ADVANCED MONTE CARLO METHODS FOR PRICING
BERMUDAN OPTIONS AND THEIR APPLICATIONS IN REAL

OPTIONS ANALYSIS

JIE ZHU

>
-
oy

MACQUARIE
University

Principal Supervisor
Professor Pavel Shevchenko
Associate Supervisor
Professor Tak Kuen (Ken) Siu

Submitted to the Department of Applied Finance and Actuarial Studies

in fulfilment of the requirement for the degree of
Master of Research

at the
Faculty of Business and Economics

Macquarie University

October 2017

Jie Zhu: Advanced Monte Carlo Methods for Pricing Bermudan Options and Their
Applications in Real Options Analysis, © October 2017

ABSTRACT

Pricing options with early exercise features is a challenging problem in mathematical fi-
nance. There is no general closed-form solutions available. We have implemented three
established Monte Carlo methods in R for pricing Bermudan options: the random tree
method, the stochastic mesh method and the least-squares Monte Carlo method (LSMC).
We have also adopted the expectation-maximization (EM) control algorithm recently pro-
posed in the literature and adapted this method for pricing Bermudan options. The nu-
merical analyses find LSMC has the best performance; and have been extended to the
improvements on LSMC via considering regression schemes such as piecewise linear re-
gression and smoothing splines, random number generating process using low-discrepancy
sequences and the usage of European options as control variates. The algorithm has also
been applied to study a standard real option problem, the option to delay an investment
project. The implemented algorithm is a powerful tool to solve many important applica-
tion problems of decision under uncertainty in realistic settings that can be considered in

further research.

Keywords: American option, real option, EM algorithm, Monte Carlo, least-squares Monte

Carlo, option pricing, optimal stopping, dynamic programming, stochastic control

1ii

ACKNOWLEDGEMENTS

The completion of this thesis would not be possible without the support from many people.
Among them, I must express my greatest appreciation to my supervisors Professor Pavel
Shevchenko and Professor Ken Siu, whose guidance was invaluable throughout the devel-
opment of this research project since late 2016. I truly cannot thank enough for their effort
and time put into the reviewing and editing of this thesis. I also appreciate department ad-
visor Shauna Ferris, who gave me many advices from the beginning of Master of Research
program. I would also like to thank Professor Thomas Smith for his useful comments on
my research frontier report. The administration staff at the Department of Applied Fi-
nance and Actuarial Studies has always been courteous and helpful. I would like to thank
especially to Lin Bai and Agnieszka Baginska. Finally, I must thank my family for all their

support, without them, I can hardly imagine this project could be accomplished.

Jie Zhu

CONTENTS

1 INTRODUCTION

2 MONTE CARLO METHODS FOR OPTION PRICING

2.1 Basic Concepts for Pricing Options
2.2 Why Monte Carlo? e e

2.3 Problem Formulation.

2.4 Existing Monte Carlo Methods for Pricing American Options

24.1
2.4.2
2.4.3
2.4.4
2.4.5

Stratified Sampling Methods
Random Tree and Stochastic Mesh Methods
Regression Based Methods
Stochastic Convex Switching System

Expectation-Maximization Control Algorithm

2.5 Summary e e e e e e e e e e e

3 PRICING BERMUDAN OPTIONS

3.1 Problem Formulation.

3.2 Least-Squares Monte Carlo Approximation

3.3 Improvements on the Least-Squares Monte Carlo Method

3.3.1
3.3.2
3.3.3

Regression Schemes,
Random Number Generation

Control Variates e

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

4.1 Single-Asset Bermudan Options

4.1.1
4.1.2
4.1.3
4.1.4

The Random Tree and StochasticMesh
LSMC and EM-C Algorithm
The Accuracy and Convergence of LSMC in a Single Dimension . . .
LSMC and Tsitsiklis and Van Roy (2001)

11
11
12
14
16
17
19

20
20
21
24
24
25
27

29
30
30
32
32
38

vii

viii

CONTENTS

4.1.5 Out-of-Sample Performance
4.2 Multi-Asset Bermudan Options

4.2.1 Comparison of LSMC and Random Tree

4.2.2 The Accuracy and Convergence of LSMC in High Dimensions

4.2.3 Bermudan Options on the Geometric Average of Five Assets
4.3 Approximate American Options with Bermudan Options

4.4 SUMMATY o i o e

5 LSMC FOR REAL OPTIONS ANALYSIS
5.1 Valueof WaitingtoInvest
5.2 Case Study: Mining Technology
5.3 Options to Delay on Two Factors

5.4 Summary e e e e e e e e e e e
6 CONCLUSIONS AND DIRECTIONS OF FUTURE RESEARCH

A APPENDIX: SIMULATION RESULTS
A.1 Simulation Results for Bermudan Calls on a Single Asset

A.2 Simulation Results for Bermudan Calls on Multiple Assets

B APPENDIX: PRICING ALGORITHMS
B.1 Pricing Algorithms on a Single Asset
B.2 Pricing Algorithmson Two Assets
B.3 Pricing Algorithmson Five Assets

BIBLIOGRAPHY

49
49
51
54
55

56

57
57
65

72
72
85
89

95

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12

Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18

IMlustration of a two dimensional tree 8
Illustration of arandomtree 12
Illustration of a stochasticmesh 13
Example of piecewise linear regression 25

Comparison of random tree and stochastic mesh for a Bermudan call 31

Comparison of the random tree and stochastic mesh method for a

Bermudan call with different spot prices 31
Comparison of LSMC and EM-C algorithm for a Bermudan call . . . 33
Comparison of LSMC and EM-C algorithm for a Bermudan call

with different spot prices 33
Accuracy of LSMC with different regression polynomials 34
Accuracy of LSMC with nonlinear regression. 35
Fitting comparison between nonlinear regression 35
Convergence of LSMC with low-discrepancy sequences 37
Comparison of LSMC with and without control variates 37
Comparison of LSMC and Tsitsiklis and Van Roy (2001) 39
Comparison of in-sample and out-of-sample LSMC estimation ... 39

Comparison of the random tree and LSMC for a Bermudan max-

calloption e 42
Accuracy of LSMC with different regression polynomials 44
Accuracy of LSMC with nonlinear regression. 45
Convergence of LSMC with low-discrepancy sequences 46
Convergence of the Bermuda to American 47
Comparison of the convergence of American call and put options . . 47
Comparison of LSMC', Barone Adesi and Whaley (1987)? and bino-

mial tree® 48

ix

Figure 5.1

Figure 5.2
Figure 5.3

Comparison of project value between LSMC', McDonald and Siegel

(19862 and DCF® 52
The optimal investment price and the point of tangency 53
LSMC estimation of the optimal investment price 55

LIST OF TABLES

Table 4.1
Table 4.2
Table 4.3
Table A.1
Table A.2
Table A.3

Table A.4
Table A.5

Table A.6

Table A.7

Table A.8

Table A.9

Table A.10

Table A.11

Table A.12

Specifications for Bermudan call on a single stocks 30
Specifications for Bermudan call on two stocks 41
Specifications for Bermudan call on five stocks 44
Comparison of LSMC and EM-C algorithm for a Bermudan call . . . 57

Comparison of random tree and stochastic mesh for a Bermudan call 58
Convergence of LSMC with low-discrepancy sequences in a single
dimension e e 59
Accuracy of LSMC with nonlinear regression in a single dimension . 61
Accuracy of LSMC with different regression polynomials in a single
dimension e e 62
Comparison of LSMC with and without control variates 63
Comparison of LSMC with restricted and unrestricted sample paths 64
Accuracy of LSMC with different regression polynomials for pricing
a Bermudan call on the geometric average of five assets 65
Comparison of the random tree and LSMC for a Bermudan max-
calloption 67
Accuracy of LSMC with nonlinear regression for pricing a Bermu-
dan call on the geometric average of fiveassets 68
Convergence of LSMC with low-discrepancy sequences for pricing
a Bermudan call on the geometric average of five assets 69
Convergence of the Bermuda to American for pricing a Bermudan

call on the geometric average of fiveassets 71

1 INTRODUCTION

An option is a contract that gives the right but not an obligation to buy (call) or sell (put)
the contract underlying asset at an agreed price at a predetermined future time. It is an
essential financial instrument that facilitates the exchange of risks between two parties.
Determination of a fair price of an option is a critical and challenging problem, especially
when the market is incomplete where an option’s price is not uniquely determined.

There are two basic types of options, namely, European options, where the option can
only be exercised at the contract expiration date T; and American options, which can be
exercised at any time before the expiry. In addition, there are many exotic options such
as Barrier, Asian, Parisian and compound options, to name a few, but these will not be
considered in this thesis. The classical assumption for pricing options is that the option

underlying asset, S;, follows a risk-neutral process over time t,0 < ¢ < T,
dSt/St = (r—q)dt—kvdWh (1.1)

where r is the annualised continuously compounded risk-free interest rate, g is the an-
nualised continuous dividend yield, ¢ is the annualised volatility of S; and {W; }o<¢<T is
a standard Brownian motion under a risk-neutral probability measure Q. Then, the fair
price of an option is calculated as risk neutral expectation under the process (1.1) of the
discounted option payoff. For more general stochastic processes, the existence of Q is es-
sentially equivalent to no arbitrage opportunity in the market; moreover, it is unique if the
market is complete (Joshi, 2008). This thesis will focus on option pricing problems based
on process (1.1).

The fundamental framework in Black and Scholes (1973) and its extension to dividend-
paying stocks in Merton (1973) provide closed-form solution for the price of a European
call options. However, for American options on a dividend-paying stock, we do not have
knowledge about when is the optimal time to exercise the option in advance and a general
closed-form solution is absent. In spite of this, there are a number of efficient numerical

pricing techniques. The finite difference method applied to Black-Scholes partial differen-

INTRODUCTION

tial equation (corresponding to the process (1.1)) is the most common approach (Brennan
and Schwartz (1978)). To achieve an accurate pricing, a fine enumeration of possible stock
values and time intervals is necessary. The second popular approach is the binomial tree
due to Cox, Ross, and Rubinstein (1979), where we partition the time into pieces, generate
binomial tree till maturity and find the optimal exercise frontier (i.e., level of the underly-
ing stock) backward in time through the tree starting from maturity.

Semi-analytic approximations for American option prices have also been well stud-
ied. Roll (1977) approximates American calls on dividend-paying stocks at the ex-dividend
date. Johnson (1983) provides a semi-analytical approximation for pricing American puts
without dividend. Geske and Johnson (1984) derives an approximation based on the com-
pound option in Geske (1979), where the payoff of an American put is duplicated by an
infinite series of risk-free bonds. Although Geske and Johnson (1984) is more efficient
compared to the finite difference method, as the number of underlying assets grows, it be-
comes difficult to evaluate the required cumulative multivariate normal density functions.
Carr (1998) estimates American option prices based on the randomization of the maturity
date. The method provides accurate price for a single-asset American option by setting the
maturity as a random variable following a gamma distribution.

Barone Adesi and Whaley (1987) proposes a quadratic approximation technique, which
is proved to be efficient for pricing short dated American options (i.e., the maturity is less
than one year), but can provide poor estimates beyond one year.

It is also possible to approximate American option prices via quadrature methods
(e.g., Andricopoulos et al. (2003) and Sullivan (2000)). Anson, Thomas, and Luk (2012)
shows that quadrature methods are 1000 times faster than using a multinomial tree for
a given level of accuracy. In Luo and Shevchenko (2014), authors explored the usage of
Gauss-Hermite quadrature for pricing exotic options. The quadrature achieves superior
performance by overcoming the distribution error and non-linearity error in the binomial
tree method and finite difference method. However, quadrature methods are limited to low-
dimensional pricing problems, and require knowledge of the underlying asset transition
density in closed-form.

For perpetual American options, several closed-form solutions for option prices are

discussed in Mordecki (2002), Zhang and Guo (2004) and Gapeev and Rodosthenous (2014).

INTRODUCTION

Nonetheless, there is more than one way in which asset dynamics can depart from the
assumptions of Black-Scholes. In particular, stocks tend to have stochastic volatility and
interest rate tends to be stochastic. These extensions will not be discussed in this thesis
though our aim to find a flexible Monte Carlo method for pricing early exercise options
includes flexibility in handling different underlying stochastic models.

In this thesis, we investigate Monte Carlo methods for pricing multi-asset options
with early exercise features, where assets follow the risk-neutral process in equation (1.1).
We compare different Monte Carlo methods for pricing options up to five assets. We test
whether these methods represent a better alternative comparing to the binomial tree
method.

For multi-asset options, especially when the number of underlying assets is more
than three, it is necessary to use Monte Carlo methods (Kim et al. (2016)), for which the
convergence rate is independent of the number of dimensions. The usage of Monte Carlo
methods for option pricing can be dated back to Boyle (1977), where the underlying asset
paths are simulated forward in time from valuation date till maturity to price a European
option. However, the implementation in the context of options with early exercise features
is not trivial. The main complication arises from the fact that the optimal exercise strat-
egy is not known in advance. Bossaerts (1989) drafts the framework to use Monte Carlo
methods for pricing American options. Nonetheless, not until Tilley (1993), the obstacle
was resolved for research into estimating the optimal exercise strategy. Since then, there
has been progress and a number of approximation techniques have been developed. The
least-squares Monte Carlo method (LSMC) in Longstaff and Schwartz (2001) has been
recognized to be efficient and easy to implement, but it is subject to limitations in two
directions. First, the choice of regression scheme complexity in Longstaff and Schwartz
(2001) is indecisive. Second, and perhaps more importantly, the estimator is biased and a
large number of simulations is necessary to reduce the bias. For this reason, using Monte
Carlo methods for pricing single-asset American options is still computationally expensive.

Alternative approaches have been developed to overcome these limitations such as the
optimal stochastic convex switching system in Carmona, Hinz, and Yap (2007), however,
it requires more computation time compared to Longstaff and Schwartz (2001). Recently,
Kou, Peng, and Xu (2016) suggested the expectation-maximization control algorithm (EM-

C). It converts a stochastic control problem into a parametric form and achieves an optimal

INTRODUCTION

solution via a procedure similar to the standard EM algorithm due to Dempster, Laird, and
Rubin (1977). In this thesis, we adopt the algorithm for pricing Bermudan options. To our
best knowledge, there is no study in the literature regarding using the EM-C algorithm
for valuation of options with early exercise features.

When choosing a benchmark for comparing Monte Carlo methods, an important crite-
rion was that we could compare the result with the binomial tree method. Hence, for high
dimensional cases, the underlying asset has been assumed to be the geometric average of
five stocks, so that the pricing problem can be reduced to a single dimension (Kemna and
Vorst (1990)). Another consideration for implementation was the convergence of Monte
Carlo methods. Rather than using American options, we chose Bermudan options, where
the number of exercise opportunities is finite. Small number of early exercise opportunities
allows us to achieve an accurate estimator within seconds using up to 20,000 simulated
stock price paths.

Beyond the actual comparison, we are interested in the improvement on LSMC. To
investigate this, we study three techniques. The first is a comparison of different regres-
sion schemes including defined polynomials, piecewise linear regression and smoothing
splines. The second is based on different random number generating processes (e.g., using
low-discrepancy sequences). The last technique introduces European options as control
variates to correct the simulation error.

From the simulation results, we conclude that LSMC is the most efficient Monte Carlo
method for pricing Bermudan options in terms of computation time and accuracy. The use
of control variates significantly improves the estimation accuracy. However, there is no
optimal choice of regression scheme that provides superior results, nor the usage of low-
discrepancy sequences consistently improves the convergence rate of the estimation.

Using LSMC, we extend the analysis to the option to delay a project (Copeland and An-
tikarov (2001)). Conventionally, an investment project with the option to delay is priced via
the discounted net cash flow method (DCF) with the assistance of a binomial decision tree
(Brandéo, Dyer, and Hahn (2005)). However, the method is not viable in high dimensional
problems. A more serious limitation of DCF is that the extra value from the uncertainty
about the net cash flows from a project is not captured (Trigeorgis (1996)). The usage of
LSMC for pricing projects with real options in the context of research and development

(R&D) project is discussed in Biancardi and Villani (2014). Biancardi and Villani (2016)

INTRODUCTION

applies LSMC by transforming a capital budgeting problem into a compound American
exchange option. Our study, on the other hand, uses LSMC to approximate future project
values directly and decide whether delaying a project is worthwhile. We find the LSMC
estimator is close to the analytical solution suggested by McDonald and Siegel (1986) in a
single dimensional case. Further application to a two dimensional project is also investi-
gated.

The rest of the thesis is organized as follows: the second chapter introduces option
pricing theories and Monte Carlo methods for pricing options with early exercise features;
Chapter 3 describes the algorithm and implementation details for pricing Bermudan op-
tions; Chapter 4 presents the simulation results; Chapter 5 presents and discusses the
results for pricing the option to delay; and Chapter 6 concludes with final remarks and
brief discussion of future research directions. Appendix A contains the detailed simulation

results and Appendix B presents algorithms used in this thesis.

2 MONTE CARLO METHODS FOR OPTION PRICING

This chapter briefly reviews option pricing theories and Monte Carlo methods for pricing
options with early exercise features. For a general introduction to mathematical finance
see, among others, Wilmott, Dewynne, and Howison (1993), Joshi (2008) or Hull (2016).

2.1 BASIC CONCEPTS FOR PRICING OPTIONS

For an American option whose underlying asset is S;, and strike is K, the payoff function
at time +,0 < t < T can be written as 1(S;) = max(¢(S; — K),0), where ¢ = 1 for a call
option and ¢ = —1 for a put option. For European options, this payoff can be paid at expiry
date T only.

In their seminal work, Black and Scholes (1973) establishes the pricing framework
for European options under the assumption that the contract underlying asset price, S;,

movements follow the stochastic differential equation,
dSt/St =]ldt + Uth,

where yu is the expected instantaneous price change of the asset, ¢ is the volatility param-
eter and {W; }o<;<7 is a Brownian motion. If the asset is a stock, the original framework
assumes no dividend on the stock. Merton (1973) extends the framework to allow a con-
stant continuous dividend payout 4.

Let V(S,t) be a price of the option at time ¢+ when the underlying asset value is S.
Then a riskless portfolio IT can be constructed using an option V (S,) and the number of

units, A, of the underlying asset S as

I1=V(S,t) — AS.

2.1 BASIC CONCEPTS FOR PRICING OPTIONS

Then, the price of this European option through time ¢ is governed by the Black-Scholes
partial differential equation,

Vv vV 1 %

J i

—+(r—9)Ssz+ 3

o ag T30S 5 —1V =0, (2.1)

with final condition, V(S,T) = h(S). The closed-form solution of equation (2.1) gives the
option price, V(S,t), at any time f when underlying asset value is S. Equivalently, we can

write the European option price as expectation of the discounted payoff at the expiry date,
V(S0,0) = EJ[e "Th(Sr)], (2.2)

where the expectation lEf)Q[] is taken with respect to the asset price process under the

unique risk-neutral probability measure Q,
dSt/St = (r—q)dt—I—Uth, (23)

and information at time t = 0.
For American options, the pricing requires the solution of the following form of varia-
tional equality (Wilmott, Dewynne, and Howison (1993)),
) 1% ov. 1 , ,0°V
This means, decisions have to be made at every point in time between exercising the option
Gf V(S t) < h(S¢)) and holding it otherwise. Assuming the asset S; follows the risk-neutral
process in equation (2.3), the value, at time t = 0, of the American option can be computed

as

V(S0,0) = sup EQle""h(S.)], (2.4)

0<t<T
where the maximum is taken over expectation of discounted payoff at every stopping time.
It should be noted that a call on non-dividend-paying stock is always worth more than its
intrinsic value max(S; — K, 0) before the expiry date, and there is no extra value from early

exercise opportunities.

MONTE CARLO METHODS FOR OPTION PRICING

2.2 WHY MONTE CARLO?

Monte Carlo methods are preferred in high dimensional problems or when the underlying
process or payoff are complicated. Although constructing a multi dimensional binomial
tree is possible (Boyle, Evnine, and Gibbs (1989)), it is inefficient. For example, if there are
two underlying assets (S; and S;), at each node of a two dimensional tree we will have four

combinations of price movements:

S gugd
SYSy— 4 \SOSO L2
5,5, 1°2
0 dd
SISZ
d_.d
1Sy -

Figure 2.1: Illustration of a two dimensional tree

where S indicates an upward movement, S? is a downward movement and S? is the spot
price for the assets.

Figure 2.1 demonstrates that the number of nodes grows exponentially at the rate of
O[2%"), where 1 is the number of time steps, d = 2 is the dimension of underlying assets.
In contrast, for Monte Carlo methods, the computation effort, O[dM], is linearly dependent
on the dimension and the number of simulation paths, M.

The second example demonstrates that Monte Carlo methods are more flexible com-
pared to the binomial tree even in a two dimensional case. Illustrated by Joshi (2008),
suppose a Bermudan option on an asset S which has a time-dependent volatility structure
(07), that is, the stock price volatility is stochastic. Consider a two-step standard binomial
tree constructed for S;, the asset price at time ¢, following a geometric Brownian model

(Cox, Ross, and Rubinstein (1979)), and the parameters are adjusted so that there is equal

2.3 PROBLEM FORMULATION

probability of an up-move and a down-move in the first time step as well as the second
time step.
Then, after an up-move in the first step and a down-move in the second step, we get

S"P — Gpel?r—(oi+03) /2) At (01 —2) VAL

4

where S is the initial stock price. When a down-move followed by an up-move, we get

SdOWn — Soe(zy—(g]z“r(fzz)/Z)At-i—(ﬁz—(fl)m‘

The two terms will be equal if and only if the volatility is not time-dependent (i.e., 07 = 0»).
If the asset S is determined by a single factor, we are able to adjust the time step to
equal the two terms in order to recombine the two nodes, whereas for multiple assets, the
recombining feature of the binomial tree is destroyed. The limitations in binomial tree

methods lead us to consider the more flexible Monte Carlo methods.

2.3 PROBLEM FORMULATION

The application of Monte Carlo methods to European options is straightforward. We wish
to find the expectation in equation (2.2) and know the stock prices follow the process in
equation (2.3). Denote S; ,, as simulated asset price at time t for the m'" simulated path.
The procedure is to simulate dW; by drawing random numbers from the standard normal
distribution N(0,1), plug these into equation (2.3), take St ,, for m'™ draw, and then com-
pute e "Th(St ;). We repeat this, keep the record of all e~"Th (St ,,,), and the average of them

converges to the desired expectation as the number of paths M increases without bias,

M
EQ[e""h(S Z e Th(Stm), (2.5)

where fi = & YM e~"Th(St,,) is the Monte Carlo estimator. The order of error is O[M~1/2],
which means we need large number of simulations to achieve an accurate estimator for
U= lEE)Q [e="Th(ST)] . Under the central limit theorem, as M — o, we can show that the fi

is distributed approximately from normal distribution as

10

MONTE CARLO METHODS FOR OPTION PRICING

where s2 can be estimated as
M T
§ (ST~

We refer the quantity v/$2/ M as the standard error of the Monte Carlo estimator (Glasser-
man (2013)). The error bound of the Monte Carlo simulations is random rather than deter-
ministic (Gentle (2013)).

However, for American type contracts, the unknown optimal exercise time compli-
cates the application of Monte Carlo methods. We have to formulate these problems as
optimal stopping problems (Biduerle and Rieder (2011), Chow and Robbins (1963), and
Wald and Wolfowitz (1949)). These problems can be solved via dynamic programming tech-
niques (Bellman (1952) and Bellman (1954)) or the martingale stopping theorem (Williams
(1991)).

In the context of optimal stopping problems, we assume the option price
V(SQ, 0) < o0.

Then, pricing options with early exercise features is equivalent to finding the optimal stop-

ping time T and the value function V(S,0) in

V(S0,0) = sup ER[e""h(S:)),
0<t<T
where notations are specified in (2.4).
Bellman (1954) derived an iterative procedure for finding the optimal stopping time
T called value iteration in a continuous time framework. Chow and Robbins, 1963 extends
this framework to a discrete and finite horizon. Suppose {;,i = 0,1,..., N, where {p = 0 <

h <t <.--<ty=T,the procedure is outlined as follows:

1. Ati = N, set the option value function V (S, tn) = h(S;,) for terminal state S;,,.

2.4 EXISTING MONTE CARLO METHODS FOR PRICING AMERICAN OPTIONS

2. Fori=N—-1,N—-2,...,0, the value function is calculated as
V(Sti, ti) = max {h(St,),]ES [E_rAtV(StiH, tl‘+1)] }, (26)

where At = t;,1 — t;, and expectation is taken with respect to information available

at time ¢;.

3. The solution for optimal stopping time is found by:
T = min{#;|V (S, t;) = h(Sy,) }.

The challenge in this procedure is the estimation of the expected holding value H(S;,, t;) =
IEg[e_rAtV(Sti .1 tiy1)] in equation (2.6) before the expiry. In the next section, we review
three major categories of Monte Carlo methods for approximating H(S;,t;) under this

backward dynamic programming framework.

2.4 EXISTING MONTE CARLO METHODS FOR PRICING AMERICAN OPTIONS
Following Stentoft (2013), we classify Monte Carlo methods for pricing American options
into:

¢ stratified sampling methods;

¢ random tree and stochastic mesh methods; and

* regression based methods.

2.4.1 Stratified Sampling Methods

Tilley (1993)’s bundling algorithm is the first rigorous application of Monte Carlo method
for pricing American options, the algorithm approximates the expected holding value H(S;, t)
by grouping stock paths according to their values. It provides an estimator that is close to
the value from the binomial tree method in a single dimension. However, Tilley (1993) does

not address how the method can be extended to high dimensional problems. Barraquand

11

12

MONTE CARLO METHODS FOR OPTION PRICING

and Martineau (1995)’s stratified sampling method extends Tilley (1993)’s algorithm to
multivariate American options. The paper shows results for options on up to 10 under-
lying assets. These early attempts successfully approximate the expected holding value,

nonetheless, the resulting estimators are subject to bias, which is left untreated.

2.4.2 Random Tree and Stochastic Mesh Methods

Broadie and Glasserman (1997) argues, although Monte Carlo methods cannot produce
an unbiased estimator for American option prices, boundaries can be computed for the es-
timator. It presents how to use a non-recombining random tree for pricing early exercise
opportunities with an upper and a lower bound. Here, the expected holding value is calcu-

lated as the average of simulated paths at each node of the tree illustrated in Figure 2.2,

St421

1/2

Si+1,1 Si122
$S;
&
1/2
St41,2 St123

&A

Si124

Figure 2.2: Illustration of a random tree

for example, the expected holding value at node S, 1 are calculated as
1 2
H(SH_],], t+ 1) ~ 5 E V(St+2,i, t+ 2)6_7At,

i=1

where At is the interval between t and t + 1 times. This approach provides an upper esti-

mator of the option value. The lower estimator, on the other hand, is computed by selecting

2.4 EXISTING MONTE CARLO METHODS FOR PRICING AMERICAN OPTIONS

part of the simulated paths to approximate the holding value. The interval between two
boundaries is narrowing as we increasing the number of simulated paths at each node of
a random tree.

