to scatterers

of two and four corners by employing our own graded mesh and developing a method of

distributing the effect of subtracting the vanishing term from each corner.

The works [7, 26] concern smooth and single-cornered scatterers with a Dirichlet

boundary condition. We used this as a basis to develop methods for scatterers with

Neumann and impedance loaded boundary conditions using a single-layer potential as

the solution to these problems. This approach was also used for the Neumann problem

by [10] subsequent to our earlier work [13]. To the best of our knowledge it has not

been used as a solution to the impedance loaded problem to date. For smooth scatterers

with Neumann boundary condition, Kress [60] uses the combined potentials, and later

in [61] uses the double-layer potential. For cornered scatterers with Neumann boundary

condition the works [15, 15, 62, 86] use the combined potentials or other techniques. For

the impedance loaded problem the paper [68] uses the combined potentials for smooth

scatterers, as does [16] in the case of cornered scatterers.

2.1 The Scatterers

Consider an infinitely long cylinder with uniform cross-section. Without loss of generality

we assume that the axis of the cylinder is parallel to the z-axis. The cylinder is illuminated

by an incident plane wave propagating with direction parallel to the x-y plane. The cross-

section D lying in the x-y plane has a closed boundary ∂D parameterised in the form

x(t) = (x1(t), x2(t)), t ∈ [0, 2π] . (2.1)

In this work, we consider three classes of scatterers with one, two or four corners,

respectively, and the scatterers that result after the corners have been rounded (see

Figure 2.1). They have been chosen to give some flexibility and diversity in the number
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of corners and size of the angle in the corner.

(b) Two-corner (c) Square

Figure 2.1: The different scatterers considered in this work. Those with sharp corners
are shown in blue. The rounded scatterers with radius of curvature ρ ≈ 0.05 are shown
in red.

First, the single-cornered scatterer (lemniscate) has parametric representation

x = x(t) = a (2 sin(t/2),− sin t) , t ∈ [0, 2π], (2.2)

where a is a parameter, henceforth set equal to 1 length unit. The right-angled corner

occurs at t = 0. The families of curves in which the corners have been rounded are

parameterised by the quantity ε (0 ≤ ε ≤ 1). The rounded lemniscate has representation

x = x(t) = a

(
2

√
ε2 + (1− ε2) sin2(t/2),− sin t

)
, t ∈ [0, 2π]. (2.3)

The two-cornered scatterer is described by the parametric representation

x = x(t) = a (cos t, sin t) / (1 + |sin t|) , t ∈ [0, 2π], (2.4)

where a is a parameter, henceforth set equal to 1 length unit, with corners at t = 0 and

t = π. The rounding is achieved using the representation

x = x(t) = a

(
cos t

1 +
√
ε2 + sin2 t

,
sin t

1 +
√
ε2 + sin2 t

)
, t ∈ [0, 2π]. (2.5)

The four-cornered scatterer has parametric representation

x = x(t) = (a (cos t− sin t) , b (cos t+ sin t)) /R̂, (2.6)
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where R̂ = (|cos t|+ |sin t|), so that corners occur at t = 0, π/2, π and 3π/2 respectively.

Henceforth the parameters a and b are set equal to 1 length unit, so that the resultant

shape is a square. The corners are rounded using the representation

x(t) =
(
cos t̂, sin t̂

)
/R, (2.7)

where t̂ = t+ π/4 and

R =


∣∣sin t̂∣∣ (1 +

(
cot t̂

)1/ε)ε for t̂ ∈ I = [π4 ,
3π
4 ] ∪ [5π

4 ,
7π
4 ],∣∣cos t̂

∣∣ (1 +
(
tan t̂

)1/ε)ε for t̂ ∈ [0, 2π] \ I,
(2.8)

and ε is restricted to 0 < ε ≤ 1 .

The corners of the above scatterers all have an interior right angle. We also consider

scattering structures with corners that are not right-angles: convex structures with acute

and obtuse interior angles as well as concave structures.

The following modification made to the lemniscate (2.2) allows for different acute

interior angles β,

x = x(t) = a

(
2 sin

(
t

2

)
,− tan

(
β

2

)
sin t

)
, t ∈ [0, 2π], (2.9)

where 0 < β < π/2.

The following modification made to (2.2) models single-cornered scatterers with an

obtuse interior angle β,

x = x(t) = a

(
2 tan

(
π − β

2

)
sin

(
t

2

)
,− sin t

)
, t ∈ [0, 2π], (2.10)

where π/2 < β < π.

The parametric representation

x = x(t) = a

(
− sin

(
3t

2

)
,− tan

(
π − β

2

)
sin t

)
, t ∈ [0, 2π], (2.11)

models a single-cornered concave scatterer with an interior (reflex) angle 3π/2 ≤ β < 2π,
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and the representation

x = x(t) = a

(
tan

(
π − β

2

)
sin

(
3t

2

)
,− sin t

)
, t ∈ [0, 2π], (2.12)

models single-cornered concave scatterers with shallower reflex angles, π ≤ β < 3π/2.

The corner occurs at t = 0 for all the described non-right angled scatterers. Figure 2.2

illustrates these shapes with differing interior angles.

 = /3

 = /4

 = /6

 = /12

 = /18

(a) Convex scatterers (2.9) with acute interior
angle, β.

 = 7 /4

 = 11 /6

 = 35 /18

(b) Concave scatterers (2.11) with reflex angle,
β.

 = 3 /4

 = 5 /6

 = 11 /12

 = 35 /36

(c) Convex scatterers (2.10) with
obtuse interior angle, β.

 = 3 /2

 = 5 /4

 = 13 /12

 = 37 /36

(d) Concave scatterers (2.12) with reflex angle,
β.

Figure 2.2: Single-cornered scatterers with different interior angles, β.

2.1.1 Radius of Curvature

The radius of curvature ρ at the point (x1(t), x2(t)) is calculated from the standard

formula

ρ(t) =

∣∣∣∣∣
(
x′1(t)2 + x′2(t)2

)3/2
x′1(t)x′′2(t)− x′2(t)x′′1(t)

∣∣∣∣∣ , t ∈ [0, 2π] . (2.13)

Table 2.1 lists approximate radius of curvature ρ at the corner point and the correspond-

ing value of the rounding parameter ε that is required in the parametric representations
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(2.3), (2.5), (2.7) for the three different cornered scatterers.

Rounding parameter, ε
∼ ρ Lemniscate Two-corner Square

0.05 0.025 0.053 0.036
0.04 0.02 0.042 0.028
0.03 0.015 0.031 0.021
0.02 0.01 0.021 0.014
0.01 0.005 0.01 0.008

Table 2.1: Radii of curvature corresponding to rounding parameter ε used in the param-
eterisations of different scatterers.

2.2 The Incident and Scattered Fields

The incident field illuminating the scatterer induces a scattered field. We assume that

the incident and scattered fields are time harmonic with a temporal factor e−iωt. The

spatial component uinc(x, y) of the incident wave travelling in the direction of the unit

vector d = (cos θ0, sin θ0) takes the form

uinc(x, y) = eikx·d, (2.14)

and satisfies the Helmholtz equation

∆u(x, y) + k2u(x, y) = 0, (x, y) ∈ R2, (2.15)

where k = ω/c is the wave number and c is the speed of waves in the medium or of light

in free space.

The spatial component usc(x, y) of the scattered field obeys the Helmholtz equation

(2.15) at all points (x, y) exterior to the body; moreover it obeys the two-dimensional

form of the Sommerfeld radiation condition

lim
|x|→∞

√
|x|
(
∂usc(x)

∂x
− ikusc(x)

)
= 0, x ∈ R2\D, (2.16)
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Figure 2.3: The scattered field, Re(usc), for the three scatterers with Dirichlet boundary
condition. Direction of the incident wave θ0 = π/6, 0 and π/4, respectively.

as well as the finiteness of energy condition

∫
V

(
k2 |usc|2 + |∇usc|2

)
dV <∞, (2.17)

where V denotes any bounded volume containing the scatterer D.

2.3 The Boundary Conditions

The nature of the scatterer imposes certain conditions that must be satisfied by the total

field

utot = uinc + usc, (2.18)

on the boundary of the scatterer ∂D. This work considers three different boundary

conditions:

utot(x) = 0, x ∈ ∂D, (sound-soft, E-polarised, Dirichlet) (2.19)

∂utot

∂n
(x) = 0, x ∈ ∂D, (sound-hard, H-polarised, Neumann) (2.20)

∂utot

∂n
(x) + ikZutot(x) = 0, x ∈ ∂D, (impedance loaded) (2.21)
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where n(x) is the unit outward normal to the boundary ∂D at the point x and Z = Z(x)

is a continuous function of position. To ensure uniqueness Re(Z) must be positive on

the boundary ∂D. Throughout, we restrict Z to be a complex constant.

Figure 2.4: The total field, Re(utot), for the three scatterers with Dirichlet boundary
condition. Direction of the incident wave θ0 = π/6, 0 and π/4, respectively.

2.4 Integral Representations

In this section we introduce various concepts and results that we will draw upon in future

sections.

Classical domain methods, such as the finite-difference method or finite-element

method, which are used for numerically solving partial differential equations, require

the division of the domain into a finite number of grid points or sub-domains. Typically,

a minimum of 5/λ to 10/λ grid points per linear dimension is needed for solutions of

acceptable accuracy, where λ is the wavelength. Thus the number of grid points in a

two dimensional domain is proportional to 1/λ2. This results in a linear system of order

O
(

1
λ2

)
equations to be solved. By reformulating the scattering problem as integral equa-

tions, we are able to reduce the problem to one that solves for an unknown function on

the boundary of the scatterer ∂D rather than in space. After discretisation, the problem

is reduced to one of order O
(

1
λ

)
linear equations.

A further consideration is that the scattering problem is set in unbounded space.

Using one of the classical domain methods will require the imposition of an artificial

boundary with suitable boundary conditions to approximate the Sommerfeld radiation

condition (2.16). The reformulation of the problem as a boundary value problem auto-
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matically incorporates exactly the Sommerfeld radiation condition.

In this section we define the acoustic single- and double-layer potentials and explore

certain properties of these potentials on the boundary of the scatterer. We then use

these potentials to reformulate the boundary value problems described in Section 2.3

into integral equation form. Our integral equation form uses the free space Green’s

function, which has a logarithmic singularity on the surface of the scatterer; it is thus

integrable.

2.4.1 Single-layer and Double-layer Potentials

Two integral representations of solutions to the Helmholtz equation (2.15) are the acoustic

single-layer potential and the acoustic double-layer potential.

Definition 2.4.1 The acoustic single-layer potential u with integrable density ϕ is

u(x) =

∫
∂D

G(x,y)ϕ(y) ds(y), x ∈ R2\∂D, (2.22)

where G is the the two-dimensional free-space Green’s function

G(x,y) =
i

4
H

(1)
0 (k |x− y|), (2.23)

and H(1)
0 denotes the Hankel function of first kind and order zero. The Green’s function

satisfies the Helmholtz equation (2.15) everywhere except at x = y, and satisfies the

Sommerfeld radiation condition (2.16). The acoustic single-layer potential is continuous

and bounded throughout R2\∂D.

Definition 2.4.2 The acoustic double-layer potential v with integrable density ϕ is

v(x) =

∫
∂D

∂G(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ R2\∂D, (2.24)

where
∂G(x,y)

∂n(y)
= ∇yG(x,y) · n(y), (2.25)

is the normal derivative of the Green’s function with respect to the outward unit normal

n(y) at y. Both the single- and double-layer potentials are solutions to the Helmholtz
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equation in D and satisfy the Sommerfeld radiation condition (2.16) in R2\D̄. Any

solution of the Helmholtz equation can be represented as a combination of these two

potentials [7, p.40].

The Green’s function (2.23) has a singularity when x = y. In Appendix A.1 we show

that this singularity is logarithmic and as such integrable.

The single- and double-layer potentials are defined on R2\∂D. To enforce the bound-

ary conditions on ∂D, we continuously extend these functions to the boundary of the

scatterer ∂D. The behaviour of these potentials as x approaches a point on ∂D, where

the integrals become singular, is given by the jump relations.

2.4.2 The Jump Relations

Theorem 2.4.1 [7, p.40] Let ∂D be of class C2 and let ϕ be continuous on ∂D. The

single-layer potential u with density ϕ is continuous throughout R2 and on the boundary

is defined by the convergent integral

u(x) =

∫
∂D

G(x,y)ϕ(y) ds(y), x ∈ ∂D. (2.26)

Also
∂u±
∂n

(x) =

∫
∂D

∂G(x,y)

∂n(x)
ϕ(y) ds(y)∓ ϕ(x)

2
, x ∈ ∂D, (2.27)

where
∂u±
∂n

(x) = lim
h→0+

n(x) · gradu (x±hn(x)), (2.28)

is to be understood in the sense of uniform convergence on ∂D and where the integrals

exist as improper integrals.

The double-layer potential v with density ϕ can be continuously extended from D to

D̄ and from R2\∂D̄ to R2\∂D with limiting values

v±(x) =

∫
∂D

∂G(x,y)

∂n(y)
ϕ(y)ds(y)± ϕ(x)

2
, x ∈ ∂D, (2.29)

where

v±(x) = lim
h→+0

v(x±hn(x)), (2.30)
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and where the integral exists as an improper integral. Furthermore,

lim
h→0

{
∂v

∂n
(x+ hn(x))− ∂v

∂n
(x− hn(x))

}
= 0, x ∈ ∂D, (2.31)

uniformly on ∂D.

2.4.3 Integral Operators

We define two operators associated with the single- and double-layer potentials of a

continuous density ϕ(y) defined on the boundary ∂D,

(Sϕ)(x) = 2

∫
∂D

G(x,y)ϕ(y) ds(y), x ∈ R2, (2.32)

(Kϕ)(x) = 2

∫
∂D

∂G(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ R2; (2.33)

their normal derivatives are, respectively

(K′ϕ)(x) = 2

∫
∂D

∂G(x,y)

∂n(x)
ϕ(y) ds(y), x ∈ ∂D, (2.34)

(T ϕ)(x) = 2
∂

∂n(x)

∫
∂D

∂G(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ ∂D. (2.35)

For x ∈ ∂D the limiting values of the integral operators (2.32) and (2.33) are

lim
x′→x

(Sϕ)(x′) = 2

∫
∂D

G(x,y)ϕ(y) ds(y), (2.36)

lim
h→0+

(Kϕ) (x± hn) = 2

∫
∂D

∂G(x,y)

∂n(y)
ϕ(y) ds(y)± ϕ(x), (2.37)

and we apply (2.27) and (2.28) to (2.32), so that for x ∈ ∂D

∂(Sϕ)±
∂n(x)

(x) = 2

∫
∂D

∂G(x,y)

∂n(x)
ϕ(y) ds(y)∓ ϕ(x). (2.38)

We note that the integral operators (2.32), (2.33), (2.34) and (2.35) are compact [56,

p.61] when the boundary ∂D is smooth.
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2.4.4 Integral Representations of the Boundary Value Problems

We reformulate the boundary value problems described in Section 2.3 into integral equa-

tion form.

2.4.4.1 The Exterior Dirichlet Problem

The solution to the exterior Dirichlet problem for all x ∈ R2\D̄, is based on representing

the scattered field as a combination of the single- and double-layer potentials

usc(x) =

∫
∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y) ds(y), x ∈ R2\D̄, (2.39)

where η is a coupling parameter. We use the Dirichlet boundary condition (2.19) and the

jump relations for the single- and double-layer potentials, (2.26) and (2.29), to obtain

the integral equation

ϕ(x)

2
+

∫
∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y) ds(y) = −uinc(x), x ∈ ∂D, (2.40)

for which the unknown continuous density ϕ is a solution. In operator form we write

Iϕ+Kϕ−iηSϕ = g, (2.41)

where g = −2uinc. This integral equation is uniquely solvable for all wave numbers

satisfying Im k ≥ 0 [56, p.91] when η is positive. To minimise the condition number of

(2.41) we set the coupling parameter η to the value k as recommended in [108].

2.4.4.2 The Exterior Neumann Problem

The single-layer potential

usc(x) =

∫
∂D

G(x,y)ϕ(y) ds(y), x ∈ R2\D̄, (2.42)
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with continuous density ϕ is a solution to the exterior Neumann problem for all x ∈ R2\D̄

[109, p.95], provided ϕ is a solution of

−ϕ(x)

2
+

∫
∂D

∂G(x,y)

∂n(x)
ϕ(y) ds(y) = − ∂uinc

∂n(x)
, x ∈ ∂D. (2.43)

We use the Neumann boundary condition (2.20) and the jump relation for the normal

derivative of the single-layer potential (2.27) to derive this equation. In operator form

we write

−ϕ+K′ϕ = h, (2.44)

where

h(x) = −2
∂uinc

∂n
(x), x ∈ ∂D (2.45)

and ϕ (x) satisfies ∫
∂D

ϕds = 0, (2.46)

when D ∈ R2. Further, in R2, the exterior Neumann problem is uniquely solvable if and

only if ∫
∂D

hds = 0, (2.47)

is satisfied [109, p.95] and that k is not an interior Dirichlet eigenvalue [56, p.98].

2.4.4.3 The Exterior Impedance Problem

The single-layer potential

usc(x) =

∫
∂D

G(x,y)ϕ(y) ds(y), x ∈ R2\D̄, (2.48)

is a solution to the exterior impedance problem for all x ∈ R2\D̄ [56, p.98]. We use the

impedance boundary condition (2.21) and the jump relation for the normal derivative of

the single-layer potential (2.27), thus obtaining the integral equation
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−ϕ(x)

2
+

∫
∂D

∂G(x,y)

∂n(x)
ϕ(y) ds(y)+ikZ

∫
∂D

G(x,y)ϕ(y) ds(y) = −∂u
inc

∂n
(x)−ikZuinc(x),

x ∈ ∂D, (2.49)

for which the unknown continuous density ϕ is a solution. In operator form we write

−ϕ+K′ϕ+ ikZSϕ = m, (2.50)

where

m(x) = −2

(
∂uinc

∂n
(x) + ikZuinc(x)

)
, x ∈ ∂D. (2.51)

This solution is unique provided that k is not an interior Dirichlet eigenvalue [56, p.98].

Uniqueness is guaranteed by considering a suitable combination of single- and double-

layer potentials, ie the combined potential

usc(x) =

∫
∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y) ds(y), x ∈ R2\D̄, (2.52)

where η 6= 0 solves the exterior impedance problem uniquely provided that the density

ϕ(x) ∈ ∂D is a solution of

(1− iηZ)ϕ−
(
K′ + iηT + iηZK + ZS

)
ϕ = −m, (2.53)

for all wave numbers Im k ≥ 0 [56, p.98].

2.5 Numerical Solution

In this section we outline the numerical method used to solve the boundary value problem

representations defined in the previous section.
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2.5.1 Transformation into Line Integrals

Using the boundary parametrisation (2.1), the operator Sϕ (2.32) may be expressed as

(Sϕ)(x(t)) =

∫ 2π

0
S0(t, τ)ϕ(τ)|x′(τ)|dτ, (2.54)

where the kernel S0(t, τ) = 2G(x(t),x(τ)) and

|x′(τ)| =
√

(x′1(τ))2 + (x′2(τ))2. (2.55)

Similarly, the operators Kϕ (2.33) and K′ϕ (2.34) generate associated kernels K0(t, τ),

K ′0(t, τ).

Thus the integral equation formulation (2.41) of the exterior Dirichlet problem is

transformed into the parametric operator form

ϕ(t) +

∫ 2π

0
{K0(t, τ)− iηS0(t, τ)}ϕ(τ)|x′(τ)| dτ = 2g(t), 0 ≤ t ≤ 2π; (2.56)

the formulation (2.44) of the exterior Neumann problem takes the parametric form

−ϕ(t) +

∫ 2π

0
K ′0(t, τ)ϕ(τ)|x′(τ)|dτ = 2h(t), 0 ≤ t ≤ 2π; (2.57)

and the formulation (2.50) of the exterior impedance problem takes the parametric form

−ϕ(t) +

∫ 2π

0

{
K ′0(t, τ) + ikZS0(t, τ)

}
ϕ(τ)|x′(τ)|dτ = 2m(t), 0 ≤ t ≤ 2π. (2.58)

2.5.2 Nyström Method

The Nyström method outlined in [7,26] is used to numerically approximate the solution

to the integral equations (2.56), (2.57) and (2.58).

A method developed by Martensen [58] and Kussmaul [59] and outlined in [26] for the

logarithmic singularities arising in (2.56), (2.57) and (2.58) was employed: the singular

parts of the kernels S0(t, τ), K0(t, τ) and K ′0(t, τ) are isolated in the following manner

so that

K̂0(t, τ) = K̂1(t, τ) ln

(
4 sin2 t− τ

2

)
+ K̂2(t, τ), (2.59)
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where K̂1, K̂2 are analytic. The smooth components of the kernels are approximated

using the trapezoidal rule and the logarithmically singular kernels are approximated

using a weighted trigonometric interpolation quadrature. The resulting system of 2n

linear equations is a discretisation of the integral equations (2.41), (2.44) and (2.50).

Fuller details of the Nyström and Martensen/Kussmaul methods used are provided in

Appendix A.2.

2.5.3 Surface Discretisation

Four different spacings of the 2n mesh points were used. For smooth scatterers we began

by using a mesh of 2n uniformly spaced points tj = πj/n, for j = 0, 1, . . . , 2n − 1, in

the parametrisation (2.1). However, for domains with corners, the solutions to (2.41),

(2.44) and (2.50) have singularities in the derivatives in the corners. To deal with these

singularities, the uniform mesh is replaced by a non-uniform graded mesh [7, 26]. This

is achieved by substituting a new variable such that the derivatives of the transformed

integrand vanish up to a certain order at the corners and following [7,26] approximately

half of the quadrature points are uniformly distributed around the surface of the scatterer

between the corners and the other half are concentrated at the corners. Thus for any

function f(t), its definite integral over [0, 2π] is evaluated by the trapezoidal quadrature

rule after the substitution t = w(s) by the appropriately chosen function w(s):

∫ 2π

0
f (t) dt =

∫ 2π

0
f (w (s))w′ (s) ds ≈ π

n

2n−1∑
j=1

ajf (sj) , (2.60)

with weights aj = w′ (tj) and mesh points sj = w (tj).

For domains with corners, the corners are assumed to be located at the points xi on

the scatterer boundary ∂D, and ∂D\
⋃
{xi} is assumed to be C2 and piecewise analytic.

The angle γi at the corners is assumed to lie in the interval 0 < γi < 2π. The function

w (s) must be strictly monotonically increasing between the corners and the derivatives

at the corners must vanish up to some order p.

For a domain with a single corner, the function w(s) recommended by [7,26] is

w (s) = 2π
[v (s)]p

[v (s)]p + [v (2π − s)]p
, 0 ≤ s ≤ 2π, (2.61)
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where

v (s) =

(
1

p
− 1

2

)(
π − s
π

)3

+
1

p

s− π
π

+
1

2
, (2.62)

for some integer p ≥ 2. In this study we use the value p = 8 following the recommendation

of [7, 26].

The required substitution is applied to the discretisation of (2.54) by setting t = w (s)

and τ = w (σ) to obtain

∫ 2π

0
S0(t, τ)ϕ(τ) dτ =

∫ 2π

0
S0(w (s) , w (σ))ϕ (w (σ))w′ (σ) dσ. (2.63)

and (2.59) such that

K̂0 (w (s) , w (σ)) = K̂1(s, σ) ln

(
4 sin2 s− σ

2

)
+ K̂2(s, σ). (2.64)

The kernels K̂1(s, σ) and K̂2(s, σ) are analytic. The operator is now discretised using

the points sj = w (tj) and weights aj = w ′ (tj) . Fuller details are in [7].

To create a graded mesh for the two and four-cornered scatterers we require functions

which are strictly monotonically increasing between each corner point with derivatives

that vanish at the corners up to some order p, and that ensure that the quadrature points

are densely clustered around each corner. In this case we choose p = 6. For a domain

with two corners, our choice of the function w(s) is

w (s) = s− 3

4
sin 2s+

3

20
sin 4s− 1

60
sin 6s, 0 ≤ s ≤ 2π, (2.65)

and for a domain with four corners

w (s) = s− 3
8 sin 4s+

3

40
sin 8s− 1

120
sin 12s. (2.66)

The appropriate substitution is applied to the kernels S0, K0 orK ′0 and is then discretised

as before. Fuller details are in [7, 13,26].

The application of the quadrature rule (2.60) with the use of (2.61), (2.65) or (2.66)

as appropriate, evaluated at the 2n points tj , produces a system of 2n linear equations.

The solutions are obtained by the usual Gaussian elimination procedure.
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2.5.4 Cornered Scatterers with Dirichlet Boundary Condition

Implementation of the graded mesh ensures a rapid convergence rate (as a function of

n) for scatterers with corners and the Neumann and impedance boundary conditions. In

the case where these scatterers have a Dirichlet boundary condition further modifications

are necessary to achieve comparable convergence rates. For these domains the kernel of

(2.39) is no longer weakly singular at the corner, and the corresponding operator loses

compactness.

2.5.4.1 Single-cornered Scatterers

For domains with a single corner at x0 and the Dirichlet boundary condition we follow

the technique proposed by [7,26] which uses the fundamental solution (the static Green’s

function)

G0 (x,y) =
1

2π
ln

1

|x− y|
, x 6= y, (2.67)

to the Laplace equation in R2 to subtract a vanishing term. This transforms (2.39) into

usc(x) =

∫
∂D

{{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y)− ∂G0(x,y)

∂n(y)
ϕ(x0)

}
ds(y),

x ∈ R2\D̄, (2.68)

and the associated boundary equation (2.40) is reformulated as

ϕ(x)− ϕ(x0) + 2

∫
∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y) ds(y)

− 2

∫
∂D

∂G0(x,y)

∂n(y)
ϕ(x0) ds(y) = −2uinc(x), x ∈ ∂D. (2.69)

An analysis showing the existence of a solution to (2.69) is provided in [7]. Fuller details

of the numerical method changes required to implement this reformulation are available

in Appendix A.3.
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2.5.4.2 Two-cornered Scatterers

This modification needs to be extended when the scatterer has two corners on ∂D. There

are now two points in the domain with singularities in the derivatives: at t = 0 and t = π.

Each of these singularities have a contributing effect to be accounted for. Again, we use

the fundamental solution to the Laplace equation in R2 (2.67) to subtract vanishing

terms. To reflect these combined contributions (2.39) is reformulated for the domain

with two-corners as

usc(x) =

∫
∂D

{{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y)

− cos2 t (x)

2

∂G0(x,y)

∂n(y)
ϕ(x0)− sin2 t (x)

2

∂G0(x,y)

∂n(y)
ϕ(xπ)

}
ds(y),

x ∈ R2\D̄, (2.70)

where x0 and xπ are the two corner points and t(x) denotes the parameter value of point

x. The associated boundary equation (2.40) is now

ϕ(x)−
(

cos2 t (x)

2
ϕ(x0) + sin2 t (x)

2
ϕ(xπ)

)
+ 2

∫
∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y) ds(y)

− 2

∫
∂D

(
cos2 t (x)

2

∂G0(x,y)

∂n(y)
ϕ(x0) + sin2 t (x)

2

∂G0(x,y)

∂n(y)
ϕ(xπ)

)
ds(y)

= −2uinc(x), x ∈ ∂D. (2.71)

2.5.4.3 Four-cornered Scatterers

A different modification is needed when the scatterer has four corners on ∂D. There are

now four points in the domain with singularities in the derivatives: at t = 0,π2 , π and 3π
2 .

Each of these singularities have a contributing effect that needs to be accounted for. For

scatterers with four corner points, equation (2.39) is reformulated as

usc(x) =

∫
∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y)−



34 CHAPTER 2. PROBLEM FORMULATION

∫
∂D

{
f1(x)

∂G0(x,y)

∂n(y)
ϕ(x0) + f2(x)

∂G0(x,y)

∂n(y)
ϕ(xπ/2)

+f3(x)
∂G0(x,y)

∂n(y)
ϕ(xπ) + f4(x)

∂G0(x,y)

∂n(y)
ϕ(x3π/2) ds(y)

}
, x ∈ R2\D̄,

(2.72)

where x0 , xπ/2, xπ and x3π/2 are the four corner points and

f1(x) =
1

2
cos2

(
t (x)

2

)
, f2(x) =

1

2
sin2

(
t (x)

2
+
π

4

)
, (2.73)

f3(x) =
1

2
cos2

(
t (x)

2
+
π

2

)
, f4(x) =

1

2
sin2

(
t (x)

2
+

3π

4

)
. (2.74)

The associated boundary equation (2.40) is now

ϕ(x)−
(
f1(x)ϕ(x0) + f2(x)ϕ(xπ/2) + f3(x)ϕ(xπ) + f4(x)ϕ(x3π/2)

)
+ 2

∫
∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y) ds(y)

− 2

∫
∂D

{
f1(x)

∂G0(x,y)

∂n(y)
ϕ(x0) + f2(x)

∂G0(x,y)

∂n(y)
ϕ(xπ/2)

+ f3(x)
∂G0(x,y)

∂n(y)
ϕ(xπ) + f4(x)

∂G0(x,y)

∂n(y)
ϕ(x3π/2)

}
ds(y)

= −2uinc(x), x ∈ ∂D. (2.75)

In all of the above cases we apply the substitution (2.60) with graded mesh (2.61),

(2.65) or (2.66) as appropriate, discretise and solve as previously described. The described

modifications applied to (2.39) and (2.40) ensure that rapid convergence is achieved for

scatterers with corners and the Dirichlet boundary condition on ∂D.



Chapter 3

Effect of Corner Rounding:

Numerical Results

In this chapter we present the numerical results after implementation of the methods

presented in the previous chapter to solve the various boundary value problems for a

variety of scatterers.

We begin by outlining the methods used to verify the correctness of our solutions and

examine the difference on the rate of convergence between the two quadrature schemes:

uniform versus graded mesh. We then measure the deviation from the solution produced

by a cornered scatterer to that produced when the corners are rounded as a function of

the radius of curvature, ρ. We also report on the effectiveness of the numerical schemes

when used on structures with corners that are not right-angled. We next report on the

nature of the differences between the far-fields of cornered scatterers and their rounded

counterparts to answer the questions: at which observation points are the fields most

noticeably different? Are the magnitude of the differences dependent on the incident

field wave number, ka, or angle, θ0?

We also undertake a numerical investigation of the rate of convergence of the differ-

ences of the far-fields of the cornered scatterer u∞0 and its rounded counterpart u∞ρ as

the radius of curvature, ρ, approaches 0.

We conclude this chapter with a summary of some earlier work where the numerical

methods developed in Chapter 2 were used to validate a model developed by Rawl-

ins [110] to approximate the diffraction of an E-polarised wave by an absorbing rect-

35
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angular cylinder. It employed Keller’s method of GTD and its extensions to deal with

multiple diffraction, utilising the diffraction coefficient derived for the canonical problem

of diffraction by an impedance corner. Since the original report [111] the numerical val-

idation experiments have been re-run employing graded mesh and an identical scatterer

geometry.

To the best of our knowledge, this work is the most comprehensive exploration for

the 2D Helmholtz problem of the effect on the near- and far-fields of rounding corners of

scatterers. The only other work we have identified where the effect of corner rounding

has been quantified for this class of problem is that of [10]. Though the use of graded

mesh for cornered structures is well known, we establish the superiority of using a graded

mesh for obtaining the scattered field for smooth surfaced scatterers with small radii of

curvature at some point on their surface. Most significantly, we quantify the rate of

convergence of the differences in the far-fields between the cornered scatterers and their

rounded counterparts, as the radius of curvature tends to zero. This is established for

each of the three boundary conditions and we demonstrate numerically the relationship of

these differences to the wave number and radius of curvature is such that the differences

are either approximated or bounded by C(kρ)m, where the constant C is dependent on

the angle of incidence of the plane wave, and the power m is dependent on the interior

angle of the corner and the boundary condition being studied.

3.1 Verification of Numerical Results

The numerical results discussed in this work were obtained after implementation of the

schemes developed in Chapter 2 in a MATLAB code.

A number of tests were applied to verify its correctness. Analytical solutions were

derived for a circular scatterer for the three boundary conditions and the resultant Mie-

type1 series were used to compute an actual solution. This enabled comparison with the

scattered field computed by the methods described in Chapter 2 for a circular scatterer.

For all three boundary conditions the relative error was in the order of 10−15 which was
1The term Mie series is commonly used for the scattering of an electromagnetic plane wave by a

spherical scatterer. However, papers by Clebsch [112] and Lorenz [113] addressing similar scattering
problems pre-date Mie’s work. For an historical overview see Logan [114,115] and Kerker [116,117]. We
refer to the corresponding series for scattering by a cylindrical scatterer as a Mie-type series.
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considered a suitable tolerance. Also, the condition number of the systems was checked

to ensure that uniqueness problems arising for wave numbers ka near an interior Dirichlet

eigenvalue of the scatterer were avoided.

However, there is no analytical expression for the scattered field from the non-circular

scatterers described in Section 2.1 and as such, there is no true solution to which we can

compare results. For this study, we use a significant digit measurement to determine the

convergence of the solution.

We choose a point x in the domain external to the scatterer and compute the field.

As the number of quadrature points increases, if the solution is convergent, the number

of significant digits in agreement increases. Thus we measure the number of unchanging

digits in the approximate solution as the number of quadrature points N increases, and

terminate the calculation when the truncation of the computed value to a pre-specified

number of significant digits does not change as N increases.

Two measures were used determine the convergence of the solutions. Firstly, a near-

field2 measure of the real and imaginary parts of the scattered field usc. This measurement

was taken at a radius r = 10 from the origin in the direction x = (−1, 1).

The second measure employs the far-field. It is measured in a specified direction

x̂ = x̂(θ̂) = (cos θ̂, sin θ̂), with θ̂ being the angle of observation of the far-field, where

|x̂| = 1. For the Dirichlet boundary condition, the far field pattern is calculated as

u∞ (x̂) =
e−i

π
4

√
8πk

∫
∂D

{kn(y) · x̂+ η} e−ikx̂·yϕ (y) ds (y) , (3.1)

and for Neumann and impedance boundary conditions the calculation is

u∞ (x̂) =
ie−i

π
4

√
8πk

∫
∂D

e−ikx̂·yϕ (y) ds (y) . (3.2)

Using the significant digit method enables measurement of convergence, but of course

does not fully guarantee the accuracy of our results. We were able to find some published
2In antenna studies, the near-field to far-field transition is associated with the Fraunhofer distance

df = 2D2/λ, where D is the maximum dimension of the radiator, and λ is the wavelength. The points
on a circle of radius 10 are not necessarily in the near-field of a scatterer of diameter 2a = 2, especially
at larger wave numbers. In this thesis we use the term near-field to describe any measurement of the
scattered field up to a distance of 10 units from the centre of the scatterer, irrespective of wave number.
In Chapter 5 we specifically examine the scattered field at close proximity to the scattered surface.
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results which allowed a direct comparison to those produced by the implementation of

our schemes.

Figure 3.1: Kite
shaped scatterer.

Kress [26] has published a set of results for a smooth kite

shaped scatterer

x = x(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t) , t ∈ [0, 2π],

(3.3)

with Dirichlet boundary condition, and in [61] for the Neumann

boundary condition. Our codes reproduced these results exactly.

Kress [26] has also published some results for the lemniscate (2.2)

with Dirichlet boundary condition. We were able to reproduce these results exactly.

For the square (2.6) with Dirichlet or Neumann boundary conditions, we were able to

compare our results to those produced by Barnett and Betcke’s MPSpack software [98].

The difference between the MPSpack far-field u∞
M

and that produced by our code u∞0

was measured using the L∞ norm

√
k
∥∥u∞0 − u∞M ∥∥∞ = max

x̂∈[0,2π]

∣∣u∞0 (x̂)− u∞
M

(x̂)
∣∣ , (3.4)

and the L2 norm

√
k
∥∥u∞0 − u∞M ∥∥2

=

(∫ 2π

0

∣∣u∞0 (x̂)− u∞
M

(x̂)
∣∣2 dx̂

) 1
2

. (3.5)

For the Dirichlet boundary condition the L∞ difference was of the order of 10−11 and

the L2 difference of the order of 10−10. For the Neumann case the respective differences

were in the order 10−10 and 10−9. These calculations were performed for wave number

ka = 2π with plane wave angle of incidence θ0 = 0. Changing the angle of incidence to

θ0 = π/4 produced the same results. The same results were observed for a variety of

wave numbers and angles of incidence.

Another verification method used, was to approximate the far-field u∞(x̂) from the

near-field usc(x). From the definition [7] of the far-field pattern,

usc(x) =
eik|x|√
|x|

(
u∞(x̂) +O 1

|x|

)
, |x| → ∞, (3.6)
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where x̂ = x
|x| , we may thus approximate it by

u∞(x̂) ≈ usc(x)

√
|x|

eik|x|
. (3.7)

This was particularly helpful when working with scatterers for which published results

were not readily available. Figure 3.2 illustrates two typical examples. The actual far-

field, u∞(x̂), is shown in red and the approximated far-field calculated at the same points

x̂ in blue. Although there are discrepancies they are relatively small and offer additional

validation that the calculated far-field is correct.

In October 2017, Ganesh and Hawkins [27] released TMATROM - a Matlab object

oriented T-matrix software package [118]. We made use of this package to verify the

numerical results of some completed work, where applicable. Full details are presented

in Section 8.3. We also used the package when modelling larger scatterer arrays in

Chapter 9.
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Figure 3.2: Showing the far-field |u∞(x̂)| and the approximated far-field (3.7).

3.2 Test Parameters

For all scenarios presented in this work a variety of angles of incidence, θ0, were tested.

However, unless otherwise specified, the results reported in this work typically use an

incident plane wave propagating in a direction incident to a corner on the scatterer;

that is, the direction of propagation bisects the angle at the impacted corner. As such,
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θ0 = 0 for the lemniscate and two-cornered scatterer and θ0 = π/4 for the square. Also,

a number of impedance parameters were tried; all produced similar results. In this work

we report on the results for impedance parameter Z = 1 + i. The choice of impedance

parameter was chosen to explore a scenario with significant resistance and significant

phase shift. All tests were performed for a variety of wave numbers: ka = 1, π/2, π, 5,

2π, 10, 4π, 8π and 16π. The results reported in this work are for the far-field. In all cases,

similar results were observed when measuring the near-field. All rates of convergence and

significant digits in agreement for the far-field reported in this chapter are measured in

the back-scatter region, unless stated otherwise.

3.3 Graded Mesh is Essential for Smooth Scatterers with

Small Radii of Curvature

The near- and far-fields were computed for each of the three boundary conditions for

the lemniscate (2.2), two-cornered scatterer (2.4) and the square (2.6) as well as the non

right-angled scatterers (2.9), (2.10), (2.11), (2.12) using the appropriate graded mesh,

(2.61), (2.65) and (2.66), respectively. Figure 3.3 provides a graphical representation of

the near- and far-fields induced by a lemniscate with Dirichlet boundary condition.
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(a) Near-field |usc| measured on a circle, radius
10 centred at the origin.
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(b) Far-field |u∞|.

Figure 3.3: Near- and far-fields induced by a lemniscate with Dirichlet boundary condi-
tion. Wave number ka = 2π, incidence angle θ0 = 0.
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Figure 3.4 illustrates the convergence rates using graded mesh to discretise each of

the three scatterers for the different boundary conditions. It shows the change in the

number of significant digits in agreement of the far-field measurement as the number

of quadrature points increases and illustrates the high convergence rates achieved when

using graded mesh. The number of corners on each scatterer affects the number of

quadrature points required for a desired accuracy. Using 64 quadrature points achieves

at least 10 significant digits accuracy for the lemniscate, 9 for the two-cornered scatterer

and 5 to 6 for the square. Conversely, to achieve at least 10 significant digits accuracy

requires 64 quadrature points for the lemniscate, 128 for the two-cornered scatterer and

512 for the square. Note that for the Dirichlet case, the square scatterer does not achieve

the same degree of accuracy in the solution as for the Neumann and impedance boundary

conditions. This seems to be attributable to the treatment of the singularities in the four

corners in (2.72). Further refinement of this approach should improve the accuracy

achieved.

The rates of convergence achieved for each cornered scatterer with an impedance

boundary condition and wave number ka = 2π, measured as

− log2 [ |u∞2N (x̂)− u∞256(x̂)|/|u∞N (x̂)− u∞256(x̂)| ] , (3.8)

are listed in Table 3.1. This is demonstrative of the typical rates of convergence achieved.

In the case of the lemniscate a convergence rate consistent with super-algebraic conver-

gence is observed. The apparent slowing of the rate shown forN ≥ 64 is a result of limited

accuracy attainable from the measure of only 15 significant digits. The two-cornered and

square scatterers also exhibit very rapid convergence, and we anticipate that improve-

ments to the graded mesh employed will match the rate of convergence demonstrated for

the lemniscate.

We then computed the near- and far-fields for each of the cornered scatterers and

the rounded scatterers (2.3), (2.5) and (2.7) for each of the boundary conditions using

a uniform mesh tj = πj/n, for j = 0, 1, ..., 2n − 1, in the parameterisation (2.1) of the

scatterer. For the rounded scatterers we tested radii of curvature ρ = 0.1, 0.09, ...,

0.01, 0.005, 0.0025, 0.00125 in the corners. The results for the scatterers with corners,
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Figure 3.4: Significant digits in agreement of the far-field of the three sharp-cornered
scatterers, employing a graded mesh to discretise the surface. Results shown are for
ka = 2π, impedance boundary condition, Z = 1 + i. Incidence angle: θ0 = 0 for
lemniscate (a) and two-corner (b); θ0 = π/4 for the square (c).

as expected, exhibit non-convergence when using a uniform mesh. Figures 3.5a, 3.5c

and 3.5e illustrate the effect on convergence when using a uniform mesh for the three

rounded scatterers with an impedance boundary condition for ka = 2π. In short, the

number of uniformly spaced quadrature points required to achieve convergence - or at

least a specified level of accuracy - grows sharply as the radius of curvature decreases.

Similar results were obtained for the Dirichlet and Neumann boundary conditions.

The same series of experiments were then re-run using instead the appropriate graded

mesh (2.61), (2.65) and (2.66) for the scatterers with rounded corners. In all cases this

discretisation method exhibits superior results. In all cases at least 14 significant digit

convergence was achieved. In particular, the use of a graded mesh is essential in obtaining

convergent results for small radii of curvature. Figures 3.5b, 3.5d and 3.5f illustrate the
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effect on convergence when using a graded mesh for the three scatterers with rounded

corners for each of the boundary conditions as the radius of curvature decreases. Similar

results were obtained when measuring the significant digits in agreement of the near-field

data and for different values of ka.

N Lemniscate Two-corner Square

8 4.6 4.4 1.0
16 11.3 13.9 6.0
32 21.5 8.0 13.6
64 11.1 8.9 9.1
128 - 9.1 4.5

Table 3.1: Rate of convergence (3.8) using a graded mesh. Impedance boundary con-
dition, Z = 1 + i, wave number ka = 2π. Incidence angle: θ0 = 0 for lemniscate and
two-corner, θ0 = π/4 for the square.

ρ = 0.05 ρ = 0.02 ρ = 0.01
N Uniform Graded Uniform Graded Uniform Graded

8 5.2 4.6 4.3 4.7 3.7 4.6
16 2.7 11.3 2.1 11.3 1.9 11.3
32 4.3 32.5 2.3 33.6 1.9 31.7
64 8.0 - 3.5 - 2.3 -
128 14.9 - 6.5 -

Table 3.2: Rate of convergence (3.8): comparing uniform vs. graded mesh for a rounded
lemniscate with an impedance boundary condition, Z = 1 + i, where ρ is the radius of
curvature in the corner. Wave number ka = 2π, incidence angle θ0 = 0.

We conclude that even though the rounded scatterers have a smooth boundary ∂D,

as the radius of curvature decreases use of the uniform mesh for discretisation fails to

produce a numerically convergent solution. Use of a graded mesh to discretise the surface

is thus recommended once the radius of curvature is small. As an example, for ka = 2π,

when ρ < 0.04 for the lemniscate and two-cornered scatterer and ρ < 0.03 for the square,

use of the graded mesh is essential to achieve a rapidly convergent solution.

We also note the rate of convergence is superior when using graded mesh even for

scatterers where the radius of curvature is relatively large. For example, in the case of

the lemniscate with radius of curvature ρ = 0.05, using a uniform mesh achieves 12 digits

agreement with N = 256, whereas using a graded mesh achieves 15 digits agreement for

N = 64. For all cases a convergence rate consistent with super-algebraic convergence was

observed. This is further illustrated in Table 3.2, which shows the rates of convergence

for the lemniscate with an impedance boundary condition, for ka = 2π, when a uniform
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versus a graded mesh is used. This suggests that the type of discretisation method

chosen should be decided on a more sophisticated approach rather than a simplistic

smooth versus not smooth criterion.
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Figure 3.5: Illustrating the effect of using graded mesh for discretisation. Significant
digits in agreement of the far-field for impedance boundary condition, Z = 1 + i, for
wave number ka = 2π. Incidence angle: θ0 = 0 for lemniscate and two-corner, θ0 = π/4
for the square.
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3.4 Measuring the Effect of Rounding Corners on the Scat-

tered Field

A common approach used when dealing with domains with corners is to round the corners,

producing a smooth surface and thus eliminating the singularities introduced by the

corners. This is done in the expectation that the difference in the scattered field quantities

are ‘small’ and tend to zero as the radius of curvature of the rounded corners is reduced

to zero.

This section examines the differences in the solution such rounding elicits. Having

established that the graded mesh gives superior results for the rounded scatterers, we

now measure the deviation from the solution produced by a cornered scatterer to that

produced when the corners are rounded. For all experiments the appropriate graded

mesh was used on both the cornered scatterers and those where the corners were rounded.

The difference between the solution produced by a cornered scatterer, u∞0 (x̂), and that

produced by rounding u∞ρ (x̂), with associated radius of curvature ρ, is measured using

the L2 norm ∥∥u∞0 − u∞ρ ∥∥2
=

(∫ 2π

0

∣∣u∞0 (x̂)− u∞ρ (x̂)
∣∣2 dx̂

) 1
2

, (3.9)

and L∞ norm ∥∥u∞0 − u∞ρ ∥∥∞ = max
x̂∈[0,2π]

∣∣u∞0 (x̂)− u∞ρ (x̂)
∣∣ . (3.10)

These tests were run for all three scatterers and each of the three boundary conditions

for the ka values and radii of curvature specified in the previous section. The smaller the

radius of curvature used for the rounding, the smaller the measured difference. Both the

absolute and relative difference were measured. The relative difference is expressed as a

percentage of the same norm of the scatterer’s far-field. Table 3.3 presents a selection of

results for the far-field relative differences for ka = 2π.

Typical results when comparing rounded structures to sharp-cornered ones with ρ =

0.02 are as follows. For the lemniscate, the differences in the L2 norm are 2.4%, 0.9% and

1.7% in the Dirichlet, Neumann and impedance cases, respectively. Similarly, the L∞

norm measures a difference of 1.4% in the Dirichlet case, 0.5% in the Neumann case and

0.8% for the impedance boundary condition. For the two corner scatterer, the respective
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differences in the L2 norm are 3.2%, 1.6% and 2.4% and for the square scatterer, the

respective differences are all 1.3%. As Table 3.3 indicates, these differences increase

as ρ increases. We also note that for a given ρ the two-cornered scatterer has higher

percentage differences for the norms compared to those of the lemniscate or the square.

This is attributable to two factors: the choice of function for the graded mesh and the

smaller cross-sectional area of the two-cornered scatterer. In the case of the lemniscate

and square, the derivatives vanish up to order p = 8, whereas for the two-cornered

scatterer the choice of function has p = 6. Choosing a function with a higher-order p is

expected to reduce this difference.

Changes to the wave number ka also affect the magnitude of the differences. Decreas-

ing the wave number decreases the differences and increasing the wave number increases

the differences. As an example, for scatterers with the Dirichlet boundary condition and

ρ = 0.02, the differences in the L∞ norm are 0.73%, 1.85% and 2.63% for ka = π/2,

4π and 16π, respectively. Similarly, the differences in the L2 norm are 0.71%, 4.34%

and 13.3% . Similar variations were observed for the Neumann and impedance loaded

cases. As ka increases, the wavelength of the illuminating field becomes smaller so that

the amount of corner removed by rounding and the impact on the scattered far-field

becomes more significant. In Section 3.6 the nature of the differences between the fields

when the wave number is changed is discussed as is the effect of changing the direction

of the incident field, θ0.
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Lemniscate Two-corner Square
ρ L2 L∞ L2 L∞ L2 L∞

Dirichlet
0.05 8.1 4.7 10.3 7.5 4.5 2.3
0.04 6.0 3.6 7.7 5.6 3.2 2.1
0.03 4.1 2.5 5.3 3.9 2.2 1.5
0.02 2.4 1.4 3.2 2.4 1.3 0.9
0.01 1.0 0.6 1.2 0.9 0.6 0.4
0.005 0.4 0.2 0.5 0.4 0.2 0.1

Neumann
0.05 4.1 2.2 7 6.6 4.1 3.2
0.04 2.8 1.5 4.9 4.6 2.9 2.2
0.03 1.7 0.9 3.0 2.8 2.0 1.5
0.02 0.9 0.5 1.6 1.5 1.3 0.9
0.01 0.3 0.1 0.5 0.4 0.5 0.4
0.005 0.06 0.03 0.1 0.1 0.2 0.1

Impedance Z = 1 + i
0.05 5.2 2.4 6.9 4.0 3.6 1.8
0.04 4.0 1.8 5.3 3.1 2.7 1.3
0.03 2.8 1.3 3.7 2.2 1.9 1.0
0.02 1.7 0.8 2.4 1.4 1.3 0.6
0.01 0.8 0.4 1.0 0.6 0.6 0.3
0.005 0.4 0.2 0.5 0.3 0.3 0.1

Table 3.3: Measuring the effect of rounding on the far-field. Relative difference of norms
expressed as a percentage. Wave number ka = 2π, incidence angle: θ0 = 0 for the
lemniscate and two-corner, θ0 = π/4 for the square.

3.5 Different Interior Angles

In this section we examine the effectiveness of the quadrature schemes developed for

structures with non right-angled corners, that is, those with acute, obtuse and reflex

interior angles. The near- and far-fields were computed for a variety of angles of incidence

0 ≤ θ0 < 2π and wave numbers 1 ≤ ka ≤ 16π for each type of single-cornered scatterer,

that is, convex with acute interior angle (2.9) and obtuse interior angle (2.10); and

concave structures with reflex interior angles (2.11) and (2.12). A variety of internal

angles β were chosen. All results reported in this section are for scatterers with a Dirichlet

boundary condition (2.19) with incident wave number ka = 2π and angle of incidence

θ0 = 0. Similar results were obtained for the other angles of incidence and wave numbers

as well as the other two boundary conditions..

Figures 3.6a, 3.6b, 3.6c and 3.6d illustrate the convergence rates using the graded
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mesh to discretise the scatterers (2.9), (2.10), (2.11) and (2.12) respectively, for a selection

of wave numbers, ka. They show the change in the number of significant digits in

agreement of the far-field measurement as the number of quadrature points increases.

Similar results were obtained for all wave numbers and when measuring the near-field

data. Rapid convergence is achieved for all interior angles π/12 < β < 35π/36. We note

that for interior angles β outside this range a large number of quadrature points (1024)

is required to achieve a highly accurate solution. In the case of very acute angles, eg,

β = π/36, using 1024 quadrature points only achieves 8 significant digits of agreement.

This is attributable to the proximity of the mesh points on one side of the corner to those

on the other side. As the interior angle is reduced the associated matrix almost becomes

singular, that is, approaches a singular matrix.

A series of experiments was run to examine whether rounding the corners of the

scatterers with small acute internal angles would improve the rate of convergence. The

family of curves in which the corner has been rounded and parameterised by the quantity

ε (0 ≤ ε ≤ 1) corresponding to the convex scatterers with acute interior angles (2.2) is

x(t) = a

(
2
√
ε2 + (1− ε2) sin2 1

2 t,− tan(β2 ) sin t

)
.

The radius of curvature ρ at the rounded corner is readily calculated.

Figure 3.7 illustrates the changes to the rates of convergence when the corner of the

scatterer is rounded using ε = 0.01 (ρ ∼ 0.0001) for these angles. For interior angle of

π/12, to achieve 13 digits agreement requires 1024 quadrature points, but 14 digits can

be achieved with 256 points when the corner is slightly rounded. An interior angle of

π/18 requires 1024 points to achieve 11 digit agreement, whereas the rounded structure

requires 256 points for 10 digit agreement and 512 points for 15. For interior angle π/36

using 1024 points achieves 8 digit agreement and the rounded structure requires 512

points to achieve 9 digit agreement, and using 1024 points will achieve 15.

Rounding the corner of these almost wedge-like scatterers with this small radius of

curvature, improves the convergence rate but has a greater effect on the differences in

the far-fields induced by the rounding than say, a scatterer with interior angle β = π/2.

The difference between the actual far-field solution, u∞0 (x̂), as a function of observation
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direction x̂ and that produced by rounding, u∞ρ (x̂), was measured using the L2 and the

L∞ norms, (3.9), (3.10), respectively. The relative difference is expressed as a percentage

of the same norm of the unrounded scatterer. The relative L∞ norm differences for

ε = 0.01 (ρ ∼ 0.0001) and interior angles β = π/12, π/18 and π/36, are 3.7%, 4.0% and

4.1%, respectively, for wave number ka = 2π whereas for a lemniscate with interior angle

π/2 and ρ = 0.02 the relative difference is 1.4%. Table 3.4 shows the relative L2 and

L∞ norm differences for differing wave numbers for the three scatterers of interest with

ρ ∼ 0.0001 as well as the results for the lemniscate with interior angle π/2 and ρ = 0.02.

