Quantifying damage to coral colonies by waterborne

debris during hydrodynamic disturbances

Peter A. David

Quantitative Ecology and Evolution Lab

Department of Biological Sciences

October 10th, 2016

Declaration

I wish to acknowledge the following assistance in the research detailed in this report:

Joshua Madin for assistance with experimental analysis. Kyle Zawada for assistance in providing the three-dimensional coral scans. Aaron Harmer and Laura Wilson for assistance with the use of Strand7. Joshua Madin, Rachel Woods and Jessica Thompson for comments on a draft of this manuscript.

All other research described in this report is my own original work and has not been submitted for a higher degree to any other university of institution.

Maria

Peter David

10th October 2016

Abstract

Physical bombardment by waterborne debris is a common disturbance in shallow coral reef systems. During hydrodynamic disturbances, such as tropical storms, increases in water velocity elevate drag forces acting on objects-ranging in size from sand to boulders and coral colonies—dislodging and propelling them into nearby coral colonies. Impact by debris can cause a number of injuries, ranging from intra-colony damage (e.g., branch breakage or tissue death) to whole-colony dislodgment. However, the bombardment process is poorly understood, given that it is difficult to observe *in situ* as hydrodynamic disturbances occur. Using 3D coral scans representing five characteristically different growth forms and finite element analysis, I simulated bombardment scenarios by applying increasing point forces to colony meshes. I measured the force required to cause breakage and where that breakage occurred, and found high rates of intra-colony breakage (a mean of 23% across growth forms). There was a significant interaction between colony surface area to volume ratios (SA:V) and the damage outcome (branch breakage or whole-colony dislodgement), but generally the impact force necessary to result in damage decreased as SA:V increased. Traditional models of coral damage during storms only consider hydrodynamic force, however, the results presented here show that bombardment may be the dominant process damaging and killing reef corals during hydrodynamic disturbances.

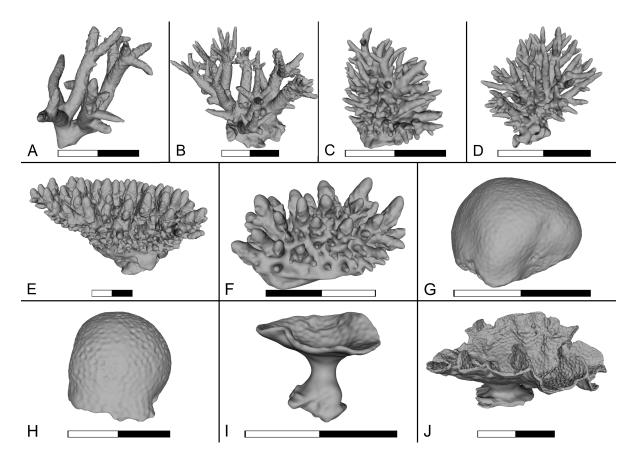
Key words

Finite element analysis | Bombardment | Cyclone | Coral reef

Introduction

Physical disturbances on coral reefs, such as cyclones, are destructive events and their aftermaths have been well documented. Coral tissue is scoured and damaged, branches are "pruned" and entire colonies are dislodged (Madin 2005; Madin and Connolly 2006; Fabricius et al. 2008; Madin et al. 2014; Puotinen et al. 2016). Partial damage often leads to whole-colony mortality, which can take weeks to unfold (Knowlton et al. 1981). In some cases, colony fragments can reattach to the substrate and resume growth (Smith and Hughes 1999); a considered form of asexual propagation (Tunnicliffe 1981). All in all, the loss of living reef structure is typically dramatic, with cascading consequences for abundances and diversity of reef-associated species, such as the reef fishes (Woodley et al. 1981; Wilson et al. 2006). In spite of this destruction, periodic physical disturbances are believed to be positive for reefs, because they promote species coexistence (Connell 1978) by reducing the dominance by any one species and create space for new corals to recruit.

Despite the importance of physical disturbance in structuring coral reef communities, we have next to no idea what actually occurs during a disturbance event. We cannot directly observe the damage, and so are left to speculate about the processes that led to the resulting bed of rubble. Currently there are two predictive models for coral damage during hydrodynamic disturbances: Massel and Done (1993), which focused on massive corals, and Madin and Connolly (2006), which broadened the focus to all growth forms. However, these traditional models only consider dislodgement via hydrodynamic forces as the damaging process. While there is no doubt that hydrodynamic drag forces are responsible for the dislodgment of whole colonies during an event, less obvious is the damage caused by waterborne debris—much of which is spawned from dislodged colonies themselves. The addition of waterborne debris to


models of hydrodynamic disturbance is complicated, because physical bombardment can generate forces greater than drag alone, and any partial colony breakage will reduce drag.

Bombardment is likely to be a ubiquitous process during physical disturbances on reefs. Elevated drag forces act on unattached objects—ranging in size from sand to entire unattached coral colonies—propelling them along the reef and into neighboring colonies. Bombardment is likely to cause severe damage to living corals, ranging from tissue damage and breakage of branches through to the dislodgement of entire colonies. Dislodgement or breakage of colonies at the reef crest will fuel the bombardment process. However, there is a large knowledge gap in the bombardment process, because it is extremely difficult to observe directly. For this reason, there is almost no information as to whether bombardment is an important damage and mortality process during hydrodynamic disturbance nor how if could be modelled.

The aim of my study was to address the knowledge gap of bombardment as an important ecological process during physical disturbances using an engineering modelling approach called finite element analysis (FEA). FEA enabled me to model rates of damage by waterborne debris and contrast these with rates of whole-colony dislodgement for a range of different coral morphologies (=growth forms). My results are preliminary; nevertheless, here I quantify the relative occurrence of breakage versus dislodgement based on growth form and surface area to volume ratios. I hypothesize that an increase of surface area to volume ratio led to an increase in the probability of colony breakage occurring. I then validate that the levels of force required for bombardment to be an important process on reefs that can occur during hydrodynamic disturbances.

Methods

Ten coral colonies were selected from the Natural History Museum coral collection in London that represented five characteristically different growth forms; two of each of branching, digitate, corymbose, plating and massive forms. Three-dimensional (3D) meshes were created for each colony using a CREAFORM EXAScan portable laser scanner (Creaform 2016a) (Figure 1). This system rapidly and precisely scans objects with a resolution of up to 0.2 mm² while generating a mesh in real time on a connected computer using the software VXElements (Creaform 2016b). The scanner exposure time was set at 6.00 ms and the accuracy set at 0.5 mm².

Figure 1. Coral meshes produced by scanning coral colonies with the CREAFORM EXAScan. Growth forms are as follows: Branching; A, B, Corymbose; C, D, Digitate; E, F, Massive; G, H and Plating; I, J. Each black and white scale bar is equal to 10 cm.

Each colony scan was cleaned by first smoothing any obvious surface irregularities, removing non-coral regions (e.g., substrate), and ensuring the mesh was watertight to enable accurate surface area and volume calculations. A mesh-editing program Meshmixer (Autodesk Research 2016) was then used to inspect each of the coral meshes and attach them to a basal block to mimic the reef substrate. Colony surface areas and volumes were calculated using the 'Stability' function in Meshmixer while the basal block was omitted (Table S1). The number of triangles making up each mesh was reduced to fall between 40,000 to 100,000 depending on the complexity of the growth form, which was done to reduce the processing time of FEA while maintaining overall colony shape.