A related method for calculating the upper bound is the duality method due to Rogers
(2002), where a tighter bound can be achieved via correcting the foresight-bias (i.e., know-
ing all possible paths over the simulation horizon).

The random tree method is more efficient than the non-recombining binomial tree in
valuing Bermudan options, since it does not require partitioning the time into fine pieces in
the case of simple processes where simulation over finite time interval can be done without
discretization error. However, the computation effort still grows exponentially with the
number of exercise opportunities.

Inspired by Rust (1997), Broadie and Glasserman (2004) introduce the stochastic
mesh method. The algorithm is based on a simulated mesh as illustrated in Figure 2.3

to calculate the expected holding value:

S13 So3 S33
So S12 Sop S32
S11 So1 S31

Figure 2.3: Illustration of a stochastic mesh

for example, at S,;,i = 1,2, 3, the expected holding values are calculated as
12 At
H(Sz,i/ 2) =~ 5 Zl V(S3/j, 3)€7r W(SQ/{, 53/]‘), 2.7
]:

where W(-) is the mesh weight describing the transition behaviour from nodes S, ; to nodes
S3,; (Broadie and Glasserman (2004)).

The key advantage of stochastic mesh method is the computation time grows linearly
as the number of exercise opportunities increases. However, the efficiency of the mesh

method is drew down by the effort to compute the weight function W(-) in equation (2.7).

13

14

MONTE CARLO METHODS FOR OPTION PRICING

Improvements of the stochastic mesh method can be found in Tan and Boyle (2000),
where quasi Monte Carlo simulation is adopted to achieve a better convergence. In the
review paper by Fu et al. (2001), a comparison has been made among stratified sampling
algorithms, the stochastic mesh method and the random tree method. It concludes that
the tree method is the most efficient for valuing American options in terms of computation

time and accuracy.

2.4.3 Regression Based Methods

The idea of Tilley (1993) was well studied after its publication. The most important im-
provement is Carriere (1995), which uses a nonlinear spline regression to approximate the
holding value. Later, Longstaff and Schwartz (2001) develops a new valuation technique
for Bermudan options. This new technique uses a least-squares polynomial regression to
estimate the expected holding value. About the same time, Tsitsiklis and Van Roy (2001)
proposed a parametric approximation scheme that is similar to Longstaff and Schwartz
(2001). The key differences between the two are the value function used for approximation
and the paths selected for simulation.

In our numerical analysis, we will see that the least-squares Monte Carlo method
(LSMC) provides a more accurate estimator than Tsitsiklis and Van Roy (2001). Stentoft
(2014) provides a comprehensive review among Carriere (1995), Longstaff and Schwartz
(2001), and Tsitsiklis and Van Roy (2001). The study concludes that LSMC has a smaller
estimation error.

The performance of LSMC is affected by four factors: (1) the number of simulation
paths, M; (2) the number of exercise opportunities, N; (3) the dimension of the problem,;
and (4) the regression scheme used in the LSMC (i.e., polynomial regression, piecewise
linear regression, smoothing splines, etc.). The convergence of LSMC is particularly de-
pendent on the first two factors, we can see as M — oo and N — oo, the LSMC estimator
converges to the true American option price implied by the finite difference method or bi-
nomial tree method (if regression error can be ignored). In Egloff (2005), author proved
the convergence of LSMC in high dimensions by generalizing the problem to a statistical
learning problem. Regarding to point (3) and (4), Glasserman and Yu (2004) argues that,

for high dimensional options, LSMC requires regression schemes with high-degree poly-

2.4 EXISTING MONTE CARLO METHODS FOR PRICING AMERICAN OPTIONS

nomials. However, increasing the degree of polynomial without increasing the number of
simulation paths may degrade the estimation accuracy. To date, studies find it is unclear
which polynomial will provide the most accurate Monte Carlo estimator in LSMC (Moreno
and Navas (2003), Rasmussen (2005), Stentoft (2004), and Zhou (2004)).

Improvements on LSMC have also been investigated based on factors other than re-
gression schemes. In terms of path simulation, variance reduction techniques are well stud-
ied and applied in practice. Boyle (1977) discusses the application of antithetic variables in
Monte Carlo. Lai and Spanier (1998) applies low-discrepancy sequences to simulate stock
paths and improves the convergence rate of LSMC 1. Barraquand and Martineau (1995)
applies quadratic re-sampling method. Other techniques such as common random num-
bers, conditioning and moment matching are discussed in detail in Glasserman (2013).

LSMC estimators are biased, Haugh and Kogan (2004) attempts constructing bound-
ary for LSMC estimators similar to the random tree method: a lower bound can be obtained
via applying the LSMC control policy to an independent set of assets paths; and an upper
bound is computed via the duality method due to Rogers (2002). Broadie and Cao (2008)
tightens the lower bound via a martingale control variate. In Rasmussen (2005), author
introduced the European options as the control variates in LSMC procedure. The intro-
duction of control variates shows a significant improved estimation accuracy compared to
Longstaff and Schwartz (2001).

Although LSMC’s computation time grows linearly with the number of exercise op-
portunities, the computation time is still an issue in high dimensional simulations. Dimen-
sionality reduction is discussed in Dupire (1998), where we apply Cholesky decomposition
to the covariance matrix of the simulated stock price movement processes. When a large
number of exercise opportunities are required, one technique to reduce the computation
time is based on the Brownian bridge in Stentoft (2004), where stock paths are generated
from the end of valuation horizon. The usage of the Brownian bridge speeds up the conver-
gence of LSMC (Caflisch and Chaudhary (2004)).

Of course, computation effort can be improved from a computer engineering perspec-
tive too. The utilisation of a graphic card in parallel computing is one approach, Abbas-
Turki and Lapeyre (2009) confirms superior performance of multi-core GPU over CPU in

Monte Carlo simulations. Pages, Pironneau, and Sall (2016) proposes a two-level parareal

1 The usage of low-discrepancy sequences is a kind of quasi-Monte Carlo methods

15

16

MONTE CARLO METHODS FOR OPTION PRICING

algorithm for LSMC simulation. In this algorithm, it allocates blocks of Monte Carlo paths
to different processors.

In spite of these efforts, two problems of LSMC cannot be circumvented: 1) the ap-
propriate choice of regression complexity; and 2) the large number of simulation paths

required for high dimensional problems.

2.4.4 Stochastic Convex Switching System

To overcome the above mentioned limitations, the optimal stochastic convex switching sys-
tem method was proposed in Carmona, Hinz, and Yap (2007) and its application to optimal
stopping problems in Hinz (2014). Suppose in a convex switching system, a Bermudan op-

tion pricing problem over discrete times ¢;,i = 0,1,..., N is formulated as:

V (St t0) = sup Eg[e_”h(sf)],
T€{to,t1, N}
where S;, is the stock price following some random process; and K is the strike.
The corresponding system is defined by two positions P = {1,2} and two actions
A = {1,2}; where p = 1 means the option has been exercised and p = 2 means the
exercise right is still available; and 2 = 1 denotes the action - exercise and a = 2 is the

action - hold. Then, a position change matrix can be created by:

A= a(1,1) «(2,1) 1 1
{alp)i o= _

The reward function at {; is:
R(Si, p,a) = e max($y, — K,0) (p — a(p, 1))

for all p € P, and as the option can be only exercised once, so @ = 1. By embedding the
stochastic process Sy, into appropriate vector space, the optimization is addressed in terms

of value iteration and requires the approximation of the expected holding value:

H(sz‘/ ti) =]Eg(max<sfi+1 - K, 0)(p - “(p/a)))

2.4 EXISTING MONTE CARLO METHODS FOR PRICING AMERICAN OPTIONS

at time t. Hinz (2014) assumes the value function to be a convex function and approximate
it by a maximum over a finite set of affine linear functions. In terms of pricing American
options, to achieve a given level of accuracy, the computation effort is in par with the

trinomial random tree method.

2.4.5 Expectation-Maximization Control Algorithm

Kou, Peng, and Xu (2016) proves that a stochastic control problem can be expressed in
a parametric form, of which parameters can be estimated via a modified expectation-
maximization algorithm (EM algorithm). For instance, consider an utility maximization

problem in discrete time:

T-1
supBo| Y ue41(St41, 51, Ct)|Co, 01,02, - - -, 071
C t=0

where S; is the underlying wealth, and C; € R, the amount of consumption at time ¢, are
control variables. Sy = 1 and Cj are given, but C;,t = 1,2,...,T — 1 are determined by
control parameters 6;,t = 1,2,...,T — 1. At time T, the controller will consume all the
wealth, Ct = St. We assume the utility function to be separable logarithmic utility, such
that the problem can be defined as

T-1
supEg|) logC; +1logSr/, (2.8)
C t=0

where the underlying wealth, S;, is assumed to follow a stochastic process,

St

ke Jerthai t=0,1,...,T,

Si+1 = (S

where z; is a random process. The aim is to maximize the expected utilities in expression
(2.8).
The expectation-maximization control (EM-C) algorithm uses the following iterative

procedures to address the maximization problem:

1. Ati = 1, initialize the control policy parameter x' := (C},0},65,...,6%).

17

18 MONTE CARLO METHODS FOR OPTION PRICING

2. For ith iteration, i = 2,3, ..., start from 07_, update x’ such that

[Z ur1(Se+1, St, Ct)
=0

Cl]el]ell ,%1:|

[2 ue+1(Se+1, St, Cr)

Cl 1 01 1 91 1 IQZT—_11:|

3. Update the control parameters, GT YT 9;_1, 61‘1 in the same fashion.

4. At period 0, update Cf)_l such that

T-1
Eo [Y (41,56, Cr)
t=0

Ci, 00,4, - ,ea_l}

T-1

>]Eo[Y u1(Se41, 84 Cr)
=0

Cil, 6,05, - ,9&_1]

5. Proceed to the (i + 1)th iteration or terminate the iteration if the difference between
the expectation at i™ iteration and (i— 1)th iteration is smaller than a predefined
threshold value.

The major benefit of EM-C is that it does not depend on the iteration of value func-
tion and there is no need to approximate the holding value. We adopted EM-C algorithm
to price Bermudan options. Suppose a Bermudan call has strike K, on an asset S; fol-
lowing risk-neutral process in equation (1.1), and can be exercised at N future times, t;,
i =0,1,...,N. The option value using EM algorithm, V(S;,, fo), at time ¢y with optimal

control policy C* can be found as
N-1 z 1 N-1
V(St,, to) = max Ey, [Z < (1-Cy > + h(Sty) H (1-Cy) (2.9)
¢ i=1]:o i=0
where C;, is defined as,

c 1, if exercise the option;
t.

0, if hold the option.

2.5 SUMMARY

In our numerical analysis, the exercise boundary is assumed to be a set of discrete points

0;,i=0,1,...,N:

1, if5, >6;
C, =

0, if St,' < ;.
Using the EM-C algorithm, we are able to find the parameters 6(t;) that maximize objec-

tive function (2.9).

2.5 SUMMARY

Compared to numerical approximations such as binomial tree method, Monte Carlo meth-
ods make pricing options with early exercise features possible in high dimensions. Nonethe-
less, the Monte Carlo estimators for American option prices are biased. To reduce bias, sig-
nificant computation effort is required. Several variance reduction techniques have been
developed to speed up the convergence of Monte Carlo methods and confirmed to be effi-
cient. In the next chapter, we use least-squares Monte Carlo method to demonstrate the

methodology for pricing Bermudan options using Monte Carlo methods.

19

3 PRICING BERMUDAN OPTIONS

With all the theories presented above, we are now ready to present the implementation
of least-squares Monte Carlo method (LSMC) for pricing Bermudan options. Several ways
to improve LSMC such as regression schemes, low discrepancy random number sequences

and control variates are discussed.

3.1 PROBLEM FORMULATION

In our numerical analysis, we assume a Bermudan call with a strike K which can be exer-
cised at N times: f;,i = 1,2,...,N, where {p = 0 < t; < t, < --- < ty = T. Further, the

stock price S; at time f is assumed to be driven by the risk-neutral process,

dSt/St = (1’ — E])dt + wat,

where 7 is the risk-free rate, g is the continuous dividend payout from S;, and {W;}o<i<r
is the Brownian motion defined under a risk-neutral probability measure Q. The option
payoff at t;, if exercised, is h(S;) = max(S; — K,0); and the spot price Sy, is given. The

option value, then, can be formulated as

V(St,, t0) = sup IE% [e”""h(S7)],

TG{tQ,tl tN}

where 7 is the optimal exercise time for the given Bermudan option.
We exercise a Bermudan option when the immediate payoff 1(S;,) exceeds the ex-

pected holding value given the current stock price and compute the option value V at ¢;,

V(Sti’ ti) = max(h(Sti), e_rAt]ES[V(StH-lI tiv1)]),

20

3.2 LEAST-SQUARES MONTE CARLO APPROXIMATION

where At = t;.1 —t; is the interval between two consecutive admissible exercise dates.
This value function is computed backward in time from fx to fy in order to obtain the

option price V(Sy,, to) starting from the terminal condition: V(S;,, tn) = h(Ss).

3.2 LEAST-SQUARES MONTE CARLO APPROXIMATION

LSMC uses a cross-sectional regression to approximate the expected holding value H(S;,, t;) =

[V(St, .+ tix1)]. The procedure is outlined as follows. Suppose, holding value can be rep-
resented as H(Sy,t;) = Y ¢1(St,)B1s, where {¢;(-)}/=} is a set of basis functions and
Bit, 1 =1,2,...,L are coefficients. Then

* simulate M stock paths Sy, ,,,m = 1,2,..., M over times t;,i = 0,1,..., N. At time ¢,
denote the in-the-money paths as S;i,q,q =1,2,...,0 <M, and h(S;i,q) > 0.

* For the in-the-money paths, we use current stock prices, S;i, as covariates; and dis-
count corresponding option value at next time step V(St L tiy1), as the response of

LSMC regression, Y;..

¢ Formulate the LSMC regression as

L
Yi, =) 1(St) By, + €, (3.1)
=1

where €;, denotes zero mean random error in the ordinary least-squares estimation
of coefficients f3; ;. We assume that residuals are homoscedastic (i.e., have the same

variance).

* Finally, the expected holding value for in-the-money-paths, H(S]

t,q-1i), 1S approxi-

mated by
L
t;, q/ Z Sl[q ﬁl tirs

where ﬁlt are estimated via minimizing Z ne -Yl, o1 (S,) ﬁl,ti)z for all in-the-

money paths. We summarize the LSMC algorlthm as follows.

21

PRICING BERMUDAN OPTIONS

Standard LSMC algorithm

1. Fort; = to,t1,...,tn, 1 =0,1,..., N, simulate M stock paths over N time points:
Stmym=1,2,..., M.

2. Generate a matrix of control parameters, A, = 0, to store information about
the optimal exercise time for each path; a matrix of option payoff, B, ,, = 0, and

a matrix of discounting factors, C;,,, = 0, at every point in time for each path.

3. Ati = N, we have:

Apm=1;

Bt,-,m = h(St,‘,m);

—rtN.
Ct' m = € N/

1r

form=1,2,..., M.

4. Apply backward induction:

e Ati = N — 1, denote in-the-money paths at time ¢; as s;,_,q,q =1,..,0<M
(i.e., corresponding to paths with #(S;, ,,) >0,m =1,..., M).

* Construct the regression (3.1) and estimate its coefficients.

* The approximated expected holding value for pathgati = N —11is

t q/ Z¢l ,Blt

forg=1,2,...,Q.
* The option payoff at i = N — 1 is determined by
Big = h(S;i,q), if h(S;i,q) > I:I(SQHW)

Big = V(S!

b b t;), otherwise

forg=1,2,...,Q.

3.2 LEAST-SQUARES MONTE CARLO APPROXIMATION

e Update the control parameters in A:

Ifs,,— K> IfI(S;_/q), find the corresponding path, S;, ,,, and set

Ati,m = 1/
Ati+1xm =0, Ati+2rm =0,..., Apym =0;

Otherwise, the value of A;, ;; is not changed from the one that was set, for

m=1,2,..., M.

¢ Update the discounting factors in C by

—rt;.
Ct'm =e l/

1r

form=1,2,..., M.
* Repeatstep4fori=N—-2,N—-3,...,1.
5. The optimal exercise time for path m: 7,,,m = 1,..., M can be found in the matrix

A by
Ty = z‘e{(r)T.r},N}(ti’m|At"’m =1).
6. Ati =0, approximate the option price as
tn M
V(St,, to) = max < Y. Y [AcoBo C]erAt,h(StO)),

t=ty m=1

where A o Bo C is the Hadamard product!of matrices and S, is the spot price for

stock Sy,.

We face two problems in this algorithm: the selection of regression scheme in equation
(8.1); and how to increase the speed of convergence. The computation effort for LSMC is
O[M], which grows linearly with M, the number of paths simulated. However, Glasserman
and Yu (2004) finds in high dimensional problems, the number of paths to be required will
grow exponentially with the degree of polynomials. Hence, we want to limit the number of

simulation paths and, in the meanwhile, achieve an accurate estimator.

1 The operation takes two matrices of the same dimensions, and computes another matrix where
each element i, j is the product of elements i, j of the original two matrices.

23

24 PRICING BERMUDAN OPTIONS

3.3 IMPROVEMENTS ON THE LEAST-SQUARES MONTE CARLO METHOD

This thesis approaches the above problems in three directions:
¢ The regression scheme;
* The generator of random numbers; and

¢ The selection of control variates.

3.3.1 Regression Schemes

The choice of the basis {¢;(-)})=! can be parametric, semi-parametric polynomials or non-
parametric splines. In Longstaff and Schwartz (2001), authors selected weighted Laguerre
polynomials. In addition to this, we implement Chebyshev, Hermite and Laguerre polyno-
mials. These polynomials are generated by the following standard recurrence functions.

Chebyshev polynomials:

$1(x) = 1; ¢2(x) = 225 Pup1 (x) = 22 (x) = P (x).

Hermite polynomials:

$1(x) = 1; ¢a(x) = 2x; Pui1(x) = 2x¢Pn(x) — 2n¢y-1(x).

Laguerre polynomials:

$1(3) = 15 2(6) = 15 s (1) = — (2041 = X) () — 1 (2)).

Legendre polynomials:

P1(3) = 15 02(0) = 1= it (1) = — (20 +)u(x) — 1y 1(x)).

Notice that the first two terms for these polynomials can only construct a simple linear
regression. To compare polynomials of different degrees, our implementation compares the

estimation results from using the first 3 to 12 terms in each defined polynomial.

3.3 IMPROVEMENTS ON THE LEAST-SQUARES MONTE CARLO METHOD

Discounted Option Value at t+1
=
s
*

100.00 11.74 12347 135.21 146.94
Simulated Stook Price att

The regression is fitted 4 months before maturity for a one-year Bermudan call option with strike price
100, which can be exercised at the end of every four months. The underlying stock has a spot price 100,
annualised volitionality 20%. The risk-free rate is 5%. The number of in-the-money paths are 925 out of
2000 simulated paths.

Figure 3.1: Example of piecewise linear regression

More general nonlinear regression is investigated in two forms: smoothing splines
(Green and Silverman (1993)), and piecewise linear regression. A piecewise linear regres-
sion simply breaks an ordinary linear regression into several segments, and fits separate
simple linear regression within each segment. For example, in Figure 3.1, the linear re-
gression are fitted separately in 4 intervals.

We anticipate these two nonlinear regression will provide better fittings for regres-
sion (3.1) than defined polynomials. The better fitting approximates the expected holding

values and option prices more accurately.

3.3.2 Random Number Generation

The second approach targets the random number generation process in Monte Carlo meth-
ods. We implement variance reduction techniques to speed up the convergence of LSMC

and reduce the number of simulations. Three techniques implemented are described as

follows.

25

26

PRICING BERMUDAN OPTIONS

* Antithetic variables. Assume z;,,i = 1,2,...,M are independent random numbers

from the standard normal distribution, and an estimator of yu is given by

1

M=

f(zi),

Il
—_

for some function f(-). The method of antithetic variables is based on the observation

that if z; is from the standard normal distribution, then so does —z;, and

1 M
= S (2)
is also an estimator of y.. Therefore,
. 1+ fi
fig = H . H

is an estimator of i as well. The 2M random numbers obtained from antithetic pairs
(—z;,z;) are more evenly distributed than a collection of 2M independent random
numbers. The usage of antithetic variables improves Monte Carlo simulation effi-

ciency if correlation between /i and ji is negative.

Moment matching method. The moments of random sample z;,i = 1,2,..., M will not
exactly match the moments of standard normal distribution. The Moment matching
method attempts to transform z; to match a finite number of moments of the stan-
dard normal distribution. In this thesis, we match the first and second moment of

the standard normal distribution by defining

. N
Zi=(zi — Zi) = + Yz,

Sz
fori =1,2,..., M, where Z; is the sample mean of z{,, zp, S, is the sample standard
deviation of z;,...,zym, 0z = 1 is the standard deviation, and y, = 0 is the mean of

the standard normal distribution.

e Low-discrepancy sequences. If paths are generated using low-discrepancy sequences,

we can get more evenly distributed asset paths with a smaller number of simulations
(Ueberhuber (1997)). Niederreiter and Shiue (2012) demonstrates that the order of

3.3 IMPROVEMENTS ON THE LEAST-SQUARES MONTE CARLO METHOD

error of Monte Carlo simulations using these sequences improves from O[M~1/?] to
O[ln(M)?/M)], where d is the dimension of the simulation. Notice that the compu-
tation effort for low-discrepancy sequences will depend on the dimension. Therefore,
for high dimensional options, direct applications of low-discrepancy sequences may
require more computation time than a standard Monte Carlo. In spite of this issue,
we still expect using these sequences will save computation time for a given level of

accuracy.

3.3.3 Control Variates

The third approach is to use control variates to adjust the estimated option price V(Sto, to).
A good control variate Xy usually has a high correlation with the estimated price. The
adjusted estimator is

Vadi(Sty to) = V(Sty, to) — b(Xo — Xo), (3.2)

where X is the estimator of X, and the optimal b (computed via minimizing variance of

V44j(Sty, t0)) is given by
b= COV(V(), X())
var(Vy)
For a Bermudan option, Rasmussen (2005) proposes the control variate to be the price
of a plain vanilla European option whose parameters are the same as the Bermudan option

to be valued (except the early exercise features).

For each iteration of LSMC algorithm, Rasmussen (2005) uses the following basis for

LSMC regression:
¢o(St) = K
¢1(St) = St
$2(St) = Xi
$3(St) = Si X;

27

28

PRICING BERMUDAN OPTIONS

where K is the strike of a Bermudan option, S; are simulated stock prices at time ¢, and X;
are European option prices with spot price S; and maturity T — ¢, where T is the the expiry
for the Bermudan option, and all other parameters follow the Bermudan option. These
basis are confirmed to have better performance than weighted Laguerre polynomials in
Longstaff and Schwartz (2001) for pricing a Bermudan using control variates.

Suppose V(Sto, to) is the LSMC estimator before adjustment from using Rasmussen
(2005)s’ basis, we adjust the LSMC estimator at the end of each iteration by equation (3.2),
where X is the European option price estimated from Monte Carlo method. The European
has a maturity T and same parameters as the Bermudan option; and its exact price is
computed using the Black-Scholes option pricing formula. We calculate b using the sample
covariance and variance of the simulated European and Bermudan option prices using
Monte Carlo iterations 2.

Implementing the standard LSMC algorithm is straightforward. However, the per-
formance of LSMC depends on multiple factors, such as regression scheme and random
number generating process. The improvements introduced in this chapter will be imple-
mented in our numerical analysis. We are interested in whether these improvements will

increase the estimation accuracy and reduce the computation effort of LSMC.

2 Independent iterations of Monte Carlo simulations.

4 SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

The main goal of this thesis is to attempt to find an efficient Monte Carlo method for pric-
ing Bermudan options. We have reviewed three existing Monte Carlo methods: the random
tree method, stochastic mesh method and least-squares Monte Carlo method (LSMC); as
well as the the new expectation-maximization control (EM-C) algorithm. This chapter com-
pares the estimation results from these methods for Bermudan calls on a single asset and
the maximum of two assets.

Previous studies indicate a number of improvements can be done to LSMC. From
simulation results, we want to find the most effective improvement. These comparisons
are based on Bermudan calls on a single asset and the geometric average of five assets.

To effectively compare different algorithms, in addition to computation time, we select
three proxies for measuring accuracy: error, root-mean-square error (RMSE) and relative

standard error (Relative SE).
¢ Error, the difference between a Monte Carlo estimator and the benchmark value.

¢ RMSE, an aggregate measure of error, is given by:

(Error;)?

Z| =
™=

Il
—_

RMSE =

where N = 25 is the number of independent repetitions (iterations) of Monte Carlo
option price estimation. A smaller value of RMSE indicates a higher accuracy of
the estimator. To reduce the bias of Monte Carlo estimators one has to simulate the
large number of stock paths in each simulation rather than increasing the number

of iterations.

* Relative SE, a percentage calculated via dividing the standard deviation of option
price estimator over 25 repetitions by the estimated value. A smaller Relative SE
indicates the estimator has proportionately less variation around its mean, therefore

more precise.

29

30

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

4.1 SINGLE-ASSET BERMUDAN OPTIONS

We begin the analysis of Bermudan calls specified in Table 4.1 by fixing the spot price
So = 100, and calculating the benchmark value of option price (5.7299) via binomial tree
method using 1,000 time steps. We use antithetic variables to generate random numbers

to compare the four Monte Carlo methods.

Table 4.1: Specifications for Bermudan call on a single stocks

Option Specifications

Option Expiry Date (T) End of 1 year
Strike (K) 100.00
Exercise Opportunity End of every 4 months
Exercise Opportunities (N) 3
Annualized Risk Free Rate () 0.05
Stock Specifications

Annualized Stock Volatility (o) 0.2
Annualized Dividend Rate (q) 0.1

4.1.1 The Random Tree and Stochastic Mesh

Figure 4.1 contains the results from the random tree and stochastic mesh. Different num-
ber of branches are plotted against three assessment criteria. By restricting the computa-
tion time to 25 minutes, a much accurate result can be found in the random tree method
with 100 branches compared to the stochastic mesh with 50 branches. Although increas-
ing the number of branches improves the accuracy of both methods, the computation time
prevents us from using more than 50 branches in the stochastic mesh method. The results
find the computation of the weight function in the stochastic mesh method makes it less
efficient in this single dimensional problem. This finding is consistent with Stentoft (2013).

