
Change Management for Service

Based Business Processes

Yi Wang

A thesis submitted in fulfillment

of the requirements of the degree of

Doctor of Philosophy

Department of Computing

Faculty of Science

Macquarie University

Supervisor: Prof. Jian Yang

April 2011

c⃝ 2011 Yi Wang

ORIGINALITY STATEMENT

I certify that the work in this thesis entitled “Change Management for Service

Based Business Processes” has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree to any other university

or institution other than Macquarie University.

I also certify that the thesis is an original piece of research and it has been

written by me. Any help and assistance that I have received in my research work

and the preparation of the thesis itself have been appropriately acknowledged.

In addition, I certify that all information sources and literature used are

indicated in the thesis.

Yi Wang

April 2011

To my family.

Acknowledgements

This thesis would not have been possible without the support of many people:

It is a pleasure to thank them all. First of all, I express my sincere appreciation

to my supervisor, Professor Jian Yang, for her continuous support and guidance

that have made my research possible. I would like to show my deep gratitude

to my co-supervisor, Dr. Weiliang Zhao, for giving insightful and valuable com-

ments about my research and exceptional support during these three and half

years of studies. I sincerely thank all the people in the Department of Comput-

ing, Faculty of Science, Macquarie University, for their warm support and help.

Finally, I am indebted to my parents and my husband for their love, support,

and encouragement throughout the whole program of my study. Without them

this work would have never been accomplished.

v

Abstract

In the service oriented computing paradigm, business processes and services are

subject to change and variation arising from both the external and internal re-

quirements of organizations from time to time. A service change can affect its

internal supporting business process and a change occurred in a business process

often has various levels of impact on its supported services. This thesis provides

research results on the challenging issue of change management for service-based

business processes.

Different from existing works in the fields of business process change manage-

ment, this research focuses on the dependencies between services and business

processes. In the real world, there are cases when multiple services are supported

by a single business process. The changes of a business process and multiple

services can affect each other. The dependencies between services and business

process make change management complex and challenging. To manage such

changes, it is crucial to identify different types of changes associated with ser-

vices and business processes, analyse change impact patterns, and then decide

the effective mechanisms to deal with them.

In this thesis, a service-oriented business process model is developed for cap-

turing the major characteristics of the required change management in the context

vii

described above. Based on the proposed model, the taxonomy is identified for the

changes associated with services and business processes. A set of change impact

patterns are specified. Each change impact pattern describes a specific type of

change effect. With the help of the change taxonomy, the change impact patterns,

and the mechanisms for dealing with individual changes, the cascading effect of

changes within the service-based business processes can be analysed. As a proof

of concept, a prototype has been developed to realize the change management

mechanisms presented in this thesis.

Publications based on this Thesis

[1] Y. Wang, J. Yang, and W. Zhao. Managing Changes for Service Based Busi-

ness Processes. In Proceedings of the 5th IEEE Asia-Pacific Services Computing

Conference, APSCC 2010, 6-10 December 2010, pages 75-82.

[2] Y. Wang, J. Yang, and W. Zhao. Change Impact Analysis for Service Based

Business Processes. In Proceedings of the IEEE International Conference on

Service-Oriented Computing and Applications, SOCA 2010, 13-15 December

2010, pages 1-8.

[3] Y. Wang, J. Yang, and W. Zhao. Service Change Analyzer: An Enabling

Tool for Change Management in Service-Based Business Processes, IEEE In-

ternational Conference on e-Business Engineering, ICEBE 2011, 19-21 October

2011. (accepted)

[4] Y. Wang, J. Yang, and W. Zhao. A Change Analysis Tool for Service-Based

Business Processes, the 12th International Conference on Web Information Sys-

tem Engineering, WISE 2011, 13-14 October 2011. (accepted)

[5] Y. Wang, J. Yang, and W. Zhao. Change Impact Analysis in Service-Based

Business Processes, Service Oriented Computing and Applications. (under revi-

sion)

ix

Contents

Acknowledgements v

Abstract vii

Publications based on this Thesis ix

1 Introduction 1

1.1 Research Overview . 1

1.2 Research Background . 4

1.2.1 Service-Oriented Computing 5

1.2.2 Change Management . 6

1.3 Research Requirements and Issues 9

1.3.1 Research Requirements . 9

1.3.2 Research Issues . 12

1.4 Contributions . 15

1.5 Thesis Organization . 18

2 Related Work 21

2.1 Change Management for Business Processes 26

2.1.1 Evolution of Workflow Processes 27

xi

xii Contents

2.1.2 Flexibility of Business Processes 30

2.2 Change Management in Service-Oriented Environment 34

2.2.1 Compatibility of Services 37

2.2.2 Change Management for Web Services 41

2.2.3 Service Evolution . 45

2.3 Service Adaptation . 50

2.3.1 Adaptation of Service Interfaces 52

2.3.2 Adaptation of Service Protocols 54

2.3.3 Flexibility of Service-Based Business Processes 58

2.4 Discussion . 61

3 Service-Oriented Business Process Model 63

3.1 A Motivating Example . 65

3.2 Service-Oriented Business Process Model 67

3.2.1 Process Layer . 68

3.2.1.1 Control Flow Schema 68

3.2.1.2 Information Flow Schema 70

3.2.2 Service Layer . 73

3.2.3 Relations Between Process Layer and Service Layer 74

3.3 Discussion . 78

4 Change Taxonomy 83

4.1 Service Changes . 84

Contents xiii

4.1.1 Operation Existence Changes 86

4.1.2 Operation Granularity Changes 87

4.1.2.1 Asynchronous Operation Granularity Change . . 89

4.1.2.2 Synchronous Operation Granularity Change . . . 96

4.1.2.3 Complex Operation Granularity Change 98

4.1.3 Transition Changes . 101

4.2 Process Changes . 105

4.3 Discussion . 116

5 Change Impact Analysis 119

5.1 Overview of Change Impact Patterns 121

5.2 Direct Impact Scope . 124

5.2.1 Direct Impact Scope of a Service Change 124

5.2.2 Direct Impact Scope of a Process Change 129

5.3 Change Impact Patterns . 133

5.3.1 Change Impact Patterns for Service Change 133

5.3.2 Change Impact Patterns for Process Change 141

5.4 Discussion . 151

6 Change Handling 155

6.1 Handling Individual Changes . 157

6.1.1 Dealing with Service Change: Add an Operation 157

6.1.2 Dealing with Service Change: Delete an Operation 159

xiv Contents

6.1.3 Dealing with Service Change: Modify Operation Granularity160

6.1.4 Dealing with Service Change: Reordering Transition Se-

quences . 162

6.1.5 Dealing with Service Change: Modify Conditional and Loop-

ing Transition Sequences 165

6.1.6 Dealing with Process Changes 166

6.2 Handling Change Propagation . 168

6.3 Change Isolation . 173

6.4 Discussion . 175

7 Service Change Analyser—A Prototype 177

7.1 Architecture . 178

7.2 Data Structure . 180

7.3 Components of Service Change Analyser 184

7.3.1 Operation Based Analysis 184

7.3.2 Transition Based Analysis 186

7.4 Running Examples . 187

7.4.1 Example for Operation Based Analysis 187

7.4.2 Example for Transition Based Analysis 193

7.5 Discussion . 196

8 Conclusions and Future Work 199

8.1 Concluding Remarks . 199

Contents xv

8.2 Future Directions . 203

Bibliography 205

xvi Contents

List of Figures

3.1 A motivating example. 66

3.2 Control flow schema of the sales process. 69

3.3 Information flow schema of the sales process. 71

3.4 Services: (a) the service for buyer sb; (b) the service for financial

institute sf . 74

3.5 Examples of internal processes and service. 75

3.6 (a) Abstract precedence relation; (b)-(e) internal processes. . . . 78

3.7 (a) Abstract parallel relation; (b) internal process. 79

3.8 (a) Abstract conditional relation; (b)internal process. 79

4.1 Taxonomy of service change. 85

4.2 Operation existence change. 87

4.3 Operation granularity changes. 89

4.4 AOGC type 1 one-to-one change. 90

4.5 An example for AOGC type 1 one-to-one change. 91

4.6 AOGC type 2 one-to-many/many-to-one change. 92

4.7 Examples for AOGC type 2 one-to-many change. 94

4.8 AOGC type 3 many-to-many change. 94

4.9 SOGC type 1 one-to-one change. 97

xvii

xviii LIST OF FIGURES

4.10 SOGC type 2 one-to-many/ many-to-one change. 98

4.11 SOGC type 3 many-to-many change. 99

4.12 COGC type 1 asynchronous-to-synchronous change. 100

4.13 An example for COGC type 1 synchronous-to-asynchronous change.

101

4.14 Transition sequence order change (TSOC). 102

4.15 Sequential (parallel) to parallel (sequential) transition sequence

change (SPTSC, PSTSC). 103

4.16 Adding (removing) conditional transition sequence change (ACTSC

(RCTSC)). 104

4.17 Adding (removing) looping transition sequence change (ALTSC

(RLTSC)). 104

4.18 Taxonomy of process changes. 106

4.19 Serially insert a process fragment. 106

4.20 Examples of serially inserting an activity. 109

4.21 Parallel insert an activity. 110

4.22 Conditionally insert an activity. 110

4.23 Serially move an activity. 111

4.24 Parallel move an activity. 112

4.25 Conditionally move an activity. 113

4.26 One-to-one replacement. 113

4.27 One-to-many activities replacement. 114

LIST OF FIGURES xix

4.28 Parallelize (sequence) activities. 114

4.29 Embed an activity in conditional branch. 115

4.30 Embed an activity in conditional branch. 115

5.1 Overview of change impact patterns. 121

5.2 Change impact patterns. 122

5.3 Structure of the change impact pattern 125

5.4 (a) Service change: TSOC in service sb; (b) direct impact scope of

the service change. 129

5.5 (a) Process change: replace activities; (b) direct impact scope of

the process change. 132

5.6 Change impact pattern 1 Insert a c-Activity. 135

5.7 Change impact pattern 2 Remove a c-Activity. 136

5.8 Change impact pattern 3 Replace c-Activities. 138

5.9 Change impact pattern 4 Move c-Activities. 140

5.10 Change impact pattern 5 Add, Remove or Modify Conditional

Branches. 142

5.11 Change impact pattern 6 Add an Operation. 145

5.12 Change impact pattern 7 Remove Operations. 146

5.13 Change impact pattern 8 Change Operation Granularity. 148

5.14 Change impact pattern 9 Change Transition Sequence. 150

xx LIST OF FIGURES

5.15 Change impact pattern 10 Add Conditional or Looping Transition

Sequence. 152

6.1 Adapter for solving type A case at operation level. 158

6.2 Adapter for solving type B case at operation level. 159

6.3 Reordering activities. 163

6.4 Using reordering template. 164

6.5 An example of deadlock when using reordering template. 165

6.6 Propagation of a service change. 168

6.7 Propagation of a process change. 169

6.8 An example for propagation of a service change. 170

7.1 High level architecture for SCA. 179

7.2 Entity relationship diagram. 181

7.3 Hierarchy diagram. 185

7.4 Browse service operations. 188

7.5 Choose change types of service operations. 189

7.6 Add an operation in parallel to an existing operation. 190

7.7 Impact analysis for the change of adding operation in parallel to

an existing operation. 192

7.8 Browse service transitions. 193

7.9 Choose change types of service transitions. 194

7.10 Change transition sequence order. 195

LIST OF FIGURES xxi

7.11 Impact analysis for change transition sequence order. 197

xxii LIST OF FIGURES

List of Tables

6.1 Structure of reordering template. 164

xxiii

xxiv LIST OF TABLES

Chapter 1

Introduction

1.1 Research Overview

Service-Oriented Computing (SOC) facilitates the low-cost and rapid composition

of loosely coupled software applications. Service-oriented models are introduced

to replace or extend traditional process models in order to develop flexible busi-

ness processes and realise inter-organization integration [72]. Heterogeneous ser-

vices can be integrated into distributed applications across organization bound-

aries. The SOC paradigm and service technologies provide a solution for making

business processes of organizations accessible for their business partners in or-

der to realise inter-organizational cooperation and collaboration. Organizations

possess their own business processes, called private business processes, which are

normally invisible to their business partners. In service-oriented environments,

the functionalities of business processes are represented as services and exposed to

business partners. Each service represents parts of the functions of the associated

business process and is an external view of the business process from the view

point of a specific business partner. Business partners interact with each other by

1

2 Introduction

invoking corresponding services. A business process may have multiple business

partners and each business partner contributes part of the entire functionalities

of the business process. For example, a sales process offers the functionalities as

receiving purchase orders from customers, checking stock availabilities, sending

order acknowledgement, arranging shipment, processing payment and issuing in-

voices. This sales process interacts with three business partners as a buyer, a

shipping company, and a fanatical institute. A business process that involves

multiple business partners must expose suitable services for the purpose of inter-

acting with its partners.

In the SOC paradigm, business processes and services are coupled with each

other when services expose functionalities of business processes [53, 69]. Services

and business processes may change from time to time due to various reasons such

as business regulations and application environments [70]. In particular, services

may need to change their external specifications including signatures, business

protocols, and behaviors in order to engage in business collaborations. A business

process specifies a flow of activities and associated data connections in order to

fulfil a business goal. Changes associated with business processes at the business

logic level include modifications on its structures such as control flows and data

connections of activities. For instance, a business process may introduce new

activities to its control flow schema in order to provide more functionalities. A

specific service change usually affects the associated business process and services

and a change that occurs in a business process often has various levels of impact

§1.1 Research Overview 3

on the associated services. Service-based applications and information systems

will need to operate correctly despite of expected and unexpected changes related

to services and business processes. Change management, which is a traditional

problem in IT, is critical and challenging in the development and maintenance of

service-based applications and information systems [70, 68].

Significant researches have been done in business process change management.

These researches focus mostly on business processes without considering too much

on their relationships with services. They are inherently inadequate to support

change management in the service-based environment. Work also has been done

in service evolution [9, 10, 70], service adaptation [12, 17, 28, 39, 46, 75, 113],

change management for composite Web services [8, 7, 57, 58, 80, 108] and service

protocols [83, 93]. These researches only consider the features of services without

considering the internal supporting business processes.

There exist various types of dependence relations between services and busi-

ness processes. The relations between services and business processes are crucial

for the change management in the service-oriented environment for the reason

that any change can introduce cascading effects on the associated services and

business processes. In particular, a single business process may support multiple

services. As mentioned above, a sales process can support three services as a

buyer service, a shipping service, and a payment service to its partners when

fulfilling a purchase order. The three services are invoked by its partners and will

contribute to accomplish the entire functions of the sales process. The change

4 Introduction

management becomes complicated due to the dependencies between the business

process and related services.

In this thesis, we present our work in dealing with the change management

for service-based business processes. The goal of this research is to manage

the various types of changes associated with services and business processes by

developing effective mechanisms for analysing their impact on associated services

and business processes. We propose a service-oriented business process model for

capturing the major characteristics of change management issues in the service-

oriented environment. The proposed model provides the foundation for building

up the taxonomy of changes and generic solutions for detection, analysis, and

reaction to various types of changes of business processes and services. Our

research targets techniques for understanding and identifying various types of

changes, analysing the impact of changes, and facilitating the evolution of services

and business processes in the service-oriented environment.

1.2 Research Background

As stated in the previous section, our research deals with the change manage-

ment for service-based business processes. In this section, we present the back-

ground information of the research reported in this thesis. We first introduce

the basic concepts of service-oriented computing and then discuss the existing

researches about the change management in the field of workflow processes and

§1.2 Research Background 5

in the service-oriented environment.

1.2.1 Service-Oriented Computing

Service-Oriented Computing (SOC) is the computing paradigm that facilitates

the development of loosely coupled and distributed applications by using services

as fundamental elements [71]. Services are platform independent software compo-

nents that export their functionalities and properties by external specifications.

Services can vary in functions ranging from checking a credit number to executing

complicated business processes [69]. Services, which may be provided by different

organizations, can interact with each other based on well-defined service descrip-

tions. Descriptions of services contain the information about signatures, business

protocols, QoS properties, and behaviors of services that are necessary for ser-

vice publication, discovery, selection, and integration. Service-based applications

and information systems are developed by composing existing services to provide

add-value functionalities. The SOC paradigm benefits enterprises in the system

development and maintenance phases by reusing existing software components

and resources to create highly flexible business processes with low cost.

The Web service technologies provide a technical foundation for building

service-based applications and information systems based on the SOC paradigm.

Web services are services that are defined by the Web Service Description Lan-

guage (WSDL) [1], published and discovered in service registries by the Universal

Description, Discovery, and Integration (UDDI) [3], and communicate with each

6 Introduction

other over the Internet by using the Simple Object Access Protocol (SOAP) [4].

Existing Web services defined by WSDL can be composed into business processes

by using the XML based specification: Business Process Execution Language for

Web Services (BPEL4WS or simply BPEL) [2]. A BPEL process consists of a

set of structured activities that are implemented by Web services offered and

accessed over the Internet.

1.2.2 Change Management

Change management is an important issue in the development and maintenance

of software systems because of the evolving nature of software. Change man-

agement has been studied in a wide range of areas such as software engineering

[52, 45, 51, 64, 76], distributed systems [95, 50, 30], database management sys-

tems [92, 11, 112, 34], and information systems [90, 26]. In particular, the change

management for workflow processes, which is an important area related to our re-

search, has been studied extensively since mid 1990s [97, 19, 40, 41, 77, 79, 78, 85].

The workflow change management concentrates on workflow process evolution

and process flexibility. The goal of workflow process evolution is to allow busi-

ness processes to evolve in a disciplined, controlled, and dynamic manner. The

researches on workflow process evolution focus on managing static changes of

workflow processes (modifying process schemas) and dynamic changes (process

instance migration and adaptation). Process flexibility refers to the capabilities of

business processes to dynamically modify their process schemas and instances at

§1.2 Research Background 7

runtime in order to cope with both expected and unexpected circumstances. The

works on process flexibility provide various mechanisms for dynamically changing

process schemas and individual process instances at run time at certain context.

Service-based applications and information systems operate in a highly dy-

namic world and are subject to changes arising from the internal and exter-

nal requirements of organizations from time to time. Change management is a

challenging issue in the service-oriented environment due to the distributed and

dynamic characteristics of services. The research on the change management

in service-based environments is still at its early stages and existing work pro-

vides only partial solutions to the issues of service changes and business process

changes. The current research in relation to change management in the context

of services can be categorized as following:

• Service compatibility. In the SOC paradigm, applications and systems are

built upon distributed services offered by different organizations. The prob-

lem of compatibility between interacting services in software systems arises

from many reasons and in many aspects. Proposals have been published

in the literature for solving the compatibility of service interfaces, business

protocols, and service behaviors [12, 16, 17, 28, 27, 31, 47, 60, 62, 67, 75,

74, 84, 83].

• Change management for Web service compositions. A Web service compo-

sition comprises a number of Web services that may belong to different ser-

8 Introduction

vice providers. Participant services in a service composition are frequently

subject to changes due to various reasons such as business rules and regula-

tions. In the current studies on Web service change management, proposals

for dealing with changes related to service protocols [83, 93], managing ex-

istence changes of services and service operations [8, 7, 57, 58], and aligning

choreographies and orchestrations of BPEL processes [80, 108] are reported.

• Service evolution. The central problem of service evolution is about service

versioning control and the compatibility issue between different versions of

a service. Researches on this topic aims to provide effective mechanisms to

manage different versions of services and achieve compatibilities between

different versions. In his paper [70], Papazoglou has proposed methodolo-

gies and theoretical approaches for supporting service evolution. Service

changes are categorized into shallow changes and deep changes according

to their impact on the entire system. The methodology of change-oriented

service life cycle is presented to support handling deep changes of services.

There are also a few researches about Web service evolution and mecha-

nisms for controlling evolution of WSDL defined Web service specifications

are proposed [18, 44, 43].

• Service adaptation. The problem of service adaptation is closely related to

the service change management. The research on service adaptation mainly

concentrates on providing mechanisms to overcome various types of mis-

§1.3 Research Requirements and Issues 9

matches that may occur among services developed by different parties with

the purpose of enabling service interoperability and service replacement. In

the literature, the adaptation of service interfaces [28, 39, 75, 113], busi-

ness protocols [12, 17, 46, 63, 66, 89, 91], and service behaviors are studied

[6, 21, 20, 22, 37, 38, 48, 65, 111, 110, 114].

1.3 Research Requirements and Issues

In Section 1.2, we have outlined the context of our research reported in this

thesis. In this section, we first discuss the research requirements for the change

management in the service-oriented environment and then we identify the impor-

tant issues on service change management that have not been addressed by the

existing works.

1.3.1 Research Requirements

Service-based applications and information systems operate in a highly dynamic

environment. Services and business processes are subject to frequent change

and variation due to various reasons such as business regulations and application

environments. The change management in the SOC context needs to provide

mechanisms for:

• Detecting and understanding the varieties of changes that will occur in

service-based applications and information systems. When a change hap-

10 Introduction

pens, effective mechanisms must be provided for detecting the occurrence

of this change and identifying its change type.

• Analysing the impact of various types of changes in service-based applica-

tions and information systems. Once a change occurs, its impact on the

entire system needs to be clearly analysed before any treatment can be de-

cided to cope with the change. The change impact analysis needs to provide

the information about the cause of this change, the change region includ-

ing the direct and potential impact scopes of this change, and how this

change affects the entire system. In particular, the propagation of changes

in service-based systems must be clearly analysed.

• Handling various types of changes in service-based applications and infor-

mation systems. This requires mechanisms for dealing with various types

of changes with the goal to control their cascading effect on the entire

value-chain.

• Separating change impact analysis and change reaction. Change impact

analysis refers to the process of understanding the effect including direct

and cascading effect a specific change on the entire value chain. Change

reaction refers to the process of deciding mechanisms and then handling a

specific change based on its impact. This requirement for managing changes

of service-based applications and information systems is based on the fol-

lowing reasons. First, the tasks of change management related to change

§1.3 Research Requirements and Issues 11

impact analysis and change reaction in the services environment described

above are complex and difficult. Second, change reaction is context sensitive

because a proper change reaction is based on the contextual information

such as business regulations, customer requirements and preferences, and

costs. In addition, multiple change handling mechanisms may exist for a

specific change. Contextual information needs to be taken into considera-

tion when deciding a suitable treatment for coping with a specific change

based on its impact. Third, the change impact analysis and change reaction

should be reusable for the reason that repetitive types of changes will occur

in service-based applications and information systems at different locations.

Therefore, to reduce the complexity of change management tasks, develop

effective and efficient change handling mechanisms, and advocate reusabil-

ity in the development and maintenance of service-based applications and

information systems, change impact analysis and change reaction need to

be separated.

• Evolving services and business processes. Services and business processes

may need to evolve frequently to meet the changing requirements arising

from different origins. This requires techniques for enabling consistent mod-

ifications of services and business processes, managing different versions of

services and business processes, and checking compatibilities between dif-

ferent versions of services and business processes.

12 Introduction

1.3.2 Research Issues

Current studies on change management in the service-based environment provide

partial solutions which cannot fully satisfy the above requirements. We identify

the following research issues which are critical for addressing those requirements.

• The complex relations between services and business processes in service-

based applications and information systems need to be identified. In the

SOC paradigm, business processes and services are coupled with each other

when services expose business functionalities of business processes. There

exist complicated dependencies between services and business processes. A

specific service change usually affects the associated business processes and

a change occurs in a business process often has various levels of impact

on the associated services. The coupling relations between services and

business processes will be crucial for the detection, analysis, and reaction

of various types of service changes and process changes.

There are a number of researches on change management that focus on Web

services [8, 7, 57, 58, 59] and BPEL processes [80, 108]. These researches

concentrate on the features of services and business processes respectively.

Unfortunately, the dependencies between services and business processes

have not been fully investigated in the existing works about change man-

agement in the service-oriented environment.

• A taxonomy of changes related to service-based applications and infor-

§1.3 Research Requirements and Issues 13

mation systems needs to be identified. A change taxonomy provides the

foundation for developing mechanisms for change detection, change impact

analysis and change reaction.

In the workflow systems, change patterns have been proposed for capturing

the major types of changes associated with business processes [100, 105].

These change types consider the features of change management for busi-

ness processes only and cannot meet the requirements of the service change

management. In the area of service computing, changes of services and

BPEL processes have been studied in some research works. In addressing

the challenges of service evolution, Papazoglou [70] classifies service changes

into two broad types as shallow changes and deep changes according to the

change impact on the entire business processes. Theorems and methodolo-

gies are provided for dealing with the two types of service changes respec-

tively. In the researches about Web services change management, types of

Web service changes such as top-down change and bottom-up change in

virtual enterprises [57, 58, 59] and internal and external changes in Web

service environments [8] have been addressed. These change classifications

focus only on the characteristics of services and do not consider the compli-

cated dependencies between services and business processes. In [80, 108],

two types of changes as: subtractive change and additive change related

to BPEL processes are discussed. This change classification considers only

the features of Web service based business processes and does not consider

14 Introduction

the associated services.

Classification of mismatches related to service interfaces and business pro-

tocols in the area of service adaptation has been identified in [12]. The

mismatch types at the level of service interfaces are classified into signa-

tures mismatch and parameter constraints mismatch. The mismatch types

at the level of business protocols include message order mismatch, extra

message mismatch, missing message mismatch, message split mismatch,

and message merge mismatch. These mismatch types are identified with

the purpose for developing adapters in order to overcome service incompat-

ibilities and facilitating service replacement.

To support the change management for service-based business processes

where services and business processes are coupled with each other with

various types of relations, a change taxonomy for services and business

processes needs to be identified as the foundation for the development of

change analysing and change handling mechanisms.

• The evolving, dynamic, and distributed nature of services requires effective

and efficient change analysis mechanisms for service-based applications and

information systems. These mechanisms must provide general techniques

including calculating impact scopes of a specific change and understanding

the direct and potential impact made by this change. In particular, change

propagation within service-based business applications and systems caused

§1.4 Contributions 15

by the dependencies between services and business processes needs to be

clearly analysed and controlled with the goal to minimize the impact of a

specific change. Unfortunately, the existing researches about service change

management provide little support for change impact analysis. In most of

the research works about service change management, change reactions are

provided for handling service changes. We believe that change impact anal-

ysis is crucial for developing effective and efficient mechanisms for handling

various types of changes.

In conclusion, we have identified the research issues that hinder the devel-

opment of effective change management solutions for service-based applications

and information systems when services and business processes are closely related

to each other. In the following section, we will present our approach for solving

the above important issues.

1.4 Contributions

In this thesis, we propose an approach for dealing with the change management

for service-based business processes. This research targets techniques for under-

standing and identifying various types of changes, analysing the change impact,

and facilitating the evolution of services and business processes in the service-

oriented environment. The proposed change management solution aims to man-

age the various types of changes associated with services and business processes

16 Introduction

by developing effective mechanisms for analysing changes and their cascading

effect. The proposed approach is based on the established service-oriented busi-

ness process model that captures the dependencies between services and business

processes where multiple services are supported by a single business process. A

number of change impact patterns are specified on the basis of the identified

types of service changes and process changes. The change propagation within

service-based business processes can be analysed with the help of these change

impact patterns.

We summarize our contributions as follows:

• A service oriented business process model is developed for capturing the

major characteristics of required change management in the context de-

scribed above. The proposed model provides the foundation to build up

the taxonomy of changes and generic solution for identifying, analysing,

and reacting to various types of changes of business processes and services.

• The taxonomy for the changes associated with services and business pro-

cesses is presented. The operation changes and transition changes are iden-

tified as the two major types of service changes. The operation changes are

further classified into operation existence changes and operation granular-

ity changes. The process changes are classified based on the defined control

flow schemas of business processes.

• A set of change impact patterns are specified and the functions for calculat-

§1.4 Contributions 17

ing the impact scopes of service changes and process changes are defined.

Each change impact pattern captures a specific type of change effect. The

change impact patterns provide intermediate results in the analysis process

and they can be reused in the development and maintenance of service-

based information systems. With the help of identified impact patterns

and specified impact scope, the change impact within service-based busi-

ness processes can be clearly analysed.

• Mechanisms for handling the various types of individual changes are pre-

sented. With the support of the identified change taxonomy, the specified

change impact patterns, and the mechanisms for dealing with individual

changes, the techniques for analysing the change propagation in service-

based business processes are presented. The actual impact scope of a change

is defined based on the analysis of the change propagation. The issue of

change isolation is discussed and the principles for controlling and cutting

off the cascading change effect within service-based business processes are

provided.

• A prototype application referred to as service change analyser (SCA) has

been built up to show the effectiveness of the proposed general method-

ology of the change management in service-oriented environment. The

SCA accepts changes as its input and it can give the detailed analyzed

results for the change impact scope and provide suggestions for potentially

18 Introduction

used impact patterns. With the help of the SCA, the impact of a specific

change becomes transparent and it is not necessary to analyse the impact

of changes manually. The time and cost of change management tasks can

be dramatically reduced.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we review

the existing works about change management in the area of workflow systems

and in the SOC environment respectively. In Chapter 3, we propose the service-

oriented business process model. This model defines a type of the dependencies

between services and business processes that multiple services are supported by a

single business process. In Chapter 4, we present the identified change taxonomy

related to services and business processes based on the proposed service-oriented

business process model. In Chapter 5, we specify the change impact patterns

on the foundation of the proposed service-oriented business process model and

the identified various types of service changes and process changes. The change

impact patterns consist of the change impact patterns associated with service

changes and the change impact patterns associated with process changes. Two

functions for calculating the impact scopes of a service changes and a process

change are also defined in this chapter. In Chapter 6, we discuss how to handle

the various types of changes and analyse their cascading effect on services and

§1.5 Thesis Organization 19

business processes based on the specified change impact patterns. We first provide

mechanisms for dealing with individual change impact patterns. Then we discuss

the issue of change propagation between related services and business processes

and present principles for cutting off the change propagation. In Chapter 7,

we discuss the design details of our developed prototype tool, Service Change

Analyser (SCA), that implements the proposed change management mechanisms

for service-based business processes. In Chapter 8, we conclude our work reported

in this thesis and outline the future research directions.

20 Introduction

Chapter 2

Related Work

Change management is a traditional problem in IT. Without being related to

Service Oriented Computing (SOC), change management has been studied in a

wide range of research areas such as software engineering [52, 45, 51, 64, 76],

distributed systems [95, 50, 30], database management systems [92, 11, 112, 34],

and information systems [90, 26]. In particular, the change management for

workflow systems, which is an important area closely related to the change man-

agement in the context of SOC, has been studied extensively since mid 1990s

[97, 19, 40, 41, 77, 79, 78, 85].

The change management for workflow systems is about managing changes in

workflow processes and enabling process evolution. The studies in this area can

be summarized into the following two categories:

• Evolution of workflow processes. The research on evolution of workflow pro-

cesses concentrates on evolving process schemas and adapting process in-

stances when their corresponding process schemas are changed. The evolu-

tion of process schemas refers to the process of modifying workflow schemas

in order to meet changing requirements. Evolving a process schema usually

21

22 Related Work

generates a series of schema versions. The adaptation of process instances

refers to the process of managing running workflow instances when their

corresponding process schemas evolve to new versions.

• Flexibility of business processes. The flexibility of business processes refers

to the ability of business processes to dynamically modify themselves in or-

der to cope with uncertainties including expected and unexpected circum-

stances. Different to the evolution of processes, the flexibility of processes

is mainly about adjusting process schemas at runtime for individual process

instances in certain context.