We conclude that for interior angles π/12 < β < 35π/36 the quadrature schemes

achieve rapid convergence. Outside this range, the number of quadrature points required

to achieve a highly accurate solution increases noticeably for extremely acute angles. The

number of quadrature points in this circumstance can be decreased for these structures

if the corner is rounded slightly and the resultant maximum difference in the far-field

is 1.7% or less for wave number ka = 1, and ≤ 4.1%, ≤ 9.6% for ka = 2π and 16π,

respectively. Methods for slender bodies such as those used in [9] should be considered

for these cases.

ka = 1 ka = 2π ka = 16π
β L2 L∞ L2 L∞ L2 L∞

ρ ≈ 0.0001
π/12 1.3 1.5 5.2 3.7 20.9 7.9
π/18 1.4 1.6 5.5 4.0 22.6 8.8
π/36 1.5 1.7 5.9 4.1 24.5 9.6

ρ = 0.02
π/2 0.4 0.5 2.4 1.4 13.2 2.6

Table 3.4: Relative difference between far-fields expressed as a percentage. Lemniscates
with Dirichlet boundary condition, interior angle β and radius of curvature ρ. Direction
of plane wave θ0 = 0.
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Figure 3.6: Significant digits in agreement of the far-field |u∞(x̂)| for a single-cornered
scatterer with interior angle β. Direction of incident plane wave θ0 = 0.
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Figure 3.7: Significant digits in agreement of the far-field |u∞(x̂)| for a single-cornered
scatterer with interior angle β. Direction of incident plane wave θ0 = 0.
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3.6 The Nature of the Differences in the Far-field

When examining the differences in the far-field generated by a cornered scatterer and that

generated when the corners are rounded, interest naturally focusses on those observation

points at which the fields most noticeably differ. Figure 3.8 illustrates the differences in

the far-field for each of the three scatterers, using a Dirichlet boundary condition. The

figures show the far-field measured over all observation angles θ (0 ≤ θ ≤ 2π) encircling

the scatterer. To emphasise at which points the fields differ most, a logarithmic decibel

scale 10 log10(2π|u∞|2) is used to plot the fields. The reported results are comparable to

those using the Neumann and impedance loaded boundary conditions.

In all cases, the greatest differences in the far-fields of the rounded and unrounded

scatterers occur in the back-scatter region. Physically this is attributable to the difference

in the scattering mechanisms in the locality of the corner. Figures 3.8a, 3.8b and 3.8c

show the differences resulting when the radius of curvature ρ = 0.05. At the same

wave number (with ka = 2π) figures 3.8d, 3.8e and 3.8f demonstrate the decrease in the

difference when the radius of curvature is reduced to ρ = 0.02. As expected, as the radius

of curvature decreases, the difference between the fields is minimised.

We also examined the differences of the solutions produced by a cornered scatterer and

its rounded counterparts for higher frequency waves, that is, as the wave number relative

to the size of the scatterer, ka, increases. The differences increase as the wave number

increases and are again most noticeable in the back-scatter region. This is, of course, not

unexpected. As ka increases, the wavelength of the illuminating field becomes smaller so

that the amount of corner removed by rounding and the impact on the scattered far-field

becomes more significant. Figures 3.8g, 3.8h and 3.8i show the effect on the far-field of

corner rounding for the three scatterers for ρ = 0.02 and ka = 16π.

We conclude this section with an examination of the effect on the far-field differences

as the angle of the incident plane wave θ0 changes relative to the corner. The results

illustrated in Figure 3.9 are, again, for scatterers with a Dirichlet boundary condition

and ka = 2π. The magnitude of the differences is dependent on the direction of the

incident plane wave in relation to the corner. Of particular interest is Figure 3.9l, which

shows that when the incident wave is travelling in the direction that first makes contact

with the broad end of the lemniscate, even with a radius of curvature ρ = 0.05 the two
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fields are nearly identical. The actual maximum difference between the fields (3.10) is

4× 10−3: a relative difference of 0.2%.

In summary, the maximum differences between the far-fields of the cornered and

rounded scatterers occur in the back-scatter region and the magnitude of these differences

is dependent in the radius of curvature, ρ, used for the rounding, the wave number, ka,

and the angle of the incident plane wave, θ0.
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Figure 3.8: x = observation point θ̂ for 0 ≤ θ̂ ≤ 2π; y = 10 log10(2π|u∞|2).
Decibel plot of the far-field of the sharp-cornered scatterer and that of the rounded one
from different observation points for the each three different scatterers with a Dirichlet
boundary condition. Figures (a), (b) and (c) show the differences for a radius of curvature
ρ = 0.05. Figures (d), (e), and (f), the differences when ρ = 0.02. Figures (g), (h) and
(i) demonstrate the effect between the fields of reducing the wavelength when ρ = 0.02.
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Figure 3.9: x = observation point θ̂ for 0 ≤ θ̂ ≤ 2π; y = 10 log10(2π|u∞|2).
Decibel plot of the far-field of the sharp-cornered scatterer and that of the rounded one
from different observation points for the each three different scatterers with a Dirichlet
boundary condition. Highlights the effect of changing the angle of incidence of the plane
wave. Figures (a), (b) and (c) are for the lemniscate with difference incidence angles and
a radius of curvature ρ = 0.05. Figures (d), (e), and (f), the difference when ρ = 0.02.
Figures (g), (h) and (i) are for the two-cornered scatterer with ρ = 0.05 and figures
(j) and (k) are for the square. Figure (l) shows that for a lemniscate when the angle
of incidence makes first contact with the broad end, the differences in the two-fields is
imperceptible.
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3.7 Rate of Convergence of Far-field Solutions as the Radius

of Curvature ρ Approaches Zero

Based on the observations of the preceding section we examine the quantity

√
k
∥∥u∞0 − u∞ρ ∥∥∞ , (3.11)

where u∞0 is the far-field of the cornered object and u∞ρ is the far-field of the rounded

scatterer with radius of curvature ρ, as the radius of curvature ρ approaches 0. The
√
k

factor correctly non-dimensionalises the far-field quantities. We seek an approximation

of the form
√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≈ C (θ0) (kρ)m , (3.12)

for some constant C dependent on the direction of the plane wave, θ0, and some constant

m.

Data was collected for all the described cornered scatterers (Section 2.1), for all three

boundary conditions for various wave numbers ka using different incident angles, θ0.

The same data was collected for their rounded counterparts, using many different radii

of curvature. A least squares fit to the logarithms of the data (see Figures 3.10 and

3.11), was used for kρ ≤ 0.25 to determine the constants C and m, and the results for

the Dirichlet, Neumann and impedance loaded (with Z = 1 + i) boundary conditions are

presented in Tables 3.6, 3.7 and 3.8, respectively.

For scatterers with the impedance loaded boundary condition, the results show that

√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≈ C (θ0) (kρ)1 , (3.13)

for some constant C dependent on the direction of the plane wave, θ0, for interior angles

π/36 ≤ β ≤ π/2 of the corner of the scatterer3.

For scatterers with the Dirichlet boundary condition

√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≈ C (θ0) (kρ)m , (3.14)

3On the other hand, Ilyinski et al. [119] state that the impedance boundary conditions break down
for strips of infinitesimal thickness. Thus (3.13) is expected to break down as β → 0
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for some constant C dependent on the direction of the plane wave, θ0, and some con-

stant m. We introduce a quantity ν, which is encountered when studying the infinite

wedge problem [1] where

ν =
2π − β
π

. (3.15)

Table 3.5 shows for various interior angles, β, the relationship

between the power m and the quantity 2/ν. It is clear that

there is a correlation between the power m and the quantity 2/ν

for scatterers with a Dirichlet boundary condition with interior angle β. Our numerical

results demonstrate that for scatterers with Dirichlet boundary condition,

√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≈ C(θ0)(kρ)2/ν , (3.16)

for some constant C dependent on the incident field angle θ0. We note the the constant

C is greatest when θ0 = 0 and decreases as θ0 increases. We observe, that a rule of type

(3.12) does not hold for the Neumann boundary condition for the curvilinear scatterers.

The value of m is dependent on the direction of the incident plane wave. In these cases

the far-field difference tend to zero faster than (kρ)2/ν , that is

√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≤ C (θ0) (kρ)2/ν . (3.17)

for some constant C dependent on the direction of the plane wave, θ0. For all the

scatterers the order of m is greatest when the incident plane wave is propagating in

a direction incident to a corner on the scatterer, that is, θ0 = 0 for the curvilinear

scatterers and θ0 = π/4 for the square. The effect of the incident plane wave direction

is most marked in the case of the curvilinear scatterers, where 1.7 ≤ m ≤ 1.9 for θ0 = 0,

with m rapidly approaching 2/ν as the incidence angle deviates from 0. We highlight

that the results for the lemniscate with interior angle β = π/36 are not as consistent

as for the other interior angles. This is not unexpected as the size of the region that is

rounded near the corner is a larger percentage of the scatterer body. We note that some

of these results are also demonstrated in [10], where for the Dirichlet case they show the
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differences in the scattered potential of O((kρ)1.34) and O((kρ)1.2) for scatterers with

interior angles of π/2 and π/6 respectively. In the Neumann case they too exhibit the

demonstrated bound (3.17).

In Chapter 4 we examine the Dirichlet result analytically, and establish a bound of

the form (3.16).

β m 2/ν β m 2/ν

π/2 1.33 1.33 π/12 1.04 1.04
π/3 1.20 1.20 π/18 1.03 1.03
π/4 1.14 1.14 π/36 1.01 1.01
π/6 1.09 1.09

Table 3.5: Illustrating the relationship between m and 2ν in
√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≈

C(θ0)(kρ)m for different interior angles β.

θ0 C m C m C m

Lemniscate, β = π/2 Lemniscate, β = π/3 Lemniscate, β = π/12
0 1.32 1.33 3.73 1.20 56.11 1.04
π/32 1.32 1.33 3.73 1.20 56.03 1.04
π/16 1.31 1.33 3.71 1.20 55.80 1.04
π/8 1.28 1.33 3.64 1.20 54.87 1.04
π/4 1.16 1.33 3.35 1.20 51.41 1.04
π/2 0.68 1.33 2.27 1.20 40.58 1.05

Two-corner Lemniscate, β = π/4 Lemniscate, β = π/18
0 1.30 1.33 6.88 1.14 120.85 1.03
π/32 1.30 1.33 6.87 1.14 120.68 1.03
π/16 1.29 1.33 6.84 1.14 120.19 1.03
π/8 1.26 1.33 6.71 1.14 118.26 1.03
π/4 1.14 1.33 6.22 1.14 111.01 1.03
π/2 0.69 1.33 4.33 1.14 87.73 1.03

Square Lemniscate, β = π/6 Lemniscate, β = π/36
0 0.93 1.33 15.23 1.09 452.96 1.01
π/32 0.93 1.33 15.21 1.09 452.33 1.01
π/16 0.93 1.33 15.14 1.09 450.47 1.01
π/8 0.93 1.34 14.89 1.09 443.20 1.01
π/4 0.89 1.35 13.89 1.09 416.52 1.01
π/2 - - 10.05 1.09 342.59 1.02

Table 3.6: Showing the constants C and m derived using least squares fit for√
k
∥∥u∞0 − u∞ρ ∥∥∞ = C (kρ)m for different directions of the incident plane wave for cor-

nered scatterers with Dirichlet boundary condition and different interior angles, β.
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Figure 3.10: Logarithmic plot: x = kρ, y =
√
k
∥∥u∞0 − u∞ρ ∥∥∞.

The data points used are represented by the blue asterisks, the least squares line of fit is
shown in red.
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(b) Lemniscate, β = π/6.
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(c) Lemniscate, β = π/18.

Figure 3.11: Logarithmic plot: x = kρ, y =
√
k
∥∥u∞0 − u∞ρ ∥∥∞.

Dirichlet boundary condition, with incident direction θ0 = 0. The data points used are
represented by the blue asterisks, the least squares line of fit is shown in red.
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θ0 C m C m C m

Lemniscate, β = π/2 Lemniscate, β = π/3 Lemniscate, β = π/12
0 1.44 1.89 4.51 1.88 158.45 1.82
π/32 0.24 1.41 0.50 1.27 3.69 1.05
π/16 0.29 1.37 0.67 1.23 6.96 1.04
π/8 0.40 1.35 1.03 1.21 12.62 1.04
π/4 0.63 1.33 1.68 1.19 26.01 1.04
π/2 1.01 1.32 2.82 1.19 48.76 1.04

Two-corner Lemniscate, β = π/4 Lemniscate, β = π/18
0 1.21 1.87 13.88 1.90 206.67 1.73
π/32 0.46 1.37 0.49 1.16 7.11 1.02
π/16 0.60 1.35 0.89 1.15 13.22 1.02
π/8 0.81 1.34 1.69 1.14 25.58 1.02
π/4 1.15 1.32 3.22 1.14 56.13 1.02
π/2 1.65 1.32 5.78 1.14 101.25 1.02

Square Lemniscate, β = π/6 Lemniscate, β = π/36
0 0.64 1.30 38.39 1.88 756.16 1.68
π/32 0.77 1.32 1.04 1.10 15.32 0.96
π/16 0.87 1.32 1.91 1.09 36.10 0.98
π/8 1.04 1.34 3.64 1.09 95.07 1.00
π/4 1.21 1.37 6.74 1.09 182.47 0.98
π/2 - - 12.54 1.09 278.92 0.97

Table 3.7: Showing the constants C and m derived using least squares fit for√
k
∥∥u∞0 − u∞ρ ∥∥∞ = C (kρ)m for different directions of the incident plane wave for cor-

nered scatterers with Neumann boundary condition and different interior angles, β.
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θ0 C m C m C m

Lemniscate, β = π/2 Lemniscate, β = π/3 Lemniscate, β = π/12
0 0.28 1.01 1.01 1.01 19.57 1.00
π/32 0.28 1.01 1.01 1.01 19.63 1.00
π/16 0.28 1.01 1.01 1.01 19.81 1.00
π/8 0.28 1.01 1.01 1.01 20.43 1.00
π/4 0.26 1.01 1.01 1.01 22.04 1.01
π/2 0.20 1.01 0.90 1.02 23.67 1.01

Two-corner Lemniscate, β = π/4 Lemniscate, β = π/18
0 0.31 1.02 1.94 1.00 43.18 1.00
π/32 0.31 1.02 1.94 1.00 43.38 1.00
π/16 0.31 1.02 1.94 1.00 43.94 1.00
π/8 0.31 1.02 1.95 1.00 45.50 1.00
π/4 0.31 1.02 1.98 1.01 49.49 1.00
π/2 0.37 1.04 1.84 1.01 53.77 1.01

Square Lemniscate, β = π/6 Lemniscate, β = π/36
0 0.30 1.01 4.76 1.00 165.58 0.99
π/32 0.30 1.01 4.77 1.00 166.71 0.99
π/16 0.30 1.01 4.80 1.00 170.14 1.00
π/8 0.31 1.01 4.89 1.00 176.80 1.00
π/4 0.33 1.03 5.15 1.01 194.21 1.00
π/2 - - 5.27 1.02 213.60 1.00

Table 3.8: Showing the constants C and m derived using least squares fit for√
k
∥∥u∞0 − u∞ρ ∥∥∞ = C (kρ)m for different directions of the incident plane wave for cor-

nered scatterers with impedance loaded boundary condition, Z = 1 + i, and different
interior angles, β.



60 CHAPTER 3. EFFECT OF CORNER ROUNDING: NUMERICAL RESULTS

3.8 Validation of Rawlins’ Results on Diffraction by Ab-

sorbing Rectangular Cylinders

A recent publication by Rawlins [110] developed a model to approximate the diffrac-

tion of an E-polarised wave by an absorbing rectangular cylinder. It employed Keller’s

method of GTD and its extensions to deal with multiple diffraction, utilising the diffrac-

tion coefficient derived for the canonical problem of diffraction by an impedance wedge.

In this way, relatively simple high frequency approximate expressions for the scattered

far-field resulting from a plane wave obliquely incident on an imperfectly conducting rect-

angle were obtained. In [111] the results of [110] were validated and reported on using

some of the methods developed in Chapter 2, by comparing them to the scattering of

an E-polarised plane wave by an infinite cylindrical structure with an impedance bound-

ary condition. The impedance problem solution (2.49) was used with parametrisation

for the rounded square (2.5) and a mesh of 2n uniformly spaced points tj = πj/n, for

j = 0, 1, . . . , 2n − 1, in the parameterisation (2.1) was employed. The scattered field

usc(x) was captured on a circle radius 10 encapsulating the scatterer and plotted. This

was used for visual comparison to the results reported by Rawlins [110]. This led to the

conclusion that the approximations developed in [110] provide accurate scattered field

patterns for rectangular structures for the range of wave numbers and dimensions exam-

ined. The back-scatter and forward-scatter were of a similar magnitude. The primary

difference being the magnitude of the scattered field orthogonal to the forward- and back-

scatter. Subsequent to the development of the graded mesh for four-cornered scatterers

(2.66) as described in Section 2.5.3, the experiments were re-run employing graded mesh.

The first set of experiments used a rounded corner as per parameterisation (2.5), with

rounding parameter ε = 0.01 which produces a radius of curvature ρ = 0.0142 in the

corner. The second set of experiments used an actual square (2.3), rather than a rounded

one. A sample of these graphical results is provided in Appendix B. They show that the

difference between the solutions of the square and rounded square scatterer is not percep-

tible, but that the differences between the Rawlins results and those produced using the

methods described in Chapter 2 are similar to those reported in [111]: the back-scatter

and forward-scatter were of a similar magnitude but that the Rawlins method magnifies
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the scattered field orthogonal to the forward- and back-scatter, that is, the side scatter.

It should be noted that it is only relevant to compare the GTD based results with

appropriate near-field results computed by our approach. With that in mind, our results

provide a validation of Rawlins’ result.

3.9 Conclusions

In this chapter we have presented the numerical results from implementing numerical

schemes described in Chapter 2 for the solution of the scattering of a plane wave by

different cylindrical structures possessing corners, on the surface of which we imposed

three different boundary conditions - soft, hard and an impedance boundary condition.

A number of conclusions may be drawn.

First, we have numerically demonstrated that the field scattered by the rounded

structure converges, in both the L2 and L∞ norm, to that scattered by the corresponding

sharp cornered object as the radius of curvature in the vicinity of the corner tends to

zero.

Secondly, when the scatterer possesses sharp corners or rounded corners of small radii

of curvature, it is essential to use an appropriate quadrature scheme - a graded mesh -

in order to obtain numerical results efficiently. Use of a uniform mesh is at best grossly

inefficient and at worst produces non-convergence of the numerical process.

Thirdly, some useful rules of thumb are as follows. For the soft boundary condition,

the L∞ norm difference between the far-scattered field of the single-cornered scatterer and

that of the rounded scatterer is less than 3% when the radius of curvature is restricted so

that kρ ≤ 3π/50. This percentage reduces to 1% or 2% respectively, when the boundary

condition is replaced by the Neumann boundary condition or the impedance boundary

condition (with Z = 1 + i), respectively. More precise measures of the difference are

given in Table 3.3. Similar results were obtained for the two-cornered and four-cornered

objects, and are also displayed in Table 3.3. We also demonstrated that the maximum

differences between the far-fields of the cornered and rounded scatterers occur in the

back-scatter region and the magnitude of these differences is dependent on the radius of

curvature, ρ, used for the rounding, the wave number, ka, and the angle of the incident

plane wave, θ0.
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Fourthly, we have shown that the described quadrature schemes are valid for struc-

tures with non right-angled corners, that is, for structures with interior angles π/12 < β <

35π/36, and achieve rapid convergence. Outside this range, the number of quadrature

points required to achieve a highly accurate solution increases noticeably for extremely

acute angles. The number of quadrature points in this circumstance can be decreased for

these structures if the corner is rounded slightly and the resultant maximum difference

in the far-field is 1.7% or less for wave number ka = 1, and ≤ 4.1%, ≤ 9.6% for ka = 2π

and ka = 16π, respectively.

We have also examined the nature of the differences in the far-fields of the cornered

structure and its rounded counterpart. We observed that the maximum differences be-

tween the far-fields of the cornered and rounded scatterers occur in the back-scatter

region and the magnitude of these differences is dependent on the radius of curvature, ρ,

used for the rounding, the wave number, ka, and the angle of the incident plane wave,

θ0.

Finally, we have demonstrated the dependence on the maximum differences in the

far-field of a cornered scatterer and its rounded counterpart on the radius of curvature

in the rounded corner and the wave number and direction of travel of the illuminating

incident plane wave. In the Dirichlet case, the non-dimensionalised maximum difference

in the far-fields has the form C(θ0)(kρ)2/ν , for some constant C(θ0) dependent on the

angle of illumination, as kρ → 0. For the impedance loaded case with Z = 1 + i, the

exponent 2/ν is replaced by 1. For the Neumann case, the exponent is dependent on the

angle of illumination, but the maximum difference is bounded by C(θ0)(kρ)2/ν .

To summarise, we have produced strong numerical evidence that supports the expec-

tation that the differences in the scattered field quantities are small and tend to zero as

the radius of curvature of the rounded corners is reduced to zero. In the next chapter

we will prove that this is indeed the case and establish the validity of the power law

dependence on kρ.



Chapter 4

Bounds Analysis

When a two-dimensional scatterer with Dirichlet boundary condition, which is smooth

except at finitely many sharp corner points, is illuminated by a time-harmonic acoustic

plane wave, the physical surface quantity (equal to the normal derivative of the acoustic

velocity potential) exhibits singularities at those corner points. In the Neumann case the

corresponding physical quantity (equal to the acoustic velocity potential itself) exhibits

singularities in its derivative at those points. Once the corners are rounded, these surface

quantities become non-singular.

In Chapters 2 and 3, a numerical scheme and its implementation for the solution

of scattering of a plane wave by structures with corners for three different boundary

conditions (Dirichlet, Neumann and impedance loaded) were examined. The maximum

difference in the far-field patterns generated by the cornered structure u∞0 and the corre-

sponding quantity u∞ρ when the corners are rounded, were computed for a range of wave

numbers k; in particular it was demonstrated numerically that as the radius of curvature

ρ of the rounded corner decreases, that is, as kρ→ 0, the non-dimensionalised difference
√
k
∥∥u∞0 − u∞ρ ∥∥∞ is O ((kρ)m), where m = 4/3 for the Dirichlet case for structures with

right-angled corners.

An integral equation formulation was used for these numerical studies of the scatter-

ing of plane waves by a soft obstacle; its solution provides a continuous surface density

from which all physical quantities such as far-field pattern can be calculated. This sur-

face density is different from the physical surface quantities described above and has

63
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no simple physical interpretation1. In this chapter, after introducing suitable surface

parameterisations for the rounded and unrounded scatterers, we analyse the underlying

integral equations for each scatterer, and deduce an approximate integral equation for

the difference in the surface density at corresponding points, in terms of the difference in

the illuminating incident field on each scatterer and of the surface quantity on the sharp

cornered object. We take the lemniscate scatterer with right-angled corner studied in

Chapter 3 as a test case. The approximate solution of the integral equation is shown to

be O((kρ)2/3), from which it is deduced that
√
k
∥∥u∞0 − u∞ρ ∥∥∞ = O((kρ)4/3), as kρ→ 0.

4.1 Formulation

We consider an infinitely long cylinder with uniform cross-section and Dirichlet boundary

condition (2.19), with axis parallel to the z-axis, and illuminated by a time-harmonic

incident plane wave uinc(x) propagating with direction parallel to the x-y plane; the

cross-section D lying in the x-y plane has a closed boundary ∂D parameterised by

x(t) = (x1(t), x2(t)), t ∈ [−π, π] . (4.1)

We assume the properties regarding the incident and scattered fields described in Section

2.2.

As shown in in [7, 56], the combined single-layer 1
2Sϕ(x) (2.32) and double-layer

1
2Kϕ(x) (2.32) potentials provide a solution, at all points x exterior to the body D, to

the exterior Dirichlet problem (2.39) provided ϕ(x) is a solution to the following integral

equation on ∂D:

ϕ+Kϕ−iηSϕ = −2g, (4.2)

where g = uinc, the real constant η 6= 0 and

(Sϕ)(x) = 2

∫
∂D

G(x,y)ϕ(y) ds(y), (4.3)

1We tentatively suggest the name soft surface distribution. The relevant physical surface distribution
is of course zero (corresponding to the Dirichlet boundary condition); the other relevant physical quantity
is its normal derivative which is non-zero.
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and

(Kϕ)(x) = 2

∫
∂D

∂G(x,y)

∂n(y)
ϕ(y) ds(y). (4.4)

For simplicity of presentation we will suppose that η = 0; then the integral equation

has a unique solution at all except countably many wave numbers k.

4.2 Integral Equations for the Difference in Surface Quan-

tities

Figure 4.1: The lem-
niscate (blue) and
the rounded scatterer
(red) with a radius of
curvature ρ ≈ 0.1.

We examine the lemniscate, shown in Fig. 4.1, as a test case.

We use the following parameterisations,

x0(t) = (x0,1(t), x0,2(t)) = (2 sin(|t|/2),− sin t), (4.5)

and the corresponding rounded object depending upon a (small)

positive parameter ε,

xε(t) =

(
xε,1(t), xε,2(t)) = (2

√
ε2 + (1− ε2) sin2(t/2),− sin t

)
,

(4.6)

for t ∈ [−π, π]. The radius of curvature ρ at the rounded corner

point (corresponding to t = 0) is very close to 2ε, for small ε (Lemma C.1.1).

The outward pointing unit normal at the point x0(t) on the lemniscate is

n(x0(t)) =
(
x′0,2 (t) ,−x′0,1 (t)

)
/

√(
x′0,1 (t)

)2
+
(
x′0,2 (t)

)2
; (4.7)

the outward pointing unit normal at the point xε(τ) on the rounded object is similarly

defined.

Inserting these parameterisations in (4.4) determines double-layer potentials K0 and

Kε. The integral equations governing the surface quantities ϕ0 = ϕ(x0) and ϕε = ϕ(xε)

are

ϕ(x0) +K0ϕ(x0) = −2uinc(x0), (4.8)
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and

ϕ(xε) +Kεϕ(xε) = −2uinc(xε). (4.9)

More concretely, if we set ϕ0(t) = ϕ0(x0(t)) and ϕε(t) = ϕε(xε(t)), then with t ∈ [−π, π],

ϕε(t)−
∫ π

−π
Hε(t, τ)ϕε(τ) dτ = gε(t), (4.10)

and

ϕ0(t)−
∫ π

−π
H0(t, τ)ϕ0(τ) dτ = g0(t), (4.11)

where (see [7])

H0(t, τ) =
1

2
ik

H
(1)
1 (k|x0(t)− x0(τ)|)
|x0(t)− x0(τ)|

n (x0(τ)) · (x0(t)− x0(τ)) |x′0(τ)|, (4.12)

and Hε(t, τ) is similarly defined.

Thus, setting ∆(t) = ϕε(t)− ϕ0(t), we obtain

∆(t)−
∫ π

−π
Hε(t, τ)∆(τ) dτ =

∫ π

−π
(Hε(t, τ)−H0(t, τ))ϕ0(τ) dτ + gε(t)− g0(t). (4.13)

Thus if we regard ϕ0(τ) as known, then this is an integral equation for the unknown

difference to be determined.

4.3 Approximate Integral Equation for the Difference in

Surface Quantity

Now let I be a symmetrical subinterval of [−π, π] containing 0,

and set J = [−π, π] \ I. The intervals I and J will be fully

specified later (in fact I = [−ε2/3, ε2/3]), but the requirements

are:

(a) on the set J , the difference in the parameterisations (4.5)

and (4.6), and in their derivatives, are negligibly small. In

fact,

‖x0 − xρ‖∞,J = max
t∈J
|x0(t)− xρ(t)| ≤ 4ε4/3, (4.14)
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from Lemma C.1.2, and similarly

‖x′0 − x′ρ‖∞,J = max
t∈J
|x′0(t)− x′ρ(t)| ≤ 2ε2/3, (4.15)

from Lemma C.1.3;

(b) on the set J , the difference in the surface currents on either object, ‖ϕε−ϕ0‖∞,J , are

negligibly small. We make this analytic assumption which is numerically justified in

Appendix C.2;

(c) the interval I is small, that is, k|I| is small, so that we may use small argument

approximations for the Hankel function H
(1)
1 . This is equivalent to approximating

the Green’s function G(x,y) at points x,y, parameterised by I, by the corresponding

values of static Green’s function G0(x,y).

Thus we make the approximation ∆(t) = 0 for t ∈ J . Inserting this in (4.13) produces,

when t ∈ I,

∆(t)−
∫
I

Hε(t, τ)∆(τ) dτ =

∫
I

(Hε(t, τ)−H0(t, τ))ϕ0(τ) dτ

+

∫
J

(Hε(t, τ)−H0(t, τ))ϕ0(τ) dτ + gε(t)− g0(t). (4.16)

Define the operator L by

Lϕ(t) =

∫
I

Hε(t, τ)ϕ(τ) dτ, (4.17)

for t ∈ I, and for each ϕ ∈ C[−π, π]. Then denoting the right hand side of (4.16) by

h(t), we obtain

(I − L)∆(t) = h(t). (4.18)

We will proceed to obtain an estimate for ∆(t) by obtaining bounds on the operator L

and on the function h(t). First we establish

Lemma 4.3.1 The operator L has the property ||L||∞ < 1.
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Proof. Without loss of generality, we fix t ∈ I for some t > 0. Consider

|Lϕ(t)| = |
∫
I

Hε(t, τ)ϕ(τ) dτ |

≤
∫
I

|Hε(t, τ)ϕ(τ) |dτ

≤
∫
I

|Hε(t, τ) |dτ ‖ϕ‖∞, where ‖ϕ‖∞ = sup
t∈I
|ϕ(t)|,

=

 ∫
I,τ>0

|Hε(t, τ) | dτ +

∫
I,τ<0

|Hε(t, τ) |dτ

 ‖ϕ‖∞, (4.19)

where the first integral is taken over the interval {τ ∈ I | τ > 0} and the second integral

similarly. We will evaluate each of the integral contributions separately.

Contribution when τ > 0:

We use the small argument approximation for H(1)
1 [120], thus

∫
I,τ>0

|Hε(t, τ) |dτ

=

∫ ε2/3

0

∣∣∣∣∣ ik2 H
(1)
1 (k|xε(t)− xε(τ)|)
|xε(t)− xε(τ)|

n(xε(τ)) · (xε(t)− xε(τ)) |x′ε(τ)|

∣∣∣∣∣ dτ
=

∫ ε2/3

0

∣∣∣∣ ik2
(
−2i

π

)
n(xε(τ)) · (xε(t)− xε(τ))

k|xε(t)− xε(τ)|2
|x′ε(τ)|

∣∣∣∣ dτ
=

1

π

∫ ε2/3

0
|x′ε(τ)| |n(xε(τ)) · (xε(t)− xε(τ)) |

|xε(t)− xε(τ)|2
dτ. (4.20)

Note that |x′ε(τ)| ≤
√

2 (see Lemma C.1.4 for details); also n(xε(τ)) · x′ε(τ) = 0 for all

τ . Thus the integral (4.20) is bounded by

√
2

π

∫ ε2/3

0

|n(xε(τ)) · (xε(t)− xε(τ)− (t− τ)x′ε(τ)) |
|xε(t)− xε(τ)|2

dτ. (4.21)

We apply the Mean Value Theorem to the denominator, where

|xε(t)− xε(τ)| + |(t− τ)||x′ε(τ∗)|, (4.22)

for some τ∗ ∈ (t, τ). We make the standard central finite difference choice τ∗ = t+τ
2 and

approximate the numerator with the second order Taylor series expansion with the same
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choice of τ∗,

xε(t) = xε(τ) + (t− τ)x′ε(τ) +
1

2
(t− τ)2x′′ε(τ

∗), (4.23)

so that (4.21) is approximated by

1√
2π

∫ ε2/3

0

|n(xε(τ)) · ((t− τ)2 x′′ε(τ
∗) |

|(t− τ)|2|x′ε(τ∗)|2
dτ

=
1√
2π

∫ ε2/3

0

|(t− τ)|2 |n(xε(τ)) · x′′ε( t+τ2 ) |
|(t− τ)|2|x′ε( t+τ2 )|2

dτ

=
1√
2π

∫ ε2/3

0

|n(xε(τ)) · x′′ε( t+τ2 ) |
|x′ε( t+τ2 )|2

dτ. (4.24)

The integrand in (4.24) is correct to order O(t− τ), so that the approximation is overall

correct to O(ε2/3). Note that xε(τ) = (xε,1(τ),− sin τ) ∼ (xε,1(τ),−τ) when τ is small.

As such,

x′ε(τ) ∼ (x′ε,1(τ),−1)

|x′ε(τ)| ∼ (1 + (x′ε,1(τ))2)1/2

x′′ε(τ) ∼ (x′′ε,1(τ), 0). (4.25)

Applying these results for t and τ small enough, the integral (4.24) is approximated by

1√
2π

∫ ε2/3

0

| − x′′ε,1( t+τ2 )|
|1 + (x′ε,1( t+τ2 ))2|

dτ

=
1√
2π

∫ ε2/3

0

x′′ε,1( t+τ2 )

1 + (x′ε,1( t+τ2 ))2
dτ

=
1√
2π

[
2 arctan

(
x′ε,1( t+τ2 )

)]ε2/3
0

≤
√

2

π
arctan

(
x′ε,1( t+ε

2/3

2 )
)

≤
√

2

π
arctan(1), (4.26)

since |x′ε,1(t∗)| < 1 for all t∗, which can readily be deduced from (C.2). Thus

∫
I,τ>0

|Hε(t, τ) |dτ ≤ 1

2
√

2
. (4.27)



70 CHAPTER 4. BOUNDS ANALYSIS

Contribution when τ < 0:

In this case, the argument applied above may be employed to show

∫
I,τ<0

|Hε(t, τ) | dτ ≤ 1

2
√

2
. (4.28)

However, it might be considered that the Taylor series substitution is not suitable for

this case because with t > 0 and τ < 0 in (4.23), the term x′′ε(τ
∗) may be very large;

indeed x′′ε(0) ∼ 1/ε. Instead we approximate Hε(t, τ) using H0(t, τ). Thus x0(t) = (t, t),

x0(τ) = (τ,−τ), n(x0(τ)) · x0(τ) = 0 for all τ , and n(x0(τ)) · x0(t) = −|x0(t)|.

Using the small argument approximation for H(1)
1 [120],

∫
I,τ<0

|Hε(t, τ) | dτ

≈
∫

I,τ<0

|H0(t, τ) | dτ

=

∫ 0

−ε2/3

∣∣∣∣∣ ik2 H
(1)
1 (k|x0(t)− x0(τ)|)
|x0(t)− x0(τ)|

n(x0(τ)) · (x0(t)− x0(τ)) |x′0(τ)|

∣∣∣∣∣dτ
'
∫ 0

−ε2/3

∣∣∣∣ ik2
(
−2i

π

)
n(x0(τ)) · (x0(t)− x0(τ))

k|x0(t)− x0(τ)|2
|x′0(τ)|

∣∣∣∣dτ
=

√
2

π

∫ 0

−ε2/3

|x0(t)|
|x0(t)− x0(τ)|2

dτ

=
1

π

∫ ε2/3

0

t

t2 + τ2
dτ

=
1

π
arctan

ε2/3

t
≤ 1

2
. (4.29)

Thus

|Lϕ(t)| ≤

 ∫
I,τ>0

|Hε(t, τ) |dτ +

∫
I,τ<0

|Hε(t, τ) | dτ

 ‖ϕ‖∞
≤
(

1

2
√

2
+

1

2

)
‖ϕ‖∞

< ‖ϕ‖∞. (4.30)

Thus

‖L‖∞ < 1. (4.31)
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Applying Lemma 4.3.1, ∆(t) may be recovered from the convergent Neumann series

∆(t) = (I − L)−1h(t) =
∞∑
n=0

Lnh(t). (4.32)

Moreover,

|∆(t)| ≤ ‖(I − L)−1‖∞ ‖h‖∞, (4.33)

for all t; also

‖(I − L)−1‖∞ ≤ (1− ‖L‖∞)−1 . (4.34)

We now consider estimates for h(t). First an estimate for the function ϕ0(t) for t ∈ I is

needed.

Lemma 4.3.2

ϕ0(r) = A+B(kr)2/3 +O(kr),

where A and B are suitable constants, as kr → 0.

Proof. We approximate this by the surface current induced by the same illuminating

field on the infinite wedge whose edges are tangent to the corner point (corresponding to

parameter value t = 0). We use the results of [1] concerning infinite wedges of internal

angle 2Ω (and specialise later to the case 2Ω = π/2).

Employ cylindrical polars (r, θ) with centre at the tip of the wedge of internal angle

2Ω whose sides are defined by θ = ±Ω. Suppose the wedge is illuminated by a unit

strength field incident from direction θ0, so that

uinc = exp(−ikr cos(θ − θ0)). (4.35)

Set ν = (2π − 2Ω)/π.

Then in the vicinity of the tip [1], the total field is

utot
0 (r, θ) =

4

Γ(1/ν)
(
1

2
kr)1/νe−iπ/ν sin(

θ − Ω

ν
) sin(

θ0 − Ω

ν
) +O((kr)min(2/ν,1)), (4.36)
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as kr → 0. Thus the scattered field has the form

usc
0 (r, θ) = utot

0 (r, θ)− uinc
0 (r, θ) = Cν(

1

2
kr)1/ν − 1 +O((kr)min(2/ν,1)), (4.37)

as kr → 0, for a suitable constant Cν .

The scattered field at an off-body point x is re-

lated to the corresponding surface distribution ϕw0

on the wedge ∂D by

usc
0 (x) =

∫
∂D

∂G(x,y)

∂n(y)
ϕw0 (y) ds(y). (4.38)

We use the parameterisation x0(τ) = (|τ |, τ tan Ω)

for the wedge, so that the unit outward normal is

n(x0(τ)) = (− sin Ω, (sgnτ) cos Ω, ). Now specialise

to the case Ω = π/4. Notice that

n(x0(τ)) · x0(τ) = 0, (4.39)

for all τ , and for and off body point with polar coordinates (r, 3π/4),

n(x0(τ)) · x(t) = 0, (4.40)

when τ < 0. Thus, for the right-angled wedge, the scattered field representation at that

off-body point may be written as

ik

2

∫
∂D

H
(1)
1 (k|x0(t)− x0(τ)|)
|x0(t)− x0(τ)|

n (x0(τ)) · (x0(t)− x0(τ)) |x′0(τ)|ϕ0(τ) dτ

=
ik

2

∫ ∞
0

H
(1)
1 (k|x0(t)− x0(τ)|)
|x0(t)− x0(τ)|

n (x0(τ)) · (x0(t)− x0(τ)) |x′0(τ)|ϕ0(τ) dτ (see 4.40)

=
ikr√

2

∫ ∞
0

H
(1)
1 (k

√
2(r2 + τ2)1/2)

(r2 + τ2)1/2
ϕ0(τ) dτ, (4.41)
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and setting τ = ru yields,

ikr√
2

∫ ∞
0

H
(1)
1 (
√

2kr(u2 + 1)1/2)

(u2 + 1)1/2
ϕ0(ru) du. (4.42)

This must equal (4.37), upon setting 2Ω = π/2. We note that this integral is convergent,

since, using the limiting values of the Hankel function [120],

H
(1)
1 (
√

2kr(u2 + 1)1/2)

(u2 + 1)1/2
∼
√

2

π
ei3π/4

e
−i
√
2kr (u2+1)1/2

(
√

2kr)1/2(u2 + 1)3/4
= O

(
1

u3/4

)
, (4.43)

as u→∞.

We split the contribution to the integral as the sum over into the two intervals

[0, 1/(kr)] and [1/(kr),∞). When ϕ0(r) has the form (kr)α for some α (restricted to

0 ≤ α < 1), we can show that the integral takes the values Kα(kr) + O(kr) as kr → 0,

where

Kα =
1

π

∫ ∞
0

uα

u2 + 1
du. (4.44)

The details are as follows.

ikr√
2

∫ 1/kr

0

H
(1)
1 (
√

2kr(u2 + 1)1/2)

(u2 + 1)1/2
ϕ0(ru) du

=
ikr√

2

∫ 1/kr

0

H
(1)
1 (
√

2kr(u2 + 1)1/2)

(u2 + 1)1/2
(kru)α du, (4.45)

and using the small argument approximation for H(1)
1 [120],

∼ ikr√
2

∫ 1/kr

0

−2i

π

1√
2kr(u2 + 1)1/2

(kru)α

(u2 + 1)1/2
du

=
(kr)α

π

∫ 1/kr

0

uα

u2 + 1
du

=Kα (kr)α(1 + o(1)), (4.46)

as kr → 0. Evaluating the second contribution,

∣∣∣∣∣ ikr√2

∫ ∞
1/kr

H
(1)
1 (
√

2kr(u2 + 1)1/2)

(u2 + 1)1/2
ϕ0(ru)

∣∣∣∣∣ du

≤ kr√
2

∫ ∞
1/kr

|H(1)
1 (
√

2kr(u2 + 1)1/2)|
|(u2 + 1)1/2|

|ϕ0(ru)| du, (4.47)
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and using the large argument approximation for H(1)
1 [120],

∼ kr√
2

∫ ∞
1/kr

√
2

π

1√√
2kr(u2 + 1)1/2

|ϕ0(ru)|
(u2 + 1)1/2

du

≤

√
kr

π
√

2

∫ ∞
1/kr

1

(u2 + 1)3/4
du ‖ϕ0‖∞

≤
√
kr ‖ϕ0‖∞

∫ ∞
1/kr

1

(u2 + 1)3/4
du, (4.48)

since ϕ0(u) is bounded by ‖ϕ0‖∞ [1]. Thus the integral is bounded by

√
kr ‖ϕ0‖∞

∫ ∞
1/kr

1

u3/2
du = 2kr ‖ϕ0‖∞, (4.49)

which is O(kr) as kr −→ 0. Combining these two results, as kr → 0, the integral takes

the values Kα(kr)α + O(kr). For the lemniscate, α = 1/ν = 2/3. In other words, we

may take the surface distribution to be

ϕ0(r) = A+B(kr)2/3 +O(kr), (4.50)

where A and B are suitable constants, as kr → 0.

We are now in a position to evaluate the function h(t) in equation (4.18) by inserting

(4.50) in the first term on the right of (4.16) and approximating the other two.

Let h1(t), h2(t) denote the first and second terms on the right hand side of (4.16).

Thus

h1(t) =

∫
I

(Hε(t, τ)−H0(t, τ))ϕ0(τ) dτ, (4.51)

and

h2(t) =

∫
J

(Hε(t, τ)−H0(t, τ))ϕ0(τ) dτ. (4.52)

The following lemmas establish that both h1(t) and h2(t) are O
(

(kε)2/3
)
as kε→ 0, for

t ∈ I.

The first three lemmas ((4.3.3), (4.3.5), (4.3.6)) establish the result for h1(t) by

inserting (4.50) into (4.51). Lemma (4.3.7) establishes the result for h2(t).
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Lemma 4.3.3 Suppose t ∈ I and τ ∈ J . Then

Hε (t, τ)−H0 (t, τ) = O
(
ε2/3

)
, as ε→ 0.

Proof. Without loss of generality we assume t > 0.

Hε (t, τ) =
ik

2

H
(1)
1 (k|xε(t)− xε(τ)|)
|xε(t)− xε(τ)|

(x′ε,2(τ),−x′ε,1(τ)) · (xε(t)− xε(τ))

=
ik

2
H

(1)
1 (k|xε(t)− xε(τ)|) |xε(t)− xε(τ)|

(x′ε,2(τ),−x′ε,1(τ)) · (xε(t)− xε(τ))

|xε(t)− xε(τ)|2
.

(4.53)

The function kz H(1)
1 (kz) is analytic and is bounded on the sets of points

{|xε(t)− xε(τ)| : t, τ ∈ [−π, π]} , (4.54)

and

{|x0(t)− x0(τ)| : t, τ ∈ [−π, π]} ; (4.55)

also as ε→ 0,

kH
(1)
1 (k|xε(t)− xε(τ)|) |xε(t)− xε(τ)|

→kH(1)
1 (k|x0(t)− x0(τ)|) |x0(t)− x0(τ)|. (4.56)

If τ ∈ J and ε2/3 < τ < 2ε2/3, we use the Taylor series approximation

1

2

(
x′ε,2(τ),−x′ε,1(τ)

)
·
x′′ε
(
t+τ

2

)∣∣x′ε ( t+τ2

)∣∣2 , (4.57)

together with the estimates

x′ε (τ) ∼
(

τ√
4ε2 + τ2

,−1

)
∼ x′0 (τ) +O

(
ε2

τ2

)
∼ x′0 (τ) +O

(
ε2/3

)
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x′′ε (τ) ∼

(
4ε2

(4ε2 + τ2)3/2
, 0

)

∼ x′′0 (τ) +O
(
ε2/3

)
. (4.58)

Noting that |x′ε(τ)| is bounded below by a constant independent of ε and τ , we deduce

that the quantity (4.57) differs from

1

2

(
x′0,2(τ),−x′0,1(τ)

)
·
x′′0
(
t+τ

2

)∣∣x′0 ( t+τ2

)∣∣2 , (4.59)

by an amount of O
(
ε2/3

)
, as ε→ 0.

On the other hand, if τ ∈ J and τ > 2ε2/3, the quantity xε(τ) is much bigger than

xε(t) when t ∈ I. It follows that by expanding each of the terms involving xε(t) or x′ε(t)

in
(x′ε,2(τ),−x′ε,1(τ)) · (xε(t)− xε(τ))

|xε(t)− xε(τ)|2
, (4.60)

that this quantity differs from

(x′0,2(τ),−x′0,1(τ)) · (x0(t)− x0(τ))

|x0(t)− x0(τ)|2
, (4.61)

by an amount of O
(
ε2/3

)
as ε→ 0.

Turning to the case where τ ∈ J and τ < 0, a similar argument again shows this

difference is O
(
ε2/3

)
as ε→ 0. The result of the lemma now follows.

Corollary 4.3.4 The result of the previous lemma holds when the relevant Green’s func-

tion is replaced by the static Green’s function, that is, if

H0
ε (t, τ) =

(x′ε,2(τ),−x′ε,1(τ)) · (xε(t)− xε(τ))

|xε(t)− xε(τ)|2
,

and H0
0 (t, τ) is similarly defined, then

H0
ε (t, τ)−H0

0 (t, τ) = O
(
ε2/3

)
,

as ε→ 0 for t ∈ I, τ ∈ J .
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Lemma 4.3.5 Let A be a constant, Then for t ∈ I,

∫
I

(Hε(t, τ)−H0(t, τ))Adτ = O
(
ε2/3

)
, as ε→ 0.

Proof. The integral may be approximated by

∫
I

(
H0
ε (t, τ)−H0

0 (t, τ)
)
Adτ

=

∫ π

−π

(
H0
ε (t, τ)−H0

0 (t, τ)
)
Adτ −

∫
J

(
H0
ε (t, τ)−H0

0 (t, τ)
)
Adτ. (4.62)

The result of the previous lemma and corollary show that the contribution of the integral

over J is O
(
ε2/3

)
as ε→ 0.

On the other hand, a fundamental property of the static Green’s function is [109],

2

∫
∂D

∂G0(x,y)

∂n(y)
ds(y) = −1, x ∈ ∂D, (4.63)

where D is any domain. Thus

∫ π

−π
H0
ε (t, τ) dτ = −1

2
, (4.64)

and ∫ π

−π
H0

0 (t, τ) dτ = −1

2
, (4.65)

so that ∫ π

−π

(
H0
ε (t, τ)−H0

0 (t, τ)
)
Adτ = 0. (4.66)

The result is now proven.

Lemma 4.3.6 Let t ∈ I. Then

∫
I

(Hε(t, τ)−H0(t, τ))(kτ)2/3 dτ = O
(

(kε)2/3
)
, as kε→ 0.

We may suppose t > 0.

Proof. We consider the contribution to the integral when τ ∈ I and τ > 0. First, the
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contribution from H0(t, τ) may be neglected because using the Taylor approximation,

H0 (t, τ) =
1
2

(
x′0,2(τ),−x′0,1(τ)

)
· x′′0

(
t+τ

2

)∣∣x′0 ( t+τ2

)∣∣2
= O

(
(kε)2/3

)
, as kε→ 0. (4.67)

The contribution from Hε(t, τ) may be evaluated as follows.

∫
I,τ>0

Hε(t, τ)(kτ)2/3 dτ =

∫ ε2/3

0

ik

2

H
(1)
1 (k|xε(t)− xε(τ)|)
|xε(t)− xε(τ)|

n(xε(τ)) · (xε(t)− xε(τ))

|x′ε(τ)| (kτ)2/3 dτ. (4.68)

Using the small argument approximation for H(1)
1 [120], and following the steps (4.20) -

(4.24) from Lemma 4.3.1, the integral (4.68) is less than

1√
2π

∫ ε2/3

0

x′′ε,1( t+τ2 )

1 +
(
x′ε,1( t+τ2 )

)2 (kτ)2/3 dτ. (4.69)

We note that for small t,

xε(t) ∼
(√

4ε2 + t2,−t
)
,

x′ε(t) ∼
(

t√
4ε2 + t2

,−1

)
,

x′′ε(t) ∼
(

4ε2

(4ε2 + t2)3/2
, 0

)
. (4.70)

Inserting these into (4.69):

1√
2π

∫ ε2/3

0

4ε2 (kτ)2/3√
4ε2 + ( t+τ2 )2

(
4ε2 + 2( t+τ2 )2

) dτ. (4.71)

Applying the substitutions t = t1ε and τ = τ1ε, (4.71) is equal to

(kε)2/3

√
2π

∫ ε−1/3

0

τ
2/3
1√

4 + ( t1+τ1
2 )2

(
4 + 2( t1+τ1

2 )2
) dτ1
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≤ (kε)2/3

√
2π

∫ ε−1/3

0

4τ
2/3
1√

16 + τ2
1

(
16 + 2τ2

1

) dτ1 , since t > 0,

≤
√

2(kε)2/3

π

∫ ε−1/3

0

τ
2/3
1

(16 + τ2
1 )3/2

dτ1

≤
√

2(kε)2/3

π

∫ ∞
0

τ
2/3
1

(16 + τ2
1 )3/2

dτ1

= C(kε)2/3, (4.72)

for some constant C.

We turn to the contribution when τ < 0.

Since t > 0 and τ < 0, |xε(t)−xε(τ)| and |x0(t)−x0(τ)| never vanish, and for τ large

enough we may approximate Hε(t, τ) by H0(t, τ); equivalently the dominant contribution

to the integral comes from an interval of τ -values near the origin. We split the interval

of integration [−ε2/3, 0] = [−ε2/3,−10ε]∪ [−10ε, 0] and neglect the contribution from the

first interval and evaluate

∫ 0

−10ε
(Hε (t, τ)−H0 (t, τ)) (kτ)2/3 dτ

=

∫ 0

−10ε
Hε(t, τ)(kτ)2/3 dτ −

∫ 0

−10ε
H0(t, τ)(kτ)2/3 dτ. (4.73)

The first term is approximated by its Taylor expansion

1

π

∫ 0

−10ε

x′′ε,1
(
t+τ

2

)
1 + x′ε,1

(
t+τ

2

)2 (kτ)2/3 dτ. (4.74)

Now ∣∣∣∣x′′ε,1( t+ τ

2

)∣∣∣∣ ≤ 1

ε
, (4.75)

so the absolute value of the integral is bounded by

10ε

π

1

ε
(10kε)2/3 = O

(
(kε)2/3

)
, as kε→ 0. (4.76)

The second term is approximated by

1

π

∫ 0

−10ε

t

t2 + τ2
(kτ)2/3 dτ ≤ (kε)2/3

π

[
arctan

(τ
t

)]0

−10ε
≤ 1

2
(kε)2/3 . (4.77)
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This concludes the proof of the lemma.

The previous lemmas ((4.3.3), (4.3.5), (4.3.6)) establish that

h1(t) = O
(

(kε)2/3
)
, as kε→ 0. (4.78)

Turning to h2(t), we have

Lemma 4.3.7

h2 (t) = O
(

(kε)2/3
)
, as kε→ 0, for t ∈ I.

Proof.

|h2 (t)| ≤ ‖ϕ0‖∞
∫
I

|Hε (t, τ)−H0 (t, τ)| dτ, (4.79)

where we recall that ϕ0(t) is the surface distribution on the sharp-cornered lemniscate.

Also we have established

Hε (t, τ)−H0 (t, τ) = O
(

(kε)2/3
)
, as kε→ 0. (4.80)

The result immediately follows.

Finally, noting that

gε(t)− g0(t) = O(kε), as kε→ 0, (Lemma C.1.6), (4.81)

and that

h(t) = h1 (t) + h2 (t) + gε(t)− g0(t), (4.82)

we conclude:

Lemma 4.3.8

h(t) = O
(

(kε)2/3
)
, as kε→ 0, for t ∈ I.

