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Abstract

Over the last two decades, fluorescence based detection has become one of the lead-

ing sensing technologies in biomedical, biological and related sciences. Its sensitivity

makes it possible to detect a single biomolecule through labeling with a suitable fluo-

rophore. Two principal fluorophore properties, brightness and photostability, are fun-

damentally important to achieve a high level of sensitivity and in many conventional

fluorophores these often fall short of the requirements. Among the methods used to im-

prove the sensitivity of fluorescence detection, the metal-enhanced fluorescence (MEF)

technique has been recently actively developed. The MEF phenomenon occurs when

an excited fluorophore is located in close proximity to metals, and it is particularly

pronounced near noble metal nanostructures. Electrons in such metal nanostructures

exhibit strong resonances often located in the visible part of the spectrum (also known

as surface plasmon resonance). They can interact with proximal fluorophores mod-

ifying their optical properties and producing increased quantum yield (fluorescence

efficiency) and improved photostability. It has been experimentally demonstrated that

the MEF technique can increase fluorescence intensity up to several hundreds times.

The work through my PhD project mainly focus on siver nanostructures and its po-

tential in fluorescence-based applications requiring very high sensitivity because their

strong surface plasmon resonance in the visible matches the absorption and emission

bands of most fluorophores.

I began with synthesis for Ag nanostructure-coated silica beads in the solution-based

ix



x Abstract

platform as a new MEF substrate. My first study employed these nanostructures to en-

hance the fluorescence readout on individual silica beads. These Ag nanostructure were

deposited on micrometer size silica beads. The fluorescence enhancement was investi-

gated using a model AlexaFluor 430 IgG immunoassay and AlexaFluor 430 labeling.

Approximately 8.5-fold and 10.1-fold higher fluorescence intensities at 430 nm excita-

tion were, respectively, observed from silvered 400 nm and 5 µm silica beads deposited

on glass as compared to the control sample. This achievement allowed us to demon-

strate for the first time MEF immunoassays on silica beads by using high-throughput

flow cytometry. Furthermore, we discovered that these Ag nanostructure-coated silica

beads are able to modify the luminescence decay lifetime of lanthanide fluorophores

(BHHCT − Eu3+) for time-gated luminescence bioimaging applications. The fluores-

cence enhancement factor achieved about 11 times, while the simultaneously measured

fluorescence lifetime was reduced twofold. The fluorophore stability was also improved

by a factor of three. We applied such bead substrates to time-gated fluorescence imag-

ing of Giardia lamblia cells stained by BHHCT−Eu3+ with improvement in brightness

by a factor of two. This will open up a broad range of opportunities for ultrasensitive

and low background fluorescence detection using lanthanide fluorophores. Additionally,

I applied these Ag nanostructures to another type of luminophor, upconversion (UC)

nanoparticles via a simple bioassy. Specifically, streptavdin (SA)-labeled UC nanopar-

ticles were bound to the biotinlyated anti-mouse IgG antibody which was attached to

Ag nanostructure-coated silica beads in advance. These Ag nanostructures produced

the strong luminescence enhancement (∼4.4-fold for the green mission and ∼3.5-fold

for the red emission) from NaYF4 : Yb,Er nanoparticles, while the simultaneously

measured luminescence lifetime was reduced 2-fold for the green mission and 2.2-fold

for the red emission. These findings open a new pathway to rationally modulate the

UC emission, and broadly impact areas such as bioimageing and bioassays, as well as

enable new opportunities for energy harvesting and conversion.

In addition, I developed another kind of MEF substrate in this project, Eu chelate-

doped Ag@SiO2 nanocomposites, and systematically study the interaction between Ag

core and Eu chelate (BHHCT-Eu-DPBT) by tuning the distance between them and



xi

Ag core sizes. At high excitation intensities, these nanocomposites showed greatly in-

creased fluorescence enhancement factors of up to 145, due to significantly increased

radiative rates in samples with metal cores, from about 700 s−1 in control samples to

over 5000 s−1. They are bright enough to be observed as single particles and are com-

patible with low background time-gating by using simple detection systems. A simple

bioassay using avidin-biotin binding system was also carried out with the lumines-

cence enhancement factor of ∼120, demonstrating the potential of these bioconjugated

nanocomposites to be used in a range of biological applications.

Based on these experimental results, we also presented the theoretical analysis for

the high fluorescence enhancement factor. This phenomenon observed on the nanos-

tructured silver surfaces is a result of two effects: an increase of a local electromagnetic

field near silver nanostructures, leading to increased excitation rate of fluorophores and

an increase of the radiative decay rate Γ of fluorophores close to silver nanostructures,

reflected both in the fluorescence lifetime and quantum yield. The local electromag-

netic field enhancement produces a higher excitation rate but it does not change the

lifetime of the fluorophore; this effect is referred as excitation enhancement (Eex). The

second effect referred as emission enhancement (Eem), increases the quantum yield and

reduces the lifetime of the fluorophore. The detailed mechanism was systematically

analysed in the following chapters.

In summary, this work mainly covered the fabrication of nanoscaled silver with

different geometries and the MEF effect induced by them in biological applications

such as bioassays, immunoassays and bioimaging.
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