Change management is a challenging issue in the SOC paradigm due to the

distributed and dynamic characteristics of services [70, 68]. Service change man-

agement is still at its early stages and current research provides partial solutions

for overcoming some problems of change management for service-based appli-

cations and information systems. Existing research on service change manage-

ment mainly focuses on analysing compatibility between Web services, managing

changes for BPEL processes and Web service based systems, and supporting the

evolution of services including service specifications and service protocols. We

summarize these research issues and results as follows:

• Service compatibility. Compatibility is a typical issue in distributed sys-

tems. AlthoughWeb service techniques provide standard specifications that

solve compatibility issue at lower levels of abstractions, i.e., messaging, in-

23

compatibilities between services still exist at the level of service interfaces,

protocols and behaviors. For interacting services, the problem of compati-

bility arises when participating services change their interfaces and/or pro-

tocols. In order to achieve interoperatiblity between Web services, the work

on service compatibility provides mechanisms to detect incompatibilities

of Web services and devise approaches for solving those incompatibilities

[12, 16, 17, 28, 27, 31, 47, 60, 62, 67, 75, 74, 84, 83].

• Change management in Web services environments. Researches concern-

ing this topic target on managing changes of Web service compositions

including BPEL processes and Web service based systems such as virtual

enterpises [14].

A Web services environment is a highly dynamic environment that is fa-

cilitated by the Web service technologies including WSDL [1], SOAP [4],

and UDDI [3], et al. A BPEL process is a business process implemented by

existing WSDL defined Web services offered by different service providers

[2, 42]. A BPEL process itself is exposed as a Web service and can be

composed with other Web services. Current studies on change manage-

ment for BPEL processes concentrate on managing changes of interacting

BPEL processes in a cross organization context [80, 108]. In these works,

alignment between process choreographies and orchestrations of different

interacting partners when changes occur are studied. In addition, change

24 Related Work

propagation between trading partners are analysed. The research on man-

aging changes of Web service protocols has also been carried out [84, 93].

Some researches focus on detecting, propagating, and reacting to Web ser-

vice changes in Web service based systems [8, 7, 57, 58, 59]. For instance,

Liu and Bouguettaya [57, 58, 59] study the change management for virtual

enterpises.

• Service evolution. Service evolution refers to the process of changing ser-

vices dynamically and consistently in order to meet changing requirements

[70]. Service evolution is a challenging issue. Up to now, there still lack

mature techniques to support service versioning control. Partial solutions

for supporting service evolution in several respects of services such as ser-

vice interface, service protocol, and service behavior are reported in the

literature.

The recent work presented in [18, 44, 43] suggests proposals for supporting

the evolution of Web services. Approaches for evolving service specifica-

tions are proposed in [9, 10, 70]. Those researches provide mechanisms to

generate and control different versions of services and define a set of theo-

ries for checking the compatibility between different versions of a service.

There is also research work on managing the evolution of service protocols

[84, 83]. A service protocol is a specification that describes the information

of how a service client can interact with this service. The research on the

25

evolution of service protocols is focused on enabling dynamic modification

of service protocols and managing running protocol instances when their

definitions are changed.

In addition to the above mentioned research topics, service adaptation is an

important area closely related to the change management in the SOC paradigm.

Service adaptation refers to the ability of services to adjust themselves in or-

der to interact with other services if any mismatches between services occur

[70]. Current researches on service adaptation are mainly focused on overcom-

ing mismatches of service interfaces [28, 39, 75, 113], service protocols [12, 17,

46, 63, 66, 89, 91], and behaviors of BPEL processes [6, 21, 20, 22, 37, 38,

48, 65, 111, 110, 114]. Mismatch types/patterns related to service interfaces

and/or business protocols are identified in the literature. Approaches for design-

ing adapters/operators to solve the identified various types of mismatches are

suggested. Adaption of the behaviors of BPEL processes are studied with the

purpose to achieve flexible service behaviors in different context. These researches

are mainly concentrated on providing extensions to the current BPEL standard

by considering different requirements such as contextual information and QoS

properties.

The aim of this chapter is to provide an overview of the existing researches

on the change management that have been carried out in the field of workflow

processes and in the SOC environment summarized as above. The remainder of

26 Related Work

this chapter is structured as follows. First, we analyse the main work published in

the literature on the change management in the fields of workflow processes and

process aware information systems in Section 2.1. These researches are classified

into process evolution (Section 2.1.1) and process adaptation (Section 2.1.2).

Then we discuss the current research work on the change management in the SOC

environment in Section 2.2. In Section 2.2.1, we review the main results that have

been achieved to overcome the various types of incompatibilities between Web

services and BPEL processes. In Section 2.2.2, we discuss the research work that

has been carried out to manage changes of BPEL processes and Web service based

systems. In Section 2.2.3, we analyse the latest researches on service evolution

including the evolution of WSDL defined Web services, service specifications,

and service protocols. We discuss the main results that have been achieved on

service adaptation in Section 2.3. These studies are classified into adaptation of

service interfaces (Section 2.3.1), adaptation of service protocols (Section 2.3.2),

and flexibility of service-based business processes (Section 2.3.3). Finally, we

conclude this chapter in section 2.4 by stating the difference of our research to

the above work and pointing out the contribution of our research.

2.1 Change Management for Business Processes

The change management in the area of workflow systems has been extensively

studied since mid 1990s. These studies are mainly concentrated on evolving work-

§2.1 Change Management for Business Processes 27

flow processes and enabling the flexibility of business processes. The researches

on the evolution of workflow processes aim to allow business processes to evolve

in a disciplined, controlled, and dynamic manner. Strategies for managing run-

ning process instances when their process schemas evolve are also studied in a

significant amount of work. The researches on the flexibility of business processes

are focused on dynamically modifying process schemas and instances at runtime

in order to cope with both expected and unexpected changes. In the following

sub sections, we will review the main research work on the evolution of work-

flow processes and the flexibility of business processes published in the literature

respectively.

2.1.1 Evolution of Workflow Processes

The problem of evolving workflow processes has two facets: i) supporting pro-

gressively modifying workflow schemas and managing different versions of work-

flow schemas, and ii) handling active process instances whose schemas have

been changed. The above two aspects of process evolution are studied based

on different process modeling languages and various mechanisms are provided

[97, 19, 40, 41, 77, 49, 79, 78, 85].

Some work focuses on how to dynamically modify workflow process definitions

and ensure the consistency and correctness of process definitions. Casati et al.

[19] introduce a set of modification primitives to support structurally changing

workflow schemas and preserve their syntactical correctness. The declarative

28 Related Work

primitives are used to declare variable existence in workflow schemas. The flow

primitives are used to change the flow of tasks in workflow schemas such as

forking a task or modifying a task condition. The running process instances

whose schemas have been changed are managed by a set of evolution policies,

which are classified as abort strategy, flush strategy and progressive strategy.

Sadiq [85] proposes a framework to deal with active workflow instances when

their process models are modified. The proposed approach has three phases as:

the phase of defining modification, the phase of conforming to modification, and

the phase of enacting modification. In the phase of enacting modification, the

concept of compliance graph is defined as a foundation for handling the affected

process instances and make them conform to the changed process models.

Version control mechanisms are proposed in the literature to support the evo-

lution of workflow processes. Joeris and Herzog [40, 41] provide mechanisms

for managing the evolution of workflow process schemas and the migration of

workflow instances. In particular, they focus on the workflow versioning control.

Process tasks and workflow schemas are separately defined in their approach.

On this basis, the concepts of process task version and workflow process ver-

sion are proposed. Then the mechanisms for generating and managing different

task versions and process versions are devised. Based on the versioning tech-

niques, they present the instance migration rules depending on execution states.

These rules enable late binding and local modification of process instances that

help achieve dynamically adjustment of workflow instances. Kradolfer and Gep-

§2.1 Change Management for Business Processes 29

pert [49] present a framework for evolving workflow processes based on workflow

versions. Different versions of a workflow process are generated by the defined

modification operations and those versions form a workflow version tree. The

versionning mechanisms are helpful to define the conditions for migrating run-

ning workflow instances. In [97], van der Aalst and Basten propose an approach

for managing workflow evolution based on the concept of inheritance. In partic-

ular, they concentrate on the inheritance of workflow behavior. By representing

workflow processes as Petri nets (WF-nets), the authors are able to specify the

inheritance of dynamic behavior of workflow processes. They define four types

of inheritance relations based on the notion of branching bisimilarity. Then the

inheritance-preserving transformation rules that are used for constructing a sub-

class of a workflow process are devised. These transformation rules are used to

deal with both ad hoc and evolutionary changes of workflow processes. Finally,

they present ten transfer rules to handle the migration of workflow instances when

the corresponding process schemas are changed. Rinderle et al. [79] propose an

integrated approach for managing the evolution of process schemas and the mi-

gration of running process instances. Similar process changes are reasoned from

previous instances and saved for future use such as evolving process schemas.

Some researches focus on propagating process changes to running instances,

particularly to long-running instances [77, 78, 32]. Reichert and Dadam [77] in-

vestigate the change management for running workflow instances. In particular,

they aim to support ad hoc changes of running workflow instances. A complete

30 Related Work

and minimal set of change operations that enable structural modification of work-

flow instances at run time is devised. They allow workflow instances to deviate

their schemas by applying the defined change operations on the instances at run

time. The correctness properties are provided to assess the applicability of these

change operations. In [78], Reichert, Rinderle, and Dadam specify a set of cor-

rectness principles and theorems for automatically migrating a large number of

long-running process instances to the corresponding workflow schemas that have

been changed. Frank, Fong and Lam [32] also study the migration of workflow

instances, especially long running workflow instances, when their process schemas

are changed. They propose an approach for dynamically adjusting running pro-

cess instances when their process schemas are modified. Their approach is to

treat the migration of large numbers of long running workflow instances as a

process itself. The migration process can judge the migration states of running

instances and schedule, configure and implement the migration from old workflow

process schemas to the evolved schemas without interrupting the availability of

processes.

2.1.2 Flexibility of Business Processes

The flexibility of business processes refers to the ability of business processes to

change themselves in order to cope with exceptional circumstances including ex-

pected and unanticipated changes [106]. The focus of researches on the flexibility

of business processes is to provide mechanisms for dynamically changing individ-

§2.1 Change Management for Business Processes 31

ual process schemas and process instances at runtime. Quite a few approaches

have been proposed in the literature for achieving flexible business processes

[101, 98, 5, 35, 73, 81, 82, 86, 88, 94, 104]. The key idea of these approaches are

to permit part of process definitions remain unspecified priori the implementa-

tion of business processes. These unspecified process definitions are defined at

runtime by taking contextual information into consideration. Techniques such as

late binding, late modeling and late composition of process fragments are pro-

posed to achieve process flexibility. For example, in [5], Adams et al. present

an approach for supporting flexible workflow instances at runtime. Their ap-

proach is to associate a workflow process task with a set of worklets. A worklet

is a self-contain sub process. A top-level workflow process specifies the macro

process schema. At the runtime, a process task is implemented by a certain

worklet from the associated repertoire depending on the contextual information.

Weber, Reichert, and Rinderle-Ma [105, 104] address the change management

for process-aware information systems (PAIS) [29]. In PAIS, process logic and

application codes are separated. They focus on the change management at the

level of process logic. They propose a set of change patterns to support process

adaptation both at the schema level and at the instance level. The proposed

change patterns capture the structural changes of process schemas and are ex-

tensions of the workflow patterns [100]. These patterns are described by high

level process changes rather than primitive changes. The change patterns con-

sist of adaptation patterns and patterns for changes in predefined regions. The

32 Related Work

adaptation patterns support structural adaptation of process schemas whereas

the patterns for changes in predefined regions enable built in flexibility such as

late modelling and late binding of process fragments.

Using process variants is a typical approach for realising flexible business

processes [98, 35, 36, 81, 82]. A process variant is an adaptation of a reference

process that meets certain requirements and is valid in a particular context. Gen-

erally, for a particular process type, large collections of process variants exist. In

[54, 56], techniques for mining process variants are reported for the development

of flexible process-aware information systems. In [35, 36], Hallerbach, Bauer, and

Reichert present a PROcess Variants by OPtions (Provop) approach for process

variants management and reference model development. They address the issues

of reference process design, process variants generation, and evolution of refer-

ence processes based on process variants. In particular, they focus on the problem

of modeling and managing large collections of process variants. They advocate

a Provop process variant life cycle management which comprises three iterative

phases: process modeling, configuration of variants, and process execution. In

the phase of process modeling, a reference process is defined and a set of change

options that are a sequence of high level change operations grouped into change

options in order to facilitate the process adaptation are specified. In the phase of

process configuration, process variants can be derived by applying a sequence of

the predefined change options to the reference process. In the phase of process

execution, process variants are deployed and implemented by workflow models.

§2.1 Change Management for Business Processes 33

Rosa et al. [81] propose a questionnaire-driven approach for process adapta-

tion. Reference process models are configured for obtaining intended processes

in order to meet specific needs. The questionnaire-driven model consists of a

set of questions and facts. Questions are associated with variation points in

reference process models and facts are answers for questions. Dependencies be-

tween questions and constraints for facts are used complementarily to manage

questionnaires.

Some work aims to ensure data flow correctness during process adaptation

[77, 78, 94]. The adaptation approach proposed in [77] supports dynamically

modifying workflow instances at runtime and at the same time maintaining cor-

rectness of data flows. They define the flow of data between process tasks and

provide rules for ensuring the correctness of data flows during the runtime mod-

ification of process instances. A set of correctness principles and theorems are

defined in [78] during changing in-progress workflows. Song et al. [94] propose an

approach to support process adaptation with a special focus on preserving data

flow correctness. Their approach is to preserve data flow correctness during the

adaptation process rather than perform model checking after the completion of

adaption. To do so, criteria for task deletion, task insertion, and other adaptation

operations such as task substitution are specified.

Weidlich, Weske, and Mendling [107] analyse process changes from a differ-

ent point of view. They concentrate on the change propagation between business

processes that are described by different but related process models within one or-

34 Related Work

ganization. The related process models refer to process models that are developed

at diverse abstract level, serve for different purposes, and have overlapping func-

tions. They assume that related process models are aligned, i.e., correspondence

between elements of different models are created. Based on this assumption, they

introduce the notion of behavioral profile to handle the change propagation from

a source model to a target model. A behavioral profile includes three types of ex-

ecution relations between elements of a process model: the strict order relation,

the exclusiveness relation and the observation concurrency relation. Changes

occurred in a source process are described by a behavioral profile. Then those

changes are propagated to a related process with the help of correspondence rela-

tions between elements of the source process and the related target process. They

define two reduction rules to determine the region in a target process of a change

in a source process. A change region consists of control flows that describe the

boundaries of this change. A change region is useful for process analyst to handle

the change propagation.

2.2 Change Management in Service-Oriented En-

vironment

Services are subject to changes and variations from time to time due to various

reasons such as environmental conditions, user requirements, technologies, and

legal regulations. The change management in the SOC environment is a critical

§2.2 Change Management in Service-Oriented Environment 35

and challenging issue [70, 68]. A service may change in many aspects and has

various level of impact on the entire value chain. For instance, service interfaces,

business protocols, and service behaviors may change overtime and have various

types and different level of effect on the interacting services and the associated

business processes. Classification of service changes is outlined in [70], in which

service changes are categorized into shallow changes and deep changes depending

on the effects and side effects they incur. Shallow changes refer to those service

changes such as interface changes and business protocol changes that can be

restricted locally. Deep changes refer to those service changes such as the behavior

changes of composite services that has deep impact and side effects on the entire

value-chain. Current researches on the service change management are still at its

early stage.

We categorize the existing work concerning the change management in the

context of SOC as follows.

• Compatibility of services. Researches on service compatibility are focused

on detecting if two services, especially composite services, can interoperate

with each other and resolving the incompatibilities. The compatibility of

service interfaces, business protocols, and behaviors are investigated in a

significant amount of work [12, 16, 17, 28, 27, 31, 47, 60, 62, 67, 74, 75, 84,

83]. In addition, the problem of compatibility of services is also addressed

in the research work related to service evolution [9, 10, 70] and service

36 Related Work

adaptation [12, 75, 66]. In the study of service evolution, the issues such as

version compatibility including backward compatibility and forward com-

patibility of service interfaces and protocols are addressed. In the study of

service adaptation, types of incompatibilities of services relating to inter-

faces and business protocols are identified and templates for solving those

incompatibilities are suggested.

• Change management for Web services. Current researches on managing

changes for Web services provide solutions for dealing with changes related

to several aspects of Web services. Some researches investigate the change

management for choreographies and orchestrations of composite Web ser-

vices (BPEL processes) [80, 108]. Some work focuses on handling the

changes of business protocols in service compositions [84, 93]. There are also

studies that provide solutions for managing changes of virtual enterprises

in Web services environments [8, 7, 57, 58, 59].

• Service evolution. Service evolution is a challenging issue [70]. Up to now,

there are only partial solutions for supporting service evolution and service

versioning control. Current researches on service evolution suggest propos-

als for evolving service specifications [9, 10, 70], service protocols [84, 83],

and BPEL process choreographies [80]. There is also works that studies

the evolution of WSDL defined Web services and provide mechanisms for

controlling different versions of a Web service [18, 44, 43].

§2.2 Change Management in Service-Oriented Environment 37

In the following sub sections, we review the major work published in the

literature on the change management in service-based environments summarized

as above.

2.2.1 Compatibility of Services

Compatibility is a typical issue in distributed systems. The SOC paradigm fa-

cilitates cross organizational integrations by using services as the fundamental

elements in building distributed applications. Services must interact with each

other properly to fulfil business tasks. To do so, services must be compatible.

Although current Web service standards such as SOAP and WSDL solve the

compatibility of Web services at the lower level of abstraction, i.e., messaging,

incompatibilities of Web services still exist at higher levels of abstraction, i.e.,

service interfaces and service protocols. Most of the current researches study the

incompatibilities of Web services from the aspects of service signatures and busi-

ness protocols. The incompatibilities of service signatures refer to the mismatches

in relation to service signatures including parameters mismatch and operations

mismatch. The incompatibilities of service protocols refer to the mismatches

between external messaging behavior of services [27, 70]. In the following, we

examine the existing work on the problem of compatibility of Web services from

the aspects of service interfaces and service protocols.

Studies on compatibilities between service interfaces target resolving various

types of mismatches at the level of service interfaces. Ponnekanti and Fox [75]

38 Related Work

investigate the interoperability of independently involving Web services in Web-

based applications. Their goal is to enable substitutions of functionality similar

Web services that are derived from a common base. They identify four types

of incompatibilities between Web services as structural incompatibility, value in-

compatibility, encoding incompatibility, and semantic incompatibility. They fo-

cus on the structural and value incompatibility referred to as SV-incompatibility.

The SV-incompatibility is further categorized into five types as missing meth-

ods incompatibility, extra fields incompatibility, missing fields incompatibility,

facet incompatibility, and cardinality incompatibility. The combination of static

and dynamic analysis can determine SV-incompatibility between Web services

automatically. The interoperation between Web services then can be realized

by semi-automatically generated cross-stubs. In [12], mismatches in operation

name, number, order/type of input/output parameters between operations of

different Web services but have same functionality are studied. A mismatch

pattern called signatures mismatch pattern is specified for mediating the above

interface incompatibilities, based on which adapters can be semi-automatically

generated. Ontologies are introduced in [113] to resolve mismatching of service at

the level service interfaces. A correlation-based approach is proposed for enabling

one-to-many semantic matchings between service interfaces.

The work on compatibility of Web service protocols targets mediating mis-

matches of ordering of messages. A business protocol contains the information of

how a service client can interact with the service properly. A number of studies

§2.2 Change Management in Service-Oriented Environment 39

have been done to mediate mismatches between service protocols. In [12], Be-

natallah, et al. identify five types of incompatibilities at the protocol level as:

message order mismatch, extra message mismatch, missing message mismatch,

message split mismatch, and message merge mismatch. Templates for designing

adapters are specified for each of the mismatches. Based on these identified types

of mismatches, Nezhad et al. [67] present semi-automated support for detecting

and solving these types of incompatibilities at the level of interface and protocol

by developing adapters. In [84, 83], Ryu et al. have analysed the compatibility of

service protocols in the context of service evolution. The forward compatibility

and backward compatibility are defined for supporting dynamic evolution of ser-

vice protocols. Ponge et al. [74] present an approach for supporting automated

analysis of compatibility of Web service protocols. In particular, they focus on

the timed protocols that include time-related properties.

There is research work that addresses the compatibility in a context of BPEL

processes [16, 17, 31, 47, 60, 62, 67]. Gong et al. [33] report a proposal for auto-

matically solving incompatibilities between interacting business processes. They

propose methods for discovering interaction mismatches for interacting business

processes and solving these mismatches. They consider two major interaction

mismatch types: message order mismatch and missing/extra message mismatch

which are similar to the protocol mismatch patterns identified in [12]. A cost

model is designed to evaluate the complexity of correcting plans for interac-

tion mismatches. The cost is defined and calculated based on high-level change

40 Related Work

operations [55]. Brogi and Popescu [17] propose an approach that can automati-

cally design service adapters for overcoming incompatibilities between interacting

BPEL processes. In particular, they focus on the behavioral mismatches between

communicating BPEL processes. Their approach for developing adapters consists

of four phases. The first phase involves transferring BPEL processes into YAWL

defined workflows. The second phase is the adapter generation which is realised

by service execution trees of the YAWL workflows. An adapter is specified as

a workflow process. The adapters created in the second phase are tested for

locks in the third phase and deployed in the four phase. Formal notations such

as Petri nets are used for analysing BPEL processes. Martens et al. [62, 61]

propose a Petri net based method to analyse behavioral compatibility of BPEL

processes. They transform BPEL processes into a type of Petri nets, called the

BPEL-annotated Petri net. The concepts of communication graph and reachabil-

ity graph are proposed to check the compatibility of BPEL-annotated Petri nets.

Lohmann et al. [60] present an approach for formally analysing interacting BPEL

processes by translating BPEL processes are into Petri nets. In [47], König et

al. extends BPEL abstract process notations based on Petri nets for the purpose

of checking the compatibility of BEPL processes. Foster et al. [31] analyse the

compatibility of BPEL processes by translating BPEL processes into finite state

process notations.

§2.2 Change Management in Service-Oriented Environment 41

2.2.2 Change Management for Web Services

Web services are loosely coupled software components that operate in a highly dy-

namic environment. In a service composition, participant services are subject to

frequent changes related to the functional or non-functional aspects of these ser-

vices. For instance, operations of a participant Web service may become unavail-

able at the runtime. The change management about Web services focus on de-

tecting changes of participant services in service compositions, analysing change

impact on service compositions, checking the compatibilities between interacting

Web services, and determining proper reactions for handling the changes. The

change management for Web services is at its early stages and existing researches

provide only partial solutions for change issues in relation to Web services. In the

following, we review the recent researches on managing changes in Web services

environments.

Rinderle, Wombacher, and Reichert [80] propose a framework to deal with

the changes of interacting BPEL processes in a cross organization setting. Trad-

ing partners have their private business processes and public processes. They

devise mechanisms for automatically modifying public processes according to the

changes of the corresponding private processes. They also discuss the issues of

change propagation between the processes of different partners. Wombacher [108]

proposes an approach for aligning the choreographies and the orchestration au-

tomatically when there are occurrence of changes in process choreographies. The

42 Related Work

author aims to solve the problem: if the choreography of a partner changes (this

change may originated from the associated orchestration of this partner), how

this change affects the choreographies of other partners and in turn their orches-

trations. An orchestration is the business logic including business critical infor-

mation of a service composition. An orchestration is represented by the BPEL

specification which is further converted into a Nested Word Automata (NWA).

The NWA is enriched by invariants to represent the semantic information of an

orchestration. A choreography is the public view for a particular partner and is

abstracted from the corresponding orchestration, which is described by a finite

state automata [109]. An orchestration may have multiple choreographies for all

the involved trading partners. Two types of changes, the subtractive changes and

the additive changes, are analysed. When a change occurs in a choreography, this

change is propagated to the orchestration.

Ryu et al. [84] focus on managing changes of business protocols in Web ser-

vice environments. As mentioned above, a business protocol of a Web service

contains the information about how a client can interact with the Web service.

The authors provide a set of change operators for supporting modifying pro-

tocols. In addition, they present mechanisms for analysing change impact of

business protocols on service compositions. Mechanisms for managing running

protocol instances when the corresponding business protocols are changed are

devised based on the change impact analysis. In [93], Skogsrud et al. focus

on the change management of security protocols in Web services environments.

§2.2 Change Management in Service-Oriented Environment 43

In particular, they emphasize on changes of trust negotiation protocols. They

provide a framework to support the change impact analysis of trust negotiation

protocols on the ongoing trust negotiations automatically.

Change management for Web service compositions is also studied in [8, 7, 57,

58, 59]. These work concentrate on the issues of detecting Web service changes

and designing proper change reactions. Ontology is used by some approaches for

devising change reactions. Akram, Medjahed, and Bouguettaya [8] propose an

architecture to support the change management in Web services environments.

Especially, they focus on the problem of ensuring service requests in a dynamic

Web service environment. The changes of Web services concerning service request

are categorized into two types: the internal change and the external change. An

internal change refers to the change about the information provided by a Web

service. An external change refers to the existence change of service operations

and the service itself. The proposed architecture is based on two key ideas: using

ontology to organize Web services and using agents to manage changes. The

change propagation is also addressed based on the idea of participant list. In [7],

Akram and Bouguettaya present an approach for managing changes in virtual

enterpises in the context of semantic web. A virtual enterprise is a Web service

composition which is formed to achieve a business goal. The changes occurred

in virtual enterprises are categorized into three layers: business, ontological, and

service. Changes at the business layer are further classified into three types

as efficiency change, regulatory change, and development change. Changes at

44 Related Work

business layer are mapped to the ontological layer that comprises a collection of

Web services organized based on ontologies. Changes at the ontological layer are

mapped onto the service layer. Their approach involves three steps as: detecting

changes, propagating changes and reacting to the changes.

In [57], Liu and Bouguettaya propose a framework to manage top-down

changes in service-oriented enterprises (SOEs). A service-oriented enterprise

(SOE) consists of Web services that are composed to achieve a business goal.

The business logic of a SOE is defined by the corresponding SOE schema con-

taining a set of Web services ontologies and the control and data flows associated

with these Web services. A control flow of a Web service is specified as logic ex-

pressions. A data flow of a Web service is represented by a set of data transfers

between Web services. A top-down change refers to the change that is initiated

by Web service owners or the SOE itself at the SOE schema level. The authors

propose a change model for describing a top-down change. A change model is

specified by change conditions, functional modification, and quality modifica-

tion. They provide approaches for handling top-down changes with respect to

service matching, data redistribution and process modification. In [58], Liu and

Bouguettaya provide a framework for managing changes of SOEs functionali-

ties. The proposed framework consists of a change reaction manager, a domain

knowledge provider, a schema container, and a change log manger. The change

reaction manager consisting of three components as a change specification man-

ager, a message exchange mediator, and an execution manager is able to modify

§2.2 Change Management in Service-Oriented Environment 45

the functional schema of a SOE when a change occurs. Liu et al. [59] also ad-

dress the change issues in SOEs. In particular, they focus on designing change

reactions for coping with changes with the help of ontology. They propose the

concept of Web service ontology to support the tasks of modifying service com-

position schemas and selecting candidate Web services. A node in a Web service

ontology is service concept that defines a type of Web services within a specific

domain. Two types of relationships: inheritance and dependency are used to con-

nect service concepts in a Web service ontology. Algorithms for querying Web

service ontologies are provided.

2.2.3 Service Evolution

Service evolution refers to the process of continuously modifying a service through

a series of consistent changes [70]. Current Web service technologies do not

support service evolution and service versioning control. A few recent work

[18, 44, 43] suggest proposals to support the evolution of Web services and provide

service versioning mechanisms based on the current Web service technologies such

as WSDL and UDDI. Kalali, Alencar, and Cowan [43] address the requirements

for building a Web service registry, called service-oriented monitoring registry,

that can monitor the changes of Web services and notify service requestors when

the requested Web services are changed. In particular, they aim to devise mech-

anisms that are able to track the interface changes and the availability of Web

services. Their focus is on detecting different versions of WSDL interfaces and

46 Related Work

notifying these change information to the service requestors. Brown and Ellis [18]

address the issue of Web services versioning. They provide several techniques for

dealing with service versioning problems. In particular, they advocate the use of

version namespace and version numbers in UDDI entry to manage Web service

evolution. Their approach achieves backward compatibility by allowing multiple

versions of a Web service to support the earlier versions of that service. Kamin-

ski, Müller, and Litoiu [44] propose a service design technique, called chain of

adapters, for dealing with service versioning problems. They aim to enable Web

service evolution and ensure the back compatibility between different versions of

Web services. For two successive versions of Web services, an adapter that me-

diates the differences between the new version and the old version is generated.

Their approach produces a chain of adapters for a Web service. Each adapter

in the chain resolves the incompatibilities of two versions related to that Web

service. The backward compatibility of different versions of a Web service is

achieved by using the chain of adapters.

The evolution of service protocols in Web service environments is studied

in [84, 83]. Similar to the work on workflow process evolution, the problem of

protocol evolution is discussed from a static aspect (changing protocol descrip-

tions) and a dynamic aspect (managing running protocol instances when the

corresponding protocol definitions change especially for long conversations). In

their papers, Ryu et al [84, 83] propose a framework to support business protocol

evolution in a Web service context. In particular, they focus on the problem

§2.2 Change Management in Service-Oriented Environment 47

of dynamic protocol evolution where ongoing conversations (protocol instances)

need to be handled properly when protocols change. They also address the issue

of active conversation migration when there is no formal protocol for this conver-

sation. They devise a set of methods to analyse the impact of a protocol change

on the active conversation. The forward compatibility and backward compati-

bility are defined as a foundation to handle the migration of protocol instances

when their protocol schemas have evolved. Based on the impact analysis results,

how to migrate a protocol instance is determined.

Rinderle et al address the problem of evolving process chorographies in Web

services environments [80]. A process choreography contains the information

about interactions between partners. In their paper, the authors propose a frame-

work, called DYnamic CHOReographies (DYCHOR) to support the evolution of

process choreographies in a cross organizational context. They aim to solve the

problem: if a private process of a trading partner changes, how this change will

affect the public process of the partner and the private and public processes of

other interacting trading partners. In other words, when there is a change in a

process of a choreographies, what is the impact on the processes of other partners

involved in this conversation. In the DYCHOR framework, a private process is

defined by BPEL. Each private process has multiple public views for its partners.

Choreographies between trading partners are built on public views. A public view

of a private process is described by an annotated finite state automata that is

derived from the private process. A public view of a private process describes how

48 Related Work

this private process exchanges messages with a particular partner. They consider

two types of basic changes, adding a message sequence and deleting a message

sequence. When a change occurs in a private process, the public views of the

private process are generated. Then this change will be propagated to the public

views of its partners to assist the automatic adaptation of public processes. The

private processes of other partners can not be automatic changed.

Important theorems and guidelines for service evolution management that

abstract from current Web service standards are proposed in the recent work

[9, 10, 70]. Papazoglou addresses the challenging issues of service evolution in

[70]. Service changes are categorized into shallow changes and deep changes

depending on the effect and side effect they cause on the entire business pro-

cess value-chain. A theoretic approach is introduced for handling shallow service

changes such as structural changes and protocol changes. To manage deep service

changes such as behavioral service changes, a change-oriented service life cycle

methodology is proposed which consists of four major phases. The initial phase

involves understanding the causes for a specific service change and determining

the change scopes. The second phase is service change analysis that aims to pro-

vide in-depth understanding of the service change. The third phase and fourth

phase involve service alignment and implementation. In [9], Andrikopoulos et al.

provide a theoretic approach for managing service evolution based on a service

specification reference model that is independent of current Web service technolo-

gies such as WSDL and BPEL and captures the main characteristics of different

§2.2 Change Management in Service-Oriented Environment 49

service description models and technologies. The proposed service model consists

of three layers: an abstract service definition (ASD) layer, a service schema defi-

nition (SSD) layer, and an instance of service schema definition (ISD) layer. The

ASD contains common concepts and their relationships for a service definition.