We can now summarize the main result of this section which directly follows from

the insertion of Lemma 4.3.8 into (4.33).
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Theorem 4.3.9 The difference ∆(t) = ϕ0(t)−ϕε(t) between the surface distribution on

the lemniscate (4.5) and its rounded counterpart (4.6) satisfies

∆(t) = O
(

(kε)2/3
)
, for t ∈ I, as kε→ 0.

4.4 The Far-field Difference

The far-field patterns u∞0 and u∞ε of the lemniscate and its rounded version, respectively,

may be expressed in terms of the corresponding surface quantities ϕ0 and ϕε induced by

the illuminating field [7].

Recall that x̂ = x̂(θ̂) = (cos θ̂, sin θ̂), is the unit vector with θ̂ being the angle of

observation of the far-field,

u∞0 (x̂) =
e−iπ/4√

8πk

∫ π

−π
k ν(x0(t)).x̂ e−ikx̂.x0(t) ϕ0(t) |x′0(t)|dt

=

√
k e−iπ/4√

8π

∫ π

−π
m(x̂;x0)ϕ0(t) dt (4.83)

where m(x̂;x) = ν(x(t)) · x̂ e−ikx̂·x(t) |x′(t)|. The far-field for the rounded object u∞ε (x̂)

is similarly defined. Thus

√
k|u∞ε (x̂)− u∞0 (x̂)| ≤ k√

8π

∫ π

−π

∣∣{m(x̂;xε(t))ϕε(t)−m(x̂;x0(t))ϕ0(t)
} ∣∣ dt

=
k√
8π

∫ π

−π

∣∣{m(x̂;xε)ϕε(t)−m(x̂;xε)ϕ0(t)

+m(x̂;xε)ϕ0(t)−m(x̂;x0)ϕ0(t)
} ∣∣dt

=
k√
8π

∫ π

−π

∣∣{m(x̂;xε) (ϕε(t)− ϕ0(t))

+ (m(x̂;xε)−m(x̂;x0))ϕ0(t)
} ∣∣,dt

≤ k√
8π

∫ π

−π

∣∣m(x̂;xε) (ϕε(t)− ϕ0(t))
∣∣ dt

+
k√
8π

∫ π

−π

∣∣(m(x̂;xε)−m(x̂;x0))ϕ0(t)
∣∣ dt (4.84)

Using the Hölder inequality,

√
k ‖u∞ε (x̂)− u∞0 (x̂)‖∞ ≤

k√
8π
‖m(x̂;xε)‖∞ ‖ϕε − ϕ0‖1
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+
k√
8π
‖m(x̂;xε)−m(x̂;x0)‖1 ‖ϕ0‖∞

=
k√
8π
‖m(x̂;xε)‖∞

∫ π

−π
|ϕε − ϕ0| dt

+
k√
8π
‖m(x̂;xε)−m(x̂;x0)‖1 ‖ϕ0‖∞

≤ k

2
√
π

∫ π

−π
|∆(t)| dt+O(kε), (4.85)

since ‖m(x̂;xε)‖∞ ≤
√

2 (Lemma C.1.7) and k√
8π
‖m(x̂;xε) − m(x̂;x0)‖1 is O(kε)

(Lemma C.1.8). We note that ϕ0 is the actual solution to the cornered lemniscate

problem (4.2), thus ‖ϕ0‖∞ is a fixed bounded quantity associated with this particular

scatterer.

An improved estimate for the second term in (4.84) is obtained by estimating

k

2
√
π

∫ π

−π
(m (x̂;xε)−m(x̂;x0))ϕ0(t) dt

=
k

2
√
π

∫ π

−π

(
v(xε(t)) · x̂ e−ikx̂·xε(t) − v(x0(t)) · x̂ e−ikx̂·x0(t)

)
ϕ0(t) dt

=
k

2
√
π

∫ π

−π
(v (xε(t))− v (x0(t))) · x̂ e−ikx̂·x0(t) ϕ0(t) dt

+
k

2
√
π

∫ π

−π
v(x0(t)) · x̂

(
e−ikx̂·xε(t) − e−ikx̂·x0(t)

)
ϕ0(t) dt, (4.86)

where v(x(t)) = (x′2(t),−x′1(t)). For convenience let ṽ(x(t)) denote (x2(t),−x1(t)).

The second term in this equation is O
(
(kε)2−δ) for any δ > 0, using Lemma C.1.10.

The first term on the right of (4.86) is, after an integration by parts,

k

2
√
π

[
(ṽ(xε(t))− ṽ(x0(t))) · x̂

(
e−ikx̂·xε(t) − e−ikx̂·x0(t)

)
ϕ0(t)

]π
−π

− k

2
√
π

∫ π

−π
ṽ(x0(t)) · x̂ d

dt

((
e−ikx̂·xε(t) − e−ikx̂·x0(t)

)
ϕ0(t)

)
dt. (4.87)

The first term is zero, and we estimate the second term by splitting it as a sum over

three subintervals [−π,−ε] ∪ [−ε, ε] ∪ [ε, π]. On the first and third subintervals the

derivative term is bounded by the maximum value M of 2|ϕ′0(t)| + 2k|ϕ0(t)|; this is

O(ε−
1
3 ) as ε → 0. Thus using (C.7), the contribution to the integral over the first and
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third intervals is bounded by (see (C.44))

2M

∫ π

ε

ε2

sin(t/2)
dt; (4.88)

this quantity is O
(
ε

5
3 log ε

)
as ε→ 0.

On the other hand, regarding that ṽ(x0(t))·x̂ = 1+O
(
t2
)
, as t→ 0, the contribution

over the first interval is bounded by

K
[(
e−ikx̂·xε(t) − e−ikx̂·x0(t)

)
ϕ0(t)

]ε
0
, (4.89)

for some constant K; this is O
(
ε

5
3

)
as ε→ 0, since

ϕ(t) = ϕ(0) +O
(

(kt)2/3
)
, as t→ 0. (4.90)

We now deduce that an improved estimate for the second term in (4.84) is O
(
ε

4
3

)
as ε→ 0.

Recalling that I = [−ε2/3, ε2/3], and that ∆(t) is assumed to vanish for t outside I,

we deduce that

√
k‖u∞ε − u∞0 ‖∞ =

√
k max

x̂∈[−π,π]
|u∞ε (x̂)− u∞0 (x̂)| = O

(
(kε)4/3

)
. (4.91)

With the stated choice of I, it should be noted that the requirements (a) and (c)

listed in Section 4.3, on geometry and size relative to wavelength, are fulfilled, as ε→ 0.

4.5 Conclusion

Our numerical studies in Chapter 3 have demonstrated that the maximum difference in

the non-dimensionalised far-field patterns of a lemniscate with Dirichlet boundary con-

dition and its rounded counterpart is, to a good approximation, equal to C (θ0) (kρ)4/3,

for some constant C (θ0) dependent on the direction of the incident plane wave θ0; here

ρ denotes the radius of curvature in the vicinity of the rounded corner point. An ex-

ample of the far-field data differences computed for the lemniscate studied in this work,

illuminated in the direction θ0 = π/4, is shown in Fig. 4.2; for direction ϕ0 = 0 see
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Figure 3.10(a). In each example, the data was collated cover a range of wave numbers k

and radii of curvature ρ. These results were determined by using a least squares fit to

logarithms of the data for kρ ≤ 0.25.
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Figure 4.2: Logarithmic plot: x =
kρ, y =

√
k
∥∥u∞0 − u∞ρ ∥∥∞. The

data points used are represented by
the blue asterisks, the least squares
line of fit is shown in red.

In this chapter, a theoretical basis for these nu-

merical results was derived. An approximate inte-

gral equation for the difference in the surface quan-

tities on the lemniscate and its rounded counter-

part was obtained, and it was shown that the dif-

ference is O((kε)2/3) as kε→ 0. As a consequence,

the maximum in the non-dimensionalised far-field

patterns is O((kε)4/3) as kε → 0, in accord with

the computed results in Chapter 3, since ρ ∼ 2ε

(Lemma C.1.1).

These results are readily capable of extension

to structures with sharp corners of interior angles other than 90o. A similar approach to

the Neumann case will be discussed in future publications.



Chapter 5

The Total Field, the Normal

Derivative and Surface Quantities

Near the Vicinity of the Corner

In this chapter the behaviour of three quantities at close proximity to the corner of a

scatterer are examined: the total field utot external to the scatterer, the derivative with

respect to the normal ∂utot

∂n measured on the surface of the scatterer and the surface

quantity ϕ that is the solution of the integral equation for determining these quantities.

In the experiments described in Chapter 3 the near-field was measured on a circle

of radius equal to a number larger than the width of the scatterer, typically on a circle

of radius ten for a scatterer of radius one (Figure 5.1a). Of interest is the behaviour of

the total field utot (x) at points x at close proximity to the corner. The interest in this

quantity is to verify that the numerical schemes described in Chapter 2 produce a valid

solution at points very near the scatterer surface, especially in the vicinity of a corner.

This quantity is examined for scatterers with a Dirichlet boundary condition.

Next, the work of Bowman et al. [1] on the wedge of arbitrary angle is used to verify

the behaviour of the derivative with respect to the normal ∂u
tot

∂n measured on the surface

near the corner of a scatterer with Dirichlet boundary condition.

We conclude this chapter with a numerical examination of the behaviour of the surface

quantity ϕ near the vicinity of the corner for scatterers with Dirichlet and Neumann

boundary condition and establish numerically that it can be approximated based on

85
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the wave number k and the distance along the surface from the corner, d(τ). We then

examine the Neumann result analytically.

The work in this chapter is restricted to scatterers with a single interior acute-angled

corner, that is, 0 < β ≤ π/2 (see equation (2.9)).

(a) Measurement circle, r = 10. (b) Measurement circle, r < 0.1.

Figure 5.1: Lemniscate: showing near-field measurement.

5.1 The Total Field

In this section we examine the behaviour of the total, utot(x), and scattered, usc(x),

fields in the vicinity of the corner for a scatterer with a Dirichlet boundary condition,

where x = r(cosφ, sinφ). Measurements are taken on a small circle of radius r, centred

at the corner of the lemniscate, for different angles φ measured anticlockwise from the

surface of the scatterer where φ = 0 (Figure 5.1b). We choose r = 0.002. The numerical

solution should rapidly converge as the number of mesh points increases if the results are

valid. Convergence is measured using the significant measurement technique described

in Section 3.1, so that as the number of quadrature points on the surface of the scatterer

is increased, the number of significant digits in agreement should also increase. This

is indeed the case as Tables 5.1 and 5.2 illustrate. Both tables show the value of the

scattered and total fields measured at a distance r = 0.002 from the corner of a lemniscate

(2.2): Table 5.1 examines φ = 3π/4 whilst Table 5.2 examines φ = π; rapid convergence

to a solution at two different points near the surface in the vicinity of the corner is

demonstrated.

For a scatterer with Dirichlet boundary condition it is also expected that utot (x)→ 0
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as the distance between an off-body point x and the scatterer surface approaches zero.

Figure 5.2 graphs the behaviour of the total field as φ → 0, and demonstrates as the

point of measurement approaches the surface that utot indeed approaches zero.

These results demonstrate that the implemented numerical schemes produce highly

accurate solutions for the total and scattered fields measured near the surface of the

scatterer, even in the vicinity of the corner.

N Reusc (x) Imusc (x) Reutot (x) Imutot (x)

32 -0.9496904128312 -0.0745301609887 0.0502306554212 -0.0870942871040
64 -0.9496935088382 -0.0745239028649 0.0502275594142 -0.0870880289802
128 -0.9496935134535 -0.0745238951523 0.0502275547989 -0.0870880212676
256 -0.9496935134558 -0.0745238951484 0.0502275547966 -0.0870880212637
512 -0.9496935134558 -0.0745238951484 0.0502275547966 -0.0870880212637

Table 5.1: Scattered and total fields of a lemniscate with Dirichlet boundary condition
measured at x = r(cosφ, sinφ), where r = 0.002 and φ = 3π/4. Direction of incident
plane wave θ0 = 0, wave number ka = 2π.

N Reusc (x) Imusc (x) Reutot (x) Imutot (x)

32 -0.9566778069883 -0.0661858214013 0.0432840926129 -0.0749150450708
64 -0.9567086124778 -0.0661845517917 0.0432532871235 -0.0749137754612
128 -0.9567086187215 -0.0661845450585 0.0432532808798 -0.0749137687280
256 -0.9567086187235 -0.0661845450551 0.0432532808778 -0.0749137687247
512 -0.9567086187235 -0.0661845450551 0.0432532808778 -0.0749137687247

Table 5.2: Scattered and total fields of a lemniscate with Dirichlet boundary condition
measured at x = r(cosφ, sinφ), where r = 0.002 and φ = π. Direction of incident plane
wave θ0 = 0, wave number ka = 2π.
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Figure 5.2: Illustrating the behaviour of the total field at points approaching the scatterer
surface. x = φ, y =

∣∣utot (r, φ)
∣∣, where r = 0.002 and φ is measured (in radians) anti-

clockwise from the surface of the scatterer.

5.2 The Derivative with Respect to the Normal on the Sur-

face

In this section we examine the behaviour of the derivative with respect to the normal

∂utot

∂n near the corner on the surface of a scatterer, the lemniscate (2.2), with a Dirichlet

boundary condition. If uφ and ur denote the standard unit tangent vectors in polar

coordinates at (r, φ), then

∇utot =
1

r

∂utot

∂φ
uφ +

∂utot

∂r
ur, (5.1)

so the derivative with respect to the (outward) normal to the upper surface (φ = Ω) is

∂utot

∂n
= uφ · ∇utot =

1

r

∂utot

∂φ
. (5.2)

This is illustrated in Figure 5.3a. On the lower surface the sign is reversed.

We make use of the analysis of the infinite wedge by Bowman et al. [1, p.259] to verify

the behaviour of ∂u
tot

∂n at the corner. In this work, the symbol ρ is used to represent the

radius of curvature, and so we rename the radial distance from the vertex represented

in [1] by ρ as r. Figure 5.3b describes the geometry of the problem.

Without loss of generality, the corner is oriented so that the x-axis bisects the corner.

The interior angle of the wedge is 2Ω. The angle of the incident field φ0 is measured
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(a) Illustrating component vectors. (b) Geometry of problem.

Figure 5.3: Measuring ∂utot

∂n near the corner.

anticlockwise from the positive x-axis, thus for direction of travel θ0 used in other parts

of this work, φ0 = π+θ0, making an angle φ0−Ω with the upper surface of the scatterer.

We choose a point P = (r, φ) where we wish to measure ∂utot

∂n . For P on the upper

surface, φ = π/4. Near the vicinity of the corner, as r → 0 and when kr � 1, the Bessel

function expansion of the total field utot has asymptotic behaviour

utot (r, φ) =
4

Γ (1/ν)

(
1

2
kr

) 1
ν

e−
iπ
2ν sin

(
φ− Ω

ν

)
sin

(
φ0 − Ω

ν

)
+O

[
(kr)min(2/ν,2+1/ν)

]
,

(5.3)

where ν =
2π − 2Ω

π
[1]. For a right-angled wedge, ν = 3

2 , and

utot (r, φ) =
4

Γ
(

2
3

) (1

2
kr

) 2
3

e−i
π
3 sin

(
2 (φ− Ω)

3

)
sin

(
2 (φ0 − Ω)

3

)
, (5.4)

ignoring the higher order terms, and thus on the surface of the scatterer (φ = Ω = π/4),

∂utot

∂n
(r, φ) =

1

r

∂utot

∂φ

= r−
1
3

2

3

4

Γ
(

2
3

) (1

2
k

) 2
3

e−i
π
3 sin

∣∣∣∣23 (φ0 −
π

4

)∣∣∣∣ . (5.5)



90
CHAPTER 5. THE TOTAL FIELD, THE NORMAL DERIVATIVE AND

SURFACE QUANTITIES NEAR THE VICINITY OF THE CORNER

If we set the direction of the incident field uinc to 0, thus φ0 = π, and

∂utot

∂n

(
r,
π

4

)
= r−

1
3

2

3

4

Γ
(

2
3

) (1

2
k

) 2
3

e−i
π
3

= C(k)r−
1
3 , (5.6)

where

C (k) =
2

3

4

Γ
(

2
3

) (1

2
k

) 2
3

e−i
π
3

≈ 1.2406e−i
π
3 k

2
3 . (5.7)

Thus as r → 0 (that is, at the corner), we expect that on the surface of the scatterer

∣∣∣∣∂utot

∂n

(
r,
π

4

)∣∣∣∣ =
1

r

∣∣∣∣∂utot

∂φ

∣∣∣∣ = |C(k)| r−
1
3 ∼ 1.2406 |k|

2
3 r−

1
3 . (5.8)

A finite difference method is used to calculate ∂utot

∂φ . We are able to calculate the total

field utot at any point outside the scatterer, and since we are examining a scatterer with

the Dirichlet boundary condition we know that utot = 0 on the surface of the scatterer.

The details follow.

The total field utot is measured at a point P1 on a circle, of radius r centred at the

corner of the scatterer and at the point P0 on the surface of the scatterer which intersects

with the circle. Figure 5.4b illustrates this.

The derivative is approximated as follows

∂utot

∂φ

(
r,
π

4

)
= utot′

(
r,
π

4

)
+
utot

(
r, π4 + h1

)
− utot

(
r, π4
)

h1

=
utot

(
r, π4 + h1

)
h1

, (5.9)

since utot
(
r, π4
)

= 0.

An improved estimate for this quantity may be obtained by recognising that the

numerator has second order Taylor series expansion

utot
(
r,
π

4
+ h1

)
= utot

(
r,
π

4

)
+ h1u

tot′
(
r,
π

4

)
+
h2

1

2
utot′′

(
r,
π

4

)
, (5.10)
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(a) (b)

Figure 5.4: Measuring ∂utot

∂φ near the corner.

so that (5.9) can be represented as

∂utot

∂φ

(
r,
π

4

)
+
utot

(
r, π4
)

+ h1u
tot′ (r, π4 )+

h21
2 u

tot′′ (r, π4 )− utot
(
r, π4
)

h1

= utot′
(
r,
π

4

)
+
h1

2
utot′′

(
r,
π

4

)
= D (h1) . (5.11)

We choose another point on the circle, P2 (refer to Figure 5.4b), such that

∂utot

∂φ

(
r,
π

4

)
+
utot

(
r, π4 + h2

)
h2

= utot′
(
r,
π

4

)
+
h2

2
utot′′

(
r,
π

4

)
= D (h2) . (5.12)

The following linear combination of (5.11) and (5.12),

h2D (h1)− h1D (h2) = (h2 − h1)utot′
(
r,
π

4

)
+ h.o.t. , (5.13)
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gives an improved estimate for ∂utot

∂φ

(
r, π4
)
on the surface of the scatterer:

∂utot

∂φ

(
r,
π

4

)
= utot′

(
r,
π

4

)
+
h2D (h1)− h1D (h2)

(h2 − h1)
. (5.14)

Equation (5.8) shows that, as r → 0, the quantity

∣∣∣∣∂utot

∂n
(r, φ)

∣∣∣∣ r 1
3 → C(k) = 1.2406 |k|

2
3 . (5.15)

Table 5.3 shows that we do indeed achieve this result numerically for a variety of values

of k as r → 0. Figure 5.5 illustrates the typical behaviour of the derivative of the total

field
∣∣∣∂utot∂n

∣∣∣ along the surface of the scatterer nearing the corner.

|C(1)| |C(π)| |C(2π)| |C(4π)| |C(8π)| |C(16π)|
Actual 1.2406 2.6611 4.2242 6.7055 10.6443 16.8968

r
0.10000 1.2580 2.8116 4.7013 7.9630 13.3433 25.7867
0.05000 1.2474 2.7329 4.4412 7.2928 12.2505 22.8817
0.02500 1.2432 2.6995 4.3249 6.9506 11.3929 20.0536
0.01250 1.2416 2.6855 4.2746 6.7898 10.9175 18.3734
0.00625 1.2409 2.6798 4.2521 6.7185 10.6867 17.5138
0.00500 1.2408 2.6787 4.2456 6.7057 10.6436 17.3477
0.00200 1.2406 2.6765 4.2262 6.6786 10.5497 16.9775

Table 5.3: Demonstrating as r → 0,
∣∣∣∂utot∂n (r, φ)

∣∣∣ r 1
3 → |C(k)| on the surface of the

lemniscate scatterer at the corner.
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Figure 5.5: x = r, distance from the corner of the scatterer; y =
∣∣∣∂utot∂n (r, φ)

∣∣∣ r 1
3 . Scatterer

is the lemniscate. Direction of incident plane wave θ0 = 0 for wave number k = 2π.
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5.3 Behaviour of the Surface Quantity, ϕ, in the Vicinity of

the Corner

In this section, we examine the behaviour of the unknown surface quantity φ, found as

the solution of the appropriate integral equation, near the corner of the scatterer for both

the Dirichlet and the Neumann boundary conditions. Recall that,

ν =
2π − β
π

, (5.16)

where β is the interior angle of the corner. Table 5.4 lists a number of quantities relating

to ν for different interior angles β which will be used in this section.

β ν 1/ν (2− ν)/ν (1− ν)/ν

π/2 1.500 0.667 0.333 -0.333
π/3 1.667 0.600 0.200 -0.400
π/4 1.750 0.571 0.143 -0.429
π/6 1.833 0.545 0.091 -0.455
π/12 1.923 0.520 0.043 -0.478
π/18 1.972 0.507 0.029 -0.486

Table 5.4: Illustrating the relationship between interior angle β and various quantities
related to ν.

5.3.1 Dirichlet Boundary Condition

We consider lemniscates with different interior angles, β, and Dirichlet boundary condi-

tion (2.19) and examine the quantity

|ϕ(τ)− ϕ(0)|, (5.17)

in the vicinity of the corner, where ϕ(0) is the surface density at the corner, and

ϕ(τ) = ϕ(y(τ)) is a solution to the boundary value problem (2.39) using the bound-

ary parameterisation (2.1),

usc(x(t)) =

∫ 2π

0

{
∂G(x(t),y(τ))

∂n(y(τ))
− iηG(x(t),y(τ))

}
ϕ(y(τ)) |y′(τ)| dτ,

0 ≤ t, τ ≤ 2π. (5.18)
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For this examination, the coupling parameter η is set to 0, thus using only the double-

layer potential to solve the scattering problem. We note that this boundary value problem

has a unique solution as long as the wave number, k, of the incident field uinc (2.14) is

not an eigenvalue of the interior Dirichlet problem [7, p.51]. Applying the boundary

condition (2.19) and the jump relation for the double-layer potential (2.29) we obtain

the integral equation

ϕ(x(t))

2
−
∫ 2π

0

∂G(x(t),y(τ))

∂n(y(τ))
ϕ(y(τ)) |y′(τ)|dτ = −uinc(x(t)), x(t) ∈ ∂D, (5.19)

for which the unknown continuous density ϕ is a solution.

We seek an approximation of the quantity of interest (5.17) as τ → 0, of the form

|ϕ(τ)− ϕ(0)| ≈ C(kτ)m. (5.20)

Data was collected from acute and right-angled lemniscates (2.9) with π/18 ≤ β ≤ π/2

for various wave numbers ka and different incident angles, θ0. A least squares fit to the

logarithms of the data for small τ was used. The results for a variety of interior angles

β with plane wave incidence θ0 = 0 are presented in Table 5.5. To illustrate the effect of

varying the incident field angle θ0, Table 5.6 presents some results for a lemniscate with

interior angle β = π/4 and incident field angles θ0 = π/32, π/16, π/8 and π/4. Varying

the incident field angle for the other lemniscates has a similar effect. Full results are

available in Appendix D.2, Table D.1.

Comparing the power m to values in Table 5.4, the numerical results demonstrate

that for scatterers with Dirichlet boundary and interior angle β,

|ϕ(τ)− ϕ(0)| ≈ C(θ0, β)(kτ)1/ν , (5.21)

and that the constant C is dependent on the angle θ0 of incidence and on the interior

angle β; it can be readily approximated, where

C(θ0, β) ≤ 2π/β (5.22)

with C(θ0, β) ≈ 2π/β when the incident wave direction θ0 = 0. The results also show
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that the power m is independent of the incident field angle θ0, but that the constant C

is at a maximum when θ0 = 0 and diminishes as the incident field angle increases.

k C m C m C m

Lemniscate, β = π/2 Lemniscate, β = π/4 Lemniscate, β = π/12
1 4.0 0.67 7.9 0.57 23.4 0.52
π/2 4.0 0.67 7.9 0.57 23.3 0.52
π 4.0 0.67 7.9 0.57 23.4 0.52
2π 4.0 0.67 7.9 0.57 23.5 0.52
4π 4.0 0.67 7.9 0.57 23.5 0.52
8π 4.0 0.67 8.0 0.57 23.6 0.52
16π 4.0 0.67 7.9 0.57 23.7 0.52

Lemniscate, β = π/3 Lemniscate, β = π/6 Lemniscate, β = π/18
1 5.9 0.60 11.9 0.55 35.4 0.51
π/2 5.9 0.60 11.9 0.55 35.2 0.51
π 5.9 0.60 11.9 0.55 35.4 0.51
2π 5.9 0.60 11.9 0.55 35.6 0.51
4π 5.9 0.60 11.9 0.55 35.8 0.51
8π 6.0 0.60 11.8 0.54 36.4 0.51
16π 6.0 0.60 12.0 0.55 37.9 0.52

Table 5.5: |ϕ(τ)− ϕ(0)| ≈ C(kτ)m as τ → 0.
Single-cornered scatterers with interior angle, β and Dirichlet boundary condition. Angle
of incidence, θ0 = 0.

k θ0 = 0 θ0 = π/32 θ0 = π/16 θ0 = π/8 θ0 = π/4

C m C m C m C m C m
1 7.9 0.57 7.9 0.57 7.8 0.57 7.7 0.57 7.1 0.57
π/2 7.9 0.57 7.9 0.57 7.9 0.57 7.7 0.57 7.1 0.57
π 7.9 0.57 7.9 0.57 7.9 0.57 7.7 0.57 7.1 0.57
2π 7.9 0.57 7.9 0.57 7.9 0.57 7.7 0.57 7.1 0.57
4π 7.9 0.57 7.9 0.57 7.9 0.57 7.7 0.57 7.1 0.57
8π 8.0 0.57 7.9 0.57 7.9 0.57 7.7 0.57 7.1 0.57
16π 7.9 0.57 7.9 0.57 7.9 0.57 7.7 0.57 7.1 0.57

Table 5.6: |ϕ(τ)− ϕ(0)| ≈ C(kτ)m as τ → 0.
Scatterer with interior angle, β = π/4 and Dirichlet boundary condition. Different angles
of incidence, θ0.

5.3.2 Neumann Boundary Condition

We consider lemniscates with different interior angles, β, and Neumann boundary con-

dition (2.20) and examine the quantity

|ϕ(τ)|, (5.23)
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in the vicinity of the corner, that is as τ → 0, where ϕ(τ) = ϕ(y(τ)) is a solution to the

boundary value problem (2.42) using the boundary parameterisation (2.1),

usc(x(t)) =

∫ 2π

0
G(x(t),y(τ))ϕ(y(τ)) |y′(τ)|ds(y(τ)), 0 ≤ t, τ ≤ 2π. (5.24)

This boundary value problem has a unique solution as long as the wave number, k, of

the incident field uinc (2.14) is not an eigenvalue of the interior Neumann problem [7,

p.51]. Applying the boundary condition (2.20) and the jump relation for the single-layer

potential (2.27) we obtain the integral equation

− ϕ(x(t))

2
+

∫ 2π

0

∂G(x(t),y(τ))

∂n(x(t))
ϕ(y(τ)) |y′(τ)|ds(y(τ)) = −∂u

inc(x(t))

∂n(x(t))
,

0 ≤ t, τ ≤ 2π, (5.25)

for which the unknown continuous density ϕ is a solution.

We seek an approximation of the quantity of interest (5.17) as τ → 0, of the form

|ϕ(τ)| ≈ C(kτ)m. (5.26)

As per the Dirichlet case, data was collected from acute and right-angled lemniscates

(2.9) with π/18 ≤ β ≤ π/2 for various wave numbers ka and different incident angles,

θ0. A least squares fit to the logarithms of the data for small τ was used. The results

for a variety of interior angles β with plane wave incidence θ0 = 0 are presented in Table

5.7. Full results for different incident wave angles are available in Appendix D.2, Table

D.2.

The numerical results demonstrate that for scatterers with Neumann boundary and

interior angle β,

|ϕ(τ)| ≈ C(β, θ0)(kτ)
2−ν
ν = C(β)(kτ)

2
ν
−1, (5.27)

when θ0 = 0 for some constant C dependent on the interior angle β.

This result differs when the incident field angle θ0 is not equal to 0, or nearly so. To

illustrate, Table 5.8, presents some results for a lemniscate with interior angle β = π/4

and incident field angles θ0 = 0, π/32, π/16, π/8 and π/4. This demonstrates the effect
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of varying the incidence angle. For θ0 6= 0,

|ϕ(τ)| ≈ C(β, θ0)(kτ)
1−ν
ν = C(β, θ0)(kτ)

1
ν
−1, (5.28)

for some constant C dependent on the interior angle β and incidence angle θ0. Varying

the incident field angle for the other lemniscates demonstrates the same phenomena. Full

results illustrating this are available in Appendix D.2, Table D.2.

The results show that the power m is dependent of the incident field angle θ0, that

is m = (2− ν)/ν when θ0 = 0 and m = (ν − 1)/ν, when θ0 6= 0. The constant C is at a

maximum when θ0 = 0 and in the majority of cases, the constant also increases as the

wave number k increases. The one exception is for interior angles β = π/12 and π/18

when the wave number ka = π/2. In these two instances, the constant C is smaller than

when ka = 1, then increases as the wave number increases in a similar fashion to all the

other cases.

k C m C m C m

Lemniscate, β = π/2 Lemniscate, β = π/4 Lemniscate, β = π/12
1 1.9 0.33 0.5 0.143 0.1 0.043
π/2 3.7 0.33 0.9 0.143 0.2 0.043
π 7.1 0.33 1.8 0.143 0.5 0.043
2π 14.1 0.33 3.4 0.143 0.9 0.043
4π 27.0 0.33 6.8 0.143 1.8 0.044
8π 58.9 0.33 13.6 0.143 3.6 0.044
16π 103.8 0.32 27.2 0.143 7.2 0.044

Lemniscate, β = π/3 Lemniscate, β = π/6 Lemniscate, β = π/18
1 0.7 0.20 0.3 0.091 0.1 0.029
π/2 1.4 0.20 0.5 0.091 0.1 0.029
π 2.7 0.20 1.0 0.091 0.3 0.029
2π 5.3 0.20 2.0 0.091 0.6 0.029
4π 10.7 0.20 3.9 0.091 1.2 0.029
8π 21.4 0.20 8.0 0.091 2.3 0.029
16π 42.8 0.20 15.9 0.091 4.6 0.029

Table 5.7: |ϕ(τ)| ≈ C(kτ)m as τ → 0.
Lemniscates with interior angle, β and Neumann boundary condition. Angle of incidence,
θ0 = 0.
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k θ0 = 0 θ0 = π/32 θ0 = π/16 θ0 = π/8 θ0 = π/4

C m C m C m C m C m
1 0.5 0.143 0.3 -0.428 0.5 -0.428 1.1 -0.428 2.2 -0.428
π/2 0.9 0.143 0.4 -0.426 0.7 -0.427 1.3 -0.428 2.5 -0.428
π 1.8 0.143 0.9 -0.425 1.6 -0.427 3.1 -0.428 5.3 -0.428
2π 3.4 0.143 1.7 -0.425 3.3 -0.427 6.4 -0.428 11.0 -0.428
4π 6.8 0.143 3.2 -0.421 6.0 -0.425 11.7 -0.427 22.8 -0.428
8π 13.6 0.143 6.8 -0.418 12.4 -0.423 24.3 -0.426 46.3 -0.428
16π 27.2 0.143 14.2 -0.413 25.7 -0.421 48.9 -0.425 92.7 -0.427

Table 5.8: |ϕ(τ)| ≈ C(kτ)m as τ → 0.
Lemniscate with interior angle, β = π/4 and Neumann boundary condition. Different
angles of incidence, θ0.

5.4 Analysis of the Neumann Result

In this section we derive an asymptotic expression for the surface quantity ϕ near the

corner for the Neumann boundary condition and examine the validity of the numerical

results presented in Section 5.3.2, by comparison with an infinite wedge. This analysis is

for a scatterer with an interior right-angled-corner, β = π/2.

We again make use of the analysis by Bowman et al. [1, p.261] to estimate the surface

quantity ϕ. When kr � 1, the Bessel function expansion of the total field utot for a

scatterer with a Neumann boundary condition is

utot (r, φ) = Hz

∼ 2

ν
+

4

Γ (1/ν)

(
1

2
kr

) 1
ν

e−
iπ
2ν cos

(
φ− Ω

ν

)
cos

(
φ0 − Ω

ν

)
+O

[
(kr)min(2/ν,2)

]
, (5.29)

where ν =
2π − 2Ω

π
[1]. Thus

usc(r, φ) = Hz − uinc(r, φ). (5.30)

Figure 5.3b describes the geometry of the problem. We will be measuring the total field

on the scatterer surface, hence on the upper (φ = Ω) and lower (φ = 2π − Ω) surfaces,

cos φ−Ω
ν takes the value 1 and −1, respectively. We seek the surface density on the wedge
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of the form

usc(x(t)) =

∫ π

−π
G(x(t),x(τ))ϕ(x(τ))|x′(τ)| dτ, (5.31)

where, using the small argument approximation of H(1)
0 [120],

G(x(t),x(τ)) =
i

4
H

(1)
0 (k|x(t)− x(τ)|)

∼ 1

2π
log(k|x(t)− x(τ)|), as |x(t)− x(τ)| → 0, (5.32)

and

x(t) = (|t|, t), t ∈ [−π, π]. (5.33)

If t and τ parameterise points on the same edge of the wedge,

|x(t)− x(τ)| =
√

2|t− τ |, (5.34)

whereas if they are on different edges,

|x(t)− x(τ)| =
√

2
√
t2 + τ2. (5.35)

Figure 5.6: Infinite wedge.

Consider the infinite wedge as illustrated in Figure 5.6. For

t > 0, that is, t is on the upper edge,

usc(x(t)) =
i

4

∫ ∞
0

H
(1)
0

(
k
√

2 |t− τ |
)

)ϕ(τ)
√

2 dτ

+
i

4

∫ 0

−∞
H

(1)
0

(
k
√

2
√
t2 + τ2

)
ϕ(τ)
√

2 dτ.

(5.36)

For t < 0, that is, t is on the lower edge,

usc(x(t))=

√
2i

4

∫ ∞
0
H

(1)
0

(
k
√

2
√
t2 + τ2

)
ϕ(τ) dτ +

√
2i

4

∫ 0

−∞
H

(1)
0

(
k
√

2 |t− τ |
)
ϕ(τ) dτ.

(5.37)
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Subtracting (5.37) from (5.36),

usc(x(t))− usc(x(−t)) =
√

2i

4

∫ ∞
0

(
H

(1)
0

(
k
√

2 |t− τ |
)
−H(1)

0

(
k
√

2
√
t2 + τ2

))
ϕ(τ) dτ

+

√
2i

4

∫ 0

−∞

(
H

(1)
0

(
k
√

2
√
t2 + τ2

)
−H(1)

0

(
k
√

2 |−t− τ |
))

ϕ(τ) dτ.

(5.38)

We examine (5.38) in the vicinity of the tip where t → 0. Using first order Taylor

expansions, the integrand in the first term on the right is, when τ > t,

(
H

(1)
0

(
k
√

2τ
)
−H(1)′

0

(
k
√

2τ
)(

k
√

2τ
))

−
(
H

(1)
0

(
k
√

2τ
)

+H
(1)′

0

(
k
√

2τ
)(

k
√

2
(√

t2 + τ2 − τ
)))

' −H(1)′

0

(
k
√

2τ
)
t+O

(
1

τ

)
, as τ →∞, (5.39)

so the error committed by neglecting the contribution on the interval (T,∞), where

T � t, is about

−k
√

2t

∫ ∞
T

H
(1)′

0

(
k
√

2τ
)
ϕ(τ) dτ, (5.40)

that is O(kt) as kt→ 0.

Thus we use (5.32) to approximate the terms containing H(1)
0 in (5.38). This gives

usc(x(t))− usc(x(−t)) =
1

2π

∫ ∞
0

log
|t− τ |√
t2 + τ2

ϕ(τ) dτ +
1

2π

∫ 0

−∞
log

√
t2 + τ2

|t− τ |
ϕ(τ) dτ.

(5.41)

Note that the error committed by the contribution on the interval (T,∞) is about

−t
∫ ∞
T

ϕ(τ)

τ
dτ, (5.42)

where T � t. Thus we are justified in replacing the terms containing H(1)
0 in (5.38) by

its small argument approximation.

Consider the operator I defined by

I(φ)(t) =
1

2π

∫ ∞
0

log
|t− τ |√
t2 + τ2

φ(τ) dτ, (5.43)
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then the operator has the property that the function ϕ(τ) = τα satisfies

I(ϕ)(t) = Ĉtϕ(t) = Ĉtα+1, (5.44)

for some constant Ĉ dependent upon α; in fact

Ĉ =
1

2π

∫ ∞
0

log
|1− u|√
u2 + 1

uα du. (5.45)

The integral is convergent when −1 < α < 0. Note: for the Dirichlet case the corre-

sponding result is I(ϕ)(t) = Ĉϕ(t) = Ĉtα.

Substituting τ = tu for t > 0 in (5.41),

usc(x(t))− usc(x(−t)) =
1

2π
t

∫ ∞
0

log
|1− u|√
1 + u2

ϕ(tu) du+
1

2π
t

∫ 0

−∞
log

√
1 + u2

|1− u|
ϕ(tu) du.

(5.46)

From (5.17)

usc(x(t))− usc(x(−t)) = Hz(t)−Hz(−t)− uinc(x(t)) + uinc(x(−t))

∼ 8

Γ (1/ν)

(
1

2
kt

) 1
ν

e−
iπ
2ν +O (kt)2/ν − uinc(x(t)) + uinc(x(−t))

= C(ν, φ0)(kt)1/ν +O (kt)2/ν − uinc(x(t)) + uinc(x(−t)), (5.47)

where

C(ν, φ0) =
8

2νΓ (1/ν)
e−

iπ
2ν . (5.48)

We note that when the direction of the incident field is symmetric to the scatterer, that

is θ0 = 0, then uinc(x(−t))− uinc(x(t)) = 0, otherwise uinc(x(−t))− uinc(x(t)) ∼ O(kt)

since uinc(x) = 1 +O(kt). Also, C(ν, φ0) = 0 when θ0 = 0, since φ0 = π.

Equating (5.46) and (5.47):

1

2π
t

∫ ∞
0

log
|1− u|√
1 + u2

ϕ(tu) du+
1

2π
t

∫ 0

−∞
log

√
1 + u2

|1− u|
ϕ(tu) du

∼ C(ν, φ0)(kt)1/ν +O (kt)2/ν +O (kt) . (5.49)
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Thus,

1

2π

∫ ∞
0

log
|1− u|√
1 + u2

ϕ(tu) du+
1

2π

∫ 0

−∞
log

√
1 + u2

|1− u|
ϕ(tu) du

∼ C(ν, φ0)(kt)1/ν−1 +O (kt)2/ν−1 +O (kt)0 , (5.50)

as kt→ 0, when the direction of the incident field is not 0; otherwise

1

2π

∫ ∞
0

log
|1− u|√
1 + u2

ϕ(tu) du+
1

2π

∫ 0

−∞
log

√
1 + u2

|1− u|
ϕ(tu) du ∼ O (kt)2/ν−1 . (5.51)

This is satisfied by

φ(τ) =


D(kτ)1/ν−1 +O

(
(kτ)

2
ν
−1
)
, when τ > 0,

D|kτ |1/ν−1 +O
(
|kτ |

2
ν
−1
)
, when τ < 0,

(5.52)

for some constant D with D = 0 when the direction of the incident field θ0 is 0. Substi-

tuting (5.52) into (5.51) yields

1

2π
D(kt)1/ν−1

∫ ∞
0

log
|1− u|√
1 + u2

u1/ν−1 du+
1

2π
D(kt)1/ν−1

∫ 0

−∞
log

√
1 + u2

|1− u|
u1/ν−1 du,

(5.53)

and by substituting u = −v, followed by v = u in the second integral, this equals

1

2π
D(kt)1/ν−1

∫ ∞
0

(
log
|1− u|√
1 + u2

− log

√
1 + u2

|1− u|

)
u1/ν−1 du

=
1

2π
D(kt)1/ν−1

∫ ∞
0

log
|1− u|2

1 + u2
u1/ν−1 du

=
1

2π
D(kt)1/ν−1Kν , (5.54)

where

Kν =

∫ ∞
0

log
|1− u|2

1 + u2
u1/ν−1 du. (5.55)

Thus ignoring the higher order terms, we may choose D = 2πC(ν, φ0)/Kν . We note that

Kν is a convergent integral with an integrable singularity. The proof is in Appendix D,

Lemma D.1.1.

In conclusion we have established (5.52), showing that φ(τ) = O
(
|kτ |

1
ν
−1
)
as kτ → 0.
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This is in accord with equation (5.28) summarising the numerical results. When the angle

of incidence θ0 equals 0, φ(τ) = O
(
|kτ |

2
ν
−1
)
which again is in accord with the numerical

results of Section 5.3.2 (equation (5.27)).

5.5 Conclusions

In this chapter we examined the behaviour of three quantities at close proximity to the

corner: the total field utot external to the scatterer, the derivative with respect to the

normal ∂u
tot

∂n measured on the surface of the scatterer and the surface quantity ϕ.

Firstly, we verified that the numerical schemes described in Section 2 for the solution

of the scattering of a plane wave by structures possessing corners, are suitable for mea-

suring the scattered field in close proximity to the scatterer surface at the corner. This

was done by examining the total field utot (x) at points x external to the scatterer for a

lemniscate (2.2) with Dirichlet boundary condition. The boundary condition imposes a

zero total field on the surface, and one expects that the total field approaches zero as the

point of measurement nears the surface. Our numerical experiments demonstrate that

the implemented schemes produce a rapidly converging solution at points x very near

the corner of the scatterer and that the solution is accurate, since the total field does

indeed approach zero as x approaches the surface (Figure 5.2).

Secondly, we verified that the employed schemes enable the accurate measurement

of the derivative with respect to the normal ∂utot

∂n on the surface of the scatterer in

the vicinity of the corner. Again, we used a lemniscate (2.2) with Dirichlet boundary

condition for our test case and the work of Bowman et al. [1] on the wedge of arbitrary

angle. We expect that on points on the surface, as the distance to corner r approaches

zero, that ∣∣∣∣∂utot

∂n
(r, φ)

∣∣∣∣ r 1
3 → 1.2406 |k|

2
3 , (5.56)

when the incident wave direction is zero. We demonstrated that this is indeed the case

for a variety of k in Table 5.3.

Thus the numerical schemes employed provide accurate measurement of the near-

field utot at very close proximity to the scatterer corner, and also allow for the accurate

measurement of the derivative with respect to the normal ∂utot

∂n on the surface of the
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scatterer in the vicinity of the corner.

Thirdly, the behaviour of the surface quantity ϕ(τ) near the vicinity of the corner (τ =

0) for scatterers with a Dirichlet and Neumann boundary condition was examined and

it was shown that it can be approximated based on the wave number k and the distance

along the surface from the corner, d(τ). For scatterers with the Dirichlet boundary

condition we numerically established as τ → 0, the following result

|ϕ(τ)− ϕ(0)| ≈ C(kτ)1/ν , (5.57)

where ν = (2π − β)/π, and

C ≤ 2π

β
, (5.58)

with C ≈ 2π/β when the incident wave direction θ0 = 0. In the Neumann case, we

established the following result,

|ϕ(τ)| ≈ C(β, θ0)(kτ)
2
ν
−1, (5.59)

when the incident wave direction θ0 = 0, and

|φ(τ)| ≈ C(β, θ0)(kτ)
1−ν
ν = C(β, θ0)(kτ)

1
ν
−1, (5.60)

when θ0 6=0, for constants C dependent on the incident wave direction θ0 and the interior

angle of the corner β.

We concluded this chapter by establishing the analytical basis for the Neumann results

(5.59) and (5.60). The analytical proof of the corresponding Dirichlet result is planned

for future work.



Chapter 6

The Nature of the Differences in the

Far-field Measured in the Time

Domain

In this chapter we continue the analysis of the effect on the scattered field of rounding

the corners of structures which possess sharp corners. Previous chapters measured the

impact on near- and far-field scattering, as a function of the radius of curvature, in the

frequency domain. For completeness an examination of the effect of corner rounding on

the far-field in the time domain is included.

6.1 Problem Formulation

In earlier chapters we obtained considerable data measuring the effect of corner round-

ing in the frequency domain. We make use of discrete Fourier transforms to shift the

frequency domain data to the time domain.

For the Dirichlet boundary condition, the far field pattern is calculated as

u∞ (x̂, ω) =
e−i

π
4

√
8πk

∫
∂D

{kn(y) · x̂+ η} e−ikx̂·yϕ (y, ω) ds (y) , |x̂| = 1, y ∈ ∂D,

(6.1)

which captures the frequency domain response in the unit direction x̂ to a harmonic

105
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incident plane wave for a given frequency ω. The harmonic incident plane wave is

uinc (x) = Aeikd.x, (6.2)

where k = ω/c is the wave number and d is the direction of travel. In this case d = (1, 0)

meaning travel along the x-axis in the positive direction. Following Colton and Kress [7],

the time convention e−iωt (and henceforth the Green’s function i
4H

(1)
0 (k |x− y|)) is used

which means that

ϕ (y, ω) e−iωt and u∞ (x̂, ω) e−iωt, (6.3)

are the responses to the incident field

uinc (x) e−iωt = Aeik(d.x−ct). (6.4)

Without loss of generality we may take A = 1. Thus the responses to a harmonic incident

wave of form

F (−ω)uince−iωt = F (−ω)eik(d.x−ct), (6.5)

are

F (−ω)ϕ (y, ω) e−iωt and F (−ω)u∞ (x̂, ω) e−iωt. (6.6)

Here F (−ω) is a function specifying the relative weighting of each frequency component

in the incident field, where F (ω) is the Fourier transform of the waveform f(t) specifying

the temporal shape of the incident field. The time domain response is obtained by adding

over all the frequencies

ũ∞(x̂, t) =

∫ ∞
−∞

F (−ω)u∞ (x̂, ω) e−iωt dω. (6.7)

Normally, to shift from the time domain to the frequency domain, we use a Fourier

transform, calculated as follows

F (ω) =

∫ ∞
−∞

f(t)e−iωt dt, (6.8)

and to shift from the frequency domain to the time domain we use an inverse Fourier
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transform

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωt dω. (6.9)

However, it is clear that to obtain (6.7), we compute the Fourier transform of

F (−ω)u∞ (x̂, ω), that is

ũ∞(x̂, t) =

∫ ∞
−∞

F̃ (ω) e−iωt dω, (6.10)

where F̃ (ω) = F (−ω)u∞ (x̂, ω).

6.2 The Discrete Fourier Transform

The method for shifting the far-field data from the frequency domain into the time

domain using a discrete inverse Fourier transform, requires a set of uniformly sampled

frequency values. In effect we are calculating

1

2π

∫ ωmax

−ωmax

F (ω) eiωt dω ∼ 1

2π

N∑
n=−N

F (n∆ω) ein∆ωt∆ω, (6.11)

where ∆ω = 2ωmax/2N . Thus a set of uniformly sampled frequency values in the range

−ωmax to ωmax including a value for ω = 0 is needed. The frequency domain response

work from earlier chapters, produces values for positive frequencies. The values for the

negative frequencies are derived by taking the complex conjugate of the positive frequency

response, that is, F (−ω) = F (ω). Determination of an appropriate zero frequency value,

F (0), remains. However, we will be using the discrete Fourier transform

ũ∞(x̂, ω) =

∫ ∞
−∞

F (x̂, t)e−iωt dt ∼
∫ tmax

−tmax

F (x̂, t)e−iωt dt ∼
N∑

n=−N
F (n∆t) e−inω∆t∆t,

(6.12)

thus to evaluate (E.11) we perform a change of variable, interchanging t and ω, thus

∆t = ∆w = 2ωmax/2N , hence we are evaluating

ũ∞(x̂, t) =

∫ ∞
−∞

F (x̂, ω)e−iωt dω ∼
∫ ωmax

−ωmax

F (x̂, ω)e−iωtdω ∼
N∑

n=−N
F (n∆ω) e−inMωt∆ω.

(6.13)
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6.3 The Incident Pulses

A classical choice of incident pulse is the Gaussian with time displacement t0

f(x, t) = e−(x−c(t−t0))2/a20 , (6.14)

where a0 is a quarter of the pulse width and c is the speed of waves in the medium

(a0, c > 0) and k = ω/c is the wave number. Thus to calculate the far-field (6.10), we

perform a Fourier transform

ũ∞(x̂, t) =

∫ ∞
−∞

F (x̂, ω)e−iωt dω, (6.15)

where

F (x̂, ω) =
√
π
a0

c
e−a

2k2/4eikct0u∞ (x̂, ω) . (6.16)

Full details of the calculation of this transform are shown in Appendix E.1.1.

Consider the error in the calculation of the finite sum versus the exact integral (as-

suming that F (ω) = 0 for |ω| > ωmax):

max
|ω|<ωmax

∣∣F ′′ (ω)
∣∣ 2ωmax

m (2N)2 , (6.17)

where m = 6 or 24, for the trapezoidal or midpoint rule, respectively. This assumes

that the second derivative F ′′ exists. If the second derivative fails to exist, the rate of

convergence is not guaranteed to be O
(

1
N2

)
, and is generally much worse. Since

F (ω) = u∞ (x̂, ω) ∼ C√
w
c log

(
ω a0c

) , (6.18)

for some constant C when 0 < ωa0/c << 1, a careful choice must be made for the

time dependent incident pulse, otherwise the singularity that occurs in (6.18) when ω =

0, means that the quadrature rule used in the discrete fast Fourier transform will not

converge easily.

The Gaussian pulse (6.14) for which the Fourier transform F (ω) has non-zero content
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when ω = 0. However, we have no experimental results for ω = 0, that is, k = 0. To

compensate, the zero frequency value is approximated as two times the smallest positive

frequency value. The justification is as follows. From (6.18)

F (k) =
C√

k log (ka0)
, (6.19)

thus we consider the integral

∫ k

0

C√
x log (xa0)

dx, (6.20)

and using the substitution u =
√
xa0, we write

2C
√
a0

∫ √ka0
0

1

log u
du, (6.21)

and further substituting t = log u

2C
√
a0

∫ 1
2

log ka0

−∞

et

t
dt =

−2C
√
a0

∫ −∞
1
2

log ka0

et

t
dt. (6.22)

Using the substitution t = −t′ transforms the integral into the exponential integral

−2C
√
a0

∫ ∞
− 1

2
log ka0

e−t
′

t′
dt′. (6.23)

We note that −1
2 log ka0 > 0 since 0 < ka0 << 1. Using the asymptotic expansion of the

exponential integral [121], where

E1 (z) ∼ e−z
(

1

z
+ h.o.t.

)
, (6.24)

thus

−2C
√
a0
E1

(
−1

2
log ka0

)
=
−2C
√
a0

e
1
2

log ka0

−1
2 log ka0

=
2C
√
k

log
√
ka0

. (6.25)

Thus the average value over the interval [0, k] is

2Ĉ√
k log

√
ka0

= 2F (k). (6.26)
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An alternative is to use a pulse that has zero content at ω = 0. A number of choices

could be used. We chose the derivative of the Gaussian (6.14),

ft (t) =
−2c (c (t− t0))

a2
0

e−(c(t−t0))2/a20 , (6.27)

which is zero when ω = 0, with Fourier transform

F (ω) =
√
πika0e

−ikct0−a20k2/4. (6.28)

and the Gaussian sine packet with time displacement t0 and dilation ω0,

f (t) = e−(c(t−t0))2/a2o sin (ω0t) , (6.29)

with Fourier transform

F (ω) =

√
π

2i

a0

c
e−it0ωe−(ω2

0−ω2)a20/4c2
(
e
ω0

(
it0+

a20ω

2c2

)
− e
−ω0

(
it0+

a20ω

2c2

))
. (6.30)

Full details of the calculation of these transforms are shown in Appendices E.1.1, E.1.2

and E.1.3.

The difficulty encountered with the ω = 0 component in 2D scattering is not en-

countered in scattering problems with 3D objects of finite extent : for such objects, the

ω = 0 scattered component vanishes. The 2D problem concerns scattering from objects

that are of infinite extent in one direction and of finite extent in their cross-section. The

non-zero value of the ω = 0 frequency component manifests itself in the ’wake’ observed

in the time-domain scattered field response of the infinite structure with the finite 2D

cross-section.

6.4 Verification that Implementation is Correct

Roy, Sarkar et al. [122], published a set of time-domain results for TM-scattering from a

circular scatterer. The paper presents results for the total field Ez on a terminating node

measured at a point off the surface [122, Figure 6] and results for the induced current,



6.4. VERIFICATION THAT IMPLEMENTATION IS CORRECT 111

Hφ, on the surface of the scatterer [122, Figure 5] where

Hφ =
−1

ik

∂Ez
∂ρ

. (6.31)

The circular scatterer is of radius r = 0.5, and the point used to measure the total field is

0.2 m from the surface. We can use these results to verify that our approach to obtaining

the time-domain data from the frequency domain is producing correct results by using

the following identities

Ez(x) = utot(x), and
∂Ez(x)

∂ρ
=
∂utot

∂r

∣∣∣∣
r=a

, x ∈ R2\D̄. (6.32)

To enable this comparison we calculate the total field outside the scatterer and the

derivative of the total field on the surface of the scatterer. Since a circular scatterer is

being used for this comparison we will employ the Mie-type series calculations for both

required fields.