I used Strand7 (Strand7 Pty Ltd 2015) for FEA. In this software meshes were converted to solid meshes. The coral skeleton and reef substrate components were parameterised with elastic moduli, material densities and maximum tensile strengths that were collected from a range of sources, including the Coral Trait Database (Madin et al. 2016) and Madin (2005) (Table 1). All breakage was assumed to occur under tension, because brittle crystalline materials are particularly strong under compression (Madin 2005). In order to mimic how a colony would be impacted by debris, the base of substrate block was restrained from translational and rotational movement and ten bombardment points were randomly selected for each colony mesh. Given processing time constraints, at the time of writing this manuscript each colony was only bombarded from one arbitrarily chosen direction, and material parameters reflect average values (i.e., variation in material properties have not been simulated yet).

	Branchi	ng Digitate	Corymbose	Plating	Massive	Substrate
Modulus (MPa)	21500	21500	21500	21500	15100	7400
Poissons ratio	0.2	0.2	0.2	0.2	0.2	0.2
Density (g/cm^2)	2.4	2.2	2.2	2.2	1.2	0.8
Breaking point (MPa)	5.01	3.98	3.98	3.98	1.00	0.32

Table 1. Growth form and reef substrate material properties

An increasing point load was applied to each bombardment point up until tensile breakage occurred. Breakage rarely occurred at the point the load was applied, and so I measured the point of breakage, and additionally noted if this was intra-colonial (e.g., a branch) or whole colony (e.g., at the basal attachment). Point load increments for each simulation were either 3 MPa for branching, digitate, corymbose and plating growth forms, or 6 MPa for massive growth forms (due to the greater impact force required for breakage or dislodgement). The point of breakage was defined as the point on the colony or substrate where internal tensile stress first exceeded tensile breakage strength of the respective material (substrate or skeleton), which typically occurred lower on a branch or at the colony/substrate interface (Tables S2-11).

In order to assess if the impact forces required to damage colonies were present in the real world, I calculated the forces generated by a range of different massed debris (0.01 - 10 kg) travelling at a range of water velocities (1 - 10 m/s). The maximum water velocity likely to be observed during a cyclone is 5-10 m/s (Madin et al. 2006; Madin et al. 2012). The force generated was estimated according to:

$$F = \frac{2mv}{t}$$

where m is mass of debris, v is velocity of debris, t is the impact period and F is the resulting force generated. I assumed that impact periods are approximately 0.01 seconds based on previous studies of impacts on attached cantilever-like objects (Sun 1977; Ruiz et al. 2000; Mao et al. 2009). Although impact times vary in these studies, the general consensus is that impact times are very short (Youcef-Toumi and Guts 1989; Ma and Chuang 2008), thus this validation figure should be treated as a ball-park estimate.

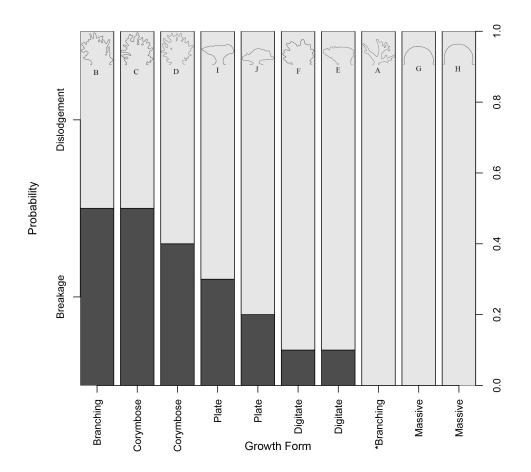
Data analysis

The outlines of each coral colony were downloaded from Strand7 as xyz coordinate point clouds and an alpha-convex hull (Pateiro-Lopez and Rodriguez-Casal 2016) fitted around the outline in the orientation perpendicular to bombardment. Pairs of impact and breakage points were added to colony outlines and connected with arrows to help visualize the results.

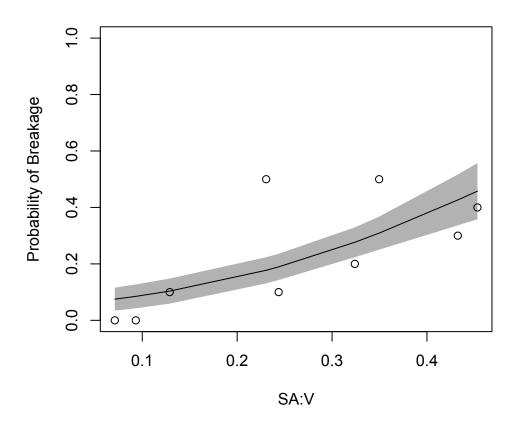
I ran two statistical analyses. First, the probability of breakage (=1) vs. dislodgment (=0) for each bombardment trial was modelled statistically as a function of colony surface area to volume ratio using a binomial generalized linear model (Table 2) in R (R Core Team 2014). Second, impact force required for damage was modelled as a function of surface area to volume ratio and damage outcome type (breakage or dislodgement) using a standard linear model (Table 3). For all analyses, surface area to volume ratios and impact forces were logtransformed, which resulted in the most normally distributed residuals. I tested for an interaction between factors in the second analysis. Analyses were presented as anova tables using the function 'aov' to determine whether one of these factors had a significant effect on the model. Table 2. Coefficient estimates for the binomial generalized linear model. Null deviance:
21.374 on 8 degrees of freedom, residual deviance: 12.032 on 7 degrees of freedom, AIC:
33.236 and number of Fisher Scoring iterations: 4. Response variable: Probability of breakage vs dislodgement, factors are as follows sa.v: surface area to volume ratio.

	Estimate Std.	Error	t value	р
Intercept	-2.949	0.727	-4.056	>0.001
sa.v	6.133	2.163	2.835	0.005

 Table 3. Model estimates table. Residual standard error: 0.2799 on 86 degrees of freedom.


 Multiple R-squared: 0.5439, Adjusted R-squared: 0.528, F-statistic: 34.19 on 3 and 86 DF, p-value: 1.21e-14. Response variable: log10 impact force, factors are as follows sa.v: surface area to volume ratio and brk.dis: outcome – breakage or dislodgement.

	Estimate Std.	Error	t value	р
Intercept	1.5192	0.2225	6.828	>0.0001
sa.v	-0.1201	0.4313	-0.279	0.7813
brk.dis	-0.4642	0.2401	-1.933	0.0565
sa.v:brk.dis	-0.9812	0.4469	-2.195	0.0308


Results

Across all colonies bombarded, I observed a 77% rate of dislodgement and a 23% rate of intra-colonial breakage (Figure 2). The more complex and upright morphologies (i.e., branching and corymbose) were more likely to suffer branch breakage with a breakage rate of 47%; the plating morphology suffered a breakage rate of 25% with breakage occurring along the plate edges; the more compact digitate morphology suffered a low breakage rate of 10% due to the shorter and robust nature of the branches; and the massive morphology did not display any instances of breakage (Figures 2, S1.1 and S1.2). Overall, there was a significant relationship between the likelihood of breakage and colony surface area to volume ratios, in

which colonies with a greater ratio are more likely to break internally than colonies with a smaller ratio (Figure 3).