The ASD is further described by three layers: a regulatory layer, a behavioral

layer, and a structural layer. Each layer contains concepts and relationships that

describe certain aspects of a service. For example, the regulatory layer includes

concepts relating to business rules, policies and requirements. A SSD defines

the schema of a particular service by using the concepts in the ASD. Based on

this abstract formal service model, evolution of a specific service schema is re-

alised by applying a series of change operations on its service elements. The

proposed service specification reference model provides a formal foundation for

defining the concept of consistency of service schema evolution and conformance

of service schema versions. In [10], Andrikpoulos et al propose the concept of

service contract for achieving controlled service evolution. The ultimate goal is

to enable independent evolution of services and at the same time preserve the

interoperability between two interacting services. The notion of service contract

is proposed as a mutual understanding between two interacting parties. A service

contract specifies the provided and required functionality of the interacting ser-

vices. A service contract is established based on two pairs of views of the service:

the exposition and expectation views and the required and provided views. The

exposition view of a service refers to the offered functionality of the service. The

50 Related Work

expectation view refers to the perceived functionality from the perspective of a

customer of the service. The required view of a service consists of the input infor-

mation of the service. The provided view consists of the information generated

by the service. Interoperability between interacting services is discussed based

on the service contract. The concepts of contractual invariance and contract

evolution are defined to handle changes occurred in interoperating services.

2.3 Service Adaptation

In the previous section, we have reviewed the major research work on change man-

agement for workflow processes and in the SOC context. In this section, we dis-

cuss service adaptation, which is an important area closely related to the change

management in the service-oriented environment. Service adaptation refers to

the capability of changing a service itself in order to interact with other services

when there are mismatches [70]. Current research work on service adaptation fo-

cuses on adapting service interfaces, service protocols, and behaviors of complex

services business processes, which can be summarized as follows.

• Adaptation of service interfaces. The issue of adapting service interfaces

involves adjusting interfaces to overcome mismatches and incompatibilities

at the level of service interfaces. A service interface includes both static and

behavioral information about the functionality of this service [24]. Depend-

ing on the notations for specifying service interfaces, types of mismatches

§2.3 Service Adaptation 51

between service interfaces are identified and approaches are proposed for

overcoming those mismatches [28, 39, 75, 113].

• Adaptation of service protocols. A service protocol describes the desired

message exchange sequences between the service and its client. The prob-

lem of adapting service protocols is about providing methods to cope with

mismatches at the level of service protocols. Adapters are typical and effec-

tive solutions to achieve the goal of service adaptation and solve mismatches

at the protocol level [12, 63, 66, 91].

• Adaptation of service interfaces and protocols. A number of researches

deal with the mismatches between service interfaces and protocols at the

same time. The classification of mismatch types between service interfaces

and protocols are identified and operators/templates are suggested for the

development of adapters in order to resolve the various types of mismatches

[12, 46, 63, 66].

• Flexibility of service-based business processes. In the SOC context, business

processes are complex services that are created by using widely available

services offered by multiple business partners. The requirements for process

flexibility in the context service-based environment in order to cope with

uncertainties are different to those for traditional workflow processes. A

large number of current researches on flexibility of service-based business

processes focus on extending the BPEL specification. The behavioral as-

52 Related Work

pects of BPEL processes and non-functional aspects of business processes

have also been investigated.

In the following sub sections, we review the main research works on service

adaptation in relation to service interfaces, service protocols, and BPEL processes

respectively.

2.3.1 Adaptation of Service Interfaces

The goal of adapting service interfaces is to mediate mismatches between ser-

vices at the level of service interfaces in order to preserve the interoperability.

Approaches for designing templates/operators have been proposed in the litera-

ture to solve different types of interface mismatches.

Ontology is used to mediate mismatches of service signatures. Zeng et al.

[113] propose a semantic mediation approach for handling mismatches of service

signatures. In their work, ontologies are utilised to realise one-to-one service

matchings and also one-to-multiple service matchings. In [39], ontologies are used

to facilitate service interface adaptation. Their focus is on the static mismatches

between signatures of Web services. Sub-ontology is extracted from the original

annotation ontology of Web services in order to produce representation ontology

for each Web service. Then interface adapters can be automatically generated

based on sub-ontologies of interacting Web services to overcome their signature

mismatches.

§2.3 Service Adaptation 53

Ponnekanti and Fox [75] deal with the interoperability of Web services in

Web-based applications. They identify four types of mismatches between Web

services that are structural incompatibility, value incompatibility, encoding in-

compatibility, and semantic incompatibility. They focus on the structural and

value incompatibility referred to as SV-incompatibility. The SV-incompatibility

is further categorized into five types as: missing methods incompatibility, extra

fields incompatibility, missing fields incompatibility, facet incompatibility, and

cardinality incompatibility. Static and dynamic analysis tools are developed to

detect the SV-incompatibility between Web services automatically.

Dumas, Spork, and Wang [28] present an approach to reconcile mismatches

between service interfaces. In particular, they deal with behavioral service inter-

faces that contain not only messages but also the order and constraints between

these messages. A behavioral interface is described by a set of traces over an

alphabet made up of communication actions. They define six algebraic trans-

formation operators to mediate the different types of interface mismatches. An

operator takes a service interface as input and generates an interface as output.

They also develop a graphical notation of interface transformation based on the

defined algebraic operators. A flow operator is devised to transform one action

of an interface to another action. A gather operator transforms multiple actions

of an interface into a single action. In addition to the definition of the oper-

ator, the authors specify the preconditions of using the gather operator. The

preconditions imposed on the operator is to achieve reasonable transformation

54 Related Work

and prevent deadlock. A scatter operator is defined to transform one action of

an interface into multiple actions. A collapse operator can transform a stream of

messages generated by a looping execution of a same action into a single message.

A burst operator is defined to transform a single message of an interface into a

stream of messages. A hide operator is devised to make an action of an interface

invisible with the precondition for using this operator that the associated message

of the hidden action is not crucial to the operation of the adapted service.

2.3.2 Adaptation of Service Protocols

As mentioned in the previous section, service protocols contain information about

how service clients can interact with the service properly. Functionally equiva-

lent or similar services may have different business protocols in the aspects of

message format, message content, and message order. The purpose of adapting

service protocols is to resolve incompatibilities of service protocols and achieve

inter-operability. Similar to the adaptation of service interfaces discussed in the

previous sub section, the main method for mediating mismatches of service pro-

tocols is developing various types of adapters. Quite a few approaches have been

proposed in the literature for devising adapters that can overcome different types

and levels of incompatibilities.

The problem of adapting service protocols is also referred as behavior-based

adaptation [17]. There ar some work that deal with behavioral mismatches of

BPEL processes by devising adapters [17, 89, 91]. Brogi and Popescu [17] pro-

§2.3 Service Adaptation 55

pose a methodology for automatically creating adapters for resolving mismatches

between BEPL processes. Their approach is about transforming BPEL processes

into YAWL [99] workflows which serves as an intermediary language for analysis

of behavioral mismatches and generating adapters. Shan, kumar and Grefen [91]

propose an approach for mediating the communication between client and service

processes to overcome the protocol mismatches. The protocol mismatches studied

in their paper comprise message mismatches and control flow mismatches. The

message mismatches refer to the mismatches of format and content of messages

between service consumers and service providers. The control flow mismatches

refer to the mismatches in message orders between service consumers and service

providers. They propose basic adaptation patterns for mediating the identified

mismatch types with respect to messages format, content and order. The adap-

tation patterns can be combined to meet complex adaptation requirements and

they can be extended by users. Seguel, Eshuis, and Grefen [89] describe a method

for generating adapters for service protocols to overcome the behavioral incom-

patibilities. Business protocols are specified as BEPL abstract processes and

are transformed into tree structures. They construct interaction analysis matrix

based on the behavioral relations of two business protocols. Then a minimal in-

teraction set is found based on the interaction analysis matrix. The minimal set

of messages that need to be mediated are discovered from the minimal interaction

set. Heuristic information is used to find mismatches between service behaviors.

Adapters are generated based on the dependence relations between messages in

56 Related Work

the minimal interaction set.

Some current work addresses the adaptation of both service interfaces and

business protocols. Benatallah et al. [12] provide an approach to develop adapters

for Web services. They focus on solving the incompatibility between functionally

similar Web services at the level of interfaces and at the level of business proto-

cols. An adapter behaves as a Web service that coordinates a mismatch between

two services and does not affect the functionality of a Web service. They address

two main requirements for developing adapters as adaptation for compatibility

and adaptation for replaceability. They identify a set of mismatch patterns for

service interface and protocol mismatches. The mismatch patterns of service

interfaces include a signatures mismatch pattern and a parameter constraints

pattern. The mismatch patterns at the protocol level includes: message order

mismatch pattern, extra message mismatch pattern, missing message mismatch

pattern, message split mismatch pattern, and message merge mismatch pattern.

Each impact pattern comprises a pattern name, a mismatch type, template pa-

rameters, an adapter template and a sample usage. The use of adapters and

message brokers is a typical approach to application integration. Kongdenfha et

al. [46] propose an aspect-oriented framework to solve the mismatches between

an internal service implementation and standard external specifications at the

interface and protocol level. The business logic is treated as the main concern

and the adaptation logic is specified as crosscutting concerns. An external spec-

ification of a service includes an interface and a business protocol [13]. They

§2.3 Service Adaptation 57

identify the taxonomy of mismatch types of service interfaces and business pro-

tocols. Based on the mismatch types, they design a set of templates to handle

mismatches of interfaces and business protocols. A template comprises a pointcut

and an advice. A pointcut is specified as queries over a business process execu-

tion. An advice is described by the BPEL specification to express the actions to

be performed when handling a type of mismatch. A tool is developed to support

the template instantiation and execution. Nezhad, Xu and Benatallah [66] focus

on the problem of service matching with respect to Web service interfaces and

business protocols. They deal with the matching problem at the interface level

and the business protocol level. They introduce a method to identify a message

merge/split type of mismatch between service specifications. They also design

two algorithms, depth-based interface matching and iterative reference-based in-

terface matching, for service specification matching by incorporating protocol

information. Mateescu, Poizat, and Salaün [63] also deal with mismatches be-

tween services at the interface and protocol levels. Their approach relies on a

type of process algebra. They represent business protocols as symbolic transi-

tion systems which are labeled transition systems extended with value passing.

The concept of contract notation is proposed to understand and identify the mis-

matches between service interfaces and protocols. The automatic generation of

service adapters are based on a type of process algebra.

58 Related Work

2.3.3 Flexibility of Service-Based Business Processes

Flexibility of business processes is an important area in traditional Workflow

systems. As we have discussed in Section 2.2, a lot of approaches have been

proposed for enabling the flexibility of Workflow processes in order to cope with

uncertain circumstances. The Web service technologies enable business processes

to be created by using widely available and standardized Web services from mul-

tiple business partners. In the SOC environment, the distributed and dynamic

characteristics of business processes demand a higher requirements of process

flexibility in order to cope with the various changes and uncertainties arising

from the dynamic environments.

BPEL is the de-facto standard for composing Web services into a business

process. There are quite a few studies about supporting the flexibility of service-

based business processes. Zeng et al. [114] advocate a policy-driven approach

for exception management in BPEL processes. The key idea is the separation

of the business logic and the exception handling policies. The specified excep-

tion handling policies are integrated with business logic at runtime to generate

exception-aware process schemas. In [65], Mietzner and Leymann introduce the

notion of variability descriptor to customize process based and service-oriented

applications. A variability descriptor specifies variability points and dependen-

cies between variability points. Variability descriptors are transformed into BPEL

processes. Multiple variability descriptors can be assigned to an application tem-

§2.3 Service Adaptation 59

plate to realise different adaptation according to different customer requirements.

Extensions to BPEL have been proposed in the literature to support flexibility

and adaptability of BPEL processes. Koning et al. [48] propose VxBPEL as an

extension to BPEL. The VxBPEL is able to model some types of variability for

Web service based systems. The concept of variability point and variants are pro-

posed to realise flexible BPEL processes. They demonstrate using the VxBPEL

to model three types of variabilities in BPEL processes: service replacement,

service parameters and system composition. In [21], Charfi and Mezini provide

an aspect-oriented approach to extending the BPEL specification. They aim to

improve the modularity and adaptability of BPEL processes from the aspects of

logging, persistence, auditing, and security. Agarwal and Jalote [6] extend the

BPEL specification by enabling specifying non-functional requirements of Web

services.

Contextual information is also considered in some research to enable flexi-

ble and adaptable Web service based processes. In [22], Choi et al. propose an

adaptation approach for service based processes by taking into the contextual

information into account. They consider the changes of user’s requirements and

context. The proposed method supports modifying the workflow definitions (pro-

cess schemas) for an individual workflow instance at runtime when a change is

required. Jarouchech, Liu and Smith [38] present an aspect oriented framework

for adapting service based processes by taking contextual information into consid-

eration. The adaptation logic is specified as crosscutting concerns. The proposed

60 Related Work

framework comprises a process model, a context model, an evolution model and

a linkage model. Evolution fragments and evolution primitives are defined in the

evolution model to capture changes. The adjustment of a particular process can

be realised at both the process schema level and the process instance level.

Some existing work investigates the adaptability of service-based processes

from the aspect of non-functional requirements such as QoS properties [20, 37,

111, 110]. Chafle et al. [20] describe an approach for adapting service-based busi-

ness processes in case of changing QoS properties. They consider the changes of

QoS as variations in service performance, cost, and availability. A concept of

value of changed information is proposed to measure QoS changes of participant

Web services in a business process. Harney and Doshi [37] present a similar ap-

proach for adjusting service based processes to QoS changes. Expiration times

are used to reduce the complexity of computation during the process adaptation.

Wu and Doshi [110] present a decentralized approach for adjusting service based

processes to environmental changes such as service performance and availabil-

ity. In their paper [6], Agarwal and Jalote address the issues of adapting BPEL

processes based on non-functional requirements. They present mechanisms for

specifying non-functional requirements of BPEL processes which are extensions

to the BPEL specification. Participant Web services are selected and can be sub-

stituted as required at runtime to implement activities of BPEL processes based

on the specified non-functional requirements.

§2.4 Discussion 61

2.4 Discussion

This chapter provides an overview of the researches on the change management

both in the field of workflow systems and in the context of SOC. In addition,

service adaptation which is an important area closely related to the problem

of change management is analysed. As discussed in this chapter, the change

management for workflow systems focuses on business processes and studies the

evolution of process schemas and/or migration of process instances. These results

provide valuable experience for managing changes in service-based applications

and information systems in the context of SOC. However, these researches are

inherently inadequate to support change management in service-oriented envi-

ronment because they focus on workflow processes without taking services into

consideration.

Service oriented models are introduced to replace or extend traditional pro-

cess models in order to develop flexible business processes and to realize inter-

organization integration. In the SOC paradigm, business processes and services

are coupled with each other when services are used to represent and expose the

functionalities of business processes [24, 53, 72]. As discussed in this chapter, the

change management in the service-oriented environment has been studied from

several aspects including service compatibility, Web service change management,

service evolution, and service adaptation. However, those researches on change

management concentrate only on either service changes or process changes sepa-

62 Related Work

rately. There may be complex and complicated dependence relationships between

business processes and services. Changes of business processes and services will

affect with each other. Unfortunately, the dependencies between services and

business processes have not been fully investigated in the existing work. The

research reported in this thesis shows our approach for filling the gaps described

above. Our change management solution aims to control the cascading effect of

changes of business processes and services. In particular, our approach highlights

the case that a business process supports multiple services from view points of

different partners of the business process. This research targets the guidelines and

generic solutions for the change management of service-based business processes.

Chapter 3

Service-Oriented Business

Process Model

Service-Oriented Computing (SOC) facilitates low-cost and rapid composition of

loosely coupled software applications. Service-oriented models are introduced to

replace or extend traditional process models in order to develop flexible busi-

ness processes and to realize inter-organization integration [72]. Services can be

integrated in distributed applications across organization boundaries. Business

processes and services are subject to change and variation arising from both the

external and internal requirements of organizations. A specific change usually

makes various level of impact on the business processes and services due to var-

ious types of dependencies among business processes and services. The change

management, which is a traditional problem in IT, is becoming more challenging

in the SOC paradigm [70].

As we have discussed in Chapter 2, a significant amount of research on change

management has been done in the context of workflow processes. The research

focuses on the processes only without taking services into consideration. They

63

64 Service-Oriented Business Process Model

are inherently inadequate to support change management goals in the service-

oriented environment. Quite a few work on change management for Web services

and service adaptation has been published in the literature recently. From the

analysis we have provided in the previous chapter, these researches concentrate

on the features of services without considering the associated business processes.

Services and business processes are coupled with each other in various types of

ways in the real world. The dependencies between services and business processes

will be crucial for the change management in the service-oriented environment

for the reason that changes may introduce various level of impact on services and

business processes. In particular, a single business process may support multi-

ple services. Change management becomes complicated due to the dependencies

between the business process and different services. In the next section, an ex-

ample will be given about how a business process supports multiple services. The

example shows readers the motivation of this research.

The objective of this chapter is to propose the service-oriented business pro-

cess model for capturing the major characteristics of change management in the

service-oriented context. In particular, our model describes a type of dependen-

cies between services and business processes that multiple services are supported

by a single business process. The proposed model is the foundation to build up

the taxonomy of changes and generic solution for detection, propagation, and

reaction to various types of changes of business processes and services.

This chapter is structured as follows. We first introduce an example, a sales

§3.1 A Motivating Example 65

scenario, which shows the basic characteristics and requirements of a service-

based business process model. Then we define the service-oriented business pro-

cess model in three aspects as the process layer, the service layer, and the relations

between the two layers. The process layer consists of business processes that are

defined by control flow schemas and information flow schemas. The service layer

comprises services that are defined in terms of their behavioral characteristics.

The relations between the process layer and the service layer describe how busi-

ness processes in the process layer and services in the service layer are associated

with each other.

3.1 A Motivating Example

Let us consider a typical sales scenario. A sales process can receive an order from

a buyer, check the stock availability, and send acknowledgement to the buyer.

If an order is accepted, the sales process will send the bill to the buyer. The

payment is sales by a finance institute. The buyer will be issued with an invoice

after the payment. In the meantime, the sales process handles the shipment of

the goods with the support of a shipping company. The buyer will be notified

with a shipping schedule. In this scenario, the sales process interacts with three

trading partners as a buyer, a finance institute, and a shipping company. In SOC

environments, these three partners interact with the sales process by invoking the

corresponding services exposed by the sales process. The three services are sb,

66 Service-Oriented Business Process Model

sales process

Service for buyer Sb

Service for payment Sf

Service for shipper Ss

service change

Service Change

impact

process change

Process Change

impact

Figure 3.1: A motivating example.

sf and ss exposed for interacting with the buyer, the financial institute, and

the shipping company (cf. Figure 3.1). Each service is an external view of

the sales process from a particular trading partner. For example, the service

sb contains operations that offer functionality such as receiving purchase order,

sending order confirmation, sending and receiving billing information as well as

sending shipping notice. Private tasks of the sales process such as checking stock

availability and processing an invoice are hidden from its partners.

In the real world, there are cases that are similar to the above scenario where

multiple services are supported by a single business process. The dependence

relation between the services and the business process make change management

complicated and challenging. On one hand, when a change occurs in any of the

§3.2 Service-Oriented Business Process Model 67

services, this service change may impact on its internally supporting business

process and the other services. As shown in Figure 3.1, a change in the buyer

service sb will impact on the sales process and the payment service sf as well

as the shipper service ss that are supported by the sales process. On the other

hand, when a change occurs in the business process, this process change may

impact on the services associated with this business process. The changes of a

business process and multiple services will affect with each other. For instance,

in Figure 3.1, a change in the sales process will have impacts on its supported

services. The above scenario provides the basic requirements and motivation

for our approach about the change management for service oriented business

processes. The typical case that multiple services are supported by a single

business process will be highlighted in this research.

3.2 Service-Oriented Business Process Model

As shown in the above sales scenario, the proposed service-oriented business

process model captures a typical case of dependence relations between services

and business processes that multiple services are supported by a single business

process. In this section, we introduce the proposed model and the basic concepts

that will be used in the later chapters. The model consists of two layers: the

process layer and the service layer. The process layer contains business processes,

which will be referred to as internal processes in the following part of the thesis.

68 Service-Oriented Business Process Model

The service layer contains services. We define the process layer and the service

layer respectively in the following sub sections, and then we discuss the relations

between the process layer and the service layer.

3.2.1 Process Layer

The process layer contains business processes which are referred to as internal

processes. An internal process is defined by its control flow schema and informa-

tion flow schema.

3.2.1.1 Control Flow Schema

A control flow schema specifies the control relations between activities. Here

activities are categorized into private activities (p-activities) and communication

activities (c-activities) [24, 27, 109]. A private activity (p-activity) performs a

private task which is invisible to the partners. A communication activity (c-

activity) is defined for exchanging information with a particular partner. C-

activities are further categorized into four types: receive, send, receive/reply,

invoke/recieve.

Definition 1 (Control flow schema) The control flow schema of an internal

process is defined as a 3-tuple: CFS = (A,C,E), where:

• A = {a1, . . . , an} is a set of activities. Each activity a ∈ A is associated

with an operation that implement the activity. If a is a c-activity, a.partner

refers to the trading partner that a intends to interact with;

§3.2 Service-Oriented Business Process Model 69

Receive order
b

Send

acknowledgementb

Check stock

availability

Prepare bill

Send bill
b

Send reject order
b

Receive PayInfo
b

Invoke pay service
f

Receive pay

confirmationf

Send invoice
b

Prepare invoice

x

x

Receive activity

relating to partner x

Send activity

relating to partner x

Private activity

No stock available stock available

b: buyer

f: financial institue

Figure 3.2: Control flow schema of the sales process.

70 Service-Oriented Business Process Model

• C = {⊕split,⊕join,⊗split,⊗join} is the set of control connectors, where ⊕

represents the and connector while ⊗ denotes the xor connector;

• E = {e1, . . . , em} is a set of directed edges associated with the activities

and connectors.

Figure 3.2 shows the control flow schema of a sales process which intends to

interact with two trading partners: a buyer and a financial institute.

3.2.1.2 Information Flow Schema

The information flow schema of an internal process defines how data is trans-

ferred between activities. The information flow is key for understanding the data

dependency between activities which is indispensable for analysing change im-

pact. We define the information flow schema of an internal process that is similar

to the data flow schema defined in workflow systems [77].

Let D = {d1, . . . , dn} be a set of data elements associated with the internal

process. Every activity a has input parameters, denoting as InPARs(a) and

output parameters, denoting as OutPARs(a). A data connection is defined as

dc = (d, a, par,mode)

where d ∈ D, a ∈ A, par ∈ InPARs(a)∪OutPARs(a), andmode ∈ {read, write}.

Definition 2 (Information flow schema) Let CFS = (A,C,E) be the

control flow schema of an internal process, the information flow schema is defined

§3.2 Service-Oriented Business Process Model 71

Receive order
b

Send

acknowledgementb

Check stock

availability

Prepare bill

Send bill
b

Send reject order
b

write

read

read

read

write

read

read

read

read

write

read

d1

d2

d3

d4

d5

Figure 3.3: Information flow schema of the sales process.

as the set of all data connections:

IFS = {dc1, . . . , dcm}

Figure 3.3 shows part of the information flow schema of the sales process.

The dashed arrows are data connections. After receiving the order from a buyer,

the activity Receive order writes d1 with the information: customer order. The

data connection is

(d1,Receive order , customer order , write)

Then Send acknowledgement reads from d1 as input parameter and sends an

72 Service-Oriented Business Process Model

acknowledgement to the buyer. The data connection is:

(d1, Send acknowledgement , customer order , read)

Data dependency between activities can be derived from data connections.

There exists data dependency between Receive order and Send acknowledgement

because the input of the latter is retrieved from the output of the former. We

say Send acknowledgement depends on Receive order in terms of data.

Definition 3 (Activity data dependency) Let CFS = (A,C,E) be the

control flow schema of an internal process, IFS = {dc1, . . . , dcm} be the infor-

mation flow schema, and D = {d1, . . . , dn} be the set of data elements associated

with the internal process. For ai, aj ∈ A, ai depends on aj in terms of data,

denoting as ai 99KD aj iff:

• ∃dcx, dcy ∈ IFS, that dcx = (d, aj, pars, write), dcy = (d, ai, part, read),

where (d ∈ D), pars ∈ OutPARs(aj) and part ∈ InPARs(ai);

• aj precedes ai in CFS.

To sum up, an internal process IP is defined by a 2-tuple:

IP = (CFS, IFS)

where CFS is the control flow schema of IP and IFS the information flow

schema.

§3.2 Service-Oriented Business Process Model 73

3.2.2 Service Layer

The service layer contains services that are supported by the internal process.

Every service is an external view of the internal process from the view point of a

specific trading partner.

To achieve effective interaction with its partner services, a service interface

exposes the observable behavior rather than a list of operations [15, 23, 87]. We

define a service as a set of operations and the invocation relations between these

operations.

Definition 5 (Service) A service is defined by a 2-tuple s = (O, T), where:

• O = {o1, . . . , on} is a set of operations. Each operation oi ∈ O is associated

with a c-activity. Every operation has a set of messages;

• T ⊆ O ×O is a set of control relations between operations.

Each transition t = (oi, oj) ∈ T (oi, oj ∈ O) denotes the invocation from

operation oi to operation oj. We call oi the origin operation of the transition

t and oj the destination operation. For each transition t ∈ T , c(t) denotes the

transition constraint on t. A transition constraint is a boolean expression. If

c(t) = ∅, transition t happens immediately after the execution of the origin

operation. If c(t) ̸= ∅, transition t occurs when the boolean expression in c(t) is

evaluated to be true during execution.

Figure 3.4 shows two services supported by the sales process (cf. Figure 3.2).

Figure 3.4(a) is the service sb for the buyer, which contains six operations and

74 Service-Oriented Business Process Model

send

acknowledgement

receive order

(a)

send reject order

c(t2)

send bill

receive PayInfo

send invoice

invoke payment

service

receive pay

confirmation

(b)

t1

t2 t3

t4

t5

c(t3)

Figure 3.4: Services: (a) the service for buyer sb; (b) the service for financial institute

sf .

five transitions. Among the transitions, t2 and t3 are governed by two constraints

c(t2) and c(t3) respectively, which means that after the invocation of operation

send acknowledgement, whether send reject order or send bill will be executed

depends on the value of c(t2) and c(t3). Figure 3.4(b) is the service sf for the

financial institute. For simplicity, messages associated with these operations are

not shown in the figure.

3.2.3 Relations Between Process Layer and Service Layer

In this section, we discuss how services and internal processes are related with

each other.

An internal process may support multiple services. Every activity in the

internal process is associated with an operation that implements the task specified

by the activity. Operations that are associated with c-activities are exposed

§3.2 Service-Oriented Business Process Model 75

a1

Fragment 1

a2P1

P1

(a)

Fragment 3

a1P1

Fragment 1

...

Fragment 2

a2P1

Fragment 4

(b)

(c)

a1P1

Fragment 1

Fragment 2

Fragment 3

a2P1

Fragment 4
...

a1

Fragment 1

P1

a2P1

Fragment 2

Fragment 3

Fragment 4
...

(d)

O1

O2

Support the

servicet1

associaed

with O1

O2
associaed

with

O1

O2

associaed

with

associaed

with

O2

O1

associaed

with

associaed

with

O1

O2

associaed

with

associaed

with

Figure 3.5: Examples of internal processes and service.

76 Service-Oriented Business Process Model

to corresponding partners. The operations that are related to one partner are

grouped as a service. For example, the service sb contains six operations relating

to the trading partner buyer. Transitions between operations are based on the

control flows associated with corresponding activities. In the service sb, transition

t3 is obtained from the control flow between activities Send acknowledgement and

Send bill, which are both c-activities for interacting with a buyer. As the activity

send bill is in a conditional branch, t3 is governed by a constraint c(t3) that

is obtained from the conditions of the correspondent xor connector. Thus, the

service for a particular trading partner is abstracted from the internal process

by exposing operations associated with the c-activities relating to the partner

and generating transitions between operations from the control relations between

corresponding activities.

A service is an external view of the internal process from the view point of a

particular trading partner. Transition sequences of operations reflect the abstract

control relation between associated activities in the internal process. For example,

in Figure 3.4(a), there is a transition sequence receive PayInfo t5 send invoice in

service sb. From this transition sequence, we know that the activity Receive

PayInfo must precede Send Invoice in the sales process. Note that there are

other activities between the two activities but are invisible to the buyer. We

summarize the relations between services and internal processes as follows.

• Operations associated with p-activities in the internal process are invisible

§3.2 Service-Oriented Business Process Model 77

to all the trading partners.

• For every c-activity a, if a.partner = p1, the operation associated with a is

shown in the service sp1 .

• Transitions between operations in the service sp1 are based on the control

relations between the c-activities which intend to interact with p1.

• Conditions controlling the execution of c-activities in the internal process

are related to the constraints of the corresponding transitions in the ser-

vices.

We provide an example shown in Figure 3.5 to illustrate the above relations

between services and internal processes. As shown in Figure 3.5, there are four

internal processes. Each internal process contains the c-activities a1 and a2 re-

lating to partner p1. We denote the operations associated with a1 and a2 as o1

and o2. The process fragments in these internal processes are sub processes con-

taining only the p-activities and the c-activities that are irrelevant to the partner

p1. The four internal processes shown in the figure support a same service sp1 .

That is, given an activity a of a process fragment, a is either a p-activity or a

c-activity with a.partner ̸= p1. The four internal processes have different con-

trol flow schemas. However, according to the relations listed above they support

the same service sp1 that contains the transition sequence o1t1o2. This example

also illustrates that a service is an external view of the internal process. The

78 Service-Oriented Business Process Model

a1

Fragment 1

a2P1

P1

(a)

Fragment 3

a1P1

Fragment 1

...

Fragment 2

a2P1

Fragment 4

(b) (c)

a1P1

Fragment 1

Fragment 2

Fragment 3

a2P1

Fragment 4
...

a1

Fragment 1

P1

a2P1

Fragment 2

Fragment 3

Fragment 4
...

(d)

Abstract control

relation

a1P1

a2P1

(e)

Process fragment that contains no

c-activities relating to sp1

Figure 3.6: (a) Abstract precedence relation; (b)-(e) internal processes.

transitions between operations of a service reflect the control relations between

associated c-activities in the internal process.

For this reason, we propose the concept of abstract control relation to describe

the control relations between c-activities relating to one trading partner. We

define three types of abstract control relations: abstract precedence relation (cf.

Figure 3.6), abstract parallel relation (cf. Figure 3.7), and abstract conditional

relation (cf. Figure 3.8). These abstract control relations will be used in the later

chapters for describing the impact on the internal process made by a particular

service change.

3.3 Discussion

In this chapter, we have presented a service-oriented business process model that

captures a typical type of dependence relations between services and business

§3.3 Discussion 79

(a)

Abstract control

relation

a1P1

a2P1

Process fragment that contains no

c-activities relating to sp1

a1

Fragment 1

P1

a2P1

Fragment 2

Fragment 3 Fragment 5

(b)

Fragment 4

a3P1

Fragment 6

a4P1

a3P1

a4P1

AND

Figure 3.7: (a) Abstract parallel relation; (b) internal process.

(a)

Abstract control

relation

a1P1

a2P1

Process fragment that contains no

c-activities relating to sp1

a1

Fragment 1

P1

a2P1

Fragment 2

Fragment 3 Fragment 5

(b)

Fragment 4

a3P1

Fragment 6

a4P1

a3P1

a4P1

XOR

Figure 3.8: (a) Abstract conditional relation; (b)internal process.

80 Service-Oriented Business Process Model

processes, where multiple services are supported by a single business process.