With respect to different spot prices (i.e., 70,80,90,110 and 120) in Figure 4.2, RMSEs
for both approaches are the highest when the option is deep-in-the-money (i.e., the spot

price is high). A possible explanation for this can be: as the option becomes in-the-money,

4.1 SINGLE-ASSET BERMUDAN OPTIONS

Method Method Method
] =— Random Tree (] =— Random Tree (] =— Random Tree
\ = = Stochastic Mesh \ = = Stochastic Mesh \ = = Stochastic Mesh
' 0.15 v '
) [} 0.020
A} A} A}
A A} A}
A A A}
A} A} A}
A} \) A}
A A) A}
0.002 “ ' Y
A} \) A}
A\l A A
v v 0.015 '
A} Al A}
A} \) A}
' 0.10 . '
L ' [\
» \ W 5 5
[0} [y) = [y
>) (2]) 8)
=) S 1} = '
®©) x [} L '
[} ' ' 0.010 '
m 1 A A)
A} Al A}
Y Y Y
0.001 L] S
0.05
0.005
—_— —_— . 0.000 —_—
0.00
10 50 70 100 10 50 70 100 10 50 70 100
Number of Paths Number of Paths Number of Paths
(a) Relative SE (b) RMSE

(c) Error
Values are computed using R 3.3.1 with an i7-7820HQ CPU (same platform for all calculations in this

paper). Computation time for one Monte Carlo Simulation: tree method (50 branches): 1.2 seconds; tree
method (70 branches): 6 seconds; tree method (100 branches): 13 seconds; stochastic mesh (10 branches):
10 seconds; stochastic mesh (50 branches): 59 seconds. The detailed result can be found in Appendix A.

Figure 4.1: Comparison of random tree and stochastic mesh for a Bermudan call

Method
— LT
0.08 RandomATree e -
- = Stochastic Mesh e
0.06
L
)
= 0.04
o
0.02
0.00
70 80 90 100 110 120
Spot Price

Values are computed using 50 branches for both stochastic mesh and random tree.

Figure 4.2: Comparison of the random tree and stochastic mesh method for a Bermudan call with
different spot prices

31

32

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

its delta ! becomes close to one, which means the option will be more sensitive to the stock
price movement. To accurately approximate the option value, it requires more simulations

compared to an option out-of-the-money, which is less sensitive to the price movement.

In Figure 4.2, it can also be observed that he stochastic mesh method provides marginally

better estimators when the spot prices are 70 and 80.

4.1.2 LSMC and EM-C Algorithm

Figure 4.3 reports the estimation results from the LSMC and EM-C. Both algorithms are
not based on lattice, and are able to use large number of simulated paths within a short
period of time. The computation time for these two methods was limited to 30 seconds.
LSMC outperforms EM-C in all three criteria assessed. In Appendix A, we can see that
the performance of LSMC is better than random tree. To match the benchmark at the
third digit, LSMC only requires 20,000 simulated paths and 7.5 seconds. However, it takes
30 minutes for a random tree with 100 branches at each node.

Regarding to different spot prices, LSMC selects more paths to fit the regression as
the option becomes more valuable, and requires more computation time (refer to the algo-
rithm in Chapter 3). The computation time for EM-C, on the other hand, is constant across
different spot prices but errors are significantly larger than in the case of LSMC. From the
error patterns of EM-C, we can see it is not numerically stable and may not be suitable for
the optimal stopping problem.

In Figure 4.4, we can see both methods produce precise results when the spot price
is 120. This phenomenon could be interpreted by the fact that large number of simula-
tion paths used in LSMC and EM-C help the estimation accuracy for options deep-in-the-

money.

4.1.3 The Accuracy and Convergence of LSMC in a Single Dimension

We proceed with a discussion of possible performance enhancement to LSMC in a single

dimension. The following results are based on the above Bermudan call specification.

Measures the impact of a change in the price of underlying asset to the option value, a larger delta
indicates that the option price is highly sensitive to the underlying asset price movement.

4.1 SINGLE-ASSET BERMUDAN OPTIONS

Method Method 0.0025 Method
—EM-C —EM-C —EM-C
- = LSMC - = LSMC -=LSMC
0.004
0.0020
0.010

0.003 0.0015

b
w
g) S
= = i
% 14 0.0010
o 0.002
0.005
0.0005
0.001
* 0.0000 =%
. R N N
0.000 [T SRR - 0.000 ¢ L L T T T .
1000 20000 50000 1000 20000 50000 1000 20000 50000
Number of Paths Number of Paths Number of Paths
(a) Relative SE (b) RMSE (c) Error

Values are computed using 20,000 paths for LSMC and EM-C. LSMC uses European options as the
control variate. Appendix A presents the detailed result.

Figure 4.3: Comparison of LSMC and EM-C algorithm for a Bermudan call

0.008 Method
0.006

0.004

RMSE

0.002

0.000

70 80 90 100 110 120
Number of Paths

Values are computed using 20,000 paths for both estimators.

Figure 4.4: Comparison of LSMC and EM-C algorithm for a Bermudan call with different spot
prices

33

34

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

REGRESSION SCHEMES Figure 4.5 plots results from four defined polynomials:
Chebyshev, Hermite, Laguerre and Legendre; as well as a simple polynomial: Zle X,
where [is the highest polynomial degree, and X is the covariates used in the polynomial.
The simple polynomial regression occurs to be the most accurate when the highest degree
employed is less than or equal to five. The discrepancies in RMSEs are negligible for poly-
nomials of which the highest degree are six or more. This finding indicates that increasing
the polynomial degree without increasing the simulation paths does not help to achieve

consistently higher accuracy.

Method
-e- LSM with Chebyshev
-6 LSM with Hermite
-8- LSM with Laguerre
L) —+ LSM with Legendre
0.006 -8 LSM with polynomial regression

0.008

0.007

0.005

RMSE

0.004

0.003

2 3 4 5 6 7 8 9 10 11 12
Polynomial Degree

Values are computed by replacing the regression component in LSMC by corresponding polynomials with
10,000 paths.

Figure 4.5: Accuracy of LSMC with different regression polynomials

Compared to defined polynomials, nonlinear regression in Figure 4.6 achieves more
accurate price. In piecewise linear regression, the best estimator is found at using 19 equal-
size segments, whereas in smoothing spline regression, the best occurs at using a smooth-
ing factor spar = 27/30 2. Both RMSEs are below one tenth of a cent. By employing a
smoother spline, the estimation accuracy increases monotonically before reaching the opti-
mal point. However, fluctuations are observed in piecewise linear estimations. Smoothing
spline achieves a better estimator via smoother fitting for the cross sectional regression as
depicted in Figure 4.7.

These findings tell us the choice of regression scheme is dependent on the fit of LSMC

regression. With different simulated paths, we have to try different regression schemes

spar factor in R function smooth.spline, indicating the level of smoothness of a spline. Its value is
in (0,1]. The higher the value of spar, the smoother the curve will be.

Discounted Option Value at t+1

60

40

4.1 SINGLE-ASSET BERMUDAN OPTIONS

0.050 — A-dchrbedbaiay Method
s

0.030 e -e- Piecewise Linear
0.020 e -a- Smooth Spline
0.010 s

0.005

0.003
L 0.002

(2]
s 0.001
o

Dressssszzzzzzccss B

1 5 9 13 17 19 21 25 27 29
Number of Segments or Spar=x/30

Values are computed by replacing the regression component in LSMC by respective regression schemes
with 10,000 paths. For piecewise linear regression, the x-axis is the number of segments employed; and
x < 3 is not examined. For smoothing spline regression, it is the x as in spar = x/30. The estimation
degrees of freedom is 10.

Figure 4.6: Accuracy of LSMC with nonlinear regression

60

40

Discounted Option Value at t+1

100.01 106.91 113.81 12071 127.61 13451 141.41 100 110 120 130 140
Simulated Stcok Price at t Simulated Stcok Price at t
(a) Piecewise linear regression (b) Smoothing spline

Fittings are depicted using 2097 in-the-money stock paths one time step before the expiry for the option
estimated in (4.6).

Figure 4.7: Fitting comparison between nonlinear regression

35

36

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

and examine how well the regression fits. If the fit is good, we can expect a the LSMC
estimator will be accurate. Therefore, for further researches, it will be useful to develop
algorithms to assess the fit of regression models based a set of simulated paths prior LSMC

estimation.

PATH SIMULATION USING LOW-DISCREPANCY SEQUENCES In Figure 4.8,

six random number generating processes are compared:
* Halton sequences 2 (with antithetic variables (AV));
* Sobol sequences (with antithetic variables);
¢ pseudo random number with antithetic variables; and

¢ pseudo random number matching the second moment of a standard normal distribu-

tion.

The usage of Halton sequences, Sobol sequences, Sobol sequences with antithetic vari-
ables and moment matching method achieve a more accurate result when 1,000 paths are
used. However, the results are not converging until using 10,000 paths, which makes the
usage of these low-discrepancy sequences the same as the pseudo random number gener-
ating process with antithetic variables. In this particular example, we have not seen the
usage of low-discrepancy sequence significantly speeds up the convergence of LSMC as

Rodrigues and Rocha Armada (2006) 4.

CONTROL VARIATES Figure 4.9 show significant improvement in the convergence
rate of LSMC when using control variates. The estimation using control variates converges
roughly at 3,000 paths compared to 20,000 paths without the control. Also can be observed
is the standard error for LSMC with control variates is much smaller compared to the

standard LSMC estimator.

Halton and Sobol sequences were generated in R using randtoolbox package. Then, the uniformly
distributed sample numbers were transformed using Box and Cox (1964)’s method into a standard
normal distribution.

The paper prices a Bermudan call on 2 assets with 10 exercise opportunities using low-discrepancy
sequence in this thesis with the assistance of Brownian bridge

4.1 SINGLE-ASSET BERMUDAN OPTIONS

Method
4 -e- Halton Sequence
-4- Halton Sequence+AV
Y -0- Moment Matching
0.006 —+- Pseudo Random+AV
D -8+ Sobol Sequence
+ ¥ Sobol Sequence+AV

0.002

1,000 2,000 5,000 10,000 20,000 50,000 100,000
Number of Simulated Paths

Values are computed using LSMC with European options as the control variate as in Rasmussen (2005)
and corresponding variance reduction techniques.

Figure 4.8: Convergence of LSMC with low-discrepancy sequences

Method
— Benchmark
==: LSM with control
579 b - | == LSM without control
S e
® \
£ 576 N 7
= \ A8
7] v A
L v
Ny VoAl
v A7 S~Lio
% ~~__
5.73 s
1,000 2,000 5,000 10,000 20,000 50,000 100,000

Number of Simulated Paths

Controlled values are computed using LSMC with European options as the control variate and regres-
sions in Rasmussen (2005).

Values without control are computed using standard LSMC in Longstaff and Schwartz (2001).

The error bounds are depicted using the standard error of estimations with a 95% confidence interval.

Figure 4.9: Comparison of LSMC with and without control variates

37

38

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

4.1.4 LSMC and Tsitsiklis and Van Roy (2001)

In the approximation results presented above, the choices of the covariates and the re-
sponse follow the standard LSMC in Longstaff and Schwartz (2001). Here, we compare
Longstaff and Schwartz (2001) with Tsitsiklis and Van Roy (2001). The key differences

between these two regression based methods are listed below:

¢ The calculation of option value:
- LSMC:

Vipre ™, if Sy — K < Hj
‘/t —
S —K, if S — K > H;

- Tsitsiklis and Van Roy (2001):

Vi = max(S; — K, Hy)

where V; denotes the option value at time ¢, At is the interval between t and ¢ — 1,
S; is the stock price, K is the strike, H; is the approximation to the expected holding

value.

* The selection of paths: Tsitsiklis and Van Roy (2001) uses all paths, but LSMC selects

in-the-money paths to fit the regression.

Figure 4.10 depicts the approximation results from:
¢ LSMC using all paths in the regression (denoted as All Paths with Laguerre);

¢ LSMC using the value function in Tsitsiklis and Van Roy (2001) (denoted as Alter-

native value function); and
¢ LSMC in Longstaff and Schwartz (2001) (denoted as LSM with Laguerre).

The RMSEs show identical convergence patterns across three methods, while Longstaff
and Schwartz (2001) s method provides the highest accuracy. Further, using the value
function suggested by Longstaff and Schwartz (2001) helps to reduce the estimation bias,

while using only in-the-money paths for regression helps to speed up the convergence.

4.1 SINGLE-ASSET BERMUDAN OPTIONS

S0 Method
SN -e= All Paths with Laguerre
0.04 “. -a- Alternative value function
A*" “.‘ -0~ LSM with Laguerre

0.03
L
0
=
x 0.02

0.01

1,000 2,000 5,000 10,000 20,000 50,000
Number of Simulated Paths

Values are computed using the Laguerre polynomial of three degrees.

Figure 4.10: Comparison of LSMC and Tsitsiklis and Van Roy (2001)

5.735 Method
' — In-Sample
= = Out-of-Sample
5.730 }\ |
I

c
085725
=]
IS
8
k7]
W 5.720

5.715 IO S S R S oL -

1,000 5,000 10,000 50,000 100,000
Number of Simulated Paths

Values are computed using LSMC with European options as the control variate and regressions in Ras-
mussen (2005).

Figure 4.11: Comparison of in-sample and out-of-sample LSMC estimation

39

40

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

4.1.5 Out-of-Sample Performance

Before proceeding with a discussion of high dimensional options, it is useful to examine
how the LSMC approximation would change for out-of-sample (independent) paths. Specif-
ically, we first run the standard LSMC, record the estimated regression parameters for
given paths; then, simulate a new set of paths and predict the expected holding on these
new paths using the regression. Figure 4.11 finds that this procedure results in a biased
lower estimator, but the convergence pattern is similar to the standard LSMC (.e., in-
sample estimation). Therefore, by using independent paths, we can form a lower bound for

the LSMC estimator.

4.2 MULTI-ASSET BERMUDAN OPTIONS

Up to this point, the focus of the discussion has been on the valuation of Bermudan op-
tions on a single asset. We expect the performance of LSMC will hold in high dimensional
problems. Based on the results of Figure 4.1 and Figure 4.3, it is reasonable to compare

the performance of LSMC with the random tree.

4.2.1 Comparison of LSMC and Random Tree

The test-bed is a Bermudan call on the maximum of two stocks, S andS, ;. Both stocks
follow the same risk-neutral process as the single stock S; specified previously. The call

option has the payoff:
h(S14t,S2) = max(max(Syy, Sor) — K, 0),

fori =0,1,...,N. The parameters of stock prices movement process and the option details

are provided in Table 4.2.

4.2 MULTI-ASSET BERMUDAN OPTIONS

Table 4.2: Specifications for Bermudan call on two stocks

Option Specifications

Option Expiry Date (T) End of 1 year
Strike Price (K) 100.00
Exercise Opportunity End of every 4 months
Number Exercise Opportunities (N) 3
Annualized Risk Free Rate (r) 0.05
Stock Specifications

Annualized Stock Volatility (¢;,i = 1,2) 0.2
Annualized Dividend Rate (g;,i = 1,2) 0.1
Correlation between log returns of S;; and Sy 0.3

We vary the spot price for both stocks from 70 to 120, assume S; ¢, = S, ,, and compute
the benchmark values® using two dimensional binomial trees with 1,000 steps.

In Figure 4.12, three criteria are compared between LSMC and the random tree. By
limiting the computation time to 2 minutes, we are able to use either 20,000 paths in
LSMC or 20 branches at each node for the tree. Across six spot prices examined, LSMC has
more accurate estimators than the random tree in this two-asset option. For the random
tree, the mis-pricing errors and relative SEs improve as the option becomes in-the-money,
while the RMSEs become higher for the same spot prices. This is consistent with the single
dimensional Bermudan option in Figure 4.1. This two dimensional problem shows that

lattice based method is not suitable for pricing high dimensional options.

4.2.2 The Accuracy and Convergence of LSMC in High Dimensions

Figure 4.13 through Figure 4.15 examine two enhancement approaches for LSMC: regres-
sion schemes and random number generation process. The analyses examine the accuracy
and convergence of LSMC for pricing a Bermudan call on the geometric average of five
assets. To get the benchmark, this option can be reduced to one dimension and valued

accurately via binomial tree method.

The benchmark values are: 0.2370 (for a spot price of S; 1=70), 1.2590 (S;,1=80), 4.0770 (S;,1=90),
9.3610 (S4,1=100), 16.9240 (S;,1=110) and 25.9800 (S;,1=120). These values can be found in Ap-
pendix A.

41

42

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

Method Method Method
' —LsMC ene , 1.00 e — LSMC
' — LSMC ~e
0.03 - - Random Tree R4 N - - Random Tree
' == Random Tree L, .
) ’ ‘\
: ; 10
\] ‘\
’
'. ’ ;
' ! 0.75 A%
)] .
.] A}
1 1 “
002 1 ! .
. ' Ky
4 -.] "
' W 4 ' . .
2 H Q / 2 0.50 ko
*(B' 1 = ' L’G [y
T : x 3 i
EK ' 'l \‘
I‘ -~ l' ‘.
. |
0.01 R ’
.. .
. 2 K 0.25
. .
Y ’
A 4
* d
A .
A .
.
L . Py . ’l
0.00 =—— 0 < 0.00
70 80 90 100 110 120 70 80 90 100 110 120 70 80 90 100 110 120
Spot Price Spot Price Spot Price
(a) Relative SE (b) RMSE (c) Error
Values for LSMC are computed using LSMC with the first three Laguerre polynomials.
Values for the random tree are computed using a two dimensional random tree as suggested by Broadie
and Glasserman (1997)
Detailed result can be found in Appendix A.

Figure 4.12: Comparison of the random tree and LSMC for a Bermudan max-call option

4.2 MULTI-ASSET BERMUDAN OPTIONS

4.2.3 Bermudan Options on the Geometric Average of Five Assets

Suppose there are five stocks S jed=1,...,5i=0,1,...,N with the same spot price. Then,

a geometric average call with a strike K has the payoff,

h(sj,ti) = max((“?:lsj,ti)l/5 - K/ 0)/

forj=1,...,5.

Following Kemna and Vorst (1990), the dimension of option‘s can be reduced to one by
introducing a new asset Y;. Suppose, the log of stock prices, log(S;,), follow a multivariate
Brownian motion with a constant covariance matrix X, and a constant risk-neutral drift

rate,
1
Hj=1= 50

where r is the risk-free rate, o; are the annualised volatility for stock S;;,. Then, Y; follows

the risk-neutral process,

AYy = (Hadj — Gadj)dt + OaajdWi,

where {W; }o<;<7 is a Brownian motion; and

1 & 5,
Vadj:r_loj_zla"}

Y. Djx;

k=1

5
> _ 1
Usdj =

=1

52
j

where D is the covariance matrix for S;,j =1,...,5, and

1/1& 5,
Qadj = 5 ggﬂj—%ﬁ-
]:

We construct the Bermudan call option based on specifications in Table 4.3. The bench-

mark value from binomial tree using 1,000 steps is 3.0495.

REGRESSION SCHEMES Figure 4.13 compares the usage of four defined polynomi-

als and one simple polynomial up to 12 degrees in a single dimension. The results report

43

44

SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

Table 4.3: Specifications for Bermudan call on five stocks

Option Specifications

Option Expiry Date (T) End of 1 year
Strike Price (K) 100.00
Exercise Opportunity End of every 4 months
Number Exercise Opportunities (N) 3
Annualized Risk Free Rate (1) 0.07
Stock Specifications

Annualized Stock Volatility ((7]', ji=1,...,5 0.2
Annualized Dividend Rate (qj, ji=1,...,5 0.1
Correlation between log returns of Sitj=1,...,5 0.3

identical performance from the four defined polynomials, and slightly higher RMSEs for
the simple polynomial. Across the examined defined polynomials, the RMSEs are trend-
ing up with the number of polynomial terms, which provides evidence that using higher
degree polynomials without increasing the number of simulated paths deteriorates the
estimation Accuracy. The lowest RMSE occurs at using four defined polynomials in this

example.

Method
= -o- LSM with Chebyshev
L -4 LSM with Hermite
0.006 -a- LSM with Laguerre
E —+ LSM with Legendre
-@ LSM with polynomial regression

0.008

0.004

RMSE

0.002

2 3 4 5 6 7 8 9 10 11 12
Polynomial Degree

Values are computed by replacing the regression component in LSMC by corresponding polynomials with
10,000 paths.

Figure 4.13: Accuracy of LSMC with different regression polynomials

In Figure 4.14, it contains the results using the piecewise linear regression and smooth-
ing spline. These results show evidence that, in this high dimensional problem, with
10,000 paths, the best choice would be a simple linear regression rather than nonlinear
alternatives. In particular, a fine partition of piecewise linear regression does not yield

good prediction for expected holding value. This in not the case in a single dimensional

4.3 APPROXIMATE AMERICAN OPTIONS WITH BERMUDAN OPTIONS

option depicted in (4.6), where we found more segments in the regression provide higher

accuracy.

Method
0.06 -e- Piecewise Linear
-4- Smooth Spline

RMSE

0.02

0.00

10 20 30
Number of Segments or Spar=x/30

Values are computed by replacing the regression component in LSMC by respective regression schemes
with 10,000 paths for each asset. For piecewise linear regression, the x-axis is the number of segments
employed; and x < 3 is not examined. For smoothing spline regression, it is the x as in spar = x/30. The
estimation degrees of freedom is 10.

Figure 4.14: Accuracy of LSMC with nonlinear regression

LOW-DISCREPANCY SEQUENCES Figure 4.15 contains the results from using a
set of correlated Halton and Sobol sequences. With the assistance of antithetic variables, it
is evident that using either Halton or Sobol sequences gives more accurate estimator when
small number of simulation paths are deployed. However, the usage of Halton sequences

leads to unstable numerical results, while all other methods converge at using around

20,000 paths. Applying Halton sequences is not suitable in this high dimensional problem.

Overall, the usage of low-discrepancy sequences helps the convergence of LSMC in high

dimensions but not dramatically.

4.3 APPROXIMATE AMERICAN OPTIONS WITH BERMUDAN OPTIONS

As the number of exercises opportunities N — oo, the value of Bermudan option converges
to the American option. Figure 4.16, panel (a), illustrates the convergence of the above
Bermudan call on the geometric average of five assets (spot prices are 100 for all stocks)

to an American option with 5,000 and 10,000 simulated paths. With 200 opportunities,

45

46 SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

A., Method
B -e- Halton Sequence+AV
-4- Moment Matching
. -0~ Pseudo Random+AV
0.003 -+ Sobol Sequence+AV

0.004

RMSE

0.002

0.001

1,000 2,000 5,000 10,000 20,000 50,000 100,000
Number of Simulated Paths

Values are computed using LSMC with control variates in Rasmussen (2005).The random number gener-
ation process for each asset follows the one dimensional case. The correlations among assets are included
by Cholesky decomposition.

Figure 4.15: Convergence of LSMC with low-discrepancy sequences

the estimated price is 3.2570 compared to the benchmark value 3.2601; and with 1,000
opportunities, the estimation error is reduced to less than 0.0001. The computation time
grows linearly with the number of exercise opportunities. For example, with 5,000 paths
and 500 exercise opportunities the computation time is 7.2 minutes. Panel (b) of Figure
4.16 shows that increasing the number of simulation paths from 5,000 to 10,000 does not
improve the accuracy significantly in terms of RMSEs. The LSMC estimation is valid for
both the American call and put as illustrated in Figure 4.17. In both cases, we can observe
the estimated option prices converge to the benchmark, and the standard error for the
estimator (represented by the shaded area) is decreasing with more simulated paths.

Figure 4.18 reports the results for American calls on stocks with different spot prices.
The LSMC estimators are plotted against the quadratic approximations from Barone Adesi
and Whaley (1987) and the binomial tree method. The mis-pricing errors are narrowing
as the the option becomes in-the-money for both LSMC and the quadratic approximation.
When the option is out-of-the-money, the quadratic approximation provides biased upper
estimators.

The extension for LSMC from Bermudan to American is simple to implement, and
the results are much more accurate compared to the quadratic approximation, and more

flexible compared to the binomial tree. One issue arising from increasing number of exer-

4.3 APPROXIMATE AMERICAN OPTIONS WITH BERMUDAN OPTIONS

0.0125
32
0.0100
€30
S 1y 0.0075
© »n
£ :
il 0.0050
28
Paths 0.0025
- 5000
26 -a-10000
1 2 345 10 20 50 100 200 500 1 2 345 10 20 50 100 200 500
Number of Exercise Opportunities Number of Exercise Opportunities
(a) Convergence of the estimator (b) RMSE of the estimator

Values are computed using LSMC on a Bermudan call with control variates and regression scheme fol-
lowing Rasmussen (2005);

Figure 4.16: Convergence of the Bermuda to American

= Put

Option type
—call
Method
3.862 o Put
3.240
3.861
63237 | 5
= S 3.860
£ £
k7] @
i 3.235 W 3,859
3.858
3.232
3.857
1000 5000 10000 20000 50000 1000 5000 10000 20000 50000
Number of Exercise Opportunities Number of Exercise Opportunities
(a) Call (b) Put

We used antithetic and control variates in LSMC estimators for both options. The control variates and

the polynomials for regression are specified in Rasmussen (2005).
The error bounds are depicted using the standard error of each estimator with a 95% confidence interval.

Figure 4.17: Comparison of the convergence of American call and put options

47

48 SIMULATION RESULTS AND ALGORITHM IMPROVEMENT

20.0000 s
10.0084 a
3.2600 s
c 0.6771 8
il
®
£
»
W 0.0694 8
Method
o BAW
o] A Binomial
0.0024 & o LSME
70 80 90 100 110 120
Spot Price

1. Values are computed using LSMC on a Bermudan call with 500 exercise opportunities and 10,000
paths; control variates and regression scheme following Rasmussen (2005);

2.Values are computed using Barone Adesi and Whaley (1987)’s quadratic approximation on American
calls of an underlying asset for a given cost-of-carry rate (i.e., dividend yield).

3. Values are computed using binomial tree of 3,000 steps.

Figure 4.18: Comparison of LSMC!, Barone Adesi and Whaley (1987)? and binomial tree3

cise opportunities is the computation time required. Brownian bridge is proposed to make

the simulation of stock paths in American options more efficient (Chaudhary, 2005).