If the plane wave is travelling in the direction of the unit vector d, then

uinc (x, y) e−iωt = Aeik(d.x−ct), (6.33)

where k = ω/c. Without loss of generality we may take A = 1. Thus

uinc (x, y) = eikx.d, x = (x, y) ∈ R2. (6.34)

The incident wave has the following well known wave function expansion [7, p.75]:

uinc(x) = eikx.d

= J0 (kr) +
∞∑
n=1

inJn (kr) cosn(θ − α) (6.35)

=

∞∑
n=−∞

i|n|J|n|(kr)e
in(θ−α),

for fixed d = (cosα, sinα), x = (r cos θ, r sin θ) ∈ R2 and Jn is the Bessel function of the

first kind.

Let D be a circle of radius a centred at the origin, and consider the incident field
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(6.34) with wave number k. The solution of the exterior Dirichlet problem is

usc(r, θ) = −
∞∑

n=−∞

i|n|J|n|(ka)

H
(1)
|n| (ka)

H
(1)
|n| (kr)e

in(θ−α), (6.36)

where Jn is the Bessel function of the first kind and H(1)
n is the Hankel function of the

first kind, both of order n (n ∈ Z). Thus the total field can be determined by

utot(r, θ) = usc(r, θ) + uinc(r, θ)

= −
∞∑

n=−∞

i|n|J|n|(ka)

H
(1)
|n| (ka)

H
(1)
|n| (kr)e

in(θ−α) +

∞∑
n=−∞

i|n|J|n|(kr)e
in(θ−α)

=

∞∑
n=−∞

−
i|n|ein(θ−α)

(
J|n|(ka)H

(1)
|n| (kr)− J|n|(kr)H

(1)
|n| (ka)

)
H

(1)
|n| (ka)

; (6.37)

the radial derivative is

∂utot (r, θ)

∂r
=

∞∑
n=−∞

−
i|n|ein(θ−α)k

(
J|n|(ka)H

(1)′
|n| (kr)− J ′|n|(kr)H

(1)
|n| (ka)

)
H

(1)
|n| (ka)

, (6.38)

which evaluated at the surface r = a is

∂utot (r, θ)

∂r

∣∣∣∣
r=a

=
∞∑

n=−∞
−
i|n|ein(θ−α)k

(
J|n|(ka)H

(1)′
|n| (ka)− J ′|n|(ka)H

(1)
|n| (ka)

)
H

(1)
|n| (ka)

. (6.39)

The Wronskian W
(
Jν (z) , H

(1)
ν (z)

)
is

W
(
Jν (z) , H(1)

ν (z)
)

= Jν (z)H(1)′
ν (z)− J ′ν (z)H(1)

ν (z)

=
2i

πz
. (6.40)

Substituting into (6.39)

∂utot (r, θ)

∂r

∣∣∣∣
r=a

=
∞∑

n=−∞
− 2i

πka

i|n|ein(θ−α)k

H
(1)
|n| (ka)

=
∞∑

n=−∞
− 2

πa

i|n|+1einθe−inα

H
(1)
|n| (ka)

. (6.41)
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The technique outlined in Section 6.1 is then applied: multiplying utot(x) and

−1
ik

∂utot(r,θ)
∂r

∣∣∣
r=a

by (E.9) and performing the Fourier transform, allowing us to produce

a set of results to be compared to those published by Roy, Sarkar et al. [122]. Figure 6.1

shows the results obtained. These results matched those of [122]. Note that the incident

pulse used in [122] is travelling in the opposite direction. This has been accounted for

by appropriately changing the points of measurement used.

0 2 4 6 8 10 12

t - seconds

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Hφ measured at (0.5, 0).

0 2 4 6 8 10 12

t - seconds

-0.05

0

0.05

0.1

(b) utot measured at (0.7, 0).

Figure 6.1: Reproducing the results of Roy, Sarkar et al. [122].

6.5 Results

To determined the effect of rounding corners in the time domain we tested the far-field

response of a lemniscate (2.2) with Dirichlet boundary condition to the three pulses

described in Section 6.3 for wave numbers 0 < k ≤ 40, using differing pulse widths a0

and time displacements t0. A representative sample of the results is presented in Figures

6.2, 6.3 and 6.4. The responses to the different pulses all exhibit the same behaviour: as

the radius of curvature of the rounded corner ρ increases, there is a slight phase shift in

the time response and an increase in the amplitude. The phase shift is accounted for by

recognising that the pulse strikes first at the corner point or the corresponding rounded

corner point; this point is displaced by an amount 2ε approximately. One can observe

that the maxima of the time domain response are delayed by an amount 2ε/c time units.
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Figure 6.2: Time domain response ũ∞(x̂, t) to Gaussian incident wave
f(t) = e−(c(t−t0))2/a20 , c = 1, t0 = 3, 0 < k ≤ 40, 4ω = k/c = 0.01.
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Figure 6.3: Time domain response ũ∞(x̂, t) to the derivative of the Gaussian incident

wave f(t) = −2c(c(t−t0))
a20

e−(c(t−t0))2/a20 , c = 1, t0 = 3, 0 < k ≤ 40, 4ω = k/c = 0.01.
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Figure 6.4: Time domain response ũ∞(x̂, t) to Gaussian sine packet incident wave
f (t) = e−(c(t−t0))2/a20 sinω0t, c = 1, t0 = 3, 0 < k ≤ 40, 4ω = k/c = 0.01.



Chapter 7

Scatterer Arrays

We have undertaken an in depth analysis of the effect of rounding the corners of scat-

terers on the near- and far-fields for a variety of scatterers with Dirichlet, Neumann and

impedance loaded boundary conditions. In this section, we extend this work to arrays of

cornered scatterers.

The multiple scatterer problem is an extension of the single scatterer problem. Part

of the interest lies in the strength of the coupling between the scatterers, that is, the

degree to which scattering from a single scatterer is changed by the presence of other

scatterers. The questions which, in particular, we wish to address are:

– Does increasing the number of scatterers increase the number of quadrature points

required to achieve a desired level of accuracy?

– Is the relative difference between the far-fields of the cornered and rounded scat-

terers amplified when the number of scatterers is increased?

– Are the bounds on the far-field differences applicable to the multiple scatterer

problem?

7.1 The Geometries

We began by considering arrays of two and then four scatterers, all the same shape, ar-

ranged parallel to the y-axis. Each array contains a single scatterer type: the lemniscate

with right or acute interior angles (Figures 7.1a, 7.1b ), the square (Figures 7.1c, 7.1d)

117
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or the diamond (Figures 7.1e, 7.1f). The scatterer size was varied, ranging from a char-

acteristic dimension of half a wavelength up to sixteen wavelengths, spaced uniformly at

distances of either 0.1, 0.25, 0.5 or 1 wavelength. The studied arrays can be used to model

various applications. The arrays of scatterers with characteristic dimension of half, one

or two wavelengths, are representative of sensor arrays used in small antenna applica-

tions. Those with larger characteristic dimensions of four, eight and sixteen wavelengths

are representative of meta-materials and band-gap materials.

7.1.1 Notation

In this chapter we consider the scatterer’s characteristic

dimension in terms of wavelength. The characteristic

dimension of the scatterer is represented as 2a and is

calculated as follows. For the lemniscate with right or

acute interior angles, it is the horizontal length, that

is from the corner to the mid-point of the blunt end,

which in all cases is equal to 2. For the square, it is the

horizontal width, that is, the length of the side of the

square. The diamond, is the square rotated by π/4, so

the characteristic dimension in this case is reported as

the length of the side of the scatterer. We will refer to

the characteristic dimension as the “diameter” of the scatterer for the remainder of this

thesis.

Also considered is the distance between scatterers, measured in wavelengths, denoted

as d. This represents the separation distance, and is measured as the distance between

the two nearest points on the scatterers.
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(a) Lemniscates, β = π/2 (b) Lemniscates, β = π/2

(c) Squares (d) Squares

(e) Diamonds (f) Diamonds

Figure 7.1: Sample of arrays of two and four scatterers of diameter two wavelengths,
showing Re

(
utot

)
. Scatterers are two wavelengths in diameter, distance between the

scatterers is one wavelength.

7.2 Approach

To represent the change to our boundary value problems introduced by a multiple scat-

terer geometry, we re-formulate the problem as a coupled set of integral equations. In this

section we describe in detail the method used for arrays of scatterers with the Dirichlet
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boundary condition (2.19) and outline the changes required for arrays of scatterers with

the Neumann (2.20) or impedance loaded (2.21) boundary conditions.

7.2.1 The Dirichlet Case

The solution to the exterior Dirichlet problem for multiple scatterers is

usc(x) =

n∑
α=1

∫
∂Dα

{
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

}
ϕα(yα) ds(yα), (7.1)

for x ∈ R2\(D1 ∪D2 ∪ · · · ∪Dn), yα ∈ ∂Dα, where ϕα represents the surface potential

on a scatterer ∂Dα.

The solution must satisfy the Dirichlet boundary condition for each scatterer, so we

use the boundary conditions

usc(x) =− uinc(x), for x ∈ D1,

usc(x) =− uinc(x), for x ∈ D2,

...

usc(x) =− uinc(x), for x ∈ Dn, (7.2)

and the jump relations for the single- and double-layer potentials, (2.26) and (2.29), to

obtain the following set of n integral equations

ϕ1(x)− 2

n∑
α=1

∫
∂Dα

{
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

}
ϕα(yα) ds(yα) = −2uinc(x), x ∈ ∂D1,

ϕ2(x)− 2

n∑
α=1

∫
∂Dα

{
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

}
ϕα(yα) ds(yα) = −2uinc(x), x ∈ ∂D2,

...

ϕn(x)− 2

n∑
α=1

∫
∂Dα

{
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

}
ϕα(yα) ds(yα) = −2uinc(x), x ∈ ∂Dn,

(7.3)

which are used to solve for the unknown surface densities ϕ1, ϕ2, . . . , ϕn on the scatterers

∂D1, ∂D2, . . . , ∂Dn, respectively.
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In each equation, the kernel of

∫
∂Dα

(
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

)
ϕα(yα) ds(yα), (7.4)

is not weakly singular at the corners of the scatterer when x ∈ ∂Dα. The technique

described in Section 2.5.4 is utilised and a vanishing term is subtracted. When x /∈ ∂Dα,

the kernels are not singular and require no special treatment.

Using the case of an array of single-cornered scatterers each with a corner at xα0 as

an example, (7.3) is transformed into

ϕ1(x)− 2

n∑
α=1

( ∫
∂Dα

{
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

}
ϕα(yα) ds(yα)

)

− 2

∫
∂D1

∂G0(x,y1)

∂n(y1)
ϕ1(x1

0) ds(y) = −2uinc(x), x ∈ ∂D1,

ϕ2(x)− 2

n∑
α=1

( ∫
∂Dα

{
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

}
ϕα(yα) ds(yα)

)

− 2

∫
∂D2

∂G0(x,y2)

∂n(y2)
ϕ2(x2

0) ds(y) = −2uinc(x), x ∈ ∂D2,

...

ϕn(x)− 2

n∑
α=1

( ∫
∂Dα

{
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

}
ϕα(yα) ds(yα)

)

− 2

∫
∂Dn

∂G0(x,yn)

∂n(yn)
ϕn(xn0 ) ds(y) = −2uinc(x), x ∈ ∂Dn.

(7.5)

Letting the operators Aαβ being defined by

Aαα ϕ(x) = 2

∫
∂Dα

(
∂G(x,yα)

∂n(yα)
− iηG(x,yα)

)
ϕ (yα) ds (yα)

+ 2

∫
∂Dα

∂G0(x,yα)

∂n(yα)
ϕ (xα0 ) ds (yα) , x ∈ ∂Dα, (7.6)
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and

Aαβ ϕ(x) = 2

∫
∂Dβ

(
∂G(x,yβ)

∂n(yβ)
− iηG(x,yβ)

)
ϕ
(
yβ
)

ds
(
yβ
)
, x ∈ ∂Dα, x /∈ ∂Dβ,

(7.7)

the set of equations (7.5) can be expressed as

ϕ1 −A11ϕ1 −A12ϕ2 − · · · −A1nϕn = f1

ϕ2 −A21ϕ1 −A22ϕ2 − · · · −A2nϕn = f2

...
...

ϕn −An1ϕ1 −An2ϕ2 − · · · −Annϕn = fn, (7.8)

where fα = −2uinc(x) for x ∈ ∂Dα. We then transform this set of integral equations into

line integrals as described in Sections 2.5 and A.3.1, and discretise using the appropriate

graded mesh ((2.61), (2.65), (2.66)) depending on the geometry of the scatterer. For the

singular kernels (7.4), we follow the Martensen-Kussmaul method as described in Section

2.5.2 and A.2. For the non-singular kernels (7.7) we use a trapezoidal rule to evaluate

the integral.

We can now express the system of discretised equations that need to be solved in

block matrix form as



I −A11 −A12 · · · −A1n

−A21 I −A22 · · · −A2n

...
...

−An1 −An2 · · · I −Ann





ϕ1

ϕ2

...

ϕn


=



f1

f2

...

fn


. (7.9)

The block Aαβ corresponds to the operator Aαβ in equations (7.6) and (7.7). The

components I −Aαα are identical to the discretised integral equations (A.54) required

to be solved for a single cornered scatterer. For scatterers with more than one corner,

the set of integral equations (7.5), need to be modified to account for the contribution of

each corner as detailed in Section 2.5.4.
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7.2.2 The Neumann and Impedance Loaded Cases

For scatterers with Neumann or impedance loaded boundary condition the method is

the same as that for the the Dirichlet boundary condition. The differences occur in the

kernels of the integral equations evaluated. The solution to the exterior Neumann and

impedance loaded problems for multiple scatterers is

usc(x) =

n∑
α=1

∫
∂Dα

G(x,yα)ϕ(yα) ds(yα), (7.10)

for x ∈ R2\(D1 ∪D2 ∪ · · · ∪Dn), yα ∈ ∂Dα, where ϕα represents the surface potential

on a scatterer ∂Dα.

The solution must satisfy the boundary condition for each scatterer, so for the impe-

dance case we use the boundary conditions

usc(x) =− ∂uinc

∂n
(x)− ikZuinc(x), for x ∈ D1,

usc(x) =− ∂uinc

∂n
(x)− ikZuinc(x), for x ∈ D1,

...

usc(x) =− ∂uinc

∂n
(x)− ikZuinc(x), for x ∈ Dn, (7.11)

and the jump relation for the single-layer potential (2.26), to obtain the following set of

n integral equations

−ϕ1(x) + 2

n∑
α=1

∫
∂Dα

{
∂G(x,yα)

∂n(x)
+ ikZG(x,yα)

}
ϕ(yα) ds(yα)

= −2

(
∂uinc

∂n
(x) + ikZuinc(x)

)
, x ∈ ∂D1,

−ϕ2(x) + 2

n∑
α=1

∫
∂Dα

{
∂G(x,yα)

∂n(x)
+ ikZG(x,yα)

}
ϕ(yα) ds(yα)

= −2

(
∂uinc

∂n
(x) + ikZuinc(x)

)
, x ∈ ∂D2,

...

−ϕn(x) + 2

n∑
α=1

∫
∂Dα

{
∂G(x,yα)

∂n(x)
+ ikZG(x,yα)

}
ϕ(yα) ds(yα)
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= −2

(
∂uinc

∂n
(x) + ikZuinc(x)

)
, x ∈ ∂Dn.

(7.12)

In each equation, the kernel of

∫
∂Dα

(
∂G(x,yα)

∂n(x)
− ikZG(x,yα)

)
ϕα(yα) ds(yα), (7.13)

is weakly singular when x ∈ ∂Dα. The technique described in Section 2.5.2 is utilised to

isolate and integrate the singular part of the kernel. When x /∈ ∂Dα, the kernels are not

singular and require no special treatment.

Setting the operator Aαβ to be defined by

Aαβ ϕ(x) = 2

∫
∂Dβ

(
∂G(x,yβ)

∂n(x)
− ikZG(x,yβ)

)
ϕ
(
yβ
)

ds
(
yβ
)
, x ∈ ∂Dα, (7.14)

the set of equations (7.12) can be expressed as

−ϕ1 +A11ϕ1 +A12ϕ2 + · · ·+A1nϕn = f1

−ϕ2 +A21ϕ1 +A22ϕ2 + · · ·+A2nϕn = f2

...
...

−ϕn +An1ϕ1 +An2ϕ2 + · · ·+Annϕn = fn, (7.15)

where fα = −2
(
∂uinc

∂n (x) + ikZuinc(x)
)

for x ∈ ∂Dα. In the same manner as the

Dirichlet case, we transform this set of integral equations into line integrals, discretise

using the appropriate graded mesh and use the described numerical techniques to evaluate

the integrals.

We express the system of discretised equations that need to be solved in block matrix

form as 

−I +A11 A12 · · · A1n

A21 −I +A22 · · · A2n

...
...

An1 An2 · · · −I +Ann





ϕ1

ϕ2

...

ϕn


=



f1

f2

...

fn


. (7.16)
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The components −I + Aαα are identical to the discretised integral equations (A.54)

required to be solved for a single scatterer. For scatterers with the Neumann boundary

condition we set Z = 0.

7.3 Numerical Results

7.3.1 Test Parameters

For all scenarios presented in this section a variety of angles of incidence, θ0, were tested.

Also, a number of impedance parameters were tried all producing similar results. In this

work we report on the results for impedance parameter Z = 1+i. All tests were performed

for a variety of scatterer sizes, ranging from a diameter of half a wavelength up to sixteen

wavelengths, spaced uniformly at distances of either 0.1, 0.25, 0.5 or 1 wavelength. The

results reported in this section are for the far-field. All rates of convergence and significant

digits in agreement for the far-field reported in this chapter are measured in the back-

scatter region, unless stated otherwise.

7.3.2 Verification of Numerical Results

There are no analytical expressions, nor readily published results with which to compare

our results. To validate the results from this section of work, we used the significant digit

measurement technique described in Section 3.1 to measure convergence. We also used

(3.7) to approximate the far-field from the near-field to verify the far-field solutions.

Once the TMATROM package [27, 100] was released, and appropriate modifications

were made, we were able to further verify the numerical results from this section. Full

details are presented in Section 8.3.

7.4 Convergence and Quadrature

The rate of convergence and number of quadrature points required for accuracy were

evaluated using the significant measurement technique described in Section 3.1. The

scenarios tested were for two and four scatterers consisting of either lemniscates of varying

acute interior angles (0 < β ≤ π/2), squares or diamonds, with diameters, 2a, ranging

from half a wavelength to sixteen wavelengths for all three boundary conditions. All
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rates of convergence and significant digits in agreement for the far-field reported in this

chapter are measured in the back-scatter region, unless stated otherwise.

Figure 7.2 illustrates the convergence rates for lemniscates with interior angle β =

π/2. Shown are the convergence rates for a single lemniscate and arrangements of two

and four lemniscates spaced by 0.1, 0.25, 0.5 and 1 wavelengths, using an incident wave

direction θ0 = 0. The results are demonstrative of those with different incident field

directions and lemniscates with different interior angles, β. Similarly, Figures 7.3 and

7.4 illustrate the convergence rates for similar arrangements of squares and diamonds,

respectively. These, also, are representative of the results when the incident angle, θ0

varies. These figures clearly demonstrate that the number of quadrature points required

on each scatterer for a desired degree of accuracy is the nearly same, whether we are

solving a single or multiple scatterer problem (see Figure 3.4 for single scatterer results).

The dependency of the required number of quadrature points is on the scatterer shape,

not the geometry of the scatterer array. The accuracy of the solution for a given number

of quadrature points varies by at most, one and occasionally two significant digits.



7.4. CONVERGENCE AND QUADRATURE 127

0 100 200 300 400 500 600 700 800 900 1000

N - number of quadrature points

0

5

10

15

D
ig

it
s 

in
 A

g
re

em
en

t

Dirichlet

Neumann

Impedance

(a) Two Lemniscates, β = π/2, d = 0.1λ
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(b) Four Lemniscates, β = π/2, d = 0.1λ

0 100 200 300 400 500 600 700 800 900 1000

N - number of quadrature points

0

5

10

15

D
ig

it
s 

in
 A

g
re

em
en

t

Dirichlet

Neumann

Impedance

(c) Two Lemniscates, β = π/2, d = 0.25λ
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(d) Four Lemniscates, β = π/2, d = 0.25λ
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(e) Two Lemniscates, β = π/2, d = 0.5λ
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(f) Four Lemniscates, β = π/2, d = 0.5λ

0 100 200 300 400 500 600 700 800 900 1000

N - number of quadrature points

0

2

4

6

8

10

12

14

16

D
ig

it
s 

in
 A

g
re

em
en

t

Dirichlet

Neumann

Impedance

(g) Two Lemniscates, β = π/2, d = λ

0 100 200 300 400 500 600 700 800 900 1000

N - number of quadrature points

0

5

10

15

D
ig

it
s 

in
 A

g
re

em
en

t

Dirichlet

Neumann

Impedance

(h) Four Lemniscates, β = π/2, d = λ

Figure 7.2: Illustrating the convergence rates for the far-field |u∞(x̂)| using significant digits in agree-
ment, for arrays of two or four lemniscates, one wavelength in diameter, using different separations d,
for the three boundary conditions. Direction of plane wave θ0 = 0.
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(i) Two Squares, β = π/2, d = 0.1λ
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(j) Four Squares, β = π/2, d = 0.1λ
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(k) Two Squares, β = π/2, d = 0.25λ
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(l) Four Squares, β = π/2, d = 0.25λ
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(m) Two Squares, β = π/2, d = 0.5λ
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(n) Four Squares, β = π/2, d = 0.5λ
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(o) Two Squares, β = π/2, d = λ
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(p) Four Squares, β = π/2, d = λ

Figure 7.3: Illustrating the convergence rates for the far-field |u∞(x̂)| using significant digits in agree-
ment, for arrays of two or four Squares, one wavelength in diameter, using different separations d, for
the three boundary conditions. Direction of plane wave θ0 = 0.
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(q) Two Diamonds, β = π/2, d = 0.1λ
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(r) Four Diamonds, β = π/2, d = 0.1λ
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(s) Two Diamonds, β = π/2, d = 0.25λ
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(t) Four Diamonds, β = π/2, d = 0.25λ
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(u) Two Diamonds, β = π/2, d = 0.5λ
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(v) Four Diamonds, β = π/2, d = 0.5λ
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(w) Two Diamonds, β = π/2, d = λ
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(x) Four Diamonds, β = π/2, d = λ

Figure 7.4: Illustrating the convergence rates for the far-field |u∞(x̂)| using significant digits in agree-
ment, for arrays of two or four Diamonds, one wavelength in diameter, using different separations d, for
the three boundary conditions. Direction of plane wave θ0 = 0.
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7.5 Relative Differences

In this section we address the question: is the relative difference between the far-fields

of the cornered scatterers and their rounded counterparts amplified when the number

of scatterers is increased? We use a similar method for measuring the effect on the far-

field of rounding corners to that used for single scatterers (Section 3.4). The deviation

from the far-field solution produced by an array of cornered scatterers, u∞0 (x̂), where

x̂ = x̂(θ̂) = (cos θ̂, sin θ̂), with θ̂ ∈ [0, 2π] being the angle of observation of the far-

field, and that produced by rounding u∞ρ (x̂) , with associated radius of curvature ρ, is

measured using the L1 norm

∥∥u∞0 − u∞ρ ∥∥1
=

∫ 2π

0

∣∣u∞0 (x̂)− u∞ρ (x̂)
∣∣dx̂, (7.17)

and L∞ norm ∥∥u∞0 − u∞ρ ∥∥∞ = max
x̂∈[0,2π]

∣∣u∞0 (x̂)− u∞ρ (x̂)
∣∣ . (7.18)

We examine arrays of two and four scatterers of a particular shape and boundary

condition arranged in a line parallel to the y-axis (Figure 7.1). Three shapes are exam-

ined: the lemniscate (2.2), square (2.6) and diamond (a square rotated by π/4) and their

rounded counterparts (2.3), (2.7), for the three boundary conditions: Dirichlet (2.19),

Neumann (2.20) and impedance loaded (2.21). Both the absolute and relative difference

were measured and the relative difference is reported. The relative difference is expressed

as a percentage of the same norm of the scatterer’s far-field. The L1 relative difference

is
‖u∞0 − u∞ρ ‖1
‖u∞0 ‖1

, (7.19)

and the L∞ relative difference is

‖u∞0 − u∞ρ ‖∞
‖u∞0 ‖∞

. (7.20)

Full results for scatterers of diameter 2a = 0.5, 1 and 2 wavelengths, separated by

distances d = 0.1, 0.25, 0.5 and 1 wavelengths are available in Appendix F.1. Tables F.1

and F.2 are for the lemniscate, Tables F.3 and F.4 for the square and Tables F.5 and F.6
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for diamonds.

Table 7.1 presents a sample of the results collected. It shows data for a single lemnis-

cate, an array of two lemniscates and an array of four lemniscates for all three boundary

conditions. The lemniscates are 1 wavelength in diameter and separated by distances of

d = 0.1, 0.25, 0.5 and 1 wavelength. The results are for incident wave angle θ0 = 0.

An analysis of the results reveals the following. Firstly, as in the case of single

scatterers, the smaller the radius of curvature used for the rounding, the smaller the

measured relative difference. Secondly, increasing the number of scatterers from one to

two or even four, does not increase the relative norm differences by an equivalent ratio.

The effect of rounding on arrays of scatterers is of a similar order as that of a single

scatterer, and sometimes the effect of rounding is even less. Specific changes to the

relative differences are dependent on the scatterer shape and the boundary condition, as

the following sections explain.

7.5.1 Dirichlet Boundary Condition

In the case of the Dirichlet boundary condition, the scatterer shape and, to a smaller

extent the scatterer size, determines the change in the L1 relative differences as the

number of scatterers increases. In the case of the lemniscate, increasing the number

of scatterers makes little difference in the L1 norm and in the majority of cases it is

less than that of a single lemniscate. In all cases where there is an increase to the

relative difference, the increase is less than 10%. The L∞ norm relative differences, not

unexpectedly, exhibit similar behaviour.

As an example, a single lemniscate with radius of curvature ρ = 0.02 has an L1 and

L∞ relative difference of 1.2% and 1.07%, respectively. For an array of two lemniscates

the same relative differences range from 0.9% to 1.28% and 0.73% to 1.13%, respectively.

In the case of a four lemniscate array, the respective differences range from 0.86% to

1.32% and 0.61% to 1.3%.

For squares and diamonds the distance between the scatterers has more impact on the

differences. When the scatterers are spaced at a distance of 0.1 wavelength the relative

differences are similar to that of a single scatterer and are reduced when the spacing

is increased to one wavelength. The largest difference occurs when the scatterers are
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separated by half a wavelength. These results are independent of the scatterer diameter.

A single square, one wavelength in diameter, has relative L1 and L∞ norm differences

of 0.76% and 0.63%, respectively. For an array of two squares these differences range

from 0.75% to 0.99% and 0.53% to 0.76%, respectively when the scatterers are separated

by 0.1, 0.25, and 1 wavelengths. For an array of four squares the relative norm differences

range from 0.77% to 1.12% and 0.44% to 0.9%, respectively for the same separations.

When the scatterer separation is 0.5λ there is a jump in the relative differences to 1.82%

and 1.48% for the two scatterer case, and 2.06% and 1.94% for the four scatterer case.

A single diamond, one wavelength in diameter, has L1 and L∞ relative differences

of 0.71% and 0.56%, respectively. For an array of two diamonds, these differences range

from 0.76% to 0.87% and 0.6% to 0.75%, respectively. In the case of a four diamond

array, the respective differences range from 0.77% to 0.98% and 0.72% to 0.94%. There is

a bigger jump in the L1 relative norm difference only, when the scatterers are separated

by half a wavelength. In the case of a two scatterer array it is 1.23% and in the case of

four, 1.35%. This jump does not occur in the L∞ norm.

In summary, for the Dirichlet case, even though there is some variation, both the rel-

ative norm differences are of the same order as that of the single scatterer with equivalent

rounding, regardless of the distance between the scatterers or the scatterer size.

7.5.2 Neumann Boundary Condition

For lemniscates with the Neumann boundary condition, increasing the number of scat-

terers increases the L1 norm differences by a factor of two or less and the L∞ norm

differences up to a factor of three. A single lemniscate with radius of curvature ρ = 0.02,

one wavelength in diameter has L1 and L∞ relative differences of 0.4% and 0.31%, re-

spectively. For an array of two lemniscates these differences range from 0.56% to 0.8%

and 0.41% to 0.74%, respectively. In the case of a four lemniscate array, the respective

differences range from 0.55% to 0.9% and 0.37% to 1%. Even though there are increases

to the relative differences as the number of scatterers increase they are still small.

In the case of squares with Neumann boundary condition the separation distance

is slightly more significant. The closer the scatterers, the larger the relative differences.

Increasing the distance between the scatterers reduces the difference. Once the scatterers
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are separated by one wavelength, the relative difference is the same as that of the single

scatterer. This is most notable in the L1 norm. To illustrate: a single square, one

wavelength in diameter with radius of curvature ρ = 0.02, has an L1 norm difference of

0.67%. Increasing the number of scatterers to two produces differences of 1.54%, 1.04%,

0.77% and 0.66% for separation distances of 0.1, 0.25, 0.5, and 1 wavelengths, respectively.

For four scatterers the respective differences are 1.9%, 1.24%, 0.77% and 0.67%. The

L∞ relative difference changes with separation distance are less marked. A separation

distance of half or one wavelength actually results in a smaller difference than that of

a single scatterer. There is a slight increase when the scatterers are separated by 0.1

wavelength. To illustrate: the same single rounded square has an L∞ norm difference

of 0.67%. Increasing the number of scatterers to two produces differences of 0.71%,

0.65% , 0.63% and 0.58% for separation distances of 0.1, 0.25, 0.5, and 1 wavelengths,

respectively. For four scatterers the respective differences are 0.76%, 0.72%, 0.63% and

0.56%.

The effect of rounding diamonds with Neumann boundary condition is a little different

than for squares. Similarly, the L1 relative difference is greatest when the scatterers are

close (0.1λ separation) and reduces as the separation distance increases, however, unlike

the square where the difference is negligible, once the separation is one wavelength, the

relative difference increases in the case of diamonds. As an illustration: a single diamond,

one wavelength in diameter, with radius of curvature ρ = 0.02 has L1 relative difference of

0.76%. Increasing the number of scatterers to two produces differences of 1.54%, 1.02%,

0.75% and 1.04% for separation distances 0.1, 0.25, 0.5, and 1 wavelengths, respectively.

For four scatterers the respective differences are 1.65%, 1.08%, 0.84% and 0.94%. The

L∞ relative difference exhibits the same behaviour. Using the same example, a single

scatterer has L∞ relative difference of 0.97%. Increasing the number of scatterers to

two produces differences of 1.13%, 1.06%, 0.81% and 1.38% for separation distances 0.1,

0.25, 0.5, and 1 wavelengths, respectively. For four scatterers the respective differences

are 1.53%, 1.03%, 0.73% and 1.39%. We also note that for two and four scatterer arrays

the smallest relative differences in both norms occur at separation distance of half a

wavelength regardless of scatterer diameter. In the case of the L∞ norm, the relative

difference is less than that of a single scatterer for two and four scatterer arrays separated
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by a half wavelength - again, regardless of scatterer diameter.

Thus in the Neumann case, while there is some variation depending on the scatterer

type, size and separation, the relative norm differences are of similar order. The largest

differences were observed for squares separated by 0.1λ where the L1 difference is two to

three times that of a single rounded square with the same radius of curvature.

7.5.3 Impedance Loaded Boundary Condition

There is little variation in the L1 relative difference for lemniscates with an impedance

boundary condition. As in the Dirichlet case, for arrays of lemniscates of diameter one or

two wavelengths, once separated by a single wavelength, the L1 relative difference is less

than that of a single scatterer. When the diameter is half a wavelength the difference is

slightly larger. In all other cases the the increase to the norm difference is approximately

10% or less. The L1 relative difference for a single lemniscate, diameter one wavelength,

with radius of curvature ρ = 0.02 is 1.23%. Increasing the number of scatterers to

two produces differences of 1.24%, 1.43%, 1.34% and 1.09% for separation distances 0.1,

0.25, 0.5, and 1 wavelengths, respectively. For four scatterers the respective differences

are 1.39%, 1.56%, 1.39% and 0.99%. Examining the L∞ relative difference shows that

for arrays smaller diameter lemniscates (diameter 0.25λ) there is a small increase when

the scatterers are separated by a distance of 0.1 or 1 wavelengths but is less than that

for a single lemniscate when the separation distance is 0.25 or 0.5 wavelengths. It is the

reverse for arrays of lemniscates of one or two wavelengths diameter. In these cases, the

relative L∞ difference is higher than than for a single lemniscate at separation distances

0.25 for 0.5 wavelengths and smaller for separation distances of 0.1 or 1 wavelengths.

The L∞ relative difference for the same lemniscate is 0.71%. Increasing the number of

scatterers to two produces differences of 0.63%, 0.79%, 0.83% and 0.56% for separation

distances 0.1, 0.25, 0.5, and 1 wavelengths, respectively. For four scatterers the respective

differences are 0.65%, 0.86%, 0.85% and 0.43%. In summary, even though there is some

variation to the relative norm differences when the number of scatterers increases, they

are of the same order as that of a single lemniscate.

All impedance loaded squares and diamonds, exhibit the same behaviour in the L∞

relative difference: it is higher than than of a single scatterer at separation distances 0.25
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and 0.5 wavelengths and smaller for distances of 0.1 or 1 wavelength. The L1 relative

difference for smaller scatterers (diameter 0.25λ) behaves in the same fashion. For the

larger diameter scatterers the L1 relative difference for arrays is always higher than that

of a single scatterer except when the separation distance is one wavelength where it is

the same. It should be noted that these differences are small. Using a square of diameter

one wavelength with radius of curvature ρ = 0.02 to illustrate, a single square has a

relative L1 difference of 1.08%. Increasing the number of scatterers to two produces

differences of 1.15%, 1.41%, 1.18% and 1.06% for separation distances 0.1, 0.25, 0.5,

and 1 wavelengths, respectively. For four scatterers the respective differences are 1.23%,

1.54%, 1.21% and 1.05%. The same scatterer has L∞ difference of 0.56%. Increasing the

number of scatterers to two produces differences of 0.53%, 0.72%, 0.56% and 0.51% for

separation distances 0.1, 0.25, 0.5, and 1 wavelengths, respectively. For four scatterers

the respective differences are 0.54%, 0.81%, 0.56% and 0.48%.

In general, for the impedance loaded case, the changes to the relative L1 and L∞

norm differences are small and remain of the same order as that for a single scatterer.
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Single 2 Lemniscates 4 Lemniscates
L1 ρ Lemniscate d=0.1λ d=0.25λ d=0.5λ d=λ d=0.1λ d=0.25λ d=0.5λ d=λ

Dirichlet
0.05 4.00 3.00 3.91 4.27 3.44 2.94 4.29 4.40 3.04
0.04 2.98 2.24 2.93 3.19 2.54 2.21 3.23 3.28 2.23
0.03 2.04 1.54 2.02 2.18 1.73 1.52 2.23 2.25 1.50
0.02 1.20 0.90 1.19 1.28 1.00 0.90 1.32 1.32 0.86
0.01 0.48 0.36 0.48 0.51 0.40 0.37 0.54 0.53 0.34

Neumann
0.05 1.94 2.58 2.56 2.68 2.59 3.21 2.58 3.00 3.39
0.04 1.33 1.78 1.77 1.99 1.86 2.24 1.78 2.20 2.45
0.03 0.81 1.11 1.10 1.36 1.22 1.41 1.09 1.49 1.61
0.02 0.40 0.56 0.56 0.80 0.67 0.73 0.55 0.86 0.90
0.01 0.12 0.18 0.18 0.33 0.24 0.25 0.17 0.34 0.33

Impedance, Z = 1 + i
0.05 3.51 3.44 4.01 3.87 3.11 3.82 4.39 3.99 2.80
0.04 2.71 2.67 3.11 2.97 2.39 2.98 3.40 3.07 2.16
0.03 1.94 1.93 2.24 2.13 1.72 2.17 2.45 2.20 1.55
0.02 1.23 1.24 1.43 1.34 1.09 1.39 1.56 1.39 0.99
0.01 0.58 0.59 0.67 0.62 0.51 0.66 0.73 0.65 0.46

L∞

Dirichlet
0.05 3.53 2.50 3.49 3.63 2.98 2.09 4.02 3.58 2.60
0.04 2.64 1.85 2.66 2.69 2.20 1.55 3.07 2.65 1.89
0.03 1.81 1.25 1.87 1.84 1.49 1.05 2.16 1.80 1.26
0.02 1.07 0.73 1.13 1.07 0.87 0.61 1.30 1.05 0.71
0.01 0.43 0.29 0.46 0.42 0.34 0.24 0.54 0.41 0.28

Neumann
0.05 1.55 2.15 2.17 1.49 2.99 2.68 2.38 1.72 4.24
0.04 1.05 1.44 1.51 1.15 2.14 1.79 1.59 1.12 3.00
0.03 0.64 0.86 0.94 0.81 1.38 1.06 0.96 0.65 1.91
0.02 0.31 0.41 0.48 0.49 0.74 0.50 0.47 0.37 1.00
0.01 0.09 0.13 0.16 0.20 0.26 0.14 0.14 0.16 0.33

Impedance, Z = 1 + i
0.05 2.04 1.68 2.21 2.40 1.58 1.68 2.40 2.48 1.22
0.04 1.57 1.32 1.71 1.84 1.22 1.34 1.86 1.90 0.94
0.03 1.13 0.97 1.24 1.31 0.87 1.00 1.35 1.36 0.68
0.02 0.71 0.63 0.79 0.83 0.56 0.65 0.86 0.85 0.43
0.01 0.33 0.30 0.37 0.38 0.26 0.32 0.41 0.39 0.21

Table 7.1: Relative L1 (7.19) and L∞(7.20) norm differences (%), for lemniscates with
interior angle β = π/2, diameter, 2a = λ. Incidence angle θ0 = 0.
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7.6 Far-field Differences

In this section we examine the quantity

√
k
∥∥u∞0 − u∞ρ ∥∥∞ , (7.21)

for the scatterer arrays described in Section 7.1, where u∞0 is the far-field of the cornered

scatterers and u∞ρ is the far-field of the rounded scatterers with radius of curvature ρ,

as ρ approaches 0. As previously noted, the
√
k factor correctly non-dimensionalises the

far-field quantities.

We particularly want to establish whether the following bounds established in Section

3.7 hold when the number of scatterers is increased. For scatterers with a Dirichlet

boundary condition:
√
k‖u∞0 − u∞ρ ‖∞ ≈ C(θ0)(kρ)m, (7.22)

for some constant C dependent on the incident field angle θ0, where m = 2/ν, ν =

(2π − β)/π and β is the interior angle of the scatterer corners; for scatterer arrays with

an impedance loaded boundary condition:

√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≈ C (θ0) (kρ)m , (7.23)

where m = 1, and for scatterer arrays with Neumann boundary condition:

√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≤ C (θ0) (kρ)m , (7.24)

where m = 2/ν.

The same methodology described in Section 3.7 was followed. Data was collected for

all the described cornered scatterer arrays (Section 7.1), for all three boundary conditions

for various wave numbers ka using different incident angles, θ0. The same data was

collected for their rounded counterparts, using many different radii of curvature. A least

squares fit to the logarithms of the data was used for kρ ≤ 0.25 to determine the constants

C andm. Complete results for all three boundary conditions and different incident angles

θ0 are available in Appendix F.2. Tables F.7 and F.8 contain the results for arrays of
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two and four scatterers, respectively, with Dirichlet boundary condition; Tables F.9 and

F.10 for the Neumann boundary condition; and Tables F.11 and F.12 for the impedance

loaded cases.

An analysis of the results yields the following. For arrays of two and four scatterers

with Dirichlet boundary condition,

√
k‖u∞0 − u∞ρ ‖∞ ≈ C(θ0, d)(kρ)2/ν , (7.25)

for some constant C dependent on the incident field angle θ0 and the separation distance

d. We note that for very small interior corner angles (β < π/18) that the far-field

difference tends to zero faster than (kρ)2/ν , that is

√
k
∥∥u∞0 − u∞ρ ∥∥∞ ≤ C (θ0) (kρ)2/ν . (7.26)

For the same arrays but with Neumann boundary condition, we also have the same

approximation
√
k‖u∞0 − u∞ρ ‖∞ ≈ C(θ0, d)(kρ)2/ν , (7.27)

for some constant C dependent on the incident field angle θ0 and the separation distance

d, even for very small interior corner angles. This differs from the single scatterer results

where the angle of the incident field, θ0, affected the rate that the far-field difference

tended towards zero for the curvilinear scatterers. When the incident angle was incident

to the corner, that is θ0 = 0, for single scatterers the far-field difference tended to zero

much faster than (kρ)2/ν : to the powers 1.7 to 1.9. This effect disappears when the

number of scatterers is increased from one. We also note a slight slowing of the rate of

convergence, from 1.33 to 1.28-1.30 for scatterer arrays of diamonds when the angle of

incidence is π/4 and the separation distance is a half or one wavelength. This slowing

is also apparent when the angle of incidence is 3π/8 and in this case it is regardless of

separation distance. This effect is more noticeable when the number of scatterers in the

array is increased from two to four. Thus for scatterer arrays of diamonds when the angle

of incidence increases, the rate that the far-field difference approaches zero as the radius

of curvature approaches zero slows a little.



7.7. CONCLUSION 139

For the scatterer arrays with impedance loaded boundary condition,

√
k‖u∞0 − u∞ρ ‖∞ ≈ C(θ0, d)(kρ)1, (7.28)

for some constant C dependent on the incident field angle θ0 and the separation distance

d. We note that for arrays of squares the rate of convergence is slightly faster (up to

1.06) for π/4 ≤ θ0 ≤ 3π/8, and similarly for arrays of diamonds (up to 1.08) when

0 ≤ θ0 ≤ π/8. The effect is more pronounced when the number of scatterers increases

from two to four.

7.7 Conclusion

In this chapter we have explored the effect of rounding the corners of scatterers arranged

in single arrays of two and four scatterers. The changes to the numerical methods de-

scribed in Chapter 2 required to accommodate the effect of multiple scatterers were

outlined. The results were validated using a variety of methods.

The main area of interest of this chapter lies in the strength of the coupling between

the scatterers, that is, the degree to which scattering from a single scatterer is changed

by the presence of other scatterers.

Firstly, we have demonstrated that the number of quadrature points required on each

scatterer for a desired degree of accuracy is nearly the same, whether we are solving a

single or multiple scatterer problem. The dependency is on the scatterer shape, not the

geometry of the scatterer array. The accuracy of the solution for a given number of

quadrature points varies by at most, one and occasionally two significant digits.

Secondly, we examined the relative differences of the far-field solutions produced by

arrays of two and four scatterers using the L1 and L∞ norms. As in the case of single

scatterers, the smaller the radius of curvature used for the rounding, the smaller the

measured relative difference. Increasing the number of scatterers from one to two and

then four, does not increase the relative norm differences by an equivalent ratio. The

effect of rounding on arrays of scatterers is of a similar order as that of a single scatterer,

and sometimes even less.

Thirdly, we showed that the bounds on the far-field differences
√
k‖u∞0 − u∞ρ ‖∞ es-
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tablished in Section 3.7 for single scatterers can be applied to scatterer arrays. For arrays

of scatterers with Dirichlet boundary condition, the approximation for single scatterers

√
k‖u∞0 − u∞ρ ‖∞ ≈ C(θ0, d)(kρ)2/ν , (7.29)

holds, with the constant C now being dependent on the separation distance between the

scatterers d as well as the incident field direction θ0, for all scatterers studied with the ex-

ception of those with very small interior angles (β < π/18), where the far-field difference

tends to zero faster than (kρ)2/ν . For arrays of scatterers with a Neumann boundary

condition, the bound established for single scatterers now becomes an approximation,

√
k‖u∞0 − u∞ρ ‖∞ ≈ C(θ0, d)(kρ)2/ν , (7.30)

where the constant is also dependent on the separation distance of the scatterers. In the

single scatterer case, the angle of the incident field affected the rate of convergence for

curvilinear scatterers. This phenomena disappears when working with scatterer arrays.

It is noted that there is a slight slowing of the rate of convergence from 1.33 to 1.28-1.3 ,

for arrays of diamonds as the incident field angle increases from π/4 onwards. For arrays

of scatterers with the impedance loaded boundary condition the approximation for single

scatterers
√
k‖u∞0 − u∞ρ ‖∞ ≈ C(θ0, d)(kρ)1, (7.31)

holds, again with the constant C now being dependent on the separation distance between

the scatterers. There is a slight increase in the rate of convergence for arrays of squares

and diamonds (up to 1.08) which is dependent on the angle of the incident field.

The classical coupling method combined with the Nyström scheme using graded mesh

produces highly accurate solutions but is computationally demanding as the number of

scatterers increases. For investigations into larger scatterer arrays, alternative methods

for efficient solutions should be considered. In the following chapters we do so.



Chapter 8

TMATROM

In October 2017, Ganesh and Hawkins [27] released TMATROM - a Matlab object-

oriented T-matrix software package. The package implements a numerically stable al-

gorithm developed by Ganesh and Hawkins [103, 104, 118], to compute the T-matrix

of a two-dimensional scatterer. The package is available for download [100] with full

instructions for installation and use [102].

The T-matrix method for solving scattering problems was originally developed by

Waterman for electromagnetic scattering by three dimensional scatterers [123] and then

for acoustic scattering from two and three dimensional scatterers [124]. Waterman uses

the Extended Boundary Condition Method (EBCM, or Near Field Method (NFM)) to

compute the T-matrix

T = −(Rg)QQ−1, (8.1)

where the matrix Q expresses the null-field condition relating the incident and internal

fields, whilst (Rg)Q describes the formation of the scattered field from the internal field.

The matrix elements of (Rg)Q are calculated by surface integrals involving regular wave

functions and Q using Hankel functions of the first kind integrated over the surface. Pe-

terson and Ström [125] extended Waterman’s method to the case of an arbitrary number

of scatterers. The T-matrix method is used in various applications, such as electromag-

netic and acoustic scattering. Waterman’s approach, though widely used to calculate the

T-matrix entries, is numerically unstable under certain conditions: for scatterers that

are large compared with wavelength, or have extreme geometries with large aspect ra-

tios [126–128]. The instabilities arise from the methods used to compute the T-matrix

141
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entries using surface integrals. Strategies have been developed to mitigate this instability,

such as the use of extended precision arithmetic [129, 130], and using the symmetries of

the scatterer [131]. Petrov et al. [132] split the Q matrix into two halves to reduce com-

putational time and improve accuracy. Other methods have been used to calculate the

T-matrix: the Invariant Imbedding Method [133] and Point Matching Method [47, 134]

are such examples. However, common to all these methods and variations, the T-matrix

entries are computed using surface integrals and thus the resulting numerical instability.

Ganesh and Hawkins have developed a numerically stable algorithm [103, 104] for

the calculation of the T-matrix entries which is based on a boundary integral method.

Numerical stability has been achieved by using the far-field to compute the T-matrix

entries rather than the near-field on the scatterer surface (the cause of the numerical

instabilities). Initially this new method was used for three-dimensional electromagnetic

scattering [135], then acoustic three-dimensional scattering [103] and two-dimensional

acoustic scattering [136].

The reasons for using the TMATROM package are two-fold: to independently verify

work done to date, but more importantly, to make use of computational efficiencies

provided by the toolbox for larger multiple scattering problems.

In this chapter, we examine the TMATROM package, the advantages that its use

provides as well as some constraints. We outline our implementation and conclude with

a detailed verification of the results of earlier work. TMATROM was released publicly

late 2017 and to the best of our knowledge we are the first adopter as is [137]. In the

next chapter we employ TMATROM to solve larger array scattering problems.

8.1 The TMATROM Package

The TMATROM package uses a reduced order model (ROM) for modelling two-dimen-

sional wave propagation of acoustic and electromagnetic waves based on the T-matrix. It

provides off-line tools for computing the T-matrix of any two dimensional obstacle using

any forward wave propagation solver [102]. The T-matrix is independent of incident and

receiver directions.

TMATROM provides an efficient framework to use the resultant T-matrix to change

the position and orientation of the scatterer as well as to assemble various types of
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multi-scatterer architectures. Changes to the position or orientation of a scatterer use

techniques based on the translation-addition theorem for Hankel functions [104, 138] to

quickly calculate a new T-matrix from the original. The toolbox also allows for the

incorporation of a user’s own forward single-scatterer solver. All that is required is that

the solver can compute the far-fields associated with incident circular waves [118]. Details

required for coding user defined solvers are fully described in [102].

A Nyström solver for smooth scatterers with sound-soft, sound-hard or impedance

loaded boundary conditions developed by Ganesh and Hawkins is included in the toolbox

as well as an example showing the use of Barnett and Betcke’s MPSpack [99] as the

forward solver for polygonal shapes. MPSpack uses non-polynomial finite elements and

the method of fundamental solutions. Also included in the package are the routines

required to evaluate regular and radiating wave functions and routines implementing the

translation-addition theorem which is required for multiple scatterer problems. A number

of programmed examples are included: single, multiple, rotated and translated scattering

problems using the Nyström solver for sound-soft, sound-hard and impedance loaded

scatterers, and some scattering problems solved using MPSpack. Scatterer geometry

examples include a circle, ellipse, pinched ball, trefoil, hexagon and sample code to enable

implementation of any two-dimensional scatterer parameterised using polar coordinates.

8.2 Implementation of Single Scatterer Problems

TMATROM requires that the user have some proficiency in object-oriented programming

- more so if the user is intending to incorporate other solvers and scatterers than those

provided. The use of MPSpack also requires knowledge of object-oriented programming.

The first step is to download and test the software using the included examples. If

the included MPSpack example is to be used, then the MPSpack software [98] will also

need to be downloaded and tested. The user should be familiar with MPSpack and the

details provided in the user guide [99].

The next step is to set up any scatterer geometries of interest that are not included

in the TMATROM package. In our case, programming was required for the geometries

for all of the scatterers considered in this chapter: lemniscates (2.2), rounded lemniscates

(2.10) with interior angles 0 < β ≤ π/2, squares (2.6) and rounded squares (2.7), all with
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both uniform and graded mesh.

The final step is to choose or implement the solver. The forward Nyström solver

included with TMATROM is suitable for smooth-surfaced scatterers and uses a uniform

mesh to discretise the surface. The included MPSpack interface (with some customisa-

tion) used in conjunction with MPSpack is suitable for piecewise-homogeneous scatterers,

including polygons. We also implemented our own Nyström solver for scatterers with

corners which treats the hypersingularity in the kernel of the Dirichlet problem using the

methods described in Section 2.5.4 and allows for discretisation using a graded mesh.

8.2.1 Parameter Selection

In this section we discuss the process and decisions required to enable implementation

of our scattering problems using TMATROM. For full details of the Ganesh-Hawkins

algorithm for two-dimensional scatterers we refer the reader to [136] and implementation

of the TMATROM package to [27]. Convergence results of the T-matrix are reported

in [118].

Figure 8.1

The T-matrix is calculated for each scatterer geometry for a

given wave number. It is independent of scatterer orientation or

position. The dimension of the T-matrix is set by a parameter n

which is the same parameter used for the truncation of the series

expansion of the incident field in regular wave functions [27],

uinc(r, θ) =
∑
n

fnJ|n|(kr)e
inθ, (8.2)

for expansion coefficients fn. Ganesh and Hawkins equip the TMATROM package with

an object which suggests an order, n. This calculation uses the Wiscombe formula [139]

for Mie-type series truncation to determine the order. The result is determined by the

wave number ka and the radius R of a circle centred at the centre of the scatterer. This

radius is set such that the circle circumscribes the scatterer (Figure 8.1).

An infinite T-matrix satisfies the following symmetry relation:

T + T ∗ + 2TT ∗ = 0, (8.3)
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for scatterers with Dirichlet, Neumann, impedance (restricted to cases with a real impe-

dance load factor Z) and transmission boundary conditions. This symmetry relationship

also holds when the wave function series expansions are truncated to a finite order n,

with a corresponding (2n+ 1)× (2n+ 1) T-matrix Tn. The TMATROM package reports

the following quantity

max
l,m=−n,...,n

|(Tn + T ∗n + 2TnT
∗
n)l,m|, (8.4)

as a measure of the truncation error. This error is dependent on the solver used and

the order n chosen for the series truncation. The smaller the truncation error, the

more accurate the scattering solution. Note, a complex - not real - impedance load

parameter Z has been used for all impedance experiments in this work. As such, a

relatively large symmetry error is reported (order 10−2) for those experiments. This is

not a reflection of the accuracy of the solution produced by TMATROM, but rather the

T-matrix truncation error reporting being not helpful in this instance and other measures

of accuracy should be employed. For scatterers with a Dirichlet or Neumann boundary

condition the truncation error (8.4) holds.