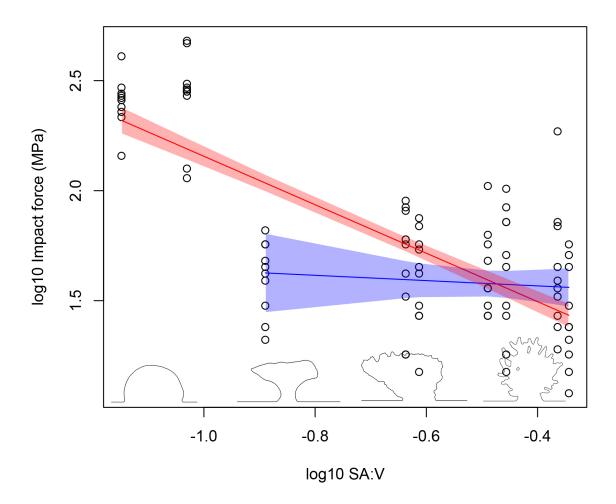
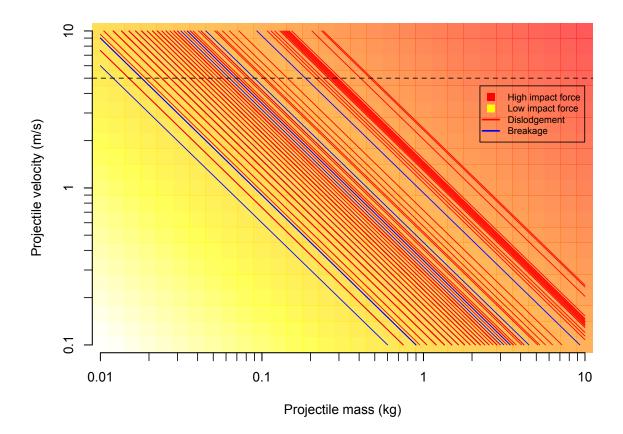


Figure 2. The probability of either breakage or dislodgement for each colony tested. The outline of each colony is projected on the top of each bar. Dark grey: Breakage, light grey: Dislodgement. Each letter below each colony outline corresponds to the same letter and colony in Figure 1. *Removed from analysis due to abnormal results.


Figure 3. The probability of colony breakage as a function of colony surface area to volume ratio. n=90, confidence bands represent 95%CI.

For the impact forces required to cause damage, I found a significant interaction between colony surface area to volume ratio and the damage outcome type (Df: 1, F: 4.8199, p: 0.03). The impact force necessary for whole colony dislodgement decreases as surface area to volume ratio increases. However, intra-colonial breakage was much less likely to occur in forms with lower surface area to volume ratios; whereas, whether a colony breaks or becomes dislodged becomes indistinguishable at higher surface area to volume ratios (Figure 4). One of the branching growth forms (Figures 1A and S1.1A) was removed for analysis due to abnormal results produced by Strand7, which I suspect was caused by using the mean substrate strength (discussed below). However, it should be noted that removing this sample did not affect the statistical significance of the two analyses, merely strengthened the patterns to a small degree.

Figure 4. Impact force (log10, MPa) required for breakage or dislodgement as a function of colony surface area to volume ratio (log10, SA:V). The red line and corresponding 95%CI band displays colony dislodgement. The blue line and corresponding 95%CI band displays colony breakage. Coral outlines indicate general shapes that colonies would exhibit corresponding to the SA:V.

Finally, the range of impact forces required to cause damage were all present for the range of projectile velocities and masses likely to be present on a reef during a tropical cyclone (Figure 5).

Figure 5. The projectile velocity and mass required to result in a damaging impact (either breakage – blue line, or dislodgement – red line) for each simulation on each growth form. The dashed line represents a projectile velocity of 5 m/s, a speed that would commonly occur over a reef during a cyclone.

Discussion

Whole-colony dislodgement has traditionally been thought to occur before intra-colony breakage in corals, primarily because the tensile strength of reef substrate is much lower than skeletal strength (Madin 2005; Madin and Connolly 2006). This assumption is true when only considering hydrodynamic forces alone, however, my *in situ* observations of a reef following a cyclone, and the analysis presented here, strongly suggests that hydrodynamic dislodgement might be a relatively small part of the story. I found that bombardment causes both colony

breakage and whole-colony dislodgement (Figure 2) for the range of projectile masses and water velocities likely to be present during a hydrodynamic disturbance (Figure 5). Furthermore, bombardment caused intra-colonial breakage over 23% of the time on average, which helps explain the high levels of partial mortality observed on reefs following storm events (Woodley et al. 1981) and even tsunamis (Chavanich et al. 2008), particularly for higher SA:V growth forms.

My results suggest that two important considerations need to be made and developed to update current models of storm damage to corals. First, while dislodgement has been shown to be caused through hydrodynamic force (Madin and Connolly 2006), it needs to be considered as a process which can also occur through bombardment. Second, intra-colonial breakage needs to be considered in these models as an important factor that leads to damage as well as to the overall reduction in colony surface area, over which hydrodynamic force and subsequent bombardment act. It is a combination of these factors, which would lead to the most accurate and reliable models of coral colony mechanical vulnerability during physical disturbances.

Further reasoning for revising current mechanical vulnerability models can be seen in the role that the surface area to volume ratio of each colony was shown to have in determining the outcome of a bombardment impact. Surface area to volume ratio is an important trait in determining structural vulnerability of coral colonies, as generally an increase in the surface area to volume ratio corresponds with an increase in the complexity of the colony – the formation of less robust structures such as branches or thin table or plate like constructions. Firstly, as hypothesized, an increase of surface area to volume ratio led to an increase in the probability of colony breakage occurring. Secondly, an increase in surface area to volume

ratio also led to significant decrease in the amount of force required to cause colony dislodgement and a slight decrease in the amount of force required to cause colony breakage. Thus these two results are of utmost interest in determining the mechanical vulnerability of coral colonies. Current models look at coral size as a factor in determining mechanical vulnerability. These models have shown that generally, for growth forms other than massive, as colony size increases so does the colony shape factor (CSF), a measurement of mechanical vulnerability (Madin and Connolly 2006; Madin et al. 2014). However, with my data indicating the surface area to volume ratio plays a vital role in determining mechanical vulnerability, it would be logical to integrate this relationship into current CSF models. This would allow for more accurate predictions of vulnerability measures that not only include dislodgement as a factor but branch breakage as well.

Furthermore, another potential reason to revise current mechanical vulnerability models can be seen in the water velocity results displayed in figure 5. These results may indicate that when waterborne debris is present there is a lower threshold for water velocity that might be considered dangerous for corals when compared to those previously shown in hydrodynamiconly predictions of damage (Madin and Connolly 2006; Madin et al. 2006). While these results are only preliminary, it may indicate that current models could hypothetically be underestimating damage resulting from minor storms, which display lowered water velocities.

There are a wide range of ecological effects on colonies themselves as a result of colony breakage (branch pruning). One of the most common results of branch loss is exposed tissue becoming diseased. It is very well documented that injured coral tissue such as that caused by branch breakage is likely to increase the appearance of, and susceptibility to, disease (Hawkins and Roberts 1992; Winkler et al. 2004; Guillemot et al. 2010; Brandt et al. 2013; Katz et al. 2014), as well as increasing the colonies susceptibility to predation (Henry and

Hart 2005; Guillemot et al. 2010). Furthermore, Henry and Hart (2005) have shown when colonies are able to begin to recover injury, they display reduced functions of growth, sexual reproduction and competition. This reduced function of injured corals is undoubtedly linked to the increased energetic costs of recovery and the cost of attempting to resist potential disease. Though in contrast it is thought that in some cases the lower coral cover associated with the aftermath of a cyclone may be beneficial in resisting disease. Bruno et al. (2007) suggests that for the case of white syndrome coral cover must be high in order for outbreaks to occur, and cover is unlikely to be high after a hydrodynamic disturbance. Sub-lethal effects that corals suffer after a disturbance event are highly likely to lead to delayed mortality (Knowlton et al. 1981). In cases that do not lead to eventual mortality, these colonies are likely to be severely affected by the increasing occurrence and potency of other disturbances such as the most recent bleaching event described on the Great Barrier Reef (Hughes 2016).

Effects of hydrodynamic disturbances may also have positive outcomes for some colonies which suffer breakage. In some cases, fragments broken off certain corals such as *Acropora* species are able to re-fuse to the substrate or other colonies and survive (Highsmith 1982; Wallace 1985; Smith and Hughes 1999; Lirman 2000). Not only does this form of asexual propagation (Tunnicliffe 1981) have potential to add material to reefs for growth and it also allows species extend their local distribution. Though it has also been suggested that the benefits of asexual propagation are offset by the negative effects of cyclones, that can lead to the death of fragments through scouring, sedimentation, the turning over of the coral fragments and disease (Bak and Criens 1981; Cooke and Marx 2015).