4.4 SUMMARY

The analyses confirmed the least-squares Monte Carlo method is the most efficient Monte
Carlo method for pricing options with early exercise opportunities. For the ease of bench-
marking with closed-form solutions, the analyses assumed all assets following a risk-
neutral process. In future studies, we are able to relax this assumption and price options
with underlying assets following other processes such as jump-diffusion process and vari-
ance gamma process (Joshi (2008)). Another direction for further investigation is to im-
prove the efficiency of LSMC. First, we have seen regression schemes with high degree
polynomials or smoothing splines did not perform well in high dimensional problems, but
we do not know whether increasing the number of simulated paths will improve the perfor-
mance of these regressions schemes. Second, the usage of low-discrepancy sequences could
potentially be enhanced via Brownian bridge. Lastly, other control variates can be studied

in addition to European options.

5 LSMC FOR REAL OPTIONS ANALYSIS

An analogous of financial options with early exercise provisions in the area of real options
is an option to delay a project. We will see the pricing of these options shares similar char-
acteristics. For example, in a capital budgeting problem, a manager will decide whether to
invest in a project; the project will be rejected if it has a negative net present value (NPV)

based on the conventional discounted cash flow method (DCF):

reject if: NPV < 0;
accept, otherwise.

However, if a manager has the option to invest in a project any time in the future before
time T, we will find the NPV can be expressed in terms of expectation of discounted future

project value V,,
NPV = sup Egle'" V], (5.1)

0<t<T
given information available today. The objective is to find the optimal investment time T
that maximize the NPV in equation (5.1). If this NPV is non-negative, we will invest in
the project. Otherwise, the project is rejected. The least-squares Monte Carlo method is

applied here to approximate future project values.

5.1 VALUE OF WAITING TO INVEST

McDonald and Siegel (1986) studies the following problem: a project requires initial invest-
ment K; the project will generate a stream of cash flows S;,t = 1,...,T at the end of each

year for T years, these cash flows follow a risk-neutral process,

dSt/St = (1’ — 5){11' + Uth,

49

50

LSMC FOR REAL OPTIONS ANALYSIS

where r is the risk-free rate, ¢ is the convenience yield ! from implementing the project, o
is the volatility of the project cash flow, and {W; }o<;<7 is a Brownian process.
At time t = 0, we can compute the expected NPV of this project using DCF as

T

T
V(S0,0) =FEo| Y Sie® =Y Ce " — K|,
t=1 t=1

where C;,t =1,2,...,T are the cost incurred by the project.

Since the decision maker has the option to invest in the project either today or some-
times in the future, the associated future cash flow uncertainty will add value to the
project. According to McDonald and Siegel (1986), the project value embedding the op-
tion to delay, V(S;,t), can be computed by the optimal commodity price S;, above which we

should invest in the project, and corresponding investment time 7 as follows:

d
S: C S
where
od
ST = H(C/T + K)/
m=1/2—(r—6)d?
d=m-+/m?2+2r/o?
and the NPV is

V(S0,0) = Eole "V (S, T)],

where S; is the price above which it is optimal to make the investment. Note that if we
assume constant cash flow S and cost C for the project, for a perpetual project (T — o),
the optimal project value is

c_
p

V(Se,7) = g ¢k

which is the same as the DCF estimation. This solution provides a good benchmark for our

Monte Carlo implementation.

The convenience yield is the benefit from holding a certain commodity. For example, a electronic
manufacturer may benefit from holding physical copper to meet the unexpected shortage.

5.2 CASE STUDY: MINING TECHNOLOGY 51

We apply LSMC to pricing the option to delay. In particular, we are interested in

finding the optimal investment time 7 in

V(S0,0) = sup [Eole" V(S 1))
t€{01,..., T}

The estimation is done via value iteration:

1. At the end of investment horizon T, the project NPV is calculated assuming invest-

ment starts at time T:
V(St,T) = max(Sre °T — Cre™'T — K, 0),

if there is immediate profit and cost cash flow from investing in the project, and set

T=T.

2. Fort=T-1,T—-2,...,0, we update the project value iteratively via

T . T .
V(St, t) = max (Zsie‘” — ZCie*” — K,]Et[V(ST, T)]), (5.3)
i=t i=t

if Y7, Sie % — YT Ciem" — K > E{(V(S:, 7)), update T = t; do not update T otherwise.

3. At t = 0, we estimate the project NPV as

T T
V(Sp,0) = max (Y Sie® =Y Cie" — K, Eo[V(Ss, r)]). (5.4)
i=0 i=0

We use LSMC algorithm to approximate the expectation in equations (5.3) and (5.4).

5.2 CASE STUDY: MINING TECHNOLOGY

The analysis is based on the case study in Crundwell (2008). A mining company wishes to
decide whether they should invest in a new copper concentrate refinement technology. The
technology will enable the company to produce high-grade copper. The price of the refined
copper concentrate is determined by treatment costs and refining charges, or TC/RC, in

US c/Ib. The following table specifies the parameters for this project:

52

LSMC FOR REAL OPTIONS ANALYSIS

Project Specification

Current copper concentrate price (Sy) 29 US c/lb
Annualised copper concentrate volatility (o) 0.2
Production cost (C) 17 US ¢/Ib
Annualised convenience yield (5) 0.05
Annualised risk-free rate () 0.05
Initial investment (K) 90 US ¢/lb

We further assume the manager can make the decision at the end of each year for
100 years. Results in Figure 5.1 shows the option to delay inflates the project value. At
the current TC/RC price of 29 US ¢/lb, the DCF method returns a NPV of 148.175 US ¢/lb,
while the analytical solution gives 183.083 US c/lb and the LSMC returns 187.144 US c¢/lb.
Note that the trajectory of project NPV follows that of a call option, where the spot price
is underlying commodity value and the strike is the initial investment K plus discounted

production cost.

+
+
¥
¥
750 oy
+ D:"
+ o ®
+ ol
+ ox
+ o
+ 2)‘
+g ¥
+e
° + 8
= 500 59
o ¥
= *
o #
o z'
<% |8
“ e o
x g]
250 el ¥
x1s
e 'E
xite
it -
xg;i*’ o method
£ o p .
4;! o + Analytical Option Value
- * Do a
e * o © Intrinsic Value
0 eesssstiiicocosccacsa o % LSMC Simulation

0 10 20 30 40 50 60
TCIRC Price

1. Values are computed using Longstaff and Schwartz (2001), the response is the simulated future project
value, and covariates are the current commodity prices. First three Laguerre polynomials are used as the
regression basis. 5000 paths are simulated over a 100-year horizon. 10 Monte Carlo simulations were
used for 1 estimation.

2. Values are computed using McDonald and Siegel (1986).

3. Intrinsic values are computed using the discounted cash flow method.

Figure 5.1: Comparison of project value between LSMC!, McDonald and Siegel (1986)? and DCF?

5.2 CASE STUDY: MINING TECHNOLOGY

The optimal investment price given by equation (5.2) is 40 US c¢/lb. This price is 11
US c/Ib higher than the current price, and almost doubles the price at which NPV is zero
(i.e., approximately 21.5 US c/lb). Also, at this optimal price, the NPV obtained from the
analytical solution is closest to the intrinsic NPV (390.227 US c¢/Ib compared to 389.972
US c/lb, the corresponding LSMC estimation is 395.462 US c/Ib). Indeed, if we calculate
the analytical solution with an infinite time horizon, this point? is the point of tangency
between the curve for project NPVs and the line for intrinsic NPVs as in illustrated in

Figure 5.2.

750

en
=}
=}

Project Value

380

250
method
= Analytical Option Value

===+ Intrinsic Value

optimal excercise price: 407081

0 10 20 30 40 50 60
TC/RC Price

Analytical values are computed using McDonald and Siegel (1986)’s method.
Intrinsic values are computed using the discounted cash flow method.

Figure 5.2: The optimal investment price and the point of tangency

An intuitive explanation of choosing this point is given by the delta of an option: if
the price is lower than the optimal price, the project value with embedded options will be
less sensitive to the movement of the copper price as indicated by the curve slope, and
vice versa. Only at the point of tangency, the estimated project value has the same price
sensitivity as the DCF estimation (i.e., the same slope). Therefore, the decision maker will
be protected from excessive price movement at the optimal investment price, as the project

value with real option is the same as the DCF estimation.

2 Corresponding to a project NPV of 390 US c/lb.

53

54

LSMC FOR REAL OPTIONS ANALYSIS

In LSMC, we suggest locating this optimal investment price by the difference between
the simulated value and the corresponding intrinsic value. The optimal investment price
occurs at the the first point when this difference is lower than a predetermined level (we
use 0.001).

The performance of LSMC in the above example is not comparable with the analytical
solution. With a horizon of 100 years, the LSMC method takes more than a minute to
produce an estimation with spot commodity price 29 US c¢/Ib using 5000 paths, but the

estimation error is large.

5.3 OPTIONS TO DELAY ON TWO FACTORS

Nonetheless, if the project is dependent on multiple factors, where there is no closed-form
solution, LSMC will be useful. We demonstrate this by allowing the cost C in the above

example to follow a risk-neutral process:

dCCt = rcdt + o.dWF, (5.5)
t

where the drift rate r. = 0, the annualised volatility o, = 0.05 and {Wf }o<;<r is a Brownian
process. The correlation between the income and cost cash flow is p = 0.5. We limit the
investment horizon to 10 years and use 10,000 simulation paths. All other parameters are
the same as the previous mining technology case study.

The optimal exercise price is 48 US c¢/lb, the estimated NPV of the project is 159
US c/Ib from LSMC and 149 US c/lb from DCF. The inclusion of an additional stochastic
factor significantly reduces the project value even with the option being embedded. Figure
5.3 shows that the option premium converges to zero as the cooper concentration price
increases.

We determined the the optimal investment price at 74 US ¢/lb, when the difference
between LSMC and DCF estimation is first observed lower than 0.001. With two stochastic
processes for the project value, the optimal price to investment is significantly pushed up.
Even at this significantly higher price, the realised project value is 350 US c/lb, which is
50 US c¢/lb lower than the previous example.

5.4 SUMMARY

4
oo g

350 "

Project Value
e,

s,
e

o
200 &

o4 method

o°°+ A

e o + Intrinsic Value

¢ LSMC Simulation

0 10 20 30 40 50 60 70 80 90 100

TC/RC Price

Figure 5.3: LSMC estimation of the optimal investment price
5.4 SUMMARY

The valuation of projects with the options to delay shares similar characteristics as the
pricing for a call option with early exercise provisions. The illustrated cases showed signif-
icant value could be added by these options. However, it should be noticed that the high
project NPV produced via real option analysis alone cannot be used to justify the accep-
tance of a project that is rejected by DCF. In particular, a decision maker should assess
the real-world probability of the underlying assets to reach the optimal investment price.
If this probability is low, then, we should not take the project. Another case to consider is
whether the new technology will be exclusive to the company. If other companies can de-
velop the technology to produce high-quality copper as well, the project will not realise the
estimated NPV. Therefore, although real option analysis helps us uncover the time value
embedded in decision making process, for a more prudent result, we should treat it as an

upper bound at which the project can worth rather than a lower bound.

55

6 CONCLUSIONS AND DIRECTIONS OF FUTURE RESEARCH

Options with early exercise provisions are important financial derivatives. Monte Carlo
methods provide resilient and efficient solutions for pricing these options. Our results indi-
cated superior performance of the least-squares Monte Carlo method; and found European
options are effective control variates for improving the accuracy of the Monte Carlo estima-
tion for Bermudan option prices. The extension to the option to delay demonstrated that
Monte Carlo methods are useful in real investment decision problems other than pricing
financial derivatives. In light of these critical findings, we believe that our analyses may
contribute to the selection of efficient Monte Carlo methods for option valuation as well as
the improvements on the least-squares Monte Carlo method.

Monte Carlo methods could be applied quite reliably in other financial decision con-
texts without a significant degradation in performance. Future work will mainly cover the
improvements and additional applications of the least-squares Monte Carlo method, in-
cluding (1) the choice of regression schemes under different number of simulation paths;
(2) the application of the algorithm for options with underlying assets following stochas-
tic processes other than the geometric Brownian motion; and (3) the extension to complex
capital budgeting problems with embedded real options such as the option to abandon and

expand.

56

A APPENDIX: SIMULATION RESULTS

A.1 SIMULATION RESULTS FOR BERMUDAN CALLS ON A SINGLE ASSET

Table A.1: Comparison of LSMC and EM-C algorithm for a Bermudan call

Method Branches Stock Price Estimation S.E. Benchmark Error RMSE Relative SE
LSM with control 5000 70 0.12111 0.0001 0.1212 -0.0008 0.0001 0.077%
80 0.67000 0.0003 0.6699 0.0001 0.0000 0.049%
90 2.30358 0.0006 2.3030 0.0003 0.0006 0.024%
100 5.73010 0.0010 5.7299 0.0000 0.0011 0.017%
110 11.33962 0.0015 11.3410 -0.0001 0.0014 0.014%
120 20.00000 0.0000 20.0000 0.0000 0.0000 0.000%
20000 70 0.1212 0.0001 0.1212 0.0002 0.0002 0.046%
80 0.6698 0.0001 0.6699 -0.0002 0.0002 0.017%
90 2.3029 0.0003 2.3030 0.0000 0.0001 0.011%
100 5.7288 0.0005 5.7299 -0.0002 0.0002 0.009%
110 11.3397 0.0006 11.3410 -0.0001 0.0013 0.005%
120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%
EM-C 5000 70 0.1180 0.0019 0.1212 0.0265 0.0032 1.636%
80 0.6714 0.0072 0.6699 0.0022 0.0015 1.065%
90 2.3055 0.0114 2.3030 0.0011 0.0025 0.495%
100 5.7438 0.0126 5.7299 0.0024 0.0139 0.220%
110 11.3304 0.0154 11.3410 0.0009 0.0106 0.136%
120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%
20000 70 0.1207 0.0009 0.1212 0.0038 0.0005 0.712%
80 0.6688 0.0029 0.6699 0.0016 0.0011 0.430%
90 2.2952 0.0056 2.3030 0.0034 0.0078 0.242%
100 5.7309 0.0076 5.7299 0.0002 0.0010 0.132%
110 11.3442 0.0057 11.3410 0.0003 0.0032 0.050%
120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%

Each estimation was obtained using 25 Monte Carlo estimations. 4 digits are reported for each estimation and accuracy measures. Compu-
tation time (for 1 Monte Carlo Estimation): LSMC (5000 paths, spot price = 100), 0.1 seconds; LSMC (20000 paths, spot price = 100), 0.3
seconds; For options deep in the money (spot price = 120), the computation time required will increase by around 0.02 seconds for 5000 paths
and decrease by around 0.03 seconds if the the option is out of money ((spot price = 70). EM-C algorithm (5000 paths), 0.9 seconds;EM-C
algorithm (20000 paths), 2.5 seconds. Stock spot price as indicated in the table. Est. denotes estimator. S.E. denotes standard error of the
estimator and a 95%confidence interval was calculated using the low and the high estimator in the tree method. Each estimator was obtained

using 25 Monte Carlo estimations.

SIMULATION RESULTS

APPENDIX

58

Table A.2: Comparison of random tree and stochastic mesh for a Bermudan call
Method Paths Stock Price Low est. S.E. Low est High est. S.E. Low est Confidence In- Point est. Benchmark Error

RMSE Relative SE

terval

Stochastic Mesh 10 70 0.1186 0.0013 0.1214 0.0005 [0.1165,0.1222] 0.1200 0.1210 0.0082 0.0038 0.393%
80 0.6283 0.0055 0.6924 0.0021 [0.6193,0.6959] 0.6603 0.6700 0.0144 0.0179 0.318%

90 2.1420 0.0169 2.5020 0.0082 [2.114,2.516] 2.3220 2.3030 0.0083 0.0594 0.352%

100 5.4380 0.0270 6.2790 0.0154 [5.394,6.305] 5.8590 5.7310 0.0223 0.1600 0.263%

110 11.1800 0.0353 12.1500 0.0239 [11.12,12.18] 11.6600 11.3410 0.0282 0.3490 0.205%

120 20.3500 0.0149 20.7400 0.0161 [20.33,20.77] 20.5500 20.0000 0.0274 0.5510 0.078%

50 70 0.1204 0.0003 0.1215 0.0001 [0.12,0.1217] 0.1210 0.1210 0.0002 0.0009 0.098%
80 0.6510 0.0019 0.6849 0.0008 [0.6479,0.6863] 0.6679 0.6700 0.0031 0.0061 0.127%

90 2.2340 0.0056 2.3940 0.0053 [2.225,2.399] 2.3140 2.3030 0.0049 0.0225 0.229%

100 5.5830 0.0113 5.9650 0.0062 [5.564,5.975] 5.7740 5.7310 0.0075 0.0579 0.107%

110 11.1300 0.0176 11.6400 0.0128 [11.1,11.66] 11.3900 11.3410 0.0040 0.0847 0.112%

120 20.0500 0.0048 20.1000 0.0051 [20.04,20.11] 20.0700 20.0000 0.0037 0.0774 0.025%
Stochastic Tree 50 70 0.1210 0.0004 0.1210 0.0004 [0.1203,0.1216] 0.1210 0.1210 0.0001 0.0019 0.317%
80 0.6683 0.0017 0.6686 0.0017 [0.6655,0.6713] 0.6685 0.6700 0.0023 0.0082 0.248%

90 2.2963 0.0032 2.3009 0.0031 [2.291,2.306] 2.2986 2.3030 0.0019 0.0161 0.136%

100 5.7187 0.0014 5.7401 0.0012 [5.7164,5.7419] 5.7294 5.7310 0.0003 0.0064 0.020%

110 11.2796 0.0035 11.3595 0.0020 [11.2738,11.3627] 11.3195 11.3410 0.0019 0.0247 0.018%

120 19.9933 0.0097 20.0161 0.0082 [19.9773,20.0296] 20.0158 20.0000 0.0008 0.0326 0.041%

70 70 0.1212 0.0004 0.1212 0.0004 [0.1206,0.1218] 0.1212 0.1210 0.0018 0.0018 0.305%
80 0.6679 0.0011 0.6681 0.0011 [0.6659,0.6699] 0.6680 0.6700 0.0030 0.0059 0.170%

90 2.3005 0.0022 2.3038 0.0021 [2.2969,2.3072] 2.3022 2.3030 0.0004 0.0106 0.092%

100 5.7222 0.0011 5.7367 0.0011 [5.7203,5.7384] 5.7295 5.7310 0.0003 0.0056 0.019%

110 11.3188 0.0016 11.3547 0.0012 [11.3161,11.3567] 11.3367 11.3410 0.0004 0.0077 0.011%

120 19.9882 0.0085 19.9983 0.0078 [19.9742,20.0111] 20.0046 20.0000 0.0002 0.0261 0.039%

100 70 0.1212 0.0003 0.1213 0.0003 [0.1208,0.1216] 0.1212 0.1210 0.0021 0.0013 0.221%
80 0.6682 0.0012 0.6683 0.0012 [0.6662,0.6702] 0.6683 0.6700 0.0026 0.0059 0.173%

90 2.3017 0.0015 2.3040 0.0015 [2.2992,2.3063] 2.3028 2.3030 0.0001 0.0073 0.064%

100 5.7263 0.0010 5.7367 0.0010 [5.7246,5.7383] 5.7315 5.7310 0.0001 0.0049 0.017%

110 11.3297 0.0014 11.3504 0.0012 [11.3274,11.3524] 11.3401 11.3410 0.0001 0.0065 0.011%

120 20.0080 0.0066 20.0104 0.0064 [19.9971,20.0209] 20.0141 20.0000 0.0007 0.0278 0.032%

Stock spot price as indicated in the table. Est. denotes estimator. S.E. denotes standard error of the estimator and a 95%confidence interval was calculated using the
low and the high estimator. Each estimator was obtained using 25 Monte Carlo estimations. Point estimator was calculated as (max(SpotPrice — K, LowEstimator) +

HighEstimator) /2. The relative SE is calculated as the estimation divided by its standard error.

A.1 SIMULATION RESULTS FOR BERMUDAN CALLS ON A SINGLE ASSET

Table A.3: Convergence of LSMC with low-discrepancy sequences in a single dimension

Method Paths Stock Price Point est. S.E. Benchmark Error RMSE Relative SE
LSM with Halton and AV 1000 100 57374 0.0013 100 0.0013 0.0075 0.023%
2000 100 5.7334 0.0009 100 0.0006 0.0035 0.015%
3000 100 5.7317 0.0009 100 0.0003 0.0018 0.015%
4000 100 5.7309 0.0007 100 0.0002 0.0010 0.012%
5000 100 5.7308 0.0008 100 0.0002 0.0009 0.013%
6000 100 5.7308 0.0007 100 0.0001 0.0009 0.013%
10000 100 5.7302 0.0007 100 0.0001 0.0003 0.012%
20000 100 5.7300 0.0007 100 0.0000 0.0001 0.011%
50000 100 5.7297 0.0006 100 0.0000 0.0002 0.011%
100000 100 5.7297 0.0006 100 0.0000 0.0002 0.011%
LSM with Pseudo and AV 1000 100 57349 0.0019 100 0.0009 0.0050 0.033%
2000 100 5.7325 0.0016 100 0.0004 0.0026 0.027%
3000 100 57304 0.0015 100 0.0001 0.0005 0.026%
4000 100 5.7300 0.0011 100 0.0000 0.0001 0.019%
5000 100 5.7307 0.0011 100 0.0001 0.0008 0.019%
6000 100 5.7310 0.0008 100 0.0002 0.0011 0.015%
10000 100 5.7306 0.0008 100 0.0001 0.0007 0.013%
20000 100 5.7302 0.0005 100 0.0001 0.0003 0.009%
50000 100 5.7306 0.0003 100 0.0001 0.0007 0.005%
100000 100 5.7304 0.0002 100 0.0001 0.0005 0.004%
LSM with Pseudo 1000 100 5.7292 0.0025 100 0.0001 0.0007 0.044%
2000 100 5.7289 0.0016 100 0.0002 0.0010 0.027%
3000 100 57311 0.0015 100 0.0002 0.0012 0.026%
4000 100 5.7320 0.0013 100 0.0004 0.0021 0.022%
5000 100 57313 0.0013 100 0.0002 0.0014 0.024%
6000 100 5.7297 0.0010 100 0.0000 0.0002 0.018%
10000 100 5.7303 0.0008 100 0.0001 0.0004 0.014%
20000 100 5.7303 0.0006 100 0.0001 0.0004 0.011%
50000 100 5.7305 0.0004 100 0.0001 0.0006 0.007%
100000 100 5.7308 0.0003 100 0.0002 0.0009 0.005%
LSM with Halton 1000 100 5.7319 0.0016 100 0.0003 0.0020 0.028%
2000 100 5.7300 0.0014 100 0.0000 0.0001 0.024%
3000 100 5.7299 0.0014 100 0.0000 0.0000 0.025%
4000 100 5.7300 0.0015 100 0.0000 0.0001 0.025%
5000 100 5.7297 0.0014 100 0.0000 0.0002 0.024%
6000 100 57298 0.0013 100 0.0000 0.0001 0.023%
10000 100 5.7294 0.0013 100 0.0001 0.0005 0.023%
20000 100 57293 0.0013 100 0.0001 0.0006 0.022%
50000 100 5.7292 0.0013 100 0.0001 0.0007 0.022%
100000 100 57292 0.0013 100 0.0001 0.0007 0.022%
LSM with Moment Matching 1000 100 5.7310 0.0026 100 0.0002 0.0011 0.045%

Continued on next page

59

60 APPENDIX: SIMULATION RESULTS

Table A.3 - continued from previous page

Method Paths Stock Price Point est. S.E. Benchmark Error RMSE Relative SE

2000 100 5.7293 0.0016 100 0.0001 0.0006 0.028%

3000 100 5.7312 0.0012 100 0.0002 0.0013 0.020%

4000 100 5.7296 0.0011 100 0.0000 0.0003 0.019%

5000 100 5.7305 0.0010 100 0.0001 0.0006 0.018%

6000 100 5.7300 0.0010 100 0.0000 0.0001 0.018%

10000 100 5.7308 0.0009 100 0.0002 0.0009 0.016%

20000 100 5.7303 0.0006 100 0.0001 0.0004 0.010%

50000 100 5.7305 0.0003 100 0.0001 0.0006 0.005%

100000 100 5.7308 0.0002 100 0.0001 0.0009 0.004%

LSM with Sobol 1000 100 5.7259 0.0019 100 0.0007 0.0040 0.034%
2000 100 5.7303 0.0010 100 0.0001 0.0004 0.017%

3000 100 5.7308 0.0012 100 0.0002 0.0009 0.021%

4000 100 5.7305 0.0008 100 0.0001 0.0006 0.014%

5000 100 5.7293 0.0006 100 0.0001 0.0006 0.011%

6000 100 5.7295 0.0007 100 0.0001 0.0004 0.013%

10000 100 5.7303 0.0006 100 0.0001 0.0004 0.011%

20000 100 5.7301 0.0003 100 0.0000 0.0002 0.005%

50000 100 5.7302 0.0002 100 0.0001 0.0003 0.004%

100000 100 5.7303 0.0002 100 0.0001 0.0004 0.003%

LSM with Sobol and AV 1000 100 5.7313 0.0011 100 0.0002 0.0014 0.019%
2000 100 5.7302 0.0007 100 0.0001 0.0003 0.012%

3000 100 5.7315 0.0005 100 0.0003 0.0016 0.010%

4000 100 5.7304 0.0004 100 0.0001 0.0005 0.007%

5000 100 5.7294 0.0006 100 0.0001 0.0005 0.010%

6000 100 5.7302 0.0004 100 0.0001 0.0003 0.007%

10000 100 5.7303 0.0004 100 0.0001 0.0004 0.007%

20000 100 5.7305 0.0002 100 0.0001 0.0006 0.004%

50000 100 5.7301 0.0002 100 0.0000 0.0002 0.003%

100000 100 5.7303 0.0001 100 0.0001 0.0004 0.001%

A.1 SIMULATION RESULTS FOR BERMUDAN CALLS ON A SINGLE ASSET

Table A.4: Accuracy of LSMC with nonlinear regression in a single dimension

Method Segments/Spar Stock Price Point est. S.E. Benchmark Error RMSE Relative SE