An internal process is defined by a control flow schema and an information flow

schema that describe the control and data aspects of a business process respec-

tively. A service is defined as a set of operations and transitions associated with

the operations. This definition captures the behavioral characteristics of a service.

A business process may support multiple services. Each service is an external

view of the associated internal process from the view point of a particular trad-

ing partner. The proposed service-oriented business process model provides the

foundation for our research on change management in the SOC context, including

identifying the various types of service changes and process changes in service-

based business processes and devising approaches for change impact analysis and

change reactions.

In the real world, various types of dependence relations between services and

business processes exist. The dependence relations between services and busi-

ness processes are crucial for understanding the impact of a specific change and

developing mechanisms for handling changes. Therefore, clarifying these various

types of dependence relations are vitally important for identifying the types of

changes that may occur in the systems, understanding the impact of a specific

change, and devising effective solutions for handling changes. Existing works on

change management concentrate on business process changes or service changes

separately. The dependencies between services and business processes have not

been fully investigated in existing works on change management in the context

§3.3 Discussion 81

of SOC. The research reported in this thesis shows our approach for filling the

gaps described above. This chapter presents our service-oriented business process

model as the first step for developing the change management mechanisms. This

model provides foundation for identifying the various types of changes associated

with services and processes and change impact patterns in the next Chapters.

82 Service-Oriented Business Process Model

Chapter 4

Change Taxonomy

As discussed in the previous chapter, services and business processes are coupled

with each other in the real world. The proposed service-oriented business process

model describes a type of dependencies between services and business processes

when multiple services are supported by a single business process. Due to vari-

ous reasons such as business regulations and application environments, services

and business processes need to change from time to time. A service may need

to change in many aspects such as operation granularity, operation invocation

sequences, and operation existence et al. in order to engage in business collabora-

tion. A business process may also need to change in many aspects of its structure

such as changing the existence of activities or embedding activities in a condi-

tional branch et al. The changes of services and business processes will affect with

each other due to their coupling relations. Moreover, different types of service

changes and process changes may have distinct impact on the associated services

and business processes. Understanding the various types of service changes and

process changes is a priori for developing effective and efficient mechanisms for

analysing the impact caused by a specific service change and a process change

83

84 Change Taxonomy

and controlling those changes.

The objective of this chapter is to present a taxonomy of changes associated

with services and business processes that provides the foundation for change im-

pact analysis and change reaction for service-based business processes [103]. We

identify two major categories of changes as service changes and process changes

based on the proposed service-oriented business process model defined in the

previous chapter. The operation changes and transition changes are classified

as the two major types of service changes. The operation changes are further

categorized into existence changes and granularity changes. The types of process

changes are identified based on the activities and their control relationships.

This chapter is structured as follows. First we present the taxonomy of service

changes in Section 4.1. Two broad categories of service changes as the operation

changes and the transition changes will be introduced in Section 4.1.1 and Section

4.1.2 respectively. Then we present the classification of process changes in Section

4.2. Finally, we conclude this chapter in Section 4.3.

4.1 Service Changes

Two major types of service changes are identified: the operation changes and the

transition changes. The operation changes are further categorized into operation

existence changes and operation granularity changes (cf. Figure 4.1).

§4.1 Service Changes 85

Transition Sequence Order Change (TSOC)Sequential to Parallel Transition Sequence Change (SPTSC)Parallel to Sequential Transition Sequence Change (PSTSC)Adding Conditional Transition Sequence Change (ACTSC)Removing Conditional Transition Sequence Change (RCTSC)Adding Looping Transition Sequence Change (ALTSC)Removing Looping Transition Sequence Change (RLTSC)

Sequentially adding an operation without constraintsAdding an operation in parallel to existing operations without constraintsAdding an operation in parallel to existing operations with constraints Asynchronous Operation Granularity Change (AOGC)Synchronous Operation Granularity Change (SOGC)Complex Operation Granularity Change (COGC)

Sequentially adding an operation with constraints

Figure 4.1: Taxonomy of service change.

86 Change Taxonomy

4.1.1 Operation Existence Changes

An operation existence change occurs due to adding or removing operations in a

service. There are four possible ways of adding an operation as shown in Figure

4.2: sequentially adding an operation without constraints, sequentially adding an

operation with constraints, adding an operation in parallel to existing operations

without constraints, and adding an operation in parallel to existing operations

with constraints.

• Sequentially adding an operation without constraints refers to the change

that an operation is added in between two operations unconditionally. Fig-

ure 4.2(a) exemplifies this type of operation existence change.

• Sequentially adding an operation with constraints refers to the change that

an operation is added in between two operations conditionally. Figure

4.2(b) shows an example of this type of change. The operation ox is between

oi and oj with constraints cx1 and cx2 which are mutually exclusive. If cx1

is satisfied, ox is invoked. Otherwise, cx2 is evaluated to be true and ox is

skipped.

• Adding an operation in parallel to existing operations without constraints

refers to the change that an operation is added in parallel to existing oper-

ations unconditionally. Figure 4.2(c) shows that ox is added in parallel to

oj without any constraints. After the execution of oi, oj and ox are invoked

simultaneously.

§4.1 Service Changes 87

Oj

Oi Oi

Oj

Ox

Sequentially adding an

operation without

constraints

Oi

Oz

Ox

Oz

Oi

cx

(a) (b)

Oi

Oj

Ox

cx1

cx2

Oj

Oj

Oi

Oz

OxOj

Oj

Oi

Oz

Oi

Oj

(c) (d)

Deleting an

operation

Sequentially adding an

operation with

constraints

Deleting an

operation

Adding an operation in

parallel to oj without

constraints

Deleting an

operation

Adding an operation in

parallel to oj with

constraints

Deleting an

operation

Figure 4.2: Operation existence change.

• Adding an operation in parallel to existing operations with constraints refers

to the change that an operation is added in parallel to existing operations

conditionally. Figure 4.2(d) shows that operation ox is added in parallel to

oj with a constraint cx. This means that after the execution of oi, oj and

ox are executed. However, ox will be invoked only if cx is evaluated to be

true.

The deleting an operation change refers to that an operation is removed from

a service. The examples in Figure 4.2 also illustrate this type of change.

4.1.2 Operation Granularity Changes

Operation granularity change refers to the change when existing operations are

reorganized into different grained operations. Changing granularity of operations

is a service design concern in order to meet business requirements from both the

88 Change Taxonomy

organization and the partners.

We consider asynchronous operation with only input messages and synchronous

operation with both input and output messages [42, 80]. The input messages of

an operation are called the input parameter, and the output messages the output

parameter. We assume in the following discussion that two operations that take

the same parameter as input and generate the same output parameter perform

the same functionalities [96]. Based on this assumption, the operation granularity

change is discussed by analyzing the change of input and output parameters. We

focus on the change of information structure that an operation can process. The

information structure of an operation refers to the basic data types an operation

can handle. Two functions are defined to retrieve the basic data types from the

input and output parameters of an operation. Suppose dataType is the basic

XML data types used by operation definition, the functions are defined as

InInfo : O → ℘(dataType)

and

OutInfo : O → ℘(dataTypes)

InInfo takes an operation as the input and generates the set of basic data types

of the input parameter, whereas OutInfo takes an operation as the input and

generates the set of basic data types of the output parameter.

We have identified three major types of operation granularity change: the

§4.1 Service Changes 89

Operation

granularity change

Asynchronous operation

granularity change

(AOGC)

Synchronous operation

granularity change

(SOGC)

Complex operation

granularity change

(COGC)

AOGC type1 one-to-one

change

AOGC type2 one-to-many/

many-to-one change

AOGC type3 many-to-many

change

SOGC type1 one-to-one

change

SOGC type2 one-to-many/

many-to-one change

SOGC type3 many-to-many

change

COGC type1 asynchronous-

to-synchronous change/

synchronous-to-

asynchronous change

COGC type2 mixed change

Figure 4.3: Operation granularity changes.

asynchronous operation granularity change (AOGC), the synchronous opera-

tion granularity change (SOGC) and the complex operation granularity change

(COGC). Figure 4.3 presents the sub types of the three types of operation gran-

ularity change. We discuss these three types of operation granularity change in

more detail in the following sub sections.

4.1.2.1 Asynchronous Operation Granularity Change

The asynchronous operation granularity change (AOGC) refers to the granularity

change of asynchronous operations. We classify AOGC into: AOGC type 1 one-

to-one change, AOGC type 2 one-to-many/ many-to-one change, and AOGC type

3 many-to-many change.

AOGC type 1 one-to-one change describes that one asynchronous operation

90 Change Taxonomy

Ox O′x

Input messages Input messages

AOGC type1 one-to-one

change

Figure 4.4: AOGC type 1 one-to-one change.

ox is modified to another asynchronous operation o′x (cf. Figure 4.4).

The following relations between ox and o′x exist:

•

InInfo(ox) ⊂ InInfo(o′x)

which means that ox is modified to o′x by accepting more data types as its

input parameter.

•

InInfo(ox) ⊃ InInfo(o′x)

which means that ox is modified to o′x by requiring less data types as its

input parameter.

• the above two conditions do not hold and

InInfo(ox) ∩ InInfo(o′x) ̸= ∅

This relation means that o′x accepts some of the data types that are accepted

§4.1 Service Changes 91

Ox O’xAOGC type 1

one-to-one

change

cx1

cx2

Input messages Input messages

Figure 4.5: An example for AOGC type 1 one-to-one change.

by ox and o′x also accepts data types that are not accepted by ox.

Operation granularity change involves transition sequences changes. These

transition sequence changes indicate how the modified operations are organized

in a service. For example, in Figure 4.5, the asynchronous operation ox is changed

to another asynchronous operation o′x. Observe that o′x is embedded in a looping

transition sequence, which enables o′x to be invoked multiple times.

AOGC type 2 one-to-many/ many-to-one change defines the granularity change

between an asynchronous operation and a set of asynchronous operations. The

one-to-many change covers the case that an operation is split and modified into

a set of operations. The many-to-one change covers the case that multiple opera-

tions are merged and modified into one operation (cf. Figure 4.6). We discuss the

one-to-many change in detail. The many-to-one change can be similarly defined.

Let ox be an asynchronous operation, ox is split into a set of operations OY =

{oy1, . . . , oyt}, where ∀oyj ∈ OY (j = 1, . . . , t), InInfo(ox) ∩ InInfo(oyj) ̸= ∅.

The relations between ox and oY are listed below.

92 Change Taxonomy

Ox

Oy1

Input messages
Input messages

AOGC type 2 one-to-

many change
Oyt

Input messages
...

AOGC type 2 many-to-

one change

transition Undecided transition

Associated messages

Figure 4.6: AOGC type 2 one-to-many/many-to-one change.

•

InInfo(ox) = InInfo(OY)

which means that operation ox is split into functionally equivalent finer

operations.

•

InInfo(ox) ⊂ InInfo(OY)

which means that operation ox changes to a set of operations OY which is

capable of processing more data types in its information structure than the

operation ox.

•

InInfo(ox) ⊃ InInfo(Oy)

which means that operation ox changes to a set of operations OY that

§4.1 Service Changes 93

accepts less data types as its input parameters than the operation ox.

• the above three relations do not hold and

InInfo(ox) ∩ InInfo(Oy) ̸= ∅

This relation describes that OY covers only part of the functionality of

ox. Moreover, OY is capable of processing more data types that are not

accepted by ox.

Note that the operations oy1, . . . , oyt can be organized in various ways. We

use dotted lines to represent the undecided transitions between these operations

(cf. Figure 4.6). Figure 4.7 gives examples of the various ways to organize

the changed operations during the one-to-many change. In this example, we

consider an operation ox is split into two operations ox1 and ox2. The operations

ox1 and ox2 can be invoked sequentially without constraints (cf. Figure 4.7(a))

or with constraints (cf. Figure 4.7(b)). They can be invoked in parallel without

constraints (cf. Figure 4.7(c)) or with constraints (cf. Figure 4.7(d)).

AGOC type 3 many-to-many change describes the granularity change be-

tween two sets of asynchronous operations. Let OX = {ox1, . . . , oxs} be a set

of asynchronous operations, OX is modified into a set of operations OY = {oy1,

. . . , oyt}, where ∀oxi ∈ OX (i = 1, . . . , s), ∃oyj ∈ OY (j = 1, . . . , t), such that

InInfo(oxi) ∩ InInfo(oyj) ̸= ∅ (cf. Figure 4.8).

The following relations between OX and OY exist:

94 Change Taxonomy

Oi

Oj

Ox

Oj

Oi

Ox2

(a)
(b)

Ox1

Ox

Ox1

Ox2

Oi

Oj

Ox

Ox1

Ox2

Oi

Oj

Oi

Oj

Ox

Oj

Oi

Ox2Ox1

(c) (d)

cx1

cx2

cx1 cx2

Figure 4.7: Examples for AOGC type 2 one-to-many change.

Ox1

Oy1

Input messages

Input messages

AOGC type 3 many-to-

many change

Oyt

Input messages
...

Input messages...

Oxs

transition Undecided transition

Associated messages

Figure 4.8: AOGC type 3 many-to-many change.

§4.1 Service Changes 95

•

InInfo(OX) = InInfo(OY)

which means that operations in OX are redesigned into a set of operations

OY . Although OX and OY remain functionally equivalent, each operation

oxi in OX (i = 1, . . . , s) is different with any operation oyj in OY (j =

1, . . . , t).

•

InInfo(OX) ⊂ InInfo(OY)

which means that OY is capable of processing more data types than OX .

•

InInfo(OX) ⊃ InInfo(OY)

which means that OY accepts less data types as the input parameters than

OX .

• the above relations do not hold and

InInfo(OX) ∩ InInfo(OY) ̸= ∅

This relation between OX and OY describes that OY retains only part of

the functionality of OX and has functionality that is not provided by OX .

96 Change Taxonomy

4.1.2.2 Synchronous Operation Granularity Change

The synchronous operation granularity change (SOGC) refers to the granularity

change of synchronous operations. SOGC is classified into three types: SOGC

type 1 one-to-one change, SOGC type 2 one-to-many/ many-to-one change, and

SOGC type 3 many-to-many change.

SOGC type 1 one-to-one change describes the granularity change between

two synchronous operations. Let ox ∈ O be a synchronous operation, ox can be

changed to another synchronous operation o′x by modifying its input and output

parameters (cf. Figure 4.9). For instance,

InInfo(ox) = InInfo(o′x)

and

OutInfo(ox) ⊂ OutInfo(o′x)

which indicates that o′x accepts the same input as ox but generates output with

more data types in its information structure.

SOGC type 2 one-to-many/ many-to-one change describes the granularity

change between a synchronous operation ox and a set of synchronous operations

OY = {oy1, . . . , oyt}, where ∀oyj ∈ OY (j = 1, . . . , t) such that (InInfo(ox) ∪

§4.1 Service Changes 97

Ox

O’x

Input messages

Input messages

SOGC type 1 one-to-one

change

output messages

output messages

transition Associated messages

Figure 4.9: SOGC type 1 one-to-one change.

OutInfo(ox))∩(InInfo(oyj)∪OutInfo(oyj)) ̸= ∅ (cf. Figure 4.10). For instance,

InInfo(ox) = InInfo(OY)

and

OutInfo(ox) ⊂ OutInfo(OY)

This relation indicates that ox and OY accept the same input parameters whereas

OY generates output with more data types in its information structure than ox.

SOGC type 3 many-to-many change describes the granularity change between

two sets of synchronous operations (cf. Figure 4.11). Let OX = {ox1, . . . , oxs}

be a set of synchronous operations, OX is redesigned into a set of synchronous

operations OY = {oy1, . . . , oyt}, where ∀oxi ∈ Ox (i = 1, . . . , s), ∃oyj ∈ OY

98 Change Taxonomy

Ox

Oy1

Input messages

Input messages

SOGC type 2 one-to-

many change

Oyt

Input messages
...

Output messages

Output messages Output messages

transition Undecided transition

Associated messages

SOGC type 2 many-to-

one change

Figure 4.10: SOGC type 2 one-to-many/ many-to-one change.

(j = 1, . . . , t), such that

(InInfo(oxi) ∪OutInfo(oxi)) ∩ (InInfo(oyj) ∪OutInfo(oyj)) ̸= ∅

4.1.2.3 Complex Operation Granularity Change

The complex operation granularity change (COGC) refers to the granularity

change that involves both synchronous and asynchronous operations. COGC

is classified into: COGC type 1 asynchronous-to-synchronous/ synchronous-to-

asynchronous change and COGC type 2 mixed change.

COGC type 1 asynchronous-to-synchronous/ synchronous-to-asynchronous change

describes the granularity change between asynchronous operations and synchronous

operations and vice versa (cf. Figure 4.12). We define the granularity change

from asynchronous to synchronous operations. The synchronous-to-asynchronous

§4.1 Service Changes 99

Ox1

Oy1

Input messages

Input messages

SOGC type 3 many-to-

many change

Oyt

Input messages
...

Input messages
...

Oxs

Output messages Output messages

Output messages Output messages

transition Undecided transition

Associated messages

Figure 4.11: SOGC type 3 many-to-many change.

change is similarly defined. Let OX = {ox1, . . . , oxs} be a set of asynchronous

operations and OY = {oy1, . . . , oyt} be a set of synchronous operations. There is

a COGC type 1 asynchronous-to-synchronous change iff ∀oxi ∈ Ox (i = 1, . . . , s),

∃oyj ∈ OY (j = 1, . . . , t), such that InInfo(oxi)∩(InInfo(oyj)∪OutInfo(oyj)) ̸=

∅ (cf. Figure 4.12). For instance,

InInfo(OX) ⊂ (InInfo(OY) ∪OutInfo(OY))

which means that OY covers all the functionality of OX and provides extra func-

tionality than OX .

Figure 4.13 gives an example of this type of operation granularity change. A

synchronous operation ox is modified to three asynchronous operations oy1, oy2

and oy3. The operation oy1 can be invoked in parallel to the operations oy2 and

100 Change Taxonomy

Ox1

Oy1

Input messages

Input messages

COGC type 1

asynchronous-to-

synchronous change

Oyt

Input messages
...

Input messages...

Oxs

Output messages Output messages

transition Undecided transition

Associated messages

COGC type 1

synchronous-to-

asynchronous change

Figure 4.12: COGC type 1 asynchronous-to-synchronous change.

oy3. In addition, oy2 is followed by oy3 which is embedded in a looping transition.

COGC type 2 mixed change describes the change between two sets of oper-

ations: OX and OY . Each set of operations consists of both synchronous and

asynchronous operations. Let OX = {ox1, . . . , oxs} and OY = {oy1, . . . , oyt} be

two sets of operations. OX is categorized into two sets: Oa
X and Os

X , where Oa
X

consists of the set of asynchronous operations and Os
X contains the synchronous

operations. Similarly, OY can be classified into Oa
Y and Os

Y . There is a COGC

type 2 mixed change iff all the following conditions are satisfied:

• ∀oxi ∈ Oa
X , ∃oyj ∈ OY , such that

InInfo(oxi) ∩ InInfo(oyj) ̸= ∅(oyj ∈ Oa
Y)

§4.1 Service Changes 101

Ox

Oy3

Oy2

Oy1

Synchronous to

asynchronous

change
Input messages

Output messages

Input messages

Input messages

Input messages

Figure 4.13: An example for COGC type 1 synchronous-to-asynchronous change.

or

InInfo(oxi) ∩ (InInfo(oyj) ∪OutInfo(oyj)) ̸= ∅(oyj ∈ osY)

• ∀oxi ∈ Os
X , ∃oyj ∈ OY , such that

(InInfo(oxi) ∪OutInfo(oxi)) ∩ InInfo(oyj) ̸= ∅(oyj ∈ Oa
Y)

or

(InInfo(oxi)∪OutInfo(oxi))∩(InInfo(oyj)∪OutInfo(oyj)) ̸= ∅(oyj ∈ Os
Y)

4.1.3 Transition Changes

A transition change refers to the modification of transitions between operations.

Rather than discuss primitive changes such as adding or removing a transition,

we identify seven types of high level transition changes (cf. Figure 4.1). These

102 Change Taxonomy

O1

O3

O2

O2

O3

O1

(a)
(b)

O1

O3

O2

O4

O1

O2

O3

O4

Transition

sequence order

change

Transition

sequence order

change

Figure 4.14: Transition sequence order change (TSOC).

high level transition changes can be accomplished by applying primitive changes.

We believe the high level transition changes are more meaningful in describing

transition changes of a service in the real world. These high level transition

changes are discussed in detail below.

A Transition Sequence Order Change (TSOC) describes the change

that operations are invoked in a different order. Figure 4.14 (a) and (b) are

examples for TSOC.

B Sequential to Parallel Transition Sequence Change (SPTSC) de-

scribes the change that a transition sequence is split into multiple parallel transi-

tion sequences. For example, in Figure 4.15 (a), the transition sequence o1t1o2t2o3t3o4

is changed to two transition sequences o1t
′
1o2t

′
3o4 and o1t

′
2o3. Figure 4.15 (b) is an-

other example for SPTSC involving conditional transition sequences. Before the

change there are two alternatively executed transition sequences: o1t1o2t2(cx1)o3t3o5

(if cx1 is evaluate to be true) and o1t1o2t4(cx2)o4t5o5 (if cx2 is evaluate to be true).

After the SPTSC, the two alternative transition sequences are changed into three

§4.1 Service Changes 103

O1

O3

O2

O2 O3

O1

O4

O4

(b)

O1

O3

O2

O4

O1

O2

O3

O4

O5 O5

Sequential to parallel

transition sequence

change

Parallel to sequential

transition sequence

change

(a)

Sequential to parallel

transition sequence

change

Parallel to sequential

transition sequence

change

t1

t2

t3

t′1
t′2

t′3

t1

t2

t3

t4

t5

cx1
cx2

t′1

t′2

t′3

cx1

t′4

t′5

t′6

cx2

Figure 4.15: Sequential (parallel) to parallel (sequential) transition sequence change

(SPTSC, PSTSC).

transition sequences: o1t
′
1o2t

′
2o5, o1t

′
3(cx1)o3t

′
4o5 (if cx1 is evaluate to be true), and

o1t
′
5(cx2)o4t

′
6o5 (if cx2 is evaluate to be true).

C Parallel to Sequential Transition Sequence Change (PSTSC) de-

scribes the change that transition sequences that can be executed in parallel are

merged into a single transition sequence (cf. Figure 4.15(a) and (b)).

D Adding Conditional Transition Sequence Change (ACTSC) refers

to the change that unconditional invocation of operations are controlled by con-

straints. In Figure 4.16 the invocation of o2 is changed to be conditional by

introducing a constraint cx1 to the transition t1. In addition, a transition t3 with

104 Change Taxonomy

O1

O3

O2
O2

O3

O1

t3

Adding conditional

transition sequence

Removing

conditional transition

sequence

t1

t2

t′1

t′2

cx1

cx2

Figure 4.16: Adding (removing) conditional transition sequence change (ACTSC

(RCTSC)).

O1

O3

O2
O2

O3

O1

Adding looping

transition sequence

Removing looping

transition

sequence

Figure 4.17: Adding (removing) looping transition sequence change (ALTSC

(RLTSC)).

a constraint cx2 is added from o1 to o3. ACTSC describes a typical change that

unconditionally invoked operations are changed to be conditionally executed.

E Removing Conditional Transition Sequence Change (RCTSC)

refers to the change that conditionally invoked operations are changed to be

invoked without constraints. Figure 4.16 is also an example of RCTSC.

F Adding Looping Transition Sequence (ALTSC) refers to that oper-

ations are changed to be executed multiple times. For instance, in Figure 4.17

the operation o2 is embedded in a looping transition.

G Removing Looping Transition Sequence Change (RLTSC) de-

§4.2 Process Changes 105

scribes the change that operations are moved out from looping transitions. Figure

4.17 is an example, where o2 can only be executed once after the change.

4.2 Process Changes

In this section, we present the identified process changes. Figure 4.18 shows the

taxonomy for process changes in our work. These types of process changes are

classified with the goal to facilitate the change impact analysis for service-based

business processes. That is, these identified types of process changes provide

foundations for analysing the change impact on internal processes and services.

Change classification of business processes has been studied in the workflow

systems [100, 104]. In those works, the high level classification of process changes

are proposed. The basic element in the change classification is process fragment.

A process fragment is a sub process that has a single node in and a single node

out. However, the impact of process changes on individual services can not

be analysed when using process fragments as the basic elements in the change

classification. To facilitate the change impact analysis in service based business

processes, our work uses activity as the basic element in classifying changes of

internal processes.

We provide an example to illustrate the reason for using activities as the

basic elements in the change classification than using process fragments. As

Figure 4.19 shows that process fragment 1 is inserted between two successively

106 Change Taxonomy

Process

change

Insert an

activity

Remove an

activity

Serially insert an

activity

Parallel insert an

activity

Conditionally

insert an activity

Parallelize

activities One to one

replacement

One-to-many /

many-to-one

replacement
Embed in

conditional

branches

Embed in loop

Update

conditions

Sequence

activities

Move an

activity
Serially move an

activity

Parallel move an

activity

Conditionally

move an activity

Replace

activities

Figure 4.18: Taxonomy of process changes.

Serially insert a process

fragment

ak1

ak2
P1

P1

ak1

ak2
P1

P1

Process

fragment 1

Figure 4.19: Serially insert a process fragment.

§4.2 Process Changes 107

executed c-activities ak1 and ak2. To understand the impact on the associated

services made by this process change, we must know the details inside process

fragment 1. Figure 4.20 shows four cases of the process fragment 1. In Figure

4.20(a), process fragment 1 contains only a c-activity ax relating to the partner

p1. In this case, the process change requires that an operation associated with

ax must be inserted between operations associated with activities ak1 and ak2. In

Figure 4.20(b), process fragment 1 contains an xor structure with two conditional

branches. One branch contains two p-activities ai and aj and a c-activity ax

relating to the partner p1. In this case, the process change requires that an

operation associated with ax must be inserted conditionally between operations

associated with activities ak1 and ak2 in the service sp1 . In Figure 4.20(c), process

fragment 1 contains two parallel branches with four activities. In one parallel

branch, a p-activity ai, a c-activity ax relating to partner p1, and a p-activity

aj are executed successively. Another parallel branch contains a c-activity ak3

relating to partner p1. In this case, the process change requires that operations

associated with ax and ak3 must be added in parallel to each other in the service

sp1 . In Figure 4.20(d), process fragment 1 contains two parallel branches. One

parallel branch has two conditional branches. In one conditional branch, a p-

activity ai, a c-activity ax relating to partner p1, and a p-activity aj are executed

successively. Another parallel branch contains only a c-activity ak3 relating to

partner p1. In this case, the process change requires that the operation associated

with ax must be added with constraints between the operations associated with

108 Change Taxonomy

ak1 and ak2 in the service sp1. In addition, the operation associated with ak3 must

be added in parallel to the operation associated with ax. In the above four cases

of process fragment 1, the process change insert a process fragment has different

impact on the associated services. Therefore, change classification needs to be

discussed based on activities rather than process fragment.

In the following, we discuss the identified process changes as shown in Figure

4.18 in detail.

Insert an Activity

The Insert an activity change is further classified into three sub types as

follows.

A Serially insert an activity The serially insert an activity change de-

scribes that an activity is added to between two directly succeeding activities.

Figure 4.20 are examples of this type of process change.

B Parallel insert an activity The parallel insert an activity change de-

scribes that an activity is added in parallel to another activity. Figure 4.21

shows an example, where ax is inserted in parallel to ai.

C Conditionally insert an activity The conditionally insert an activity

refers to that an activity is added to the internal process with conditions. Figure

4.22 shows an example, where ax is inserted in between ai and aj with conditions.

Remove an Activity

The remove an activity change describes that an existing activity is deleted

from the internal process.

§4.2 Process Changes 109

ak1P1

axP1

ak2
P1

ai

aj

Process fragment 1

ak1P1

ak2
P1

axP1

Process fragment 1

(a)

(b)

(c)

axP1

ak2
P1

ai

aj

ak3
P1

ak1
P1

Process fragment 1

axP1

ak2
P1

ai

aj

ak3P1

ak1P1

Process fragment 1

(d)

Figure 4.20: Examples of serially inserting an activity.

110 Change Taxonomy

parallel insert

activity

ak2
P1

ai

ak1P1

axP1

ak2
P1

ai

ak1P1

Figure 4.21: Parallel insert an activity.

Conditional insert

activity

ai

aj
P1

P1

aiP1

axP1

aj
P1

Figure 4.22: Conditionally insert an activity.

§4.2 Process Changes 111

(a)

(b)

Serially move an

activity

ai

aj
P1

P1

aiP1

axP1

aj
P1

axP1ai

aj
P1

P1

axP1

aiP1

axP1

aj
P1

Serially move an

activity

Figure 4.23: Serially move an activity.

Move an Activity

The move an activity change describes that an activity is relocated to another

position in the internal process. This type of change is further classified into

three sub types of change: serially move an activity, parallel move an activity

and conditionally move an activity, which are discussed in detail below.

A Serially Move an Activity The serially move an activity change de-

scribes that an activity is re-inserted between two directly succeeding activities.

Figure 4.23 are two examples for this type of change, where ax is moved to the

position between ai and aj.

B Parallel Move an Activity The parallel move an activity change de-

112 Change Taxonomy

(a)

(b)

parallel move an

activity

ai

aj
P1

P1

aiP1

ak
P1

axP1

ai

aj
P1

P1

axP1

aiP1

axP1

aj
P1

parallel move an

activity

ak
P1

ah
P1

ah
P1

aj
P1

axP1

Figure 4.24: Parallel move an activity.

scribes that an activity is moved from its current position to a position that is

in parallel to an existing activity. Figure 4.24 shows two examples.

C Conditionally Move an Activity The conditionally move an activity

describes the change that an activity is re-inserted between two activities with

conditions. For example, ax is moved into an xor construct as shown in Figure

4.25. Before the change, ax is executed without conditions. After the change, ax

is conditionally executed.

Replace Activities

The replace activities change describes that an activity is replaced by a set

of new activities. This type of change is further classified into two sub types as

§4.2 Process Changes 113

aiP1

aj
P1

aiP1

axP1

conditionally move an

activity

aj
P1

ah
P1 ah

P1

axP1

Figure 4.25: Conditionally move an activity.

axP1
replace an activity

a’xP1

Figure 4.26: One-to-one replacement.

follows.

A One-to-one replacement The one-to-one replacement change describes

that one activity is replaced by another activity. Figure 4.26 shows an example,

where a receive activity ax is replaced by another receive activity a′x. In addition,

a′x is embedded in a loop construct. This change means that instead of receiving

information from the partner p1 only once, the internal process repeatedly receives

information from the partner p1 until certain condition is satisfied.

B One-to-many/ many-to-one activities replacement The one-to-many/

114 Change Taxonomy

replace an activity

az

axP1 ay1P1
ay2P1

az1az2

Figure 4.27: One-to-many activities replacement.

Parallelize activities

axP1

axP1
ayP1

ayP1

azP1

azP1

Sequence activities

Figure 4.28: Parallelize (sequence) activities.

many-to-one activities replacement change describes that an activity is replaced

by a set of activities or vice versa. Figure 4.27 gives an example, where a receive

activity ax is replaced by two parallel executed receive activities ay1 and ay2.

This change indicates that instead of receiving the information from the partner

p1 once, the internal process can receive the required information in parallel.

Parallelize Activities

The parallelize activities describes the change that a set of sequentially exe-

cuted activities are changed to be executed in parallel (cf. Figure 4.28).

Sequence Activities

The sequence activities change describes that a set of parallel executed activ-

§4.2 Process Changes 115

Embed in

conditional branch
axP1

axP1

Figure 4.29: Embed an activity in conditional branch.

Embed in loop
axP1

axP1

Figure 4.30: Embed an activity in conditional branch.

ities are modified to be performed in sequence. Figure 4.28 shows an example.