While colony branch breakage has a range of ecological effects on colonies themselves, it also plays a vital role for several ecosystem functions. Branch breakage can lead to significant reductions in habitat complexity, as vulnerable growth forms which are key in maintaining complexity are easily pruned (Guillemot et al. 2010). It is these complex yet vulnerable growth forms which in turn drive valuable ecosystem functions for assemblages such as reef fish (Roberts and Ormond 1987; Gratwicke and Speight 2005; Johnson 2007), providing habitat (Sutton 1985), breeding grounds (Olivotto et al. 2003) and a source of food (Sutton 1985). Such a loss of habitat, breeding grounds and food causes major disturbances in reef fish populations dynamics (Harmelin-Vivien 1994; Wilson et al. 2006; Chabanet et al. 2010) with cyclones even thought to cause short term behavioural changes in reef fish (Woodley et al. 1981).

While branch breakage does lead to a number of negative ecological effects in a coral reef ecosystem, the rubble, which is left as the result of breakage, becomes a highly important carbonate supply for reef growth. In time large piles of rubble can become rigidly bound together and thus stable, this in turn creates new substrate for which coral larvae can settle on and grow (Rasser and Riegl 2002). This process is vital to ensure these valuable coral reef systems can continue to grow. Thus it is clear that it is vital to understand the processes such as bombardment, which lead to both branch breakage and dislodgement of coral colonies, as they have the potential to significantly affect the ecology of not only coral species, but the entire ecosystem that relies on them.

A limitation of the modelling done here was the use of a single, mean substrate strength parameter when, in reality, substrate strength is highly variable (Madin 2005). Due to the computer processing limitations, I was only able to run the analysis using one estimate of substrate strength. Thus I propose that using a range of different reef substrate strength estimates would result in a substantial change in outcomes – higher rates of breakage

compared to dislodgement – for most of these growth forms. It is this limitation that explains my primary reasoning for excluding one branching growth form from my analysis. As a logical extension of the ideas presented in Madin (2005), there is a trend in which simple growth forms such as massive corals are unlikely to be dislodged in weak substrates and therefore will continue to grow in these areas. Whereas, more complex growth forms such as branching corals are likely to be dislodged in weaker substrates and will not be able to keep growing in these areas. Thus it is likely that these growth forms will be found in stronger substrates. I consider that complex growth forms are highly likely to suffer from branch breakage due to their structural mechanics.

Given computational limitations that prevented some planned work to be accomplished before this project due date, I have a series of further tasks to do before publishing this work. First, I will be selecting 2-3 more colonies for each of the growth forms over a range of sizes to improve replication and look for colony size trends. Second, I will be examining the effect of colony orientation and material variability of the results. This is particularly important for substrate strength, which is highly variable (Madin 2005). Third, I will be adding thresholds for colony surface damage in the FEA model in order to investigate relative levels of tissue damage spatially on colonies. Fourth, I will be calculating colony shape factors for each colony in order to determine if hydrodynamic dislodgment or bombardment damage is likely to occur first for a range of bombardment projectile masses. And finally, I will be validating FEA results using data I collected from the field at Lizard Island following a direct hit by a category 3 tropical cyclone.

While the results presented here are preliminary, they have highlighted the importance of a rarely considered process, bombardment, for the destruction on coral reefs during

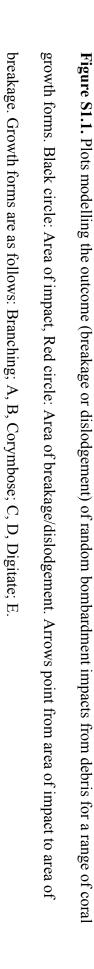
hydrodynamic disturbances. With the combination of knowledge from current models and the outcomes presented here, I am able to demonstrate that there are multiple processes and factors that will affect the likelihood of a coral colony suffering from either branch breakage or whole colony dislodgement. This new information that has been brought to light paves the way for continuing research that will enable us to better understand the process of bombardment, has enabled us to more comprehensively understand structural mechanics of coral colonies and has shown that there are multiple processes which can lead to coral damage during a hydrodynamic disturbance. I hope that by increasing our knowledge of both the processes that destroy coral reefs as well as the structural mechanics of different coral morphologies I will be better able to plan, manage and help with the recovery of these vulnerable yet vital ecosystems.

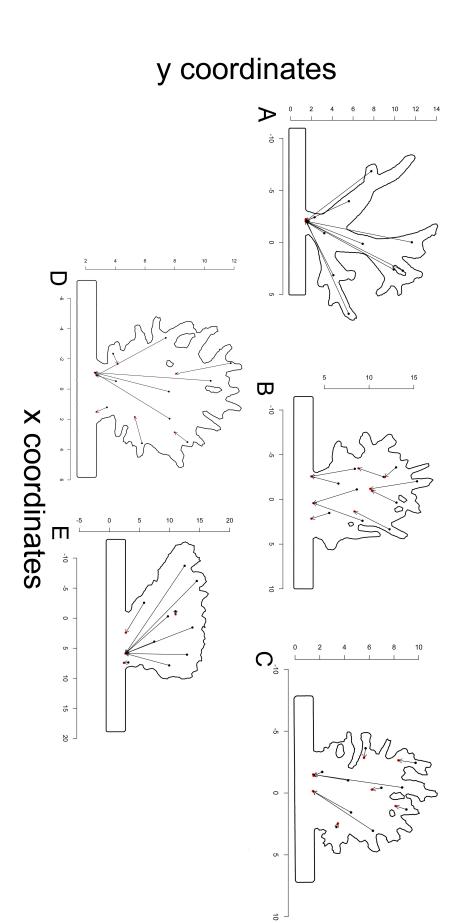
Acknowledgements

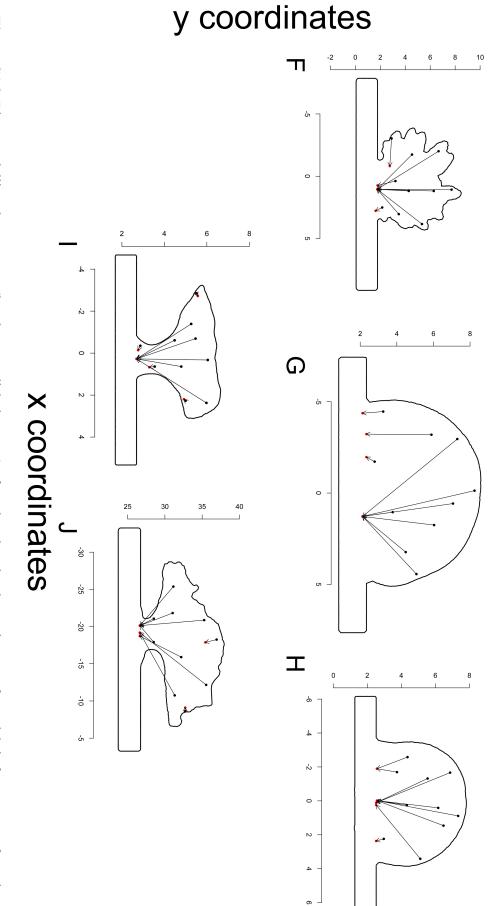
I would like to thank Joshua Madin for assistance with experimental analysis; Kyle Zawada for assistance in providing the three-dimensional coral scans; Aaron Harmer and Laura Wilson for assistance with the use of Strand7; Joshua Madin, Rachel Woods and Jessica Thompson for comments on a draft of this manuscript.