LSM with Piecewise Linear 3 100 5.7238 0.0070 5.7299 -0.0011 0.0052 0.122%
4 100 5.7233 0.0067 5.7299 -0.0011 0.0057 0.117%
5 100 5.7236 0.0069 5.7299 -0.0011 0.0054 0.121%
6 100 5.7247 0.0067 5.7299 -0.0009 0.0043 0.117%
7 100 5.7255 0.0069 5.7299 -0.0008 0.0035 0.120%
8 100 5.7234 0.0066 5.7299 -0.0011 0.0056 0.115%
9 100 5.7260 0.0064 5.7299 -0.0007 0.0030 0.111%
10 100 5.7263 0.0064 5.7299 -0.0006 0.0027 0.112%
11 100 5.7274 0.0067 5.7299 -0.0004 0.0016 0.117%
12 100 5.7266 0.0065 5.7299 -0.0006 0.0024 0.114%
13 100 5.7268 0.0067 5.7299 -0.0005 0.0022 0.116%
14 100 5.7262 0.0063 5.7299 -0.0006 0.0028 0.109%
15 100 5.7278 0.0064 5.7299 -0.0004 0.0012 0.111%
16 100 5.7272 0.0064 5.7299 -0.0005 0.0018 0.111%
17 100 5.7291 0.0064 5.7299 -0.0001 0.0001 0.111%
18 100 5.7288 0.0064 5.7299 -0.0002 0.0002 0.111%
19 100 5.7289 0.0064 5.7299 -0.0002 0.0001 0.112%
20 100 5.7288 0.0066 5.7299 -0.0002 0.0002 0.115%
21 100 5.7304 0.0066 5.7299 0.0001 0.0014 0.115%
22 100 5.7307 0.0065 5.7299 0.0001 0.0017 0.113%
23 100 5.7295 0.0066 5.7299 -0.0001 0.0005 0.115%
24 100 5.7299 0.0065 5.7299 0.0000 0.0009 0.113%
25 100 5.7303 0.0066 5.7299 0.0001 0.0013 0.116%
26 100 5.7311 0.0065 5.7299 0.0002 0.0021 0.114%
27 100 5.7294 0.0067 5.7299 -0.0001 0.0004 0.118%
28 100 5.7301 0.0064 5.7299 0.0000 0.0011 0.112%
29 100 5.7319 0.0066 5.7299 0.0004 0.0029 0.115%
30 100 5.7323 0.0064 5.7299 0.0004 0.0033 0.113%
LSM with Smoothing Spline 0.033 100 5.7831 0.0065 5.7299 0.0093 0.0541 0.113%
0.067 100 5.7832 0.0066 5.7299 0.0093 0.0542 0.114%
0.100 100 5.7827 0.0065 5.7299 0.0092 0.0537 0.113%
0.133 100 5.7825 0.0065 5.7299 0.0092 0.0535 0.112%
0.167 100 5.7826 0.0065 5.7299 0.0092 0.0536 0.113%
0.200 100 5.7819 0.0065 5.7299 0.0091 0.0529 0.112%
0.233 100 5.7806 0.0065 5.7299 0.0088 0.0516 0.112%
0.267 100 5.7799 0.0065 5.7299 0.0087 0.0509 0.113%
0.300 100 5.7775 0.0066 5.7299 0.0083 0.0485 0.114%
0.333 100 5.7750 0.0065 5.7299 0.0079 0.0460 0.113%
0.367 100 5.7729 0.0065 5.7299 0.0075 0.0439 0.113%
0.400 100 5.7688 0.0065 5.7299 0.0068 0.0398 0.113%
0.433 100 5.7675 0.0066 5.7299 0.0066 0.0385 0.114%
0.467 100 5.7633 0.0065 5.7299 0.0058 0.0343 0.113%
0.500 100 5.7578 0.0067 5.7299 0.0049 0.0288 0.117%

Continued on next page

61

62 APPENDIX: SIMULATION RESULTS

Table A.4 - continued from previous page

Method Segments/Spar Stock Price Point est. S.E. Benchmark Error RMSE Relative SE
0.533 100 5.7540 0.0070 5.7299 0.0042 0.0250 0.122%
0.567 100 5.7495 0.0070 5.7299 0.0034 0.0205 0.121%
0.600 100 5.7459 0.0067 5.7299 0.0028 0.0169 0.117%
0.633 100 5.7435 0.0067 5.7299 0.0024 0.0145 0.117%
0.667 100 5.7409 0.0067 5.7299 0.0019 0.0119 0.117%
0.700 100 5.7380 0.0069 5.7299 0.0014 0.0090 0.120%
0.733 100 5.7356 0.0069 5.7299 0.0010 0.0066 0.120%
0.767 100 5.7348 0.0071 5.7299 0.0008 0.0058 0.123%
0.800 100 5.7345 0.0072 5.7299 0.0008 0.0055 0.125%
0.833 100 5.7328 0.0067 5.7299 0.0005 0.0038 0.117%
0.867 100 5.7311 0.0066 5.7299 0.0002 0.0021 0.114%
0.900 100 5.7290 0.0064 5.7299 -0.0002 0.0000 0.111%
0.933 100 5.7280 0.0065 57299 -0.0003 0.0010 0.114%
0.967 100 5.7277 0.0065 57299 -0.0004 0.0013 0.114%
1.000 100 5.7273 0.0066 57299 -0.0005 0.0017 0.116%

Table A.5: Accuracy of LSMC with different regression polynomials in a single dimension

Method Degrees Stock EstimationS.E. BenchmarError RMSE Relative
Price SE

LSM with polynomial regression 1 100 5.7119 0.0069 5.7299 -0.0031 0.0171 0.121%

2 100 5.7226 0.0064 5.7299 -0.0013 0.0064 0.111%

3 100 5.7234 0.0067 5.7299 -0.0011 0.0056 0.118%

4 100 5.7237 0.0069 5.7299 -0.0011 0.0053 0.120%

5 100 5.7250 0.0068 5.7299 -0.0009 0.0040 0.119%

6 100 5.7247 0.0066 5.7299 -0.0009 0.0043 0.115%

7 100 5.7245 0.0068 5.7299 -0.0009 0.0045 0.119%

8 100 5.7248 0.0068 5.7299 -0.0009 0.0042 0.119%

9 100 5.7245 0.0067 5.7299 -0.0009 0.0045 0.116%

10 100 5.7242 0.0067 5.7299 -0.0010 0.0048 0.117%

11 100 5.7251 0.0066 5.7299 -0.0008 0.0039 0.115%

12 100 5.7250 0.0065 5.7299 -0.0009 0.0040 0.113%

13 100 5.7253 0.0064 5.7299 -0.0008 0.0037 0.112%

14 100 5.7249 0.0064 5.7299 -0.0009 0.0041 0.112%

15 100 5.7248 0.0064 5.7299 -0.0009 0.0042 0.112%

LSM with Laguerre 3 100 5.7226 0.0064 5.7299 -0.0013 0.0064 0.111%

4 100 5.7234 0.0067 5.7299 -0.0011 0.0056 0.118%

5 100 5.7237 0.0069 5.7299 -0.0011 0.0053 0.120%

6 100 5.7250 0.0068 5.7299 -0.0009 0.0040 0.119%

7 100 5.7247 0.0066 5.7299 -0.0009 0.0043 0.115%

8 100 5.7248 0.0068 5.7299 -0.0009 0.0042 0.119%

9 100 5.7248 0.0068 5.7299 -0.0009 0.0042 0.119%

Continued on next page

A.1 SIMULATION RESULTS FOR BERMUDAN CALLS ON A SINGLE ASSET

Table A.5 - continued from previous page

Method Degrees Stock EstimationS.E. BenchmarlError RMSE Relative
Price SE

10 100 5.7243 0.0067 5.7299 -0.0010 0.0047 0.117%

11 100 5.7243 0.0067 5.7299 -0.0010 0.0047 0.117%

12 100 5.7251 0.0064 5.7299 -0.0008 0.0039 0.112%

LSM with Hermite 3 100 5.7226 0.0064 5.7299 -0.0013 0.0064 0.111%

4 100 5.7234 0.0067 5.7299 -0.0011 0.0056 0.118%

5 100 5.7237 0.0069 5.7299 -0.0011 0.0053 0.120%

6 100 5.7250 0.0068 5.7299 -0.0009 0.0040 0.119%

7 100 5.7247 0.0066 5.7299 -0.0009 0.0043 0.115%

8 100 5.7245 0.0068 5.7299 -0.0009 0.0045 0.119%

9 100 5.7248 0.0068 5.7299 -0.0009 0.0042 0.119%

10 100 5.7245 0.0067 5.7299 -0.0009 0.0045 0.116%

11 100 5.7242 0.0067 5.7299 -0.0010 0.0048 0.117%

12 100 5.7251 0.0066 5.7299 -0.0008 0.0039 0.115%

LSM with Legendre 3 100 5.7226 0.0064 5.7299 -0.0013 0.0064 0.111%

4 100 5.7234 0.0067 5.7299 -0.0011 0.0056 0.118%

5 100 5.7237 0.0069 5.7299 -0.0011 0.0053 0.120%

6 100 5.7250 0.0068 5.7299 -0.0009 0.0040 0.119%

7 100 5.7247 0.0066 5.7299 -0.0009 0.0043 0.115%

8 100 5.7245 0.0068 5.7299 -0.0009 0.0045 0.119%

9 100 5.7248 0.0068 5.7299 -0.0009 0.0042 0.119%

10 100 5.7245 0.0067 5.7299 -0.0009 0.0045 0.116%

11 100 5.7242 0.0067 5.7299 -0.0010 0.0048 0.117%

12 100 5.7251 0.0066 5.7299 -0.0008 0.0039 0.115%

LSM with Chebyshev 3 100 5.7226 0.0064 5.7299 -0.0013 0.0064 0.111%

4 100 5.7234 0.0067 5.7299 -0.0011 0.0056 0.118%

5 100 5.7237 0.0069 5.7299 -0.0011 0.0053 0.120%

6 100 5.7250 0.0068 5.7299 -0.0009 0.0040 0.119%

7 100 5.7247 0.0066 5.7299 -0.0009 0.0043 0.115%

8 100 5.7246 0.0068 5.7299 -0.0009 0.0044 0.119%

9 100 5.7248 0.0068 5.7299 -0.0009 0.0042 0.119%

10 100 5.7245 0.0067 5.7299 -0.0009 0.0045 0.116%

11 100 5.7242 0.0067 5.7299 -0.0010 0.0048 0.117%

12 100 5.7251 0.0066 5.7299 -0.0008 0.0039 0.115%

Table A.6: Comparison of LSMC with and without control variates

Method Branches Stock Price Point est. S.E. Benchmark Error Error RMSE Relative SE
LSM with control 5000 70 0.1211 0.0001 0.1212 -0.0008 0.0001 0.077%
80 0.6700 0.0003 0.6699 0.0001 0.0000 0.049%
90 2.3036 0.0006 2.3030 0.0003 0.0006 0.024%

Continued on next page

63

64 APPENDIX: SIMULATION RESULTS

Table A.6 - continued from previous page

100 5.7301 0.0010 5.7299 0.0000 0.0011 0.017%

110 11.3396 0.0015 11.3410 -0.0001 0.0014 0.014%

120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%

20000 70 0.1212 0.0001 0.1212 0.0002 0.0002 0.046%
80 0.6698 0.0001 0.6699 -0.0002 0.0002 0.017%

90 2.3029 0.0003 2.3030 0.0000 0.0001 0.011%

100 5.7288 0.0005 5.7299 -0.0002 0.0002 0.009%

110 11.3397 0.0006 11.3410 -0.0001 0.0013 0.005%

120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%

LSM without control 5000 70 0.1203 0.0017 0.1212 -0.0076 0.0007 1.433%
80 0.6709 0.0050 0.6699 0.0016 0.0009 0.751%

920 2.3053 0.0111 2.3030 0.0010 0.0023 0.483%

100 5.7252 0.0156 5.7299 -0.0008 0.0038 0.273%

110 11.3286 0.0105 11.3410 -0.0011 0.0124 0.093%

120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%

20000 70 0.1197 0.0008 0.1212 -0.0122 0.0013 0.709%
80 0.6667 0.0026 0.6699 -0.0047 0.0033 0.388%

920 2.2944 0.0051 2.3030 -0.0037 0.0086 0.223%

100 5.7229 0.0068 5.7299 -0.0012 0.0061 0.119%

110 11.3279 0.0061 11.3410 -0.0012 0.0131 0.054%

120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%

Table A.7: Comparison of LSMC with restricted and unrestricted sample paths

Method Sample Paths Stock EstimationS.E. BenchmarError RMSE Relative
Price SE

LSM with control Unrestricted 70 0.1212 0.0001 0.1212 0.0002 0.0002 0.046%

80 0.6693 0.0001 0.6699 -0.0009 0.0007 0.019%

90 2.2888 0.0002 2.3030 -0.0062 0.0142 0.010%

100 5.6086 0.0004 5.7299 -0.0212 0.1204 0.007%

110 10.8598 0.0005 11.3410 -0.0424 0.4812 0.004%

120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%

Restricted 70 0.1212 0.0001 0.1212 0.0002 0.0002 0.046%
80 0.6698 0.0001 0.6699 -0.0002 0.0002 0.017%
90 2.3029 0.0003 2.3030 0.0000 0.0001 0.011%
100 5.7288 0.0005 5.7299 -0.0002 0.0002 0.009%

110 11.3397 0.0006 11.3410 -0.0001 0.0013 0.005%

120 20.0000 0.0000 20.0000 0.0000 0.0000 0.000%

A.2 SIMULATION RESULTS FOR BERMUDAN CALLS ON MULTIPLE ASSETS

A.2 SIMULATION RESULTS FOR BERMUDAN CALLS ON MULTIPLE ASSETS

Table A.8: Accuracy of LSMC with different regression polynomials for pricing a Bermudan call on

the geometric average of five assets

Method Degrees Stock Estimation S.E. BenchmarkError RMSE Relative
Price SE

LSM with polynomial regression 1 100 3.0419 0.0013 3.0495 0.0025 0.0076 0.043%

2 100 3.0478 0.0009 3.0495 0.0006 0.0017 0.031%

3 100 3.0478 0.0009 3.0495 0.0005 0.0017 0.029%

4 100 3.0477 0.0009 3.0495 0.0006 0.0018 0.031%

5 100 3.0478 0.0010 3.0495 0.0006 0.0017 0.031%

6 100 3.0476 0.0009 3.0495 0.0006 0.0019 0.031%

7 100 3.0475 0.0010 3.0495 0.0007 0.0020 0.032%

8 100 3.0475 0.0010 3.0495 0.0007 0.0020 0.033%

9 100 3.0474 0.0009 3.0495 0.0007 0.0021 0.031%

10 100 3.0474 0.0009 3.0495 0.0007 0.0021 0.031%

11 100 3.0473 0.0009 3.0495 0.0007 0.0022 0.031%

12 100 3.0472 0.0009 3.0495 0.0008 0.0023 0.030%

LSM with Laguerre 3 100 3.0478 0.0009 3.0495 0.0006 0.0017 0.031%

4 100 3.0478 0.0009 3.0495 0.0005 0.0017 0.029%

5 100 3.0477 0.0009 3.0495 0.0006 0.0018 0.031%

6 100 3.0478 0.0010 3.0495 0.0006 0.0017 0.031%

7 100 3.0477 0.0009 3.0495 0.0006 0.0018 0.030%

8 100 3.0475 0.0010 3.0495 0.0007 0.0020 0.032%

9 100 3.0474 0.0010 3.0495 0.0007 0.0021 0.032%

10 100 3.0474 0.0010 3.0495 0.0007 0.0021 0.031%

11 100 3.0474 0.0009 3.0495 0.0007 0.0021 0.031%

12 100 3.0472 0.0009 3.0495 0.0008 0.0023 0.031%

LSM with Hermite 3 100 3.0478 0.0009 3.0495 0.0006 0.0017 0.031%

4 100 3.0478 0.0009 3.0495 0.0005 0.0017 0.029%

5 100 3.0477 0.0009 3.0495 0.0006 0.0018 0.031%

6 100 3.0478 0.0010 3.0495 0.0006 0.0017 0.031%

7 100 3.0475 0.0010 3.0495 0.0007 0.0020 0.032%

8 100 3.0475 0.0010 3.0495 0.0007 0.0020 0.032%

9 100 3.0475 0.0010 3.0495 0.0007 0.0020 0.033%

10 100 3.0474 0.0010 3.0495 0.0007 0.0021 0.032%

11 100 3.0474 0.0010 3.0495 0.0007 0.0021 0.031%

12 100 3.0473 0.0009 3.0495 0.0007 0.0022 0.031%

LSM with Legendre 3 100 3.0478 0.0009 3.0495 0.0006 0.0017 0.031%

4 100 3.0478 0.0009 3.0495 0.0005 0.0017 0.029%

5 100 3.0477 0.0009 3.0495 0.0006 0.0018 0.031%

6 100 3.0478 0.0010 3.0495 0.0006 0.0017 0.031%

7 100 3.0475 0.0009 3.0495 0.0007 0.0020 0.031%

Continued on next page

65

66 APPENDIX: SIMULATION RESULTS

Table A.8 - continued from previous page

Method Degrees Stock Estimation S.E. BenchmarkError RMSE Relative
Price SE

8 100 3.0475 0.0010 3.0495 0.0007 0.0020 0.032%

9 100 3.0474 0.0010 3.0495 0.0007 0.0021 0.033%

10 100 3.0474 0.0009 3.0495 0.0007 0.0021 0.031%

11 100 3.0474 0.0009 3.0495 0.0007 0.0021 0.031%

12 100 3.0473 0.0009 3.0495 0.0007 0.0022 0.031%

LSM with Chebysheve 3 100 3.0478 0.0009 3.0495 0.0006 0.0017 0.031%
4 100 3.0478 0.0009 3.0495 0.0005 0.0017 0.029%

5 100 3.0477 0.0009 3.0495 0.0006 0.0018 0.031%

6 100 3.0478 0.0010 3.0495 0.0006 0.0017 0.031%

7 100 3.0477 0.0009 3.0495 0.0006 0.0018 0.031%

8 100 3.0475 0.0010 3.0495 0.0007 0.0020 0.032%

9 100 3.0474 0.0010 3.0495 0.0007 0.0021 0.032%

10 100 3.0474 0.0009 3.0495 0.0007 0.0021 0.031%

11 100 3.0474 0.0009 3.0495 0.0007 0.0021 0.031%

12 100 3.0473 0.0009 3.0495 0.0007 0.0022 0.031%

67

A.2 SIMULATION RESULTS FOR BERMUDAN CALLS ON MULTIPLE ASSETS

%L00°0 T€00°0 TO00'0 0086'S% LT00°0 69L6'9% 02T

%900°0 €T00°0 T000'0 0¥26'9T 1100°0 L226'9T [UAS

%L00°0 ¥100°0 20000 0T9¢'6 L000°0 969€°6 00T

%600°0 T000°0 0000°0 0LLOY ¥000°0 TLLOY 06

%ET0°0 T000°0 T000°0 0692°T 2000°0 16921 08

%830°0 §000°0 0200°0 0L82°0 1000°0 §962°0 0L 00002
%910°0 §000°0 00000 0086°'SG% 2v00°0 96L6°'9% 02T

%L10°0 €T00°0 T000'0 0¥26'9T 8200°0 £526'9T [UAS

%810°0 €200°0 2000°0 0T9¢'6 9T00°0 L8SE'6 00T

%030°0 0T00°0 €000°0 0LLOY 8000°0 09L0% 06

%S€0°0 8000°0 9000°0 0692°T ¥000°0 384T’ T 08

%8v0°0 L0000 6200°0 0L82°0 1000°0 £962°0 0L 0009 ONST
%988°0 T09€'L 6L9€°0 008693 002002 [LTL8'LE‘98¥8 93] ¥Y150°0 EL8L'LT £€6%0°0 162695 02T

%6850 9¥9'9 09850 0¥26'9T 006€'TT [LBTE'8TBLIGY LT] 0860°0 G89¢'8T 8¥€0°0 VYIL'LT 0TI

%IVL0 99L8'Y 6SVL0 0T9¢'6 0vLL'S [6LTG 0T GY6L'6] 6300 0LYT 0T ¥ev0'0 £%98'6 00T

%096°0 VYL10'c 2SL8°0 0LLOY [U4R¥d [S80¥"¥'3€EE 7] 2220°0 0BLEY 91200 8892°% 06

%09T'T LGS9°0 T8L6°0 0692°T 6L99°0 [€0G€'T°G00€ T] LL00°0 9LEE'T LL00°0 TETE'T 08

%LOT'E V1210 €666°0 0LE2°0 01210 [76750°€¥€5 0] 8600°0 88¥2°0 L800°0 S0¥2°0 0L 02
%V68€°0 3L69°0 60T0'0 008693 LL69°G% [T6L8'LE LSOV €G] €I0T°0 GCIL' LT §89T°0 628968 02T

%10S°0 S¥0L'0 ¥IE0°0 0¥26'9T 9G57'LT [3L1E'81°6899°9T] ¥L80°0 VELO'ST 92010 LLESIT 0Tt

BIELO GLIY'0 8920°0 0T9¢°6 L1196 [€LE00T¥Z6T 6] 20L0°0 8126'6 79900 9T0€°6 00T

%6SL°0 TIST'0 T¥00°0 0LLOY 8660'% [8L95°7'90€6°€] 11€0°0 L90T'¥ §0€0°0 8086'€¢ 06

%€69'T €EYT'0 9180°0 0652°T L8YT'T [T€02'T1°9960°T1 ¥610°0 TILT'T 6LT0°0 G93T'T 08

BISL'E €9%0°0 ¥80T°0 0LE2°0 €11%°0 [6925°0'8S61°0] 6L00°0 6812°0 8L00°0 L802°0 0L 0T POYISIAL 934,

S 2Ry HSINY

[eAxd)

JOXXY YJeWYoudy ‘ISO JUI0g -UJ JOUIPYUO)) 1S9 MO “H'S IS0 YSIH S0 MO ‘'S ‘IS0 MO 90LIJ YO0)S SYIed POYION

uorjdo [[eo-XeW UBpNULIdY € J0J DIAST PUE 9913 WOopUe. 93 Jo uostredwo)) :6°y 9[qe],

68 APPENDIX: SIMULATION RESULTS

Table A.10: Accuracy of LSMC with nonlinear regression for pricing a Bermudan call on the geo-
metric average of five assets

Method Segments/Spar Stock EstimationS.E. BenchmarkError RMSE Relative
Price SE
LSM with Piecewise Linear 3 100 3.0478 0.0009 3.0495 0.0006 0.0017 0.029%
4 100 3.0474 0.0009 3.0495 0.0007 0.0021 0.031%
5 100 3.0468 0.0010 3.0495 0.0009 0.0027 0.031%
6 100 3.0469 0.0009 3.0495 0.0009 0.0026 0.030%
7 100 3.0462 0.0011 3.0495 0.0011 0.0033 0.037%
8 100 3.0461 0.0008 3.0495 0.0011 0.0034 0.027%
9 100 3.0454 0.0011 3.0495 0.0014 0.0041 0.035%
10 100 3.0444 0.0015 3.0495 0.0017 0.0051 0.048%
11 100 3.0436 0.0017 3.0495 0.0019 0.0059 0.056%
12 100 3.0437 0.0015 3.0495 0.0019 0.0058 0.048%
13 100 3.0439 0.0011 3.0495 0.0018 0.0056 0.038%
14 100 3.0429 0.0014 3.0495 0.0022 0.0066 0.047%
15 100 3.0419 0.0017 3.0495 0.0025 0.0076 0.055%
16 100 3.0408 0.0017 3.0495 0.0028 0.0087 0.054%
17 100 3.0400 0.0021 3.0495 0.0031 0.0095 0.070%
18 100 3.0393 0.0019 3.0495 0.0033 0.0102 0.063%
19 100 3.0374 0.0023 3.0495 0.0040 0.0121 0.077%
20 100 3.0381 0.0020 3.0495 0.0038 0.0114 0.067%
21 100 3.0377 0.0021 3.0495 0.0039 0.0118 0.068%
22 100 3.0373 0.0022 3.0495 0.0040 0.0122 0.074%
23 100 3.0372 0.0022 3.0495 0.0040 0.0123 0.073%
24 100 3.0344 0.0027 3.0495 0.0050 0.0151 0.091%
25 100 3.0360 0.0023 3.0495 0.0044 0.0135 0.077%
26 100 3.0344 0.0025 3.0495 0.0049 0.0151 0.083%
27 100 3.0344 0.0024 3.0495 0.0049 0.0151 0.080%
28 100 3.0342 0.0025 3.0495 0.0050 0.0153 0.082%
29 100 3.0346 0.0025 3.0495 0.0049 0.0149 0.083%
30 100 3.0334 0.0023 3.0495 0.0053 0.0161 0.074%
LSM with Smoothing Spline 0.100 100 2.9948 0.0021 3.0495 0.0179 0.0547 0.071%
0.133 100 2.9960 0.0022 3.0495 0.0175 0.0535 0.072%
0.167 100 2.9976 0.0022 3.0495 0.0170 0.0519 0.072%
0.200 100 2.9991 0.0022 3.0495 0.0165 0.0504 0.073%
0.233 100 3.0008 0.0022 3.0495 0.0160 0.0487 0.074%
0.267 100 3.0025 0.0023 3.0495 0.0154 0.0470 0.075%
0.300 100 3.0042 0.0023 3.0495 0.0148 0.0453 0.075%
0.333 100 3.0063 0.0023 3.0495 0.0142 0.0432 0.075%
0.367 100 3.0082 0.0023 3.0495 0.0136 0.0413 0.077%
0.400 100 3.0107 0.0024 3.0495 0.0127 0.0388 0.078%
0.433 100 3.0135 0.0025 3.0495 0.0118 0.0360 0.083%
0.467 100 3.0159 0.0026 3.0495 0.0110 0.0336 0.085%
0.500 100 3.0185 0.0027 3.0495 0.0102 0.0310 0.088%

Continued on next page

A.2 SIMULATION RESULTS FOR BERMUDAN CALLS ON MULTIPLE ASSETS

Table A.10 - continued from previous page

Method Segments/Spar Stock EstimationS.E. BenchmarkError RMSE Relative
Price SE
0.533 100 3.0207 0.0027 3.0495 0.0095 0.0288 0.088%
0.567 100 3.0228 0.0027 3.0495 0.0088 0.0267 0.090%
0.600 100 3.0252 0.0026 3.0495 0.0080 0.0243 0.085%
0.633 100 3.0277 0.0025 3.0495 0.0071 0.0218 0.083%
0.667 100 3.0304 0.0025 3.0495 0.0063 0.0191 0.082%
0.700 100 3.0330 0.0026 3.0495 0.0054 0.0165 0.085%
0.733 100 3.0347 0.0026 3.0495 0.0049 0.0148 0.086%
0.767 100 3.0358 0.0025 3.0495 0.0045 0.0137 0.083%
0.800 100 3.0370 0.0025 3.0495 0.0041 0.0125 0.081%
0.833 100 3.0386 0.0023 3.0495 0.0036 0.0109 0.074%
0.867 100 3.0403 0.0021 3.0495 0.0030 0.0092 0.070%
0.900 100 3.0419 0.0019 3.0495 0.0025 0.0076 0.064%
0.933 100 3.0430 0.0018 3.0495 0.0021 0.0065 0.059%
0.967 100 3.0439 0.0016 3.0495 0.0018 0.0056 0.054%
1.000 100 3.0445 0.0015 3.0495 0.0016 0.0050 0.049%