We have found that changes to the suggested order of the series truncation are re-

quired to reduce the size of the T-matrix error for the geometries of the scatterers in our

project and to improve the accuracy of the results. The trade-off is of course computa-

tional efficiency as a larger order n generates a larger T-matrix. Figure 8.2 illustrates

the effect on the T-matrix error that changes to the order of the series truncation elicit.

The figures on the left show the effect of increasing the order of truncation has on the T-

matrix error and the figures on the right show the resulting maximum far-field differences

‖u∞0 − u∞TM ‖∞ = max
x̂∈[0,2π]

∣∣u∞0 (x̂)− u∞
TM

(x̂)
∣∣ (8.5)

where u∞0 is the far-field generated by our original code (Chapter 3) and u∞
TM

that

generated by TMATROM equipped with our cornered solver. The x-axis indicates the

number added to the suggested order given by TMATROM. Thus n+ = 0 indicates the

suggested order, n+ = 5 shows the result from adding 5 to the suggested order and so

on. Figures 8.2a and 8.2b illustrate the effect of increasing the truncation order for a
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lemniscate (2.2) for various wave numbers ka and figures 8.2c and 8.2d for a square (2.6),

sides of length 2. For the lemniscate the TMATROM suggested orders (n+ = 0) are 11,

16, 43, 75 for wave numbers ka = π, 2π, 8π and 16π respectively. For the square they

are 12, 32, 51 and 90 for the same wave numbers.

An analysis of our results shows that if the T-matrix error is 10−N̄ , for some N̄ ,

then the maximum error between the two far-fields, is ∼ 10−N̄+1. We also measured

the far-field differences using the L2 norm ‖u∞0 − u∞TM ‖2. The differences between the

two far-fields using this measure is ∼ 10−N̄+2. The results show that for lower and

mid-wave numbers, increasing the order by 10 more than suggested produces highly

accurate results. For wave numbers greater than ka = 8π, increasing the suggested

truncation order by 15 yields a further improvement in the accuracy of the results for

those wave numbers. Based on our results, it was decided to run all further experiments in

TMATROM for the geometries of interest with truncation order n = (suggested n) + 10,

unless otherwise stated.

The Nyström solvers included with TMATROM discretise the surface of the scatterer

to solve the integral equations associated with the scattering problem. If employed,

consideration must also be given to the number of surface quadrature points required.

8.2.2 MPSpack

Figure 8.3

During the course of our experiments, we employed Barnett

and Betcke’s MPSpack as the forward solver for squares with

Dirichlet and Neumann boundary conditions. MPSpack uses

the method of fundamental solutions (a non-polynomial finite

element method) to solve the scattering problem. The scatterer

is enclosed by an artificial circular boundary, radius r. This

circular domain is subdivided such that each corner of the poly-

gon resides in a different sub-domain, though this is not strictly

necessary (Figure 8.3). In each sub-domain the total field is approximated by a linear

combination of Fourier-Bessel functions

utot(r, θ) =

Ni∑
j=1

c
(i)
j Jjai(kr) sin jaiθ. (8.6)
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(a) Lemniscate, β = π/2, T-matrix error.
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(b) Lemniscate, β = π/2 L∞ difference.
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(c) Square, T-matrix error.
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(d) Square, L∞ difference.

Figure 8.2: Illustrating the effect of increasing the order of series truncation in TMA-
TROM equipped with our forward solver for cornered scatterers. The suggested order
by TMATROM is shown at n+ = 0, increasing by 5 is n+ = 5 and so on. Figures on
the left show effect on T-matrix error (8.4), and on the right the maximum difference
between the far-field produced by TMATROM u∞

TM
and that using our original code u∞0

(Chapter 3):
∥∥u∞0 − u∞TM∥∥∞ = maxx̂∈[0,2π]

∣∣u∞0 (x̂)− u∞
TM

(x̂)
∣∣. Incident wave angle is

θ0 = 0 for the lemniscate, θ0 = π/4 for the square. Both scatterers have a Dirichlet BC.

The choice of N determines the number of basis functions used for a desired solution ac-

curacy. When employing MPSpack using TMATROM, two different circles are required.

The first is the circle radius R described in the previous section used to calculate the

T-matrix (Figure 8.1). The second is the circle radius r, for the circular domain required

by MPSpack (Figure 8.3). The choice of radius R for the T-matrix circle is determined

by the scatterer geometry and does not require any end-user decision - it just must encir-

cle the scatterer exactly (Figure 8.1). However, the choice of radius r for the MPSpack

domain has a significant effect on the convergence and accuracy of the solution.

As Barnett and Betcke discuss in [20]: “ What is the optimal value of r? If r is small,
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then the singular corners of the square have a large relative distance to the neighbouring

elements, suggesting a fast convergence on these elements. However, the rate of conver-

gence for the Method of Fundamental Solutions (MFS) approximations will be slow since

the radius r is close to the radius of the corners of the polygon. If r is large, then the MFS

approximations converge fast but the relative distance of a singular corner to a neigh-

bouring element is very small, leading to slow convergence on the finite elements.” They

suggest that the optimal radius reached “ when the asymptotic rate of convergence of the

MFS is identical to the asymptotic rate of convergence on the finite elements.” In their

paper, they present a theorem which estimates the rate of convergence. They include

numerical results for a unit square (2a = 1) showing actual convergence compared to the

estimated rate of convergence for different choices of radius r, and plot the asymptotic

convergence factors from their theorem for different r. The optimal asymptotic rate is

achieved when r = 1.036. Subsequently Barnett and Betcke use the optimal radius r = 1

for their experiments.

An optimal choice of r is required for each scatterer for which MPSpack is used as

the forward solver. The square studied in this work has sides of length 2 (2a = 2). The

L2 boundary error (BE) norm is used as a measure of accuracy within MPSpack. The

smaller the norm the more accurate the final scattering solution. Our results show that

simply doubling the radius r when doubling the length of the side of the square does

not provide an optimal radius. A number of values of r were tested ranging from 1.45

to 2 for varying wave numbers ka . Figure 8.4 illustrates the effect on the L2 BE norm

calculated by MPSpack as r varies from 1.45 to 2 for a square with sides length 2 with

the Dirichlet or Neumann boundary conditions. The optimal r lies between 1.6 and 1.72.

Table 8.1 shows the optimal radius for the various wave numbers ka for each boundary

condition: 1.65 ≤ r ≤ 1.71. Based on these results a value of r = 1.68 was chosen for

all future experiments when using this geometry and MPSpack as the forward solver in

TMATROM.

In addition to choosing an optimum radius r for the domain external to the scatterer,

the user must also choose the correct number of corner basis functions N (8.6) in each

sub-domain. In their paper [20], for a square with sides of 1 unit length, Barnett and

Betcke choose N = 100 and optimal radius r = 1 for their reporting. We tested N = 80,
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(a) Square, Dirichlet boundary condition.
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(b) Square, Neumann boundary condition.

Figure 8.4: Showing the L2 boundary error (BE) norm from MPSpack for different radii
r and different wave numbers ka, for a square of side length 2 (2a = 2), for Dirichlet and
Neumann boundary conditions with incident wave direction θ0 = π/4.

Dirichlet Neumann
ka r L2 BE norm r L2 BE norm

1 1.66 1.90e-06 1.66 1.27e-06
π/2 1.65 2.40e-06 1.65 1.63e-06
π 1.66 1.92e-06 1.66 2.36e-06
2π 1.67 3.14e-06 1.7 2.74e-06
4π 1.67 2.10e-06 1.66 4.35e-06
8π 1.67 1.97e-06 1.7 3.21e-06
16π 1.7 1.63e-05 1.71 1.98e-05

Table 8.1: Showing the smallest L2 boundary error (BE) norm from MPSpack and the
corresponding radius r, for a square of side length 2 (2a = 2), for Dirichlet and Neumann
boundary conditions with incident wave direction θ0 = π/4.

100, 120 and N = 150 for the unit square using the same optimal radius for both Dirichlet

and Neumann boundary conditions with wave number ka = 2π. The L2 BE norms were

3e-12, 2e-12, 3e-12 and 2e-11 respectively in the Dirichlet case, and 5e-12, 2e-12, 2e-12

and 2e-11 in the Neumann case, for an incident field angle θ0 = π/4, demonstrating that,

in this case, an increase to the number of corner basis functions does not correlate to an

increase in accuracy and may even result in a decrease. However, increasing the number

of basis functions does increase the processing time. As an example, for the Neumann

case the respective processing times are 0.87, 0.99, 1.11 and 1.32 seconds.

We next tested the square of side length 2 (2a = 2) as this is the scatterer of interest.

The domain radius was set to r = 1.68 for all wave numbers ka except for ka = 16π where

a domain radius of r = 1.71 was used. Figure 8.5 illustrates the effect of changing the
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basis functions. In the Dirichlet case, N = 80 gives the best results: 10e-06 - 10e-07 for

wave numbers other than 16π where N = 110 yields an optimal result. In the Neumann

case, N = 70 or 80 yields similar results for wave numbers less than 8π, N = 90 is best

for ka = 8π and N = 110 for ka = 16π.

For quadrature Barnett and Betcke use the Clenshaw-Curtis rule [140], and have

chosen the number of pointsM to be high enough that further increases have a negligible

effect on the accuracy of the solution. This number is usually a small multiple of the

number of basis functions, N . In their published results they used M = 200. Testing

a Dirichlet square with sides length 2, using a domain radius r = 1.71 and number

of basis functions N = 110 for wave number ka = 16π, yielded an L2 BE norms of

9.6e-07,9.6e-07 and 1.2e-06 for quadrature points M = 100, 200 and 400, respectively

with corresponding processing times for calculating the coefficients of 0.97, 2.1 and 4.4

seconds. Again, demonstrating that increasing the number of quadrature points does not

necessarily produce an increase in the solution accuracy.

All the above experiments were run using MPSpack independent of TMATROM to

determine the best parameters to use when using MPSpack as the forward solver in

TMATROM.

50 60 70 80 90 100 110 120 130 140 150
10

-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

(a) Square, Dirichlet boundary condition.
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(b) Square, Neumann boundary condition.

Figure 8.5: Showing the L2 boundary error (BE) norm from MPSpack for different
numbers of corner basis functions, N , and different wave numbers ka, for a square of side
length 2 (2a = 2), for Dirichlet and Neumann boundary conditions with incident wave
direction θ0 = π/4.
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8.3 Verification of Our Single Scatterer Results

As discussed in Section 3.1, there is no analytical expression for the scattered field from

a non-circular scatterer and as such, there is no true solution to which we can compare

results. We reported on the methods used to verify our results: significant digit mea-

surement, comparison to published data and approximating the far-field from the near

scattered field. Another avenue for verification is is to set up our scatterer problems

in available packages, such as MPSpack [99]. This requires a not always insubstantial

investment of time to learn the package and understand any limitations and induced nu-

merical errors. However, with the release of TMATROM and the possible computational

gains to be made by using TMATROM for larger scatterer array problems, it was decided

to implement TMATROM for our scatterers and incorporate our cornered forward solver

into the package. An added benefit is the ability to verify our results independently. In

this section we present our verification results. All results presented are for the far-field.

Similar results were obtained for the near-field.

Unless stated otherwise, all experiments in this section were run using the recom-

mended parameters from the preceding sections. Thus the series truncation order in

TMATROM, n, was increased by 10. When using MPSpack as the forward solver for

squares, the artificial domain boundary radius was set to r = 1.68, the number of corner

basis functions was set to N = 80 and the number of quadrature pointsM = 160, that is

2N . All rates of convergence and significant digits in agreement for the far-field reported

in this chapter are measured in the back-scatter region, unless stated otherwise.

We began by testing rounded lemniscates (2.10) for various interior angles, 0 < β ≤

π/2, and rounded squares (2.7) with different radii of curvature, ρ, as well as cornered

lemniscates (2.2) and squares (2.6) in TMATROM using the included Nyström solver.

The included solver is for smooth scatterers and employs a uniform mesh tj = πj/n, for

j = 0, 1, ..., 2n − 1, in the parameterisation (2.1) of the scatterer. As such, the results

should be the same as our earlier results (Section 3.3) when using a uniform mesh. All

three boundary conditions were tested for a variety of wave numbers, ka and incident

field directions θ0. For the rounded scatterers we tested radii of curvature ρ = 0.1, 0.09,

..., 0.01, 0.005, 0.0025, 0.00125 in the corners. The results for the scatterers with corners,

as expected, exhibit non-convergence when using a uniform mesh. Figures 8.6a, 8.6d and
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8.6g illustrate some typical results and Figures 8.6b, 8.6e and 8.6h illustrate the results

of the same experiments using our original code (Chapter 3). It is clear that the same

results are achieved, thus verifying our earlier results and code for smooth scatterers

with uniform mesh. We then re-ran the same experiments in TMATROM, this time

using our cornered solver and a graded mesh. The results are presented in Figures 8.6c,

8.6f and 8.6i and exhibit the same dramatic improvement in the rate of convergence for

the rounded scatterers and, of course, for the cornered ones as our original code when

employing a graded mesh (Figures 3.4 and 3.5).

We next compared the far-field produced using TMATROM equipped with our cor-

nered solver and the far-field generated by our original code for cornered structures using

graded mesh. All three boundary conditions were tested for different incident fields,

θ0. For the single scatterer problem, we tested wave numbers ka = π/2, π, 2π, 4π, 8π

and 16π. The difference between the solution produced by our original code, u∞0 (x̂)

for x̂ ∈ [0, 2π] , and that produced by TMATROM equipped with our cornered solver

u∞
TM

(x̂), is measured using the L2 norm

∥∥u∞0 − u∞TM∥∥2
=

(∫ 2π

0

∣∣u∞0 (x̂)− u∞
TM

(x̂)
∣∣2 dx̂

) 1
2

, (8.7)

and L∞ norm ∥∥u∞0 − u∞TM∥∥∞ = max
x̂∈[0,2π]

∣∣u∞0 (x̂)− u∞
TM

(x̂)
∣∣ . (8.8)

Detailed results are provided in Appendix G. Tables G.1, G.2 and G.3 show the results

for the Dirichlet, Neumann and impedance loaded boundary conditions, respectively, for

the different single scatterers studied in Chapter 3, for different wave numbers ka and

some incidence field angles, θ0. The results are similar for other incident field angles.

Shown are the T-matrix errors and the far-field differences measured using the L2 and L∞

norms. In all cases the order of the far-field differences is of the same order or better than

the T-matrix error. For example, a lemniscate with interior angle β = π/2 and Neumann

boundary condition illuminated by an incident wave with wave number π has a T-matrix

error of 7.98e-10 and the differences in the far-fields is 7.31e-15 using the L2 norm and

1.01e-14 using the L∞ norm. Increasing the wave number to 16π gives T-matrix error

7.98e-09 and far-field differences of 1.33e-10 and 9.55e-11, respectively. As discussed
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in Section 8.2.1, the T-matrix error cannot be used as a predictor of accuracy for the

impedance loaded cases as we are using an imaginary impedance loading Z. However,

the measured differences in the far-fields show a high degree of agreement to our original

code. For all boundary conditions and all scenarios tested the results show agreement to

our original work of order 10−10 to 10−15, which validates our results.

These results show that the implementation of our cornered forward solver in TMA-

TROM produces the same results as when using our original code. To further verify our

work, we proceeded to use MPSpack as the solver in TMATROM. This independently

verifies our results for the square, and since our code for the square scattering problem

is the same as that for our other scatterers, we are in effect verifying our cornered solver.

Tables G.1 and G.2 show these results for square with a Dirichlet or Neumann boundary

condition, respectively, for incident field angles θ0 = 0 and θ0 = π/4. We show the results

for the number of corner basis functions N = 80 and N = 100 in MPSpack as N = 80

produces better results for the lower frequencies (scatterer less than 8λ in diameter) and

N = 100 for the higher frequencies (scatterers 8λ in diameter or larger). The MPSpack

results show agreement to our original work of order 10−9 to 10−12, which again validates

our results. We note that the T-matrix error when using our cornered forward solver is

of similar order or better than when using MPSpack. Because of this and the need to use

different parameters in MPSpack for different test conditions, we used our own cornered

solver in TMATROM for all future work.
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(a) Lemniscate, β = π/2,
TMATROM with included solver
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Our original code
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(c) Lemniscate, β = π/2,
TMATROM with our solver
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TMATROM with included solver
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Our original code
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(f) Lemniscate, β = π/6,
TMATROM with our solver
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Figure 8.6: Significant digits in agreement of the far-field. The leftmost column shows
the rate of convergence (3.8) using the TMATROM provided Nyström solver which em-
ploys an equispaced mesh. The centre column shows the rate of convergence using our
original code with the same equispaced mesh. The rightmost column shows the rate
of convergence using TMATROM equipped with our cornered solver which employs a
graded mesh. All scatterers have a Dirichlet boundary condition. Incidence angle is
θ0 = 0 for the lemniscates, θ0 = π/4 for the square. Wave numbers ka = π/2 for the
lemniscate with interior angle β = π/2, ka = π for the lemniscate with interior angle
β = π/6 and ka = π/2 for the square.
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8.4 Multiple Scatterer Configurations

As described in Section 7.2, the scattered field for a multiple scatterer problem is calcu-

lated by summing the scattered field from each of the scatterers:

usc(x) =

n∑
i=1

usc
i (x), (8.9)

where usc
i is the scattered field from scatterer i and x is a point exterior to any of the

scatterers. The scattered field for each scatterer is calculated from the T-matrix for

that scatterer multiplied by the incident field, represented as radiating wave function

expansions, on the scatterer. The incident field on each scatterer consists of the sum

of the incident wave and the scattered field generated by the other scatterers in the

arrangement:

uinc(x) +

n∑
j=1
j 6=i

usc
j (x). (8.10)

This creates a linear system of scattered fields for each scatterer which require to be

solved. TMATROM employs Matlab’s Generalised Minimum Residual Method (GM-

RES) to solve this problem iteratively. There are two variables used by GMRES that

are set by TMATROM: the tolerance of the method, set at 1e-08, and the number of

iterations that re-starts the method. This calculation is determined by the number of

scatterers and the series truncation parameter, n. In the majority of multiple scatterer

configurations the parameters determined by TMATROM provide very accurate solutions

and require no adjustment by the end user.

The multiple scatterer problem takes advantage of the T-matrix approach and its

implementation in TMATROM. The T-matrix for each different scatterer used in a con-

figuration is only required to be calculated and stored once. Changes to the scatterer

position and orientation use techniques based on the translation-addition theorem [138]

to quickly re-calculate a new T-matrix based on the original [104]. The implementation

of the translation-addition theorem introduces an error in the far-field at least of the

order 10−8 [104].

In addition to computational time savings, there are significant memory savings when

using the T-matrix method for a multiple scatterer problem versus the traditional ap-
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proach used in Chapter 7. The T-matrix is constructed using the far-field calculated by

either an included forward solver or that of the end-user. If the forward solver uses a

Nyström method the size of the system to be solved to enable calculation of the far-field

is determined by the number of quadrature points used to discretise the surface of the

scatterer. The T-matrix calculated from this far-field is significantly smaller. To illus-

trate: using 512 quadrature points to discretise the surface of a lemniscate with Dirichlet

boundary condition and incident wave number ka = 2π requires a 512x512 system to be

solved by the forward solver. The T-matrix is then calculated and is only size 63x63.

Increasing the number of scatterers to 2 requires a 1024x1024 system to be solved using

the traditional approach. However, when employing TMATROM for the same problem,

the original 512x512 problem is used in the forward solver resulting in a T-matrix of

order 63. The T-matrix for the additional scatterer is calculated from this one and the

size of the linear system to be solved by TMATROM (8.10) is only 126x126. Increas-

ing the number of scatterers to 4, requires solving a 2048x2048 system when using the

traditional method. By contrast, TMATROM required the original 512x512 problem to

be solved and then the linear system to be solved by TMATROM increases to 252x252.

This efficiency allows for much larger array problems to be solved than when using the

classical method employed in Chapter 7.

However, TMATROM is not suitable for all scatterer array configurations. Compar-

ison of the far-field results from TMATROM to those produced using the traditional

approach used in Chapter 7 showed larger differences than expected when the scatterers

are separated by small distances. Some difference was expected attributable to the use

of the translation-addition theorem for multiple scatterer problems by TMATROM but

the differences were significantly larger.

We found the impact of the separation distance on the accuracy of the far-field results

produced using the TMATROM package is similar regardless of boundary condition or

the number of scatterers in the array. To illustrate, we will use a two-diamond array

with Dirichlet boundary condition and incident wave angle, θ0 = 0. We note the far-

field differences are of approximately the same order, whether measured using the L2 or

L∞ norms and use the L2 norm in the examples listed in Table 8.2. As can be seen,

these early experiments achieved low orders of agreement: varying from 10−3 up to 10−5.
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Advice was sought from the package authors, and a number of suggestions were made.

Firstly, to verify the T-matrix quality using the T-matrix error. Secondly, to consider

increasing the truncation order from that suggested. And, finally, to consider increasing

the number of GMRES iterations. These suggestions were applied and we now illustrate

the effect on the differences between the far-fields implementing these suggestions made.

We continue to use the array of two diamonds with Dirichlet boundary condition for this

example, but the effect on the results of implementing these strategies was the same for

all the scatterer configurations considered.

N=100 N=500
d d

T-mat Err 0.1λ 0.25λ 0.5λ λ T-mat Err 0.1λ 0.25λ 0.5λ λ

2a
0.5λ 1.7e-05 2e-04 2e-04 1e-04 5e-05 1.6e-08 2e-04 1e-04 3e-05 1e-06
λ 1.4e-05 1e-03 1e-03 2e-04 6e-05 1.9e-07 1e-03 1e-03 2e-04 4e-06
2λ 1.3e-05 2e-03 2e-03 4e-04 6e-05 8.9e-08 2e-03 2e-03 4e-04 2e-06

Table 8.2: Showing the effect of increasing the number of quadrature points N on the
surface of the scatterer on the T-matrix error (8.4), and the difference in the far-fields
produced using TMATROM equipped with our Nyström corner solver and that produced
by our original MATLAB programs for an array of two diamonds of diameter 2a with
different separation distances d. The difference in the far-fields is measured using the
L2 norm (8.7). The scatterers have Dirichlet boundary condition and the incident wave
direction is θ0 = 0.

When using a Nyström scheme, the T-matrix error is affected by the number of

quadrature points chosen to discretise the surface of the scatterer, N , and the series

truncation order, n. Table 8.2, shows the improvement in the T-matrix error that in-

creasing the number of quadrature points on the scatterer from N = 100 to N = 500.

The T-matrix error improves from order ∼ 10−5 to ∼ 10−8, but there is almost no change

to the far-field differences measured using the L2 norm.

Table 8.3 shows the further improvement to the T-matrix error that increasing the

series truncation order from that suggested by TMATROM by 5 and 10. Increasing the

order by 5 improves both the T-matrix error and the order of the far-field differences.

Increasing the order by another 5, that is by 10, produces no change in the T-matrix

error but further improves the far-field difference order in most cases. This is because

the series truncation order is also used to calculate the suggested number of iterations for

the GMRES function. We next increased the number of quadrature points to N = 1000
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on the surface of the scatterer. Table 8.4 shows the combined results of increasing the

quadrature points and the series truncation order. This improves the T-matrix error to

∼ 10−11 and shows some improvement to the far-field differences for separation distance

of d = λ.

Sug. Order +5, N=500 Sug. Order +10, N=500
d d

T-mat Err 0.1λ 0.25λ 0.5λ λ T-mat Err 0.1λ 0.25λ 0.5λ λ

2a
0.5λ 1.3e-09 3e-05 4e-06 6e-08 5e-09 1.3e-09 3e-04 4e-06 9e-09 5e-09
λ 1.1e-09 3e-04 1e-04 4e-06 1e-08 1.1e-09 6e-05 1e-05 1e-07 1e-08
2λ 9.9e-10 8e-04 5e-04 4e-05 3e-08 9.9e-10 3e-04 1e-04 6e-06 5e-09

Table 8.3: Showing the effect of increasing the series truncation order n on the T-matrix
error (8.4), and the difference in the far-fields produced using TMATROM equipped with
our Nyström corner solver and that produced by our original MATLAB programs for an
array of two diamonds of diameter 2a with different separation distances d. The difference
in the far-fields is measured using the L2 norm (8.7). The scatterers have Dirichlet
boundary condition, the number of quadrature points on each scatterer is N = 500 and
the incident wave direction is θ0 = 0.

Sug. Order +5, N=1000 Sug. Order +10, N=1000
d d

T-mat Err 0.1λ 0.25λ 0.5λ λ T-mat Err 0.1λ 0.25λ 0.5λ λ

2a
0.5λ 3.1e-11 3e-05 4e-06 6e-08 5e-11 3.1e-11 9e-05 2e-06 9e-09 6e-11
λ 2.6e-11 3e-04 1e-04 4e-06 1e-08 2.6e-11 6e-05 1e-05 1e-07 1e-08
2λ 2.3e-11 8e-04 5e-04 4e-05 3e-08 2.3e-11 3e-04 1e-04 6e-06 8e-10

Table 8.4: Showing the effect of increasing the series truncation order n when the number
of quadrature points is increased to N = 1000 on the T-matrix error (8.4), and the
difference in the far-fields produced using TMATROM equipped with our Nyström corner
solver and that produced by our original MATLAB programs for an array of two diamonds
of diameter 2a with different separation distances d. The difference in the far-fields is
measured using the L2 norm (8.7). The scatterers have Dirichlet boundary condition and
the incident wave direction is θ0 = 0.

The final suggestion was to increase the number of GMRES iterations. Table 8.5

shows the effect on the different two scatterer arrays when all three suggestions are im-

plemented: increasing the number of GMRES iterations from that suggested by TMA-

TROM by 10, using discretisation N = 1000 and increasing the order series truncation

by 10. The final strategy was to increase the number of GMRES iterations to the maxi-

mum. This is pre-determined by GMRES based on the size of the matrices to be solved.

There was no change to the far-field differences in the case of lemniscates or diamonds

but there was some improvement for the array of squares. Thus increasing the number
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quadrature points N and the series truncation order n, produced the best results for ar-

rays of lemniscates and diamonds. For arrays of squares, we also recommend increasing

the number of GMRES iteration to the maximum.

Iter+10 Max iter
d d
0.1λ 0.25λ 0.5λ λ 0.1λ 0.25λ 0.5λ λ

Diamonds
2a
0.5λ 9e-05 2e-06 9e-09 6e-11 9e-05 2e-06 9e-09 6e-11
λ 6e-05 1e-05 1e-07 1e-08 6e-05 1e-05 1e-07 1e-08
2λ 3e-04 1e-04 6e-06 8e-10 3e-04 1e-04 6e-06 8e-10
Squares
2a
0.5λ 4e+00 2e-04 6e-08 2e-10 8e-01 6e-04 5e-08 6e-11
λ 7e-02 3e-02 6e-05 2e-10 7e-02 3e-02 6e-05 1e-10
2λ 2e-01 3e-01 2e-01 6e-06 2e-01 3e-01 2e-01 6e-06
Lemniscates
2a
0.5λ 3e-05 1e-06 5e-09 1e-08 3e-05 1e-06 5e-09 1e-08
λ 5e-05 1e-06 5e-08 2e-09 5e-05 1e-06 5e-08 2e-09
2λ 2e-05 5e-07 2e-08 2e-09 2e-05 5e-07 2e-08 2e-09

Table 8.5: Showing the effect of increasing the number of GMRES iterations from that
suggested by TMATROM on the difference in the far-fields produced using TMATROM
equipped with our Nyström corner solver and that produced by our original MATLAB
programs for an array of two scatterers of diameter 2a with different separation distances
d. The difference in the far-fields is measured using the L2 norm (8.7). The scatterers
have Dirichlet boundary condition and the incident wave direction is θ0 = 0.

Having implemented the above strategies, we compared all the results produced by our

original code for scatterer arrays (Chapter 7) to the far-field produced using TMATROM

equipped with our cornered solver. Unless stated otherwise, all experiments in this section

were run using the recommended parameters from the preceding sections. To summarise:

the series truncation order in TMATROM, n, was increased by 10. When using MPSpack

as the forward solver for squares and diamonds, the artificial domain boundary radius

was set to r = 1.68, the number of corner basis functions was set to N = 80 and the

number of quadrature points M = 160, that is 2N . For arrays of squares we also set the

GMRES iterations to the maximum for the size of the system to be solved.

All three boundary conditions were tested for different incident fields, θ0. We com-

pared scatterers of diameter 2a = 0.5λ, λ and 2λ separated by distances d = 0.1λ, 0.25λ,

0.5λ and λ. The far-field difference results for arrays of two and four scatterers are in

Tables G.4 to G.9 in Appendix G. The results were consistent for the different boundary
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conditions. For the lemniscates, when the separation distance d = 0.1λ the differences in

the two far-fields is order 10−5. Increasing the distances to 0.25λ, 0.5λ and λ decreases

the differences to order ∼ 10−6, 10−8, 10−9, respectively. The array of diamonds exhibit

similar trends albeit with a degree or two less accuracy. The far-field differences of the

array of squares also exhibit the same behaviour but with very low order of agreement

(∼ 10−1) for separation distances less than half the diameter of the scatterer. These

results are the best that were able to be achieved.

The differences for small separation distances were larger than anticipated, especially

so in the case of the squares. The outstanding question is why? We first checked that

in the case of the squares (and diamonds) that these differences are not caused by the

implementation of our solver within TMATROM. Thus we re-ran the same experiments

using MPSpack as the forward solver. The far-field differences were of the same order

as when using our solver. These results are available in Tables G.4 and G.7. We then

tested convergence using the significant measurement technique outlined in Section 3.1.

Figure 8.7 illustrates the convergence of some of the examples from Table 8.5 using

TMATROM equipped with our cornered solver. Figure 8.8 illustrates the convergence

of the same examples using our original multi-scatterer code. These two figures clearly

demonstrate the effect of scatterer separation distance d on the on the accuracy of the

solution when using TMATROM and the independence of the traditional method on

separation distance.

Figure 8.9

We concluded by considering the effect of the encapsulating

circle required for the calculation of the T-matrix on the far-

field differences for multiple scatterers. If these circles overlap,

but do not cross into the space occupied by another scatterer

(Figure 8.9) there is no impact on the accuracy of the solution

produced by TMATROM. By fixing the scatterer width at 2a = 2

units, the circumscribing circle has radius ∼ 1.373 units for the

lemniscate and
√

2 units for the squares and diamonds. If over-

lapping circles affected the results it would impose a minimum

distance between lemniscates of ∼ 0.275 units, ∼ 0.828 units

for the squares and 0 units for diamonds. Table 8.6 shows for
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each scatterer width, expressed in terms of wavelength, the number of units that the

separation distance equals. Highlighted in blue and red are the configurations where the

circumscribing circles overlap. If we consider the lemniscate arrays and the diamond ar-

rays, we would expect the diamond arrays to produce highly accurate results regardless

of separation distance and the lemniscates results to be affected when the circles overlap.

Our results show that this is not the case indicating the overlapping circles are not the

cause since both the lemniscate and diamond arrays are affected in the same manner by

separation distance. Once the separation distance is less than half the scatterer diameter,

the difference in the far-fields is more marked and is below order 10−8 attributable to

the translation-addition effect.

Lemniscate Square Diamond
d d d

2a 0.1λ 0.25λ 0.5λ λ 2a 0.1λ 0.25λ 0.5λ λ 2a 0.1λ 0.25λ 0.5λ λ

0.5λ 0.4 1 2 4 0.5λ 0.4 1 2 4 0.5λ 0.4 1 2 4
λ 0.2 0.5 1 2 λ 0.2 0.5 1 2 λ 0.2 0.5 1 2
2λ 0.1 0.25 0.5 1 2λ 0.1 0.25 0.5 1 2λ 0.1 0.25 0.5 1

Table 8.6: Showing the distance between the scatterers expressed in units if the scatterer
width 2a is set to 2. Highlighted in blue are the configurations for which the T-matrix
encapsulating circles overlap. Highlighted in red are the configurations where the en-
capsulating circle not only overlaps but crosses into the space occupied by the adjoining
scatterer.

We note that the arrays of square scatterers show very low agreement to our original

results in some cases. If the distance between the scatterers is less than ∼ 0.42 units,

then the encapsulating circle crosses into the space occupied by the adjoining square,

highlighted in red in Table 8.6. It is in these cases that TMATROM is unable to produce

a solution better than order 10−1. This limitation is unavoidable due to the formulation

of scattering used by TMATROM.

Subject to these limitations, we have been able to verify our solutions to the multiple

scatterer problems studied in Chapter 7, to within the error bound introduced by the

use of the translation-addition theorem (10−8).
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(a) Lemniscate, β = π/2, 2a = 2λ,
d = 0.1λ.
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(b) Square, 2a = λ, d = 0.1λ.
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(c) Diamond, 2a = λ/2, d = 0.1λ.
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(d) Lemniscate, β = π/2, 2a = 2λ,
d = 0.25λ.
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(e) Square, 2a = λ, d = 0.25λ.
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(f) Diamond, 2a = λ/2, d =
0.25λ.
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(g) Lemniscate, β = π/2, 2a = 2λ,
d = 0.5λ.
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(h) Square, 2a = λ, d = 0.5λ.
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(i) Diamond, 2a = λ/2, d = 0.5λ.
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(j) Lemniscate, β = π/2, 2a = 2λ,
d = λ.
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(k) Square, 2a = λ, d = λ.
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(l) Diamond, 2a = λ/2, d = λ.

Figure 8.7: Significant digits in agreement of the far-field for two scatterer arrays. All fig-
ures produced using TMATROM equipped with our corner forward solver. All scatterers
have a Dirichlet boundary condition. Incidence angle is θ0 = 0.
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(a) Lemniscate, β = π/2, 2a = 2λ,
d = 0.1λ.
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(b) Square, 2a = λ, d = 0.1λ.
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(c) Diamond, 2a = λ/2, d = 0.1λ.
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(d) Lemniscate, β = π/2, 2a = 2λ,
d = 0.25λ.
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(e) Square, 2a = λ, d = 0.25λ.
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(f) Diamond, 2a = λ/2, d =
0.25λ.
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(g) Lemniscate, β = π/2, 2a = 2λ,
d = 0.5λ.
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(h) Square, 2a = λ, d = 0.5λ.

0 100 200 300 400 500 600 700 800 900 1000

N - number of quadrature points

0

2

4

6

8

10

12

14

16

D
ig

it
s 

in
 A

g
re

em
en

t

 = 0.05

 = 0.03

 = 0.01

Diamond

(i) Diamond, 2a = λ/2, d = 0.5λ.
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(j) Lemniscate, β = π/2, 2a = 2λ,
d = λ.
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(k) Square, 2a = λ, d = λ.
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(l) Diamond, 2a = λ/2, d = λ.

Figure 8.8: Significant digits in agreement of the far-field for two scatterer arrays. All fig-
ures produced using TMATROM equipped with our corner forward solver. All scatterers
have a Dirichlet boundary condition. Incidence angle is θ0 = 0.
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8.5 The Advantages of Using TMATROM

The TMATROM package provides an efficient framework for two dimensional scattering

models with multiple sets of parameters, for example, monostatic acoustic cross-section

simulations. It enables calculation of the T-matrix for a scatterer which then can be

stored off-line for later use, eliminating the need to re-calculate, saving computational

time, especially for multiple scattering problems as the T-matrix is independent of in-

cident and receiver directions. Changes to the scatterer position and orientation use

techniques based on the translation-addition theorem [138] to quickly recalculate a new

T-matrix based on the original [104]. These methods result in significant memory and

computational time savings when solving problems with multiple scatterers.

A well written manual is provided which allows the user to quickly use the included

working examples. The package components are explained and instructions on how to use

the included solvers are provided. Most helpfully, detailed instructions with a working

example are provided on how to incorporate a user’s own solver. The package is equipped

with working examples of some scattering problems: a bistatic (single parameter) scat-

tering simulation and the corresponding monostatic (multi parameter) simulation with

1000 input incident waves. Examples are provided for Dirichlet, Neumann and impedance

loaded boundary conditions. Included also is an example of a multi-scatterer problem.

It is straightforward for a user to add other geometries to the included examples.

The TMATROM package is independent of any specific numerical method. This

allows for the package to be used with any forward wave propagation solver of choice. The

only requirement is that the solver can compute the far-fields associated with incident

circular wave. The package is equipped with a Nyström solver for smooth surfaced

scatterers. It also provides an example of how to include an end-user forward solver

by using Barnett and Betcke’s MPSpack [99] as an example. Once implemented within

TMATROM, a user’s own single particle scattering software can be easily extended for

multiple scattering simulations. The package also provides a framework for different

kinds of solvers to interact, allowing easy simulation of multiple scattering for systems

with scatterers of mixed kind.
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8.6 Constraints

The use of TMATROM requires a MATLAB software licence, some proficiency in MAT-

LAB and also some knowledge of object-oriented programming. As with any software

package, a time investment is required to learn how to use the package. A longer time

investment is required if the end-user wishes to include their own solvers. TMATROM

is equipped with a well written user manual which minimises this.

The included Nyström solver and examples make implementation of many scattering

problems fairly easy. However, in our case, we are studying scatterer geometries and

configurations that required the inclusion of our own forward solver. This in itself was

quite straightforward and greatly assisted by the examples included with TMATROM

and the user manual. Modifications to the TMATROM suggested parameters such as

the wave expansion series truncation order or GMRES iterations were needed to achieve

a more accurate result. This required some investigation and experimentation to find

the most suitable parameters for our specific scattering problems.

The application of the translation-addition theorem within TMATROM greatly sim-

plifies the implementation of multiple scatterer geometries. However, it introduces an

error in the far-field at least of the order 10−8 [104]. This may be a consideration for

modelling applications which require a highly accurate result.

TMATROM is suitable for acoustic scattering simulations exterior to the circle cir-

cumscribing and centred inside the scatterer. This circumscription introduces some lim-

itations on the types of problems able to be implemented using TMATROM. Firstly,

quantities near or on the scatterer surface may not be able to be examined. As such it is

not a suitable tool for the work on the quantities near the vicinity of the corner presented

in Chapter 5. Secondly, in a multiple scatterer problem, if the scatterer separation is such

that the circumscribing circle encroaches into the space occupied by another scatterer in

the arrangement, an accurate result is unable to be achieved and an alternative tool for

those scatterer problems should be considered. This in particular limits the separation

distance between square scatterers. In our case for squares of side length 2, the separation

distance must be greater than
√

2− 1.

We also found that for some of the multiple scatterer geometries studied in Chapter

7 the results produced by TMATROM using the default parameterisation were not as
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accurate as those produced using our traditional approach. These differences where

larger than could be attributed to the use of the translation-addition theorem. Once

parameter changes were implemented to maximise the accuracy of the results, we found

that TMATROM produces accurate solutions when the scatterers are separated by at

least half the scatterer width. As the scatterer separation decreases, the accuracy of the

solution also decreases.

8.7 Acknowledgement

The author would like to thank Dr Stuart Hawkins, one of the authors of the TMATROM
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8.8 Conclusion

In this chapter we examined the TMATROM package. The reasons for this are two-fold:

to independently verify work done to date, but more importantly, to make use of com-

putational efficiencies provided by the package for larger multiple scattering problems.

The TMATROM package provides an efficient framework for scattering models with

multiple sets of parameters, for example, monostatic acoustic cross-section simulations.

It enables calculation of the T-matrix for a scatterer which then can be stored off-line

for later use, eliminating the need to re-calculate, saving computational time, especially

for multiple scattering problems as the T-matrix is independent of incident and receiver

directions. Changes to the scatterer position and orientation use techniques based on the

translation-addition theorem [138] to quickly recalculate a new T-matrix based on the

original [104].

The steps we undertook to implement the package were outlined. This consisted of

adding into TMATROM all the scatterer geometries we are studying and our own forward

solver for scatterers with corners. This required some experimentation to determine

necessary changes to the standard TMATROM parameters to maximise the accuracy of

our results. For single scatterer problems it required increasing the order of the wave

function series truncation suggested by TMATROM by 10.
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We also employed the included interface to Barnett and Betcke’s MPSpack [99] for

some of our testing. The sample square included in MPSpack has sides of length 1,

whereas the square scatterer we have been employing has sides length 2. This required

a number of changes to the parameters used by MPSpack and some experimentation to

determine these changes. This included determining the ideal radius of artificial circular

boundary required by MPSpack: we chose r = 1.68. In addition we needed to determine

the ideal number of corner basis functions, N , to achieve optimal results. In the Dirichlet

case, for wave numbers less than 16π it was determined that N = 80 gives the best results

and N = 110 for the larger wave numbers. In the Neumann case, for wave numbers less

that 8π, N = 70 or 80 yields optimal results, and N = 90 and 110 for wave numbers 8π

and 16π, respectively.

The results for the far-field produced by TMATROM equipped with our corner solver

to those produced using our original code (Chapter 3) were compared using the L2

(8.7) and L∞ (8.8) norms to measure the differences. A high order of agreement was

demonstrated:order 10−10 to 10−15, which validates our results. We also compared the

results for the far-field produced by TMATROM equipped with MPSpack as the forward

solver to those produced using our original code for squares. The MPSpack results show

agreement to our original work of order 10−9 to 10−12, which further validates our results.

We note that the T-matrix error when using our cornered forward solver is of similar

order or better than when using MPSpack. Because of this and the need to use different

parameters in MPSpack for different test conditions, we used our own cornered solver in

TMATROM for all future work.

The two and four scatterer array problems studied in Chapter 7 were tested using

the TMATROM features for multiple scatterer problems: generating the T-matrix for

a geometry once and employing the translation-addition theorem methods that use the

generated T-matrix. We originally found that we had poor agreement to our original

results and larger T-matrix errors (≥ 10−5). We consulted with the package authors

and based on their recommendation found that increasing the quadrature points on the

surface of the scatterer, increasing the suggested order of the series truncation and setting

the number of Matlab GMRES iterations to the maximum for the system to be solved

in the case of squares improved the results.
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We found that the TMATROM package provides an efficient method for solving mul-

tiple scatterer problems, producing accurate solutions when the scatterers are separated

by at least half the scatterer diameter, 2a. In these cases, the solutions produced using

TMATROM equipped with our cornered solver are within the error bound introduced by

the use of the translation-addition theorem (10−8). As the scatterer separation further

decreases the accuracy of the solution also decreases down to order 10−3 in some cases.

A limitation identified in the TMATROM package is the following: if the multiple

scatterers are configured so that the circumscribing circle of a scatterer encroaches into

the space occupied by another scatterer, an accurate result is impossible to be achieved,

and alternative approaches to that scattering problem must be considered. In the case of

squares with side length 2, this limits the separation distance to be greater than
√

2− 1.

The computational efficiency of TMATROM is seen by considering a set of M iden-

tical scatterers, each requiring an N ×N system for an accurate solution as an isolated

scatterer (i.e. in the absence of the other scatterers). The basic method described in

Chapter 7 thus requires the solution of a system of order MN , of computational com-

plexity O
(

(MN)3
)
if standard Gaussian elimination is employed. On the other hand,

TMATROM requires the solution of two systems, one of order N (corresponding to a

single isolated scatterer) and another of order MP where P is the size of the computed

T-matrix and M the number of scatterers. The order of P is a fraction of N , and TMA-

TROM uses the (iterative) GMRES method to solve the linear systemMP . This reduces

the overall computational complexity for the example of two and four scatterers studied

in this chapter to O(N3).

In the next chapter we employ TMATROM equipped with our cornered solver to

investigate much larger array scattering problems.



Chapter 9

Large Arrays

In Chapter 8 we evaluated the TMATROM [27,102] package and used it to verify some

of our earlier numerical work. In this chapter we utilise the most powerful feature of

the TMATROM package, that is the ease and computational efficiency of modelling

multiple scatterer structures, and demonstrate that the TMATROM package employing

our own forward solvers efficiently enables the study of large scatterer arrays of cornered

structures. Of particular interest is the simulation of infinite array behaviour including

phenomena such as diffraction grating lobes by large but finite arrays. The key question

is the minimum number of scatterers required in an array to observe this behaviour.

9.1 The Geometries

Single array. Double array.

We examine two types of array configu-

rations: single and double arrays. A sin-

gle array consists of a number of scatter-

ers, from 2 up to 256, arranged parallel

to the y-axis. A double array consists of

two arrays of scatterers each parallel to the

y-axis arranged in configurations ranging

from 2× 2 to 128× 2.

169
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Both types of arrays consist of scatterers of the

same shape and boundary condition. The scatter-

ers are of diameter 2a and separated by distance d.

For the double array: the second array of scatterers

is a distance d from the first. Thus if the scatterers

are separated by half a wavelength, the second ar-

ray of scatterers is separated by half a wavelength

from the first. We primarily used two angles of the

incident plane wave θ0 = 0 and θ0 = π/4 for test-

ing. Since we are using the implementation of the TMATROM package as described

in Sections 8.2 and 8.4, the restrictions on the scatterer separation (Section 8.6) apply.

The scatterer configurations studied in this section are summarised in Table 9.1 and all

three boundary conditions: Dirichlet, Neumann and impedance loaded (with Z = 1 + i)

were tested. Note that the term lemniscate in this section refers to one with an interior

right-angle (2.2).

Polar plot diagrams produced by Matlab illustrate the far-field generated by the array

structures studied in this chapter. The arrays are aligned along the vertical line from

x̂(θ̂) = π/2 to 3π/2.

Lemniscate Square Diamond
d 2a 2a 2a

0.5λ λ 2λ 0.5λ λ 2λ 0.7λ 1.4λ 2.8λ
0.25λ x x x x x x
0.5λ x x x x x x x x
λ x x x x x x x x x

Table 9.1: Array configurations: ’x’ indicates that the configuration was tested for the
indicated scatterer of diameter 2a with separation distance d.

9.2 Far-field behaviour

In this section we examine the behaviour of the far-field as the number of scatterers, N ,

in an array gets large. The far-field data u∞(x̂(θ̂)), where θ̂ is the angle of observation,

was collected for each of the scatterer configurations in Table 9.1, for incident wave

directions θ0 = 0 and π/4, and for all three boundary conditions. The far-field was
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measured for angles of observation θ̂ ∈ [0, 2π]. Both the forward- and back-scatter

behaviour is of interest. For the incident wave angle θ0 = 0, the maximum back-scatter is

observed at θ̂ = 0, and maximum forward-scatter at θ̂ = π. For incident angle θ0 = π/4,

the maximum back-scatter is observed at θ̂ = π/4, but the maximum forward-scatter

direction varies by scatterer configuration.

9.2.1 Limiting Behaviour

We begin by examining the behaviour of the far-field u∞N (x̂(θ̂)) in the forward and back-

scatter directions as N increases. Measuring the maxima in each direction we found that

|u∞N (x̂)|
N

−→ C, (9.1)

as N becomes large for some constant C dependent on the scatterer configuration, bound-

ary condition, and angle of observation. Figure 9.1 illustrates two typical examples of

normalised forward- and back-scatter as a function of N .
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(a) Back-scatter for diamonds in single array
with Dirichlet BC, 2a = 0.7λ, d = 0.5λ, θ0 = 0.
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(b) Forward-scatter for diamonds in double array
with Neumann BC, 2a = 2.8λ, d = λ, θ0 = π/4.

Figure 9.1: Demonstrating that |u
∞
N (x̂)|
N −→ C, for some constant C as N gets large.

We then estimated the rate of convergence as N gets large, by the quantity

∣∣∣∣ |u∞N (x̂)|
N

−
|u∞Nmax

(x̂)|
Nmax

∣∣∣∣ , (9.2)

as a function of N , where, for both the single and double array configurations, Nmax =

256. This quantity was measured for both the maximum back- and forward-scatter
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directions. A least squares fit to the logarithms of the data (N = 8, 16, 32, 64 and 128)

was used (see Figure 9.2).

10
0

10
1

10
2

10
3

N - number of scatterers

10
-5

10
-4

10
-3

10
-2

(a) Logarithmic plot.
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(b) Actual plot.

Figure 9.2: Plot of the far-field difference
∣∣∣ |u∞N (x̂)|

N − |u
∞
256(x̂)|
256

∣∣∣, measured in the maximum
back-scatter direction, for a single array of squares with diameter 2a = λ, and separation
d = 0.5λ, all with an Neumann boundary condition. Incident wave direction θ0 = 0.
The data points used are represented by the blue asterisks, the least squares line of fit is
shown in red.

It is found that ∣∣∣∣ |u∞N (x̂)|
N

− |u
∞
256(x̂)|
256

∣∣∣∣ ∼ C 1

Nm
, (9.3)

for some constant C dependent on the scatterer shape, configuration, boundary condition

and incident field direction. However, the power m is independent of these factors. In

the case of single arrays m ∼ 1.2 and for double arrays m ∼ 1.3. This applies to the

maxima in both the forward- and back-scatter directions.

There were a few exceptions for certain array configurations. After careful study of

the far-fields produced by these arrays, it was found that if there is evidence of side-fire,

then the rates of convergence (9.3) differ and in fact are slower. For example, in the

case of a single array of squares half a wavelength in diameter, 2a = 0.5λ, separated by

half a wavelength, d = 0.5λ, m ∼ 0.9 instead of 1.2. The term side-fire describes local

maxima (’lobes’) occurring in the far-field in the direction π/2 (90◦) and 3π/2 (270◦).

Figure 9.3 shows a logarithmic plot of the far-fields for a single array of squares with

Dirichlet boundary condition with different configurations. Figures 9.3b, 9.3e, 9.3f show

configurations with side-fire, and when measured, the rate of convergence was slower

than 1
N1.2 . Figures 9.3a, 9.3c, 9.3d show no evidence of side-fire and the measured rate
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of convergence for these configurations was ∼ 1
N1.2 . It is straightforward to determine

which configurations will exhibit side-fire phenomena. In Section 9.2.2 we discuss how

the direction of the maximum lobes in the backscatter region may be predicted. Scatterer

array configurations with side-fire have maximum lobes occurring at π/2 and 3π/2.
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(a) 2a = 0.5λ, d = 0.25λ.
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(b) 2a = 0.5λ, d = 0.5λ.
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(c) 2a = 0.5λ, d = λ.
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(d) 2a = λ, d = 0.5λ.
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(e) 2a = λ, d = λ.
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(f) 2a = 2λ, d = λ.

Figure 9.3: Logarithmic plot of the far-field |u∞|, for a single array of squares with dif-
fering diameters 2a, and separation d, all with an impedance loaded boundary condition.
Number of scatterers N = 256 in the array; incident wave direction θ0 = 0.
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9.2.2 Diffraction Grating

We next examined the characteristics of the far-field for each of the scenarios earlier

described. Figure 9.4 is illustrative of the typical behaviour observed. It shows the most

pronounced local maxima (or lobes) are readily observed and become increasingly sharply

defined as N increases.
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(a) Squares in single array with impedance BC,
2a = 0.5λ, d = 0.5λ, θ0 = π/4.
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(b) Squares in double array with Dirichlet BC,
2a = λ, d = 0.5λ, θ0 = 0.

Figure 9.4: Illustrating |u
∞
N (x̂(θ̂))|
N , for θ̂ ∈ [0, 2π] for differing N .

The so-called grating equation is characteristic of infinite array structures [141]. The

periodicity and structure of the arrays studied are representative of a grating structure

and diffraction grating patterns should be evident. Questions of interest are: how large

does the finite array need to be to exhibit this behaviour? and, how many grating lobes

are excited? A pattern of maxima in the back-scatter region is expected to occur at angles

θ̂m in response to the incident field direction, θ0, which is governed by the diffraction

equation [141],

θ̂m = arcsin

(
sin(θ0)− mλ

T

)
, for m ∈ Z, (9.4)

where θ0 is measured from the array’s normal vector, and T is the distance from the

centre of one scatterer to the next, measured in wavelengths. Table 9.2 shows the angles

of expected maxima for the two incident angles θ0 = 0, and π/4. The angles have been

translated to match the polar plot diagrams used in this chapter.

Figures H.1 to H.4 in Appendix H show the logarithmic far-field plots for N = 64 for



9.2. FAR-FIELD BEHAVIOUR 175

a representative sample of array structures: single arrays of squares and of diamonds,

with Dirichlet and Neumann boundary conditions, respectively, and double arrays of

lemniscates and of squares both with Neumann boundary condition. Grating lobes can

be seen and these match the expected angles θ̂m listed in Table 9.2. For a more detailed

and methodical analysis, we collected data for each array structure studied in this chapter

about the back-scatter lobes, and measured the far-field value |u∞N | and the angle θ̂

at which the lobe occurs. This was done for array sizes N = 8, 16, 32, 64, 128 and

256. Table 9.3 shows a sample of the data that was captured and analysed. For each

configuration the header row shows the expected diffraction lobe angle θ̂ and for each

number of scatterer N the actual measured lobe angle as well as the value of the far-field

|u∞(x̂(θ̂))| measured at that angle. Highlighted in red are the lobes where excitation has

not yet occurred. Our data shows that for values N = 8, 16 the grating lobes are evident

but occur one to two degrees away from the expected value. We also note that at for

these smaller values of N the grating lobes, thought evident, may not be the dominant

lobes, with the exception of the maximum back-scatter value, which occurs at θ̂ = 0 or

π/4 for incident wave angles θ0 = 0 and π/4 respectively. When N = 32 we see the the

grating lobes begin to be more dominant, and for N ≥ 64 the lobes occur at the precisely

the expected angles θ̂m and are the dominant lobes.