References

Autodesk Research (2016) Meshmixer. Autodesk Inc, San Rafael, CA, USA


- Bak RP, Criens SR (1981) Survival after fragmentation of colonies of Madracis mirabilis, Acropora palmata and A. cervicornis (Scleractinia) and the subsequent impact of a coral disease. Proceedings of the Fourth International Coral Reef Symposium 2:221-227
- Brandt ME, Smith TB, Correa AMS, Vega-Thurber R (2013) Disturbance Driven Colony Fragmentation as a Driver of a Coral Disease Outbreak. Plos ONE 8:e57164
- Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD, Sweatman H, Melendy AM (2007) Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks. PloS Biology 5:e124


- Chabanet P, Guillemot N, Kulbicki M, Vigliola L, Sarramegna Sb (2010) Baseline study of the spatio-temporal patterns of reef fish assemblages prior to a major mining project in New Caledonia (South Pacific).Marine Pollution Bulletin 61:598-611
- Chavanich S, Viyakarn V, Sojisuporn P, Siripong A, Menasveta P (2008) Patterns of coral damage associated with the 2004 Indian Ocean tsunami at Mu Ko Similan Marine National Park, Thailand. Journal of Natural History 42:177-187
- Connell JH (1978) Diversity in Tropical Rain Forests and Coral Reefs. Science 199:1302-1310
- Cooke CA, Marx DE, Jr (2015) Assessment of the Impact of Super Storm Sandy on Coral Reefs of Guantánamo Bay, Cuba. SSC Pacific, San Diego, CA
- Creaform (2016a) Exascan Scanner. Creaform, Lévis, Québec
- Creaform (2016b) VXElements. Creaform, Lévis, Québec
- Fabricius KE, De'ath G, Puotinen ML, Done T, Cooper TF, Burgess SC (2008) Disturbance gradients on inshore and offshore coral reefs caused by a severe tropical cyclone. Limnology and Oceanography 53:690-704
- Gratwicke B, Speight MR (2005) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology 66:650-667
- Guillemot N, Chabanet P, Pape OL (2010) Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs 29:445-453
- Harmelin-Vivien ML (1994) The Effects of Storms and Cyclones on Coral Reefs: A Review. Journal of Coastal Research Special Issue No. 12. COASTAL HAZARDS: PERCEPTION, SUSCEPTIBILITY AND MITIGATION:211-231
- Hawkins JP, Roberts CM (1992) Effects of recreational SCUBA diving on fore-reef slope communities of coral reefs. Biological Conservation 62:171-178
- Henry L-A, Hart M (2005) Regeneration from Injury and Resource Allocation in Sponges and Corals a Review. International Review of Hydrobiology 90:125-158
- Highsmith RC (1982) Reproduction by Fragmentation in Corals. Marine Ecology Progress Series 7:207-226
- Hughes T (2016) The 2016 Coral Bleaching Event in Australia [abstract]. International Coral Reef Symposium; 2016 June 19-24 Session 30
- Johnson DW (2007) Habitat Complexity Modifies Post-Settlement Mortality And Recruitment Dynamics Of A Marine Fish. Ecology 88:1716-1725
- Katz SM, Pollock FJ, Bourne DG, Willis BL (2014) Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs 33:705-716
- Knowlton N, Lang JC, Rooney MC, Clifford P (1981) Evidence for delayed mortality in hurricane-damaged Jamaican staghorn corals. Nature 294:251-252
- Lirman D (2000) Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments. Journal of Experimental Marine Biology and Ecology 251:41-57
- Ma C-C, Chuang K-C (2008) Investigation of the transient behavior of a cantilever using a point-wise fiber Bragg grating displacement sensor system. Smart Materials and Structures 17:065010
- Madin JS (2005) Mechanical limitations of reef corals during hydrodynamic disturbances. Coral Reefs 24:630-635


- Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477-480
- Madin JS, Black KP, Connolly SR (2006) Scaling water motion on coral reefs: from regional to organismal scales. Coral Reefs 25:635-644
- Madin JS, Hoogenboom MO, Connolly SR (2012) Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs. The Journal of Experimental Biology 215:968-976
- Madin JS, Baird AH, Dornelas M, Connolly SR (2014) Mechanical vulnerability explains size-dependent mortality of reef corals. Ecology Letters 17:1008-1015
- Madin JS, Anderson KD, Andreasen MH, Bridge TCL, Cairns SD, Connolly SR, Darling ES, Diaz M, Falster DS, Franklin EC, Gates RD, Hoogenboom MO, Huang D, Keith SA, Kosnik MA, Kuo C-Y, Lough JM, Lovelock CE, Luiz O, Martinelli J, Mizerek T, Pandolfi JM, Pochon X, Pratchett MS, Putnam HM, Roberts TE, Stat M, Wallace CC, Widman E, Baird AH (2016) The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Scientific Data 3:160017
- Mao Y-M, Guo X-L, Zhao Y (2009) Experimental Study of Hammer Impact Identification on a Steel Cantilever Beam. Experimental Techniques 34:82-85
- Massel SR, Done TJ (1993) Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: meteorology, hydrodynamics and demography. Coral Reefs 12:153-166
- Olivotto I, Cardinali M, Barbaresi L, Maradonna F, Carnevali O (2003) Coral reef fish breeding: the secrets of each species. Aquaculture 224:69-78
- Pateiro-Lopez B, Rodriguez-Casal A (2016) alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane, <u>https://cran.r-project.org/web/packages/alphahull/index.html</u> R package version 2.1
- Puotinen M, Maynard JA, Beeden R, Radford B, Williams GJ (2016) A robust operational model for predicting where tropical cyclone waves damage coral reefs. Scientific Reports 6:26009
- R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
- Rasser MW, Riegl B (2002) Holocene coral reef rubble and its binding agents. Coral Reefs 21:57-72
- Roberts CM, Ormond RFG (1987) Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecology Progress Series 41:1-8
- Ruiz PD, Kaufmann GH, Möller O, Galizzi GE (2000) Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and "nite elements. Optics and Lasers in Engineering 32:473-484
- Smith LD, Hughes TP (1999) An experimental assessment of survival, re-attachment and fecundity of coral fragments. Journal of Experimental Marine Biology and Ecology 235:147-164
- Strand7 Pty Ltd (2015) Strand7 Finite Element Analysis System. Strand7 Sydney, Australia
- Sun CT (1977) An Analytical Method for Evaluation of Impact Damage Energy of Laminated Composites Composite Materials: Testing and Design (Fourth Conference). American Society for Testing and Materials 427-440
- Sutton M (1985) Patterns of spacing in a coral reef fish in two habitats on the Great Barrier Reef. Animal Behaviour 33:1332-1337

- Tunnicliffe V (1981) Breakage and propagation of the stony coral Acropora cervicornis. Proceedings of the National Academy of Sciences of the United States of America 78:2427
- Wallace CC (1985) Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Marine Biology 88:217-233
- Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin ZVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biology 12:2220-2234
- Winkler R, Antonius A, Renegar DA (2004) The Skeleton Eroding Band Disease on Coral Reefs of Aqaba, Red Sea. Marine Ecology 25:129-144
- Woodley JD, Chornesky EA, Clifford PA, Jackson JBC, Kaufman LS, Knowlton N, Lang JC, Pearson MP,
 Porter JW, Rooney MC, Rylaarsdam KW, Tunnicliffe VJ, Wahle CM, Wulff JL, Curtis ASG,
 Dallmeyer MD, Jupp BP, Koehl MAR, Neigel J, Sides EM (1981) Hurricane Allen's Impact on
 Jamaican Coral Reefs. Science 214:749-755
- Youcef-Toumi K, Guts DA (1989) Impact and force control IEEE International Conference on Robotics and Automation. IEEE 410-416