Table A.11: Convergence of LSMC with low-discrepancy sequences for pricing a Bermudan call on

the geometric average of five assets

Method Paths Stock Estimation S.E. BenchmarkError RMSE Relative
Price SE

LSM with Halton and AV 1000 100 3.0516 0.0020 3.0495 0.0007 0.0021 0.067%

2000 100 3.0486 0.0015 3.0495 0.0003 0.0009 0.050%

3000 100 3.0523 0.0010 3.0495 0.0009 0.0028 0.034%

4000 100 3.0492 0.0014 3.0495 0.0001 0.0003 0.045%

5000 100 3.0499 0.0009 3.0495 0.0001 0.0004 0.029%

6000 100 3.0499 0.0010 3.0495 0.0001 0.0004 0.034%

10000 100 3.0484 0.0008 3.0495 0.0003 0.0011 0.025%

20000 100 3.0502 0.0006 3.0495 0.0002 0.0007 0.021%

50000 100 3.0495 0.0003 3.0495 0.0000 0.0000 0.010%

100000 100 3.0498 0.0003 3.0495 0.0001 0.0003 0.009%

LSM with Pseudo and AV 1000 100 3.0466 0.0023 3.0495 0.0009 0.0029 0.076%

2000 100 3.0522 0.0021 3.0495 0.0009 0.0027 0.069%

3000 100 3.0511 0.0011 3.0495 0.0005 0.0016 0.035%

4000 100 3.0495 0.0011 3.0495 0.0000 0.0000 0.038%

5000 100 3.0485 0.0013 3.0495 0.0003 0.0010 0.043%

6000 100 3.0502 0.0008 3.0495 0.0002 0.0007 0.026%

10000 100 3.0490 0.0008 3.0495 0.0002 0.0005 0.027%

20000 100 3.0496 0.0004 3.0495 0.0000 0.0001 0.013%

50000 100 3.0498 0.0004 3.0495 0.0001 0.0003 0.012%

100000 100 3.0502 0.0002 3.0495 0.0002 0.0007 0.008%

Continued on next page

69

70 APPENDIX: SIMULATION RESULTS

Table A.11 - continued from previous page

Method Paths Stock Estimation S.E. BenchmarkError RMSE Relative
Price SE

LSM with Moment Matching and AV 1000 100 3.0454 0.0021 3.0495 0.0014 0.0041 0.069%

2000 100 3.0486 0.0020 3.0495 0.0003 0.0009 0.065%

3000 100 3.0507 0.0015 3.0495 0.0004 0.0012 0.048%

4000 100 3.0498 0.0013 3.0495 0.0001 0.0003 0.043%

5000 100 3.0479 0.0009 3.0495 0.0005 0.0016 0.030%

6000 100 3.0511 0.0010 3.0495 0.0005 0.0016 0.033%

10000 100 3.0504 0.0009 3.0495 0.0003 0.0009 0.030%

20000 100 3.0495 0.0005 3.0495 0.0000 0.0000 0.017%

50000 100 3.0501 0.0004 3.0495 0.0002 0.0006 0.014%

100000 100 3.0499 0.0002 3.0495 0.0001 0.0004 0.008%

LSM with Sobol and AV 1000 100 3.0512 0.0024 3.0495 0.0006 0.0017 0.080%

2000 100 3.0481 0.0013 3.0495 0.0004 0.0014 0.043%

3000 100 3.0507 0.0014 3.0495 0.0004 0.0012 0.047%

4000 100 3.0520 0.0011 3.0495 0.0008 0.0025 0.037%

5000 100 3.0485 0.0012 3.0495 0.0003 0.0010 0.038%

6000 100 3.0522 0.0008 3.0495 0.0009 0.0027 0.027%

10000 100 3.0486 0.0007 3.0495 0.0003 0.0009 0.024%

20000 100 3.0492 0.0004 3.0495 0.0001 0.0003 0.014%

50000 100 3.0494 0.0003 3.0495 0.0000 0.0001 0.009%

100000 100 3.0495 0.0003 3.0495 0.0000 0.0000 0.009%

A.2 SIMULATION RESULTS FOR BERMUDAN CALLS ON MULTIPLE ASSETS

Table A.12: Convergence of the Bermuda to American for pricing a Bermudan call on the geometric

average of five assets

Paths StockPrice EstimationS.E. True RMSE Relative Time (Seconds)
Value SE

5000 100 2.5674 0.0000 2.5655 0.0019 0.074% 1.89
100 2.9474 0.0009 2.9351 0.0123 0.418% 2.35
100 3.0485 0.0013 3.0495 0.0010 0.032% 2.49
100 3.1025 0.0012 3.1029 0.0004 0.011% 3.33
100 3.1321 0.0012 3.1339 0.0018 0.057% 5.02
100 3.1948 0.0013 3.1946 0.0002 0.008% 8.01
100 3.2282 0.0012 3.2269 0.0013 0.041% 16.67
100 3.2482 0.0013 3.2470 0.0012 0.037% 42.30
100 3.2533 0.0010 3.2538 0.0005 0.016% 85.65
100 3.2574 0.0012 3.2573 0.0001 0.002% 173.22
100 3.2585 0.0010 3.2593 0.0008 0.026% 434.34

10000 100 3.2594 0.0011 3.2601 0.0007 0.022% 880.95
100 2.5674 0.0000 2.5655 0.0019 0.074% 3.56
100 2.9478 0.0006 2.9351 0.0127 0.434% 4.42
100 3.0490 0.0008 3.0495 0.0005 0.018% 5.06
100 3.1022 0.0010 3.1029 0.0007 0.023% 6.78
100 3.1341 0.0008 3.1339 0.0002 0.006% 8.55
100 3.1944 0.0007 3.1946 0.0002 0.007% 17.14
100 3.2262 0.0008 3.2269 0.0007 0.023% 32.49
100 3.2458 0.0009 3.2470 0.0012 0.037% 84.29
100 3.2536 0.0008 3.2538 0.0002 0.006% 158.82
100 3.2570 0.0008 3.2573 0.0003 0.009% 307.99
100 3.2588 0.0007 3.2593 0.0005 0.016% 797.06
100 3.2605 0.0009 3.2601 0.0004 0.012% 1611.54

71

B APPENDIX: PRICING ALGORITHMS

Algorithms presented in this appendix are written in R 3.4.1 (R Core Team (2017)), and
R packages (Analytics and Weston (2015), Azzalini and Genz (2016), Christophe and Petr
(2015), Izrailev (2014), Team et al. (2015), Warnes, Bolker, and Lumley (2015), and Wick-
ham (2009)).

B.1 PRICING ALGORITHMS ON A SINGLE ASSET

Algorithm 1: Pricing Bermudan option on a single asset using stochastic tree

library ();
library ();
library ();

K = 100;

delta = 0.1;

ml= 1;

sigma = 0.2;

t =¢(0,1/3,2/3,1);
tstep=1/3;

r = 0.05;

b = 100;
iteration=100;
repitition=10;

© 0T U AW N

e v e =~
B I S N O =

S = ¢(70,80,90,100,110,120);
L = length(S)
emptyr=matrix (NA, nrow=repitition, ncol=L);

=
©

20 Ehighest = emptyr;
21 Ehighestc = emptyr;
22 Elowest = emptyr;
23 Elowestc = emptyr;

o
i

pointestimateE= emptyr;
pointestimateEc=emptyr;
emptyl=matrix (NA, nrow=1, ncol=L);

NN NN
® I o W

pointestimator= emptyl;
highestimator=empty1;
lowestimator= emptyl;
pointestimatorc=emptyl;
highestimatorc= emptyl;
lowestimatorc=emptyl;

LW oW W W W W N
TR W R R O ©

sep=emptyl;

72

36
37
38
39
40
41
42
43
44
45
46
47
48

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
3
74

\1

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

B.1 PRICING ALGORITHMS ON A SINGLE ASSET

sel=emptyl;
seh=emptyl;
sepc= emptyl;
selc= emptyl;
sehc= emptyl;

CILow = emptyl;
CIHigh = emptyl;
CILowc = emptyl;

CIHighc= emptyl;

createtree=function(S,q, tstep ,r,delta ,sigma) {
Spath=matrix (NA, nrow=b"(1/tstep—1), ncol=(1/tstep—1));
Scontrol=matrix (NA, nrow=b”(1/tstep —1), ncol=(1/tstep—1));
for (p in 1:(1/tstep—1))
{
for (j in 1:b"(p-1))

{
for (i in 1:(b/2))
{
lf (p—1==0){
Sp=Slql;
}else{
Sp=Spath[j,(p—1)1;
}
x=rnorm (1, mean=0, sd=1);
Spath[b#(j —1)+i ,p]=Sp+exp ((r—delta—sigma”2/2)+tstep+sigma=*sqrt(tstep)=x);
Spath[b#(j —1)+i+b/2,p]l=Sp*exp ((r—delta—sigma”2/2)*tstep—sigmas=sqrt(tstep)*x);
}
}

}
Scontrol=Spath;
return (cbind (Spath, Scontrol));

foreach (q= 1:length(S)) %dopar%
{
for (M in l:repitition)
{
tic();
lowestc=matrix (NA, nrow=iteration, ncol=1);
lowest=matrix (NA, nrow=iteration, ncol=1);
highestc=matrix (NA, nrow=iteration, ncol=1);
highest=matrix(NA, nrow=iteration, ncol=1);
for (f in 1l:iteration)
{
Tree=createtree(S,q,tstep,r,delta,sigma);
Spath=Tree[,1:(ncol(Tree)/2)1;
Scontrol=Tree[,(ncol(Tree)/2+1):ncol(Tree)];

End=(1/tstep —1);
est=matrix (NA, nrow=b”End, ncol=End) ;
estcontrol=est;

EUVlaue= GBSOption (,as.numeric(Spath[,End]) ,K, tstep ,r,(r—delta) ,sigma)@price;

est [,End]=pmax(Spath[,End]-K,EUVlaue) ;
estcontrol [,End]=pmax(Spath[,End]-K,0) ;
for (Step in (1/tstep—2):1)
{
index=seq(1,b”A(Step+1),b);
for (i in 1:(b”Step))
{
continue=(sum(est[index[i]:(index[i]+b—1),Step+1])*exp(—r=tstep))/b;

73

74

APPENDIX: PRICING ALGORITHMS

101
102
103
104
105
106

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159
160
161
162
163

est[i,Stepl=max(Spath[i,Step]—K, continue) ;
estcontrol[i, Step]l=max(mean(estcontrol[index[i]:(index[i]+b—1),Step+1]),0)x*
exp(—r=xtstep);
}
}
contnc=mean(est[,1],na.rm= TRUE):+exp(—r+tstep);
highest[f]l=max(S[q]-K, contnc) ;
high estimator with control
control=GBSOption("¢’ ,S[q],K,(mP-tstep),r,(r—delta),sigma)@price;
contc=mean(estcontrol[,1],na.rm=TRUE)*exp(—r=*tstep);
highestc[f]l=highest[f]+(control—contc);
low estimator
estL=est;
estcontrolL=matrix (NA, nrow=b”End, ncol=End);
estL[,End]=pmax(Spath[,End]-K,EUVlaue) ;
for (Step in (1/tstep—1):1)
{
index=seq(1,b”(Step),b);
for (i in 1:(b”(Step—1)))

{

tempest=0;

for (j in 1:(b/2))

{
substract=estL[index[i]+(j —1),Stepl+estL[index[i]+(j—1)+b/2,Step]
continueL=(sum(estL[index[i]:(index[i]+b—1),Step])—substract)=exp(—r=tstep)/b;
spot=ifelse (Step—1==0,S[q],Spath[i, Step—11);
tempest=c(tempest,ifelse ((spot-K)<continueL ,substractsexp(—r=tstep)/2,

max(spot-K,0)));
}

if (Step!=1){
estL[i,Step—1]=mean(tempest[2:length (tempest)]);
}else{
lowest[fl=mean(tempest[2:length (tempest)]) ;
}
}
}
#low estimator with control
lowestc[fl=lowest[f]+(control—contc);
}
#calculated the expected estimators
Ehighest[M, ql=mean(highest) ;
Elowest[M, q]=mean(lowest) ;
Ehighestc[M, ql=mean(highestc) ;
Elowestc[M, q]=mean(lowestc) ;
pointestimateE [M,q]l= (max(S[ql-K, Elowest[M,q])+Ehighest[M,ql)/2;
pointestimateEc[M,q]l= (max(S[q]l-K, Elowestc[M,q]l)+Ehighestc[M,q])/2;
toc();
}
#preparing the outputs
lowestimator[ql=mean(Elowest[,q]) ;
highestimator[q]=mean(Ehighest[,q]) ;
pointestimator[ql= mean(pointestimateE[,q]) ;

lowestimatorc[ql=mean(Elowestc[,ql) ;
highestimatorc[ql=mean(Ehighestc[,q]) ;
pointestimatorc[q]l= mean(pointestimateEc[,q]);

seplql=sd(pointestimateE[,q])/sqrt(repitition);
sel[ql=sd(Elowest[,ql)/sqrt(repitition);
seh[ql=sd(Ehighest[,q])/sqrt(repitition);

sepc[ql=sd(pointestimateEc[,q])/sqrt(repitition);
selc[ql=sd(Elowest[,q])/sqrt(repitition);
sehc[ql=sd(Ehighestc[,q])/sqrt(repitition);

164
165
166
167
168
169
170
171
172
173
174
175
176
177

SRS

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

®

© 00 9 O O A WD

DN NDNNDNINIDNIDNRE B H = 2 e e e
W TR WN O O a0 O WD = O

B.1 PRICING ALGORITHMS ON A SINGLE ASSET

CILow[ql= lowestimator[q] — gqnorm(0.95)=sel[q];
CIHigh[q]l= highestimator[ql+ gqnorm(0.95)*seh[q];
ClILowc[ql= lowestimator[q] — qnorm(0.95)=sel[q];
CIHighc[q]l= highestimator[ql+ gqnorm(0.95):=seh[q];
}
#output

Output=data.frame(StockPrice=S,
Lowest=t (lowestimator) ,
StderrL=t(sel),
Highest=t (highestimator) ,
StderrH=t (seh) ,
Pointest=t(pointestimator),
ConfidencelLow=t (CILow) ,
ConfidentceHigh=t (CIHigh) ,
Pointest=t(pointestimator),
)

Outputec=data.frame(StockPrice=S,
Lowest=t (lowestimatorc) ,
StderrL=t(selc),
Highest=t (highestimatorc) ,
StderrH=t (sehc) ,
Pointest=t(pointestimatorc),
ConfidenceIlLow=t (CILowc) ,
ConfidentceHigh=t (CIHighc) ,
Pointest=t (pointestimatorc),
)

print (Output) #Bemudan option prices

print (Outputc) #Bemudan option prices using control variate

Algorithm 2: Pricing Bermudan option on a single asset using stochastic mesh

library ("fOptions");
library ("tictoc");
library ("foreach"); #enable parallel computation

K = 100; # strike price

delta = 0.1; # dividend Yield

ml= 1; # time to maturity

sigma = 0.2; # asset annual volatility

t =¢(0,1/3,2/83,1); # exercise opportunities for the Bermudan option
tstep=1/3;

r = 0.05; # risk—free rate

b = 20; # branching parameter

n=100; # number of Monte Carlo iterations

g=25; # number of Monte Carlo estimators

#pricing initialisation
S=¢(70,80,90,100,110,120); # asset prices
L=length(S);

lowestimatorl=matrix (NA, nrow=g, ncol=L); # option price low estimator
highestimator=matrix (NA, nrow=g, ncol=L); # option price high estimator
pointestimateouter=matrix(NA, nrow=g, ncol=L); # option price point estimator
define expected estimators

estimatorl=matrix (NA, nrow=1, ncol=L);

highest=matrix (NA, nrow=1, ncol=L);

lowest=matrix (NA, nrow=1, ncol=L);

define standard errors

serrl=matrix (NA, nrow=1, ncol=L);

75

76

APPENDIX: PRICING ALGORITHMS

29
30

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

serrh=matrix (NA, nrow=1, ncol=L);
serrl=matrix (NA, nrow=1, ncol=L);

31 # define confidence intervals
conflow=matrix (NA, nrow=1, ncol=L);
confhigh=matrix (NA, nrow=1, ncol=L);
time=matrix (NA, nrow=1, ncol=L);

foreach (q = 1l:length(S)) %dopar%

{
tic ()
for (h in 1:g)
{
#Generate the mesh
QO0=matrix (NA, nrow=1, ncol=n); #payoff matrix at time 0
LO=matrix (NA, nrow=1, ncol=n);
Call=matrix(NA, nrow=1, ncol=n);
for (f in 1:n)
{
Sl=matrix (NA, nrow=b, ncol=1);
S2=matrix (NA, nrow=b, ncol=1);
for (i in 1:b/2){
x=rnorm (1) ;
S1[i]=S[ql#exp((r—delta—sigma”2/2)+tstep+sigma=sqrt(tstep)=x);
S1[i+b/2]=S[ql*exp ((r—delta—sigma”2/2)=tstep+sigma+sqrt(tstep)*(—x));
x=rnorm (1) ;
S2[1]=S1[1i]*exp((r—delta—sigma”2/2)+tstep+sigma*sqrt(tstep)=x);
S2[i+b/2]=S1[i+b/2]+exp ((r—delta—sigma”2/2)=+tstep+sigmassqrt(tstep)(—x));
}
#high estimator

#get the option price at the second last exercise oppotunity

Q2=matrix (NA, nrow=b, ncol=1); #payoff matrix at time T-1

Call2=GBSOption("¢’ ,as.numeric(S2) ,K, tstep ,r ,(r—delta) ,sigma)@price:
exp(—r#(1—tstep))

for (i in 1:b)

{

Q2[1]=max((S2[1]-K)*exp(—r=*(1—tstep)),Call2[i]);
}
#calculate the weight at time T-2
density =matrix (NA, nrow=b, ncol=b);
for (k in 1:b)
{ for (i in 1:b)

{

density[i,k]=1/(sigma=#sqrt(tstep)=*S2[k])+*pnorm((log(S2[k]/S1[i])—(r—delta—sigma”2

/2)+tstep)/(sigma* sqrt(tstep)));

}

}

w=matrix (NA, nrow=b, ncol=b);

for (k in 1:b)

{ for (i in 1:b)
{

wli,k]=(density[k,i])/mean(density[,i]);

}

}

#calculate the high estimator at time T-2

Ql=matrix (NA, nrow=b, ncol=1);

est2=matrix (NA, nrow=b, ncol=1);

cont2=matrix (NA, nrow=1, ncol=b);

Calll=matrix(NA, nrow=b, ncol=1);

for (i in 1:b)

{
cont2[i]= mean(Q2sw[,i]); #Mesh estimator
QL[1i]=max(max(S1[i]-K,0)*exp(—r=tstep),cont2[i]); #Control variate at T-2
Calll[i]=mean(Call2=sw[,i]);

}

92

94
95
6

97

98

99
100
101
102
103
104
105

©

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

=3

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

#low

B.1 PRICING ALGORITHMS ON A SINGLE ASSET 77

cont0= mean(Ql);

QO[f]1=max(S[q]-K, cont0); #the high estimator at TO
Call[f]=mean(Calll); #control variate at TO
truecall=GBSOption("¢’ ,S[q],K,1,r,(r—delta) ,sigma)@price;
estimator

lowestimator=Q2;

#define weightings

cont=matrix (NA, nrow=b, ncol=b/2);
exercise=matrix (NA, nrow=b, ncol=b/2);
weightcont=matrix (NA, nrow=2, ncol=b);
weights3=matrix (NA, nrow=b—2, ncol=b);
weightcont2=matrix (NA, nrow=2, ncol=b);
weights4=matrix (NA, nrow=b—2, ncol=b);
weightcont3=matrix (NA, nrow=2, ncol=b);
weightsb=matrix (NA, nrow=b—2, ncol=b);
weights6=matrix (NA, nrow=b—2, ncol=b);
weights7=matrix (NA, nrow=b—2, ncol=b);

#calculate the low estimator at time T-2
for (j in 1:(b/2))

{

if (j==1){
for (k in 1:b)
{
weightcont[1,k]=density[k,1]/mean(density[,1]);
weightcont[2,k]=density[k,b/2+1]/mean(density[,b/2+1]);
for (i in 1:((b—2)/2))
{
weights3[i,k]=density[k,i+1]/mean(density[,i+1]);
weights3[i+(b/2)—1,k]l=density[k,i+b/2—1]/mean(density[,i+1+b/2]);
}
cont[k,jl= (sum(lowestimator[2:(b/2)]+weights3[(1:(b—2)/2),k])
+sum(lowestimator [(b/2+2):b]+weights3[((b—2)/2+1):(b—2),k]))/
(b—2);
exercise[k,jl=((lowestimator[1]+weightcont[1 ,k])+
(lowestimator[1+b/2]+weightcont[2,k]))/2;
}
}else if (j==b/2){
for (k in 1:b)
{
weightcont2[1,k]=density[k,(b/2)]/mean(density[,(b/2)]);
weightcont2[2 ,k]=density[k,b]/mean(density[,b]);
for (i in 1:((b—2)/2))
{
weights4[i,k]=density[k,i]/mean(density[,i]);
weights4[i+(b/2)—1,k]l=density[k,i+b/2]/mean(density[,i+b/2]);
}
cont[k,jl= (sum(lowestimator[2:((b/2)—1)]+weights4[(1:((b—2)/2)) ,k])
+sum(lowestimator [(b/2+1):(b—1)]1+weights3[((b—2)/2+1):(b—2),k]))/
(b—2);
exercisel[k,jl=((lowestimator[b/2]+weightcont2[1,k])
+(lowestimator[b]+weightcont2[2,k]))/2;
}
}else{
for (k in 1:b)
{
weightcont3[1,k]=density[k,j]/mean(density[,j]);
weightcont3[2 ,k]=density[k,(j+b/2)]/mean(density[,(j+b/2)]1);
for (i in 1:(j-1)) weights5[i,k]=density[k,i]/mean(density[,i]);
for (i in (j+1):(j+b/2-1)) weights6[i—j,k]l=density[k,i]/mean(density[,i]);
for (i in (j+b/2):b) weights7[i—(j+b/2) ,kl=density[k,i]/mean(density[,i]);
}
cont[k,jl= (sum(lowestimator[1:(j—1)]+*weights5[1:(j—1),k])
+sum(lowestimator [(j+1):(j+b/2—1)]+weights6[1:((b/2-1)) ,k])
+sum(lowestimator [(j+b/2+1):b]l=weights7[1:(b/2—j) ,k1))/(b—2);

78

APPENDIX: PRICING ALGORITHMS

157
158
159
160
161
162

164
165
166
167
168
169

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

<

=

exercise[k,jl=((lowestimator[j]+weightcont3[1,k])
+(lowestimator[j+b/2]+weightcont3[2,k]))/2;
}
}
}
lowestimator2=matrix (NA, nrow=1, ncol=b);
est=matrix (NA, nrow=b, ncol=b/2);
for (i in 1:b)
{
for (k in 1:(b/2))
{
if ((max(S1[i]-K,0)=*exp(—r=*tstep))>=cont[i,k]) {
est[i,k]=max(S1[i]-K,0)*exp(—r=tstep);
}else{
est[i,k]l=exercise[i,k];
}
}
lowestimator2[i]=mean(est[i,1:(b/2)]%*2);
}
LO[f]=max(S[q]—-K,mean(lowestimator2)) ;
}
#expected value of the high and low controled estimators
F=matrix (NA, nrow=n, ncol=1);
G=matrix (NA, nrow=n, ncol=2);
H=matrix(1, nrow=n, ncol=1);
for (k in 1:n)
{
Flk]= QO[k];
Glk,1:2]= Call[k];

}
p = Im(F ~ G $coefficients
beta=p[2]

highestimator[h,q]=mean(Q0)—betas(mean(Call)—truecall);
#corrected low estimator
Fl=matrix (NA, nrow=n, ncol=1);
Gl=matrix (NA, nrow=n, ncol=2);
Hl=matrix(1, nrow=n, ncol=1);
for (k in 1:n){
Filk]= (LO[k]D);
Gl[k,1:2]= Call[k]

}
p = Im(F1 ~ Gl)$coefficients
beta=p[2]

lowestimatorl[h,q]=mean(L0O)—betas*(mean(Call)—truecall);
#point estimator
pointestimateouter[h,ql=(highestimator[h,ql+lowestimatorl[h,q])/2;
toc ()
}

#preparing the the outputs
estimatorl[q]=mean(pointestimateouter[,q]);
highest[q]l=mean(highestimator[,ql);
lowest[ql=mean(lowestimatorl[,ql);
serrh[ql=sd (highestimator[,q])/sqrt(g);
serrl[ql=sd(lowestimatorl[,ql])/sqrt(g);
serrl[q]l=sd(pointestimateouter[,ql)/sqrt(g);
x = qnorm(0.95);
conflow[ql=lowest[ql— x#serrl[ql;
confhigh[q]= highest[ql+ x#serrh[q];

}

Output=data.frame(StockPrice=S,

t(lowest),
t(serrl),
t(highest),
t(serrh),

220
221
222
223
224

© 00 9 U A W NN

=
(=3

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

i

30
31
32

B.1 PRICING ALGORITHMS ON A SINGLE ASSET

t(conflow) ,
t(confhigh),
t(estimatorl)
)

print (Output) #Bemudan option prices

Algorithm 3: Function for generating asset price paths from geometric Browinian motion

#generate the stock path from GBM
PathGeneration=function(r, delta,bsigma,s,tstep,b,num_execution ,z,assetnum) {
set.seed(100);
if(is.null(assetnum)) assetnum=1;
z=matrix(z, nrow=b/2, ncol=(num_execution+1));
Stockpath=matrix(s, nrow=b, ncol=(num_execution+1));
for (step in 2:(num_execution+1))
{
x=z[,stepl;
x=c(xX,—X)
Stockpath[,step]=Stockpath[,step —1]xexp ((r—delta—sigma”2/2)=tstep+sigmassqrt(tstep)=x);
}
return (Stockpath);

Algorithm 4: Pricing Bermudan option on a single asset using EM-Control

library ("tictoc");

library ("fOptions");