Embed in Conditional Branches

The embed in conditional branches change describes that an activity is wrapped

in a conditional construct (cf. Figure 4.29).

Embed in Loop

The embed in loop change describes that an activity is wrapped in a loop (cf.

Figure 4.30).

Update Conditions

The update conditions change describes that the conditions of an xor connec-

tor are modified.

116 Change Taxonomy

4.3 Discussion

In this chapter, we have presented the taxonomy for the changes associated with

services and business processes based on the proposed service-oriented business

process model. Service changes are categorized into operation changes and transi-

tion changes. The operation changes are further classified into operation existence

changes and operation granularity changes. The operation existence changes cap-

ture the types of changes of adding or removing operations in a service, which are

further categorized into sequentially adding an operation without constraints, se-

quentially adding an operation with constraints, adding an operation in parallel to

existing operations without constraints, adding an operation in parallel to existing

operations with constraints, and deleting an operation. The operation granularity

changes comprise the types of variations related to operation granularity. We

have identified three sub types of operation granularity change as: asynchronous

operation granularity change (AOGC), synchronous operation granularity change

(SOGC), and complex operation granularity change (COGC). Seven types of high

level transition changes that describe the changes related to service transitions

are identified. Process changes are discussed on the basis of the control flow

schemas of internal processes. Nine major types of process changes are identified

as: insert an activity, remove an activity, move an activity, replace activities,

parallelize activities, sequence activities, embed in conditional branches, embed in

loop, and update conditions. These various types of service changes and process

§4.3 Discussion 117

changes provide a solid foundation for analysing the impact caused by service

changes and process changes on service-based business processes and developing

generic change management solutions for controlling these changes.

As discussed in Chapter 2, process change patterns have been presented in

the literature for supporting the change management of workflow processes and

enabling the flexibility of workflow processes [100, 104]. Those change classifi-

cations are presented with the purpose to manage changes of business processes

without considering the characteristics of services. In [25], a classification of pro-

cess differences between business processes is presented, which are classified from

the aspects of authorization, activities, and control flows. The purpose of the

process difference classification is to support process development. We have a

focus on the change analysis in service-based business processes where services

and business processes have complicated coupling relationships. Our classifica-

tion of process changes are identified with the goal to facilitate the change impact

analysis and change management solutions for associated services and business

processes.

In the SOC paradigm, change management has been studied for Web service

compositions [8, 7, 57, 58, 59, 80, 108]. In [80, 108], two types of service changes

related to BPEL processes are analysed as: the subtractive changes and the

additive changes. In [57, 58, 59], the top-down changes and bottom-up changes

in virtual enterprises are discussed. In the field of service adaptation, which

is closely related to the area of change management, mismatch types at the

118 Change Taxonomy

levels of service interfaces and service protocols are identified for the purpose of

developing adapters [12, 46]. The classification of service changes presented in

the above mentioned researches does not consider the coupling relations between

services and business processes. Moreover, the diversity of service changes is not

adequately addressed in the above works. Our change classification related to

services and business processes is based on the proposed service-oriented business

process model and with the goal to facilitate the change management for services

and business processes where complicated dependencies exist.

Chapter 5

Change Impact Analysis

Change management is challenging in service-based environments. As we ex-

emplified in the sales scenario in Chapter 3, services and business processes are

related to each other when multiple services are supported by a single business

process. Due to various reasons such as business regulations and application en-

vironments, services and business processes may change from time to time. A

specific change usually makes various level of impact on business processes and

services because of the dependencies between business processes and services.

When a change occurs in a service, this change may affect the business process

and may have impact on the other services associated with this business process.

When a change occurs in a business process, this change may affect the services

that are associated with this business process. Analysis of the change impact on

service-based business processes is crucial for the development of effective and

efficient change management solutions in the context of SOC.

Current researches on service change management are mainly concentrated on

managing changes for BPEL processes [80, 108] and Web services [9, 10, 57, 59]

respectively. The complicated dependencies between services and business pro-

119

120 Change Impact Analysis

cesses have not been fully studied in the existing works on change management.

Based on the service-oriented business process model proposed in Chapter 3 and

the types changes identified in Chapter 4, we present our approach for change

impact analysis in this chapter with the goal to control these various types of

changes and their cascading effect on services and business processes.

Our change analysis approach is based on the identified change impact pat-

terns [102]. Each change impact pattern captures a specific type of change effect

that is described by the information as the direct impact scope of the change, the

cause of the change, and the effect on the services and the associated business pro-

cess. The direct impact scopes of a specific service change and a process change

are calculated by the defined functions. The change impact patterns provide rich

intermediate results in the analysis process which help reduce the complex tasks

of managing the various types of changes and controlling the cascading effect in

service-based business processes. Moreover, these change impact patterns can

be reused in the development and maintenance of service-based applications and

information systems.

This chapter is structured as follows. First, we provide an overview of the

identified change impact patterns and discuss the structure of a change impact

pattern in Section 5.1. Then we discuss the issue of calculating the direct impact

scope for a specific service change and a process change in Section 5.2. Two

functions and the corresponding algorithms are defined for calculating direct

impact scopes of service changes and process changes. In Section 5.3, we present

§5.1 Overview of Change Impact Patterns 121

Impact patterns for service change

Impact pattern 1 Insert a c-Activity

Impact pattern 2 Remove a c-Activity

Impact pattern 3 Replace c-Activities

Impact pattern 4 Move c-Activities

Impact pattern 5 Add, Remove, or Modify

Conditional Branches

Impact patterns for process change

Impact pattern 6 Add Operations

Impact pattern 7 Remove Operations

Impact pattern 8 Change Operation Granularity

Impact pattern 9 Change Transition Sequences Order

Impact pattern 10 Add Conditional or Looping

Transition Sequence

Figure 5.1: Overview of change impact patterns.

the ten identified change impact patterns. Examples are provided to illustrate

the different types of change impact described in the change impact patterns.

Finally, we conclude this chapter in Section 5.4.

5.1 Overview of Change Impact Patterns

Figure 5.1 shows the overview of our identified change impact patterns and Fig-

ure 5.2 is the list of these patterns. The impact patterns are classified into two

categories: impact patterns for service change and impact patterns for process

change. The impact patterns for service change capture the impact on inter-

nal processes made by service changes. The impact patterns for process change

describe the impact on services made by process changes.

The structure of an impact pattern is shown in Figure 5.3. Each of these

impact patterns includes the following elements:

122 Change Impact Analysis

Name Pattern description Cause

Change Impact Patterns

Impact pattern 1

Insert a c-Activity

a c-activity needs to be added to the

internal process

adding an operation to a

service

Impact pattern 2

Remove a c-

Activity

c-activities need to be removed from the

internal process
deleting operations in a

service

Impact pattern 3

Replace c-Activities

c-activities need to be replaced by another

c-activity or a set of structured c-activities

changing operation granularity in

a service

c-activities need to be reorderedImpact pattern 4

Move c-Activities

operation transition sequence

change, including TSOC, SPTSC

and PSTSC

Impact pattern 5 Add,

Remove or Modify

Conditional Branches

xor structures need to be modified or new

xor structures need to be created

transition sequence change, such

as ACTSC, RCTSC, ALTSC, and

RLTSC

Impact pattern 6

Add Operations

operations need to be added to

corresponding services
inserting a c-activity or replacing a c-

activity in the internal process

Impact pattern 7

Remove Operations
operations need to be deleted

from services

deletion of c-activities or the

replacement of c-activities in the

internal process

Impact pattern 8

Change Operation

Granularity

operation granularity needs to

be modified
replacement of c-activities in the

internal process

Impact pattern 9

Change Transition

Sequence

transition sequences of the

corresponding services need to be

reordered

moving activities, parallelizing

activities or sequencing activities in

the internal process

Impact pattern 10

Add Conditional or

Looping Transition

Sequence

constraints and extra transition

sequences need to be added

between operations

embedding activities in conditional

branches

Figure 5.2: Change impact patterns.

§5.1 Overview of Change Impact Patterns 123

• Name of the impact pattern.

• Pattern description. A pattern description gives a summary of the im-

pact captured by this change impact pattern. The detailed impact will be

specified in the Effect on internal process/services.

• Cause of the impact. This element gives a brief description of the changes

that may make this type of impact. For instance, the cause of impact

captured by impact pattern 1 Insert a c-Activity is adding an operation to

a service.

• Direct impact scope. A direct impact scope refers to the affected region in

the service-oriented business process relating to a particular service change

or process change before any reactions are taken to handle this change. The

direct impact scope is crucial for understanding the impact of a specific

change. The direct in the term direct impact scope is used to differentiate

the actual impact scope that will be discussed in the next chapter. We

will discuss the functions and algorithms for calculating the direct impact

scopes for a service change and a process change in the next section.

• Effect on an internal process (impact patterns for service change)/services

(impact patterns for process change). The effect on an internal process is

described by abstract control relations associated with c-activities which are

defined in Chapter 3. For instance, in Figure 5.3, the dashed arrows linking

c-activities ai, aj, and ax are abstract control relations. These abstract

124 Change Impact Analysis

control relations reflect the change effect on the control flow schema of the

internal process caused by a specific type of service change. The effect

on services are described by a specific type of service changes based on

the change taxonomy presented in Chapter 4. For instance, in Figure 5.3,

the process change, embed in a conditional branch, has the impact on

the corresponding service: Adding conditional transition sequence change

(ACTSC).

5.2 Direct Impact Scope

Before presenting the identified change impact patterns, we discuss the direct

impact scopes of a service change and a process change first. The direct impact

scope of a change is crucial for understanding and specifying the impact of the

change. As stated in the previous section, the direct impact scope of a specific

change is the affected region in a service-oriented business process before any

reactions are taken to handle this change. In the following sub sections, we will

define two functions for calculating the direct impact scopes for a service change

and a process change respectively.

5.2.1 Direct Impact Scope of a Service Change

The direct impact scope of a service change includes the elements of the internal

process, called process elements, that are affected by this service change. A

§5.2 Direct Impact Scope 125

Name Name of the change impact pattern

Pattern description A description of the change impact captured by this pattern

Cause A description of the types of change which may cause the impact captured by this pattern

Direct impact scope The change region of a service change or a process change before any treatment is taken

for handling the change.

Effect on internal

process or services

- For the impact caused by a service change, the effect on the internal process is

described by the abstract control relations between c-activities.

ai

ajP1

P1

Conditionally insert

activity
axP1

ai

ajP1

P1effect on the

process

Oi

Oj

t1

Adding an operation

sequentially with

constraints

Oi

cx1cx2

Oj

Ox

XOR

- For the impact caused by a process change, the effect on the services is described by

a specific type of service changes.

(Example illustrated for impact pattern 1)

Oi

Oj

Embed in

conditional

branch

Oi

Oj

Ox

Adding

conditional

transition

sequence

cx1

cx2

ai

ajP1

P1

aiP1

axP1

ajP1

axP1
Ox

effect on the

service

(Example illustrated for impact pattern 10)

Figure 5.3: Structure of the change impact pattern

126 Change Impact Analysis

process element refers to an activity, a control connector, or a data connection.

In order to derive the direct impact scope of a service change, we define the

function FuncDISS which accepts a service-oriented business process and a

service change as its input and generates the affected process elements by this

service change as its output.

Definition 1 FuncDISS Let A be a set of activities, IFS = {dc1, . . . , dcm}

be the information flow schema, and S = {s1, . . . , sn} be a set of services.

FuncDISS is the function: schange → PE. The input of the function includes

a service change schange with a set of involved operations Oc = {o1, . . . , or}.

The output of the function FuncDISS is a set of process elements: PE =

{pe1, . . . , per}, where pei (i = 1, . . . , r) consists of:

• the c-activity a that is associated with oi;

• the set of activities: Adepend = {a1, . . . , as} ⊆ A, where ∀aj ∈ Adepend

(j = 1, . . . , s) such that a 99KD aj;

• the set of data connections: DC ⊆ IFS, where ∀dc ∈ DC such that dc is

the data connection linking to the activity a or any activity in Adepend.

Algorithm 1 is designed based on Definition 1 that calculates the direct impact

scope of a service change. This algorithm accepts a service change schange

as its input and it returns a set of process fragments PE. In this algorithm,

if a is associated with an operation in Oc, a is included into pe and all the

data connections linking to a are included into DC (lines 6-12). Then, all the

§5.2 Direct Impact Scope 127

activities that are depended by a are included in Adepend (lines 14-16). All the

data connections linking to the activities in Adepend are added into DC (lines 17-

21). The process fragment pe consists of activity a, the related activities Adepend

and the associated data connections DC (line 24).

We provide the following example to illustrate the direct impact scope of a

service change computed by FuncDISS.

Example Direct Impact Scope of a Service Change We take the sales

process as an example. Figure 5.4(a) shows a service change, transition sequence

order change (TSOC), in the service sb. The operation send invoice is moved

before the operation send bill. Here the set of operations that are involved in this

service change are

Oc = {send bill , receive PayInfo , send invoice}

Figure 5.4(b) shows the process elements of the sales process that are affected

by this service change. In this figure, activities Send bill, Receive PayInfo, and

Send invoice are associated with the operations involving in the service change

TSOC. The activities that have data dependency with the three activities are

Prepare bill and Prepare invoice. The data connections linking to these activities

are shown as thick dashed lines. With definition 1, the direct impact scope of

the service change is:

PE = {pe1, pe2, pe3}

where

pe1 = {Send bill ,Prepare bill , dc1, dc2, dc3, dc4}

128 Change Impact Analysis

Algorithm 1 FuncDISS

1: Input schange

2: Output PE

3: Let Oc = {o1, . . . , os} be the set of operations involved in schange

4: PE ← ∅
5: for all a ∈ A do

6: if a is the c-activity associated with oi (i = 1, . . . , s) then

7: DC ← ∅, pe← {a}
8: for all dcj ∈ IFS do

9: if dcj is associated with a then

10: DC ← DC ∪ {dcj}
11: end if

12: end for

13: Adepend ← ∅
14: for all ak ∈ A do

15: if a 99KD ak then

16: Adepend ← Adepend ∪ {ak}
17: for all dcj ∈ IFS do

18: if dcj is associated with ak then

19: DC ← DC ∪ {dcj}
20: end if

21: end for

22: end if

23: end for

24: pe← pe ∪ Adepend ∪DC

25: end if

26: PE ← PE ∪ {pe}
27: end for

28: return PE

§5.2 Direct Impact Scope 129

Receive order
b

Send

acknowledgementb

Check stock

availability

Prepare bill

Send bill
b

Send reject order
b

Receive PayInfo
b

Invoke pay service
f

Receive pay

confirmationf

Send invoice
b

Prepare invoice

No stock available stock available

send

acknowledgement

receive order

send reject order

c(t2)

send bill

receive PayInfo

send invoice

t1

t2 t3

t4

t5

c(t3)

TSOC

send

acknowledgement

receive order

send reject order

c(t2)

send bill

receive PayInfo

send invoice

t1

t2 t3

t4

t5

c(t3)

Operation involving in the

change

(a)

Affected activities

(b)

write

read

read

read

write

read

read
read

read

write

read

write

read

read

write

read

read

write

read

Affected data conncections

dc1

dc2

dc3

dc4

dc5

dc6
dc7

dc8

dc9

d1

d2

d3

d4

d5

d6

d7

d8

Figure 5.4: (a) Service change: TSOC in service sb; (b) direct impact scope of the

service change.

pe2 = {Receive PayInfo, dc5}

pe3 = {Send invoice ,Prepare invoice , dc6, dc7, dc8}

5.2.2 Direct Impact Scope of a Process Change

The direct impact scope of a process change includes the affected elements of

services associated with the internal process, called service elements. A service

130 Change Impact Analysis

element refers to an operation or a transition. In order to derive the direct impact

scope of a process change, we define the function FuncDISP , which accepts a

service-oriented business process and a process change as its input and generates

a set of service elements affected by this process change as its output.

Definition 2 FuncDISP Let A be a set of activities, and S = {s1, . . . , sn}

be a set of services. FuncDISP is the function: pchange→ SF . The input of the

function includes: a process change pchange with a set of directly affected oper-

ations Oc. The output of the function FuncDISP is a set of service fragments

SF = {sfi|i ∈ {1, . . . , n}}

where a service fragment sfi consists of all the affected service elements in service

si:

• the set of operations Oi
c ⊆ Oc, where Oi

c consists of all the operations that

belong to both Oc and service si;

• the set of transitions T i
c , where ∀t ∈ T i

c , t takes an operation in Oi
c as the

origin operation or the destination operation;

• the set of operations Oi
x, where Oi

x consists of all the operations that are

associated with transitions in T i
c and are not in Oi

c.

Algorithm 2 calculates the direct impact scope of a process change based

on Definition 2. This algorithm accepts a process change pchange as its input

and it generates a set of service fragments SF as its output. First, the affected

operations relating to service si are put in Oi (lines 4-9), where n denotes the

number of services. The service fragment sfi contains all the affected elements

in service si. Lines 10-20 calculate each sfi based on Definition 2. All the non-

§5.2 Direct Impact Scope 131

Algorithm 2 DISP

1: Input pchange

2: Output SF

3: Let Ac be the set of activities involved in pchange

4: Oi ← ∅(i = 1, . . . , n)

5: for all a ∈ Ac do

6: if a is the c-activity relating to pi(i = 1, . . . , n) then

7: Oi ← Oi ∪ {o} (o is associated with a)

8: end if

9: end for

10: sfi ← Oi(i = 1, . . . , n)

11: for all sfi(i = 1, . . . , n) do

12: for all o ∈ Oi do

13: for all tj that associated with o do

14: sfi ← sfi ∪ {tj}
15: if ox is associated with tj && ox ̸= o then

16: sfi ← sfi ∪ {ox}
17: end if

18: end for

19: end for

20: end for

21: SF ← ∅
22: for all sfi(i = 1, . . . , n) do

23: if sfi ̸= ∅ then
24: SF ← SF ∪ {sfi}
25: end if

26: end for

132 Change Impact Analysis

Receive order
C

Send

acknowledgementC

Check stock

availability

Replace an activity

Receive order
C

Send

acknowledgement

by email
C

Send

acknowledgement

by phone
C

Check stock

availability

Activity involved in

change

send

acknowledgement

receive order

send reject order

c(t2)

send bill

receive PayInfo

send invoice

t1

t2 t3

t4

t5

c(t3)

Operation involved in

the change

Impact scope

(a) (b)

Figure 5.5: (a) Process change: replace activities; (b) direct impact scope of the

process change.

empty set of service fragments are included into SF (lines 21-26). The following

example illustrates the direct impact scope of a process change calculated by

FuncDISP.

Example Direct Impact Scope of a Process Change We take the sales

process as an example. Figure 5.5(a) shows a process change: replace an activity,

where Send acknowledgement is replaced by an xor construct with two activi-

ties: Send acknowledgement by email and Send acknowledgement by phone. This

process change enables the sales process to send acknowledgement to a buyer by

the preferred way specified by the buyer. Figure 5.5 (b) shows the direct impact

scope of the process change. In this figure, send acknowledgement is the oper-

ation associated with the activity Send acknowledgement, which is involved in

the process change. With definition 2, transitions t1, t2, and t3, and operations

§5.3 Change Impact Patterns 133

receive order, send reject order, and send bill are included into the direct impact

scope of this process change. Therefore, the direct impact scope of the process

change is: SF = {sf}, where

sf = {receive order , t1, send acknowledgement , t2, t3, send reject order , send bill}

5.3 Change Impact Patterns

In this section we present the identified change impact patterns. We discuss

the impact patterns for service change and impact patterns for process change

respectively in the following sub sections.

5.3.1 Change Impact Patterns for Service Change

The change impact patterns for service change include the impact patterns that

capture the effect on internal processes made by service changes. The types

of change effect on internal processes are described by abstract control relations

associated with c-activities.

Impact pattern 1 Insert a c-Activity The Insert a c-Activity pattern (cf.

Figure 5.6) describes the change impact that a c-activity needs to be inserted to

the internal process. The cause of this type of impact is adding an operation to

a service. The effect on the internal process is categorized into four types:

• a c-activity needs to be serially inserted into the internal process between

two successively executed c-activities without conditions. Figure 5.6 (1)

shows an example. An operation ox is added in between two operations oi

and oj. The impact of this service change is that a c-activity ax associated

with ox is inserted between activities ai and aj that are associated with

134 Change Impact Analysis

operations oi and oj respectively.

• a c-activity needs to be serially inserted into the internal process between

two successively executed c-activities with conditions. Figure 5.6 (2) shows

an example. An operation ox is added between operations oi and oj with

constraints cx1 and cx2. The impact of this service change is that a c-activity

ax associated with ox needs to be inserted conditionally between activities

ai and aj that are associated with operations oi and oj. The conditions for

controlling the execution of ax are derived from the constraints cx1 and cx2.

• a c-activity needs to be inserted into the internal process in parallel to

existing activities without conditions. Figure 5.6 (3) shows an example.

An operation ox is added in parallel to the operation oj. The change effect

on the internal process is that an activity ax associated with ox is inserted

in parallel to the activity aj associated with operation oj.

• a c-activity needs to be inserted into the internal process in parallel to

existing activities with conditions. Figure 5.6 (4) shows an example. An

operation ox is added in parallel to the operation oj with a constraint cx.

The change effect on the internal process is that an activity ax associated

with ox needs to be inserted in parallel to the activity aj associated with oj

conditionally. The condition for controlling the execution of ax is derived

from the constraint cx.

Impact pattern 2 Remove a c-Activity The Remove a c-Activity pattern

(cf. Figure 5.7) describes the impact that c-activities need to be removed from

the internal process. This type of impact is caused by deleting an operation in

a service. Figure 5.7 gives an example. The conditionally invoked operation ox

§5.3 Change Impact Patterns 135

Name Impact pattern 1 Insert a c-Activity

Pattern description This impact pattern describes that a c-activity needs to be added to the internal process.

Cause This type of impact is caused by adding an operation to a service.

Effect on the

internal process

The change effect on the internal process is categorized into the following four types.

ai

ajP1

P1

Conditionally

insert an activity
axP1

ai

ajP1

P1
effect on the

process

Oi

Oj

t1

Adding an operation

sequentially with

constraints

Oi

cx1cx2

Oj

Ox

XOR

(1) A c-activity ax is serially inserted between two successively executed c-activities without

condtions.

ai

ajP1

P1

Oi

Oj

Serially insert

an activity

t1

axP1

ai

ajP1

P1

Oi

Ox

t′1

Oj

t′2

Add an operation

sequentially
effect on the

process

(2) A c-activity ax is serially inserted between two successively executed c-activities with

conditions.

(3) A c-activity ax is inserted in parallel to an existing c-activity without conditions.

aiP1

Parallel insert

an activity

ai

ajP1

P1

Oi

Oj

Adding an operation

parallel without

constraints

Oi

Oj

AND

Ok Ok

Ox axP1

akP1

ajP1

akP1

effect on the

process

(4) A c-activity ax is inserted In parallel to an existing c-activity with conditions.

aiP1

Parallel insert an

activity with

conditions

ai

ajP1

P1

Oi

Oj

Adding an

operation parallel

with constraints

Oi

Oj

AND

Ok Ok

Ox
axP1

akP1

ajP1

akP1

cx
XOR

effect on the

process

t′1

t′2

t1

t2

t′1

t′2

t′3

t′4

t1

t2

t′1

t′2

t′3

t′4

Figure 5.6: Change impact pattern 1 Insert a c-Activity.

136 Change Impact Analysis

Name Impact pattern 2 Remove a c-Activity

Pattern description This impact pattern describes that c-activities need to be removed from the internal process.

Cause This type of impact is caused by deleting operations in a service.

Effect on the

internal process

Let ox be the operation that needs to be deleted from the service sp1, and ax be the c-activity

Which is associated with ox. The c-activity ax needs to be removed from the internal process.

ai

aj
P1

P1

Remove an activityax
P1

ai

aj
P1

P1

effect on the

process

Oi

Oj

delete an operation

Oi

cx1

cx2

Oj

Ox

XOR

Figure 5.7: Change impact pattern 2 Remove a c-Activity.

between operations oi and oj is deleted. The effect on the internal process is that

activity ax associated with ox needs to be removed from the internal process.

Impact pattern 3 Replace c-Activities The Replace c-Activities pattern (cf.

Figure 5.8) describes the impact that existing c-activities need to be replaced by

a c-activity or a set of c-activities. This type of impact is caused by changing

granularity of operations in a service. The effect on the internal process is com-

plicated due to the diversity of operation granularity changes. We classify this

type of change impact into the following four sub types:

• an existing c-activity needs to be replaced by another c-activity. Figure 5.8

(1) shows an example. An asynchronous operation ox is changed to another

asynchronous operation o′x. In addition, the transition sequence associated

with ox is modified, where o′x is in a looping transition sequence controlled

by the constraints cx1 and cx2. The effect on the internal process is: the

activity ax associated with ox must be replaced by another activity a′x and

a′x is executed conditionally. The conditions for controlling the execution

of a′x are derived from the constraints cx1 and cx2.

• an existing c-activity needs to be replaced by a set of c-activities. Figure

§5.3 Change Impact Patterns 137

5.8 (2) shows an example. A synchronous operation ox is modified to three

asynchronous operations oy1, oy2, and oy3. The operation oy1 is in parallel

to oy2 and oy3. In addition, the operation oy3 is in a looping transition

sequence. This operation granularity change incurs that the c-activity ax

associated with ox is replaced by two send type c-activities ay1 and ay2 and

a receive type c-activity ay3. The c-activity ay1 is executed in parallel to

the other two c-activities. The c-activity ay3 is repeatedly executed with

conditions. The conditions for controlling the execution of ay3 are derived

from the constraints cx1 and cx2.

• a set of c-activities need to be replaced by a c-activity. This type of impact

is similar to the second type of effect described above.

• a set of c-activities need to be replaced by another set of c-activities. Figure

5.8 (4) shows an example. Three asynchronous operations ox1, ox2, and ox3

are changed to two asynchronous operations oy1 and oy2. In addition, oy1

and oy2 are invoked sequentially. This granularity change has the impact

on the internal process that three c-activities that are associated with op-

erations ox1, ox2, and ox3 are replaced by two c-activities ay1 and ay2 that

are associated with operations oy1 and oy2.

Impact pattern 4 Move c-Activities The Move c-Activities pattern (cf. Fig-

ure 5.9) describes the impact that existing c-activities need to be reordered. This

type of impact is caused by operation transition sequence changes, including tran-

sition sequence order change (TSOC), sequential to parallel transition sequence

change (SPTSC), and parallel to sequential transition sequence change (PSTSC).

The type of change impact is categorized into the following two sub types:

• c-activities need to be serially moved. Figure 5.9 (1) shows two examples

138 Change Impact Analysis

Name Impact pattern 3 Replace c-Activities

Pattern description This impact pattern describes that c-activities need to be replaced by a c-activity or a set of

c-activities.

Cause

Effect on the

internal process

The change effect is classified into the following four categories.

(1) An existing c-activity needs to be replaced by another c-activity.

(2) An existing c-activity needs to be replaced by a set of c-activities.

(3) A set of c-activities need to be replaced by a c-activity.

(4) A set of c-activities need to be replaced by another set of c-activities.

This type of impact is caused by changing operation granularity in a service.

axP1

one to one

activity

replacement
a’xP1

cx1

cx2

O’x

Asynchronous

granularity

change

XOR

effect on the

process

Oy3

Oy2

Oy1

Synchronous to

asynchronous

granularity

change

ay3p1

ay1p1
ax

p1

ay2p1

AND

XOR

one to many

activity

replacementeffect on the

process

Ox

Ox3

Ox2

Ox1

asynchronous

granularity

change
Oy1

cx1

cx2

Oy2

Input messages

Input messages

Input messages

Input messages

Input messages

Input messages

Input messages

Input messages

output messages Input messages

ax3p1

ax1p1

ay1p1
ax2p1

AND

XOR

many to many

activity

replacement

effect on the

process

cx1

cx2

Ox

Input messages

Input messages

ay2p1

Figure 5.8: Change impact pattern 3 Replace c-Activities.

§5.3 Change Impact Patterns 139

for this type of impact. In the first example, a transition sequence oit1ojt2ok

is changed its order as okt
′
1oit

′
2oj. This TSOC has the effect on the internal

process that the activity ak associated with ok is serially moved to a po-

sition that precedes ai. The second example describes a TSOC involving

constraints. Before the change, operation oj is invoked conditionally after

oi. After the change, oj is moved before oi. The constraints that control

the invocation of oj are also retained. This service change has the impact

that the activity aj associated with oj is moved before ai. The conditions

that control the execution of of aj are also retained;

• c-activities need to be parallel moved. Figure 5.9 (2) shows two examples for

this type of impact. In the first example, a transition sequence olt1oit2ojt3ok

is split into two parallel transition sequences: olt
′
1ojt

′
3ok and olt

′
2oi. This

SPTSC has the impact on the internal process that the activity ai associated

with oi is moved in parallel to the activity aj associated with oj. The

second example describes the case of SPTSC involving constraints. Before

the change, there are two conditional transition sequences: olt1oit2(cx2)ost3

and olt1oit4(cx1)ojt5ok, which indicates that the operations os and oj are

invoked conditionally depending on the value of the constraints cx1 and

cx2. After the service change, the two conditional transition sequences

are modified to three transition sequences as: olt
′
1oit

′
4ok, ol, t

′
2(cx2)ost

′
4ok,

and olt
′
3(cx1)ojt

′
5ok. This SPTSC is caused by enabling oi to be invoked

in parallel to oj and os. This change has the effect that the activity ai

associated with oi is moved to the position that is in parallel to the activity

aj and ak.

Impact pattern 5 Add, Remove or Modify Conditional Branches The

Add, Remove or Modify Conditional Branches pattern (cf. Figure 5.10) describes

140 Change Impact Analysis

Name Impact pattern 4 Move c-Activities

Pattern description The impact pattern describes that existing c-activities need to be reordered.

Cause

Effect on the

internal process

The effect on the internal process is classified into the following two types.

(1) C-activities need to be serially moved.

(2) C-activities need to be parallel moved.

This type of impact is caused by changing operation transition sequences, including transition

sequence order change (TSOC), sequential to parallel transition sequence change (SPTSC), and

parallel to sequential transition sequence change (PSTSC).

effect on the

process

Serially move

activities

Oi

Oj

Transition

sequence order

change

Ok

Ok

Oj

Oi

ak

ajP1

P1

aiP1
aj

akP1

P1

aiP1

Serially move

activities

Oi

Oj

ak

ajP1

P1

aiP1aj

akP1

P1

aiP1

Ok

cx1

cx2

Transition

sequence

order change
Oj

cx1

Oi

Ok

cx2

Ol Ol

alP1

XOR

alP1

XOR

effect on the

process

Parallel move

activities

Oi

Oj

ak

ajP1

P1

aiP1

aj

akP1

P1

aiP1

Ok

Sequential to

parallel transition

sequence

change Oj Oi

Ok

Ol

Ol

alP1 alP1

AND

effect on the

process

Oi

Oi

Ok

Oj

cx1
cx2

Sequential to

parallel transition

sequence change

Oj

cx1

cx2

Ol
Ol

Os

Oj

Ok

Os

effect on the

process

Parallel move

activities

ak

ajP1

P1

asP1

aj

akP1

P1

aiP1

alP1 alP1

AND

asP1

XOR aiP1

XOR

t1

t2

t′1

t′2

t1

t2

t3

t′1

t′3

t′2

t1

t2

t3

t4

t′1

t′2

t′3

t′4

t1

t2

t3

t4

t5

t′1t′2

t′3

t′4t′5t′6

Figure 5.9: Change impact pattern 4 Move c-Activities.

§5.3 Change Impact Patterns 141

the impact that xor structures need to be modified or new xor structures need

to be created. This impact is caused by transition sequence changes including

adding conditional transition sequence change (ACTSC), removing conditional

transition sequence change (RCTSC), adding looping transition sequence change

(ALTSC), and removing looping transition sequence change (RLTSC). This type

of impact is further classified into the following two types:

• c-activities need to be embedded in or removed from a conditional branch.