To illustrate the emergence of the grating lobes as N increases and to examine the

difference between a single and double array structure view refer to Figures 9.5 and

9.6, where we show the logarithmic polar plots for an array of square scatterers with

impedance boundary condition for N = 8, 16, 32, 64, 128 and 256. All the arrays are

of squares diameter 2a of two wavelengths with separation distance d of one wavelength,

illuminated by an incident fled with direction θ0 = 0. The single array plots are shown

in Figure 9.5, the double array in Figure 9.6. Both sets of figures demonstrate that the

grating lobes are dominant for N ≥ 64 and that the behaviour is similar for both single

and double arrays. The numerical data complementing these two figures is found in the

first two entries of Table 9.3.
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θ0 = 0
2a d m = 0 m = 1 m = −1 m = 2 m = −2 m = 3 m = −3

Lemniscates, Squares
0.5 0.25 0 - - - - - -
0.5 0.5 0 90 270 - - - -
0.5 1 0 42 318 - - - -
1 0.25 0 53 307 - - - -
1 0.5 0 42 318 - - - -
1 1 0 30 330 90 270 - -
2 0.25 0 26 334 63 297 - -
2 0.5 0 24 336 53 307 - -
2 1 0 19 341 42 318 90 270

Diamonds
0.7 0.25 0
0.7 0.5 0 56 304
0.7 1 0 36 324
1.4 0.25 0 37 323
1.4 0.5 0 31 329
1.4 1 0 24 336 56 304
2.8 0.25 0 19 341 41 319 77 283
2.8 0.5 0 17 343 37 323 64 296
2.8 1 0 15 345 31 329 52 308

θ0 = π/4
2a d m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

Lemniscates, Squares
0.5 0.25 45 321 - - - - -
0.5 0.5 45 343 - - - - -
0.5 1 45 2 321 - - - -
1 0.25 45 355 297 - - - -
1 0.5 45 2 321 - - - -
1 1 45 12 343 308 - - -
2 0.25 45 15 350 321 - - -
2 0.5 45 18 355 330 297 - -
2 1 45 22 2 343 321 286 -

Diamonds
0.7 0.25 45 340 - - - - -
0.7 0.5 45 353 288 - - - -
0.7 1 45 7 332 - - - -
1.4 0.25 45 6 330 - - - -
1.4 0.5 45 11 340 301 - - -
1.4 1 45 17 353 328 288 - -
2.8 0.25 45 22 3 344 324 293 -
2.8 0.5 45 24 6 349 330 307 -
2.8 1 45 26 11 356 340 323 301

Table 9.2: Listing diffraction grating lobe angles θ̂m for different array configurations of
scatterers of diameter 2a wavelengths separated by distance d wavelengths, for incident
wave angles θ0 = 0 and π/4.
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Single array, square impedance BC, 2a = 2λ, d = λ, θ0 = 0

Expected θ̂m θ̂ = 0 |u∞
N | θ̂ = 19 |u∞

N | θ̂ = 341 |u∞
N | θ̂ = 42 |u∞

N | θ̂ = 318 |u∞
N | θ̂ = 90 |u∞

N | θ̂ = 270 |u∞
N |

N
8 0 21.61 19 4.79 341 4.79 41 2.61 319 2.61 90 0.12 270 0.12
16 0 43.39 19 7.95 341 7.95 42 4.85 318 4.85 90 0.13 270 0.13
32 0 86.93 19 6.16 341 6.16 42 9.16 318 9.16 90 0.15 270 0.15
64 0 174.00 19 8.62 341 8.62 42 13.61 318 13.61 90 0.19 270 0.19
128 0 348.12 19 5.86 341 5.86 42 2.44 318 2.44 90 0.26 270 0.26
256 0 696.34 19 5.76 341 5.76 42 4.67 318 4.67 90 0.36 270 0.36

Double array, square impedance BC, 2a = 2λ, d = λ, θ0 = 0

Expected θ̂m θ̂ = 0 |u∞
N | θ̂ = 19 |u∞

N | θ̂ = 341 |u∞
N | θ̂ = 42 |u∞

N | θ̂ = 318 |u∞
N | θ̂ = 90 |u∞

N | θ̂ = 270 |u∞
N |

N
8 0 12.89 20 1.68 340 1.68 44 0.80 316 0.80 90 0.18 270 0.18
16 0 26.20 20 2.91 340 2.91 43 1.38 317 1.38 90 0.20 270 0.20
32 0 52.82 20 4.35 340 4.35 42 2.81 318 2.81 90 0.25 270 0.25
64 0 106.08 19 2.87 341 2.87 42 5.44 318 5.44 90 0.32 270 0.32
128 0 212.60 19 4.35 341 4.35 42 8.26 318 8.26 90 0.42 270 0.42
256 0 425.65 19 3.98 341 3.98 42 1.71 318 1.71 90 0.55 270 0.55

Double array, square Neumann BC, 2a = 2λ, d = λ, θ0 = π/4

Expected θ̂m θ̂ = 45 |u∞
N | θ̂ = 22 |u∞

N | θ̂ = 2 |u∞
N | θ̂ = 343 |u∞

N | θ̂ = 321 |u∞
N | θ̂ = 286 |u∞

N |
N
8 45 10.77 24 1.25 1 1.57 342 2.38 319 3.44 290 1.57
16 45 18.55 23 1.48 2 2.57 343 4.23 320 4.17 288 2.84
32 45 33.54 22 1.27 2 4.56 343 8.60 321 7.30 287 5.45
64 45 63.76 22 2.46 2 6.00 343 17.35 321 15.44 286 10.80
128 45 124.16 22 4.94 1 1.94 343 34.48 321 20.91 286 19.38
256 45 244.97 22 8.93 2 2.48 343 65.79 321 9.67 286 20.69

Single array, diamond Dirichlet BC, 2a = 2.8λ, d = 1.4λ, θ0 = π/4

Expected θ̂m θ̂ = 45 |u∞
N | θ̂ = 26 |u∞

N | θ̂ = 11 |u∞
N | θ̂ = 356 |u∞

N | θ̂ = 340 |u∞
N | θ̂ = 323 |u∞

N | θ̂ = 301 |u∞
N |

N
8 45 20.71 27 3.52 11 3.54 355 1.87 340 3.03 323 1.97 300 0.75
16 45 41.36 26 4.68 11 5.80 356 2.68 340 5.66 323 3.89 301 1.21
32 45 82.64 26 0.93 11 4.43 355 1.80 340 7.76 323 6.73 301 1.94
64 45 165.22 26 1.98 11 6.26 356 2.34 340 1.26 323 6.03 301 1.54
128 45 330.38 26 3.73 11 3.75 356 2.35 340 2.59 323 7.29 301 2.08
256 45 660.69 26 4.45 11 2.06 356 2.50 340 4.97 323 3.66 301 0.72

Double array, diamond impedance BC, 2a = 2.8λ, d = 0.7λ, θ0 = 0

Expected θ̂m θ̂ = 0 |u∞
N | θ̂ = 17 |u∞

N | θ̂ = 343 |u∞
N | θ̂ = 37 |u∞

N | θ̂ = 323 |u∞
N | θ̂ = 64 |u∞

N | θ̂ = 296 |u∞
N |

N
8 0 12.68 16 1.84 344 1.84 40 0.58 320 0.58 66 0.72 294 0.72
16 0 25.34 17 2.98 343 2.98 38 0.93 322 0.93 65 0.86 295 0.86
32 0 50.11 17 4.65 343 4.65 37 2.10 323 2.10 65 1.08 296 1.08
64 0 101.31 17 2.05 343 2.21 37 4.57 323 4.57 64 1.37 296 1.37
128 0 202.59 17 3.69 343 3.69 37 9.13 323 9.13 64 1.33 296 1.33
256 0 405.16 17 4.68 343 4.68 37 15.26 323 15.26 65 0.83 296 0.83

Table 9.3: Showing diffraction grating expected versus actual lobe angles θ̂m for different array configurations of scatterers of diameter 2a
wavelengths separated by distance d wavelengths, for incident wave angles θ0, and the far-field |u∞N | measured at those lobes.
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(d) N = 64
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(e) N = 128
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(f) N = 256

Figure 9.5: Logarithmic plot of the far-field |u∞|, for a single array of squares of diameter
2a = 2λ and separation d = λ all with impedance loaded boundary condition. Incident
wave direction θ0 = 0.
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(b) N = 16
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(d) N = 64
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(e) N = 128
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(f) N = 256

Figure 9.6: Logarithmic plot of the far-field |u∞|, for a double array of squares of diameter
2a = 2λ and separation d = λ all with impedance loaded boundary condition. Incident
wave direction θ0 = 0.

9.3 Conclusion

In Chapter 8 we demonstrated a capacity for modelling with different basic array ele-

ments, both smooth or sharp-cornered using TMATROM with our own forward solvers.

In this chapter we have shown that this software is a suitable tool for evaluating large

array behaviour. This is relevant to many physical applications such as the modelling of

meta-materials, photonic crystal structures and band-gap materials.

We have numerically demonstrated that the far-field patterns of a finite grating con-

verge to infinite grating results with an appropriate scaling. We established a bound on

the differences between the far-fields

∣∣∣∣ |u∞N (x̂)|
N

−
|u∞Nmax

(x̂)|
Nmax

∣∣∣∣ ≤ C 1

Nm
, (9.5)

for some constant C dependent on the scatterer shape, configuration, boundary condition

and incident field direction. The power m is ∼ 1.2 for single arrays and ∼ 1.3 for double
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arrays, except for configurations with side-fire, that is, with grating lobes occurring at

x̂(θ̂) = π/2 and 3π/2, where the rate of convergence is slower.

We have also numerically established that the termination effect, that is the difference

between finite and infinite array scattering pattern grating lobes, appears when N ≥

64 for the structures studied in this chapter. Thus we recommend a minimum array

size of N = 64 when modelling infinite array behaviour for physical and engineering

applications.

The emergence of grating diffraction lobes as the size of each finite array is increased

was observed. The angles of the main lobes of the pattern were in excellent agreement

with those produced by (9.4). This qualitative feature provides a different sort of test of

the ability of our simulation to predict important physical phenomena associated with

arrays and gratings.



Chapter 10

Summary and Conclusions

In this thesis we have undertaken a rigorous examination of two-dimensional diffraction

from cylindrical scatterers which possess corners, that is, points at which the normal

changes discontinuously, and quantified the effect on the resulting scattered field when

these corners are rounded. We examined three different boundary conditions: soft, hard

and an impedance loaded boundary condition, enforced at all points on the cross-sectional

boundary of the cylinder. The problems studied are in the acoustic resonance regime

ka ≤ 16π corresponding to diameters less than 16 wavelengths; a second kind integral

equation formulation of the problem is used. Accuracy was of paramount importance in

this study in assessing the effects of rounding a corner.

In this work we use a numerical method that is suitable for examining the scattering of

acoustic or appropriately polarised electromagnetic plane waves by structures possessing

some points of small or zero radius of curvature (that is, having a sharp corner). We

implement the Nyström method expounded by [7,26] for a scatterer with a single corner

and soft boundary condition to obtain numerical solutions of this integral equation. We

then adapt and extend this technique to scatterers with hard and impedance loaded

boundary conditions and scatterers with more than one corner.

We examined single scatterer problems numerically and systematically measured the

differences in the near- and far-fields. We demonstrated that the field scattered by

the rounded structure converges, in both the L2 and L∞ norm, to that scattered by the

corresponding sharp cornered object as the radius of curvature in the vicinity of the corner

tends to zero. For the soft boundary condition, the L∞ norm difference between the far-
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field of a right-angled cornered scatterer and that of the rounded scatterer is less than 3%

when the radius of curvature is restricted so that kρ ≤ 3π/50. This percentage reduces

to 1% or 2% respectively, when the boundary condition is replaced by the hard boundary

condition or the impedance boundary condition (with Z = 1 + i), respectively. We also

demonstrated that the maximum differences between the far-fields of the cornered and

rounded scatterers occur in the back-scatter region and the magnitude of these differences

is dependent on the radius of curvature, ρ, used for the rounding, the wave number, ka,

and the angle of the incident plane wave, θ0. We verified that the described quadrature

schemes produce accurate and rapidly converging solutions to scattering problems for

structures with corners that are not right-angled, that is, for structures with interior

angles π/12 ≤ β ≤ 35π/36, where β is the interior angle of the corner.

The most significant findings of these numerical studies were: firstly, when the scat-

terer possesses sharp corners or rounded corners of small radii of curvature, it is essential

to use an appropriate quadrature scheme - a graded mesh - in order to obtain numerical

results efficiently. Use of a uniform mesh is, at best, grossly inefficient, and at worst,

produces non-convergence of the numerical process. Secondly, we demonstrated the de-

pendence on the maximum differences in the far-field of a cornered scatterer and its

rounded counterpart on the radius of curvature in the rounded corner, the wave number

and direction of travel of the illuminating incident plane wave. In the Dirichlet case, the

non-dimensionalised maximum difference in the far-fields has the form C(θ0)(kρ)2/ν , for

some constant C(θ0) dependent on the angle of illumination, as kρ→ 0. The quantity ν

is dependent on the interior angle of the scatterer β and is calculated as ν = 2π−β
π . For

the impedance loaded case with Z = 1 + i, the exponent 2/ν is replaced by 1. For the

Neumann case, the exponent is dependent on the angle of illumination, but the maximum

difference is bounded by C(θ0)(kρ)2/ν .

Having established the power law dependence of the maximum difference in the far-

field of a cornered scatterer and its rounded counterpart numerically, a theoretical basis

for these numerical results was derived. This was achieved by introducing suitable sur-

face parameterisations for the rounded and unrounded scatterers and then analysing the

underlying integral equations. An approximate integral equation for the difference in the

surface quantities on the lemniscate and its rounded counterpart was obtained, and it
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was shown that the difference is O((kε)2/3) as kε→ 0. As a consequence, the maximum

in the non-dimensionalised far-field patterns is O((kε)4/3) as kε → 0, in accord with

the computed results, since ρ ∼ 2ε. These results are readily capable of extension to

structures with sharp corners of interior angles other than π/2. A similar approach to

the Neumann case is planned for future work; the similarity arises because many of the

approximations for the kernel in question are identical, or nearly so, to those employed

for the Dirichlet case.

We next examined the behaviour of three quantities at close proximity to the corner

of a scatterer: the total field utot external to the scatterer, the derivative with respect

to the normal ∂u
tot

∂n measured on the surface of the scatterer and the surface quantity ϕ.

Firstly, we verified that the numerical schemes developed for the solution of the scattering

of a plane wave by structures possessing corners, are suitable for measuring the scattered

field in close proximity to the scatterer surface at the corner. Secondly, we verified that

the employed schemes enable the accurate measurement of the derivative with respect

to the normal on the surface of the scatterer in the vicinity of the corner. Thirdly, the

behaviour of the surface quantity ϕ(τ) near the vicinity of the corner for scatterers with

a Dirichlet and Neumann boundary condition was examined and it was shown that it

can be approximated based on the wave number and the distance along the surface from

the corner. For scatterers with the Dirichlet boundary condition and interior angle β we

numerically established that |ϕ(τ)− ϕ(0)| ≈ C(kτ)1/ν , as τ → 0, and that the constant

C ≤ 2π
β , and if the incident wave direction θ0 = 0, then C ≈ 2π/β. For the Neumann

case, we established that, |ϕ(τ)| ≈ C(β, θ0)(kτ)
2
ν
−1, when the incident wave direction

θ0 = 0, and |φ(τ)| ≈ C(β, θ0)(kτ)
1
ν
−1, when θ0 6= 0, for constants C dependent on the

incident wave direction θ0 and the interior angle of the corner β. We then established

the analytical basis for the numerical Neumann results. The analytical proof of the

corresponding Dirichlet result follows similar lines, and is planned for future work.

To complete our examination of the effect of corner rounding on single scatterers we

extended our analysis to examine the effect of corner rounding on the far-field in the time

domain. We used discrete Fourier transforms to shift the previously collected frequency

domain data to the time domain and measured the response to three different pulses:

the Gaussian, the derivative of the Gaussian and the Gaussian sine packet. The response
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in all cases was the same: as the radius of curvature of the rounded corner ρ increases,

there is a slight phase shift in the time response and an increase in the amplitude.

We continued our analysis of the effect of rounding the corners of scatterers on the

near- and far-fields by extending the scattering problems studied to arrays of two and

four scatterers. The main area of interest lies in the strength of the coupling between the

scatterers, that is, the degree to which scattering from a single scatterer is changed by the

presence of other scatterers. Firstly, we demonstrated that the number of quadrature

points required on each scatterer for a desired degree of accuracy is nearly the same

whether we are solving a single or multiple scatterer problem. The dependency is on the

scatterer shape, not the geometry of the scatterer array. The accuracy of the solution

for a given number of quadrature points varies by at most one and occasionally two

significant digits. Secondly, we examined the relative differences of the far-field solutions

produced by arrays of two and four scatterers using the L1 and L∞ norms. As in the

case of single scatterers, the smaller the radius of curvature used for the rounding, the

smaller the measured relative difference. Increasing the number of scatterers from one to

two and then four, does not increase the relative norm differences by an equivalent ratio.

The effect of rounding on arrays of scatterers is of a similar order as that of a single

scatterer, and sometimes even less. Thirdly, we showed that the bounds on the far-field

differences
√
k‖u∞0 − u∞ρ ‖∞ established for single scatterers hold for scatterer arrays.

We used a classical coupling method for the two and four scatterer array problems,

combined with the Nyström scheme using graded mesh. This produces highly accurate

solutions but is computationally demanding as the number of scatterers increases. For

investigations into larger scatterer arrays alternative methods need to be considered,

and we used TMATROM [27], a Matlab object-oriented T-matrix software package. We

detailed the steps undertaken to implement the package: adding into TMATROM all the

scatterer geometries we are studying and more crucially, incorporating our own forward

solver for scatterers with corners. We compared the results for single scatterers of the far-

field produced by TMATROM equipped with our corner solver to those produced using

our original code using the L2 and L∞ norms to measure the differences. A high order of

agreement was demonstrated: order 10−10 to 10−15, which validates our earlier results.

We also tested the two and four scatterer array problems studied using the TMATROM
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features for multiple scatterer problems: generating the T-matrix for a geometry once and

employing the translation-addition theorem methods that use the generated T-matrix.

We found that the TMATROM package provides an efficient method for solving multiple

scatterer problems, producing accurate solutions when the scatterers are separated by at

least half the scatterer diameter. In these cases, the solutions produced using TMATROM

equipped with our cornered solver are within the error bound introduced by the use of

the translation-addition theorem (10−8). As the scatterer separation decreases from less

than half the scatterer diameter, the accuracy of the solution also decreases down to

order 10−3 in some cases. More importantly, if the scatterer separation is such that

the encapsulating circle required by TMATROM encroaches into the space occupied by

another scatterer in the arrangement, an accurate result is unable to be achieved and

alternative methods for those scatterer problems should be considered.

We concluded this thesis by utilising our implementation of TMATROM to study

some of the properties of large scatterer arrays of cornered structures. We numeri-

cally demonstrated that finite grating converges to infinite grating results with an ap-

propriate scaling. We established a bound on the differences between the far-fields∣∣∣ |u∞N |N − |u
∞
Nmax

|
Nmax

∣∣∣ ≤ C
Nm , for some constant C dependent on the scatterer shape, con-

figuration, boundary condition and incident field direction. The power m is ∼1.2 for

single arrays and ∼1.3 for double arrays, except for configurations with side-fire (with

grating lobes occurring at far-field observation angle θ̂ = π/2 and 3π/2), where the rate

of convergence is slower. We also demonstrated that we were able to simulate infinite

array behaviour such as the appearance of diffraction grating lobes with a finite number

of scatterers. This qualitative feature provides a different sort of test of the ability of our

simulation to predict important physical phenomena associated with arrays and gratings.

We established that TMATROM provides an effective and efficient tool for studying ter-

mination effects, that is the difference between finite and infinite array scattering grating

lobes. For the array structures studied, it appears that N must be chosen to be at least

64 for the differences between the finite and infinite structures to be negligible.

This thesis has considered single and multiple closed scatterers with corners. It

would be fruitful to study the corresponding scattering problems for open scatterers

with corners, or scatterers with slits or cavities.
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Appendix A

Problem Formulation Details

A.1 Singularity of the Green’s Function

The two-dimensional free-space Green’s function (2.23) has a singularity when x = y.

In this section we show that this singularity is logarithmic and as such integrable. We

can express the Green’s function (2.23) in terms of Bessel functions as

G(x,y) =
i

4
J0(k |x− y|)− 1

4
Y0(k |x− y|). (A.1)

The Bessel function of the first kind J0(x) is analytic and bounded, but the Neumann

function Y0(x) is singular at x = 0. Since we need to integrate (A.1) with respect to y on

a domain containing x, we will have an instance of x = y when x ∈ ∂D and the Green’s

function will be singular. We will now show that the Neumann function’s singularity is

of logarithmic magnitude and that

lim
x→0+

(
i

4
H

(1)
0 (x) +

1

2π
ln
x

2

)
=
i

4
+

γ

2π
, (A.2)

where γ is Euler’s constant. This allows us to then integrate these singular functions

since the natural logarithm has an integrable singularity.

The expansion of Y0(x) is [120] :

Y0(x) =
2

π

(
J0(x)

(
ln
(x

2

)
+ γ
)

+

∞∑
m=1

(−1)m−1hm
22m(m!)2

x2m

)
, (A.3)
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where γ is Euler’s constant and hm = 1 + 1
2 + 1

3 + ...+ 1
m . Now

lim
x→0+

J0(x) = 1, (A.4)

and

lim
x→0+

∞∑
m=1

(−1)m−1hm
22m(m!)2

x2m = 0, (A.5)

since the sum is absolutely convergent for all values of x. Thus as x→ 0+,

Y0(x) ∼ 2

π
ln
(x

2

)
, (A.6)

which clearly shows the logarithmic singularity.

We now consider the difference between Y0(x) and its logarithmic approximation near

x = 0:

lim
x→0+

Y0(x)− 2

π
ln(

x

2
)

= lim
x→0+

2

π

(
J0(x)

(
ln
(x

2

)
− γ
)

+
∞∑
m=1

(−1)m−1hm
22m(m!)2

x2m

)
− 2

π
ln
(x

2

)
= lim

x→0+

(
2

π
(J0(x)− 1) ln

(x
2

)
− 2

π
γJ0(x)

)
= lim

x→0+

2

π
(J0(x)− 1) ln

(x
2

)
+

2γ

π
, (A.7)

using (A.4) and (A.5). The expansion of J0(x) is [120]:

J0(x) =

∞∑
m=0

(−1)mx2m

22m(m!)2
, (A.8)

so

lim
x→0+

(
J0(x)− 1

x2

)
= −1

4
. (A.9)

Thus

lim
x→0+

(J0(x)− 1) ln
(x

2

)
= lim

x→0+

(
J0(x)− 1

x2

)
lim
x→0+

(
x2 ln

(x
2

))
= 0, (A.10)
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using x2 lnx→ 0 as x→ 0. Thus

lim
x→0+

Y0(x)− 2

π
ln
(x

2

)
=
−2γ

π
, (A.11)

and

lim
x→0+

(
i

4
H

(1)
0 (x) +

1

2π
ln
x

2

)
= lim

x→0+

(
i

4
J0 (x)− 1

4

(
Y0 (x)− 2

π
ln
(x

2

)))
=
i

4
+

γ

2π
. (A.12)

A.2 The Nyström Method

In Section 2.4.4 we reformulated our scattering problem as integral equations. These

integral equations, in general, cannot be solved analytically, and a numerical method is

needed to approximate the solutions of these equations.

Consider the general integral equation on [0, 2π],

ϕ (t) +

∫ 2π

0
K̂(t, τ)ϕ(τ) dτ = g (t) , t ∈ [0, 2π], (A.13)

where K̂ is the kernel of an integral operator K̂, which we wish to solve for ϕ, that is, the

corresponding operator equation we wish to solve is
(
I + K̂

)
ϕ = g for ϕ. The Nyström

method uses a quadrature rule

∫ 2π

0
h(t)dx ≈

n∑
k=1

wkh(tk), (A.14)

for a set of quadrature points tk and weights wk to discretise an integral equation. For

example, using the set of quadrature points

tj =
πj

n
, for j = 0, ..., 2n− 1, (A.15)

the integral equation (A.13) using the Nyström method is approximated by

ϕ (t) +
2n−1∑
j=0

wjK̂(t, tj)ϕ(tj) ≈ g (t) , (A.16)
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for all t ∈ [0, 2π]. Requiring that equality holds in (A.16) for the quadrature points

(A.15) produces an approximation ϕi for ϕ (ti), given by

ϕi +
2n−1∑
j=0

wjK̂(ti, tj)ϕj = g (ti) , for i = 0, ..., 2n− 1. (A.17)

This set of 2n equations with 2n unknowns ϕ0, ..., ϕ2n−1 has the matrix representation



1 + K̂0,0w0 K̂0,1w1 . . . K̂0,2n−1w2n−1

K̂1,0w0 1 + K̂1,1w1 . . . K̂1,2n−1w2n−1

...
...

. . .
...

K̂2n−1,0w0 K̂2n−1,1w1 · · · 1 + K̂2n−1,2n−1w2n−1





ϕ0

ϕ1

...

ϕ2n−1


=



g0

g1

...

g2n−1


(A.18)

where K̂i,j = K̂(ti, tj). If the matrix in (A.18) is invertible, we can solve this linear

system for ϕ0, ..., ϕ2n−1.

The method may be straightforwardly applied when the kernel K̂(t, τ) is continuous.

The convergence of the approximate solution to the exact solution as N →∞ has been

well established in the literature [109, 142]. The method needs adaptation when the

kernel has a diagonal singularity. This adaptation is detailed in the following section.

A.2.1 The Nyström Method and the Kernel Singularities

In Section 2.4.4 we formulated the solution of various scattering problems as the solution

of appropriate integral equations. In Section 2.5 we transformed these integral equations

into line integral form: the exterior Dirichlet problem (2.56) is

ϕ(t) +

∫ 2π

0
{K0(t, τ)− iηS0(t, τ)}ϕ(τ) dτ = g(t), 0 ≤ t ≤ 2π, (A.19)

the exterior Neumann problem (2.57)

−ϕ(t) +

∫ 2π

0
K ′0(t, τ)ϕ(τ) dτ = h(t), 0 ≤ t ≤ 2π, (A.20)

and the impedance problem (2.58)

−ϕ(t) +

∫ 2π

0

{
K ′0(t, τ) + ikλS0(t, τ)

}
ϕ(τ) dτ = m(t), 0 ≤ t ≤ 2π. (A.21)
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The outward pointing unit normal at x(τ) is

n(x(τ)) =
(x′2 (τ) ,−x′1 (τ))

J(τ)
, (A.22)

where J(τ) is the Jacobian factor

J(τ) =

√
(x′1 (τ))2 + (x′2 (τ))2 =

∣∣x′ (τ)
∣∣ . (A.23)

Thus for t 6= τ , the kernels are as follows:

K0(t, τ) = 2
∂G(t, τ)

∂n (τ)
J(τ)

= 2∇x(τ)G(x(t),x(τ)) · n(x(τ))J(x(τ))

=
ik

2

H
(1)
1 (k|x(t)− x(τ)|)
|x(t)− x(τ)|

(x(t)− x(τ)) ·
(
x′2 (τ) ,−x′1 (τ)

)
= − ik

2
{x′2(τ)[x1(τ)− x1(t)]− x′1(τ)[x2(τ)− x2(t)]}H

(1)
1 (k|x(t)− x(τ)|)
|x(t)− x(τ)|

,

(A.24)

S0(t, τ) = 2G(t, τ)J(τ)

= 2G(x(t),x(τ))J(x(τ))

=
i

2
H

(1)
0 (k |x(t)− x(τ)|)

∣∣x′(τ)
∣∣ , (A.25)

and

K ′0(t, τ) = 2
∂G(t, τ)

∂n (t)
J(τ)

= 2∇x(t)G(x(t),x(τ)) · n(x(t))J(x(τ))

= − ik
2

H
(1)
1 (k|x(t)− x(τ)|)
|x(t)− x(τ)|

(x(t)− x(τ)) · (x′2 (t) ,−x′1 (t))

J(t)
J(τ)

= − ik
2

{x′2(t)[x1(t)−x1(τ)]− x′1(t)[x2(t)−x2(τ)]}
|x′(t)|

H
(1)
1 (k|x(t)−x(τ)|)
|x(t)− x(τ)|

∣∣x′(τ)
∣∣ .

(A.26)

The kernel S0 has a logarithmic singularity when t = τ . In Appendix A.1 we showed

that this singularity is integrable. Using the Nyström method as described in Section

A.2, we observe that the diagonal values of the resultant matrix (A.18), which we use to
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solve the integrals, are singular. We must adapt the method to take account of the kernel

singularity. Moreover the kernels K0 and K ′0, although continuous, have a logarithmic

singularity in their derivatives; the use of a simple quadrature rule such as the trapezoidal

rule will not provide exponentially fast convergence. The Martensen-Kussmaul method

of splitting the singularity [7, p.76-79] provides an effective means of obtaining super-

algebraic convergence.

A.2.2 The Martensen-Kussmaul Method

The Martensen-Kussmaul method splits the kernel to isolate the logarithmic singularity.

The smooth components of the kernel are evaluated using the Nyström method with

a rectangular quadrature rule. A different quadrature rule to is used to estimate the

singular part of the kernels. The technique was developed by Martensen [58] and Kuss-

maul [59] and is described in Colton and Kress [7, p.76-79]. The quadrature rule for

the singularity replaces the integrand by its trigonometric interpolation polynomial and

integrates this interpolant exactly.

We isolate the singular parts of the kernels (A.24), (A.25) and (A.26) in the following

manner,

K0(t, τ) = K1(t, τ) ln

(
4 sin2 t− τ

2

)
+K2(t, τ), (A.27)

S0(t, τ) = S1(t, τ) ln

(
4 sin2 t− τ

2

)
+ S2(t, τ), (A.28)

K ′0(t, τ) = K ′1(t, τ) ln

(
4 sin2 t− τ

2

)
+K ′2(t, τ). (A.29)

The kernels K1, K2, S1, S2, K ′1 and K2 are analytic [7, p.77], and are defined as

K1(t, τ) =
−ik
2π
{x′2(τ)[x1(τ)− x1(t)]− x′1(τ)[x2(τ)− x2(t)]}J1(k|x(t)− x(τ)|)

|x(t)− x(τ)|
,

(A.30)

K2(t, τ) = K(t, τ)−K1(t, τ) ln

(
4 sin2 t− τ

2

)
, (A.31)

S1(t, τ) = − 1

2π
J0 (k |x(t)− x(τ)|)

∣∣x′(τ)
∣∣ , (A.32)

S2(t, τ) = S(t, τ)− S1(t, τ) ln

(
4 sin2 t− τ

2

)
, (A.33)
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K ′1(t, τ) =

−ik
2

{x′2(t)[x1(t)− x1(τ)]− x′1(t)[x2(t)− x2(τ)]}
|x′(t)|

J
(1)
1 (k|x(t)− x(τ)|)
|x(t)− x(τ)|

∣∣x′(τ)
∣∣ ,

(A.34)

K ′2(t, τ) = K ′(t, τ)−K ′1(t, τ) ln

(
4 sin2 t− τ

2

)
. (A.35)

For the diagonal terms of the K2 and K ′2 we use the limit as t→ τ of (A.24) and (A.26)

respectively. Thus

K2(t, t) =
−1

2π

x′1(t)x′′2(t)− x′2(t)x′′1(t)

|x′(t)|2
, (A.36)

K ′2(t, t) =
1

2π

x′1(t)x′′2(t)− x′2(t)x′′1(t)

|x′(t)|2
. (A.37)

The limiting value for the S2 kernel may be calculated to be [7, p.73]

S2(t, t) =

{
i

2
− C

π
− 1

π
ln

(
k

2

∣∣x′(t)∣∣)} ∣∣x′(t)∣∣ . (A.38)

Thus in general terms, we will numerically solve integral equations of the form

ϕ(t) +

∫ 2π

0
K̂0(t, τ)ϕ(τ) dτ = g(t), (A.39)

where the kernel K̂ represents any of the kernels (A.27), (A.28) and (A.29), and may be

written in the form

K̂0(t, τ) = K̂1(t, τ) ln

(
4 sin2 t− τ

2

)
+ K̂2(t, τ), (A.40)

where K̂1 and K̂2 are analytic. The smooth components of the kernel K̂0(t, τ) are

evaluated using the trapezoidal rule to approximate

∫ 2π

0
K̂2(t, τ)ϕ(τ) dτ ≈ π

n

2n−1∑
j=0

K̂2(t, tj)ϕ(τj) dt. (A.41)

A different quadrature rule is used to estimate the singular part of the kernel K̂0(t, τ)

which replaces the integrand by its trigonometric interpolation polynomial and integrates
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this interpolant exactly. The following quadrature rule

∫ 2π

0
ln

(
4 sin2 t− τ

2

)
K̂1(t, τ) dτ ≈

2n−1∑
j=0

R
(n)
j (t)K̂1(t, tj), for 0 ≤ t ≤ 2π, (A.42)

is used to approximate the integral of the logarithmic part of the kernel K̂0(t, τ). The

quadrature weights R(n)
j are given by

R
(n)
j (t) = −2π

n

n−1∑
m=1

1

m
cosm(t− tj)−

π

n2
cosn(t− tj), for j = 0, ..., 2n− 1. (A.43)

Discretising in the same manner as (A.17) with ϕi ≈ ϕ (ti) produces

ϕi +

2n−1∑
j=0

[
R|i−j|(t) {K1(ti, tj)− iηS1(ti, tj)}+

π

n
{K2(ti, tj)− iηS2(ti, tj)}

]
ϕj = g (ti) ,

(A.44)

for i = 0, ..., 2n− 1, and

−ϕi +
2n−1∑
j=0

[
R|i−j|(t)K

′
1(ti, tj) +

π

n
K ′2(ti, tj)

]
ϕj = h (ti) , (A.45)

for i = 0, ..., 2n− 1, and

−ϕi+
2n−1∑
j=0

[
R|i−j|(t)

{
K ′1(ti, tj) + ikλS1(ti, tj)

}
+
π

n

{
K ′2(ti, tj) + ikλS2(ti, tj)

}]
ϕj

= m (ti) , (A.46)

for i = 0, ..., 2n − 1, as the discretised formulations of the integral equations (A.19),

(A.20) and (A.21) respectively.

Figures A.1a, A.1b, A.1c, A.1d, A.1e and A.1f plot the kernels K1, K2, S1, S2, K
′
1,

and K ′2 respectively, for a fixed value of t(π4 ) and varying τ , on a circular scatterer radius

1, using a wave number k = π. The figures demonstrate the smoothness of these kernels

as a result of the singularity being isolated in (A.27), (A.28) and (A.29).
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A.3 The Dirichlet Boundary Condition and Structures with

Corners

Implementation of the graded mesh ensures an exponentially fast convergence rate (as

a function of n) for scatterers with one or two corners with the Neumann and impe-

dance boundary conditions. In the case where these scatterers have a Dirichlet boundary

condition further modifications are necessary to achieve comparable convergence rates.

For these domains the kernel of (2.39) is no longer weakly singular at the corner. The

following section presents in detail the method in [7] to enable integration of this stronger

singularity.

A.3.1 Single Cornered Domains

The modification for domains with a single corner at x0 and the Dirichlet boundary

condition [7], uses the fundamental solution

G0 (x,y) =
1

2π
ln

1

|x− y|
, x 6= y, (A.47)

to the Laplace equation in R2 to subtract a vanishing term. This transforms (2.39) into

usc(x) =

∫
∂D

{{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y)− ∂G0(x,y)

∂n(y)
ϕ(x0)

}
ds(y), x ∈ R2\D̄,

(A.48)

and the associated boundary equation (2.41) is reformulated as

ϕ(x)− ϕ(x0) + 2

∫
∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
ϕ(y) ds(y)

− 2

∫
∂D

∂G0(x,y)

∂n(y)
ϕ(x0) ds(y) = −2uinc(x), x ∈ ∂D. (A.49)

An analysis showing the existence of a solution to (A.49) is provided in [7]. The integral

equation (A.49) is rewritten in parameterised form

ϕ (t)−ϕ (0)−
∫ 2π

0
K̂(t, τ)ϕ (τ) dτ−

∫ 2π

0
H(t, τ)ϕ (0) dτ = g (t) , 0 ≤ t ≤ 2π, (A.50)
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where

H (t) =



1

π

x′2(τ)[x1(t)− x1(τ)]− x′1(τ)[x2(t)− x2(τ)

|x(t)− x(τ)|2
, t 6= τ,

1

2π

x′2(t)x′′1(t)− x′1(t)x′′2(t)

|x′(t)|2
,

t = τ, t 6= 0, 2π,
(A.51)

and

K̂(t, τ) = K(t, τ)− iηS(t, τ), 0 ≤ t ≤ 2π. (A.52)

We now apply the substitution (2.60) to (A.50) and obtain

∫ 2π

0
K̂(t, τ)ϕ (τ) dτ −

∫ 2π

0
H(t, τ)ϕ (0) dτ =

∫ 2π

0
K̂(w (s) , w (σ))w′ (σ)ϕ (w (σ)) dσ

−
∫ 2π

0
H(w (s) , w (σ))w′ (σ)ϕ (0) dσ.

(A.53)

The logarithmic singularity present in the kernel K̂(t, τ) remains to be accounted for.

This is done in the same manner as (2.64). Using the quadrature rules (A.41) and (A.42)

to discretise the kernel, and the trapezoidal rule to discretise the kernel H(t, τ) and

ϕ0 = ϕ (0) at the corner s0 = 0 gives

ϕi − ϕ0 +
2n−1∑
j=1

[R|i−j|(t) {K1(w (si) , w (sj))− iηS1(w (si) , w (sj))}

+
π

n
{K2(w (si) , w (sj))− iηS2(w (si) , w (sj))}]ajϕj

−
2n−1∑
j=1

π

n
H(w (si) , w (sj))ajϕ0 = g (w (si)) , for i = 0, ..., 2n− 1. (A.54)

We have obtained a system of 2n− 1 linear equations for the boundary values ϕ (tj),

for j = 1, 2, ..., 2n−1, that is a discretisation of the integral equation (A.49). The solution

is obtained by the usual Gaussian elimination procedure.

The described modification (A.49) applied to (2.41) ensures that exponentially fast

convergence is achieved for scatterers with the Dirichlet boundary condition and a single

corner on ∂D.
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Comparison to Rawlins’ Results
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Figure B.1: Plot of usc(x), for x = 10(cos t, sin t), t ∈ [0, 2π]. Impedance parameter 1+i.
Incident wave direction θ0 = 3π/4, wave number k = 2π.
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Figure B.2: Plot of usc(x), for x = 10(cos t, sin t), t ∈ [0, 2π]. Impedance parameter
1 + 10i. Incident wave direction θ0 = 2π/3, wave number k = 2π.
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Figure B.3: Plot of usc(x), for x = 10(cos t, sin t), t ∈ [0, 2π]. Impedance parameter 4+i.
Incident wave direction θ0 = 5π/6, wave number k = 2π.
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Figure B.4: Plot of usc(x), for x = 10(cos t, sin t), t ∈ [0, 2π]. Impedance parameter
10 + i. Incident wave direction θ0 = 3π/4, wave number k = 2π.



Appendix C

Bounds Analysis Supporting Details

This chapter contains supporting Lemmas and numerical results for Chapter 4.

After introducing suitable surface parameterisations for the rounded and cornered

scatterers, we analyse the underlying integral equations for each scatterer, and deduce

an approximate integral equation for the difference in the surface density, in terms of

the difference in the illuminating incident field at corresponding points on each scatterer

and of the surface quantity on the sharp cornered object. We take the lemniscate and

its rounded counterpart scatterer studied in Chapter 3 as a test case. The approximate

solution of the integral equation is shown to be O((kρ)2/3), from which it is deduced that
√
k
∥∥u∞0 − u∞ρ ∥∥∞ = O((kρ)4/3), as kρ→ 0.

C.1 Lemmas used in Chapter 4

Lemma C.1.1 The rounded lemniscate with the following parameterisation,

xε(t) =

(
2

√
ε2 + (1− ε2) sin2(t/2),− sin t

)
,

for t ∈ [−π, π], has radius of curvature ρ = 2ε+O
(
ε3
)
as ε→ 0.

Proof. The radius of curvature ρ at the rounded corner points is calculated from the

general formula for the parameterised curve x(t) = (x1 (t) , x2 (t)),

ρ(t) =

∣∣∣∣∣
(
x′1(t)2 + x′2(t)2

)3/2
x′1(t)x′′2(t)− x′2(t)x′′1(t)

∣∣∣∣∣ , t ∈ [−π, π] , (C.1)
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where, in the case of the rounded lemniscate (C.1.1)

x′(t) =

 (1− ε2) sin t

2
√
ε2 + (1− ε2) sin2 t

2

,− cos t

 , (C.2)

and

x′′(t) =

(
(1− ε2) cos t

2(ε2 + (1− ε2) sin2 t
2)1/2

− (1− ε2)2 sin2 t

8(ε2 + (1− ε2) sin2 t
2)3/2

, sin t

)
. (C.3)

At the rounded corner point t = 0,

ρ(0) =

∣∣∣∣ 2ε

1− ε2

∣∣∣∣ = 2ε+O
(
ε3
)
, as ε→ 0. (C.4)

Lemma C.1.2 For the lemniscate with the following parameterisation,

x0(t) = (2 sin(|t|/2),− sin t), (C.5)

and the corresponding rounded object depending upon a (small) positive parameter ε,

xε(t) =

(
2

√
ε2 + (1− ε2) sin2(t/2),− sin t

)
, (C.6)

for t ∈ J , where J = [−π,−ε2/3] ∪ [ε2/3, π],

‖x0 − xε‖∞,J = max
t∈J
|x0(t)− xε(t)| = 4ε4/3 +O

(
ε2
)
,

as ε→ 0. Also,

‖x0 − xε‖∞ = max
t∈[−π,π]

|x0(t)− xε(t)| = 2ε.

Proof.

|x0(t)− xε(t)| =
∣∣∣∣ 2 sin(|t|/2)− 2

√
ε2 + (1− ε2) sin2(t/2)

∣∣∣∣
=

2ε2 cos2(|t|/2)

sin(|t|/2) +
√
ε2 + (1− ε2) sin2(t/2)

≤ 2ε2

sin(|t|/2)
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≤ 2ε2

sin
(

1
2ε

2/3
)

= 4ε4/3 +O
(
ε2
)
, as ε→ 0. (C.7)

The maximum occurs at the end points where t = ±ε2/3.

Also, if t ∈ [−π, π],

|x0(t)− xε(t)| =
2ε2 cos2(|t|/2)

sin(|t|/2) +
√
ε2 + (1− ε2) sin2(t/2)

≤ 2ε, (C.8)

the maximum being attained at t = 0.

Lemma C.1.3 For the lemniscate with the parameterisation (C.5) and the correspond-

ing rounded lemniscate with parameterisation (C.6) and the interval J = [−π,−ε2/3] ∪

[ε2/3, π],

‖x′0(t)− x′ε(t)‖∞,J = max
t∈J

∣∣x′0(t)− x′ε(t)
∣∣ = 2ε2/3 +O

(
ε4/3

)
,

as ε→ 0.

Proof. First fix t > 0.

∣∣x′0(t)− x′ε(t)
∣∣ =

∣∣∣∣∣∣cos t
2 −

(
1− ε2

)
sin t

2 cos t
2√

ε2 + (1− ε2) sin2 t
2

∣∣∣∣∣∣
≤

1−
(
1− ε2

)
sin t

2√
ε2 + (1− ε2) sin2 t

2

 . (C.9)

Since t ∈ J , we may use the Taylor series expansions,

1−
(
1− ε2

)
sin t

2√
ε2 + (1− ε2) sin2 t

2

= 1−
(
1− ε2

)1/2(
1 +

ε2

(1− ε2) sin2 t
2

)1/2

= 1−
(
1− 1

2ε
2 − 1

8ε
4 − h.o.t.

)(
1− 1

2

ε2

(1− ε2) sin2 t
2

+ 3
8

ε4

(1− ε2)2 sin4 t
2

+ h.o.t.

)

= 1−

(
1− 1

2

ε2

(1− ε2) sin2 t
2

+ 3
8

ε4

(1− ε2)2 sin4 t
2

− 1
2ε

2 − 1/8ε4 + h.o.t.

)

= 1
2

ε2

(1− ε2) sin2 t
2

+ h.o.t. (C.10)
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Since t ∈ J , this is bounded by

1
2

ε2

(ε2/3/2)2
+O

(
ε4/3

)
= 2ε2/3 +O

(
ε4/3

)
, as ε→ 0. (C.11)

The proof for t < 0 is similar, and the result follows. The maximum occurs at the

endpoints when t = ±ε2/3.

Lemma C.1.4 The parameterisations (C.5) and (C.6) obey |x′0(t)| ≤
√

2 and |x′ε(t)| ≤
√

2 for t ∈ [−π, π].

Proof.

|x′0(t)| =
(

cos2 t

2
+ cos2 t

)1/2

≤
√

2. (C.12)

And,

|x′ε(t)| =

((
1− ε2

)2
sin2 t

2 cos2 t
2

ε2 + (1− ε2) sin2 t
2

+ cos2 t

)1/2

≤

( (
1− ε2

)2
sin2 t

2

ε2 + (1− ε2) sin2 t
2

+ 1

)1/2

≤

((
1− ε2

)2
sin2 t

2

(1− ε2) sin2 t
2

+ 1

)1/2

=
((

1− ε2
)

+ 1
)1/2

≤
√

2. (C.13)
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Lemma C.1.5 Let t ∈ I, where I = [−π, π]. The static Green’s function difference obeys

∫
J

|G0(xε(t),xε(τ))−G0(x0(t),x0(τ))|dτ = O
(
ε2/3

)
, as ε→ 0. (C.14)

Proof. Without loss of generality, we may suppose t > 0.

∣∣G0(xε(t),xε(τ))−G0(x0(t),x0(τ))
∣∣

=
1

2π

∣∣∣∣log
|x0(t)− x0(τ)|
|xε(t)− xε(τ)|

∣∣∣∣
=

1

2π

∣∣∣∣log

(
1 +

(
|x0(t)− x0(τ)|
|xε(t)− xε(τ)|

− 1

))∣∣∣∣
≤ 1

2π

(
|x0(t)− x0(τ)|
|xε(t)− xε(τ)|

− 1

)
, using log(1 + z) < z, for z > 0

=
1

2π

|x0(t)− x0(τ)| − |xε(t)− xε(τ)|
|xε(t)− xε(τ)|

≤ 1

2π

|(x0(t)− x0(τ))− (xε(t)− xε(τ))|
|xε(t)− xε(τ)|

. (C.15)

First suppose t > 4ε. Then

xε(t) =

(
2

√
ε2 + (1− ε2) sin2(t/2),− sin t

)
=

(
2

√
ε2 cos2(t/2) + sin2(t/2),− sin t

)

=

(
2 sin(t/2)

(
1 + 1

2 ε
2 cos2(t/2)

sin2(t/2)

)1/2

,− sin t

)

=

(
2 sin(t/2)

(
1 + 1

2ε
2 cos2(t/2)

sin2(t/2)
+ h.o.t.

)
,− sin t

)
=

(
2 sin(t/2) + ε2 cos2(t/2)

sin(t/2)
+ h.o.t. ,− sin t

)
, (C.16)

as ε→ 0. Likewise if τ > ε2/3,

xε(τ) =

(
2 sin(τ/2) + ε2 cos2(τ/2)

sin(τ/2)
+ h.o.t. ,− sin τ

)
. (C.17)

Recalling that x0(t) = (2 sin(t/2),− sin t), the numerator of the quantity (C.15) is

bounded by

ε2

(
cos2(t/2)

sin(t/2)
− cos2(τ/2)

sin(τ/2)

)
+ h.o.t. , (C.18)
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whilst the denominator is bounded below by

√
ε2 + (1− ε2) sin2(τ/2)−

√
ε2 + (1− ε2) sin2(t/2)

=
(1− ε2)(sin2(τ/2)− sin2(t/2))√

ε2 + (1− ε2) sin2(τ/2) +
√
ε2 + (1− ε2) sin2(t/2)

. (C.19)

Now

√
ε2 + (1− ε2) sin2(t/2) <

√
(1− ε2) sin2(t/2) + (1− ε2) sin2(t/2) <

√
2 sin(t/2),

(C.20)

because t > 4ε. Thus the denominator is bounded below by

(1− ε2)(sin(τ/2)− sin(t/2))/
√

2, (C.21)

and the quantity (C.15) is bounded by

√
2ε2
((

1
sin(t/2) −

1
sin(τ/2)

)
− (sin(t/2)− sin(τ/2))

)
(1− ε2)(sin(τ/2)− sin(t/2))

=

√
2 ε2

1− ε2

(
1 +

1

sin(t/2) sin(τ/2)

)
. (C.22)

Since t > 4ε, this quantity is bounded by

√
2ε

sin(τ/2)
+O

(
ε2
)
, as ε→ 0. (C.23)

The same estimate holds when τ < 0, namely

√
2 ε

|sin(τ/2)|
+O

(
ε2
)
. (C.24)

We now establish the same estimate for t ∈ I, and 0 < t < 4ε, whilst τ ∈ J . In this

case |xε(τ)| is much greater than |xε(t)| and

|x0(τ)− x0(t)|2

|xε(τ)− xε(t)|2
=
|x0(τ)|2 − 2x0(τ) · x0(t) + |x0(t)|2

|xε(τ)|2 − 2xε(τ) · xε(t) + |xε(t)|2

=
|x0(τ)|2

|xε(τ)|2

1− 2 x0(τ)
|x0(τ)| ·

x0(t)
|x0(τ)| + |x0(t)|2

|x0(τ)|2

1− 2 xε(τ)
|xε(τ)| ·

xε(t)
|xε(τ)| + |xε(t)|2

|xε(τ)|2

 . (C.25)
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Now

|x0(τ)|2

|xε(τ)|2
= 1− 4ε2 cos2(τ/2)

4ε2 cos2(τ/2) + 4 sin2(τ/2) + sin2(τ)

= 1 +O
(
ε2/3

)
, since τ ∈ J ; (C.26)

and

|xε(t)|2

|xε(τ)|2
=

4
(
ε2 cos2(t/2) + sin2(t/2)

)
+ sin2(t)

4
(
ε2 cos2(τ/2) sin2(τ/2)

)
+ sin2(τ)

= O
(
ε2/3

)
, since t ≤ 4ε and τ ∈ J ; (C.27)

and

|x0(t)|2

|x0(τ)|2
=

4 sin2(t/2) + sin2(t)

4 sin2(τ/2) + sin2(τ)

= O
(
ε2/3

)
. (C.28)

We conclude that the quantity (C.25) is

1 +O
(
ε2/3

)
, as ε→ 0, (C.29)

and thus its logarithm is O
(
ε2/3

)
as ε→ 0.

We may now calculate a bound for the desired integral. If t > 4ε and t ∈ I,

∫
J

|G0(xε(t),xε(τ))−G0(x0(t),x0(τ))| dτ

≤ 2

∫ π

ε2/3

√
2 ε

sin(τ/2)
dτ +O

(
ε2
)

= 2
√

2 ε
[
− log cot

τ

4

]π
ε2/3

+O
(
ε2
)

= 2
√

2 ε
∣∣∣log tan

(
1
4ε

2/3
)∣∣∣+O

(
ε2
)

=
4

3

√
2 ε |log ε|+O (ε) , as ε→ 0. (C.30)

If t < 4ε, the desired integral is bounded by O
(
ε2/3

)
as ε→ 0.
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Lemma C.1.6

∣∣uinc
ε (t)− uinc

0 (t)
∣∣ =

∣∣ e−ikx̂·xε(t) − e−ikx̂·x0(t)
∣∣ ≤ 2kε,

for all t ∈ [−π, π].

Proof. Let 4x = 4x(t) = xε(t)− x0(t), and note that x̂ · 4x is small. Thus

∣∣ e−ikx̂·xε(t) − e−ikx̂·x0(t)
∣∣ =
∣∣ e−ikx̂·4x − 1

∣∣
= 2

∣∣∣∣ sin kx̂ · 4x2

∣∣∣∣
≤ | k | | x̂ | |4x |

= k
∣∣xε(t)− x0(t)

∣∣
≤ 2kε, (C.31)

applying the result from Lemma C.1.2.

Lemma C.1.7

‖m(x̂;xε)‖∞ ≤
√

2,

for all t ∈ [−π, π], where

m(x̂;xε) = ν(xε(t)) · x̂ e−ikx̂·xε(t) |x′ε(t)|.

Proof.

∣∣m(x̂;xε(t))
∣∣ =
∣∣ν(xε(t)) · x̂ e−ikx̂·xε(t) |x′ε(t)|

∣∣
≤
√

2
∣∣ν(xε(t))

∣∣ ∣∣x̂∣∣ ∣∣e−ikx̂·xε(t) ∣∣ (Lemma C.1.4)

=
√

2, (C.32)

since
∣∣ν(xε(t))

∣∣ = 1 and
∣∣x̂∣∣ = 1.
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Lemma C.1.8

k√
8π
‖m(x̂;xε)−m(x̂;x0)‖1 = O (kε) , as kε→ 0,

where

m(x̂;x) = ν(x(t)) · x̂ e−ikx̂·x(t) |x′(t)|.