K=100; # strike price

delta=0.1; # dividend

sigma=0.2; # annual volatility

r=0.05; # risk—free rate

T=1,; # maturity

num_execution=3; # exercise opportunities for the option
tstep=1/(num_execution) ;
S=¢(70,80,90,100,110,120); # initial stock price
L=length (S);

#pricing initialisation

b =50000; #number of asset price paths

g=25; #number of estimates

Estimation=matrix(0, nrow=1, ncol=L); #option price

SE=matrix (0, nrow=1, ncol=L); #option price standard error

prev.theta=theta.maxexp=matrix(300, nrow=1, ncol=num_execution+1); #EM parameters
theta.maxexp[4]=K; #optimal EM parameter

#option pricing
for (q in 1:L){
tic ();
value=0;
diff=5; #difference of option price between two subsequent EM estimations
cp = 0.001; #difference threshold value
#estimation step
while (diff!=0)
{
simulatedpath=1list () ;
simulatedeupath=1list () ;
Estimationtemp=0;

79

80

APPENDIX: PRICING ALGORITHMS

33

35
36
37
38
39
40
41
42

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95

prev.theta=theta.maxexp;

for (iti in 1:g)

{
EUpath=Stockpath=PathGeneration(r, delta,bsigma,S[q],tstep,b,num_execution);
simulatedpath[[iti]]=Stockpath;
for (step in (num_execution+1):1) EUpath[,step]=GBSOption (,Stockpath[,step],

K,T-tstep#(step—1),r,(r—delta) ,sigma)@price;

simulatedeupath[[iti]]=EUpath;

}

for (stop in (num_execution—1):2)

{

}

Optionsimu=function (x)
{
Estimationtemp=0;
temp.theta=prev.theta;
temp.theta[stopl=x;
for (iti in 1:g)
{
Stockpath=simulatedpath[[iti]];
EUpath=simulatedeupath[[iti]];
CF=pmax(Stockpath-K,0) ;
Continuation=St=Et=EUpath[,num_execution];
St=pmax (St ,CF[,num_execution]) ;
temp. theta[num_execution]=min(Stockpath[CF[,num_execution]>Et ,num_execution]) ;
for (step in (num_execution—1):2)
{
St=St*exp(—r*tstep);
index=which (CF[,step]1>0);
if (length(index)>=1){
Continuation[1:b]=0;
Continuation[index]=temp. theta[step]-K;
exerciseID=which (CF[,step]>Continuation);
St[exerciseID]=CF[exerciselD ,step];
}
}
St=St+exp(—r*tstep);
Estimationtemp=c (Estimationtemp ,max(mean(St) ,CF[1,1]));
}

return (mean(Estimationtemp[2:length (Estimationtemp)]1));

optimization=optimize (Optionsimu, interval=c(K, max(Stockpath[,stop])), maximum=TRUE)
optimization

theta .maxexp[stopl=optimization $maximum;

value=c(value , optimization$objective);

}

diff=round(value[length(value)],cp)—round(valuel[length(value)—11,cp);

simulatedpath=1list () ;
simulatedeupath=1list () ;
Estimationtemp=0;
prev.theta=theta.maxexp;
for (iti in 1:g)

{

EUpath=Stockpath=PathGeneration(r, delta,bsigma,S[q],tstep,b,num_execution);
simulatedpath[[iti]]=Stockpath;
for (step in (num_execution+1):1)
{
EUpath[, step]=GBSOption (,Stockpath[,step],K,T-tstep=*(step—1),r,(r—delta) ,sigma)
@price;
}
simulatedeupath[[iti]]=EUpath;

97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

© 0T WA W N

W W NN NNNDNIDNIDNDNDDN H H H o e e e
H O © ® 9 0 Ul WN RO ©®=1Oo e W H O

B.1 PRICING ALGORITHMS ON A SINGLE ASSET

for (iti in 1:g)
{
Stockpath=simulatedpath[[iti]];
EUpath=simulatedeupath[[iti]];
CF=pmax(Stockpath-K,0); #Generate the cawshflow table
Continuation=St=Et=EUpath[,num_execution];
St=pmax (St ,CF[,num_execution]) ;
prev.theta[num_execution]=min(Stockpath[CF[,num_execution]>Et ,num_execution]) ;
for (step in (num_execution—1):2)
{
St=Stxexp(—r*tstep);
index=which (CF[,step]>0);
if (length(index)>=1){
Continuation[1:b]=0;
Continuation[index]=prev.theta[step]-K;
exerciseID=which (CF[,step]>Continuation) ;
St[exerciseID]=CF[exerciselD ,step];
}
}
St=St+exp(—r*tstep);
Estimationtemp=c (Estimationtemp ,max(mean(St) ,CF[1,1]));
}
Estimation[q]=mean(Estimationtemp[2:length (Estimationtemp)]) ;
SE[ql=sd (Estimationtemp[2:length (Estimationtemp)]) /sqrt(g);
toc ()
}

print (Estimation) #Bemudan option price

Algorithm 5: Functions used for least-squares Monte Carlo method

#functions for LSMC continuation value estimation

#LSMC with control variates

LSMEsitmation=function (Y, index,r,step,Stockpath ,EUpath) {
Xl=rep(1l,length(index));
X2=Stockpath[index,step1;
X3=EUpath[index , step];
X4=EUpath[index , step]+*Stockpath[index ,step];
Beta=lm (Y~0+X1+X2+X3+X4)$coefficients ;
Prediction=Beta[1]+X1+Beta[2]*X2+Beta[3]+X3+Beta[4]:X4;
return (Prediction);

}

#LSMC with standard polynomial
Poly=function(Y,index,r,step,Stockpath ,Degree) {
X=list (),
for (i in 1:Degree)

X[[i]l=Stockpath[index,step]™i;
Est=Im(as.formula(paste("Y ~",paste(X, collapse="+"))));
return(predict (Est));

}

#LSMC with Laguerre polynomial
Laguerre=function(Y,index,r,step,Stockpath ,Degree) {
X=1list ();
x=Stockpath[index,step];
X[[1]]l=rep(1l,length(index));
X[[2]]1=1—x;
for (i in 3:Degree)
X[[i]ll=((2*i+1—x)=X[[1—1]]—i+X[[1i—2]])/(i+1);
Est=lm(as.formula(paste("Y ~",paste(X, collapse="+"))));
return(predict (Est));

81

APPENDIX: PRICING ALGORITHMS

32 }

33

3¢ #LSMC with Hermite polynomial

35 Hermite=function(Y,index,r,step,Stockpath,h Degree) {
36 X=list ();

37 x=Stockpath[index,step];

38 X[[1]]l=rep(1l,length(index));

39 X[[2]]1=2=#x;

40 for (i in 3:Degree)

41 X[[i]]=(2=#x)=X[[1—1]]-2=i+X[[1i —2]];

42 Est=lm(as.formula(paste("Y ~",paste(X, collapse="+"))));
43 return(predict(Est));

44 '}

45

46 #LSMC with Legendre polynomial

47 Legendre=function(Y,index,r,step,Stockpath, Degree) {
48 X=list ();

49 x=Stockpath[index ,step];

50 X[[1]]l=rep(1l,length(index));

51 X[[2]]=x;

52 for (i in 3:Degree)

53 X[[ill=((2#1+1)#x+=X[[1—1]1—1+=X[[1 —2]11)/(i+1);
54 Est=lm(as.formula(paste("Y ~",paste(X, collapse="+"))));
55 return(predict (Est));

56 }

57

58 #LSMC with Chebysheve polynomial

59 Chebysheve=function(Y,index,r,step,Stockpath, Degree) {
60 X=list();

61 x=Stockpath[index,step];

62 X[[1]]l=rep(1l,length(index));

63 X[[2]]=x;

64 for (i in 3:Degree)

65 X[[il]=2#x+X[[1-1]11-X[[i —2]];

66 Est=Im(as.formula(paste("Y ~",paste(X, collapse='+"))));
67 return(predict (Est));

68 }

69

70

71 #LSMC with piece—wise linear regression

72 piece.formula <— function(var.name, knots) {

73 formula.sign <— rep(" — ", length(knots))

74 formula.sign[knots < 0] <— " + "

75 paste(var.name, "+",

76 paste("I(pmax(", var.name, formula.sign, abs(knots), ", 0))",
77 collapse = " + ", sep=""))

78 }

79

80 #LSMC with spline regression

81 Piece.Spline=function(Y,index,r,step,Stockpath,Knot) {
82 x=Stockpath[index,step];

83 knots=seq(min(x), max(x), len=Knot+2);

84 Est=lm(as.formula(paste("Y ~" 6 piece.formula("x" ,knots))));
85 return(predict (Est));
86 }

Algorithm 6: Functions for generating asset price paths using quasi random sequences

1 #functions for generating quasi Monte Carlo sequences
2 #Halton sequences
3 GetHalton=function (b, base) {

© 0 9> U

B.1 PRICING ALGORITHMS ON A SINGLE ASSET

hs=matrix(0,b,1);
numbits=1+round (log(b)/log(base));
BaseVec=base”(—(1:numbits)) ;
WorkVec=matrix (0 ,numbits,1) ;
for (i in 1:b){
j = 1; done = 0;
while (done!=1){
WorkVec[j]=WorkVec[j]+1;
if (WorkVec[jl<base) {
done=1;
}else{
WorkVec[j1=0;
=i+l
}
}
hs[i]=sum(WorkVec:BaseVec) ;
}
return (hs)

}

QuasiMCSample. halton = function(b,B1,B2) {
Hl = GetHalton(round(b/2),B1);
H2 = GetHalton(round(b/2),B2);
Vlog=sqrt(—2=log (H1));
samp=matrix(0,b,1);
samp[seq(1,b,2)]=Vlog=cos(2+pi*H2);
samp[seq(2,b,2)]1=Vlog:=sin(2+pi=*H2) ;
return (samp)

#Sobol sequences
QuasiMCSample. sobol = function(b) {

SS= sobol(b/2,2,init = TRUE, scrambling = 1);
H1 =sample(SS[,1]1,b/2);

H2 =sample(SS[,2],b/2);
Vlog=sqrt(—2=log (H1));

samp=matrix(0,b,1);
samp[seq(1,b,2)]=Vlog=cos(2+pi*H2);
samp[seq(2,b,2)]=Vlog#sin (2 pixH2);

return (samp)

}

#moment matching

QuasiMCSample MM2 = function(b) {
Hl = runif(b/2,0,1);
H2 = runif(b/2,0,2);
Vlog=sqrt(—2=log (H1));
samp=matrix(0,b,1);
samp[seq(1,b,2)]=Vlog*cos(2+pi*H2);
samp[seq(2,b,2)]1=Vlog:=sin(2#pi*H2) ;
samp = samp—mean(samp)*(1/sd(samp));
return (samp)

}

#generate the stock path using different sequences
PathGeneration=function(r, delta,bsigma,s,tstep,b,num_execution ,B1,B2){
Stockpath=matrix(0, nrow=b, ncol=(num_execution+1));

Stockpath[,1]=s;
for (step in 2:(num_execution+1)) {

#Sample=QuasiMCSample. halton (b, step+B1, step+5+B2) ;

#Sample=QuasiMCSample. sobol (b/2);
#Sample=QuasiMCSample .MM2(b) ;

83

84

APPENDIX: PRICING ALGORITHMS

71
72
73

© 00 9O O A WD

=
(=1

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

=

Sample=rnorm(b/2); #pseudo random
Sample=c(—Sample, Sample)
Stockpath[,step]=Stockpath[,step —1]xexp ((r—delta—sigma”2/2)=tstep+sigma+sqrt(tstep)=*

Sample) ;
}
return (Stockpath);
}

Algorithm 7: Pricing Bermudan option on a single asset using least-squares Monte Carlo

library ("tictoc");
library ("fOptions");

K=100; # strike price
delta=0.1; # dividend
sigma=0.2; # annual volatility
r=0.05; # risk—free rate

T=1; # maturity

num_execution=3; # exercise opportunities for the option
tstep=1/(num_execution);

S$=¢(70,80,90,100,110,120); # initial stock price
L=length(S);

#pricing initialisation

b =50000; #number of asset price paths
g=25; #number of estimates
L=length(S);

Value=matrix (0, nrow=g, ncol=L);
Estimation=matrix(0, nrow=1, ncol=L);
SE=matrix(0, nrow=1, ncol=L);

#option pricing
for (q in 1:L)
{
for (f in 1:g)
{
tic();
#pruning for the second last exercise opportunities
EUpath=Stockpath=PathGeneration(r, delta,bsigma,S[q],tstep,b,num_execution);
for (step in (num_execution+1):1)
{
EUpath[, step =GBSOption("¢’ ,Stockpath[,step],K,T-tstep=(step—1),r,
(r—delta) ,sigma)@price;

}

CF=pmax(Stockpath—-K,0) ; #generate the cawshflow matrix
Continuation=St=Et=EUpath[,num_execution]; #generate the continuation value matrix
St=pmax (St ,CF[,num_execution]) ; #generate the option value matrix

for (step in (num_execution—1):2)

{

St=St+exp(—r=tstep);

Et=Etzexp(—r=tstep);

index=which (CF[,step]>0);

if (length(index)>=1){

#estimate continuation value with control variate

#substitute function ’‘LSMEsitmation’ with functions listed in Algorithm 5
#for different LSMC method

#Continuation value estimation
Ft=LSMEsitmation(St[index],index,r,step,Stockpath ,EUpath) ;

#Control variable estimation

Etest=LSMEsitmation (Et[index],index,r,step,Stockpath ,EUpath) ;
Et2est=LSMEsitmation(Et[index]*2#exp(r+tstep) ,index,r,step,Stockpath ,EUpath) ;

EtCest=LSMEsitmation(St[index]+Et[index]+*exp(r+tstep),index,r,step, Stockpath ,EUpath) ;

B.2 PRICING ALGORITHMS ON TWO ASSETS 85

52 coeff=—(EtCest—Ft=Etest)/(Et2est—Etest"2);
53 Ftc=Ft+coeff+(Etest—EUpath[index ,step]);
54

55 Continuation[1:b]=0;

56 Continuation[index]=Ftc;

57 exerciseID=which (CF[, step]>Continuation);
58 St[exerciseID]=CF[exerciselD , step 1;

59 Et[exerciselD]=EUpath[exerciseID ,step];

60 }

61 }

62 St=Stxexp(—r=tstep);

63 Et=Et+exp(—r=tstep);

64 StO=mean(St) ;

65 Etest=mean(Et) ;

66 Et2est=mean(Et"2)+exp(r=tstep);

67 EtCest=mean(St+Et)*exp(r=tstep);
68 coeff=—(EtCest—St0=Etest)/(Et2est—Etest"2);
69 Stc=St0+coeff(Etest—EUpath[1,1]);
70 Valuel[f,ql=max(Stc,CF[1,1]);

71 toc ()

72 }

73 Estimation[ql=mean(Valuel[,ql);

74 SE[ql=sd(Valuel,q]l)/sqrt(g);

75}

76 print(Estimation)

B.2 PRICING ALGORITHMS ON TWO ASSETS

Algorithm 8: Pricing Bermudan option on two assets using Black and Scholes’ formula

1
2 EUMax.2 = function(sl , s2 ,K, sigmal , sigma2 , bl , b2 , r ,T, rho){
3 sigma = sqrt (sigmal”2+sigma2/2—2#rho*sigmal+sigma2);
4 d = (log (s1/s2)+(bl-b2+sigma”2/2)=T)/(sigmaxsqrt (T));
5 yl = (log (s1l/K)+(bl+sigmal 72/2)+T)/(sigmal=sqrt (T));
6 y2 = (log (s2/K)+(b2+sigma2 ~2/2)=T)/(sigma2xsqrt (T));
7 rhol = (sigmal-rho#sigma2)/sigma;
8 rho2 = (sigma2-rho=*sigmal)/sigma;
9 varcov = matrix(¢ (1 , rep(rho , 2) , 1) ,nrow = 2);
10 varcovl = matrix(¢ (1 , rep(rhol , 2) , 1) ,nrow = 2);
11 varcov2 = matrix(¢ (1 , rep(rho2 , 2) , 1) ,nrow = 2);
12 value =
13 (slxexp ((bl—r)=*T)*pmnorm(cbind(yl , d) , rep (0 ,2) , varcovl)+
14 s2#exp ((b2—r)#T)#pmnorm(cbind(y2,—d+sigma*sqrt (T)) , rep (0 ,2), varcov2)—
15 Krexp(—r*T)#(1—pmnorm(cbind(—yl+sigmal=sqrt (T),—y2+sigma2+sqrt (T)),rep(0,2),
16 varcov)));
17 return(value) ;
18 }
Algorithm 9: Pricing Bermudan option on two assets using stochastic tree
1 library();

2 library();

86 APPENDIX: PRICING ALGORITHMS

3

1+ K = 100; # strike price

5 delta = 0.1; # dividend yield

6 mT = 1; # time to maturity

7 sigma = 0.2; # assets annual volatility

8 rho = rbind(c(1,0.3),c(0.3,1));

9t = ¢(0,1/3,2/3,1); # exercise opportunities for the Bermudan option

10 tstep = 1/3;

1 r = 0.05; # risk—free rate

12 b = 10; # branching parameter

13 iteration=20; # number of Monte Carlo iterations
14 repitition=10; # number of Monte Carlo estimators
15

16 #pricing initialisation

17 S = ¢(70,80,90,100,110,120); # asset prices

18 L = length(S);

19 emptyr = matrix(NA, nrow = repitition, ncol = L);

20 Ehighest = emptyr; # option price high estimator

21 Elowest = emptyr; # option price low estimator

22 pointestimateE = emptyr; # option price point estimator

23 emptyl = matrix(NA, nrow = 1, ncol = L);
24 # define expected estimators

25 pointestimator = emptyl;
26 highestimator = emptyl;
27 lowestimator = emptyl;
28 # define standard errors
29 sep = emptyl;

30 sel = emptyl;

31 seh = emptyl;

32 # define confidence intervals
33 ClLow = emptyl;

34 CIHigh = emptyl;

35 RealError = emptyl;

36

37 #create stohastic tree

38 createtree = function(S,q,tstep,r,delta,sigma,rho,assetnum,shock) {
39 if (shock == NULL) shock = 0;

40 Spath = matrix(NA, nrow = bA(1/tstep), ncol = (1/tstep));

41 for (p in 1:(1/tstep))

42 {

43 for (j in 1:(b™(p-1)))

45 for (i in 1:(b))

46 {

47 if (p—1 == 0){

48 Sp = Slql;

49 }else{

50 Sp = Spath[j,(p-11;

52 x = sample(shock,1);
53 Spath[b#(j —1)+i,p] = Spxexp((r—delta—sigma”2/2)=tstep+sigmassqrt(tstep)*x);

55 }

56 }

57 return (Spath) ;
58 }

61 # option pricing

62 foreach (q = 1l:length(S)) %dopar% {

63 tic();

64 for (M in 1l:repitition)

65 {

66 lowestc = matrix(NA, nrow = iteration, ncol = 1);

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

seplql
sel[q]
seh[q]

B.2 PRICING ALGORITHMS ON TWO ASSETS

lowest = matrix(NA, nrow = iteration, ncol = 1);

highestc = matrix(NA, nrow = iteration, ncol = 1);

highest = matrix(NA, nrow = iteration, ncol = 1);

for (f in 1l:iteration)

{

randomnumber = matrix (rnorm ((b+b”2+b”"3)%2) ,ncol = 2);

randomnumber = randomnumber%:%chol (rho) ;

Spathl createtree(S,q,tstep,r,delta,sigma,rho,1,randomnumber[,1]);
Spath2 createtree (S,q, tstep,r,delta,sigma,rho,2,randomnumber[,2]) ;

est = matrix(NA, nrow = bA(1/tstep), ncol = 1/tstep);
est[,(1/tstep)] = pmax(Spath2[,(1/tstep)]—K,Spathl[,(1/tstep)]-K,0);
for (Step in (1/tstep):2)
{
index = seq(1,b”(Step),b);
for (i in 1:(b”~(Step—1)))
{
continue = (sum(est[index[i]:(index[i]+b—1),Step])+*exp(—r=tstep))/b;
est[i,Step—1] = max(max(Spathl[i, Step—1],Spath2[i, Step —1])-K, continue);
}
}
contnc = mean(est[,1],na.rm = TRUE)=*exp(—r*tstep);
highest[f] = max(S[q]-K, contnc) ;

estlL = matrix(NA, nrow = b (1/tstep), ncol = 1/tstep+1);
estL[,(1/tstep)] = pmax(Spath2[,(1/tstep)]—K,Spathl[,(1/tstep)]-K,0);
for (Step in (1/tstep):1)

{
index = seq(1,b”(Step),b);
for (i in 1:(b”(Step—1)))
{
tempest = 0;
for (j in 1:(b/2))
{
substract = estL[index[i]+(j—1),Stepl+estL[index[i]+(j—1)+b/2,Step];
continueL. = (sum(estL[index[i]:(index[i]+b—1),Step])—substract)+exp(—r+tstep)/b;
spot = ifelse (Step—1 == 0,S[q],max(Spathl[i,Step—1],Spath2[i,Step—11));
tempest = c(tempest,ifelse ((spot—K)<continueL ,substract+exp(—r+tstep)/2,
max(spot—-K,0)));
}
if (Step!= 1){
estL[i,Step—1] = mean(tempest[2:length (tempest)]) ;
}else{
lowest[f] = mean(tempest[2:length (tempest)]) ;
}
}
}
}

Ehighest[M,q] = mean(highest);
Elowest[M,q] = mean(lowest) ;

pointestimateE[M,q] = (max(S[ql-K,Elowest[M,q])+Ehighest[M,ql)/2;

lowestimator[q] = mean(Elowest[,q]) ;
highestimator[q] = mean(Ehighest[,q]l);
pointestimator[q] = mean(pointestimateE[,ql);

sd(pointestimateE[,q])/sqrt(repitition);
sd(Elowest[,q])/sqrt(repitition);
sd(Ehighest[,ql)/sqrt(repitition);

87

88

APPENDIX: PRICING ALGORITHMS

131 CILow[q] = lowestimator[q] — qnorm(0.95)+*sel[ql;
132 CIHigh[q] = highestimator[ql+ qnorm(0.95)=seh[q];
133 toc();

134 }

135 Output = data.frame(StockPrice = S,

136 Lowest = t(lowestimator),

137 StderrL = t(sel),

138 Highest = t(highestimator),

139 StderrH = t(seh),

140 Pointest = t(pointestimator),

141 ConfidencelLow = t(CILow),

142 ConfidentceHigh = t(CIHigh),

143 Pointest = t(pointestimator),

144)

145 print (Output) #Bemudan option prices
Algorithm 10: Pricing Bermudan option on two assets using least-squares Monte Carlo

library("tictoc");

library ("mnormt") ;

K = 100; # Strike Price
assetnum =2;

delta = 0.1; # Dividend Yield
sigma = 0.2; # Volatility

rho = rbind(c¢(1,0.3),c(0.3,1));
r = 0.05; # Risk—free rate

T = 1; # Time to maturity

num_execution = 3; # Exercise opportunities for the Bermudan PointEstimator
tstep = 1/(num_execution);

S = ¢(70,80,90,100,110,120); # Initial stock price

© 0 9 U A W N

e e e~
TR W N RO

#pricing initialisation

b =20000; #number of asset price paths
g=25; #number of estimates

L = length(S);

Value = matrix(0, nrow = g, ncol = L);
Estimation = matrix(0, nrow = 1, ncol = L);
SE = matrix(0, nrow = 1, ncol = L);

N NN P e e
KN RO © w0,

23 for (q in 1:L){
24 tic();
25 for (f in 1:g)

26 {

27 simulatedpath = list();

28 randomnumber = matrix (rnorm (b (num_execution+1)/2:+assetnum) ,ncol = assetnum) ;

29 randomnumber = randomnumber%+%chol (rho) ;

30 for (assetnum in 1:2)

31 {

32 z = randomnumber| ,assetnum];

33 simulatedpath [[assetnum]] =

34 PathGeneration(r, delta,sigma,S[q],tstep,b,num_execution,z,assetnum);

35 }

36 simulatedeupath = simulatedpath;

37 for (i in 1:2)

38 {

39 string = paste("asset",i, " = matrix(unlist(simulatedpath[",i,"]),ncol = num_
execution+1)",sep = "");

40 eval (parse(text = string));

41 }

42 EUpath = Stockpath = matrix(0, nrow = b, ncol = (num_execution+1));

87
88 }

B.3 PRICING ALGORITHMS ON FIVE ASSETS

Stockpath = pmax(assetl, asset2);
EUpath[,num_execution+1] = pmax(pmax(assetl[,num_execution+1],
asset2[,num_execution+1])-K,0) ;
for (step in (num_execution):1)
EUpath[,step] = EUMax.2(assetl[,step],asset2[,step],K,
sigma,sigma,r—delta ,r—delta ,r ,T-tstep=(step—1),0.3);
CF = pmax(pmax(assetl,asset2)-K,0);
Continuation = St = Et = EUpath[,num_execution];
St = pmax(St,CF[,num_execution]) ;
for (step in (num_execution—1):2)

{
St = Stxexp(—r=tstep);
Et = Etzexp(—r=tstep);
index = which(CF[,step]>0);
if (length(index)>= 1){
Ft = LSMEsitmation(St[index],index,r,step, Stockpath ,EUpath) ;
Etest = LSMEsitmation(Et[index],index,r,step, Stockpath ,EUpath) ;
Et2est = LSMEsitmation(Et[index]*2:=exp(r+tstep),index,r,step, Stockpath ,EUpath) ;
EtCest = LSMEsitmation(St[index]*Et[index]+exp(r*tstep) ,index,r,step,Stockpath ,EUpath
DB
coeff = —(EtCest—FtxEtest)/(Et2est—Etest”2);
Ftc = Ft+coeffx(Etest—EUpath[index,step]);
Continuation[1:b] = O0;
Continuation[index] = Ftc;
exerciselD = which(CF[,step]>Continuation);
St[exerciseID] = CF[exerciselD , step];
Et[exerciseID] = EUpath[exerciselD ,step];
}
}
St = Stxexp(—r=tstep);
Et = Etsexp(—r=tstep);

St0 = mean(St);
Etest = mean(Et);
Et2est mean(Et"2)=exp(r=tstep);
EtCest = mean(St+Et)=*exp(r=tstep);
coeff = —(EtCest—St0xEtest)/(Et2est—Etest”"2);
Stc = StO+coeff:(Etest—EUpath[1,1]);
Value[f,q] = max(Stc,CF[1,1]);

}

Estimation[q] = mean(Value[,ql);