Supplementary Material

Growth forms are as follows: Digitate; F, Massive; G, H and Plating; I, J. growth forms. Black circle: Area of impact, Red circle: Area of breakage/dislodgement. Arrows point from area of impact to area of breakage. Figure S1.2. Plots modelling the outcome (breakage or dislodgement) of random bombardment impacts from debris for a range of coral

Table S1. Colony impact results and dimensions. Columns are as follows: *id*: colony id, *growth.form*: colony growth form, *brk.dis*: outcome (0: dislodgement, 1: breakage), *imp.force.mpa*: force of impact, *x.cm*: width, *z.cm*: height, *surf.cm2*: surface area (cm²), *vol.cm3*: volume (cm³) and *sa.v*: surface area to volume ratio.

id	growth.form	brk.dis	imp.force.mpa	x.cm	y.cm	surf.cm2	vol.cm3	sa.v
31	branch	1	90	12.3	21.4	8279.8	35909.2	0.230576008
31	branch	0	90 57	12.3	21.4	8279.8 8279.8	35909.2 35909.2	0.230576008
31	branch	1	18	12.3	21.4	8279.8 8279.8	35909.2 35909.2	0.230576008
31	branch	1	60	12.3	21.4	8279.8 8279.8	35909.2 35909.2	0.230576008
31	branch	0	81	12.3	21.4	8279.8	35909.2 35909.2	0.230576008
31	branch	0	60	12.3	21.4	8279.8 8279.8	35909.2 35909.2	0.230576008
31	branch	0	84	12.3	21.4	8279.8 8279.8	35909.2 35909.2	0.230576008
31	branch	1	84 18	12.3	21.4	8279.8 8279.8	35909.2 35909.2	0.230576008
31	branch	0	42	12.3	21.4	8279.8 8279.8	35909.2 35909.2	0.230576008
31	branch	1	33	12.3	21.4	8279.8 8279.8	35909.2 35909.2	0.230576008
33	branch	0	9 9	12.5	15.2	8279.8 3142.1	10296.9	0.305150094
33	branch	0	9 15	15.9	15.2	3142.1 3142.1	10296.9	0.305150094
33	branch	0	6	15.9	15.2	3142.1	10296.9	0.305150094
	branch	0		15.9	15.2	3142.1 3142.1	10296.9	0.305150094
33 33	branch	0	6 9	15.9 15.9	15.2 15.2	3142.1 3142.1	10296.9	0.305150094
		0						
33	branch		24	15.9	15.2	3142.1	10296.9	0.305150094
33	branch	0	15	15.9	15.2	3142.1	10296.9	0.305150094
33	branch	0	9	15.9	15.2	3142.1	10296.9	0.305150094
33	branch	0	6	15.9	15.2	3142.1	10296.9	0.305150094
33	branch	0	6	15.9	15.2	3142.1	10296.9	0.305150094
59	mass	0	126	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	114	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	288	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	468	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	294	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	480	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	282	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	306	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	282	7.4	8.6	2080.9	22326	0.093205232
59	mass	0	270	7.4	8.6	2080.9	22326	0.093205232
9	mass	0	408	10.2	11.1	3048.5	42890	0.071077174
9	mass	0	258	10.2	11.1	3048.5	42890	0.071077174
9	mass	0	276	10.2	11.1	3048.5	42890	0.071077174
9	mass	0	216	10.2	11.1	3048.5	42890	0.071077174

9	mass	0	144	10.2	11.1	3048.5	42890	0.071077174
9	mass	0	294	10.2	11.1	3048.5	42890	0.071077174
9	mass	0	264	10.2	11.1	3048.5	42890	0.071077174
9	mass	0	240	10.2	11.1	3048.5	42890	0.071077174
9	mass	0	270	10.2	11.1	3048.5	42890	0.071077174
9	mass	0	228	10.2	11.1	3048.5	42890	0.071077174
22	digi	0	30	23.3	28.7	27794.9	215584	0.128928399
22	digi	0	48	23.3	28.7	27794.9	215584	0.128928399
22	digi	1	45	23.3	28.7	27794.9	215584	0.128928399
22	digi	0	57	23.3	28.7	27794.9	215584	0.128928399
22	digi	0	66	23.3	28.7	27794.9	215584	0.128928399
22	digi	0	24	23.3	28.7	27794.9	215584	0.128928399
22	digi	0	57	23.3	28.7	27794.9	215584	0.128928399
22	digi	0	21	23.3	28.7	27794.9	215584	0.128928399
22	digi	0	42	23.3	28.7	27794.9	215584	0.128928399
22	digi	0	39	23.3	28.7	27794.9	215584	0.128928399
24	digi	0	54	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	0	75	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	0	45	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	0	27	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	0	30	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	1	69	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	0	42	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	0	27	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	0	15	8.4	12.2	3944.5	16184.2	0.243725362
24	digi	0	57	8.4	12.2	3944.5	16184.2	0.243725362
12	cory	1	15	10.6	11.8	4843	13852.1	0.349622079
12	cory	0	102	10.6	11.8	4843	13852.1	0.349622079
12	cory	0	72	10.6	11.8	4843	13852.1	0.349622079
12	cory	0	51	10.6	11.8	4843	13852.1	0.349622079
12	cory	1	84	10.6	11.8	4843	13852.1	0.349622079
12	cory	0	72	10.6	11.8	4843	13852.1	0.349622079
12	cory	1	18	10.6	11.8	4843	13852.1	0.349622079
12	cory	0	45	10.6	11.8	4843	13852.1	0.349622079
12	cory	1	27	10.6	11.8	4843	13852.1	0.349622079
12	cory	1	30	10.6	11.8	4843	13852.1	0.349622079
17	cory	0	57	10.3	12.9	4700.6	10372.1	0.453196556
17	cory	0	24	10.3	12.9	4700.6	10372.1	0.453196556
17	cory	0	24	10.3	12.9	4700.6	10372.1	0.453196556
17	cory	1	51	10.3	12.9	4700.6	10372.1	0.453196556
17	cory	0	15	10.3	12.9	4700.6	10372.1	0.453196556
17	cory	1	18	10.3	12.9	4700.6	10372.1	0.453196556
17	cory	0	45	10.3	12.9	4700.6	10372.1	0.453196556

	1							
17	cory	0	21	10.3	12.9	4700.6	10372.1	0.453196556
17	cory	1	12	10.3	12.9	4700.6	10372.1	0.453196556
17	cory	1	30	10.3	12.9	4700.6	10372.1	0.453196556
115	plate	1	45	6.4	5.7	929	2148	0.432495345
115	plate	0	72	6.4	5.7	929	2148	0.432495345
115	plate	0	36	6.4	5.7	929	2148	0.432495345
115	plate	1	69	6.4	5.7	929	2148	0.432495345
115	plate	0	19	6.4	5.7	929	2148	0.432495345
115	plate	0	24	6.4	5.7	929	2148	0.432495345
115	plate	0	33	6.4	5.7	929	2148	0.432495345
115	plate	0	27	6.4	5.7	929	2148	0.432495345
115	plate	0	39	6.4	5.7	929	2148	0.432495345
115	plate	1	186	6.4	5.7	929	2148	0.432495345
123	plate	0	36	18.9	22.2	16026.1	49466	0.323982129
123	plate	1	36	18.9	22.2	16026.1	49466	0.323982129
123	plate	0	30	18.9	22.2	16026.1	49466	0.323982129
123	plate	0	27	18.9	22.2	16026.1	49466	0.323982129
123	plate	0	105	18.9	22.2	16026.1	49466	0.323982129
123	plate	0	57	18.9	22.2	16026.1	49466	0.323982129
123	plate	0	48	18.9	22.2	16026.1	49466	0.323982129
123	plate	0	36	18.9	22.2	16026.1	49466	0.323982129
123	plate	0	27	18.9	22.2	16026.1	49466	0.323982129
123	plate	1	63	18.9	22.2	16026.1	49466	0.323982129

For tables S2-S11, columns are as follows:
<i>point</i> : simulation, <i>imp_str_mpa</i> : force of
impact, <i>imp_</i> brick: impact brick number,
<i>imp_node</i> : impact bricks central node
number, <i>imp_x, y, z</i> : central nodes x, y and
z coordinates, <i>brk_brick</i> : brick number
where break occurs, <i>brk_node</i> : break
bricks central node number, <i>brk_x</i> , <i>y</i> , <i>z</i> :
central nodes x, y and z coordinates. Nodes
can be defined as points placed in a xyz
coordinate system that when linked
together by elements can form three-
dimensional bricks, both elements and
bricks may be assigned physical properties
such as Young's modulus, Poisson's ratio
and density.