Proof. Let

v (x (t)) = ν (x(t)) · |x′(t)| =
(
x′2(t),−x′1(t)

)
. (C.33)

Then

|m(x̂;xε)−m(x̂;x0)|

≤ |v (xε (t)) e−ikx̂·xε(t) − v (x0 (t)) e−ikx̂·x0(t) |

≤
∣∣∣ (v (xε (t))− v (x0 (t))) e−ikx̂·xε(t) + v (x0 (t))

(
e−ikx̂·xε(t) − e−ikx̂·x0(t)

) ∣∣∣
≤
∣∣v (xε (t))− v (x0 (t))

∣∣+
∣∣v (x0 (t))

∣∣∣∣e−ikx̂·(xε(t)−x0(t)) − 1
∣∣

≤
∣∣x′ε (t)− x′0 (t)

∣∣+
∣∣x′0 (t)

∣∣∣∣e−ikx̂·(xε(t)−x0(t)) − 1
∣∣

≤
∣∣x′ε (t)− x′0 (t)

∣∣+
√

2
∣∣e−ikx̂·(xε(t)−x0(t)) − 1

∣∣. (C.34)

Thus

k√
8π
‖m(x̂;xε)−m(x̂;x0)‖1 ≤

k√
8π
‖x′ε − x′0‖1 +

k

2
√
π

∫ π

−π
|e−ikx̂·(xε(t)−x0(t)) − 1 | dt.

(C.35)

Using the results of Lemma C.1.9 and Lemma C.1.10 we obtain

k√
8π
‖m(x̂;xε)−m(x̂;x0)‖1

≤
√

2 kε√
π

+O
(

(kε)2−δ
)
, for any δ > 0,

= O (kε) , as kε→ 0. (C.36)
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Lemma C.1.9 For the lemniscate with the parameterisation (C.5) and the corresponding

rounded lemniscate with parameterisation (C.6),

‖x′ε − x′0‖1 =

∫ π

−π
|x′ε(t)− x′0(t)|dt = 4ε.

Proof. We begin with the case t ∈ [0, π]. Then

|x′ε(t)− x′0(t)| =

∣∣∣∣∣∣
(
1− ε2

)
sin t

2 cos t
2√

ε2 + (1− ε2) sin2 t
2

− cos t
2

∣∣∣∣∣∣
= cos t

2

1−
(
1− ε2

)
sin t

2√
ε2 + (1− ε2) sin2 t

2

 , (C.37)

since (
1− ε2

)
sin t

2√
ε2 + (1− ε2) sin2 t

2

≤ 1, (C.38)

for 0 < ε < 1 and sin t
2 > 0.

For the case t ∈ [−π, 0],

|x′ε(t)− x′0(t)| = cos t
2

1 +

(
1− ε2

)
sin t

2√
ε2 + (1− ε2) sin2 t

2

 , (C.39)

since sin t
2 < 0. Thus

∫ π

−π
|x′ε(t)− x′0(t)| dt =

∫ π

0
cos t

2

1−
(
1− ε2

)
sin t

2√
ε2 + (1− ε2) sin2 t

2

 dt

+

∫ 0

−π
cos t

2

1 +

(
1− ε2

)
sin t

2√
ε2 + (1− ε2) sin2 t

2

 dt

=

[
2 sin t

2 − 2
√
ε2 + (1− ε2) sin2 t

2

]π
0

+

[
2 sin t

2 + 2
√
ε2 + (1− ε2) sin2 t

2

]0

−π

= 4ε. (C.40)
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Lemma C.1.10

k

2
√
π

∫ π

−π

∣∣ e−ikx̂·(xε(t)−x0(t)) − 1
∣∣dt ≤ 2√

π
(kε)2 +

2(kε)2

√
π

log ε+O
(
(kε)2

)
= O

(
(kε)2−δ

)
,

for any δ > 0.

Proof. We have established that |xε(t) − x0(t)| ≤ 2ε for t ∈ [−π, π] in Lemma C.1.2.

Noting that the integrand is 2| sin
{
k
2 x̂ · (xε(t)− x0(t))

}
|; the integral is bounded by

k2

2
√
π

∫ π

−π

∣∣xε(t)− x0(t))
∣∣ dt. (C.41)

We split the integral over the intervals I1 = [−ε, ε] and I2 = [−π, π] \ I, thus (C.41) is

equal to

k2

2
√
π

∫
I1

∣∣xε(t)− x0(t)
∣∣dt+

k2

2
√
π

∫
I2

∣∣xε(t)− x0(t)
∣∣ dt. (C.42)

Evaluating the first integral,

k2

2
√
π

∫
I1

∣∣xε(t)− x0(t)
∣∣ dt =

k2

2
√
π

∫ ε

−ε

∣∣xε(t)− x0(t)
∣∣ dt

≤ k2

2π

∫ ε

−ε
2εdt

=
2√
π

(kε)2. (C.43)

The second integral, is equal to

k2

2
√
π

∫ π

ε

∣∣xε(t)− x0(t)
∣∣ dt+

k2

2
√
π

∫ −ε
−π

∣∣xε(t)− x0(t)
∣∣ dt

≤ 2k2

√
π

∫ π

ε

ε2

sin |t|2

dt from (C.7)

=
2(kε)2

√
π

∫ π

ε

1

sin |t|/2
dt

=
2(kε)2

√
π

[
− log cot

t

4

]π
ε
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∼ 2(kε)2

√
π

(
− log

ε

4

)
=

2(kε)2

√
π

log ε+O
(
(kε)2

)
, as kε→ 0. (C.44)

The result stated now follows.

C.2 ‖ψε − ψ0‖∞,J and ‖ψε − ψ0‖1,J are negligibly small

In this section we demonstrate numerically that for t ∈ J , where J = [−π,−ε2/3] ∪

[ε2/3, π],

‖ψε(t)− ψ0(t)‖∞,J ∼ C(θ0) (kε)m ∼ C(θ0)(kε)0.75, (C.45)

for some constant C dependent on the direction of the incident wave θ0, and that

‖ψε(t)− ψ0(t)‖1,J ∼ C1(θ0) knεm1 ∼ C1(θ0) k0.2ε0.97, (C.46)

for some constant C1 dependent on the direction of the incident wave θ0. As such,

‖ψε(t)− ψ0(t)‖∞,J and ‖ψε(t)− ψ0(t)‖1,J , (C.47)

approach zero as ε→ 0.

Data was collected for the differences between the surface quantities |ψε(t) − ψ0(t)|

on the interval J , using the supremum norm

‖ψε(t)− ψ0(t)‖∞,J = max
t∈J
|ψε(t)− ψ0(t)|, (C.48)

and the L1 norm

‖ψε(t)− ψ0(t)‖1,J =

∫
J

|ψε(t)− ψ0(t)| dt. (C.49)

This data was collected for a lemniscate (2.2) and its rounded counterpart (2.3) with

Dirichlet boundary condition (2.19) for incident field directions θ0 = 0, π/32, π/16, π/8,

π/4; wave numbers k = 1, 5, 2π, 10, 4π, 8π and 16π; and different radii of curvature

ρ ranging from 0.05 to 6e-06, which correspond to values of ε of 0.025 to 3e-06. A

least squares fit to the logarithms of the data (see Figures C.1a and C.1b), was used for
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θ C m

0 0.60 0.74
π/32 0.61 0.74
π/16 0.61 0.75
π/8 0.62 0.75
π/4 0.63 0.75

Table C.1: Showing the constants C and
m derived using least squares fit for
‖ψε(t)− ψ0(t)‖∞,J ∼ C(θ0) (kε)m.

θ C1 n m1

0 4.5 0.21 0.97
π/32 4.5 0.21 0.97
π/16 4.5 0.21 0.97
π/8 4.4 0.22 0.96
π/4 4.0 0.23 0.96

Table C.2: Showing the constants C1, n
and m1 derived using least squares fit for
‖ψε(t)− ψ0(t)‖1,J ∼ C1(θ0) knεm1 .

Tables: For the lemniscate with Dirichlet boundary condition.

kε ≤ 0.025 to determine the constants C, m, C1, m1 and n. The results presented in

Tables C.1, and C.2, respectively, and show that

‖ψε(t)− ψ0(t)‖∞,J ∼ C(θ0) (kε)0.75, (C.50)

for some constant C dependent on the direction of the incident wave θ0, and

‖ψε(t)− ψ0(t)‖∞,J ∼ C1(θ0) k0.2ε0.97, (C.51)

for some constant C1 dependent on the direction of the incident wave θ0.
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(a) y = ‖ψε(t)− ψ0(t)‖∞,J , for θ0 = 0.
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(b) y = ‖ψε(t)− ψ0(t)‖1,J , for θ0 = 0.

Figure C.1: Logarithmic plot of the differences in the surface quantity on the lemniscate
ψ0(t) and on its rounded counterpart ψε(t) for t ∈ J .
The data points used are represented by the asterisks, the lines are the least squares line
of fit.





Appendix D

Surface Quantities Supporting

Material

D.1 Convergence of Integral Kν

Lemma D.1.1 The integral

∫ ∞
0

log
|1− u|2

1 + u2
u1/ν−1 du,

where 0 < 1/ν < 1, is convergent.

Proof. We will split the integral into three parts to consider the singularities at u = 0,

u = 1 and its limiting behaviour:

∫ ∞
0

log
|1− u|2

1 + u2
u1/ν−1 du =

∫ 1/2

0
log
|1− u|2

1 + u2
u1/ν−1 du +

∫ 2

1/2
log
|1− u|2

1 + u2
u1/ν−1 du

+

∫ ∞
2

log
|1− u|2

1 + u2
u1/ν−1 du. (D.1)

Evaluating the first component,

∣∣∣∣∣
∫ 1/2

0
log
|1− u|2

1 + u2
u1/ν−1 du

∣∣∣∣∣ ≤ log 5

∫ 1/2

0

∣∣∣u1/ν−1
∣∣∣ du =

2ν

ν
log 5 < ∞. (D.2)
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Evaluating the second component,

∣∣∣∣∣
∫ 2

1/2
log
|1− u|2

1 + u2
u1/ν−1 du

∣∣∣∣∣ ≤ 21−1/ν

∫ 2

1/2

∣∣∣ log |1− u|2
∣∣∣ du

= 22−1/ν

∫ 1/2

−1
| log |v|| dv <∞, (D.3)

noting that log v has an integrable singularity when v = 0. To evaluate the third com-

ponent integral, we will use the Taylor series approximations

log

∣∣∣∣ 1− 1

u

∣∣∣∣ =
1

u
+O

(
1

u2

)
, (D.4)

and

log

(
1 +

1

u2

)
=

1

u2
+O

(
1

u4

)
, (D.5)

as u→∞. Thus

2 log
∣∣1− u−1

∣∣− log(1 + u−2) =
2

u
+O

(
1

u2

)
, (D.6)

as u→∞. Evaluating the third component in (D.1), the integrand

log
|1− u|2

1 + u2
u1/ν−1 =

(
2

u
+O

(
1

u2

))
u1/ν−1 = 2u1/ν−2 +O

(
u1/ν−3

)
, (D.7)

as u→∞, so the integral

∫ ∞
2

log
|1− u|2

1 + u2
u1/ν−1 du, (D.8)

is finite, as 1/ν < 1.
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D.2 Surface Quantity, ϕ, in the Vicinity of the Corner: Nu-

merical Results

In this section we present the numerical results for the surface quantity, ϕ, for lemniscates

with differing interior angles. These results demonstrate that, for a Dirichlet boundary

condition,

|ϕ(τ)− ϕ(0)| ≈ C(kτ)m, (D.9)

as τ → 0, for some constant C. The corresponding results for a Neumann boundary

condition, show that

|ϕ(τ)| ≈ C(kτ)m, (D.10)

as τ → 0, for some other constant C.

The estimates for the constants C and m have been obtained by a least squares linear

fit to the logarithm of the quantities |ϕ(τ) − ϕ(0)| and |ϕ(τ)| in (D.9) and (D.10), as

appropriate.
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θ0 = 0 θ0 = π/32 θ0 = π/16 θ0 = π/8 θ0 = π/4
ka C m C m C m C m C m

Lemniscate, β = π/2
1 4.0 0.67 4.0 0.67 4.0 0.67 3.9 0.67 3.4 0.67
π/2 4.0 0.67 4.0 0.67 4.0 0.67 3.9 0.67 3.5 0.67
π 4.0 0.67 4.0 0.67 4.0 0.67 3.9 0.67 3.5 0.67
2π 4.0 0.67 4.0 0.67 4.0 0.67 3.9 0.67 3.5 0.67
4π 4.0 0.67 4.0 0.67 4.0 0.67 3.9 0.67 3.5 0.67
8π 4.0 0.67 4.0 0.66 4.0 0.67 3.9 0.67 3.5 0.67
16π 4.0 0.67 4.0 0.67 4.0 0.67 3.9 0.67 3.5 0.67

Lemniscate, β = π/3
1 5.9 0.60 5.9 0.60 5.9 0.60 5.7 0.60 5.2 0.60
π/2 5.9 0.60 5.9 0.60 5.9 0.60 5.8 0.60 5.3 0.60
π 5.9 0.60 5.9 0.60 5.9 0.60 5.8 0.60 5.3 0.60
2π 5.9 0.60 5.9 0.60 5.9 0.60 5.8 0.60 5.3 0.60
4π 5.9 0.60 5.9 0.60 5.9 0.60 5.8 0.60 5.3 0.60
8π 6.0 0.60 5.9 0.60 5.9 0.60 5.8 0.60 5.3 0.60
16π 6.0 0.60 5.9 0.60 5.9 0.60 5.8 0.60 5.3 0.60

Lemniscate, β = π/4
1 7.9 0.571 7.9 0.571 7.8 0.571 7.7 0.571 7.1 0.571
π/2 7.9 0.571 7.9 0.571 7.9 0.571 7.7 0.571 7.1 0.571
π 7.9 0.571 7.9 0.571 7.9 0.571 7.7 0.571 7.1 0.571
2π 7.9 0.571 7.9 0.571 7.9 0.571 7.7 0.571 7.1 0.571
4π 7.9 0.571 7.9 0.571 7.9 0.571 7.7 0.571 7.1 0.571
8π 8.0 0.572 7.9 0.572 7.9 0.572 7.7 0.572 7.1 0.571
16π 7.9 0.571 7.9 0.572 7.9 0.572 7.7 0.571 7.1 0.571

Lemniscate, β = π/6
1 11.9 0.545 11.9 0.545 11.9 0.545 11.7 0.545 10.8 0.545
π/2 11.9 0.545 11.9 0.545 11.8 0.545 11.6 0.545 10.8 0.545
π 11.9 0.545 11.9 0.545 11.9 0.545 11.6 0.545 10.8 0.545
2π 11.9 0.545 11.9 0.545 11.9 0.545 11.6 0.545 10.8 0.545
4π 11.9 0.545 11.9 0.545 11.9 0.545 11.6 0.545 10.8 0.545
8π 11.8 0.544 11.8 0.545 11.8 0.545 11.6 0.545 10.8 0.545
16π 12.0 0.546 11.9 0.546 11.9 0.546 11.7 0.546 10.9 0.546

Lemniscate, β = π/12
1 23.4 0.519 23.4 0.519 23.3 0.519 22.9 0.519 21.5 0.519
π/2 23.3 0.519 23.3 0.519 23.2 0.519 22.8 0.519 21.4 0.519
π 23.4 0.519 23.4 0.519 23.3 0.519 22.9 0.519 21.5 0.519
2π 23.5 0.519 23.4 0.519 23.3 0.519 23.0 0.519 21.5 0.519
4π 23.5 0.519 23.5 0.519 23.4 0.519 23.0 0.519 21.6 0.519
8π 23.6 0.519 23.5 0.519 23.4 0.519 23.1 0.519 21.6 0.519
16π 23.7 0.519 23.7 0.519 23.5 0.519 23.2 0.519 21.7 0.519

Lemniscate, β = π/18
1 35.4 0.510 35.3 0.510 35.2 0.510 34.7 0.510 32.6 0.510
π/2 35.2 0.510 35.2 0.510 35.0 0.510 34.5 0.510 32.5 0.510
π 35.4 0.510 35.3 0.510 35.2 0.510 34.7 0.510 32.6 0.510
2π 35.6 0.511 35.5 0.511 35.4 0.511 34.8 0.511 32.7 0.510
4π 35.8 0.511 35.8 0.511 35.6 0.511 35.0 0.511 32.8 0.511
8π 36.4 0.513 36.3 0.513 36.1 0.512 35.3 0.512 33.1 0.511
16π 37.9 0.518 37.6 0.517 36.7 0.514 36.1 0.514 33.8 0.514

Table D.1: Numerical results |ϕ(τ)− ϕ(0)| ≈ C(kτ)m as τ → 0,
for lemniscates with differing interior angles, β and Dirichlet boundary condition. Dif-
ferent angles of incidence, θ0, and different wave numbers ka.
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θ0 = 0 θ0 = π/32 θ0 = π/16 θ0 = π/8 θ0 = π/4
ka C m C m C m C m C m

Lemniscate, β = π/2
1 1.9 0.33 0.1 -0.33 0.3 -0.33 0.5 -0.33 1.0 -0.33
π/2 3.7 0.33 0.3 -0.33 0.5 -0.33 1.0 -0.33 1.9 -0.33
π 7.1 0.33 0.4 -0.32 0.8 -0.33 1.6 -0.33 3.1 -0.33
2π 14 0.33 0.9 -0.31 1.7 -0.32 3.3 -0.33 6.0 -0.33
4π 27 0.33 2.2 -0.31 3.7 -0.32 6.6 -0.33 12 -0.33
8π 59 0.33 5.0 -0.30 8.2 -0.31 14 -0.32 25 -0.33
16π 104 0.32 10 -0.29 17 -0.31 29 -0.32 51 -0.33

Lemniscate, β = π/3
1 0.7 0.20 0.2 -0.40 0.4 -0.40 0.8 -0.40 1.6 -0.40
π/2 1.4 0.20 0.3 -0.40 0.6 -0.40 1.2 -0.40 2.2 -0.40
π 2.7 0.20 0.7 -0.40 1.3 -0.40 2.6 -0.40 4.5 -0.40
2π 5.3 0.20 1.2 -0.39 2.2 -0.40 4.5 -0.40 8.9 -0.40
4π 11 0.20 2.6 -0.39 4.8 -0.39 9.5 -0.40 18 -0.40
8π 21 0.20 5.8 -0.38 10 -0.39 19 -0.40 36 -0.40
16π 43 0.20 13 -0.37 21 -0.39 39 -0.39 72 -0.40

Lemniscate, β = π/4
1 0.5 0.143 0.3 -0.428 0.5 -0.428 1.1 -0.428 2.2 -0.428
π/2 0.9 0.143 0.4 -0.426 0.7 -0.427 1.3 -0.428 2.5 -0.428
π 1.8 0.143 0.9 -0.425 1.6 -0.427 3.1 -0.428 5.3 -0.428
2π 3.4 0.143 1.7 -0.425 3.3 -0.427 6.4 -0.428 11 -0.428
4π 6.8 0.143 3.2 -0.421 6.0 -0.425 12 -0.427 23 -0.428
8π 14 0.143 6.8 -0.418 12 -0.423 24 -0.426 46 -0.428
16π 27 0.143 14 -0.413 26 -0.421 49 -0.425 93 -0.427

Lemniscate, β = π/6
1 0.3 0.091 0.4 -0.454 0.8 -0.454 1.7 -0.454 3.5 -0.454
π/2 0.5 0.091 0.4 -0.453 0.8 -0.454 1.6 -0.454 3.1 -0.454
π 1.0 0.091 1.0 -0.453 2.0 -0.454 3.7 -0.454 7.0 -0.454
2π 2.0 0.091 2.4 -0.452 4.7 -0.453 8.6 -0.454 16 -0.454
4π 3.9 0.091 4.6 -0.452 9.1 -0.453 18 -0.454 34 -0.454
8π 8.0 0.091 9.1 -0.449 17 -0.452 35 -0.453 67 -0.454
16π 15.9 0.091 19 -0.447 35 -0.451 68 -0.453 132 -0.454

Lemniscate, β = π/12
1 0.1 0.043 0.9 -0.478 1.8 -0.478 3.6 -0.478 7.4 -0.478
π/2 0.2 0.043 0.6 -0.478 1.1 -0.478 2.2 -0.478 4.9 -0.478
π 0.5 0.043 1.4 -0.478 2.7 -0.478 5.1 -0.478 13 -0.478
2π 0.9 0.043 3.4 -0.477 6.6 -0.478 12 -0.478 34 -0.478
4π 1.8 0.044 8.4 -0.477 16 -0.478 28 -0.478 59 -0.478
8π 3.6 0.044 18 -0.477 35 -0.478 62 -0.478 122 -0.478
16π 7.2 0.044 31 -0.476 66 -0.477 130 -0.478 246 -0.478

Lemniscate, β = π/18
1 0.1 0.029 1.3 -0.487 2.7 -0.487 5.4 -0.487 11 -0.487
π/2 0.1 0.029 0.7 -0.486 1.5 -0.486 2.8 -0.487 6.9 -0.487
π 0.3 0.029 1.7 -0.486 3.4 -0.486 6.5 -0.486 20 -0.487
2π 0.6 0.029 4.1 -0.486 7.9 -0.486 15 -0.486 52 -0.487
4π 1.2 0.029 10 -0.486 19 -0.486 38 -0.486 81 -0.487
8π 2.3 0.029 24 -0.486 45 -0.486 93 -0.486 173 -0.486
16π 4.6 0.029 52 -0.486 96 -0.486 190 -0.486 364 -0.486

Table D.2: Numerical results |ϕ(τ)| ≈ C(kτ)m as τ → 0,
for lemniscates with differing interior angles, β and Neumann boundary condition. Dif-
ferent angles of incidence, θ0, and different wave numbers ka.





Appendix E

Time Domain Supporting Material

This chapter contains the supporting analysis and calculations required for measuring

the effect of corner rounding in the time domain (Chapter 6).

E.1 Time Domain Incident Pulses

E.1.1 The Gaussian

The function

f(x, t) = e−(x−ct)2/a20 = e−(ct−x)2/a20 , (E.1)

which represents the Gaussian pulse where a0 is a quarter of the pulse width and c is the

speed of waves in the medium or light in free space (a0, c > 0), has Fourier transform

F (x, ω) =
√
π
a0

c
e−(ixω/c+a20(w/c)2/4)

=
√
π
a0

c
e−(ikx+a20k

2/4) , (E.2)

where k = ω/c is the wave number. The Gaussian pulse with time displacement t0

f(x, t) = e−(x−c(t−t0))2/a20 , (E.3)

has Fourier transform

F (x, ω) =
√
π
a0

c
e−ikct0−a

2
0k

2/4e−ikx. (E.4)
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The factor eikx is already included in (6.1) because

φ (y, ω) e−iωt and u∞ (x̂, ω) e−iωt, (E.5)

are the responses to

uince−iωt = eik(d.x−ct) = eikd.x−iωt, (E.6)

(see (6.5) and (6.6) with d = (1, 0)). In other words the spatial variation of the incident

field has been already automatically included in the calculation of u∞ (x̂, ω) and φ (y, ω).

We note that

F (−ω) =

∫ ∞
−∞

f(t)e−i(−w)t dt =

∫ ∞
−∞

f(t)eiwt dt, (E.7)

and

F (ω) =

∫ ∞
−∞

f(t)e−iwt dt =

∫ ∞
−∞

f(t)eiwt dt, (E.8)

when f (t) is real (true for the Gaussian (E.1) , that is F (−ω) = F (ω)). Thus multiplying

the frequency domain response (6.1) by

F (−ω) = F (ω)

=
√
π
a0

c
e−ikct0−a

2
0k

2/4

=
√
π
a0

c
eikct0−a

2
0k

2/4, (E.9)

enables application of the Fourier transform to obtain the time domain response of the

scatterer to the time dependent incident pulse

ũ∞(x̂, t) =

∫ ∞
−∞

√
π
a0

c
e−a

2
0k

2/4eikct0u∞ (x̂, ω) e−iwt dω. (E.10)

Thus to calculate (E.10), we perform a Fourier transform

ũ∞(x̂, t) =

∫ ∞
−∞

F (x̂,ω)e−iwt dω, (E.11)

where

F (x̂,ω) = F̂ (−ω)u∞ (x̂, ω)
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=
√
π
a0

c
e−a

2k2/4eikct0u∞ (x̂, ω) .

E.1.2 The Derivative of the Gaussian

The Gaussian pulse (E.3) with the spatial component removed since the spatial variation

of the incident field eikx has already been automatically included in the calculation of

u∞ (x̂, ω) and φ (y, ω) is

f (t) = e−(c(t−t0))2/a2o , (E.12)

with derivative

ft (t) =
−2c (c (t− t0))

a2
0

e−(c(t−t0))2/a20 , (E.13)

which is zero when ω = 0 (c = ω/k). Using the property of the derivative of Fourier

transforms

if f (t)⇐⇒ F (ω) , then ft (t)⇐⇒ iωF (ω) , (E.14)

then (E.13) has Fourier transform

F (ω) = iω
√
π
a0

c
e−ikct0−a

2
0k

2/4 =
√
π ik a0 e

−ikct0−a20k2/4. (E.15)

E.1.3 The Sine Packet

Another alternative is to use the sine packet

f (t) = e−t
2

sin (ω0t) , (E.16)

which has Fourier transform

F (ω) =

√
π

2i

(
e−(ω0−ω)2/4 − e−(ω0+ω)2/4

)
; (E.17)

this is zero when ω = 0.

The Gaussian sine packet with displacement and dilation is

f (t) = e−(c(t−t0))2/a2o sin (ω0t) , (E.18)
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with Fourier transform

F (ω) =

√
π

2i

a0

c
e−it0ω e−(ω2

0−ω2)a20/4c2
(
e
ω0

(
it0+

a20ω

2c2

)
− e
−ω0

(
it0+

a20ω

2c2

))
. (E.19)



Appendix F

Scatterer Arrays Numerical results

F.1 Relative Differences

This section contains the results of measuring the deviation from the solution produced

by an array of cornered scatterers to that produced when the corners are rounded. The

difference between the solution produced by a cornered scatterer, u∞0 (x̂), where x̂ = x̂(θ̂)

for θ̂ ∈ [0, 2π], and that produced by rounding u∞ρ (x̂) , with associated radius of curvature

ρ, is measured using the L1 norm

∥∥u∞0 − u∞ρ ∥∥1
=

∫ 2π

0

∣∣u∞0 (x̂)− u∞ρ (x̂)
∣∣dx̂, (F.1)

and L∞ norm ∥∥u∞0 − u∞ρ ∥∥∞ = max
x̂∈[0,2π]

∣∣u∞0 (x̂)− u∞ρ (x̂)
∣∣ . (F.2)

The results in this section are for arrays of two and four scatterers of a single shape

and boundary condition arranged in a line parallel to the y-axis (Figure 7.1). Three

shapes are examined: the lemniscate (2.2), square (2.6) and diamond (square rotated

by π/4) and their rounded counterparts (2.3), (2.7), for the three boundary conditions

(2.19), (2.20) and (2.21). Data is also provided for a single scatterer with the same

conditions to enable understanding of the effect of rounding as the number of scatterers

increases.

Results are presented for scatterers of diameter 2a = 0.5, 1 and 2 wavelengths, sepa-

rated by distances d = 0.1, 0.25, 0.5 and 1 wavelengths. Both the absolute and relative

227
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difference were measured and the relative difference is reported. The relative difference

is expressed as a percentage of the same norm of the scatterer’s far-field. The L1 relative

difference (%) is
‖u∞0 − u∞ρ ‖1
‖u∞0 ‖1

, (F.3)

and the L∞ difference (%) is
‖u∞0 − u∞ρ ‖∞
‖u∞0 ‖∞

. (F.4)

All results are for incident wave angle θ0 = 0. Tables F.1 and F.2 are for the lemniscate,

Tables F.3 and F.4 for the square and Tables F.5 and F.6 for diamonds.

Discussion and analysis of the results are in Section 7.5.
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Single 2 Lemniscates 4 Lemniscates
2a ρ Lemniscate d=0.1λ d=0.25λ d=0.5λ d=λ d=0.1λ d=0.25λ d=0.5λ d=λ

Dirichlet
0.5λ 0.05 2.10 2.26 1.95 1.62 2.45 2.36 2.05 1.42 2.52

0.04 1.57 1.68 1.44 1.21 1.83 1.75 1.52 1.06 1.88
0.03 1.07 1.14 0.98 0.83 1.26 1.20 1.04 0.73 1.29
0.02 0.63 0.67 0.57 0.48 0.74 0.70 0.60 0.43 0.76
0.01 0.25 0.27 0.23 0.19 0.29 0.28 0.24 0.17 0.30

λ 0.05 4.00 3.00 3.91 4.27 3.44 2.94 4.29 4.40 3.04
0.04 2.98 2.24 2.93 3.19 2.54 2.21 3.23 3.28 2.23
0.03 2.04 1.54 2.02 2.18 1.73 1.52 2.23 2.25 1.50
0.02 1.20 0.90 1.19 1.28 1.00 0.90 1.32 1.32 0.86
0.01 0.48 0.36 0.48 0.51 0.40 0.37 0.54 0.53 0.34

2λ 0.05 7.67 6.26 6.96 7.91 6.14 6.22 7.47 7.87 5.44
0.04 5.73 4.67 5.22 5.94 4.50 4.65 5.62 5.92 3.92
0.03 3.93 3.20 3.60 4.10 3.02 3.20 3.89 4.08 2.58
0.02 2.31 1.88 2.13 2.42 1.73 1.89 2.31 2.41 1.45
0.01 0.93 0.75 0.86 0.98 0.68 0.77 0.94 0.98 0.55

Neumann
0.5λ 0.05 0.81 1.50 0.81 1.03 1.46 0.77 1.07 1.50 1.72

0.04 0.55 1.14 0.61 0.73 1.08 0.56 0.79 1.09 1.27
0.03 0.33 0.80 0.42 0.46 0.74 0.38 0.54 0.72 0.85
0.02 0.16 0.48 0.25 0.25 0.43 0.22 0.31 0.41 0.49
0.01 0.05 0.20 0.11 0.08 0.17 0.09 0.13 0.15 0.19

λ 0.05 1.94 2.58 2.56 2.68 2.59 3.21 2.58 3.00 3.39
0.04 1.33 1.78 1.77 1.99 1.86 2.24 1.78 2.20 2.45
0.03 0.81 1.11 1.10 1.36 1.22 1.41 1.09 1.49 1.61
0.02 0.40 0.56 0.56 0.80 0.67 0.73 0.55 0.86 0.90
0.01 0.12 0.18 0.18 0.33 0.24 0.25 0.17 0.34 0.33

2λ 0.05 4.55 6.40 6.87 5.78 4.41 7.91 6.86 5.21 4.61
0.04 3.14 4.64 4.99 4.35 3.04 5.70 4.92 3.76 3.18
0.03 1.93 3.06 3.33 3.04 1.88 3.73 3.20 2.49 1.96
0.02 0.97 1.70 1.90 1.85 0.95 2.04 1.75 1.41 0.99
0.01 0.29 0.63 0.76 0.79 0.29 0.75 0.64 0.56 0.30

Impedance, Z = 1 + i
0.5λ 0.05 2.17 1.93 1.68 2.17 2.26 1.97 1.71 2.27 2.28

0.04 1.69 1.49 1.30 1.70 1.76 1.53 1.32 1.78 1.77
0.03 1.23 1.08 0.94 1.24 1.28 1.10 0.95 1.30 1.29
0.02 0.79 0.69 0.60 0.80 0.82 0.70 0.61 0.84 0.83
0.01 0.38 0.32 0.29 0.38 0.39 0.33 0.29 0.41 0.40

λ 0.05 3.51 3.44 4.01 3.87 3.11 3.82 4.39 3.99 2.80
0.04 2.71 2.67 3.11 2.97 2.39 2.98 3.40 3.07 2.16
0.03 1.94 1.93 2.24 2.13 1.72 2.17 2.45 2.20 1.55
0.02 1.23 1.24 1.43 1.34 1.09 1.39 1.56 1.39 0.99
0.01 0.58 0.59 0.67 0.62 0.51 0.66 0.73 0.65 0.46

2λ 0.05 6.09 5.97 6.63 6.90 5.36 6.43 7.36 7.26 4.94
0.04 4.65 4.58 5.10 5.26 4.09 4.96 5.67 5.54 3.77
0.03 3.30 3.26 3.64 3.72 2.90 3.56 4.06 3.92 2.68
0.02 2.05 2.04 2.28 2.30 1.80 2.25 2.55 2.42 1.68
0.01 0.93 0.93 1.05 1.04 0.82 1.04 1.17 1.09 0.77

Table F.1: Relative L1 norm differences (%) (F.1), for lemniscates with interior angle
β = π/2, with different radii of curvature, ρ. Scatterer diameter is 2a and separation
distance, d, for incidence angle θ0 = 0.
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Single 2 Lemniscates 4 Lemniscates
2a ρ Lemniscate d=0.1λ d=0.25λ d=0.5λ d=λ d=0.1λ d=0.25λ d=0.5λ d=λ

Dirichlet
0.5λ 0.05 2.44 3.95 2.92 1.13 3.50 4.63 3.45 0.66 3.96

0.04 1.82 2.94 2.15 0.85 2.61 3.45 2.55 0.50 2.96
0.03 1.25 2.01 1.46 0.59 1.79 2.36 1.72 0.36 2.03
0.02 0.73 1.18 0.84 0.35 1.05 1.38 0.99 0.22 1.19
0.01 0.29 0.47 0.33 0.14 0.42 0.55 0.39 0.09 0.48

λ 0.05 3.53 2.50 3.49 3.63 2.98 2.09 4.02 3.58 2.60
0.04 2.64 1.85 2.66 2.69 2.20 1.55 3.07 2.65 1.89
0.03 1.81 1.25 1.87 1.84 1.49 1.05 2.16 1.80 1.26
0.02 1.07 0.73 1.13 1.07 0.87 0.61 1.30 1.05 0.71
0.01 0.43 0.29 0.46 0.42 0.34 0.24 0.54 0.41 0.28

2λ 0.05 4.73 3.92 4.31 4.95 3.86 3.32 4.77 4.86 3.35
0.04 3.55 2.89 3.32 3.77 2.88 2.44 3.68 3.71 2.39
0.03 2.45 1.96 2.34 2.64 1.97 1.65 2.60 2.61 1.62
0.02 1.44 1.14 1.42 1.58 1.15 0.96 1.58 1.57 0.93
0.01 0.58 0.45 0.59 0.65 0.46 0.38 0.65 0.65 0.37

Neumann
0.5λ 0.05 0.91 1.39 0.67 1.17 1.11 0.43 0.68 1.35 1.05

0.04 0.61 1.06 0.51 0.80 0.85 0.29 0.49 0.94 0.70
0.03 0.37 0.75 0.36 0.49 0.59 0.18 0.34 0.59 0.47
0.02 0.18 0.46 0.22 0.25 0.36 0.11 0.20 0.31 0.29
0.01 0.05 0.19 0.10 0.08 0.15 0.04 0.08 0.11 0.12

λ 0.05 1.55 2.15 2.17 1.49 2.99 2.68 2.38 1.72 4.24
0.04 1.05 1.44 1.51 1.15 2.14 1.79 1.59 1.12 3.00
0.03 0.64 0.86 0.94 0.81 1.38 1.06 0.96 0.65 1.91
0.02 0.31 0.41 0.48 0.49 0.74 0.50 0.47 0.37 1.00
0.01 0.09 0.13 0.16 0.20 0.26 0.14 0.14 0.16 0.33

2λ 0.05 2.18 5.67 4.48 2.12 2.49 7.88 5.55 2.22 2.95
0.04 1.49 4.08 2.98 1.54 1.68 5.58 3.73 1.40 2.00
0.03 0.91 2.66 1.86 1.08 1.01 3.53 2.22 0.78 1.21
0.02 0.45 1.43 0.97 0.67 0.49 1.83 1.05 0.48 0.61
0.01 0.13 0.50 0.32 0.29 0.14 0.58 0.28 0.22 0.19

Impedance, Z = 1 + i
0.5λ 0.05 1.79 2.06 1.37 1.49 2.17 2.24 1.32 1.37 2.29

0.04 1.39 1.59 1.06 1.16 1.68 1.73 1.01 1.07 1.78
0.03 1.01 1.15 0.76 0.85 1.22 1.24 0.72 0.79 1.29
0.02 0.65 0.73 0.48 0.55 0.78 0.79 0.45 0.51 0.83
0.01 0.31 0.35 0.23 0.26 0.37 0.37 0.21 0.25 0.39

λ 0.05 2.04 1.68 2.21 2.40 1.58 1.68 2.40 2.48 1.22
0.04 1.57 1.32 1.71 1.84 1.22 1.34 1.86 1.90 0.94
0.03 1.13 0.97 1.24 1.31 0.87 1.00 1.35 1.36 0.68
0.02 0.71 0.63 0.79 0.83 0.56 0.65 0.86 0.85 0.43
0.01 0.33 0.30 0.37 0.38 0.26 0.32 0.41 0.39 0.21

2λ 0.05 2.36 1.93 2.28 3.04 2.11 1.82 2.44 3.23 1.88
0.04 1.80 1.47 1.78 2.32 1.61 1.39 1.91 2.47 1.44
0.03 1.28 1.06 1.28 1.65 1.14 1.01 1.38 1.75 1.02
0.02 0.80 0.68 0.81 1.02 0.71 0.66 0.88 1.08 0.63
0.01 0.36 0.32 0.38 0.46 0.32 0.32 0.41 0.49 0.29

Table F.2: Relative L∞ norm differences (%) (F.2), for lemniscates with interior angle
β = π/2, with different radii of curvature, ρ. Scatterer diameter is 2a and separation
distance, d, for incidence angle θ0 = 0.
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Single 2 Squares 4 Squares
2a ρ Square d=0.1λ d=0.25λ d=0.5λ d=λ d=0.1λ d=0.25λ d=0.5λ d=λ

Dirichlet
0.5λ 0.05 1.21 1.13 1.29 2.58 1.15 1.08 1.29 3.13 1.11

0.04 0.87 0.81 0.93 1.86 0.83 0.78 0.93 2.25 0.79
0.03 0.60 0.55 0.63 1.27 0.57 0.53 0.63 1.54 0.54
0.02 0.36 0.34 0.38 0.77 0.34 0.32 0.38 0.93 0.33
0.01 0.14 0.13 0.15 0.31 0.14 0.13 0.15 0.37 0.13

λ 0.05 2.54 2.55 3.35 6.12 2.47 2.66 3.79 6.94 2.39
0.04 1.82 1.82 2.40 4.39 1.77 1.89 2.71 4.98 1.71
0.03 1.25 1.24 1.63 3.00 1.21 1.28 1.84 3.40 1.17
0.02 0.76 0.75 0.99 1.82 0.73 0.77 1.12 2.06 0.71
0.01 0.30 0.30 0.39 0.72 0.29 0.31 0.44 0.82 0.28

2λ 0.05 5.46 5.74 7.38 12.91 5.29 6.11 8.53 15.02 5.10
0.04 3.90 4.07 5.25 9.25 3.78 4.30 6.05 10.74 3.64
0.03 2.66 2.75 3.56 6.31 2.57 2.88 4.10 7.32 2.47
0.02 1.61 1.65 2.14 3.81 1.55 1.72 2.46 4.42 1.49
0.01 0.64 0.65 0.85 1.51 0.62 0.67 0.97 1.75 0.59

Neumann
0.5λ 0.05 2.26 4.88 3.23 2.12 1.38 5.18 3.35 2.00 1.35

0.04 1.62 3.46 2.31 1.52 0.99 3.65 2.39 1.44 0.97
0.03 1.11 2.34 1.57 1.04 0.68 2.46 1.63 0.98 0.66
0.02 0.67 1.40 0.95 0.63 0.41 1.47 0.98 0.60 0.40
0.01 0.27 0.55 0.38 0.25 0.16 0.58 0.39 0.24 0.16

λ 0.05 2.32 5.69 3.57 2.60 2.34 6.76 4.20 2.62 2.60
0.04 1.64 3.94 2.54 1.86 1.64 4.75 3.01 1.87 1.77
0.03 1.11 2.61 1.72 1.27 1.10 3.19 2.05 1.27 1.15
0.02 0.67 1.54 1.04 0.77 0.66 1.90 1.24 0.77 0.67
0.01 0.26 0.60 0.41 0.30 0.26 0.74 0.49 0.30 0.26

2λ 0.05 5.21 15.18 8.22 6.01 5.27 17.22 9.79 6.24 6.16
0.04 3.72 10.46 5.87 4.35 3.67 12.22 7.08 4.51 4.13
0.03 2.53 6.77 3.96 2.98 2.44 8.11 4.84 3.08 2.64
0.02 1.52 3.87 2.37 1.81 1.44 4.73 2.91 1.87 1.49
0.01 0.59 1.44 0.92 0.72 0.55 1.79 1.15 0.74 0.55

Impedance, Z = 1 + i
0.5λ 0.05 1.62 1.47 1.79 1.86 1.45 1.42 1.70 1.99 1.39

0.04 1.24 1.12 1.37 1.42 1.11 1.09 1.30 1.52 1.06
0.03 0.91 0.83 1.01 1.04 0.82 0.80 0.96 1.12 0.79
0.02 0.61 0.56 0.68 0.70 0.55 0.54 0.64 0.75 0.53
0.01 0.30 0.27 0.33 0.34 0.27 0.27 0.31 0.37 0.26

λ 0.05 2.93 3.14 3.83 3.21 2.90 3.33 4.17 3.31 2.86
0.04 2.21 2.37 2.90 2.43 2.19 2.51 3.15 2.50 2.16
0.03 1.61 1.73 2.12 1.77 1.60 1.83 2.30 1.82 1.57
0.02 1.08 1.15 1.41 1.18 1.06 1.23 1.54 1.21 1.05
0.01 0.52 0.56 0.68 0.57 0.51 0.60 0.74 0.58 0.51

2λ 0.05 5.36 5.93 7.24 5.69 5.39 6.40 8.08 6.07 5.32
0.04 3.98 4.38 5.38 4.24 3.99 4.70 6.00 4.53 3.94
0.03 2.85 3.12 3.85 3.05 2.86 3.34 4.30 3.26 2.81
0.02 1.86 2.03 2.51 1.99 1.86 2.17 2.80 2.13 1.83
0.01 0.87 0.95 1.18 0.93 0.87 1.02 1.32 1.00 0.86

Table F.3: Relative L1 norm differences (%) (F.1), for squares with different radii of
curvature, ρ. Scatterer diameter is 2a and separation distance, d, for incidence angle
θ0 = 0.
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Single 2 Squares 4 Squares

2a ρ Square d=0.1λ d=0.25λ d=0.5λ d=λ d=0.1λ d=0.25λ d=0.5λ d=λ

Dirichlet
0.5λ 0.05 1.48 1.24 1.76 2.14 1.32 1.22 1.95 2.52 1.25

0.04 1.07 0.89 1.26 1.54 0.95 0.87 1.40 1.81 0.90
0.03 0.73 0.61 0.86 1.05 0.65 0.59 0.96 1.24 0.61
0.02 0.44 0.37 0.52 0.64 0.39 0.36 0.58 0.76 0.37
0.01 0.18 0.15 0.21 0.26 0.16 0.14 0.23 0.30 0.15

λ 0.05 2.10 1.81 2.60 4.94 1.78 1.79 3.10 6.47 1.59
0.04 1.51 1.29 1.86 3.56 1.28 1.26 2.20 4.65 1.14
0.03 1.03 0.87 1.26 2.44 0.87 0.85 1.49 3.19 0.78
0.02 0.63 0.53 0.76 1.48 0.53 0.51 0.90 1.94 0.47
0.01 0.25 0.21 0.30 0.59 0.21 0.20 0.36 0.77 0.19

2λ 0.05 2.95 2.61 3.82 7.08 2.44 2.66 4.57 9.71 2.23
0.04 2.13 1.83 2.69 5.14 1.75 1.83 3.20 7.01 1.59
0.03 1.46 1.23 1.81 3.54 1.20 1.21 2.15 4.81 1.09
0.02 0.89 0.73 1.08 2.16 0.73 0.71 1.28 2.92 0.66
0.01 0.35 0.29 0.43 0.86 0.29 0.27 0.50 1.16 0.26

Neumann
0.5λ 0.05 2.38 3.51 2.66 2.22 1.98 4.67 3.08 2.10 1.86

0.04 1.70 2.47 1.90 1.59 1.39 3.27 2.19 1.50 1.30
0.03 1.16 1.66 1.29 1.08 0.92 2.19 1.49 1.01 0.86
0.02 0.71 0.99 0.78 0.65 0.54 1.30 0.89 0.61 0.51
0.01 0.28 0.39 0.31 0.26 0.21 0.51 0.35 0.24 0.19

λ 0.05 2.40 2.67 2.40 2.30 2.16 2.86 2.63 2.30 2.11
0.04 1.70 1.84 1.67 1.60 1.50 1.97 1.84 1.61 1.46
0.03 1.14 1.21 1.11 1.07 0.99 1.30 1.22 1.07 0.96
0.02 0.67 0.71 0.65 0.63 0.58 0.76 0.72 0.63 0.56
0.01 0.26 0.27 0.25 0.24 0.22 0.29 0.28 0.24 0.21

2λ 0.05 3.22 4.16 3.41 3.23 3.13 4.44 3.71 3.23 3.11
0.04 2.25 2.80 2.36 2.25 2.15 3.04 2.59 2.25 2.12
0.03 1.50 1.79 1.55 1.48 1.40 1.96 1.71 1.49 1.37
0.02 0.88 1.01 0.90 0.86 0.81 1.11 0.99 0.87 0.78
0.01 0.33 0.37 0.34 0.33 0.30 0.41 0.38 0.33 0.29

Impedance, Z = 1 + i
0.5λ 0.05 1.40 1.27 1.63 1.51 1.29 1.27 1.73 1.60 1.25

0.04 1.08 0.98 1.25 1.16 1.00 0.98 1.33 1.23 0.97
0.03 0.81 0.73 0.93 0.86 0.75 0.74 0.99 0.91 0.73
0.02 0.55 0.50 0.63 0.58 0.51 0.51 0.67 0.62 0.50
0.01 0.27 0.25 0.32 0.29 0.26 0.26 0.33 0.30 0.25

λ 0.05 1.49 1.40 1.93 1.50 1.36 1.44 2.20 1.51 1.27
0.04 1.13 1.06 1.46 1.14 1.03 1.09 1.66 1.15 0.96
0.03 0.83 0.78 1.07 0.84 0.76 0.80 1.21 0.84 0.71
0.02 0.56 0.53 0.72 0.56 0.51 0.54 0.81 0.56 0.48
0.01 0.27 0.26 0.35 0.27 0.25 0.27 0.40 0.27 0.24

2λ 0.05 1.76 1.70 2.39 1.91 1.59 1.78 2.77 1.99 1.52
0.04 1.32 1.25 1.77 1.43 1.19 1.29 2.04 1.50 1.13
0.03 0.95 0.89 1.26 1.04 0.86 0.92 1.46 1.09 0.82
0.02 0.63 0.59 0.83 0.68 0.57 0.60 0.95 0.71 0.54
0.01 0.30 0.28 0.39 0.32 0.27 0.29 0.45 0.34 0.26

Table F.4: Relative L∞ norm differences (%) (F.2), for squares with different radii of
curvature, ρ. Scatterer diameter is 2a and separation distance, d, for incidence angle
θ0 = 0.
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Single 2 Diamonds 4 Diamonds
2a ρ Diamond d=0.1λ d=0.25λ d=0.5λ d=λ d=0.1λ d=0.25λ d=0.5λ d=λ

Dirichlet
0.5λ 0.05 1.24 1.06 1.21 2.36 1.26 1.10 1.27 2.51 1.34

0.04 0.89 0.76 0.86 1.70 0.91 0.79 0.90 1.81 0.96
0.03 0.61 0.52 0.59 1.16 0.62 0.54 0.61 1.24 0.66
0.02 0.37 0.31 0.36 0.71 0.38 0.33 0.37 0.76 0.40
0.01 0.15 0.12 0.14 0.28 0.15 0.13 0.15 0.30 0.16

λ 0.05 2.41 2.55 2.99 4.05 2.65 2.60 3.38 4.44 2.72
0.04 1.73 1.83 2.13 2.93 1.90 1.86 2.41 3.21 1.96
0.03 1.18 1.25 1.44 2.02 1.30 1.27 1.63 2.21 1.34
0.02 0.71 0.76 0.87 1.23 0.79 0.77 0.98 1.35 0.81
0.01 0.28 0.30 0.34 0.49 0.31 0.31 0.39 0.54 0.32

2λ 0.05 4.93 3.99 6.12 7.87 3.97 3.76 6.93 8.77 4.07
0.04 3.53 2.83 4.22 5.76 2.82 2.65 4.78 6.43 2.89
0.03 2.41 1.92 2.80 3.99 1.91 1.78 3.16 4.47 1.96
0.02 1.46 1.15 1.65 2.45 1.15 1.06 1.87 2.74 1.17
0.01 0.58 0.46 0.64 0.99 0.45 0.42 0.72 1.10 0.46

Neumann
0.5λ 0.05 1.29 2.31 1.63 1.38 1.38 3.19 2.07 1.32 1.36

0.04 0.92 1.67 1.17 0.99 0.99 2.32 1.50 0.95 0.98
0.03 0.63 1.15 0.80 0.68 0.68 1.60 1.03 0.65 0.67
0.02 0.38 0.70 0.49 0.41 0.41 0.98 0.63 0.39 0.41
0.01 0.15 0.28 0.19 0.16 0.17 0.39 0.26 0.16 0.17

λ 0.05 2.58 5.04 3.37 2.47 3.33 5.35 3.57 2.73 3.09
0.04 1.85 3.66 2.44 1.79 2.43 3.90 2.58 1.98 2.24
0.03 1.26 2.52 1.68 1.23 1.68 2.70 1.77 1.37 1.54
0.02 0.76 1.54 1.02 0.75 1.04 1.65 1.08 0.84 0.94
0.01 0.30 0.62 0.41 0.30 0.42 0.66 0.43 0.34 0.38

2λ 0.05 4.51 6.96 5.73 5.68 5.71 7.67 6.92 4.72 5.83
0.04 3.23 5.16 4.15 4.17 4.11 5.67 5.02 3.42 4.15
0.03 2.20 3.61 2.85 2.91 2.83 3.97 3.45 2.37 2.82
0.02 1.33 2.23 1.73 1.79 1.73 2.45 2.10 1.45 1.71
0.01 0.53 0.90 0.69 0.73 0.70 0.99 0.84 0.58 0.68

Impedance, Z = 1 + i
0.5λ 0.05 1.68 1.42 2.03 2.30 1.50 1.42 2.19 2.50 1.52

0.04 1.28 1.09 1.56 1.77 1.14 1.09 1.68 1.92 1.16
0.03 0.95 0.80 1.15 1.32 0.84 0.80 1.25 1.43 0.86
0.02 0.64 0.54 0.78 0.89 0.57 0.54 0.84 0.97 0.58
0.01 0.31 0.26 0.38 0.44 0.28 0.26 0.42 0.48 0.28

λ 0.05 2.68 3.14 3.63 3.01 2.85 3.33 3.97 3.20 2.88
0.04 2.03 2.36 2.74 2.29 2.16 2.51 3.00 2.44 2.18
0.03 1.48 1.72 2.00 1.69 1.57 1.82 2.18 1.79 1.59
0.02 0.99 1.14 1.33 1.13 1.05 1.21 1.45 1.20 1.06
0.01 0.48 0.55 0.64 0.55 0.51 0.58 0.70 0.59 0.51

2λ 0.05 4.97 5.18 6.76 5.81 4.10 5.30 7.52 6.25 4.06
0.04 3.70 3.82 5.03 4.36 3.04 3.88 5.60 4.70 3.00
0.03 2.65 2.71 3.60 3.15 2.17 2.75 4.02 3.40 2.13
0.02 1.73 1.76 2.35 2.07 1.41 1.78 2.63 2.24 1.38
0.01 0.81 0.82 1.10 0.98 0.66 0.82 1.23 1.06 0.64

Table F.5: Relative L1 norm differences (%) (F.1), for diamonds with different radii of
curvature, ρ. Scatterer diameter is 2a and separation distance, d, for incidence angle
θ0 = 0.
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Single 2 Diamonds 4 Diamonds

2a ρ Diamond d=0.1λ d=0.25λ d=0.5λ d=λ d=0.1λ d=0.25λ d=0.5λ d=λ

Dirichlet
0.5λ 0.05 1.05 0.96 0.60 1.74 1.30 1.22 0.80 2.12 1.63

0.04 0.75 0.69 0.43 1.26 0.93 0.87 0.57 1.53 1.17
0.03 0.52 0.47 0.29 0.87 0.64 0.59 0.38 1.05 0.80
0.02 0.31 0.28 0.18 0.53 0.39 0.36 0.23 0.64 0.49
0.01 0.12 0.11 0.07 0.21 0.15 0.14 0.09 0.26 0.19

λ 0.05 1.87 2.05 2.66 2.27 2.16 2.44 3.31 3.01 2.39
0.04 1.35 1.46 1.87 1.65 1.55 1.74 2.33 2.18 1.71
0.03 0.93 0.99 1.26 1.13 1.07 1.19 1.57 1.50 1.17
0.02 0.56 0.60 0.75 0.69 0.65 0.72 0.94 0.92 0.71
0.01 0.23 0.24 0.29 0.28 0.26 0.28 0.37 0.37 0.28

2λ 0.05 2.53 1.67 2.38 5.56 2.29 1.32 2.66 7.16 2.57
0.04 1.80 1.19 1.62 4.12 1.58 0.94 1.80 5.31 1.79
0.03 1.22 0.81 1.07 2.89 1.05 0.64 1.16 3.72 1.18
0.02 0.73 0.48 0.62 1.79 0.62 0.38 0.67 2.30 0.70
0.01 0.29 0.19 0.24 0.72 0.24 0.15 0.26 0.93 0.27

Neumann
0.5λ 0.05 2.85 4.05 3.36 2.28 3.26 5.33 3.62 2.01 2.64

0.04 2.04 2.88 2.38 1.62 2.32 3.77 2.54 1.44 1.89
0.03 1.38 1.94 1.60 1.10 1.57 2.53 1.70 0.98 1.29
0.02 0.83 1.16 0.95 0.66 0.94 1.51 1.01 0.59 0.78
0.01 0.33 0.45 0.37 0.27 0.38 0.58 0.39 0.24 0.31

λ 0.05 3.20 3.81 3.59 2.63 4.29 5.21 3.56 2.44 4.81
0.04 2.32 2.73 2.59 1.92 3.17 3.73 2.55 1.76 3.42
0.03 1.60 1.85 1.76 1.33 2.22 2.54 1.72 1.21 2.32
0.02 0.97 1.13 1.06 0.81 1.38 1.53 1.03 0.73 1.39
0.01 0.39 0.47 0.41 0.32 0.56 0.60 0.40 0.28 0.56

2λ 0.05 3.53 4.40 3.26 3.33 5.35 4.83 3.87 2.25 5.13
0.04 2.52 3.07 2.26 2.47 3.71 3.33 2.62 1.61 3.51
0.03 1.69 2.02 1.47 1.72 2.44 2.16 1.67 1.11 2.27
0.02 1.00 1.17 0.84 1.06 1.40 1.23 0.92 0.70 1.29
0.01 0.38 0.44 0.30 0.42 0.52 0.45 0.32 0.28 0.47

Impedance, Z = 1 + i
0.5λ 0.05 1.27 0.67 1.02 1.63 0.83 0.58 1.33 1.94 0.90

0.04 0.98 0.52 0.77 1.25 0.63 0.43 1.01 1.49 0.68
0.03 0.73 0.38 0.57 0.92 0.46 0.31 0.74 1.10 0.49
0.02 0.49 0.26 0.38 0.62 0.30 0.20 0.49 0.74 0.33
0.01 0.24 0.13 0.18 0.30 0.15 0.09 0.24 0.36 0.16

λ 0.05 1.43 1.09 1.51 1.47 1.50 1.37 1.80 1.46 1.52
0.04 1.09 0.82 1.13 1.12 1.14 1.03 1.35 1.11 1.15
0.03 0.79 0.60 0.81 0.82 0.83 0.75 0.98 0.81 0.85
0.02 0.53 0.40 0.53 0.55 0.56 0.50 0.65 0.54 0.57
0.01 0.26 0.20 0.25 0.26 0.27 0.25 0.33 0.26 0.28

2λ 0.05 1.61 1.37 2.16 2.63 1.10 1.53 2.54 3.17 1.06
0.04 1.24 1.00 1.60 2.01 0.81 1.11 1.88 2.42 0.78
0.03 0.91 0.70 1.14 1.48 0.58 0.77 1.34 1.78 0.55
0.02 0.60 0.44 0.73 0.98 0.37 0.49 0.86 1.18 0.35
0.01 0.28 0.19 0.34 0.47 0.17 0.21 0.40 0.56 0.16

Table F.6: Relative L∞ norm differences (%) (F.2), for diamonds with different radii of
curvature, ρ. Scatterer diameter is 2a and separation distance, d, for incidence angle
θ0 = 0.
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F.2 Far-field Differences

This section contains the numerical results for the scatterer array configurations consist-

ing of two or four scatterers described in Section 7.1, measuring the quantity

√
k
∥∥u∞0 − u∞ρ ∥∥∞ , (F.5)

where u∞0 is the far-field of the cornered scatterers and u∞ρ is the far-field of the rounded

scatterers with radius of curvature ρ, as ρ approaches 0. The
√
k factor correctly non-

dimensionalises the far-field quantities.