Figure 5.10 (1) gives an example, where conditional transition sequences

are added. This service change means that the operation oj is invoked

conditionally depending on the value of the constraints cx1 and cx2. The

effect on the internal process is that the activity aj associated with oj is

executed with conditions that are are derived from the constraints cx1 and

cx2;

• c-activities need to be embedded in or removed from a looping branch.

Figure 5.10 (2) gives an example, where a looping transition sequence is

added. This service change means that the operation oj is invoked repeat-

edly depending on the value of the constraints cx1 and cx2. The effect on

the internal process is that the activity aj associated with oj is repeatedly

executed with conditions that are derived from the constraints cx1 and cx2.

5.3.2 Change Impact Patterns for Process Change

The change impact patterns for process change include the patterns that capture

the effect on the services associated with internal processes made by process

changes. These types of effect on services are described by the various types of

service changes that have been defined in Chapter 4.

142 Change Impact Analysis

Name Impact pattern 5 Add, Remove or Modify Conditional Branches

Pattern description This impact pattern describes that a new conditional branch must be added, a conditional branch

must be removed, or existing Conditional branches must be modified.

Cause

Effect on the

internal process

The effect on the internal process Is classified into the following two types.

(1) C-activities must be embedded in or removed from a conditional branch.

(2) C-activities must be embedded in or removed from a looping branch.

This type of impact is caused by adding/removing conditional transition sequence (ACTS/RCTS)

or adding/removing looping transition sequence (ALTS/RLTS).

effect on the

process

effect on the

process

Embed in

conditional

branchOj

Ok

Adding conditional

transition sequence

cx1 cx2

Oi

XOR

Oj

Ok

Oi

aj

akP1

P1

aiP1

aj

akP1

P1

aiP1

Embed in

conditional

branch
Oj

Ok

Adding looping

transition

sequence cx1

cx2

Oi

XOR

Oj

Ok

Oi

aj

ak
P1

P1

aiP1

aj

ak
P1

P1

aiP1

Figure 5.10: Change impact pattern 5 Add, Remove or Modify Conditional Branches.

§5.3 Change Impact Patterns 143

Impact pattern 6 Add Operations The Add Operations pattern (Figure 5.11)

describes the impact that operations need to be added to services. This type of

impact is caused by inserting a c-activity or replacing an existing c-activity with

c-activities in the internal process. We discuss the type of change impact that

a single operation must be added. The type of change impact that multiple

operations must be added can be similarly defined. This type of change effect is

classified into the following four sub types:

• an operation needs to be added sequentially between operations without

constraints. Figure 5.11 (1) shows an example of this type of change impact.

In the internal process, a c-activity ax is inserted between two successively

executed c-activities ai and aj. These three c-activities are all related to

the partner p1. This process change has the impact on the service sp1 that

an operation ox associated with ax is added sequentially between oi and oj;

• an operation needs to be added sequentially between operations with con-

straints. Figure 5.11 (2) shows an example of this type of change impact.

In the internal process, a c-activity ax relating to the partner p1 is inserted

between two successively executed p-activities ai and aj. After the pro-

cess change, the three activities ax, ai, and aj are in a conditional branch,

which is between two c-activities ak1 and ak2 relating to the partner p1.

This process change has the impact on the service sp1 that an operation ox

associated with ax is added sequentially between oi and oj with constraints

that are derived from the conditions of the corresponding xor connector;

• an operation needs to be added in parallel to existing operations without

constraints. Figure 5.11 (3) shows an example of this type of change impact.

In the internal process, a c-activity ax relating to the partner p1 is inserted

144 Change Impact Analysis

in parallel to the c-activity ak2 that also relates to the partner p1. Note that

the and branches containing ax and ak2 is between c-activities ak1 and ak2

that also relate to the partner p1. This process change has the impact on

the service sp1 that the operation ox associated with ax is added in parallel

to the operation ok2 associated with ak2 without constraints;

• an operation needs to be added in parallel to existing operations with con-

straints. Figure 5.11 (4) shows an example of this type of change impact.

A c-activity ax relating to the partner p1 is inserted in a conditional branch

that contains no other c-activities relating to p1. This conditional branch

is in an and branch which is in parallel to the c-activity ak2 relating to p1.

This process change has the impact on the service sp1 that the operation

ox associated with ax is added in parallel to ok2 with a constraint derived

from the conditions of the corresponding xor connector.

Impact pattern 7 Remove Operations The Remove Operations pattern (cf.

Figure 5.12) describes the impact that operations need to be deleted from services.

The cause of this impact is the deletion of c-activities or replacement of existing

c-activities in the internal process. For example, in Figure 5.12 a c-activity ax is

deleted. This process change has the impact on the service that the operation

ox associated with ax needs to be removed from the corresponding service. If

multiple c-activities are deleted or replaced, the associated operations need to be

removed from the corresponding services.

Impact pattern 8 Change Operation Granularity The Change Operation

Granularity pattern (cf. Figure 5.13) describes the impact that operation gran-

ularity needs to be modified. This type of impact is caused by replacing existing

c-activities with other c-activities. We classify this type of change effect into the

following three sub types:

§5.3 Change Impact Patterns 145

Name Impact pattern 6 Add operations

Pattern description This impact pattern describes that operations need to be added to the corresponding services.

Cause

Effect on the

services
The effect on services is classified into the following four types.

(1) An operation needs to be added sequentially between existing operations without constraints.

(2) An operation needs to be sequentially added between existing operations with constraints.

This type of impact is caused by inserting a c-activity or replacing an existing c-activity in the

internal process.

ai

ajP1

P1

Oi

Oj

Serially insert

an activity t1
axP1

ai

ajP1

P1

Oi

Ox

tx1

Oj

tx2

Add an operation

sequentially without

constraints

effect on the

service

ak1P1

axP1

ak2

Ok1

Ok2

Serially insert

activity

ai

aj

ak1P1

ak2P1

ai

aj

Sequentially add

an operation with

constraints

Ok1

cx1cx2

Ok2

Ox

effect on the

service

(3) An operation needs to be added in parallel to existing operations without constraints.

axP1

ak3P1

Serially

insert an

activity

ai

aj

ak2P1

ak1P1

ak3P1

ai

aj

ak2P1

ak1P1 Ok1

Ok2

Ok3

Ok1

Ok2

Ok3

Ox

Parallel adding

an operation

without

constraints

effect on the

service

(4) An operation needs to be added in parallel to existing operations with constraints.

Ok1

Ok2

Ok3

Ok1

Ok2

Ok3

Ox

Parallel add an

operation with

constraints

cx

ax

Serially insert

an activity

ak3P1

ai

aj

ak2P1

ak1P1

P1

ak3P1

ai

aj

ak2P1

ak1P1

effect on the

service

Figure 5.11: Change impact pattern 6 Add an Operation.

146 Change Impact Analysis

Name Impact pattern 7 Delete Operations

Pattern description This impact pattern describes that operations need to be deleted from services.

Cause

Effect on the

services
Operations must be removed from corresponding services.

The cause of this type of impact is the deletion of c-activities or the replacement of existing c-

activities in the internal process.

axP1

ak3P1

Remove an

activity

ai

aj

ak2P1

ak1P1

ak3P1

ai

aj

ak2P1

ak1P1

Ok1

Ok2

Ok3

Ok1

Ok2

Ok3

Ox

Delete an

operation

effect on the

service

Figure 5.12: Change impact pattern 7 Remove Operations.

• granularity of asynchronous operations must be modified. Figure 5.13 (1)

gives an example of this type of impact. In the internal process, a receive

type of c-activity ax relating to p1 is replaced by another receive type of

c-activity ay. In addition, the c-activity ay is embedded in a conditional

branch. This process change has the impact on the service sp1 that the

asynchronous operation ox associated with ax must be changed to another

asynchronous operation oy associated with ay. Moreover, the operation

oy is in a looping transition sequence. The constraints that control the

invocation of oy are derived from the conditions of the corresponding xor

connector;

• granularity of synchronous operations must be modified. Figure 5.13 (2)

shows an example of this type of effect. In the internal process, a send/receive

type of c-activity ax relating to the partner p1 is replaced by another

send/receive type of c-activity ay. In addition, ay is embedded in a condi-

§5.3 Change Impact Patterns 147

tional branch. This process change has the impact on the service sp1 that

the synchronous operation ox associated with ax is modified in terms of

granularity into another synchronous operation oy. Moreover, oy is in a

looping transition sequence. The constraints that control the invocation of

oy is derived from the conditions of the corresponding xor connector;

• granularity of both asynchronous and synchronous operations must be mod-

ified. Figure 5.13 (3) gives an example. In the internal process, a send/receive

type of c-activity ax relating to the partner p1 is replaced by two send type

of c-activities ay1 and ay2 and a receive type of c-activity ay3. The opera-

tion ay1 is invoked in parallel to ay2 and ay3. In addition, ay2 is succeeded

by ay3 that is repeatedly executed. This process change has the impact

on the service sp1 that the synchronous operation ox associated with ax is

changed to three asynchronous operations oy1, oy2, and oy3. Moreover, oy1

is in parallel to oy2 and oy3 that can be repeatedly invoked. The constraints

for controlling the invocation of oy3 are derived from the conditions of the

corresponding xor connector.

Impact pattern 9 Change Transition Sequence The Change Transition

Sequence pattern (cf. Figure 5.14) describes the impact that transition sequences

need to be reordered. This type of impact is caused by process changes including

moving activities, parallelizing activities, and sequencing activities. We classify

this type of change effect into the following three sub types:

• transition sequences must be reordered. Figure 5.14 (1) shows an example.

In the internal process, the c-activity ax relating to the partner p1 is serially

moved into a conditional branch in a position succeeding ax. This process

change has the impact on the service sp1 that the transition sequences

148 Change Impact Analysis

Name Impact pattern 8 Change Operation Granularity

Pattern description This impact pattern describes that operation granularity needs to be modified.

Cause

Effect on the

services

The impact on services is categorized into the following three types.

(1) Asynchronous operation granularity change (AOGC).

(2) Synchronous operation granularity change (SOGC).

The cause of this type of impact is the change of replacing existing c-activities with new c-

activities in the internal process.

effect on the

service

effect on the

service

(3) Complex operation granularity change (COGC).

Ox

axP1

Replace

an activity

ayP1

cx1

cx2

Oy

Asynchronous

Operation

granularity change

ay3p1

ay1p1
ax

p1

ay2p1
Replace an

activity

Ox

Oy3

Oy2

Oy1

Complex operation

granularity change

Input messages
Input messages

ax
P1

Replace

an activity ayP1

effect on the

service

Ox

cx1

cx2

Oy

synchronous

Operation

granularity change

Input messages Input messages

output messages output messages

output messages

Input messages Input messages

Input messages

Input messages

Figure 5.13: Change impact pattern 8 Change Operation Granularity.

§5.3 Change Impact Patterns 149

related to the operation ox which is associated with ax must be reordered

accordingly;

• sequential transition sequences must be changed to parallel transition se-

quences. Figure 5.14 (2) shows an example. In the internal process, the

c-activity ax relating to the partner p1 is moved to the position in paral-

lel to the c-activity ai that also relates to the partner p1. Note that the

c-activities ai and ax are in a conditional branch after this process change.

The change impacts on the service sp1 that the transition sequences re-

lated to the operation ox that is associated with ax must be changed to

parallel transition sequences. As shown in the figure, the conditional tran-

sition sequences: oht1oxt2(cx1)oit3oj and oht1oxt4(cx2)oj are changed to the

transition sequences: oht
′
1(cx1)oit

′
2oj, oht

′
3(cx1)oxt

′
4oj, and oht

′
5(cx2)oj. The

invocation of oi and oj are controlled by the constraint cx1. Both the con-

straints cx1 and cx2 are derived from the conditions of the corresponding

xor connector;

• parallel transition sequences must be changed to sequential transition se-

quences. Figure 5.14 (2) is also an example of this type of impact.

Impact pattern 10 Add Conditional or Looping Transition Sequence

The Add Conditional or Looping Transition Sequence pattern (cf. Figure 5.15)

describes the impact that conditional or looping transition sequences need to be

added to operations. This type of impact is caused by embedding activities in

conditional branches. We classify this type of change effect into the following two

sub types:

• conditional transition sequences need to be added in services. Figure 5.15

(1) shows an example of this type of impact. In the internal process, the

150 Change Impact Analysis

Name Impact pattern 9 Change Transition Sequence

Pattern description This impact pattern describes that transition sequences need to be reordered.

Cause

Effect on the

services

We classify the impact into the following three categories.

(1) Transition sequence order change (TSOC).

The cause of this type of impact is the changes of moving activities, parallelizing activities and

sequencing activities in the internal process.

effect on the

service

effect on the

service

(2) Sequential to parallel transition sequence change (SPTSC).

aiP1

axP1

ajP1

aiP1

axP1

ajP1

Serially move

an activity cx2

Transition

sequence order

change

Oi

cx1

Ox

Oj

cx2

aiP1

ajP1

aiP1

axP1

Parallel

move an

activity

ajP1

ahP1

ahP1

axP1

Serially move

an activity

Ox

Oj

Oi

cx1
cx2

Sequential to

parallel

transition

sequence

change

Oh

Ox

Oj

Oi

cx1

Oh

cx1 cx2

Parallel to

Sequential

transition

sequence change

(3) Parallel to sequential transition sequence change (PSTSC).

cx1

Ox

Oi

Oj

t1

t2

t3

t′1

t′2

t′3

t′4
t′5

t4

Figure 5.14: Change impact pattern 9 Change Transition Sequence.

§5.4 Discussion 151

c-activity ax relating to partner p1 is embedded in a conditional branch.

This process change has the impact on the service sp1 that the transition

from oi to ox is changed by adding a constraint cx1. In addition, a transition

is added from oi to oj with a constraint cx2. Both the constraints cx1 and

cx2 are derived from the conditions of the corresponding xor connector;

• looping transition sequences need to be added in services. Figure 5.15 (2)

shows an example of this type of impact. In the internal process, the c-

activity ax relating to partner p1 is embedded in a conditional branch which

enables repeated execution of ax. This process change has the impact on

the service sp1 that the transition from operation ox to oj is changed by

adding a constraint cx2. In addition, a transition is added from ok to ok

with a constraint cx2 which enables the repeated invocation of ox. Both the

constraints cx1 and cx2 are derived from the conditions of the corresponding

xor connector.

5.4 Discussion

This chapter reports our work on change impact analysis for service-based busi-

ness processes where multiple services are supported by a single business process.

Ten change impact patterns are specified for capturing the different types of ef-

fect caused by service changes and process changes. The change impact patterns

are categorized into impact patterns of service changes and impact patterns of

process changes. Each change impact pattern contains the following elements: a

pattern name, a pattern description, a description stating the cause of the change

effect, the direct impact scope calculated by the defined functions, and the effect

on services/internal process. The specified change impact patterns provide rich

152 Change Impact Analysis

Name Impact pattern 10 Add Conditional or Looping Transition Sequence

Pattern description This impact pattern describes that constraints and extra transition sequences are added between

operations.

Cause

Effect on the

services
We classify the effect into the following categories.

(1) Adding conditional transition sequences.

This type of impact is caused by embedding activities in conditional branches.

effect on the

service

(2) Adding looping transition sequences

Embed in

conditional

branch

ai

ajP1

P1

aiP1

axP1

ajP1

axP1

Oi

Oj

Oi

Oj

Ox

Adding

conditional

transition

sequence

cx1

cx2
Ox

Oi

Oj

Embed in

conditional

branch

Oi

Oj

Ox

Add looping

transition

sequence

cx1

cx2

ai

ajP1

P1

aiP1

axP1

ajP1

axP1

Ox

effect on the

service

Figure 5.15: Change impact pattern 10 Add Conditional or Looping Transition Se-

quence.

§5.4 Discussion 153

intermediate results for the change impact analysis process and are helpful to

reduce the complex tasks of change management. These impact patterns can

be reused in the development and maintenance of service-based applications and

information systems. The proposed change impact patterns provide solid foun-

dations for handling different types of change impact and controlling the change

propagation in service-based applications and information systems.

Change impact analysis is crucial for developing effective and efficient mech-

anisms for handling the various types of changes and cutting off the change

propagation. Existing works about change management in the service-oriented

context suggest proposals for managing changes for BPEL process orchestration

and choreography [80, 108], dealing with changes in Web services environments

[57, 59], and supporting the evolution of service specifications [9, 10] and busi-

ness protocols [83]. In the field of service adaptation which is closely related to

the service change management, approaches for adapting service interfaces and

business protocols are proposed [12, 28, 46]. In the real world, there are various

types of dependencies between services and business processes in service-based

applications and information systems. Change analysis and change reactions

are challenging issues due to the complicated dependencies between services and

business processes. The existing works mentioned above concentrate on changes

related to services or business processes respectively. The dependencies between

services and business processes are neglected by those researches. Our work fills

this gap by presenting the approach for change impact analysis in service-based

business processes where multiple services are supported by a single business

process.

154 Change Impact Analysis

Chapter 6

Change Handling

As discussed in the previous chapter, a change can have various level of impact

on business processes and services due to the complicated dependencies between

business processes and services. Let us go over the sales scenario given in Chapter

3 as an example. A sales process receives an order from a buyer, checks the stock

availability, and sends confirmation to the buyer. If an order is accepted, the

sales process sends the bill to the buyer. The payment is processed by a finance

institute. The buyer is issued with an invoice after the payment. The sales process

handles the shipment of the goods with the support of a shipping company. In

this scenario, the sales process interacts with three partners as a buyer, a finance

institute, and a shipping company. In the service-oriented environment, the three

partners interact with the sales process by invoking the corresponding services

exposed by this sales process. Each service is an external view of the sales process

from the view point of a specific partner. Private tasks of the sales process, such

as checking stock availability and processing invoices are hidden from its partners.

This sales scenario exemplifies a type of the coupling relations between services

and business processes when multiple services are supported by a single business

process. If a change occurs in any of the services, this change usually affects the

business process and may have impact on the other services associated with this

business process. If a change occurs in the business process, this change may

155

156 Change Handling

affect the associated services. To manage changes in the context of SOC, it is

crucial to identify the various types of changes, analyse the change impact, and

decide effective and efficient mechanisms for dealing with those changes.

In this chapter, we discuss how to deal with various types of changes. The

end goal is to provide effective mechanisms for controlling changes and their

cascading effect on other services and business processes. First, we discuss how

to handle the individual types of changes based on the change impact patterns.

Then we analyse the change propagation in business processes and services. The

concept of actual impact scopes for a specific change will be defined on the basis of

the direct impact scopes and the analysis of change propagation. Finally, we will

discuss the issue of change isolation in service-based applications and information

systems. Change isolation refers to the action of cutting off the cascading effect

caused by a specific change with the goal to minimize the change impact on the

entire system.

This chapter is organized as follows. In Section 6.1, we provide the mecha-

nisms for dealing with the changes based on the impact patterns. For individual

types of service changes, we will discuss how to handle them in the internal pro-

cess at the activity level and at the operation level respectively. For process

changes, we will discuss how to handle each type of changes in affected services.

In Section 6.2, we discuss how to analyse change propagation in business processes

and services. We will provide an example for showing the change propagation of

a service change. The actual impact scopes of a specific change will be defined

based on the analysis of change propagation. In Section 6.3, we discuss the issue

of change isolation. Finally, we conclude this chapter in Section 6.4.

§6.1 Handling Individual Changes 157

6.1 Handling Individual Changes

This section discusses the possible solutions for dealing with each type of the

changes based on the change impact patterns. For every type of service changes,

the change handling mechanisms are discussed at two levels: the activity level

and the operation level.

6.1.1 Dealing with Service Change: Add an Operation

Assume an operation ox is added to a service. The change impact is described in

the change impact pattern 1 Insert a c-Activity. Based on this impact pattern,

a c-activity needs to be inserted to the internal process.

Managing Change at Activity Level

Managing this type of change at the activity level involves three steps.

• The c-activity ax associated with the operation ox is created.

• Data connections relating to ax must be established. This step may involve

modifying existing p-activities and c-activities. Moreover, new c-activities

and p-activities may be created to assist the tasks specified by ax.

• The c-activity ax and other activities that are created in the second step

must be inserted into the internal process properly.

Managing Change at Operation Level

We discuss how to deal with the change Add an Operation at the operation

level by the following four cases.

• The operation ox exists but is invisible to the partner. In this case, ox can

be exposed to the partner by associating this operation with the c-activity

ax.

158 Change Handling

Output Messages

Input Messages

Input Messages

Ox

Oy1

Oys

...

Output Messages

Input Messages

Output Messages

adapter

Figure 6.1: Adapter for solving type A case at operation level.

• There exists an operation or a set of operations that has similar functional-

ity to ox. Let {oy1, . . . , oys} be the operations that has similar functionality

to ox. We classify this case into two sub types according to the relations

between ox and {oy1, . . . , oys}.

– Type A ox ⊂ {oy1, . . . , oys}. This relation describes that a set of exist-

ing operations cover the functionality specified by ox. The operation

ox can be created by wrapping the existing operations with an adapter

(cf. Figure 6.1). The function of the adapter is to generate the input

(and output) messages of the operation ox by using the existing opera-

tions. The adapter accepts the input messages of ox and assigns these

messages to the set of operations {oy1, . . . , oys}. The output messages

of these operations are collected and transformed by the adapter as the

output of ox. The adapter makes the set of operations {oy1, . . . , oys}

behave like ox. We call ox an abstract operation.

– Type B The condition in type A does not hold and ox∩{oy1, . . . , oys} ̸=

∅. This relation means that the existing operations cover some func-

tionality of ox. In such a case, an operation oz is created. The func-

tionality of oz is decided by oz = ox \ {oy1, . . . , oys}. That is, oz covers

§6.1 Handling Individual Changes 159

Output Messages

Input Messages

Input Messages

Ox

Oy1

Oys
...

Output Messages

Input Messages

Output Messages

adapter

Oz
Abstract operation

Existing operations

Newly created operation

...

Figure 6.2: Adapter for solving type B case at operation level.

the functionality that is required by oz but not provided by the ex-

isting operations. Similar to Type A, an adapter is used to generate

an abstract operation ox by the set of operations {oy1, . . . , oys, oz} (cf.

Figure 6.2).

• For other cases that are not covered by the above discussion, a new opera-

tion ox is created.

6.1.2 Dealing with Service Change: Delete an Operation

Let us assume that the operation ox is to be deleted. This change has the effect

on the internal process that a c-activity needs to be deleted which is described

in the change impact pattern 2 Remove a c-Activity. For this type of change,

no actions are required at the operation level. In the following, we discuss the

mechanisms for managing this type of change at the activity level.

Managing Change at Activity Level

Let activity ax be the c-activity associated with the operation ox. We identify

two cases when dealing with this type of change at the activity level.

• The c-activity ax is not depended by any other activities in the internal

process in terms of data. For example, suppose ax is a send type of c-

160 Change Handling

activity, which sends a notification to the corresponding partner. In the

internal process, there exist no activities that depend on ax in terms of

data. In this case, ax and the associated data connections can be removed

from the internal process.

• The c-activity ax is depended by some activities in the internal process in

terms of data. For example, suppose ax is a receive type of c-activity, which

accepts information from a partner. The received data is processed by the

internal process and then send to another partner. In this case, before

deleting ax modifications on the internal process are required because the

deletion of ax will affect the activities that have data dependency on ax.

6.1.3 Dealing with Service Change: Modify Operation

Granularity

Modifying operation granularity in a service has the change impact that c-

activities must be replaced in the internal process. As described in the change

impact pattern 3 Replace c-Activities there are four types of impact caused by

this type of service change. We discuss how to handle one sub type of opera-

tion granularity change in this sub section. The other sub types of operation

granularity change can be similarly handled. Suppose an existing operation ox

is changed to another operation o′x. Based on the impact pattern, the effect

caused by this service change is that an existing c-activity needs to be replaced

by another c-activity. Let ax be the c-activity associated with the operation ox.

Managing Change at Activity Level

There are three steps to manage this type of change at the activity level.

• The c-activity ax is replaced by a c-activity a′x that is associated with the

§6.1 Handling Individual Changes 161

operation o′x.

• Data connections relating to a′x are established. In this step, some existing

p-activities and c-activities may be modified. Moreover, new p-activities

and c-activities may be created to assist the tasks specified by a′x.

• The c-activity a′x and the activities that are created in the second step are

inserted into proper positions in the internal process.

Managing Change at Operation Level

We identify the following three cases for dealing with this type of change.

• o′x ⊂ ox, which means that the operation o′x offers part of the functionality

of ox. In this case, we apply an adapter to the operation ox, which makes

the operation ox behaves like o′x. The function of this adapter is similar to

the adapter introduced for managing the change impact Insert a c-Activity

(cf. Figure 6.1).

• The above condition does not hold and o′x ∩ ox ̸= ∅. This relation describes

the situation that o′x includes all the functionality provided by ox or o′x

contains part of the functionality provided by ox and has some functionality

that is not offered by ox.

– If there exist a set of operations {oy1, . . . , oys}, such that

o′x ⊂ (ox ∪ oy1 ∪ · · · ∪ oys)

In such a case, an abstract operation o′x is created by adding an adapter

to the operations ox, oy1, . . . oys. The function of this adapter is similar

to the adapter introduced for managing the change impact Insert a

c-Activity (cf. Figure 6.2).

162 Change Handling

– If the above condition is not satisfied, a new operation oz is created:

oz = o′x\ox. Similar to the above case, an abstract operation is created

by adding an adapter to the operations ox and oz.

• For other cases, a new operation o′x must be created.

6.1.4 Dealing with Service Change: Reordering Transi-

tion Sequences

Reordering transition sequences refers to the defined service transition changes:

transition sequence order change (TSOC), sequential to parallel transition se-

quence change (SPTSC), and parallel to sequential transition sequence change

(PSTSC). The impact caused by these types of service transition changes are

captured by the change impact pattern 4 Move c-Activities. Based on the impact

pattern, corresponding c-activities in the internal process need to be reordered.

For these types changes, no actions are required at the operation level. In the

following, we discuss how to manage these types of transition changes at the

activity level.

Managing Change at Activity Level

We provide two alternative approaches for dealing with the types of changes

described above at the activity level.

• The first approach is to move the affected c-activities and relevant activities

to the required positions directly based on the requirements specified in the

impact pattern. The relevant activities here include those activities that

depend on the directly affected c-activities in terms of data. We illustrate

this approach by using the example shown in Figure 6.3. The c-activity

Send invoice needs to be moved before the activity Send bill. Send invoice

§6.1 Handling Individual Changes 163

Prepare bill

Send bill
b

Receive PayInfo
b

Invoke pay service
f

Receive pay

confirmationf

Send invoice
b

Prepare invoice

Reorder activities

Send invoice
b

Prepare invoice

Prepare bill

Send bill
b

Receive PayInfo
b

Invoke pay service
f

Receive pay

confirmationf

Move to

Position A

Position B

(a) (b)

Figure 6.3: Reordering activities.

depends on the p-activity Prepare invoice in terms of data. When moving

Send invoice, Prepare invoice must be moved as well to ensure the correct-

ness of the information flow schema. Observe that multiple positions for

inserting the activities Send invoice and Prepare invoice exist as denoted

in the Figure 6.3 (a) position A and B. Figure 6.3 (b) shows the results that

the two activities are moved to position B.

• The second approach is to use a reordering template for adapting the af-

fected activities to the required control order. Table 6.1 shows the structure

of the reordering template. The Scope specifies the change region where the

adaptation is applied. The Activities are the directly affected c-activities

that need to be reordered. The Instructions for reordering specifies the

requirements of the control flow relations between the activities. These re-

quirements are described by the abstract control relations. Figure 6.4 gives

164 Change Handling

Adaptation Template
Name Reordering activities
Scope A set of process elements
Activities A set of activities that needs to

be reordered
Instructions for reordering activities The abstract control relations

between the involved activities

Table 6.1: Structure of reordering template.

ai

ak
P1

P1

ajP1

Internal process

a′i

a′k
P1

P1

a′jP1

Abstract activities
reordering

activities template

...

Figure 6.4: Using reordering template.

an example of applying the reordering template to three c-activities ai, aj

and ak. In the internal process, the c-activity ai proceeds aj which is fol-

lowed by ak. Due to a service change, the three c-activities must be changed

to a required control sequence: ak must precede ai and ai is followed by

aj. The template mediates the inputs and outputs of these activities and

generate the required control sequence. The positions of the three activities

remain unchanged in the internal process.

It should be noted that applying reordering templates to the internal process

may not be applicable in some cases because of the occurrence of deadlocks. Fig-

§6.1 Handling Individual Changes 165

Internal process

Abstract activities

Prepare bill

Send bill
b

b

f

Receive pay

confirmationf

b

Prepare invoice

(a)

Receive

PayInfo

Invoke pay

service

Send

invoice

Send bill
b

b

Receive

PayInfo

b
Send

invoice

deadlock

reordering

activities template

...

Figure 6.5: An example of deadlock when using reordering template.

ure 6.5 shows an example where a deadlock occurs when using the reordering

template. The deadlock happens when the internal process expects the informa-

tion from a buyer (Receive PayInfo), whereas the buyer is waiting for the message

from the internal process (Send invoice).

In such circumstances, the affected activities and relevant activities must be

directly reordered according to the requirements.

6.1.5 Dealing with Service Change: Modify Conditional

and Looping Transition Sequences

Modifying conditional transition sequences refers to the defined service transi-

tion changes: adding conditional transition sequence change (ACTSC), removing

conditional transition sequence change (RCTSC), adding looping transition se-

quence change (ALTSC), and removing conditional transition sequence change

166 Change Handling

(RLTSC). The effect caused by these types of service transition changes are de-

scribed by the change impact pattern 5 Add, Remove or Modify Conditional

Branches. Based on the impact pattern, new conditional branches need to be

added, existing conditional branches need to be deleted, or existing conditional

branches need to be modified. No actions are required at the operation level for

handling these types of changes. In the following we discuss the mechanisms for

managing these types of changes at the activity level.

Managing Change at Activity Level

When a new conditional branch needs to be added in the internal process,

the related activities that must be embedded into the conditional branch are

identified. The conditions of the conditional branch are derived from the corre-

sponding transition constraints. In this step, new activities may be created in

order to realize the required conditional branch. For instance, c-activities need

to be added to acquire necessary information from a particular business partner.

The relevant activities are embedded in an xor structure accordingly.

When an existing conditional branch needs to be removed, the activities in

the affected conditional branch that need to be removed from this conditional

branch must be identified. In addition, related data connections associated with

the conditional branch need to be removed.

6.1.6 Dealing with Process Changes

In this section, we discuss how to handle different types of changes occurred in

internal processes based on the change impact patterns 6-10.

The change effect caused by the process change: insert an activity is described

in the change impact pattern 6 Add Operations. Based on the impact pattern,

operations must be added to the corresponding services. In addition, transitions

§6.1 Handling Individual Changes 167

that are associated with the newly added operations must be established based

on the control relations of the corresponding c-activities in the internal process.

The change effect caused by the process change: remove an activity is de-

scribed in the change impact pattern 7 Delete Operations. Based on the impact

pattern, corresponding operations need to be deleted from services as well as the

associated transitions.

The change effect caused by the process change: replace activities is described

in the change impact pattern 8 Change Operation Granularity. Based on the

impact pattern, operation granularity must be modified accordingly. Depending

on the sub types of this process change, three major types of operation granularity

change as: asynchronous operation granularity change, synchronous operation

granularity change, and complex operation granularity change will be made.