10	9	8	7	6	S	4	З	2	1	point
228	270	240	264	294	144	216	276	258	408	imp_str_mpa
13567	107334	98786	23202	111124	111989	103320	114149	5268	5902	imp_brick
10511	10392	22012	11039	11668	8138	21725	15032	22216	21238	imp_node
4.42979	-4.455688	-0.13152	1.749642	3.227756	-1.717357	-2.953986	1.044507	0.574096	-3.189192	imp_x
-2.987934	-2.706289	-1.081056	-4.659318	-4.598168	-3.880629	-1.786678	-4.609146	-3.668322	-3.668323	imp_y
5.071235	3.256632	8.242807	6.036568	4.485281	2.789991	7.301985	3.773904	7.066781	5.890753	imp_z
98859	3430	98859	98859	98859	40593	98859	98859	98859	95787	brk_brick
14883	13357	14883	14883	14883	2287	14883	14883	14883	8656	brk_node
1.279712	-4.365219	1.279712	1.279712	1.279712	-1.965839	1.279712	1.279712	1.279712	-3.22285	brk_x
-4.844353	-2.727503	-4.844353	-4.844353	-4.844353	-3.734303	-4.844353	-4.844353	-4.844353	-3.196898	brk x brk y brk z
2.127465	2.127464	2.127465	2.127465	3 2.127465	2.338192	2.127465	2.127465	2.127465	2.338192	brk_z

Table S2. Detailed outcome results for massive colony, ID 9.

10	9	8	7	6	S	4	З	2	1	point		Tabl	10	9	8	7	6	S	4	З	2
30	12	21	45	18	15	51	24	24	57	imp_str_mpa	-	Table S4. Detailed outcome results for corymbose colony, ID 17.	30	27	45	18	72	84	51	72	102
26375	8472	33857	19580	5830	303	176028	5642	10193	13651	imp_brick		atcome result	37114	2372	14212	119554	40344	7502	85317	9650	8610
15884	39926	7277	17730	40970	1189	24440	38823	38619	27937	imp_node		s for corymb	21534	33119	12536	37587	10407	28794	13600	25392	28999
3.577966	-1.712417	1.955206	-0.516909	3.501857	-0.544337	-2.338681	0.164974	-3.380713	1.207681	imp_x		oose colony, II	-0.421394	-3.615111	-0.44737	1.331691	3.050474	2.745057	-1.703372	-1.02393	1.567248
0.426169	2.287163	-0.302198	-1.540997	0.826278	0.122574	-1.67586	-1.259827	-2.510821	-0.842877	imp_y		D 17.	-3.553472	0.46762	-2.364658	-1.652399	-0.503005	-1.652448	-2.330366	-2.830251	-1.652443
5.793732	11.776666	7.653289	4.039155	8.857555	10.425011	3.851982	7.60606	7.397677	3.435072	imp_z			6.980113	5.70428	8.656372	9.002162	6.296984	3.348676	2.195968	4.290931	4.526487
15470	181771	158	178115	41868	158	27281	158	178115	50503	brk_brick			130400	168529	170346	32290	117292	22256	157892	170346	117292
37361	43133	24331	9045	1158	24331	13960	24331	9045	747	brk_node			13427	14117	24802	13639	40752	21208	7775	24802	40752
1.833437	-1.009035	-1.086313	-0.894333	2.854153	-1.086313	-1.652398	-1.086313	-0.894333	1.51411	brk_x			-0.274463	-2.836617	-1.495054	1.050805	-0.152903	2.458582	-1.389456	-1.495054	-0.152903
0.617297	1.534833	-0.634339	-1.05739	1.419623	-0.634339	-1.204341	-0.634339	-1.05739	-1.424587	brk_y			-3.213894	-0.117831	-2.830262	-2.193102	-2.91848	-1.84847	-2.837758	-2.830262	-2.91848
5.311948	8.083841	2.600898	2.722052	7.996182	2.600898	4.160818	2.600898	2.722052	2.722049	brk_z			6.210816	5.576853	1.464182	8.128747	1.448023	3.46536	1.509985	1.464182	1.448023

 Table S3. Detailed outcome results for corymbose colony, ID 12.

 point
 imp_str_mpa
 imp_brick
 imp_node
 imp_x

 1
 15
 117767
 17027
 -2.4392

imp_y

imp_z

brk_brick brk_node brk_x 42343

-2.643973 0.155611 8.354076 brk_y

brk_z

-0.018079 9.744123 176470

H	
a	
E	
ŭ	
S5. Detaile	
Š	
ťa	
ile	
ğ	
Q	
Ē	
8	
B	
0	
ē	
ns	
lts	
ed outcome results for digit	
G .	
<u>a</u>	
<u>6</u>	
ita	
fe	
õ	
color	
ñ	
ý,	
, H	
<u> </u>	
22	

10	9	8	7	6	5	4	ω	2	1	point
39	42	21	57	24	66	57	45	48	30	imp_str_mpa imp_brick imp_node imp_x
182672	180579	38384	35614	10461	136059	187366	168278	233025	6440	imp_brick
7988	33707	12067	21676	43510	24933	6885	42688	22796	43378	imp_node
7.85793	3.906046	1.553573	-0.302411	-6.186646	-2.557997	7.368601	-1.140362	6.072213	-8.709881	imp_x
	-7.522301	-12.159994	-9.968274	-4.998972	-3.592074	-1.315728	-12.568563	-11.264413	-9.035958	imp_y
9.94891	7.468806	13.804585	9.740288	14.533704	5.773536	3.15887	11.001295	12.906844	12.515204	imp_z
230748	230748	230748	230748	230748	159266	168465	203345	230748	230748	brk_brick
25701	25701	25701	25701	25701	14784		42761	25701	25701	brk_node
5.880515	5.880515	5.880515	5.880515	5.880515	2.426896	7.438486	-0.636551	5.880515	5.880515	brk_x
-4.400213	-4.400213	-4.400213	-4.400213	-4.400213	-5.579492	-1.971356	-0.636551 -12.567656 11.002345	-4.400213	-4.400213	rick brk_node brk_x brk_y brk_z
2.679076	2.679076	2.679076	2.679076	2.679076	2.7432	2.422463	11.002345	2.679076	2.679076	brk_z

Table S6. Detailed outcome results for digitate colony, ID 24.