We want to establish whether the following relationship

√
k‖u∞0 − u∞ρ ‖∞ ≈ C(kρ)m, (F.6)

for some constant C holds. The constants C and m were estimated by using a least

squares linear fit to the logarithm of the quantity (F.6).
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ
θ0 C m C m C m C m

Square 0 1 1.33 2 1.33 4 1.35 2 1.33
π/8 1 1.34 2 1.34 4 1.36 3 1.35
π/4 1 1.35 2 1.35 3 1.37 3 1.36
3π/8 1 1.34 1 1.34 2 1.36 2 1.36

Diamond 0 1 1.33 2 1.36 2 1.35 1 1.32
π/8 1 1.33 1 1.34 2 1.34 1 1.34
π/4 1 1.33 1 1.33 1 1.34 1 1.34
3π/8 1 1.33 1 1.34 1 1.34 1 1.34

Lemniscates
β = π/2 0 3 1.33 3 1.33 3 1.33 2 1.33

π/8 3 1.33 3 1.33 3 1.33 2 1.33
π/4 2 1.33 2 1.33 3 1.33 3 1.33
3π/8 2 1.33 2 1.33 2 1.33 2 1.33

β = π/3 0 10 1.20 8 1.19 8 1.20 9 1.20
π/8 9 1.20 8 1.20 8 1.20 7 1.20
π/4 7 1.20 7 1.20 8 1.20 8 1.20
3π/8 5 1.20 5 1.20 5 1.20 6 1.20

β = π/4 0 15 1.14 16 1.14 15 1.15 14 1.14
π/8 16 1.15 16 1.14 13 1.14 13 1.14
π/4 13 1.15 13 1.14 14 1.15 14 1.14
3π/8 10 1.15 10 1.15 11 1.15 11 1.15

β = π/6 0 35 1.09 38 1.09 31 1.09 34 1.09
π/8 31 1.09 34 1.09 31 1.09 29 1.09
π/4 26 1.09 29 1.09 30 1.09 33 1.09
3π/8 22 1.09 23 1.09 21 1.09 23 1.09

β = π/12 0 127 1.05 170 1.05 84 1.03 124 1.05
π/8 110 1.05 152 1.05 102 1.04 115 1.04
π/4 96 1.05 123 1.05 117 1.05 120 1.04
3π/8 74 1.05 83 1.05 77 1.05 88 1.05

β = π/18 0 267 1.03 241 1.02 307 1.03 233 1.03
π/8 239 1.03 272 1.03 284 1.03 278 1.03
π/4 218 1.03 228 1.03 233 1.03 249 1.03
3π/8 160 1.03 171 1.03 160 1.03 188 1.03

β = π/36 0 1016 1.03 1261 1.02 1373 1.02 842 1.02
π/8 956 1.03 1251 1.02 1241 1.02 1054 1.03
π/4 809 1.03 1011 1.02 956 1.03 990 1.02
3π/8 623 1.03 696 1.02 639 1.03 754 1.02

Table F.7: Far-field differences as kρ → 0 for two scatterers with Dirichlet boundary
condition for different separation distances d and different incident angles θ0.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ
θ0 C m C m C m C m

Square 0 2.44 1.34 4.67 1.34 11.67 1.36 2.85 1.33
π/8 2.25 1.34 4.13 1.34 10.36 1.38 7.88 1.36
π/4 1.85 1.36 3.09 1.35 6.93 1.38 8.09 1.39
3π/8 1.23 1.37 1.82 1.37 3.49 1.37 4.28 1.37

Diamond 0 3.16 1.33 5.05 1.37 8.11 1.35 3.63 1.35
π/8 2.69 1.34 3.42 1.34 6.25 1.35 6.20 1.36
π/4 2.79 1.35 2.79 1.34 3.06 1.31 3.41 1.30
3π/8 2.38 1.38 2.31 1.36 2.37 1.34 2.31 1.31

Lemniscates
β = π/2 0 4.9 1.33 7.0 1.33 5.4 1.33 4.2 1.33

π/8 6.9 1.33 6.2 1.34 5.0 1.33 4.7 1.33
π/4 5.0 1.33 4.9 1.33 5.9 1.33 5.6 1.33
3π/8 2.9 1.33 3.3 1.33 3.6 1.33 4.2 1.33

β = π/3 0 22.5 1.20 16.3 1.20 17.4 1.21 20.0 1.20
π/8 19.3 1.20 14.9 1.20 16.5 1.21 15.7 1.20
π/4 12.6 1.20 14.8 1.20 18.2 1.21 17.3 1.21
3π/8 10.0 1.21 10.0 1.21 10.6 1.20 11.9 1.20

β = π/4 0 33.0 1.14 32.1 1.14 34.8 1.15 31.9 1.14
π/8 34.3 1.15 35.7 1.14 27.5 1.15 26.8 1.14
π/4 27.4 1.15 28.1 1.15 29.4 1.15 27.0 1.15
3π/8 18.4 1.15 19.4 1.15 21.1 1.15 22.6 1.15

β = π/6 0 76.6 1.09 84.3 1.10 68.0 1.09 71.5 1.09
π/8 64.2 1.09 72.8 1.10 67.0 1.09 61.5 1.09
π/4 50.0 1.09 60.0 1.09 58.5 1.09 69.4 1.09
3π/8 35.6 1.09 39.9 1.09 37.2 1.09 44.2 1.09

β = π/12 0 257.7 1.04 385.9 1.04 256.1 1.05 232.4 1.04
π/8 220.2 1.05 329.0 1.05 212.4 1.04 299.1 1.04
π/4 143.6 1.04 243.7 1.04 224.9 1.04 249.9 1.04
3π/8 116.3 1.05 134.7 1.05 120.2 1.05 158.1 1.04

β = π/18 0 586.1 1.03 539.6 1.02 723.4 1.03 457.4 1.03
π/8 491.3 1.03 590.4 1.03 648.3 1.03 622.1 1.03
π/4 415.0 1.04 438.8 1.03 450.7 1.03 562.2 1.03
3π/8 252.8 1.03 275.1 1.03 265.2 1.03 359.7 1.03

β = π/36 0 2120.5 1.03 2946.7 1.02 3059.6 1.02 1622.4 1.02
π/8 1871.8 1.03 2872.6 1.02 2628.8 1.02 2004.5 1.03
π/4 1459.7 1.03 2012.9 1.02 2073.8 1.03 1911.1 1.02
3π/8 927.1 1.03 1095.2 1.03 1029.8 1.03 1432.2 1.03

Table F.8: Far-field differences as kρ → 0 for four scatterers with Dirichlet boundary
condition for different separation distances d and different incident angles θ0.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ
θ0 C m C m C m C m

Square 0 2 1.34 2 1.32 1 1.32 1 1.38
π/8 2 1.34 2 1.34 2 1.34 2 1.32
π/4 2 1.37 2 1.35 2 1.36 2 1.34
3π/8 2 1.36 2 1.35 2 1.37 2 1.35

Diamond 0 2 1.34 2 1.33 2 1.34 2 1.35
π/8 2 1.35 2 1.36 2 1.33 2 1.35
π/4 2 1.33 2 1.32 1 1.31 1 1.32
3π/8 1 1.30 1 1.29 1 1.30 1 1.31

Lemniscates
β = π/2 0 1 1.36 1 1.34 1 1.34 1 1.37

π/8 1 1.33 1 1.34 1 1.34 1 1.33
π/4 1 1.33 1 1.33 1 1.33 1 1.34
3π/8 1 1.33 1 1.33 2 1.32 2 1.32

β = π/3 0 2 1.20 2 1.20 1 1.23 2 1.22
π/8 3 1.19 3 1.20 3 1.20 2 1.20
π/4 4 1.19 4 1.20 3 1.19 4 1.20
3π/8 4 1.18 5 1.20 3 1.19 4 1.20

β = π/4 0 4 1.16 2 1.15 2 1.14 2 1.15
π/8 7 1.15 5 1.14 6 1.14 5 1.15
π/4 8 1.15 7 1.14 6 1.14 6 1.14
3π/8 11 1.15 8 1.15 7 1.14 7 1.14

β = π/6 0 7 1.09 4 1.09 3 1.10 4 1.09
π/8 13 1.10 9 1.09 10 1.09 9 1.11
π/4 15 1.10 14 1.09 15 1.09 21 1.09
3π/8 24 1.09 19 1.09 16 1.09 16 1.08

β = π/12 0 15 1.04 8 1.03 4 1.04 5 1.05
π/8 29 1.04 23 1.03 37 1.05 29 1.04
π/4 62 1.04 32 1.03 69 1.05 57 1.04
3π/8 76 1.04 44 1.03 63 1.04 54 1.04

β = π/18 0 21 1.02 12 1.01 6 1.02 7 1.03
π/8 53 1.03 60 1.03 62 1.03 61 1.03
π/4 122 1.03 114 1.02 98 1.03 122 1.03
3π/8 153 1.02 152 1.02 90 1.02 133 1.03

β = π/36 0 57 1.00 26 1.00 14 1.00 14 1.00
π/8 177 1.01 178 1.00 210 1.01 181 1.01
π/4 396 1.01 355 1.00 316 1.01 409 1.01
3π/8 667 1.01 482 1.01 361 1.01 597 1.00

Table F.9: Far-field differences as kρ → 0 for two scatterers with Neumann boundary
condition for different separation distances d and different incident angles θ0.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ
θ0 C m C m C m C m

Square 0 3.9 1.34 3.2 1.33 2.9 1.34 2.8 1.39
π/8 4.8 1.35 3.2 1.34 2.6 1.36 3.0 1.33
π/4 4.9 1.38 3.3 1.35 2.1 1.34 3.0 1.32
3π/8 4.9 1.41 3.3 1.36 2.2 1.34 2.7 1.33

Diamond 0 5.6 1.36 4.6 1.37 3.6 1.34 5.2 1.38
π/8 6.5 1.40 4.8 1.38 4.6 1.35 4.2 1.35
π/4 3.1 1.33 4.1 1.35 2.2 1.28 3.0 1.30
3π/8 2.7 1.29 2.4 1.28 2.0 1.28 2.3 1.30

Lemniscates
β = π/2 0 1.8 1.37 1.3 1.39 1.3 1.33 2.3 1.44

π/8 2.1 1.34 2.5 1.35 2.5 1.37 2.6 1.36
π/4 2.9 1.36 2.9 1.35 2.8 1.33 3.1 1.35
3π/8 2.9 1.33 2.5 1.33 3.2 1.32 3.5 1.32

β = π/3 0 1.9 1.21 2.7 1.21 2.2 1.24 2.8 1.23
π/8 7.0 1.22 8.0 1.23 6.6 1.21 4.7 1.21
π/4 8.3 1.22 9.3 1.20 7.3 1.22 8.9 1.21
3π/8 9.8 1.21 14.7 1.21 4.7 1.21 6.2 1.20

β = π/4 0 3.9 1.16 3.7 1.17 3.4 1.18 3.6 1.15
π/8 10.3 1.14 8.7 1.16 17.6 1.15 8.1 1.15
π/4 14.2 1.14 11.7 1.15 9.9 1.14 12.8 1.14
3π/8 13.4 1.12 14.2 1.12 11.0 1.14 15.7 1.16

β = π/6 0 4.8 1.09 5.8 1.09 6.5 1.16 7.4 1.09
π/8 41.7 1.15 32.0 1.13 30.0 1.11 34.5 1.12
π/4 39.7 1.12 55.3 1.13 26.4 1.10 74.3 1.12
3π/8 41.0 1.10 40.5 1.09 44.6 1.13 33.3 1.10

β = π/12 0 12.6 1.03 8.2 1.03 6.2 1.04 8.6 1.04
π/8 50.2 1.05 45.4 1.04 76.6 1.04 61.6 1.04
π/4 108.7 1.06 73.8 1.03 115.4 1.04 117.0 1.04
3π/8 118.9 1.05 87.2 1.03 101.3 1.04 83.8 1.04

β = π/18 0 20.1 1.01 12.2 1.01 6.0 1.02 13.0 1.02
π/8 61.4 1.02 87.5 1.02 107.3 1.02 111.7 1.02
π/4 148.5 1.03 223.6 1.02 199.1 1.03 312.0 1.03
3π/8 198.7 1.02 247.7 1.02 126.7 1.02 203.7 1.02

β = π/36 0 59.5 1.00 26.1 1.01 15.2 1.01 34.3 1.00
π/8 215.2 1.02 301.0 1.02 451.4 1.01 421.2 1.01
π/4 575.6 1.02 657.3 1.02 765.9 1.01 1069.7 1.01
3π/8 813.9 1.01 851.8 1.02 624.8 1.01 881.1 1.01

Table F.10: Far-field differences as kρ → 0 for four scatterers with Neumann boundary
condition for different separation distances d and different incident angles θ0.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ
θ0 C m C m C m C m

Square 0 0.5 1.00 0.7 1.01 0.7 1.02 0.5 1.00
π/8 0.5 1.00 0.7 1.01 0.6 1.02 0.6 1.02
π/4 0.5 1.02 0.6 1.03 0.5 1.02 0.6 1.03
3π/8 0.4 1.03 0.5 1.04 0.3 1.01 0.4 1.02

Diamond 0 0.5 1.03 0.8 1.06 0.7 1.04 0.5 1.03
π/8 0.5 1.01 0.6 1.03 0.7 1.03 0.7 1.04
π/4 0.5 1.01 0.5 0.99 0.5 1.00 0.5 0.99
3π/8 0.4 1.02 0.4 1.00 0.4 1.00 0.4 0.99

Lemniscates
β = π/2 0 0.6 1.01 0.6 1.01 0.6 1.01 0.6 1.01

π/8 0.6 1.01 0.6 1.02 0.6 1.01 0.5 1.01
π/4 0.5 1.01 0.6 1.01 0.6 1.01 0.6 1.01
3π/8 0.4 1.01 0.5 1.01 0.5 1.01 0.5 1.01

β = π/3 0 2.2 1.01 2.1 1.00 2.0 1.01 2.4 1.01
π/8 2.1 1.01 2.0 1.00 2.2 1.01 2.1 1.02
π/4 2.1 1.02 2.3 1.02 2.2 1.02 2.3 1.02
3π/8 1.9 1.02 1.9 1.02 1.9 1.02 1.9 1.02

β = π/4 0 4.2 1.00 4.4 1.01 3.6 1.00 4.0 1.00
π/8 4.3 1.00 4.6 1.01 4.1 1.01 3.7 1.01
π/4 3.9 1.00 4.0 1.00 4.3 1.01 4.5 1.01
3π/8 3.5 1.01 3.4 1.01 3.7 1.01 3.8 1.01

β = π/6 0 10.6 1.00 11.5 1.00 8.7 1.00 9.6 1.00
π/8 9.9 1.00 11.2 1.00 9.5 1.00 9.3 1.00
π/4 9.6 1.00 10.8 1.01 10.3 1.01 10.6 1.01
3π/8 9.1 1.01 8.8 1.01 9.9 1.02 10.3 1.02

β = π/12 0 44.2 1.00 49.0 1.00 36.7 1.00 39.2 1.00
π/8 42.2 1.00 46.0 1.00 39.7 1.00 37.3 1.00
π/4 38.9 1.00 42.2 1.00 41.1 1.00 43.0 1.00
3π/8 34.0 1.00 35.1 1.00 37.8 1.01 41.6 1.01

β = π/18 0 92.5 1.00 103.8 1.00 86.0 1.00 88.9 1.00
π/8 94.6 1.00 108.1 1.00 96.1 1.00 92.7 1.00
π/4 93.0 1.01 101.7 1.01 107.5 1.01 109.0 1.01
3π/8 81.0 1.01 87.8 1.01 92.8 1.01 101.3 1.01

β = π/36 0 347.6 1.00 429.0 1.00 363.0 1.00 334.8 1.00
π/8 355.5 1.00 425.4 1.00 366.4 1.00 360.4 1.00
π/4 329.4 1.00 373.3 1.00 380.1 1.00 412.3 1.00
3π/8 282.6 1.00 300.9 1.00 324.3 1.00 359.1 1.00

Table F.11: Far-field differences as kρ→ 0 for two scatterers with Impedance boundary
condition, Z = 1 + i, for different separation distances d and different incident angles θ0.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ
θ0 C m C m C m C m

Square 0 1.01 1.00 1.75 1.02 1.46 1.02 1.07 1.00
π/8 0.97 1.00 1.60 1.02 1.26 1.03 1.33 1.03
π/4 0.86 1.02 1.29 1.03 0.89 1.02 1.19 1.03
3π/8 0.62 1.05 0.87 1.06 0.54 1.03 0.72 1.01

Diamond 0 1.26 1.08 2.01 1.07 1.83 1.05 1.12 1.05
π/8 0.91 1.03 1.41 1.03 1.62 1.03 1.56 1.04
π/4 0.84 1.02 0.94 1.00 0.96 1.02 1.12 1.00
3π/8 0.83 1.04 0.80 1.01 0.83 1.03 0.87 1.01

Lemniscates
β = π/2 0 1.27 1.01 1.40 1.01 1.19 1.01 1.05 1.01

π/8 1.31 1.01 1.22 1.02 1.25 1.02 1.04 1.01
π/4 1.11 1.01 1.17 1.01 1.29 1.01 1.30 1.01
3π/8 0.82 1.01 0.89 1.01 0.94 1.01 1.04 1.01

β = π/3 0 4.18 1.00 4.20 1.00 3.70 1.01 4.73 1.00
π/8 3.89 1.00 3.88 1.00 4.09 1.01 3.89 1.01
π/4 3.75 1.00 4.08 1.00 4.47 1.01 4.51 1.01
3π/8 3.38 1.02 3.34 1.02 3.40 1.01 3.71 1.01

β = π/4 0 8.86 1.00 7.94 1.00 7.35 1.01 8.21 1.00
π/8 9.52 1.00 9.10 1.00 8.09 1.01 7.51 1.01
π/4 8.00 1.01 8.56 1.01 10.25 1.01 10.05 1.02
3π/8 6.66 1.01 6.86 1.02 7.40 1.01 8.40 1.01

β = π/6 0 24 1.00 24 1.00 17 1.00 21 1.00
π/8 21 1.00 24 1.00 19 1.00 18 1.00
π/4 19 1.00 22 1.00 22 1.01 22 1.01
3π/8 15 1.01 15 1.01 18 1.02 20 1.01

β = π/12 0 92.40 1.00 105.34 1.00 77.26 1.00 77.85 1.00
π/8 84.61 1.00 97.30 1.00 77.23 1.00 76.68 1.00
π/4 74.53 1.00 88.74 1.00 81.36 1.00 84.04 1.00
3π/8 58.32 1.00 61.72 1.00 66.31 1.01 78.53 1.01

β = π/18 0 201.73 1.00 216.86 1.00 174.28 1.00 180.75 1.00
π/8 200.84 1.00 224.70 1.00 190.47 1.00 183.99 1.00
π/4 183.52 1.01 198.79 1.01 221.93 1.01 211.80 1.00
3π/8 132.13 1.01 145.11 1.01 159.55 1.01 188.76 1.01

β = π/36 0 746.58 1.00 932.17 1.00 756.27 1.00 656.26 1.00
π/8 753.48 1.00 922.66 1.00 747.18 1.00 729.86 1.00
π/4 629.68 1.00 748.10 1.00 787.80 1.00 847.78 1.00
3π/8 440.57 1.00 483.11 1.00 545.47 1.00 678.15 1.00

Table F.12: Far-field differences as kρ→ 0 for four scatterers with Impedance boundary
condition, Z = 1 + i, for different separation distances d and different incident angles θ0.





Appendix G

TMATROM Numerical Results

This chapter contains the detailed numerical results from using the TMATROM package

to verify the far-field solutions produced by our original MATLAB programs used for all

the work presented in Chapters 3 and 7.

The TMATROM package reports the following quantity (see (8.4)),

max
l,m=−n,...,n

|(Tn + T ∗n + 2TnT
∗
n)l,m|, (G.1)

as a measure of the truncation error. This error is dependent on the solver used and the

order n chosen for the series truncation. This quantity is labelled T-mat Error in the

results.

The quantities L2 Diff and L∞ Diff represent the differences in the far-fields by our

original code, u∞0 (x̂), where x̂ = x̂(θ̂) = (cos θ̂, sin θ̂), with θ̂ being the angle of observa-

tion of the far-field, and that produced by TMATROM, u∞
TM

(x̂), for these configurations

using the L2norm

∥∥u∞0 − u∞TM∥∥2
=

(∫ 2π

0

∣∣u∞0 (x̂)− u∞
TM

(x̂)
∣∣2 dx̂

) 1
2

, (G.2)

and L∞ norm ∥∥u∞0 − u∞TM∥∥∞ = max
x̂∈[0,2π]

∣∣u∞0 (x̂)− u∞
TM

(x̂)
∣∣ , (G.3)

as measures of the difference, for all three boundary conditions.
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ka Tmat Error L2 Diff L∞ Diff ka Tmat Error L2 Diff L∞ Diff

Lemniscate β = π/2 Square, MPSPack, θ0 = 0, N = 80
π/2 1.82e-15 8.16e-15 9.36e-15 π/2 3.73e-11 1.87e-10 1.20e-10
π 1.53e-15 1.00e-14 1.26e-14 π 2.97e-12 1.87e-11 1.33e-11
2π 1.58e-15 1.20e-14 1.64e-14 2π 6.68e-12 2.92e-11 2.26e-11
4π 2.92e-15 2.42e-14 3.29e-14 4π 3.58e-11 8.29e-11 8.62e-11
8π 8.49e-14 5.24e-13 4.50e-13 8π 3.04e-10 8.65e-10 7.79e-10
16π 2.38e-12 7.95e-12 7.05e-12 16π 8.91e-03 1.88e-02 3.16e-02
Lemniscate β = π/3 Square, MPSPack, θ0 = 0, N = 100
π/2 1.47e-15 7.29e-15 9.04e-15 π/2 1.28e-09 3.60e-09 2.67e-09
π 1.44e-15 8.62e-15 9.73e-15 π 3.81e-09 6.10e-09 4.45e-09
2π 1.56e-15 1.15e-14 1.22e-14 2π 8.59e-10 4.02e-09 3.59e-09
4π 4.19e-15 1.25e-13 1.05e-13 4π 1.52e-09 4.26e-09 3.45e-09
8π 2.82e-13 5.09e-12 4.11e-12 8π 1.88e-10 7.59e-10 6.41e-10
16π 1.02e-11 1.15e-10 8.88e-11 16π 4.65e-09 1.83e-08 2.28e-08
Lemniscate β = π/4 Square, MPSPack, θ0 = π/4 N = 80
π/2 1.61e-15 7.39e-15 1.24e-14 π/2 3.73e-11 1.41e-10 1.01e-10
π 1.16e-15 8.17e-15 1.23e-14 π 2.97e-12 2.72e-11 1.93e-11
2π 1.39e-15 1.07e-14 1.05e-14 2π 6.68e-12 5.12e-11 3.96e-11
4π 4.05e-15 1.29e-13 1.05e-13 4π 3.58e-11 7.23e-11 5.75e-11
8π 2.88e-13 5.20e-12 4.11e-12 8π 3.04e-10 7.56e-10 5.76e-10
16π 1.02e-11 1.15e-10 8.66e-11 16π 8.91e-03 5.35e-03 6.25e-03
Lemniscate β = π/6 Square, MPSPack, θ0 = π/4 N = 100
π/2 1.44e-15 6.68e-15 1.04e-14 π/2 1.28e-09 4.17e-09 2.76e-09
π 1.23e-15 7.46e-15 1.06e-14 π 3.81e-09 1.26e-08 9.42e-09
2π 1.61e-15 1.10e-14 1.04e-14 2π 8.59e-10 5.78e-09 4.59e-09
4π 5.96e-15 1.35e-13 1.06e-13 4π 1.52e-09 7.41e-09 5.41e-09
8π 4.54e-13 5.37e-12 4.08e-12 8π 1.88e-10 9.74e-10 8.68e-10
16π 1.64e-11 1.16e-10 8.41e-11 16π 4.65e-09 1.21e-08 9.58e-09
Lemniscate β = π/12 Square, Our solver, θ0 = 0
π/2 1.66e-15 5.74e-15 7.54e-15 π/2 1.77e-11 2.40e-11 1.36e-11
π 1.18e-15 7.15e-15 1.01e-14 π 1.72e-11 1.33e-11 8.27e-12
2π 1.73e-15 1.16e-14 1.21e-14 2π 1.69e-11 1.73e-11 1.06e-11
4π 8.50e-15 1.53e-13 1.06e-13 4π 1.40e-11 2.08e-11 1.29e-11
8π 6.47e-13 5.79e-12 4.19e-12 8π 1.91e-11 2.94e-11 2.66e-11
16π 2.32e-11 1.23e-10 9.10e-11 16π 1.05e-10 4.63e-10 4.01e-10
Lemniscate β = π/18 Square, Our solver, θ0 = π/4
π/2 2.60e-14 6.13e-15 8.28e-15 π/2 1.77e-11 2.52e-11 1.62e-11
π 5.00e-14 7.09e-15 1.04e-14 π 1.72e-11 2.71e-11 1.79e-11
2π 9.96e-14 1.18e-14 1.11e-14 2π 1.69e-11 3.53e-11 2.44e-11
4π 1.80e-13 1.59e-13 1.03e-13 4π 1.40e-11 3.72e-11 2.49e-11
8π 6.49e-13 6.12e-12 4.27e-12 8π 1.91e-11 5.22e-11 4.45e-11
16π 2.33e-11 1.27e-10 8.97e-11 16π 1.05e-10 4.95e-10 5.33e-10

Table G.1: Comparison of far-field produced using TMATROM with our Nyström cor-
ner solver or MPSPack and the far-field produced by our original MATLAB programs.
Incident wave direction for lemniscates, θ0 = 0, Dirichlet boundary condition.
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ka Tmat Error L2 Diff L∞ Diff ka Tmat Error L2 Diff L∞ Diff

Lemniscate β = π/2 Square, MPSPack, θ0 = 0, N = 80
π/2 4.39e-10 6.70e-15 8.03e-15 π/2 1.18e-10 5.14e-10 4.29e-10
π 7.98e-10 7.31e-15 1.01e-14 π 1.32e-11 1.29e-10 1.16e-10
2π 1.55e-09 1.21e-14 1.15e-14 2π 5.26e-11 1.75e-10 1.61e-10
4π 2.69e-09 1.62e-13 1.02e-13 4π 1.30e-10 2.30e-10 2.28e-10
8π 4.72e-09 6.39e-12 4.59e-12 8π 1.03e-09 1.83e-09 1.69e-09
16π 7.98e-09 1.33e-10 9.55e-11 16π 8.61e-03 1.85e-02 3.20e-02
Lemniscate β = π/3 Square, MPSPack, θ0 = 0, N = 100
π/2 9.48e-11 3.83e-15 4.46e-15 π/2 1.72e-09 7.20e-09 4.82e-09
π 1.12e-10 6.51e-15 8.87e-15 π 1.70e-08 7.16e-08 4.46e-08
2π 1.47e-10 2.89e-14 2.69e-14 2π 4.72e-09 2.05e-08 1.51e-08
4π 1.20e-10 2.94e-14 2.39e-14 4π 1.01e-08 1.79e-08 1.45e-08
8π 1.19e-10 1.47e-12 1.18e-12 8π 2.88e-09 8.67e-09 6.71e-09
16π 1.14e-10 4.06e-11 3.11e-11 16π 9.03e-09 1.81e-08 1.46e-08
Lemniscate β = π/4 Square, MPSPack, θ0 = π/4 N = 80
π/2 2.64e-10 3.98e-15 3.52e-15 π/2 1.18e-10 4.14e-10 2.49e-10
π 2.88e-10 5.19e-15 6.62e-15 π 1.32e-11 1.76e-10 1.44e-10
2π 3.98e-10 1.77e-14 2.23e-14 2π 5.26e-11 2.27e-10 1.67e-10
4π 2.96e-10 2.29e-14 1.81e-14 4π 1.30e-10 2.90e-10 2.30e-10
8π 3.05e-10 1.11e-12 8.21e-13 8π 1.03e-09 2.38e-09 1.93e-09
16π 2.69e-10 3.05e-11 2.11e-11 16π 8.61e-03 4.70e-03 4.92e-03
Lemniscate β = π/6 Square, MPSPack, θ0 = π/4 N = 100
π/2 7.13e-10 5.35e-15 6.40e-15 π/2 1.72e-09 4.33e-09 2.86e-09
π 7.87e-10 5.72e-15 7.12e-15 π 1.70e-08 7.22e-08 5.19e-08
2π 9.13e-10 6.73e-15 6.28e-15 2π 4.72e-09 3.86e-08 2.64e-08
4π 7.92e-10 4.48e-14 4.07e-14 4π 1.01e-08 1.52e-08 1.24e-08
8π 6.41e-10 1.93e-12 1.55e-12 8π 2.88e-09 6.06e-09 4.56e-09
16π 6.03e-10 3.78e-11 3.19e-11 16π 9.03e-09 1.99e-08 1.49e-08
Lemniscate β = π/12 Square, Our solver, θ0 = 0
π/2 7.12e-08 1.13e-14 1.17e-14 π/2 3.81e-11 7.59e-15 8.56e-15
π 7.74e-08 9.96e-15 1.18e-14 π 5.03e-11 1.04e-14 1.31e-14
2π 6.12e-08 8.06e-15 8.45e-15 2π 6.59e-11 2.66e-14 2.38e-14
4π 5.50e-08 6.61e-14 5.07e-14 4π 8.21e-11 2.55e-12 2.25e-12
8π 4.92e-08 2.52e-12 1.85e-12 8π 8.78e-11 2.46e-11 2.18e-11
16π 4.09e-08 5.84e-11 3.99e-11 16π 1.09e-10 4.48e-10 3.85e-10
Lemniscate β = π/18 Square, Our solver, θ0 = π/4
π/2 1.23e-07 1.64e-14 1.68e-14 π/2 3.81e-11 6.03e-15 6.54e-15
π 1.34e-07 1.21e-14 1.22e-14 π 5.03e-11 8.64e-15 1.11e-14
2π 9.42e-08 1.11e-14 1.25e-14 2π 6.59e-11 1.73e-14 1.71e-14
4π 8.37e-08 4.98e-14 4.12e-14 4π 8.21e-11 3.13e-12 3.11e-12
8π 7.52e-08 2.23e-12 1.69e-12 8π 8.78e-11 1.85e-11 1.83e-11
16π 6.46e-08 5.61e-11 4.24e-11 16π 1.09e-10 4.05e-10 4.89e-10

Table G.2: Comparison of far-field produced using TMATROM with our Nyström cor-
ner solver or MPSPack and the far-field produced by our original MATLAB programs.
Incident wave direction for lemniscates, θ0 = 0, Neumann boundary condition.
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ka Tmat Error L2 Diff L∞ Diff ka Tmat Error L2 Diff L∞ Diff

Lemniscate β = π/2 Lemniscate β = π/12
π/2 3.53e-01 5.54e-15 7.65e-15 π/2 3.33e-01 5.45e-15 6.83e-15
π 3.73e-01 7.39e-15 1.20e-14 π 3.36e-01 6.47e-15 7.59e-15
2π 3.82e-01 8.98e-15 1.34e-14 2π 3.39e-01 6.41e-15 6.66e-15
4π 3.88e-01 1.65e-14 2.18e-14 4π 3.39e-01 5.54e-14 4.32e-14
8π 3.91e-01 3.29e-13 2.65e-13 8π 3.37e-01 2.53e-12 1.98e-12
16π 3.92e-01 5.20e-12 4.52e-12 16π 3.35e-01 5.73e-11 4.84e-11
Lemniscate β = π/3 Lemniscate β = π/18
π/2 3.43e-01 5.08e-15 5.89e-15 π/2 3.32e-01 8.08e-15 7.79e-15
π 3.63e-01 6.79e-15 1.02e-14 π 3.33e-01 6.33e-15 6.17e-15
2π 3.73e-01 1.78e-14 2.02e-14 2π 3.35e-01 6.20e-15 6.23e-15
4π 3.80e-01 4.26e-14 3.47e-14 4π 3.33e-01 5.73e-14 3.96e-14
8π 3.83e-01 2.00e-12 1.45e-12 8π 3.31e-01 2.73e-12 2.15e-12
16π 3.85e-01 5.00e-11 3.54e-11 16π 3.28e-01 6.12e-11 4.89e-11
Lemniscate β = π/4 Square, θ0 = 0
π/2 3.38e-01 4.29e-15 4.86e-15 π/2 3.64e-01 5.63e-15 7.54e-15
π 3.55e-01 5.87e-15 7.76e-15 π 3.79e-01 1.07e-14 2.00e-14
2π 3.64e-01 1.10e-14 1.11e-14 2π 3.84e-01 1.96e-14 2.46e-14
4π 3.70e-01 4.52e-14 3.32e-14 4π 3.86e-01 7.53e-13 5.57e-13
8π 3.73e-01 2.08e-12 1.53e-12 8π 3.88e-01 9.20e-12 8.95e-12
16π 3.74e-01 5.08e-11 3.67e-11 16π 3.88e-01 2.02e-10 1.77e-10
Lemniscate β = π/6 Square, θ0 = π/4
π/2 3.35e-01 4.54e-15 5.96e-15 π/2 3.64e-01 4.88e-15 5.04e-15
π 3.45e-01 5.50e-15 7.63e-15 π 3.79e-01 7.44e-15 8.11e-15
2π 3.52e-01 6.58e-15 6.79e-15 2π 3.84e-01 1.91e-14 2.30e-14
4π 3.55e-01 5.00e-14 3.68e-14 4π 3.86e-01 9.01e-13 7.30e-13
8π 3.57e-01 2.19e-12 1.76e-12 8π 3.88e-01 2.15e-11 2.39e-11
16π 3.58e-01 5.30e-11 4.37e-11 16π 3.88e-01 2.58e-10 2.92e-10

Table G.3: Comparison of far-field produced using TMATROM with our Nyström cor-
ner solver or MPSPack and the far-field produced by our original MATLAB programs.
Incident wave direction for lemniscates, θ0 = 0, impedance boundary condition with
Z = 1 + i.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ

2a Tmat Error L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff
Lemniscate β = π/2

0.5λ 1.82e-15 2.76e-05 1.99e-05 1.60e-06 1.28e-06 6.06e-09 4.27e-09 1.37e-08 1.27e-08
λ 1.53e-15 4.90e-05 4.25e-05 1.09e-06 7.84e-07 4.48e-08 4.16e-08 2.16e-09 1.68e-09
2λ 1.58e-15 2.26e-05 2.07e-05 4.79e-07 5.71e-07 2.60e-08 2.46e-08 1.83e-09 1.40e-09
Square

0.5λ 1.77e-11 7.62e-01 5.44e-01 5.68e-04 6.88e-04 6.30e-08 5.00e-08 5.69e-11 4.38e-11
λ 1.72e-11 6.77e-02 5.55e-02 2.87e-02 2.39e-02 5.79e-05 3.54e-05 1.47e-10 1.24e-10
2λ 1.69e-11 7.85e-01 6.89e-01 2.52e-01 2.32e-01 1.87e-01 1.56e-01 5.88e-06 5.13e-06
Square MPSPack

0.5λ 3.73e-11 3.56e+00 2.20e+00 5.97e-04 4.54e-04 4.14e-08 3.75e-08 2.76e-10 2.64e-10
λ 2.97e-12 6.49e-02 5.28e-02 2.78e-02 2.35e-02 5.86e-05 3.58e-05 1.43e-10 1.21e-10
2λ 6.68e-12 3.65e-01 2.99e-01 2.52e-01 2.26e-01 1.95e-01 1.62e-01 5.88e-06 5.12e-06
Diamond

0.5λ 1.77e-11 1.83e-04 1.39e-04 2.67e-06 1.84e-06 8.11e-09 6.42e-09 5.19e-11 3.66e-11
λ 1.72e-11 6.29e-05 6.40e-05 1.01e-05 8.61e-06 1.25e-07 1.00e-07 9.55e-09 6.81e-09
2λ 1.69e-11 2.62e-04 2.73e-04 1.37e-04 1.30e-04 5.59e-06 5.14e-06 7.47e-10 5.51e-10
Diamond MPSPack

0.5λ 3.73e-11 1.62e-04 1.00e-04 2.89e-06 2.07e-06 8.35e-09 8.78e-09 3.09e-10 3.27e-10
λ 2.97e-12 6.19e-05 6.29e-05 9.99e-06 8.50e-06 1.25e-07 1.00e-07 9.54e-09 6.80e-09
2λ 6.68e-12 2.61e-04 2.73e-04 1.37e-04 1.30e-04 5.59e-06 5.14e-06 7.64e-10 5.69e-10

Table G.4: Two scatterers. Comparison of far-field produced using TMATROM with our Nyström corner solver or MPSPack and the far-field
produced by our original MATLAB programs. Incident wave direction for lemniscates, θ0 = 0, Dirichlet boundary condition.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ

2a Tmat Error L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff
Lemniscate β = π/2

0.5λ 7.63e-12 1.41e-04 9.21e-05 1.33e-06 7.06e-07 2.74e-09 1.85e-09 1.40e-08 9.29e-09
λ 9.80e-12 6.71e-05 4.85e-05 2.49e-06 2.21e-06 2.58e-08 1.89e-08 1.32e-08 1.01e-08
2λ 1.19e-11 1.17e-03 9.15e-04 1.54e-06 1.23e-06 2.81e-08 4.08e-08 1.89e-08 1.47e-08
Square

0.5λ 3.81e-11 2.26e+00 1.42e+00 9.16e-04 5.62e-04 6.87e-08 5.10e-08 6.06e-11 5.85e-11
λ 5.03e-11 2.95e-01 1.56e-01 1.88e-01 9.09e-02 2.17e-05 1.28e-05 2.53e-10 1.54e-10
2λ 6.59e-11 5.85e-01 4.46e-01 2.94e-01 1.56e-01 3.22e-01 2.04e-01 4.51e-06 3.66e-06
Diamond

0.5λ 3.81e-11 3.04e-04 2.04e-04 2.71e-06 1.70e-06 7.35e-09 5.30e-09 9.24e-11 5.72e-11
λ 5.03e-11 1.21e-03 8.75e-04 1.43e-05 1.12e-05 7.03e-08 6.23e-08 1.53e-10 1.46e-10
2λ 6.59e-11 3.77e-03 2.34e-03 1.01e-04 6.86e-05 1.69e-06 1.34e-06 3.63e-09 3.57e-09

Table G.5: Two scatterers. Comparison of far-field produced using TMATROM with our Nyström corner solver or MPSPack and the far-field
produced by our original MATLAB programs. Incident wave direction for lemniscates, θ0 = 0, Neumann boundary condition.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ

2a Tmat Error L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff
Lemniscate β = π/2

0.5λ 3.53e-01 7.14e-05 4.67e-05 5.35e-07 3.66e-07 1.18e-09 1.06e-09 8.19e-10 6.17e-10
λ 3.73e-01 2.22e-05 1.95e-05 9.06e-07 7.20e-07 7.85e-09 6.75e-09 1.46e-11 1.32e-11
2λ 3.82e-01 5.92e-06 5.17e-06 7.51e-08 6.16e-08 4.13e-09 3.90e-09 2.22e-08 1.72e-08
Square

0.5λ 3.64e-01 2.57e-01 1.67e-01 1.52e-04 1.01e-04 1.19e-08 8.89e-09 1.66e-08 1.40e-08
λ 3.79e-01 2.56e-02 1.82e-02 9.60e-03 6.54e-03 3.09e-06 2.68e-06 6.34e-09 4.90e-09
2λ 3.84e-01 9.29e-02 9.53e-02 6.90e-02 6.20e-02 2.72e-02 2.04e-02 9.59e-07 7.72e-07
Diamond

0.5λ 3.64e-01 1.43e-04 9.10e-05 1.17e-06 8.12e-07 1.51e-09 1.06e-09 5.17e-09 5.44e-09
λ 3.79e-01 9.74e-05 7.18e-05 2.04e-06 1.65e-06 1.03e-08 9.00e-09 3.81e-10 3.03e-10
2λ 3.84e-01 3.98e-04 3.47e-04 2.90e-05 2.73e-05 3.31e-07 3.30e-07 8.02e-09 6.67e-09

Table G.6: Two scatterers. Comparison of far-field produced using TMATROM with our Nyström corner solver or MPSPack and the far-field
produced by our original MATLAB programs. Incident wave direction for lemniscates, θ0 = 0, Impedance boundary condition with Z = 1 + i.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ

2a Tmat Err L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff
Lemniscate β = π/2

0.5λ 1.82e-15 3.10e-05 2.18e-05 3.15e-06 4.40e-06 2.12e-08 1.79e-08 2.56e-09 1.65e-09
λ 1.53e-15 7.29e-05 6.64e-05 2.39e-06 3.14e-06 9.38e-08 1.41e-07 9.34e-10 8.90e-10
2λ 1.58e-15 2.76e-05 4.00e-05 6.75e-07 1.01e-06 6.63e-08 6.44e-08 6.51e-09 6.22e-09
Square

0.5λ 1.77e-11 1.50e+00 1.48e+00 1.68e-03 1.91e-03 1.57e-07 1.77e-07 6.32e-10 5.85e-10
λ 1.72e-11 1.40e-01 1.85e-01 4.15e-02 4.27e-02 9.09e-05 9.49e-05 2.09e-08 1.88e-08
2λ 1.69e-11 8.63e-01 8.34e-01 4.64e-01 6.84e-01 2.66e-01 3.02e-01 9.15e-06 1.21e-05
Square MPSPack

0.5λ 3.73e-11 1.53e+00 1.24e+00 8.19e-04 7.66e-04 8.33e-08 8.04e-08 6.47e-10 5.80e-10
λ 2.97e-12 1.49e-01 1.91e-01 4.21e-02 4.35e-02 9.29e-05 9.73e-05 2.09e-08 1.88e-08
2λ 6.68e-12 3.60e+00 3.21e+00 4.65e-01 6.77e-01 2.69e-01 3.13e-01 9.15e-06 1.21e-05
Diamond

0.5λ 1.77e-11 2.67e-04 3.03e-04 5.27e-06 6.60e-06 4.90e-08 3.97e-08 3.42e-08 3.13e-08
λ 1.72e-11 1.03e-04 1.64e-04 1.47e-05 2.21e-05 1.73e-07 2.45e-07 1.69e-09 1.65e-09
2λ 1.69e-11 4.63e-04 7.80e-04 2.55e-04 4.09e-04 1.07e-05 1.69e-05 4.74e-08 4.82e-08
Diamond MPSPack

0.5λ 3.73e-11 2.26e-04 2.39e-04 4.11e-06 4.63e-06 4.54e-08 3.35e-08 3.43e-08 3.15e-08
λ 2.97e-12 1.02e-04 1.63e-04 1.46e-05 2.20e-05 1.76e-07 2.50e-07 1.68e-09 1.66e-09
2λ 6.68e-12 4.62e-04 7.78e-04 2.55e-04 4.09e-04 1.07e-05 1.69e-05 4.74e-08 4.81e-08

Table G.7: Four scatterers. Comparison of far-field produced using TMATROM with our Nyström corner solver or MPSPack and the far-field
produced by our original MATLAB programs. Incident wave direction for lemniscates, θ0 = 0, Dirichlet boundary condition.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ

2a Tmat Err L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff
Lemniscate β = π/2

0.5λ 7.63e-12 2.63e-04 3.17e-04 2.44e-06 2.68e-06 4.43e-09 5.04e-09 1.31e-09 1.35e-09
λ 9.80e-12 9.83e-05 9.12e-05 4.15e-06 5.16e-06 4.05e-08 5.46e-08 1.70e-09 1.28e-09
2λ 1.19e-11 3.22e-03 3.34e-03 2.39e-06 3.21e-06 6.44e-08 1.25e-07 9.20e-09 1.25e-08
Square

0.5λ 3.81e-11 4.29e+00 3.26e+00 9.83e-04 8.14e-04 1.54e-07 1.35e-07 1.61e-09 1.74e-09
λ 5.03e-11 4.92e-01 3.27e-01 4.14e-01 3.25e-01 3.99e-05 3.98e-05 5.23e-09 3.94e-09
2λ 6.59e-11 5.85e+00 4.53e+00 4.67e-01 3.54e-01 4.91e-01 4.99e-01 8.61e-06 1.08e-05
Diamond

0.5λ 3.81e-11 6.59e-04 6.46e-04 6.57e-06 5.80e-06 1.28e-08 1.48e-08 3.17e-09 3.64e-09
λ 5.03e-11 2.37e-03 3.01e-03 2.89e-05 3.93e-05 1.33e-07 1.75e-07 3.87e-08 3.24e-08
2λ 6.59e-11 6.00e-03 6.64e-03 1.88e-04 2.22e-04 2.66e-06 3.49e-06 7.37e-09 1.27e-08

Table G.8: Four scatterers. Comparison of far-field produced using TMATROM with our Nyström corner solver or MPSPack and the far-field
produced by our original MATLAB programs. Incident wave direction for lemniscates, θ0 = 0, Neumann boundary condition.
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d = 0.1λ d = 0.25λ d = 0.5λ d = λ

2a Tmat Err L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff L2 Diff L∞ Diff
Lemniscate β = π/2

0.5λ 7.63e-12 2.63e-04 3.17e-04 2.44e-06 2.68e-06 4.43e-09 5.04e-09 1.31e-09 1.35e-09
λ 9.80e-12 9.83e-05 9.12e-05 4.15e-06 5.16e-06 4.05e-08 5.46e-08 1.70e-09 1.28e-09
2λ 1.19e-11 3.22e-03 3.34e-03 2.39e-06 3.21e-06 6.44e-08 1.25e-07 9.20e-09 1.25e-08
Square

0.5λ 3.81e-11 4.29e+00 3.26e+00 9.83e-04 8.14e-04 1.54e-07 1.35e-07 1.61e-09 1.74e-09
λ 5.03e-11 4.92e-01 3.27e-01 4.14e-01 3.25e-01 3.99e-05 3.98e-05 5.23e-09 3.94e-09
2λ 6.59e-11 5.85e+00 4.53e+00 4.67e-01 3.54e-01 4.91e-01 4.99e-01 8.61e-06 1.08e-05
Diamond

0.5λ 3.81e-11 6.59e-04 6.46e-04 6.57e-06 5.80e-06 1.28e-08 1.48e-08 3.17e-09 3.64e-09
λ 5.03e-11 2.37e-03 3.01e-03 2.89e-05 3.93e-05 1.33e-07 1.75e-07 3.87e-08 3.24e-08
2λ 6.59e-11 6.00e-03 6.64e-03 1.88e-04 2.22e-04 2.66e-06 3.49e-06 7.37e-09 1.27e-08

Table G.9: Four scatterers. Comparison of far-field produced using TMATROM with our Nyström corner solver or MPSPack and the far-field
produced by our original MATLAB programs. Incident wave direction for lemniscates, θ0 = 0, Impedance boundary condition with Z = 1 + i.
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(a) 2a = 0.5λ, d = 0.25λ.
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(b) 2a = 0.5λ, d = 0.5λ.
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(c) 2a = 0.5λ, d = λ.
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(d) 2a = λ, d = 0.5λ.
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(e) 2a = λ, d = λ.
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(f) 2a = 2λ, d = λ.

Figure H.1: Logarithmic plot of the far-field |u∞|, for a single array of squares with
differing diameters 2a, and separation d, all with Dirichlet boundary condition. Number
of scatterers N = 64 in the array; incident wave direction θ0 = 0.
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(a) 2a = 0.5λ, d = 0.25λ.
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(b) 2a = 0.5λ, d = 0.5λ.
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(c) 2a = 0.5λ, d = λ.
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(d) 2a = λ, d = 0.25λ.
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(e) 2a = λ, d = 0.5λ.
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(f) 2a = λ, d = λ.
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(g) 2a = 2λ, d = 0.5λ.
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(h) 2a = 2λ, d = 0.5λ.
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(i) 2a = 2λ, d = λ.

Figure H.2: Logarithmic plot of the far-field |u∞|, for a single array of diamonds with
differing diameters 2a, and separation d, all with Neumann boundary condition. Number
of scatterers N = 64 in the array; incident wave direction θ0 = π/4.
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(a) 2a = 0.5λ, d = 0.25λ.
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(b) 2a = 0.5λ, d = 0.5λ.
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(c) 2a = 0.5λ, d = λ.
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(d) 2a = λ, d = 0.25λ.
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(e) 2a = λ, d = 0.5λ.
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(f) 2a = λ, d = λ.
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(g) 2a = 2λ, d = 0.5λ.
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(h) 2a = 2λ, d = λ.

Figure H.3: Logarithmic plot of the far-field |u∞|, for a double array of lemniscates with
differing diameters 2a, and separation d, all with Neumann boundary condition. Number
of scatterers N = 64 in the array; incident wave direction θ0 = 0.
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(a) 2a = 0.5λ, d = 0.25λ.
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(b) 2a = 0.5λ, d = 0.5λ.
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(c) 2a = 0.5λ, d = λ.
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(d) 2a = λ, d = 0.5λ.
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(e) 2a = λ, d = λ.
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(f) 2a = 2λ, d = λ.

Figure H.4: Logarithmic plot of the far-field |u∞|, for a double array of squares with
differing diameters 2a, and separation d, all with Neumann boundary condition. Number
of scatterers N = 64 in the array; incident wave direction θ0 = π/4.
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