SE[q] = sd(Valuel,ql)/sqrt(g);

toc();

89 print(Estimation)

B.3

PRICING ALGORITHMS ON FIVE ASSETS

Algorithm 11: Pricing European option on five assets using multinomial tree

1 library()
2 num_execution=3;

3

89

90 APPENDIX: PRICING ALGORITHMS

4 asset.num=5; #number of assets

5 m=10; #number of steps between two executions
6 mT=1; #maturity

7 sigma=0.2; #annual volatality of stock price

8 delta=0.1; #dividend

9 r=0.05; #mean rate of return

10 S1=S2=8S3=S4=S5=100;#initial price of the stock

11 K=100 ; #strike price

12 corrmatrix=matrix(0.3,5,5);

13 diag(corrmatrix)=1 #assets correlation matrix

14

15 #option pricing setup

16 mu=matrix (r—delta —0.5+xsigma”2,nrow=asset .num) *mT;

17 ini.price=matrix(c(S1,S2,S3,S4,S5) ,nrow=asset .num) ;
18 sdm=c (sigma,sigma,sigma,sigma,sigma) ;

19 covmatrix . annual=sdm%%t (sdm) #corrmatrix ;

20 covmatrix=sqrt (mT/m)+covmatrix.annual;

21 chol.covmatrix.annual=t(chol(covmatrix.annual)) ;

22 A. matrix=2+sqrt (mT/m)#chol.covmatrix.annual;

23 b.vector=musmT-sqrt (mT#m)+chol.covmatrix.annual%+%matrix(1,nrow=asset.num, ncol=1);
24

25 #create tree

26 tree=list ();

27 tree.matrix=permutations(n=m+1,r=asset.num,v=0:m, repeats.allowed=TRUE) ;
28 for (i in 1l:(m+1)"asset.num) {

29 tree[[i]]l=tree.matrix[i,]

30 }

31 x.vector=list ();

32 w.vector=list () ;

33 value.vector=list ();

34 payoff.vector=1list ();

35 prob.vector=list ();

36 exp.vector=matrix(0,nrow=(m+1)"asset.num, ncol=1);

37

38 for (i in 1l:(m+1)"asset.num) {

39 x.vector[[i]]l=A.matrix%+%unlist(tree[[i1]])+b.vector;
40 w.vector[[i]]l=exp(x.vector[[i]]);

41 value.vector[[i]]l=max(w.vector[[i]]*ini.price);

42 payoff.vector[[i]]l=max(value.vector[[i]]1-K,0);

43 choose.element=unlist(tree[[i]]);

44 prob.vector[[i]]=choose(m,choose.element[1])#choose(m,choose.element[2])*

45 choose(m, choose.element[3])*choose(m, choose.element[4]) *
46 choose (m, choose.element[5])#(0.5)A(asset .num:m)

47 exp.vector[i]=prob.vector[[i]]*payoff.vector[[il];

48 }

49

50

51 print(sum(exp.vector)#*exp(—r)) #return European option price

Algorithm 12: Pricing Bermudan option on the geometric average of five assets using binomial tree

1 call = 1; #1 for call option, —1 for put option

2 num_execution = 4; #number of executions allowed, assuming equal
3 #interval between 2 executions

4 asset.num = 5; #number of assets

5n = 3; #number of steps between two executions

6 N = num_execution#n; #total number of steps

7ml = 1; #maturity

8 s = 0.2; #annual volatality of stock price

9 sigma = c(s,s,s,s,s);

10r = 0.05; #mean rate of return

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

=3

4

Algorithm 13: Pricing Bermudan option on the geometric average of five assets using least-squares

1
2
3

B.3 PRICING ALGORITHMS ON FIVE ASSETS

120 ; #initial price of the stocks
100 ; #strike price
rho = matrix(0.3,5,5);

diag(rho)=1; #assets correlation matrix

#convert assets to a single asset following Kemna (1990)
covmatrix.annual = sigma%:%t (sigma):#rho;

sigma.2 = sum(sum(covmatrix.annual))/asset.num”2;

delta = 1/2#(sum(sigma”2)/asset.num-sigma.2)+0.1;

#option pricing setup

dT = mT/N;

up exp(sqrt(sigma.2:dT));

dw = 1/up;

prob=(exp ((r—delta)*dT)—dw) / (up—dw) ;

#create tree
Stockpath = matrix(0, nrow = N+1, ncol = N+1);
Value = matrix(0, nrow = N+1, ncol = N+1);
for (i in 1:(N+1))
{
for(j in 1:1){
Stockpath[j,i]=S#(up”(i—j))=(dwr(j—1));
Valuel[j,il=max(call=(Stockpath[j,i1]-K),0);
}
}
BS = matrix(0, nrow = N+1, ncol = N+1);
BS[,N+1]=Value[,N+1];
a= 0:(N);
index = a[seq(1,N+1,n)];
boundB = 0;
for (g in (num_execution+1):2)
{
start = index[g—1]+1;
end = index[g];
for (j in end:start)
{
if (j==index[g—1]+1)
{
exercise = 0;
for (i in 1:j){
BS[i,j] = max(exp(—r/N)#(prob+BS[i,j+1]+(1—prob):
BS[i+1,j+1]),Valueli,j]);
exercise = c(exercise,ifelse (exp(—r/N)#(prob+BS[i,j+1]+
(1—prob)=BS[i+1,j+1])<Valueli,j],i,0));}
boundB = plotboundprep(call ,exercise ,boundB, Stockpath,j ,N);
}else{
for (i in 1:j) BS[i,jl=exp(—r/N)*(prob=*BS[i,j+1]+(1—prob):
BS[i+1,j+11);
}
}
}
BValue = BS[1,1];
print (BValue); #return Bermudan option price

Monte Carlo

library ("fOptions") ;
library ("tictoc");
library ("randtoolbox");

91

92

APPENDIX: PRICING ALGORITHMS

© 0 > W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

K=100; # strike price

assetnum=5; # number of assets
delta=0.1; # dividend yield

sigma=0.2; # annual assets volatility
rho=matrix(0.3,5,5);

diag(rho)=1 # assets correlation matrix
r=0.05; # risk—free rate

T=1; # time to maturity

num_execution=3; # exercise opportunities for the Bermudan PointEstimator
tstep=1/(num_execution) ;
S=¢(70,80,90,100,110,120); # Initial stock price

#convert assets to a single asset following Kemna (1990)

#to calculate the control variate

covmatrix.annual=rep (sigma, assetnum)%=%t (rep (sigma , assetnum)) *rho;
sigma.2=sum(sum(covmatrix.annual))/assetnum”2;
delta.adj=delta+1/2+(sum(rep (sigma,assetnum)”2)/assetnum—sigma.2);

#pricing initialisation
b =10000 ; #number of asset price paths
g=25 ; #number of estimates
L=length(S);
Value=matrix (0, nrow=g, ncol=L);
Estimation=matrix(0, nrow=1, ncol=L);
SE=matrix(0, nrow=1, ncol=L);
gmean = function(x, na.rm=TRUE) {
exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))

}

#option pricing
for (q in 1:L){
tic();
for (f in 1:g){
simulatedpath=1list () ;
vals=list (var="Normal", dist="norm" ,params=c(0,1));
randomnumber=matrix (rnorm (b (num_execution+1)/2+assetnum) ,ncol=assetnum) ;
#alternative random numbers from quasi sequences
#for (i in 1:assetnum) {
#randomnumber| , i]=sample (QuasiMCSample. halton (b* (num_execution+1)/2,
i+f+2,1+f+5+7) ,b* (num_execution+1)/2);
#randomnumber| , i]=QuasiMCSample. sobol (b* (num_execution+1)/2);
#randomnumber| , i |=QuasiMCSample .MM2(b) ;

randomnumber=randomnumber%:%chol (rho) ;
for (i in 1:assetnum)
{
z=randomnumber[,i];
simulatedpath[[i]]=
PathGeneration(r, delta,bsigma,S[q],tstep,b,num_execution,z,i);

}
for (i in 1:assetnum) {
string=paste("asset",i, "=matrix(unlist(simulatedpath[",i,"]),
ncol=num_execution+1)",sep = "");
eval (parse(text=string));
}

EUpath=Stockpath=matrix(0, nrow=b, ncol=(num_execution+1));
for (step in 1:(num_execution+1))

{
for (i in 1l:assetnum) {
if (i == 1) {matrix.mean=assetl[,step];}
else{

string=paste("matrix.mean=cbind (matrix.mean, ", "asset",i, "[,",step,"])",sep = "");

eval (parse(text=string));

68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

}

B.3 PRICING ALGORITHMS ON FIVE ASSETS

}

}

Stockpath[,stepl=apply(matrix.mean,1,gmean) ;
}
EUpath[,num_execution+1]=pmax(Stockpath[,num_execution+1]-K,0) ;
for (step in (num_execution):1)

EUpath[, step]I=GBSOption("¢’ ,Stockpath[,step],K,T-tstep=(step—1),r,(r—delta.adj),sqrt(
sigma.2)) @price;
}
CF=pmax(Stockpath—K,0); #generate the cawshflow table
Continuation=St=Et=EUpath[,num_execution |;
St=pmax (St ,CF[,num_execution]) ;

for (step in (num_execution—1):2)

{
St=St+exp(—r*tstep);
Et=Et#exp(—r=tstep);
index=which (CF[,step]>0);
if (length(index)>=1){
#continuation value estimation
#substitute function ’'LSMEsitmation’ with functions listed in Algorithm 5
#for different LSMC method
#continuation value estimation
Ft=LSMEsitmation(St[index],index,r,step,Stockpath ,EUpath) ;
#Control variable estimation
Etest=LSMEsitmation(Et[index],index,r,step, Stockpath ,EUpath) ;
Et2est=LSMEsitmation(Et[index]*2+exp(r+tstep) ,index,r,step, Stockpath ,EUpath) ;
EtCest=LSMEsitmation(St[index]+«Et[index]*exp(r=tstep) ,index,r,step,Stockpath ,EUpath) ;
coeff=—(EtCest—Ft+Etest)/(Et2est—Etest”?2);#Control adjustment coefficient
Ftc=Ft+coeff*(Etest—EUpath[index,step]);
Continuation[1:b]=0;
Continuation[index]=Ftc;
exerciseID=which (CF[, step]>Continuation);
St[exerciseID]=CF[exerciselD ,step];
Et[exerciseID]=EUpath[exerciseID ,step];
}
}

St=St+exp(—r*tstep);

Et=Et+exp(—r=tstep);

StO0=mean(St) ;

St0

Etest=mean(Et) ;
Et2est=mean(Et*2)=exp(r=tstep);
EtCest=mean(St+Et)*exp(r=tstep);
coeff=—(EtCest—St0=Etest)/(Et2est—Etest"2);
Stc=St0+coeff:(Etest—EUpath[1,1]);
Valuel[f,ql=max(Stc,CF[1,1]);

117 Estimation[q]=mean(Value[,ql) ;

118 SE[ql=sd(Valuel,ql)/sqrt(g);

119 RE[ql=abs ((Estimation[q]—truevaluelql)/truevaluelql);
120 RMSE[q]l=sqrt (mean((Estimation[q]—truevalue[q])*2));
121 Estimation

122 toc ()

123 }

124 print(Estimation) #Bemudan option price

93

BIBLIOGRAPHY

Abbas-Turki, L. A. and Lapeyre, B (2009). “American Options Pricing on Multi-
core Graphic Cards.” Proceedings of International Conference on Business In-
telligence and Financial Engineering (BIFE). IEEE, pp. 307-311.

Analytics, R. and Weston, S. (2015). foreach: Provides Foreach Looping Construct
for R. R package version 1.4.3.

Andricopoulos, A. D. et al. (2003). “Universal option valuation using quadrature
methods.” Journal of Financial Economics 67.3, pp. 447-471.

Anson, H. T., Thomas, D., and Luk, W. (2012). “Design exploration of quadrature
methods in option pricing.” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 20.5, pp. 818-826.

Azzalini, A. and Genz, A. (2016). The R package mnormt: The multivariate normal
and t distributions (version 1.5-5).

Barone Adesi, G. and Whaley, R. E. (1987). “Efficient Analytic Approximation of
American Option Values.” The Journal of Finance 42.2, pp. 301-320.

Barraquand, J. and Martineau, D. (1995). “Numerical valuation of high dimen-
sional multivariate American securities.” Journal of Financial and Quantita-
tive Analysis 30.3, pp. 383—-405.

Bauerle, N and Rieder, U (2011). Markov decision processes with applications to
finance. Springer Science & Business Media.

Bellman, R (1952). “On the theory of dynamic programming.” Proceedings of the
National Academy of Sciences 38.8, pp. 716-719.

Bellman, R. (1954). “Some Problems in the Theory of Dynamic Programming.”
Econometrica: Journal of the Econometric Society 22.1, pp. 37-48.

Biancardi, M. and Villani, G. (2014). “A Robustness Analysis of Least-Squares
Monte Carlo for R&D Real Options Valuation.” Mathematical and Statisti-

95

96

Bibliography

cal Methods for Actuarial Sciences and Finance. Cham: Springer International
Publishing, pp. 27-30.

Biancardi, M. and Villani, G. (2016). “Robust Monte Carlo Method for R&D Real
Options Valuation.” Computational Economics 49.3, pp. 481-498.

Black, F and Scholes, M (1973). “The pricing of options and corporate liabilities.”
Journal of political economy 81.3, pp. 637-654.

Bossaerts, P. (1989). “Simulation estimators of optimal early exercise.” Working
Paper, Carnegie Mellon University.

Box, G. E. P. and Cox, D. R. (1964). “An Analysis of Transformations.” Journal of
the Royal Statistical Society. Series B (Methodological) 26.2, pp. 211-252.

Boyle, P. P. (1977). “Options: A Monte Carlo approach.” Journal of Financial Eco-
nomics 4.3, pp. 323-338.

Boyle, P. P., Evnine, J., and Gibbs, S. (1989). “Numerical Evaluation of Multivariate
Contingent Claims.” Review of Financial Studies 2.2, pp. 241-250.

Brandao, L. E., Dyer, J. S., and Hahn, W. J. (2005). “Using Binomial Decision Trees
to Solve Real-Option Valuation Problems.” Decision Analysis 2.2, pp. 69-88.
Brennan, M. J. and Schwartz, S. E. (1978). Finite difference methods and jump pro-
cesses arising in the pricing of contingent claims: A synthesis. Vol. 13. Journal

of Financial and Quantitative Analysis.

Broadie, M. and Cao, M. (2008). “Improved lower and upper bound algorithms for
pricing American options by simulation.” Quantitative Finance 8.8, pp. 845—
861.

Broadie, M. and Glasserman, P. (1997). “Pricing American-style securities using
simulation.” Journal of economic dynamics and control 21.8, pp. 1323-1352.
Broadie, M. and Glasserman, P. (2004). “A stochastic mesh method for pricing high-
dimensional American options.” Journal of Computational Finance 7, pp. 35—

72.

Caflisch, R. E. and Chaudhary, S (2004). “Monte Carlo methods for American op-

tions.” Simulation Conference, pp. 1656—1660.

Bibliography

Carmona, R., Hinz, J., and Yap, N. (2007). “Solving convex stochastic switching
problems.” Journal of LaTeX Class Files 6.1, pp. 1-6.

Carr, P. (1998). “Randomization and the American Put.” Review of Financial Stud-
ies 11.3, pp. 597—-626.

Carriere, J. F. (1995). “Valuation of the early-exercise price for options using simu-
lations and nonparametric regression.” Insurance: Mathematics and Economics
19.1, pp. 19-30.

Chaudhary, S. (2005). “American options and the LSM algorithm: quasi-random
sequences and Brownian bridges.” The Journal of Computational Finance 8.4.

Chow, Y. S. and Robbins, H. (1963). “On optimal stopping rules.” Zeitschrift fiir
Wahrscheinlichkeitstheorie und verwandte Gebiete 2.1, pp. 33—49.

Christophe, D. and Petr, S. (2015). randtoolbox: Generating and Testing Random
Numbers. R package version 1.17.

Copeland, T and Antikarov, V (2001). Real options. Texere.

Cox, J. C., Ross, S. A., and Rubinstein, M. (1979). “Option pricing: A simplified
approach.” Journal of Financial Economics 7.3, pp. 229-263.

Crundwell, F. (2008). Finance for Engineers. Evaluation and Funding of Capital
Projects. Springer Science & Business Media.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). “Maximum likelihood from
incomplete data via the EM algorithm.” Journal of the Royal Statistical Society.
Series B (Methodological) 39.1, pp. 1-38.

Dupire, B (1998). Monte Carlo: methodologies and applications for pricing and risk
management. Risk Books.

Egloff, D. (2005). “Monte Carlo algorithms for optimal stopping and statistical
learning.” The Annals of Applied Probability 15.2, pp. 1396-1432.

Fu, M. C. et al. (2001). “Pricing American options: A comparison of Monte Carlo
simulation approaches.” Journal of Computational Finance 4.3, pp. 39-88.

Gapeev, P. V. and Rodosthenous, N. (2014). “Optimal Stopping Problems in Diffusion-
Type Models with Running Maxima and Drawdowns.” Journal of Applied Prob-
ability 51.3, pp. 799-817.

97

98

Bibliography

Gentle, J. E. (2013). Random Number Generation and Monte Carlo Methods. Statis-
tics and Computing. Springer Science & Business Media.

Geske, R and Johnson, H. E. (1984). “The American put option valued analytically.”
The Journal of Finance 39.5, pp. 1511-1524.

Geske, R. (1979). “The valuation of compound options.” Journal of Financial Eco-
nomics 7.1, pp. 63-81.

Glasserman, P. (2013). Monte Carlo Methods in Financial Engineering. Springer
Science & Business Media.

Glasserman, P. and Yu, B. (2004). “Number of paths versus number of basis func-
tions in American option pricing.” The Annals of Applied Probability 14.4, pp. 2090—
2119.

Green, P. J. and Silverman, B. W. (1993). Nonparametric Regression and General-
ized Linear Models: A Roughness Penalty Approach. CRC Press.

Haugh, M. B. and Kogan, L. (2004). “Pricing American Options: A Duality Ap-
proach.” Operations Research 52.2, pp. 258-270.

Hinz, J. (2014). “Optimal Stochastic Switching under Convexity Assumptions.”
SIAM Journal on Control and Optimization 52.1, pp. 164—188.

Hull, J. C. (2016). Fundamentals of Futures and Options Markets, Global Edition.
Pearson Higher Education.

Izrailev, S. (2014). tictoc: Functions for timing R scripts, as well as implementations
of Stack and List structures. R package version 1.0.

Johnson, H. E. (1983). “An Analytic Approximation for the American Put Price.”
The Journal of Financial and Quantitative Analysis 18.1, p. 141.

Joshi, M. S. (2008). The Concepts and Practice of Mathematical Finance. Cam-
bridge University Press.

Kemna, A. G. Z. and Vorst, A. C. F. (1990). “A pricing method for options based on
average asset values.” Journal of Banking & Finance 14.1, pp. 113-129.

Kim, J. et al. (2016). “A practical finite difference method for the three-dimensional
Black—Scholes equation.” European Journal of Operational Research 252.1, pp. 183—
190.

Bibliography

Kou, S, Peng, X, and Xu, X (2016). “EM Algorithm and Stochastic Control in Eco-
nomics.” arXiv.org. arXiv: 1611.01767,2016..

Lai, Y. and Spanier, J. (1998). “Applications of Monte Carlo/quasi-Monte Carlo
methods in finance: Option pricing.” Proceedings of a conference held at the
Claremont Graduate Univ., CA, USA. Springer Berlin Heidelberg.

Longstaff, F. A. and Schwartz, E. S. (2001). “Valuing American Options by Simu-
lation: A Simple Least-Squares Approach.” Review of Financial Studies 14.1,
pp. 113-147.

Luo, X. and Shevchenko, P. V. (2014). “Fast and simple method for pricing exotic op-
tions using Gauss—Hermite quadrature on a cubic spline interpolation.” Jour-
nal of Financial Engineering 1.04, p. 1450033.

McDonald, R. and Siegel, D. (1986). “The Value of Waiting to Invest.” The Quarterly
Journal of Economics 101.4, pp. 707-727.

Merton, R. C. (1973). “Theory of Rational Option Pricing.” The Bell Journal of Eco-
nomics and Management Science, pp. 141-183.

Mordecki, E. (2002). “Optimal stopping and perpetual options for Lévy processes.”
Finance and Stochastics 6.4, pp. 473—493.

Moreno, M. and Navas, J. F. (2003). “On the robustness of least-squares Monte
Carlo (LLSM) for pricing American derivatives.” Review of Derivatives Research
6.2, pp. 107-128.

Niederreiter, H. and Shiue, P. J. (2012). “Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing.” Proceedings of a conference at the Univer-
sity of Nevada, Las Vegas, Nevada, USA. Springer Science & Business Media.

Pages, G., Pironneau, O., and Sall, G. (2016). “The parareal algorithm for American
options.” Comptes Rendus Mathematique 354.11, pp. 1132-1138.

R Core Team (2017). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria.

Rasmussen, N. S. (2005). “Control Variates for Monte Carlo Valuation of American
Options.” Working Paper.

99

http://arxiv.org/abs/1611.01767, 2016.

100

Bibliography

Rodrigues, A. and Rocha Armada, M. J. (2006). “The Valuation of Real Options
with the Least Squares Monte Carlo Simulation Method.” SSRN Electronic
Journal.

Rogers, L. (2002). “Monte Carlo valuation of American options.” Mathematical Fi-
nance 3.12, pp. 271-286.

Roll, R. (1977). “An analytic valuation formula for unprotected American call op-
tions on stocks with known dividends.” Journal of Financial Economics 5.2,
pp. 251-258.

Rust, J. (1997). “Using randomization to break the curse of dimensionality.” Econo-
metrica: Journal of the Econometric Society 65.3, pp. 487-516.

Stentoft, L (2013). “American option pricing using simulation with an application
to the GARCH model.” Handbook of Research Methods and Applications in
Empirical Finance. Edward Elgar, pp. 114-147.

Stentoft, L. (2004). “Assessing the Least Squares Monte-Carlo Approach to Ameri-
can Option Valuation.” Review of Derivatives Research 7.2, pp. 129-168.

Stentoft, L. (2014). “Value function approximation or stopping time approximation:
a comparison of two recent numerical methods for American option pricing
using simulation and regression.” The Journal of Computational Finance 18.1,
pp. 65—120.

Sullivan, M. A. (2000). “Valuing American put options using Gaussian quadra-
ture.” The Review of Financial Studies 13.1, pp. 75-94.

Tan, K. S. and Boyle, P. P. (2000). “Applications of randomized low discrepancy se-
quences to the valuation of complex securities.” Journal of economic dynamics
and control 24.11, pp. 1747-1782.

Team, R. C. et al. (2015). fOptions: Rmetrics - Pricing and Evaluating Basic Op-
tions. R package version 3022.85.

Tilley, d. A. (1993). “Valuing American options in a path simulation model.” Trans-
actions of the Society of Actuaries 45, pp. 83—104.

Trigeorgis, L. (1996). Real options: Managerial flexibility and strategy in resource
allocation. MIT Press.

Bibliography

Tsitsiklis, J. N. and Van Roy, B. (2001). “Regression methods for pricing complex
American-style options.” IEEE Transactions on Neural Networks 12.4, pp. 694—
703.

Ueberhuber, C. W. (1997). Numerical Computation 2. Methods, Software, and Anal-
ysis. Springer Science & Business Media.

Wald, A. and Wolfowitz, J (1949). “Bayes solutions of sequential decision prob-
lems.” Proceedings of the National Academy of Sciences of the United States
of America 35.2, pp. 99-102.

Warnes, G. R., Bolker, B., and Lumley, T. (2015). gtools: Various R Programming
Tools. R package version 3.5.0.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York. ISBN: 978-0-387-98140-6.

Williams, D. (1991). Probability with Martingales. Cambridge University Press.

Wilmott, P., Dewynne, J., and Howison, S. (1993). Option Pricing: Mathematical
Models and Computation. Oxford Financial Press.

Zhang, Q and Guo, X (2004). “Closed-Form Solutions for Perpetual American Put
Options with Regime Switching.” SIAM Journal on Applied Mathematics 64.6,
pp. 2034-2049.

Zhou, Y. (2004). “On the existence of an optimal regression complexity in the least-
squares Monte-Carlo (Ism) framework for option pricing.” Proceedings to 39th

Actuarial Research Conference, Society of Actuaries.

101

Final Version as of November 24, 2017.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Monte Carlo Methods for Option Pricing
	2.1 Basic Concepts for Pricing Options
	2.2 Why Monte Carlo?
	2.3 Problem Formulation
	2.4 Existing Monte Carlo Methods for Pricing American Options
	2.4.1 Stratified Sampling Methods
	2.4.2 Random Tree and Stochastic Mesh Methods
	2.4.3 Regression Based Methods
	2.4.4 Stochastic Convex Switching System
	2.4.5 Expectation-Maximization Control Algorithm

	2.5 Summary

	3 Pricing Bermudan Options
	3.1 Problem Formulation
	3.2 Least-Squares Monte Carlo Approximation
	3.3 Improvements on the Least-Squares Monte Carlo Method
	3.3.1 Regression Schemes
	3.3.2 Random Number Generation
	3.3.3 Control Variates

	4 Simulation Results and Algorithm Improvement
	4.1 Single-Asset Bermudan Options
	4.1.1 The Random Tree and Stochastic Mesh
	4.1.2 LSMC and EM-C Algorithm
	4.1.3 The Accuracy and Convergence of LSMC in a Single Dimension
	4.1.4 LSMC and Tsitsiklis:2001vl
	4.1.5 Out-of-Sample Performance

	4.2 Multi-Asset Bermudan Options
	4.2.1 Comparison of LSMC and Random Tree
	4.2.2 The Accuracy and Convergence of LSMC in High Dimensions
	4.2.3 Bermudan Options on the Geometric Average of Five Assets

	4.3 Approximate American Options with Bermudan Options
	4.4 Summary

	5 LSMC for Real Options Analysis
	5.1 Value of Waiting to Invest
	5.2 Case Study: Mining Technology
	5.3 Options to Delay on Two Factors
	5.4 Summary

	6 Conclusions and Directions of Future Research
	A Appendix: Simulation Results
	A.1 Simulation Results for Bermudan Calls on a Single Asset
	A.2 Simulation Results for Bermudan Calls on Multiple Assets

	B Appendix: Pricing Algorithms
	B.1 Pricing Algorithms on a Single Asset
	B.2 Pricing Algorithms on Two Assets
	B.3 Pricing Algorithms on Five Assets

	Bibliography