The change effect caused by the process changes: move an activity, parallelize

activities, and sequence activities is described in the change impact pattern 9

Change Transition Sequence. Based on the impact pattern, transition sequences

in the corresponding services need to be reordered. Depending on the specific

process change, three types of transition changes as: transition sequence order

change, sequential to parallel transition sequence change, and parallel to sequen-

tial transition sequence change will be made during dealing with the process

change.

The change effect caused by the process changes: embed in conditional branches

and embed in loop is described in the change impact pattern 10 Add Conditional

or Looping Transition Sequence. Based on the impact pattern, constraints and

transition sequences must be added between operations. Depending on the spe-

cific process change, two types of transition changes as adding conditional tran-

sition sequence change and adding looping transition sequence change will be

168 Change Handling

c

Service

change

Impact pattern x

Change impact

analysis
Handling service

change

...

Process

changes

Impact pattern y

Impact pattern w

...
Service

changes

...
Impact pattern z

Impact pattern v

...
...

...
...

Change impact

analysis

Handling process

changes

Figure 6.6: Propagation of a service change.

made when dealing with the change.

6.2 Handling Change Propagation

In this section, we provide a brief discussion about how to deal with the change

propagation in service-based business processes. The change propagation refers

to the process that the occurrence of a change affects the associated services and

internal processes. Analysing change propagation is crucial for understanding

the actual impact of a specific change and controlling the impact on service-

based applications and information systems. Based on the proposed service-

oriented business process model, the types of service changes and process changes,

the change impact patterns, and the approaches for handling individual change

impact patterns, we identify the following two cases of change propagation in a

service-oriented business process.

• When a service change occurs, the change impact on the internal process

is analysed based on the proposed change impact patterns. This service

change is managed by taking actions on the internal process which cause a

§6.2 Handling Change Propagation 169

c

Process change

Impact pattern x

Change impact

analysis

Handling process

change

...

Service

changes

Impact pattern y

...

Figure 6.7: Propagation of a process change.

series of process changes. For each of these process changes, the change im-

pact on the associated services is determined by the corresponding change

impact pattern. These process changes are then managed by taking some

actions on the associated services which incur further changes on the asso-

ciated services. Figure 6.6 illustrates this change propagation process.

• When a process change occurs, the change impact on the associated services

is analysed based on the proposed change impact patterns. This process

change may have impact on multiple services. With the change analysis

results, some actions are taken to manage this process change which cause

a series of changes on the associated services. Figure 6.7 illustrates this

change propagation process.

We provide an example as follows to illustrate the propagation of a service

change in a service-oriented business process.

Example a service change propagation

As shown in Figure 6.8 (a), a service change: Adding Conditional Transition

Sequences Change (ACTSC) occurs in the service sp1 . Operation o2 is changed to

be invoked conditionally by adding two conditional transition sequences t′1(cx1)

and t′3(cx2). Figure 6.8(b) is the internal process IP that supports the service

170 Change Handling

adding xor structure

a2
P1

Fragment 1.2

a1P1

a2
P1

Fragment 2

a3P1

Fragment 1

a1P1

fragment 2

a3P1

Fragment 1.1

ax
p2

dx
write

read

(b)

O1

O3

O2 O2

O3

O1

(a)

t′3

ACTSC

sp1

incur process changes

adding activities

IP

IP’

P
ro
ce
ss
 c
ha
ng
es

Causing changes in

service sp2

(c)

ayp3

Causing changes in

service sp3

t2

t1
t′1

t′2

cx1

cx2

Figure 6.8: An example for propagation of a service change.

§6.2 Handling Change Propagation 171

sp1 before the change occurs. The c-activities a1, a2, and a3 are associated with

operations o1, o2, and o3 respectively. The fragment 1 and fragment 2 are sub

processes that contain only p-activities and c-activities that are not related to

partner p1. The impact on the internal process of this service change is captured

by the change impact pattern 5 Add, Remove or Modify Conditional Branches.

As described in the impact pattern 5, the c-activity a2 needs to be embedded in a

conditional branch. The conditions for controlling the execution of a2 is derived

from constraints cx1 and cx2. To handle the service change, an xor structure

that includes c-activity a2 is added to the internal process (cf. Figure 6.8 (c)).

To support this action, fragment 1 is split into two parts: fragment 1.1 and

fragment 1.2. Fragment 1.2 is included in the xor structure. Suppose fragment

1.2 contains a receive type of c-activity ay relating to the partner p3. In addition,

a send/receive type of c-activity ax relating to partner p2 is inserted before the xor

structure, which acquires the necessary information used by the xor connector.

We observe that a series of process changes happen in order to manage the

service change ACTSC occurring in service sp1 . Among these process changes,

the process change: inserting a c-activity ax relating to partner p2 will incur

changes in service sp2 . In addition, the process change: embedding the c-activity

ay relating to the partner p3 in a conditional branch will cause changes in the

service sp3 . It is clear that the service change ACTSC in service sp1 is propagated

to the services sp2 and sp3 through the internal process.

With the propagation of a service change and a process change, we are able

to define the actual impact scope of a specific change. As discussed in section

5.2, the direct impact scope of a change defines the impact region of this change

before any solutions are taken to manage the change. The actual impact scope of

a change includes the direct impact scope of this change and the impact region of

172 Change Handling

the further changes caused by actions for handling this change. From the above

discussion of the change propagation, it is clear that the actual impact scope of

a process change is the direct impact scope of this change (cf. Figure 6.7). In

contrast to the actual impact scope of a process change, the actual impact scope

of a service change includes:

• the direct impact scope of the service change

• the direct impact scopes of the process changes that are caused by handling

the service change.

In order to calculate the actual impact scope of a service change, we define

the the function FuncAISS as follows.

Definition 1 (FuncAISS) Let A be a set of activities and S = {s1, . . . , sn} be

a set of services. FuncAISS is the function: schange, PCHANGE → PE, SFS.

The input of the function includes: (i) a service change schange, and (ii) a set

of process changes PCHANGE = {pchange1, . . . , pchanger} that are caused by

the reactions for handling the service change schange. The output of FuncAISS

includes:

• a set of process elements PE, where

PE = FuncDISS(schange)

• a list of service fragments SFS = {SF1, . . . , SFh}, where

SFi = FuncDISP (pchangei)(i = 1, . . . , h)

§6.3 Change Isolation 173

6.3 Change Isolation

In the context of SOC, business processes are usually cross organizational bound-

aries and involve multiple business partners. In such inter-organizational coop-

eration, each business partner fulfils parts of the functionalities of the entire

value-chain. A single change induced by one business partner may affect multi-

ple partners and this impact may cause further changes to the entire value-chain.

Effective mechanisms must be devised to cut off the cascading effect of changes

and maintain the stability of the collaboration and cooperation. Our goal of the

change management for service-based applications and information systems is to

analyse and control cascading effects in services and business processes. A specific

change may have cascading effect on services and business processes due to the

dependencies between services and business processes. The example propagation

of a service change provided in the previous section shows how a service change

impacts the other two services associated with the same internal process. The

objective of this section is to discuss the mechanisms of change isolation based

on the change taxonomy and the change impact patterns.

Change isolation in the context of service-based business processes refers to

restricting and confining a specific change in a minimum scope and cutting off

its impact on the related services and business processes. Our research provides

foundations for understanding the impact of a specific service change and process

change in service-based business processes. When a service change occurs, this

change affects the internally supporting internal process. The direct impact on

the internal process is captured by the corresponding change impact pattern. The

impact analysis results contain the direct impact scopes of the service change that

comprises the affected process elements and the change effect on the internal

process that is described in terms of abstract control relations. Based on the

174 Change Handling

change impact analysis and the provided mechanisms for handling individual

changes, the desired treatment can be taken to cope with this change impact on

the internal process. In the following, we discuss how change isolation can be

achieved when handling the various types of service changes.

Based on the defined service-oriented business process model and the change

impact patterns, we propose the following two criteria for restricting and confining

the impact of a service change in order to cut off cascading effects.

• The treatment applied on the internal process does not change the abstract

control relations of the c-activities related to each of the associated services.

This criterion is based on that if the abstract control relations of c-activities

are maintained unchanged when handling the change, the services associ-

ated with the internal process can not be affected.

• The treatment applied on the internal process does not change data con-

nections related to the c-activities of the associated services. This criterion

is based on that if the data connections associated with c-activities are

maintained unchanged when handling the change, the services associated

with the internal process can not be affected.

We provide two examples to show that if the above criteria are violated,

changes occurring in one service can not be isolated and will have cascading

effects on other services.

The example: propagation of a service change (cf. Figure 6.8) in Section

6.2 illustrates the first criterion. To handle the transition change: ACTSC in

service sp1, a series of changes are made on the internal process. Among those

process changes, adding c-activity ax that is associated with partner sp2 and c-

activity ay that is associated with partner sp3 to the internal process affects the

§6.4 Discussion 175

abstract control relations related to service sp2 and sp3 respectively. Therefore,

the two services sp2 and sp3 must be changed based on those process changes.

This example shows that the service change ACTSC in service sp1 causes impacts

on services sp2 and sp3 because handling ACTSC affects abstract control relations

related to those two services.

We use the sales example to illustrate the second criterion. Suppose the ship-

ping service changes by providing a new operation express shipping in addition

to its existing operation standard shipping. To handle this service change, the

sales process needs to make a series of changes in order to realise the function of

selecting the proper shipping method for customer goods. Suppose the sales pro-

cess needs to acquire additional information from the buyer about its shipping

preference, which requires modifying existing data connections or adding new

data connections related to the buyer service. Therefore, the buyer service must

be changed based on the changes in the sales process. This example shows that

the change occurred in the shipping service causes impact on the buyer service

because handling the change occurred in the shipping service affects the data

connections related to the buyer service.

6.4 Discussion

In this chapter, we have discussed how to handle changes based on the types of

changes and the change impact patterns. We discuss in detail how to deal with

the individual changes first and then analyse the change propagation. We also

discuss the issue of change isolation in service-based applications and information

systems and propose criteria for cutting off the cascading effect.

The problem of change management that has been studied extensively in

176 Change Handling

the field of workflow systems focuses on handling process changes of individual

workflow processes [19, 41, 77, 86]. The change management for service-based

applications and information systems is more complex and challenging because

of the distributed and dynamic nature of services and business processes. In the

SOC environment, it is important to understand the change impact of a specific

change, provide effective mechanisms to handle the various types of change im-

pact, and more importantly, to isolate the change and control the cascading effect

when complicated dependencies between services and business processes exist.

Important guidelines for managing service changes in service-based business pro-

cesses are proposed in [70], in which a change-oriented life cycle is introduced to

handle deep changes. Existing works about service change management address

some change issues related to services such as the evolution of service specifica-

tion [9, 10] and business protocols [83] and some change issues related to BPEL

processes such as alignment of process choreography and orchestration [80, 108].

Unfortunately, the dependencies between services and business processes are not

discussed in those researches. Moreover, the approaches for analysing and han-

dling the change propagation in service-based business processes have never been

proposed by the current research works. Our research provides mechanisms for

handling individual change impact patterns and analysing the change propaga-

tion in service-based business processes. Our change handling approach is based

on the identified change impact patterns. The separation of change impact analy-

sis and change impact handling reduces the complex tasks of change management

for service-based applications and information systems. Moreover, the specified

change impact patterns and mechanisms for handling individual change impact

patterns can be reused in the development and maintenance of service-based

applications and information systems.

Chapter 7

Service Change Analyser—A

Prototype

In this chapter, we provide the design details of our developed prototype tool

referred to as Service Change Analyser (SCA). The SCA is a JAVA based tool

that implements the proposed change management mechanisms for analysing the

various types of change impacts in service-based business processes. In particular,

this tool focuses on a type of dependencies that multiple services are supported by

a single business process. The SCA accepts a specific service change as its input

and provides the impact analysis results for the change impact scope as well as the

potentially used change impact pattern. With the help of the change analyser,

the impact of a specific change becomes transparent and it is not necessary to

analyse the impact of changes manually. This tool provides developers a standard

practice to change the complicated change management tasks into a series of

simple standard procedures. The SCA is implemented by the Netbeans IDE

6.9.1 with JDK 1.6.0-22 and MySQL 5.1.

The rest of this chapter is structured as follows. In Section 7.1, we introduce

the high level architecture for the SCA. In Section 7.2, we describe the data

structures of the SCA. In Section 7.3, we discuss the components of the SCA and

discuss the functions of each component. In Section 7.4, we provide two running

177

178 Service Change Analyser—A Prototype

examples of our prototype tool. Finally, we conclude this chapter in Section 7.5.

7.1 Architecture

Figure 7.1 shows the architecture of the SCA. The architecture comprises three

major procedures as: Select a service to be changed, Choose a service change and

specify change, and Analyse service change impact. The Select a service to be

changed module provides an interface for users to browse the existing services.

Users can browse the details of a service including its operations and transitions.

The Choose a service change and specify the change module can i) provide the

types of service changes for users and ii) when a specific type of service change is

chosen the corresponding interface is presented for the user to specify the details

of the service change. The Analyse service change impact module can provide the

results of service change impact analysis based on the specified service change.

The results of change impact analysis include the direct change impact scope

of this service change and the corresponding change impact pattern associated

with this service change. The direct impact scope of a service change contains

the process elements of the affected business process and is calculated by using

Algorithm 1 FuncDISS defined in Chapter 5. The associated change impact

pattern presented captures the specific type of change effect caused by the service

change.

The Service-based business processes shown in Figure 7.1 are the databases

that store the data of services and business processes. The data of a service

includes the operations and transitions associated with these operations. The

data of a business process includes the control flow schema and the information

flow schema that define this business process. The databases are accessed by the

§7.1 Architecture 179

Select a service to be

changed

Choose a service

change and specify

the change

user

Service-based

Business Processes

Analyse Service

Change Impact

Figure 7.1: High level architecture for SCA.

above mentioned three modules of the SCA during the execution of this tool.

We summarize the features of the SCA as follows:

• The SCA enables the change management for service-based business pro-

cesses where services and business processes have complex dependence re-

lations. In particular, the developed prototype tool focuses on a type of

dependencies that multiple services are supported by a single business pro-

cess.

• The SCA is developed based on our change management approach includ-

ing the change taxonomy and the change impact patterns. These change

types and change impact patterns can be reused and extended for the de-

velopment and maintenance of service-based applications and information

systems.

• The SCA provides rich results of change impact analysis including direct

impact scopes and change effect on associated business processes. These

analysis results for a specific service change are helpful to analyse the change

180 Service Change Analyser—A Prototype

impact in service-oriented business processes and provide the foundation for

determining proper change treatment.

7.2 Data Structure

In this section, we describe the development of our databases: service-based

business processes. We use MySQL 5.1 as the database server. We design and

develop the databases of service-based business processes by using the visual tool:

MySQL Workbench 5.2 CE.

Based on the definitions for service-oriented business processes in Chapter

3, we have designed nine tables as processes, business partners, activities, con-

trol connectors, controlflowschemas, dataelements, informationflowschemas, oper-

ations, and servicetransitions to store the data of service-based business processes

(cf. Figure 7.2). We discuss the design details of these tables and their relations

as follows. We will use the example provided in Chapter 3 to illustrate these

tables.

The processes table has two columns as: process id and process name. This

table is used to store the existing business processes. For our example, the

business process: sales process needs to be stored in this table.

The business partners table has three columns as: partner id, partner name,

and associate process that stores the business partners associated with business

processes. For our example, three business partners are stored in this table as:

buyer, payment, and shipper.

The activities table has seven columns as: activity id, activity name, activ-

ity type, partner, InPARs, OutPARs, and associate operation. The column of

activity type contains the type of an activity. Based on the definitions in Chapter

§7.2 Data Structure 181

activities

PK activity_id

PK,FK2 partner_id

PK,FK2 process_id

activity_name

activity_type

partner_name

InPARs

OutPARs

Associated operation

FK1 operation_id

operations

PK operation_id

operation_name

operation_type

InMsgs

OutMsgs

controlconnectors

PK connector_id

connector_name

InPARs

OutPARs

description

dataelements

PK dataelement_id

dataelement_name

controlflowschemas

PK controlflow_id

PK,FK2 partner_id

PK,FK2,FK3 process_id

PK,FK1 connector_id

PK,FK2 activity_id

controlflow_name

origin_node

destination_node

process_name

processes

PK process_id

process_name

businesspartners

PK partner_id

PK,FK1 process_id

partner_name

associate_process informationflowschemas

PK dataconnection_id

PK,FK2 partner_id

PK,FK2,FK3 process_id

PK,FK1 dataelement_id

PK,FK2 activity_id

PK,FK4 connector_id

dataconnection_name

associate_dataelement

associate_node

mode

PARs

process_name

servicetransitions

PK transition_id

PK,FK1 operation_id

FK2 process_id

transition_name

origin_operation

destination_operation

constraints

partner_name

associate_process

FK2 partner_id

Figure 7.2: Entity relationship diagram.

182 Service Change Analyser—A Prototype

3, activities of a business process are categorized into private activity (p-activity)

and communication activity (c-activity). C-activities are further classified into

Send activity, Receive activity, Send/Receive activity, and Receive/Send activity.

The column of partner stores the corresponding business partner that a c-activity

intends to interact with. For a p-activity, the content for this column is null.

The columns of InPARs and OutPARs store the input and output parameters

of an activity respectively. The column of associate operation stores the oper-

ation associated with a specific activity. For example, the activity Get shipping

quote is saved as:

(A13, Getshippingquote, Send/Receive, shipper, shippingInfo,

shippingquote, getshippingquote)

The controlconnectors table has five columns as: connector id, connector name,

InPARs, OutPARs, and description.

The controlflowschemas table consists of five columns as: controlflow id, con-

trolflow name, origin node, destination node, and associate process. The con-

trolflowschemas table stores the control relations between activities. The columns

of origin node and the destination node record the start node (an activity or a

control connector) and the end node (an activity or a control connector) of the

corresponding control relation respectively.

The dataelements table has two columns as: dataelement id and dataele-

ment name. This table stores the data elements that are read or written by

process activities.

The informationflowschemas table has seven columns as: dataconnection id,

dataconnection name, associate dataelement, associate activity, PARs, mode,

§7.2 Data Structure 183

associate process. This table stores the information flow schemas of business

processes which are defined in Chapter 3(cf. 3.2.1). Each row of this table

records a data connection.

The operations table has five columns as: operation id, operation name,

operation type, InMsgs, and OutMsgs. This table stores information about

an operation. For example, the operation get shipping quote is stored as:

(O13, getshippingquote, Synchronous, shippingInfo, shippingquote)

The servicetransitions table has six columns as: transition id, transition name,

origin operation, destination operation, constraints, and partner. This table

stores the transitions of services. Each row in this table records a specific service

transition.

Figure 7.2 presents the entity relationship diagram which defines the struc-

tures of tables and the relationships between these tables. For instance, the

relation between the activities table and the operations table is that each activ-

ity is associated with an operation. The relation between the activities table and

the businesspartners table is that each c-activity is associated with a specific busi-

ness partner and each business partner may relate to more than one c-activities.

P-activities of business processes are not associated with any business partners.

For example, the c-activity Receive order in the sales process is associated with

the buyer partner. The p-activity Check stock availability in the sales process

is not associated with any business partner. The relation between the activities

table and the controlflowschemas table is that each control relation involves at

most two activities and one activity may be associated with more than one con-

trol relations. That is, based on our definition of control flow schema of business

184 Service Change Analyser—A Prototype

processes, a control relation has an origin node and a destination node. A node

refers to an activity or a control connector. Similarly, the relation between the

controlconnectors table and the controlflowschemas table is that each control re-

lation involves at most two control connectors and one control connector may be

associated with one or more control relations.

7.3 Components of Service Change Analyser

In this section, we discuss the components of the SCA. As shown in Figure 7.3, the

function of the SCA: Service Change Analysis is divided into two broad modules

as Operation based Analysis and Transition based Analysis. We discuss the two

functional modules in the following sub sections respectively.

7.3.1 Operation Based Analysis

As shown in Figure 7.3, the operation based analysis module is realized by two

major functional modules: change operation existence and change operation gran-

ularity.

The change operation existence module is further divided into three sub mod-

ules as: sequentially add an operation, add an operation in parallel to an existing

operation, and delete an operation. The sequentially add an operation module

accepts a service change with the type of sequentially adding an operation and

generates the impact analysis results of this service change. The add an opera-

tion in parallel to an existing operation module accepts a service change with the

type of parallel adding an operation and generates the impact analysis results

of this service change. The delete an operation module accepts a service change

with the type of deleting an operation and generates the impact analysis results

§7.3 Components of Service Change Analyser 185

Service Change

Analysis

Operation based

analysis

Transition based

analysis

Sequential

ly add an

operation

Add an operation

in parallel to an

existing operation

Delete an

operation

Change operation

granularity
Change operation

existence

Synchronous operation

granularity change

(SOGC)

Asynchronous operation

granularity change

(AOGC)

Complex operation

granularity change

(COGC)

AOGC: one-to-one

operation granularity

change

AOGC: one-to-many

operation granularity

change

AOGC: many-to-one

operation granularity

change

AOGC: many-to-

many operation

granularity change

SOGC: one-to-one

operation granularity

change

SOGC: one-to-many

operation granularity

change

SOGC: many-to-one

operation granularity

change

SOGC: many-to-many

operation granularity

change

COGC: asynchronous-

to-synchronous

operation granularity

change

COGC:

synchronous-to-

asynchronous

operation

granularity change

COGC: mixed

granularity change

Change transition

sequence order

Change sequential

transitions to

parallel transitions

Change parallel

transitions to

sequential transitions

Add conditional

transition

sequences

Remove conditional

transition sequences

Add looping

transition

sequences

Remove looping

transition sequences

Figure 7.3: Hierarchy diagram.

186 Service Change Analyser—A Prototype

of this change.

The change operation granularity module consists of three major sub modules

as asynchronous operation granularity change (AOGC), synchronous operation

granularity (SOGC), and complex operation granularity change (COGC).

The AOGC module is further divided into four modules as: AOGC one-to-one

operation granularity change, AOGC one-to-many operation granularity change,

AOGC many-to-one operation granularity change, and AOGC many-to-many

operation granularity change. These modules deal with the impact analysis of

asynchronous operation granularity changes.

The SOGC module is further divided into four modules as: SOGC one-to-one

operation granularity change, SOGC one-to-many operation granularity change,

SOGC many-to-one operation granularity change, and SOGC many-to-many op-

eration granularity change. These modules deal with the impact analysis of

synchronous operation granularity changes.

The COGC module is further divided into three modules as: COGC asyn-

chronous -to-synchronous operation granularity change, COGC synchronous-to-

asynchronous operation granularity change, and COGC mixed operation granu-

larity change. These modules deal with the impact analysis of operation granular-

ity changes involving both asynchronous operations and synchronous operations.

7.3.2 Transition Based Analysis

As shown in Figure 7.3, the transition based analysis is divided into seven sub

modules as: change transition sequence order, change sequential transitions to

parallel transitions, change parallel transitions to sequential transitions, add con-

ditional transition sequences, remove conditional transition sequences, add loop-

ing transition sequences, and removed looping transition sequences. These seven

§7.4 Running Examples 187

modules accept the corresponding service transition changes and provide the

change impact analysis results. For instance, the change transition sequence or-

der module accepts a service change with the type of transition sequence order

change and generates the impact analysis for this service change.

7.4 Running Examples

In this section, we provide two running examples to show the effectiveness of

our change analyser. The two examples cover the operation based analysis and

transition based analysis respectively.

7.4.1 Example for Operation Based Analysis

In this sub section, we present an example for operation based change impact

analysis. We will show how a user can specify a type of operation change using

the SCA and what is the actual output.

First, a user needs to select the service that he/she wants to change. The SCA

provides an interface for users to browse existing services. As shown in Figure 7.4,

the interface contains a service list and a tabbed panel: Operation and Transition.

The service list shows the existing services that are retrieved from the databases of

service-based business processes. In our example, three services as: buyer service,

payment service, and shipper service exist and are listed. When a service is

selected, its operations and transitions will be displayed in the tabbed panel below

as trees. In this example, the buyer service is selected and its operations are shown

as a tree (cf. Figure 7.4). The root node is the selected service and the operations

are displayed as children nodes. Each operation node has three children nodes

as operation type, input messages, and output messages. As shown in Figure

188 Service Change Analyser—A Prototype

Figure 7.4: Browse service operations.

7.4, the operation send acknowledgement is an asynchronous operation denoted

as “A”. The input messages of this operation is “order acknowledgement”.

When a user wants to change the selected service, he/she can right click the

mouse in the area of panels showing service operations and transitions. When

the user right clicks the mouse in the service operation area, the defined types of

service change related to operations are popped out as menus (cf. Figure 7.5).

In Chapter 4, we have presented the taxonomy of changes for services (cf.

Figure 4.1). Based on this service change classification, the change types as-

sociated with service operations provided for users are: Sequentially add an

operation, Add an operation in parallel to an existing operation, Delete an op-

eration, Change granularity of asynchronous operation, Change granularity of

synchronous operation, and Complex operation granularity change. Note that

the Change granularity of asynchronous operation menu has four submenus as:

§7.4 Running Examples 189

Figure 7.5: Choose change types of service operations.

AOGC one-to-one granularity change, AOGC one-to-many granularity change,

AOGC many-to-one granularity change, and AOGC many-to-many granularity

change. Similarly, the Change granularity of synchronous operation menu also

has four submenus as: SOGC one-to-one granularity change, SOGC one-to-many

granularity change, SOGC many-to-one granularity change, and SOGC many-to-

many granularity change. For the Complex operation granularity change, three

submenus are provided as: COGC asynchronous-to-synchronous operation gran-

ularity change, synchronous-to-asynchronous operation granularity change, and

mixed operation granularity change.

The user can choose a change type he/she wants to apply on the selected

service. When a specific change type is chosen, the SCA will provide the cor-

responding interface for the user to specify the change. In this example, the

Add an operation in parallel to an existing operation change is selected and the

190 Service Change Analyser—A Prototype

Figure 7.6: Add an operation in parallel to an existing operation.

corresponding interface is presented (cf. Figure 7.6).

Suppose a user wants to add an operation send dispatch notification to the

buyer service. The new operation must be invoked after the operation send

acknowledgement and before the receive PayInfo. In addition, the new operation

can be executed in parallel with the operation send bill. The constraints for

executing the new operation send dispatch notification is “order is confirmed

and the goods are dispatched”. The operation send dispatch notification is an

asynchronous operation and its input messages include “customer order” and

“dispatch notice from shipper”. To make the above operation change, the user

needs to choose the item Add an operation in parallel to an existing operation

of the popped up menu. Then the SCA will provide an interface for the user

to specify this service operation change (cf. Figure 7.6). There are two parts

§7.4 Running Examples 191

of information that need to be specified by the user: indicating where the new

operation needs to be inserted and specifying the details of the new operation.

As shown in Figure 7.6, the user can select the origin operation and destination

operation from the drop-down lists. In addition, the user must specify which

operation the new operation can be executed in parallel. If the invocation of this

new operation is conditional, the user can specify the conditions in the constraints

textfield. The name, type, input and output messages of the new operation need

to specified in the corresponding textfields. Figure 7.6 shows the above mentioned

service change.

After the user input the information of a specific change, he/she can click the

“Analyse Change Impact” button at the bottom of the frame. The function of

analysing service change impact is based on the proposed mechanisms for change

impact analysis in Chapter 5. The results of the change impact analysis of the

SCA include the direct impact scope of the input service change, the associated

change impact pattern, and a description for the change effect based on the spec-

ified change information. The direct impact scope of a service change is defined

as a set of process elements and is calculated using Algorithm 1 FuncDISS (cf.

Chapter 5, Section 5.2.1). For the specified service change, the expected output

of the SCA consists of the change impact scope and the associated change impact

pattern. The affected business process is the sales process. The affected activities

include:

• The activities that associated with the operations involved in the service

change: Send acknowledgment, Receive PayInfo, Send bill.

• The activities that depend on the activities in (i): Invoke pay service.

• The activities that are depended by the activities in (i): Receive order,

192 Service Change Analyser—A Prototype

Figure 7.7: Impact analysis for the change of adding operation in parallel to an

existing operation.

Prepare bill.

The affected data connections are those data connections associated with the

activities specified in the above affected activities. The affected service is “pay-

ment” service. The change impact associated with the specified service is Change

Impact Pattern 1 Insert a c-Activity.

Figure 7.7 shows the actual output of our tool: the results of the change

impact analysis for the specified change “Add an operation in parallel to an

existing operation”. The change impact pattern that captures this type of change

§7.4 Running Examples 193

Figure 7.8: Browse service transitions.

effect is Change Impact Pattern 1 Insert a c-Activity. The impact description

provided by the SCA indicates that a new c-activity must be inserted to the sales

process between the activity Send acknowledgement and Receive PayInfo and in

parallel to the c-activity Send bill. The new c-activity is conditionally executed.

The details of the c-activity that needs to be inserted to the sales process are

also provided based on the information about the new operation specified by the

user.

7.4.2 Example for Transition Based Analysis

In this sub section, we provide an example for transition based change impact

analysis. We will show how a user can specify a type of transition change using

the SCA and what is the actual output.

Transitions of a service are displayed as a tree. As shown in Figure 7.8, the

194 Service Change Analyser—A Prototype

Figure 7.9: Choose change types of service transitions.

buyer service has six transitions. The root node of a transition tree is the selected

service and the children nodes are its transitions. Each transition node has three

children nodes as origin operation, destination operation, and constraints.

When the user wants to make a change of service transitions, he/she can

right click the mouse in the area of service transitions. Figure 7.9 shows the

popped out menu of transition change types. Based on the taxonomy of service

changes, we have designed seven menus items as: Change transition sequence

order, Change sequential transitions to parallel transitions, Change parallel tran-

sitions to sequential transitions, Add conditional transition sequences, Remove

conditional transition sequences, Add looping transition sequences, and Remove

looping transition sequences.

Suppose a user wants to change the order of the transition sequence of the

buyer service: (send bill, receive PayInfo, send invoice) to (send invoice, send

§7.4 Running Examples 195

Figure 7.10: Change transition sequence order.

bill, receive PayInfo). To make this transition change, the user needs to choose

the item Change transition sequence order of the popup menu. Then the SCA

will provide an interface for the user to specify this type of transition change (cf.

Figure 7.10). The user can select the transition sequence he/she wants to change

from the drop-down list. The selected transitions will be displayed in the below

testarea. The user must specify the new order of the selected transition sequence

in the corresponding textarea. Figure 7.10 shows the above described transition

sequence order change.

The expected output of our change analyser consists of the change impact

scope and the associated change impact pattern. The change impact scope in-

cludes the affected activities and data connections in the internal process and the

services associated with the internal process. The affected activities include:

196 Service Change Analyser—A Prototype

• The activities that associated with the operations involved in the service

change: Send bill, Receive PayInfo, Send invoice.

• The activities that depend on the activities in (i): Invoice pay service.

• The activities that are depended by the activities in (i): Prepare bill, Pre-

pare invoice.

The affected data connections are those data connections associated with the

activities specified as above. The affected service is “payment” service. The

change impact associated with the specified service is Change Impact Pattern 4

Move c-Activities.

Figure 7.11 shows the results of the change impact analysis for the specified

change “Change transition sequence order” in the Step 2. The affected busi-

ness process is the sales process. The change impact pattern that captures this

type of change effect is Change Impact Pattern 4 Move c-Activities. The impact

description provided the SCA indicates that the c-activities Send bill, Receive

PayInfo, and Send invoice must be reordered. The abstract control relations of

the affected c-activities are decided from the transition sequence of operations

specified by the user.

7.5 Discussion

In this chapter, we have presented a prototype tool referred to as Service Change

Analyser (SCA) that is developed to validate the concepts and mechanisms of

service change management proposed in this thesis. The SCA accepts changes as

its input and it can give the detailed analysed results for the change impact scope

and provide suggestions for potentially used change impact patterns. With the

§7.5 Discussion 197

Figure 7.11: Impact analysis for change transition sequence order.