10	9	8	7	6	S	4	ω	2	1	point
57	15	27	42	69	30	27	45	75	54	imp_str_mpa imp_brick
8014	179733	1918	3440	182886	147226	182597	4972	196692	147907	imp_brick
29965	16413	42773	29938	7735	43251	13111	42335	26115	31203	imp_node
3.040158	1.076069	-2.006811	1.180766	-3.032927	3.837045	1.184548	-1.741138	0.383882	2.508904	imp_x
-5.152086	-0.436116	0.160651		-3.518619	-0.370773	-2.330947	-4.62082	-5.152084	-3.823954	imp_y
3.482461	7.714137	6.669986	4.279345	2.90376	5.34183	6.2851	4.544972	3.216835	2.154316	imp_z
139480	139480	139480	139480	179233	139480	139480	139480	25003	1416	brk_brick
31165	31165	31165	31165	14647	31165	31165	31165	2118	29646	brk_node
1.047952	1.047952	1.047952	1.047952	-0.815959	1.047952	1.047952	1.047952	0.736228	2.774532	brk_x
-3.691141 1.75587-	-3.691141	-3.691141	-3.691141	-2.719074	-3.691141	-3.691141	-3.691141	-4.243441	-4.355213	k brk_node brk_x brk_y brk_z
1.755874	1.755874	1.755874	1.755874	2.761632	1.755874	1.755874	1.755874	1.782014	1.623059	brk_z

10	9	8	7	6	S	4	ω	2	1	point
33	42	18	84	60	81	60	18	57	06	imp_str_mpa
77971	67603	170741	178623	7572	127922	145400	158205	175397	61033	imp_brick
11565	6693	15029	17583	29069	14247	4756	44512	15947	10191	imp_node
-3.580653	-1.774249	0.35715	1.516482	-1.114552	-3.422521	-2.513739	-2.02345	2.388358	3.34138	imp_x
-8.674071	0.729746	-5.797732	-1.675553	-6.778611	1.774026	-8.949044	-3.323762	-6.010231	-7.9046	imp_y
13.015917	6.573741	13.064109	5.550084	8.634918	8.409944	11.632852	15.359505	9.265924	12.285987	imp_z
73250	202910	161978	3782	138752	202910	958	71602	138752	78100	brk_brick
11761	29477	10279	40678	7369	29477	37553	10184	7369	18409	ck brk_node brk_x
-2.492456	-2.568337	-0.964605	2.156894	0.415096	-2.568337	-3.477039	-1.180811	0.415096	1.341784	
-8.55803	-1.32652	-6.326497	0.490876	-0.989272				-0.989272	-5.295778	brk_y brk_z
11.74828	3.54614	10.304526	3.546138	3.768469	3.54614	8.816584	10.12739	3.768469	8.364708	brk_z

Table S7. Detailed outcome results for branching colony, ID 31.

Table S8. Detailed outcome results for branching colony, ID 33.

10	9	8	7	6	S	4	ω	2	1	point
6	6	6	15	24	9	6	6	15	6	imp_str_mpa
123753	12696	133979	1263	120806	11441	11711	114444	127287	125057	ı imp_brick
19013	15990	20598	26346	1088	19717	16866	18788	27045	15410	imp_node
2.599939	-0.017017	0.129431	-0.889321	-2.413152	-3.958373	-6.839264	2.703884	3.14103	6.844672	imp_x
1.964352	2.51057	-1.156183	-2.50224	-1.643009	-2.119833	0.69332	0.893741	-1.638283	-3.386742	imp_y
9.892537	11.637128	6.924761	3.244917	2.314442	5.60491	7.750384	10.766365	4.108542	5.579333	imp_z
94659	94659	94659	94659	94585	94659	94659	94659	94659	94798	brk_brick
5369	5369	5369	5369	5369	5369	5369	5369	5369	57	ck brk_node brk_x
-2.048005	-2.048005	-2.048005	-2.048005	-2.048005	-2.048005	-2.048005	-2.048005	-2.048005	-2.2349	
-1.690758	-1.690758	-1.690758	-1.690758	-1.690758	-1.690758	-1.690758	-1.690758	-1.690758	-1.825966 1.454844	brk_y brk_z
1.454859	1.454859	1.454859	1.454859	1.454859	1.454859	1.454859	1.454859	1.454859	1.454844	brk_z

10	9	8	7	6	S	4	ω	2	1	point
270	282	306	282	480	294	468	288	114	126	imp_str_mpa
132353	183971	183812	25116	3765	205114	174286	152761	174849	6704	imp_brick
10752	5593	4861	11147	42604	3646	42217	17541	41203	28593	imp_node
0.887756	-1.31951	-1.694044				1.459897	0.253074	-1.665136	2.241155	
-1.777325	-3.597834	-3.802557	-3.401146	-1.23964	-3.101306	-2.606844	-4.061909	-1.630256	-2.802158	imp_y
7.343683	5.54402	3.740809	6.169199		4.362473	6.479726	4.321778	6.870356	2.964065	imp_z
180640	180509	183329	180640	98551	183329	180640	180640	180509	186544	brk_brick
11519	6952	335	11519	5692	335	11519	11519	6952	3996	brk_node
-0.015606	0.111133	-1.895738	-0.015606	0.242533	-1.895738	-0.015606	-0.015606	0.111133	2.365096	brk_x
-4.179635	-4.237122	-3.79414	-4.179635	-4.274228	-3.79414	-4.179635		-4.237122	-3.061548	:k brk_node brk_x brk_y brk_z
2.565516	2.515309	2.561041	2.565516	2.515309	2.561041	2.565516	2.565516	2.515309	2.515309	brk_z

Table S9. Detailed outcome results for massive colony, ID 59.

Table S10. Detailed outcome results for plating colony, ID 115.

10	9	8	7	6	5	4	ω	2	1	point
186	39	27	33	24	19	69	36	72	45	imp_str_mpa
20694	10391	77432	13819	87745	78280	7344	5410	91966	10798	imp_brick
9390	9224	20743	10834	4794		15724	20564	20423	11883	imp_node
2.267306	-0.6916	0.640194		2.371861	0.327681		-0.609843	-1.391105	-2.849734	e imp_x
-2.144835	1.207097	-1.91386	~			-0.351401	-0.820111	-1.757613	-1.361147	imp_y
4.997812	5.467509	4.794211	2.866344	5.980114	6.044087	3.544151	4.481671	5.26295	5.507936	imp_z
20696	62648	62648	79614	62648	62648	13280	62648	62648	49702	brk_brick
9387	6368	6368	13992	6368	6368	10380	6368	6368	20256	brk_node
2.19559	0.276158	0.276158	-0.141087	0.276158	0.276158	0.672989	0.276158	0.276158	-2.719654	brk_x
-2.240448	-1.428904	-1.428904	-0.976373	-1.428904	-1.428904	-0.812121	-1.428904	-1.428904	-1.443228 5.575875	brk_node brk_x brk_y brk_z
4.922196	2.689113	2.689113	3 2.7629	2.689113	2.689113	1 3.291179	2.689113	2.689113	5.575875	brk_z

6 S 4 ω Ν \neg point imp_str_mpa imp_brick imp_node 36 48 57 27 30 36 105 4144 4412 5808 146714 27229 19563 146228 25549 36325 10507 14246 15395 11829 17826 x_dun -18.25136 -25.371085 -15.892443 -21.064274-17.914412-21.816974-20.866282 imp_y 27.914636 35.617085 35.272849 30.989359 35.330505 34.211606 32.455927 36.942442 imp_z 32.18955 28.504643 28.492964 31.037972 35.271994 31.136614 127255 127255 127255 127255 157256 127255 brk_brick brk_node 73385 38913 25260 25260 25260 25260 25260 25321 brk_x -20.126761 -17.872341-18.720485 -20.126761-20.126761-20.126761-20.126761 34.210794 34.210794 34.357205 brk_y 35.148307 34.210794 34.210794 34.210794 brk_z 26.62962 35.423277 26.629623 26.62962 26.62962 26.62962 26.62962

 Table S11. Detailed outcome results for plating colony, ID 123

8 0

36 27

490 119537

10

63

7118

36780 37033 37051

-10.751558 -12.157802 -8.642163

34.679947 36.555348 31.867227

32.72356

82159 82159 6777

37093

-19.189237 -19.189237 -9.110379

34.679551 34.679551 32.339808

32.726167

26.629629

26.629629

25290 25290

35.536045

31.317254