198 Service Change Analyser—A Prototype

help of the SCA, the impact of a specific change becomes transparent and it is not

necessary to analyse the impact of changes manually. Even as a prototype, the

current change analyser has already have user-friendly graphic user interfaces.

The prototype is implemented with IDE NetBeans 6.9.1 with JDK 1.6.0-22

for Windows XP and MySQL 5.1 and MySQL Workbench 5.2 CE. The major

functionalities of the SCA are realized by two major modules as: operation based

analysis and transition based analysis. We have discussed the design details of

this tool including the data structures and the components of this tool. Two

running examples are presented which show how to analyse impact of operation

changes and transition changes respectively.

The SCA supports the change management for service-based business pro-

cesses and has the following features. First, the SCA advocates reusability in the

change analysis and change reaction processes because the change taxonomy as-

sociated with services and business processes and the change impact patterns can

be reused during managing changes for service-based business processes. Second,

the SCA provides rich change impact analysis information. These intermediate

results are helpful to reduce the complex change management tasks. In addition,

they can help users make proper decisions in determining change reactions.

Chapter 8

Conclusions and Future Work

In this chapter, we summarize the contribution of this thesis and discuss some

future research directions on the foundation of this work.

8.1 Concluding Remarks

The service-oriented computing (SOC) offers a promising computing paradigm

for realising seamless integration of applications and information systems across

organization boundaries. Service-based applications and information systems

need to operate correctly in a fast changing environment due to the dynamic and

distributed features of services. In this thesis, we have presented an approach for

dealing with the challenging issue of change management for service-based busi-

ness processes. Current works on service change management provide solutions

for handling changes of business processes or services separately. Our research

shows that complicated dependencies between services and business processes

exist and these dependence relations are crucial for the change management in

service-based applications and information systems. The proposed approach for

change management focuses on the dependencies between business processes and

services. A type of dependencies that one business process supports multiple ser-

vices is highlighted in this thesis. We summarize the contribution of our research

199

200 Conclusions and Future Work

reported in this thesis as follows:

• We have defined a service-oriented business process model for capturing

the major characteristics of the change management issues in the service-

oriented environment. The proposed model describes dependencies between

services and business processes that multiple services are supported by a

single business process. Two layers as the process layer and the service layer

are defined in the service-oriented business process model. The process

layer contains internal processes which are invisible for business partners.

The service layer consists of services that are supported by the internal

processes. Functionalities of internal processes are represented and exposed

as services. Business partners interact with internal processes by invoking

the corresponding services. The proposed model provides the foundation

for building up the change taxonomy associated with services and business

processes, change impact analysis, and reaction to various types of changes.

• We have identified the various types of changes associated with services

and business processes on the basis of the service-oriented business process

model. Service changes are categorized into two major types as the opera-

tion change and the transition change. Based on the definition of services,

operation changes are further classified into the operation existence change

and the operation granularity change. The operation existence change iden-

tifies the various ways of inserting an operation to a service. The operation

granularity change discusses grain changes related to operations including

asynchronous operation granularity change, synchronous operation granu-

larity change, and complex operation granularity change that involves both

asynchronous and synchronous operations. The transition change describes

variation related to transitions associated with operations. Process changes

§8.1 Concluding Remarks 201

are discussed based on the control flow schemas of internal processes. We

have identified nine major types of process changes as insert an activity,

remove an activity, move an activity, replace activities, parallelize activ-

ities, sequence activities, embed in conditional branches, embed in loop,

and update conditions. The presented taxonomy of changes related to ser-

vices and business processes provide a solid foundation for analysing the

impact caused by service changes and process changes on service-based

business processes and developing generic change reactions for controlling

these changes.

• We have presented the ten change impact patterns to support the change

impact analysis in service-based business processes. The change impact

patterns are categorized into two major types: the impact patterns related

to service changes and the impact patterns related to process changes. Each

change impact pattern describes the direct impact scope of a change, the

cause of the change, and the effect of the change on the services and the asso-

ciated business process. The change impact patterns provide intermediate

results in the analysis process and they can be reused in the development

and maintenance of service-based information systems. The separation of

change impact analysis and change reactions by using the change impact

patterns is helpful to reduce the complexity of change management tasks.

• We have provided mechanisms for handling various types of changes based

on the specified change impact patterns. With the help of the change im-

pact patterns and the mechanisms for dealing with individual changes, we

are capable of analysing the change propagation in service-based business

processes. The actual impact scopes of a specific service change and a

202 Conclusions and Future Work

process change are calculated on the basis of the analysis of change propa-

gation. We have also discussed the important issue of change isolation and

provided principles for cutting off the change propagation in service-based

applications and information systems.

• We have developed a prototype tool referred to as service change analyser

that implements the proposed change management mechanisms. This pro-

totype application shows the effectiveness of the proposed general method-

ology of the change management in the service-oriented environment. With

the help of the SCA, the impact of a specific change becomes transparent

and it is not necessary to analyse the impact of changes manually. The time

and cost of change management tasks can be dramatically reduced. Even

as a prototype, the current change analyser has already have user-friendly

graphic user interfaces.

To summarize, the research work reported in this thesis provided our approach

for dealing with the change management for service-based business processes. We

have defined a service-oriented business process model that captures a type of

dependencies between services and business processes where multiple services are

supported by a single business process. Based on the proposed service-oriented

business process model, we have identified a taxonomy of changes associated with

services and business processes. We have presented the ten change impact pat-

terns to support the change impact analysis. We have shown how to analyse the

change propagation and control the cascading effect of changes in service-based

business processes. Finally, we have built up a prototype that implements our

proposed change management mechanisms.

§8.2 Future Directions 203

8.2 Future Directions

Change management is critical and challenging in the service-oriented environ-

ment. Existing researches feature only some aspects of change management issues

and provide partial solutions for dealing with changes in service-based applica-

tions and information systems. This thesis reports the first stage of our research

about the change management of service-based business processes. In the fol-

lowing, we discuss our future research directions in relation to service change

management.

• As we have stated in this thesis, complex dependence relations exist between

services and business processes and they are crucial for the development of

effective mechanisms for handling various types of changes in service-based

systems. Our research reported in this thesis has highlighted the typi-

cal case that one business process supports multiple services. We plan to

identify more typical types of dependencies between business processes and

services and develop the corresponding change management mechanisms.

• The SOC paradigm aims to enable inter-organization cooperation and col-

laboration by dynamically integrating business processes belonging to dif-

ferent business partners. An organization relies on its partners to fulfil

business tasks. For each of the partners, the internal process and associ-

ated services are subject to changes from time to time. Business processes

belonging to different partners that are dynamically orchestrated to accom-

plish a goal need to operate correctly when the participant processes and

services change due to various factors. In the context of multi-party cooper-

ation and collaboration, the change management becomes more critical and

challenging. Our research reported in this thesis provides solutions for man-

204 Conclusions and Future Work

aging changes associated with services and business processes within one

organization. The presented mechanisms support identifying, analysing,

and reacting to the various types of changes related to services and busi-

ness processes that occur in one organization. This research provides a solid

foundation for studying the challenging issue of change management in the

cooperation and collaboration context. Current researches on the change

management in this context is very limited. We intend to tackle the change

management for inter-organization cooperation and collaboration from the

following aspects:

– Providing approaches for analysing the impact of changes that affects

participant processes and services. A change arising from one party

has different impact on the business processes and services of its part-

ners. Understanding the various types of change impact is the first

step to develop effective change reactions.

– Devising mechanisms for controlling changes. Changes must be iso-

lated and controlled with the aim to reduce their impact on the entire

system to a minimum. The cascading effect of changes must be cut

off.

– Developing strategies for change reactions. When a change is intro-

duced by a partner, the business partners involved in the cooperation

and collaboration must take proper change reactions in order to en-

sure the successful execution of the cooperation and collaboration.

The reaction strategies need to support multi-party negotiation when

a change incurred by one partner affects the related business processes

and services of other partners.

Bibliography

[1] Web Service Description Language (WSDL) 1.1. http://www.w3.org/TR/

2001/NOTE-wsdl-20010315, 2001.

[2] Business Process Execution Language for Web Services Version 1.1. http:

//www.ibm.com/developerworks/library/ws-bpel/, 2003.

[3] Universal Description, Discovery and Integration (UDDI), Version 3, 2004.

[4] Simple Object Access Protocol (SOAP) Version 1.2, 2007.

[5] M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der

Aalst. Worklets: A service-oriented implementation of dynamic flexibility

in workflows. In Proceedings of OTM Conferences (1), pages 291–308,

Montpellier, France, October 29 - November 3 2006.

[6] V. Agarwal and P. Jalote. From specification to adaptation: An integrated

QoS-driven approach for dynamic adaptation of web service compositions.

In Proceedings of the 2010 IEEE International Conference on Web Services

(ICWS 2010), pages 275–282, Miami, Florida, USA, July 5-10 2010.

[7] M. S. Akram and A. Bouguettaya. Managing changes to virtual enterprises

on the semantic web. In Proceedings of the 5th International Conference on

Web Information Systems Engineering (WISE), pages 472–478, Brisbane,

Australia, 2004.

[8] M. S. Akram, B. Medjahed, and A. Bouguettaya. Supporting dynamic

changes in web service environment. In proceedings of 1st International

205

206 Bibliography

Conference on Service Oriented Computing, pages 319–334, Trento, Italy,

2003.

[9] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. Managing the

evolution of service specifications. In Proceedings of the 19th International

Conference on Advanced Information Systems Engineering (CAiSE), pages

359–374, Montpellier, France, 2008.

[10] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. Evolving service

from a contractual perspective. In Proceedings of the 20th International

Conference on Advanced Information Systems Engineering (CAiSE), pages

290–304, Amsterdam, the Netherlands, 2009.

[11] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and imple-

mentation of schema evolution in object-oriented databases. In Proceedings

of the 1987 Annual Conference on Association for Computing Machinery

Special Interest Group on Management of Data, pages 311–322, San Fran-

cisco, California, May 27-29 1987.

[12] B. Benatallah, F. Casati, D. Grigori, H. R. Nezhad, and F. Toumani.

Developing adapters for web services integration. In Proceedings of the

17th International Conference on Advance Information Systems engineer-

ing (CAiSE), pages 415–429, Porto, Portugal, 2005.

[13] B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and

managing web service protocols. Data & Knowledge Engineering, 58:327–

357, 2006.

[14] B. Benatallah, B. Medjahed, A. Bouguettaya, A. K. Elmagarmid, and

J. Beard. Composing and maintaining web-based virtual enterprises. In

Bibliography 207

First VLDB Workshop on Technologies for E-Services, pages 155–174,

2000.

[15] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella.

Automatic service composition based on behavioral descriptions. Int. J.

Cooperative Inf. Syst., 14(4):333–376, 2005.

[16] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are two web

services compatible? In Proceedings of the 5th International Workshop on

Technologies for E-Services, pages 15–28, Toronto, Canada, August 29-30

2004.

[17] A. Brogi and R. Popescu. Automated generation of BPEL adapters. In

Proceedings of the 4th International Conference Service-Oriented Comput-

ing, pages 27–39, Chicago, IL, USA, December 4-7, 2006 2006.

[18] K. Brown and M. Ellis. Best practices for web services versioning. IBM

Technical library, January 30 2004.

[19] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data &

Knowledge Engineering, 24:211–238, 1998.

[20] G. Chafle, P. Doshi, J. Harney, S. Mittal, and B. Srivastava. Improved

adaptation of web service compositions using value of changed information.

In Proceedings of 2007 IEEE International Conference on Web Services,

pages 784–791, Salt Lake City, Utah, USA, July 9-13, 2007 2007.

[21] A. Charfi and M. Mezini. AO4BPEL: An aspect-oriented extension to

BPEL. In World Wide Web, pages 309–344, 2007.

208 Bibliography

[22] J. Choi, Y. Cho, K. Shin, and J. Choi. A context-aware workflow system

for dynamic service adaptation. In Proceedings of the 2007 International

Conference on Computational Science and Its Applications, pages 335–345,

Kuala Lumpur, Malaysia, August 2007.

[23] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC / SIG-

SOFT FSE, pages 109–120, 2001.

[24] R. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint

approach. International Journal of Cooperative Information Systems,

13(4):337–368, 2004.

[25] R. M. Dijkman. A classification of differences between similar business

processes. In Proceedings of the 11th IEEE International Enterprise Dis-

tributed Object Computing Conference, pages 37–50, Annapolis, Maryland,

15-19 October 2007 2007.

[26] C. Dorn and S. Dustdar. Interaction-driven self-adaptation of service en-

sembles. In Proceedings of the 22nd International Conference on Advanced

Information Systems Engineering, pages 393–408, Hammamet, Tunisia,

June 6-9 2010.

[27] M. Dumas, B. Benatallah, and H. R. M. Nezhad. Web service protocols:

Compatibility and adaptation. IEEE Data Eng. Bull., 31(3):40–44, 2008.

[28] M. Dumas, M. Spork, and K. Wang. Adapt or perish: Algebra and visual

notation for service interface adaptation. In Proceedings of the 4th Interna-

tional Conference on Business Process Management, pages 65–80, Vienna,

Austria, 2006.

Bibliography 209

[29] M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede. Process Aware

Information Systems: Bridging People and Software Through Process Tech-

nology. Wiley-Interscience, 2005.

[30] H. Evans and P. Dickman. Drastic: A run-time architecture for evolving,

distributed, persistent systems. In Proceedings of the 11th European Con-

ference on Object-Oriented Programming, pages 243–275, Finland,, June

9C13 1997. Springer.

[31] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification

for web service choreography. In Proceedings of the 2004 IEEE Interna-

tional Conference on Web Services, pages 738–741, San Diego, California,

June 6-9 2004.

[32] D. Frank, L. Fong, and L. Lam. A continuous long running batch orches-

tration model for workflow instance migration. In Proceedings of the 2010

IEEE International Conference on Services Computing, pages 226–233, Mi-

ami, Florida, USA, July 5-10 2010.

[33] S. Gong, J. Xiong, Z. Liu, and C. Zhang. Correcting interaction mismatches

for business processes. In Proceedings of the 2010 IEEE International Con-

ference on Services Computing, pages 457–465, Miami, Florida, USA, July

5-10 2010.

[34] M. Grossniklaus, S. Leone, A. de Spindler, and M. C. Norrie. Dynamic

metamodel extension modules to support adaptive data management. In

Proceedings of the 22nd International Conference on Advanced Information

Systems Engineering, pages 363–377, Hammamet, Tunisia, June 7-9 2010.

[35] A. Hallerbach, T. Bauer, and M. Reichert. Managing process variants in

210 Bibliography

the process life cycle. In Proceedings of the 10th International Conference

on Enterprise Information Systems, pages 154–161, Barcelona, Spain, June

12-16 2008.

[36] A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in business

process models: The provop approach. Software Process: Improvement and

Practice, (Accepted for Publication), 2010.

[37] J. Harney and P. Doshi. Speeding up adaptation of web service compo-

sitions using expiration times. In Proceedings of the 16th International

Conference on World, pages 1023–1032, Banff, Alberta, Canada, May 8-12

2007.

[38] Z. Jarouchech, X. Liu, and S. Smith. Apto: A MDD-based generic frame-

work for context-aware deeply adaptive service-based processes. In Pro-

ceedings of the 2010 IEEE internatinal Conference on Web Services, pages

219–226, Miami, Florida, USA, 2010.

[39] L. Jin, J. Wu, J. Yin, Y. Li, and S. Deng. Improve service interface adap-

tation using sub-ontology extraction. In Proceedings of the 2010 IEEE

International Conference on Services Computing, pages 170–177, Miami,

Florida, USA, July 5-10 2010.

[40] G. Joeris and O. Herzog. Managing evolving workflow specifications. In

Proceedings of the 3rd IFCIS International Conference on Cooperative In-

formation Systems, pages 310–321, New York City, New York, USA, August

20-22 1998.

[41] G. Joeris and O. Herzog. Managing evolving workflow specifications with

schema versioning and migration rules. Technical report, TZI Technical

Bibliography 211

Report, Center for Computing Technologies (TZI), University of Bremen,

1999.

[42] M. B. Juric. A hands-on introduction to BPEL. http://www.oracle.com/

technetwork/articles/matjaz-bpel1-090575.html.

[43] B. Kalali, P. Alencar, and D. Cowan. A service-oriented monitoring reg-

istry. In Proceedings of the 2003 conference of the Centre for Advanced

Studies on Collaborative research (CASCON ’03), pages 107–121, 2003.

[44] P. Kaminski, H. Mller, and M. Litoiu. A design for adaptvie web ser-

vice evolution. In Proceedings of the 2006 international workshop on Self-

adaptation and self-managing systems, pages 86–92, Shanghai, China, 2006.

[45] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. Automated

support for program refactoring using invariants. In Proceedings of the

International Conference on Software Maintenance, pages 736–743, 2001.

[46] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati. An aspect-

oriented framework for service adaptation. In Proceedings of the 2nd Inter-

national Conference on Service-Oriented Computing (ICSOC), pages 15–

26, New York, USA, 2006.

[47] D. König, N. Lohmann, S. Moser, C. Stahl, and K. Wolf. Extending the

compatibility notion for abstract ws-bpel processes. In Proceeding of the

17th international conference on World Wide Web (WWW ’08), pages 785–

794, New York, NY, USA, 2008. ACM.

[48] M. Koning, C. ai Sun, M. Sinnema, and P. Avgeriou. VxBPEL: Supporting

variability for web services in BPEL. Information & Software Technology,

51(2):258–269, 2009.

212 Bibliography

[49] M. Kradolfer and A. Geppert. Dynamic workflow schema evolution based

on workflow type versioning and workflow migration. In Proceedings of the

4th IFCIS International Conference on Cooperative Information Systems,

pages 104–114, Edinburgh, Scotland, September 2-4 1999.

[50] J. Kramer and J. Magee. The evolving philosophers problem: Dy-

namic change management. IEEE Transactions on Software Engineering,

16(11):1293–1306, 1990.

[51] M. Lanza and S. Ducasse. Understanding software evolution using a com-

bination of software visualization and software metrics. in Proceedings of

L’OBJET, 8(1-2):135–149, 2002.

[52] M. M. Lehman. Program evolution. Information Processing & Manage-

ment, 20(1):19–36, 1984.

[53] F. Leymann, D. Roller, and M.-T. Schmidt. Web services and business

process management. IBM Systems Journal, 41(2):198–211, 2002.

[54] C. Li, M. Reichert, and A. Wombacher. Mining process variants: Goals and

issues. In Proceedings of the IEEE International Conference on Services

Computing, pages 573–576, Honolulu, Hawaii, 8-11 July 2008.

[55] C. Li, M. Reichert, and A. Wombacher. On measuring process model simi-

larity based on high-level change operations. In Proceedings of the 27th In-

ternational Conference on Conceptual Modeling, pages 248–264, Barcelona,

Spain, October 20-24 2008.

[56] C. Li, M. Reichert, and A. Wombacher. Discovering reference models

by mining process variants using a heuristic approach. In Proceedings of

Bibliography 213

the 7the International Conference on Business Process Management, pages

344–362, Ulm, Germany, 2009.

[57] X. Liu and A. Bouguettaya. Managing top-down changes in service-

oriented enterprises. In Proceedings of the 2007 IEEE International Con-

ference on Web Services, pages 1072–1079, Salt Lake City, Utah, USA, July

9-13 2007.

[58] X. Liu and A. Bouguettaya. Reacting to functional changes in service-

oriented enterprises. In Proceedings of the 3rd International Conference

on Collaborative Computing: Networking, Applications and Worksharing,

pages 264–270, White Plains, New York, USA, November 12-15 2007.

[59] X. Liu, C. Liu, M. Rege, and A. Bouguettaya. Semantic support for adap-

tive long term composed services. In Proceedings of the 2010 IEEE Inter-

national Conference on Web Services (ICWS 2010), pages 267–274, Miami,

Florida, USA, July 5-10 2010.

[60] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing inter-

acting WS-BPEL processes using flexible model generation. Data Knowl.

Eng., 64(1):38–54, 2008.

[61] A. Martens. Analyzing web service based business processes. In Proceedings

of the 8th International Conference Fundamental Approaches to Software

Engineering, pages 19–33, Edinburgh, UK, 2005.

[62] A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing compatibility

of bpel processes. In Proceedings of the Advanced International Conference

on Telecommunications and International Conference on Internet and Web

214 Bibliography

Applications and Services, page 147, Guadeloupe, French Caribbean, 19-25

February 2006.

[63] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of service protocols

using process algebra and on-the-fly reduction techniques. In Proceedings of

the 6th International Conference on Service-Oriented Computing (ICSOC

2008), pages 84–99, Sydney, Australia, December 1-5 2008.

[64] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transc-

tions on Software Engineering, 30(2):126–139, February 2004.

[65] R. Mietzner and F. Leymann. Generation of BPEL customization pro-

cesses for saas applications from variability descriptors. In Proceedings of

2008 IEEE International Conference on Services Computing, pages 359–

366, Honolulu, Hawaii, US, 8-11 July 2008.

[66] H.-R. Motahari-Nezhad, G. Y. Xu, and B. Benatallah. Protocol-aware

matching of web service interfaces for adapter development. In Proceedings

of the 19th International Conference on World Wide Web, pages 731–740,

Raleigh, North Carolina, USA, April 26-30 2010.

[67] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.

Semi-automated adaptation of service interactions. In Proceedings of the

16th International Conference on World Wide Web, pages 993–1002, Banff,

Alberta, Canada, May 8-12 2007.

[68] E. D. Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou, and K. Pohl. A

journey to highly dynamic, self-adaptive service-based applications. Au-

tom. Softw. Eng., 15(3-4):313–341, 2008.

Bibliography 215

[69] M. P. Papazoglou. What’s in a service? In Proceedings of 1st European

Conference on Software Architecture, pages 11–28, Aranjuez, Spain, 2007.

[70] M. P. Papazoglou. The challenges of service evolution. In Proceedings of the

20th International ConferenceAdvanced Information Systems Engineering,

pages 1–15, Montpellier, France, June 16-20 2008.

[71] M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing.

Communications of the ACM, 46(10):25–28, October 2003.

[72] M. P. Papazoglou and W.-J. van den Heuvel. Service-oriented design and

development methodology. Int. J. Web Eng. Technol., 2(4):412–442, 2006.

[73] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. van der Aalst.

Constraint-based workflow models: Change made easy. In Proceedings of

OTM Conferences (1), pages 77–94, Vilamoura, Portugal, November 25-30

2007.

[74] J. Ponge, B. Benatallah, F. Casati, and F. Toumani. Fine-grained com-

patibility and replaceability analysis of timed web service protocols. In

Proceedings of the 26th International Conference on Conceptual Modeling

(ER 2007), pages 599–614, Auckland, New Zealand, November 5-9 2007.

[75] S. Ponnekanti and A. Fox. Interoperability among independently evolving

web services. In Proceedings of the 2004 ACM/IFIP/USENIX Interna-

tional Middleware Conference, pages 331–351, Toronto, Canada, October

18-20, 2004 2004.

[76] V. Rajlich. A model for change propagation based on graph rewriting. In

Proceedings of International Conference on Software Maintenance, pages

84–91, Bari, Italy, 1-3 October 1997.

216 Bibliography

[77] M. Reichert and P. Dadam. Adeptflex-supporting dynamic changes of

workflows without losing control. J. Intell. Inf. Syst., 10(2):93–129, 1998.

[78] M. Reichert, S. Rinderle, and P. Dadam. On the common support of

workflow type and instance changes under correctness constraints. In Pro-

ceedings of the 2003 OTM Confederated International Conferences,CoopIS,

DOA, and ODBASE, pages 407–425, Catania, Sicily, Italy, November 3-7

2003.

[79] S. Rinderle, B. Weber, M. Reichert, and W. Wild. Integrating process

learning and process evolution - a semantics based approach. In Proceedings

of the 3rd International Conference (BPM 2005), pages 252–267, Nancy,

France, September 5-8 2005.

[80] S. Rinderle, A. Wombacher, and M. Reichert. Evolution of process chore-

ographies in dychor. In Proceedings of the 2006 OTM Confederated In-

ternational Conferences on CoopIS, DOA, GADA, and ODBASE, pages

273–290, Montpellier, France, October 29 - November 3 2006.

[81] M. L. Rosa, J. Lux, S. Seidel, M. Dumas, and A. H. M. ter Hofstede.

Questionnaire-driven configuration of reference process models. In Proceed-

ings of the 19th International Conference on Advanced Information Systems

Engineering, pages 424–438, Trondheim, Norway, June 11-15 2007.

[82] M. Rosemann and W. M. P. van der Aalst. A configurable reference mod-

elling language. Inf. Syst., 32(1):1–23, 2007.

[83] S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. Saint-Paul. Sup-

porting the dynamic evolution of web service protocols in service-oriented

architectures. ACM Transactions on the Web, 2(2):Article 13, April 2008.

Bibliography 217

[84] S. H. Ryu, R. Saint-Paul, B. Benatallah, and F. Casati. A framework

for managing the evolution of business protocols in web services. In

Proceedings of the 4th Asia-Pacific Conference on Conceptual Modelling

(APCCM2007), pages 49–59, Ballarat, Victoria, Australia, January 30 -

February 2 2007.

[85] S. W. Sadiq. Handling dynamic schema change in process models. In

Proceedings of the 2000 Australasian Database Conference, pages 120–126,

2000.

[86] S. W. Sadiq, M. E. Orlowska, and W. Sadiq. Specification and validation of

process constraints for flexible workflows. Inf. Syst., 30(5):349–378, 2005.

[87] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web

services using process algebra. In Proceedings of the IEEE International

Conference on Web Services (ICWS’04), pages 43–52, San Diego, Califor-

nia,USA, June 6-9 2004.

[88] H. Schonenberg, B. Weber, B. F. van Dongen, and W. M. P. van der Aalst.

Supporting flexible processes through recommendations based on history.

In Proceedings of the 6th International Conference on Business Process

Management, pages 51–66, Milan, Italy, 2008.

[89] R. Seguel, R. Eshuis, and P. W. P. J. Grefen. Generating minimal protocol

adaptors for loosely coupled services. In Proceedings of IEEE International

Conference on Web Services, pages 417–424, Miami, Florida, USA, July

5-10 2010.

[90] E. Serral, P. Valderas, and V. Pelechano. Supporting runtime system evo-

lution to adapt to user behaviour. In Proceedings of the 22nd International

218 Bibliography

Conference on Advanced Information Systems Engineering, pages 378–392,

Hammamet, Tunisia, June 7-9 2010.

[91] Z. Shan, A. Kumar, and P. W. P. J. Grefen. Towards integrated service

adaptation. In Proceedings of the IEEE International Conference on Web

Services, pages 385–392, Miami, Florida, USA, July 5-10 2010.

[92] A. H. Skarra and S. B. Zdonik. The management of changing types in an

object-oriented database. In Proceedings of the 1986 conference on Object-

oriented programming systems, languages, and applications, pages 483 –

495, 1986.

[93] H. Skogsrud, B. Benatallah, F. Casati, and F. Toumani. Managing impacts

of security protocol changes in service-oriented applications. In Proceedings

of the 29th International Conference on Software Engineering (ICSE 2007),

pages 468–477, Minneapolis, MN, USA, May 20-26 2007.

[94] W. Song, X. Ma, S. Cheung, H. Hu, and J. Lü. Preserving data flow

correctness in process adaptation. In Proceedings of the 2010 IEEE Inter-

national Conference on Services Computing, pages 9–16, Miami, Florida,

USA, July 5-10 2010.

[95] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic change management

by distributed graph transformation: Towards configurable distributed sys-

tems. In Proceedings of the 6th International Workshop on Theory and Ap-

plication of Graph Transformations, pages 179–193, Paderborn, Germany,

November 16-20 1998.

[96] E. Toch, A. Gal, and D. Dori. Automatically grounding semantically-

enriched conceptual models to concrete web services. In Proceedings of

Bibliography 219

the 24th International Conference on Conceptual Modeling, pages 304–319,

Klagenfurt, Austria, 2005.

[97] W. M. P. van der Aalst and T. Basten. Inheritance of workflows: an

approach to tackling problems related to change. Theor. Comput. Sci.,

270(1-2):125–203, 2002.

[98] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter Hofst-

ede, M. L. Rosa, and J. Mendling. Correctness-preserving configuration

of business process models. In Proceedings of the 11th International Con-

ference on Fundamental Approaches to Software Engineering, pages 46–61,

Budapest, Hungary, 2008.

[99] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another

workflow language. Inf. Syst., 30(4):245–275, 2005.

[100] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.

Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51,

2003.

[101] W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: a

new paradigm for business process support. Data Knowl. Eng., 53(2):129–

162, 2005.

[102] Y. Wang, J. Yang, and W. Zhao. Change impact analysis for service based

business processes. In IEEE International Conference on Service-Oriented

Computing and Applications, SOCA 2010, 13-15 December 2010, Perth,

Australia, pages 1–8, 2010.

[103] Y. Wang, J. Yang, and W. Zhao. Managing changes for service based busi-

ness processes. In the 5th IEEE Asia-Pacific Services Computing Confer-

220 Bibliography

ence, APSCC 2010, 6-10 December 2010, Huangzhou, China, pages 75–82,

2010.

[104] B. Weber, M. R. Reichert, and S. Rinderle-Ma. Change patterns and

change support features - enhancing flexibility in process- aware informa-

tion systems. Data and Knowledge Engineering, 66(3):438–466, May 2008.

[105] B. Weber, S. Rinderle, and M. Reichert. Change patterns and change sup-

port features in process-aware information systems. In Proceedings of the

19th International Conference on Advanced Information Systems Engineer-

ing, pages 574–588, Trondheim, Norway, June 2007.

[106] B. Weber, S. Sadiq, and M. Reichert. Beyond rigidity - dynamic process

lifecycle support. Computer Science - R&D, 23(2):47–65, 2009.

[107] M. Weidlich, M. Weske, and J. Mendling. Change propagation in process

models using behavioural profiles. In Proceedings of the 2009 IEEE Inter-

national Conference on Services Computing, pages 33–40, Bangalore, India,

21-25 September 2009.

[108] A. Wombacher. Alignment of choreography changes in BPEL processes. In

Proceedings of the International Conference on Services Computing (SCC),

pages 1–8, Bangalore, India, 2009.

[109] A. Wombacher, P. Fankhauser, and E. J. Neuhold. Transforming BPEL

into annotated deterministic finite state automata for service discovery. In

Proceedings of the IEEE International Conference on Web Services, pages

316–323, San Diego, California, USA, June 6-9 2004.

[110] Y. Wu and P. Doshi. Regret-based decentralized adaptation of web pro-

cesses with coordination constraints. In Proceedings of 2007 IEEE Interna-

Bibliography 221

tional Conference on Services Computing, pages 262–269, Salt Lake City,

Utah, USA, 9-13 July 2007 2007.

[111] Y. Wu and P. Doshi. Making BPEL flexible: adapting in the context

of coordination constraints using WS-BPEL. In Proceedings of the 17th

International Conference on World Wide Web, pages 1199–1200, Beijing,

China, April 21-25 2008.

[112] C. Yu and L. Popa. Semantic adaptation of schema mappings when

schemas evovle. In Proceedings of the 31st VLDB Conference, pages 1006–

1017, Trondheim, Norway, 2005.

[113] L. Zeng, B. Benatallah, G. Xie, and H. Lei. Semantic service mediation. In

Proceedings of the 4th International Conference on Service-Oriented Com-

puting, pages 490–495, Chicago, IL, USA, December 4-7 2006.

[114] L. Zeng, H. Lei, J.-J. Jeng, J.-Y. Chung, and B. Benatallah. Policy-driven

exception-management for composite web services. In Proceedings of the

7th IEEE International Conference on E-Commerce Technology, pages 355–

363, München, Germany, 19-22 July 2005.

